
Model-Based Exploration of Parallelism in Context

of Automotive Multi-Processor Systems

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

der Universität Osnabrück
an der Fakultät für Mathematik und Informatik

von

Robert Martin Höttger

Bochum
November 2020



Verteidigung: 22.04.2021
Dekan / Dekanin: Prof. Dr. Tim Römer
Gutachter / Gutachterinnen: Prof. Dr.-Ing. Olaf Spinczyk

Prof. Dr. Burkhard Igel
Prof. Dr.-Ing. Peter Ulbrich



Ut sementem feceris, ita metes.
(Marcus Tullius Cicero)

III



Acknowledgement

I would like to thank all people that supported my research and helped me during my time
as a PhD student. First and foremost, I would like to thank my wife Juliane and my two
sons Janes and Leard. You gave me your unconditional support and love through all this
long process. In challenging times and straining days, your love is all it takes to keep me
on track.

I also would like to express my appreciation to my advisory committee: Prof. Dr.-Ing.
Olaf Spinczyk and Prof. Dr. Burkhard Igel. Thank you for giving me the opportunity to
be part of various research projects, for your time, patience, understanding, advises, and
lead throughout my studies. I highly value your and Prof. Dr.-Ing. Peter Ulbrich’s time
and thoughts on my research.

My gratitude further goes to various people of the IDiAL research institute. Many thanks
to Uwe Lauschner, who I spent 13 years of studies with, and I am very grateful for having
such a close friend all along. Special thanks to Philipp Heisig, who supported me in
proofreading this document, writing project outlines, full project proposals, deliverables,
reports, and in many other matters, which has significantly biased the time I could spend
on my research positively. Thank you, Andreas Grosche, for our pleasant discussions
and for helping me improving this thesis in many ways. Furthermore, I am grateful for
fruitful discussions of any matters with Rene Ukrig, Philipp Tendyra, Daniel Fruhner,
and Lukas Krawczyk. Another person I want to thank is Prof. Dr. Carsten Wolff. His
widespread efforts and diligence continuously takes the research institute to the next level.
I highly value Carsten’s concise statements, his humorous bias, and all his efforts towards
a promising future of IDiAL but also for students, lecturers, and employees.

Luckily, various students supported my research by writing their research projects or theses
under my supervision. To keep this list short, I only mention Mustafa Özcelikörs, Pedro
Cuadra, The Bao Bui, and Junhyung Ki, who I am very grateful for having published
papers with. Due to my research being involved in some international research projects,
I also want to thank the people behind Amalthea4public and Appstacle, who not only
spent many efforts on various technologies I learned so much about, but also let me enjoy
exceptionally great international cooperation.

Finally, I would like to thank my parents and siblings for inspiration, advice, and financial
support. I will always keep enjoying the atmosphere with all of you.

IV



Abstract

This dissertation entitled ’Model-Based Exploration of Parallelism in the Context of
Automotive Multi-Core Systems’ deals with the analytical investigation of different
temporal relationships for automotive multi-processor systems subject to critical,
embedded, real-time, distributed, and heterogeneous domain requirements. Vehicle
innovation increasingly demands high-performance platforms in terms of, e.g., highly
assisted or autonomous driving such that established software development processes must
be examined, revised, and advanced. The goal is not to develop application software
itself, but instead to improve the model-based development process, subject to numerous
constraints and requirements. Model-based software development is, for example, an
established process that allows systems to be analyzed and simulated in an abstracted,
standardized, modular, isolated, or integrated manner. The verification of real-time
behavior taking into account various constraints and modern architectures, which
include graphics and heterogeneous processors as well as dedicated hardware accelerators,
is one of many challenges in the real-time and automotive community. The software
distribution across hardware entities and the identification of software that can be
executed in parallel are crucial in the development process. Since these processes
usually optimize one or more properties, they belong to the category of problems that
can only be solved in polynomial time using non-deterministic methods and thus make
use of (meta) heuristics for being solved. Such (meta) heuristics require sophisticated
implementation and configuration, due to the properties to be optimized are usually subject
to many different analyses.

With the results of this dissertation, various development processes can be adjusted
to modern architectures by using new and extended processes that enable future and
computationally intensive vehicle applications on the one hand and improve existing
processes in terms of efficiency and effectiveness on the other hand. These processes include
runnable partitioning, task mapping, data allocation, and timing verification, which are
addressed with the help of constraint programming, genetic algorithms, and heuristics.

V



Zusammenfassung

Diese Dissertation mit dem Thema ’Model-Based Exploration of Parallelism in Context
of Automotive Multi-Core Systems’ befasst sich mit der Erforschung verschiedener
zeitlicher Zusammenhänge von kritischen und eingebetteten Echtzeitsystemen im
automobilen Multicore-Prozessor-Kontext. Es werden etablierte Prozesse untersucht
und Herausforderungen gelöst, die bei der Weiterentwicklung von Fahrzeugsoftware
entstehen, so beispielsweise in Bezug auf autonomes Fahren. Dabei geht es nicht darum,
Applikationssoftware selbst zu entwickeln, sondern stattdessen den Entwicklungsprozess,
der an eine Vielzahl an Rahmenbedingungen geknüpft ist, zu verbessern. Die
modellbasierte Softwareentwicklung ist zum Beispiel ein etablierter Prozess, mit dem
sich übergreifend Systeme modular, isoliert oder integriert analysieren sowie simulieren
lassen. Die Verifikation von Echtzeitverhalten unter Berücksichtigung verschiedener
Rahmenbedingungen und moderner Architekturen, die beispielsweise Grafik- und
heterogene Prozessoren sowie dedizierte Hardwarebeschleuniger beinhalten, ist eine von
vielen Problemstellungen in der Echtzeit- und Automotive Community. Ebenso spielt
die Softwareverteilung auf die Hardware und die Identifikation von Softwareteilen,
die parallel ausgeführt werden können, eine maßgebliche Rolle im Entwicklungsprozess.
Darüber hinaus müssen etwaige Parallelisierungsprozesse in den meisten Fällen eine
oder mehrere Zielfunktionen optimieren. Da sich Allokationsprobleme in Kombination
mit Optimierung meist nur mit nicht-deterministischen Verfahren in Polynomialzeit
lösen lassen, müssen geeignete (Meta-) Heuristiken genutzt werden, um Lösungen
effizient berechnen zu können. Zudem erfordern diese (Meta-) Heuristiken systematische
Implementierung und Konfiguration, da die zu optimierenden Eigenschaften in der Regel
eine Vielzahl an Analysen beinhalten.

Mit den Ergebnissen dieser Dissertation können verschiedene Entwicklungsprozesse an
moderne Architekturen angepasst werden, um einerseits zukünftige rechenintensive
Fahrzeugapplikationen zu ermöglichen und andererseits existierende Prozesse in Bezug auf
Effizienz und Effektivität zu verbessern. Hierzu gehören neue und erweiterte Prozesse
wie die Partitionierung von Runnables zu Tasks, das Verteilen von Tasks auf Prozessoren
sowie die Verifikation von Echtzeit, die in Kombination und mit Hilfe von Constraint-
Programmierung, genetischen Algorithmen und Heuristiken gelöst werden.

VI



This dissertation was supported by the following projects and organizations:

• ITEA3 Amalthea, BMBF funded under 01IS11020A 2012-2014

• ITEA3 Amalthea4public, BMBF funded under 01|S14029K 2015-2017

• ITEA3 Appstacle, BMBF funded under 01IS14029A 2017-2019

• ITEA3 Panorama, BMBF funded under 01IS18047D 2019-2022

• Fachhochschule Dortmund - Institute for the Digital Transformation of Application
and Living Domains (IDiAL)

• Fachhochschule Dortmund - Promotionskolleg

Index terms

Amalthea, Amalthea4public, App4mc, Partitioning, Mapping, Software Distribution,
Timing Verification, Response Time Analysis, Autosar, Mixed-Critical Systems,
Embedded Systems, Real-Time Systems, Automotive, Constraints

VII



Publications

The following lists peer-reviewed publications the author of this thesis was involved with
during his research studies ordered by year and month chronologically. Publications used
for this dissertation are highlighted bold.

Publications until 2017

[1] Robert Höttger, Burkhard Igel, and Erik Kamsties. “A Novel Partitioning and
Tracing Approach for Distributed Systems Based on Vector-Clocks.” In: 7th
International Conference on Intelligent Data Acquisition and Advanced Computing
Systems. Vol. 02. IDAACS’13. IEEE, 2013, pp. 670–675. doi: 10.1109/IDAACS.
2013.6663010.

[2] Robert Höttger, Burkhard Igel, and Erik Kamsties. “Vector-Clock Tracing and
Model-based Partitioning for Distributed Embedded Systems.” In: International
Journal of Computing 12.4 (2013). ISSN 1727-6209, Available online: https://
bit.ly/3iJjMNl, pp. 324–332.

[3] Robert Höttger and Burkhard Igel. “A Concept of Vector Clock Utilization
in an Iterative Tracing Approach for Distributed Embedded Systems.” In:
18th International Workshop on Software and Compilers for Embedded Systems.
SCOPES’15. ACM, June 2015. doi: 10.1145/2764967.2764969.

[4] Robert Höttger, Lukas Krawczyk, and Burkhard Igel. “Model-
Based Automotive Partitioning and Mapping for Embedded Multicore
Systems.” In: International Conference on Parallel, Distributed Systems
and Software Engineering. Vol. 2. ICPDSSE’15. eISSN: 1307-6892,
Available online: https://bit.ly/3iOBHT6. World Academy of Science,
Engineering and Technology, Jan. 2015, pp. 2643–2649.

[5] Robert Höttger, Phil Närdemann, and Lukas Krawczyk. “Comprehensive Utilization
of the AMALTHEA Tool Platform – A Use-Case along with the Parallax Activity
Bot.” In: International Research Conference Dortmund. June 2015.

[6] Lukas Krawczyk, Daniel Fruhner, Robert Höttger, Carsten Wolff, and
Christopher Brink. “AMALTHEA - Eine durchgängige Entwicklungsplattform
für die modellgetriebene Entwicklung automobiler eingebetteter Systeme.” In:
10. Paderborner Workshop: Entwurf mechatronischer Systeme, Heinz Nixdorf
MuseumsForum, Paderborn. Verlagsschriftenreihe des Heinz Nixdorf Instituts,
Paderborn, Apr. 2015.

VIII

https://doi.org/10.1109/IDAACS.2013.6663010
https://doi.org/10.1109/IDAACS.2013.6663010
https://bit.ly/3iJjMNl
https://bit.ly/3iJjMNl
https://doi.org/10.1145/2764967.2764969
https://bit.ly/3iOBHT6


[7] Carsten Wolff, Robert Höttger, Burkhard Igel, Erik Kamsties, Uwe Lauschner, and
Christopher Brink. “Automotive Software Development with AMALTHEA.” In: 4th
International Scientific Conference on Project Management in the Baltic Countries.
Apr. 2015.

[8] Robert Höttger, Uwe Lauschner, Phil Närdemann, Philipp Heisig, Carsten Wolff,
Erik Kamsties, and Burkhard Igel. “Teaching Distributed and Parallel Systems
with APP4MC.” In: International Symposium on Embedded Systems and Trends
in Teaching Engineering. DesIRE ’16. Available online: https://bit.ly/3c8jD3J.
Sept. 2016, pp. 126–134. isbn: 978-80- 558-1041-6.

Publications 2017

[9] Robert Höttger, Burkhard Igel, and Olaf Spinczyk. “On Reducing
Busy Waiting in AUTOSAR via Task-Release-Delta-based Runnable
Reordering.” In: Proceedings of the 2017 Design, Automation & Test
in Europe Conference & Exhibition. DATE ’17. IEEE, Mar. 2017,
pp. 1510–1515. doi: 10.23919/DATE.2017.7927230.

[10] Robert Höttger, Mustafa Özcelikörs, Philipp Heisig, Lukas Krawczyk, Carsten
Wolff, and Burkhard Igel. “Constrained Mixed-Critical Parallelization for
Distributed Heterogeneous Systems.” In: Proceedings of the 2017 Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applications.
IDAACS ’17. IEEE, Sept. 2017. doi: 10.1109/IDAACS.2017.8095077.

[11] Pedro Cuadra, Lukas Krawczyk, Robert Höttger, Philipp Heisig, and Carsten Wolff.
“Automated Scheduling for Tightly-Coupled Embedded Multi-Core Systems using
Hybrid Genetic Algorithms.” In: Proceedings of the 2017 International Conference
on Information and Software Technologies. ICIST ’17. Springer International
Publishing, Oct. 2017, pp. 362–373. doi: 10.1007/978-3-319-67642-5_30.

[12] Robert Höttger, Harald Mackamul, Andreas Sailer, Jan-Philipp Steghöfer, and
Jörg Tessmer. “APP4MC: Application Platform Project for Multi- and Many-core
Systems.” In: IT - Information Technology. Methods and Applications of Informatics
and Information Technology. Vol. 59, Issue 5. De Gruyter Oldenbourg, Nov. 2017.
doi: 10.1515/itit-2017-0019.

Publications 2018

[13] Johannes Geismann, Robert Höttger, Lukas Krawczyk, Uwe Pohlmann, and
David Schmelter. “Automated Synthesis of a Real-time Scheduling for Cyber-
physical Multi-core Systems.” In: Communications in Computer and Information
Science: Model-Driven Engineering and Software Development (MODELSWARD)
(2018). doi: 10.1007/978-3-319-94764-8_4.

[14] Robert Höttger, Mustafa Özcelikörs, Philipp Heisig, Lukas Krawczyk, Pedro
Cuadra, and Carsten Wolff. “Combining Eclipse IoT Technologies for a RPI3-Rover
along with Eclipse Kuksa.” In: Available at: http://ceur-ws.org/Vol-2066/.
CEUR Workshop Proceedings, 2018, pp. 101–106.

[15] Robert Höttger and Jörg Tessmer. “1st Workshop on Software Engineering for
Applied Embedded Real-Time Systems (SEERTS).” In: Software Engineering und
Software Management 2018. Vol. P-279. Available online: https://dl.gi.de/

IX

https://bit.ly/3c8jD3J
https://doi.org/10.23919/DATE.2017.7927230
https://doi.org/10.1109/IDAACS.2017.8095077
https://doi.org/10.1007/978-3-319-67642-5_30
https://doi.org/10.1515/itit-2017-0019
https://doi.org/10.1007/978-3-319-94764-8_4
http://ceur-ws.org/Vol-2066/
https://dl.gi.de/handle/20.500.12116/21179
https://dl.gi.de/handle/20.500.12116/21179
https://dl.gi.de/handle/20.500.12116/21179


handle/20.500.12116/21179. Lecture Notes in Informatics (LNI), Gesellschaft für
Informatik e.V. (GI), Mar. 2018, pp. 43–45.

[16] Robert Höttger.Why Open Source is Driving the Future Connected Vehicle. Mobility
in a Globalised World Conference 2018. Sept. 2018. doi: 10.20378/irbo-54827.

Publications 2019

[17] Robert Höttger, Lukas Krawczyk, Burkhard Igel, and Olaf Spinczyk.
“Memory Mapping Analysis for Automotive Systems.” In: Work in
Progress Paper, 25th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2019), Montreal, Canada (Apr. 2019).
Available at https://bit.ly/2QFWtXt.

[18] Philipp Heisig, Sven Erik Jeroschewski, Johannes Kristan, Robert Höttger, and
Ahmad Banijamali. “Bridging the Gap between SUMO & Kuksa: Using A
Traffic Simulator for Testing Cloud-based Connected Vehicle Services.” In: SUMO
Conference 2019 (May 2019). doi: 10.29007/9kkv.

[19] Robert Höttger, Junhyung Ki, The Bao Bui, Burkhard Igel, and
Olaf Spinczyk. “CPU-GPU Response Time and Mapping Analysis
for High-Performance Automotive Systems.” In: 10th International
Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS ’19), co-located with the 31st Euromicro
Conference on Real-Time Systems (ECRTS ’19) (July 2019). Available
online: https://bit.ly/33EnhhP.

[20] Robert Höttger, Burkhard Igel, and Olaf Spinczyk. “Constrained
Software Distribution for Automotive Systems.” In: Proceedings of
the 2019 International Conference on Information and Software
Technologies. 25th ICIST ’19. Springer International Publishing, Oct.
2019. doi: 10.1007/978-3-030-30275-7_44.

X

https://dl.gi.de/handle/20.500.12116/21179
https://dl.gi.de/handle/20.500.12116/21179
https://dl.gi.de/handle/20.500.12116/21179
https://doi.org/10.20378/irbo-54827
https://bit.ly/2QFWtXt
https://doi.org/10.29007/9kkv
https://bit.ly/33EnhhP
https://doi.org/10.1007/978-3-030-30275-7_44


Contents

1 Introduction 1
1.1 Thesis Statement and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Model-based Software Partitioning . . . . . . . . . . . . . . . . . . . 4
1.2.2 Constrained Software to Processing Unit Mapping . . . . . . . . . . 4
1.2.3 Constrained Data to Memory Mapping . . . . . . . . . . . . . . . . . 5
1.2.4 Task-Release-Delta-based Runnable Reordering . . . . . . . . . . . . 5
1.2.5 CPU-GPU Response Time Analysis . . . . . . . . . . . . . . . . . . 5
1.2.6 Task-Chain-Latency Analyses . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Fundamentals 8
2.1 Basic Terms and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Scheduling Generics . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Partitioned FPMP Scheduling . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Heterogeneous Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Model-based Automotive Engineering . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Autosar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Shim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 SysML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Real-time Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Automotive Spice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.6 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Safety & Criticality Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Software Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Timing Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 WCET Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 FPPS WCRT Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Design Space Exploration of Intractable Optimization Problems . . . . . . . 29
2.7.1 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.3 (Mixed-) Integer Linear Programming . . . . . . . . . . . . . . . . . 30
2.7.4 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.5 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . 31

XI



2.7.6 Other DSE and Mapping Heuristics . . . . . . . . . . . . . . . . . . 32
2.8 Sharing Resources and Blocking Times . . . . . . . . . . . . . . . . . . . . . 33

2.8.1 Sharing Local Resources in Autosar: PCP vs OPCP . . . . . . . . 33
2.8.2 Sharing Global Resources in Autosar . . . . . . . . . . . . . . . . . 34

2.9 Summary and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 System Model 37
3.1 Amalthea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Amalthea Software Model . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Hardware Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.3 Stimulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.4 Operating System Model . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.5 Mapping Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.6 Constraints Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.7 Other Amalthea Specifics . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Formal Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Software Partitioning 57
4.1 Related Work on Software Partitioning . . . . . . . . . . . . . . . . . . . . . 57
4.2 DAG-based Runnable to Task Partitioning . . . . . . . . . . . . . . . . . . . 60

4.2.1 Activation Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Pairing and Separation Constraints . . . . . . . . . . . . . . . . . . . 61
4.2.3 Dependency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.4 Cycle Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.5 Independent Graph Aggregation . . . . . . . . . . . . . . . . . . . . 67
4.2.6 Critical Path Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.7 ESS Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 CP-based Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 CP-P via Arithmetical Constraints . . . . . . . . . . . . . . . . . . . 72
4.3.2 CP-P via Bin-Packing Constraints . . . . . . . . . . . . . . . . . . . 75
4.3.3 CP-P via Cumulative Constraints . . . . . . . . . . . . . . . . . . . . 75

4.4 Partitioning Metrics and Summary . . . . . . . . . . . . . . . . . . . . . . . 76

5 Constrained Software Distribution & Timing Verification 80
5.1 Related Work on Constrained Software Distribution . . . . . . . . . . . . . 81
5.2 Task Mapping Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Affinity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Timing Constraints and Verification . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 Blocking and Memory Contention . . . . . . . . . . . . . . . . . . . . 90
5.4.2 CPU Response Times and Schedulability . . . . . . . . . . . . . . . . 96

5.5 Task Chain Latency Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.1 Related Work, Assumptions, and Definitions on TCLA . . . . . . . . 99
5.5.2 Identifying Task Chain Latency Bounds . . . . . . . . . . . . . . . . 104

5.6 GPU Timing Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.1 Copy Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6.2 GPU RTA based on WRR Scheduling . . . . . . . . . . . . . . . . . 110
5.6.3 GPU RTA based on Nvidia Jetson TX2 rules . . . . . . . . . . . . . 112
5.6.4 CPU-GPU Response Times . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Data to Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

XII



5.7.1 Related Work on Data to Memory Mapping . . . . . . . . . . . . . . 121
5.7.2 CAN Message Transmission Delays . . . . . . . . . . . . . . . . . . . 123
5.7.3 CP-based Data to Memory Mapping . . . . . . . . . . . . . . . . . . 125
5.7.4 Data Separation, Pairing, and Aging Constraints . . . . . . . . . . . 127
5.7.5 Evolutionary Data to Memory Mapping . . . . . . . . . . . . . . . . 129
5.7.6 Summary on Memory Mapping . . . . . . . . . . . . . . . . . . . . . 130

5.8 Improved Global Critical Section Management . . . . . . . . . . . . . . . . . 131
5.8.1 Task-Release-Delta-based Runnable Reordering . . . . . . . . . . . . 134
5.8.2 Calculating Potential Conflicts . . . . . . . . . . . . . . . . . . . . . 136
5.8.3 Calculating Runnable Orders for Conflicts . . . . . . . . . . . . . . . 140
5.8.4 Applying new Runnable Orders at Runtime . . . . . . . . . . . . . . 144

5.9 Summary of Constrained Software Distribution & Timing Verification . . . 147

6 Case Study Models 153
6.1 Fmtv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2 Waters19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.4 Democar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.5 Generated Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.6 Comparison of the Case Study Models’ Properties . . . . . . . . . . . . . . . 157

7 Metrics and Evaluation 160
7.1 Runnable to Task Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2 Software Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.3 CPU-GPU Response Times and Task Chain Delays . . . . . . . . . . . . . . 174

7.3.1 Time Slice Derivation for GPU WRR Scheduling . . . . . . . . . . . 176
7.3.2 Task Chain Latency Analyses . . . . . . . . . . . . . . . . . . . . . . 177
7.3.3 Synchronous and Asynchronous Offloading . . . . . . . . . . . . . . . 182

7.4 TDRR Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.5 Label Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.6 Implementation Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8 Conclusions and Outlook 192
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 Ongoing and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Appendices 197

A List of Figures 198

B List of Tables 201

C List of Algorithms 203

D List of Examples 204

E List of Definitions 205

F Bibliography 206

XIII



G Affidavit (German) 227

H Content Appendices 228
H.1 Power and Performance Equations . . . . . . . . . . . . . . . . . . . . . . . 228
H.2 Formalism on Affinity and Delay Constraints . . . . . . . . . . . . . . . . . 228
H.3 Definitions on Paths, Cycles, and DAGs . . . . . . . . . . . . . . . . . . . . 230
H.4 Offset-based RTA using Transactions . . . . . . . . . . . . . . . . . . . . . . 231
H.5 Runnable DAG of the Democar Model . . . . . . . . . . . . . . . . . . . . . 232
H.6 Model Chord Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
H.7 Task Chain Delay Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
H.8 Various WCET Measurements for the WATERS Model . . . . . . . . . . . . 237
H.9 Example WRR Gantt Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
H.10 Delay Equations Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

XIV



XV



1
Introduction

During recent decades, software has been increasingly developed with the intention of being
executed on multiple Processing Units (PUs)1. The general purpose computing sector
uses multi-core technologies since the 1990s to overcome high power and heat dissipation
as well as computational limits of single-chip processors due to frequency scaling and
physical chip manufacturing constraints. Experts predicted that five nano meter transistor
size could be the end of Moore’s law [21] due to quantum tunneling through the gate
oxide layer [22]. Although research is still concerned with tackling the minimal transistor
size constraint, multi-processor technologies have already pervaded the embedded, real-
time, and automotive computing domains. The foundations of this transition were formed
by Foster [23], who initially illustrated the Partitioning Communication Aggloremation
Mapping (PCAM) approach shown in Figure 1.1 that (a) forms partitions from an initial
problem (software), (b) derives dependencies between the partitions, (c) agglomerates the
partitions into groups (tasks), and finally (d) maps and schedules those partitions to PUs.
Since then, lots of research has been invested in each of the four areas for an immense variety

Problem

P1 P2 P3

Partitioning Communication Agglomeration Mapping

Parallelization Application 
Task Graph Binding Resource Allocation

Figure 1.1: Foster’s PCAM approach: Partitioning, Communication, Agglomeration, and
Mapping [23], also known as parallelization, application task graph, binding, and resource

allocation [24]

of applications and domains. The PCAM approach still applies to modern challenges as

1A PU is often referred to as processor or core in existing literature

1



Chapter 1. Introduction

stated in a recent survey [24] that investigates related research just under a slightly different
terminology namely parallelization, application task graph, binding, and resource allocation
for PCAM, respectively. Parallelization tools such as MAPS [25] or MNEMEE [26] use the
PCAM approach, identify data dependencies as well as most atomic executable entities,
and target similar optimization goals compared with partitioning and task to PU mapping
presented in this thesis via reducing inter-PU communication. However, these tools are
neither model-based nor cover Automotive Open System Architecture (Autosar) and
Amalthea2 specific constraints crucial in the automotive industry.

With modern demands of highly assisted driving applications and the evolution towards
autonomous driving, multi- and many-core technologies have not yet reached their full
potentials due to the vast amount of various heterogeneous constraints in the automotive
domain. High-end cars from 2010 were already constructed of around 100 Electronic
Control Units (ECUs) [27], and sophisticated architectures are required to overcome the
diverse application domains across various safety levels (cf. Automotive Safety Integrity
Level (ASIL)) from very high, e.g., a brake actuator, to relatively low, e.g., an infotainment
feature.

Applying Foster’s approach during software development activities in the automotive
industry is not straightforward, especially when facing different application domains,
heterogeneous hardware and software, as well as Original Equipment Manufacturers
(OEMs), tier suppliers, and tool vendors involved in the development chain. Consequently,
this thesis makes use of the Model Based Software Development (MBSD) paradigm by using
Amalthea 2, which is described in Section 3.1.

1.1 Thesis Statement and Scope

Research presented in this thesis solves challenges emerging from the progression to
heterogeneous multi-core architectures in the automotive domain. Real-time aspects,
constraints, requirements, specifications, and protocols of respective applications are
outlined and incorporated along with the proposed technologies facilitating the PCAM
process. The comprehensive Design Space Explorations (DSEs) for concurrently executing
software across diverse development phases with varying limitations, the assessment of
results, and the provision of new technologies make this thesis unique compared to related
work. Typical scheduling approaches are outlined, and existing research for, e.g., Worst
Case Response Time (WCRT)-Analysis, is used to support this thesis’ technologies. Given
task and PU sets are investigated to identify useful or optimal distinct mappings of
the former to the latter, which consider various properties such as periods, execution
times, priorities, deadlines, scheduling policies, frequencies, memory accesses, memory
types, Central Processing Unit (CPU) and Graphics Processing Unit (GPU) performance,
network interfaces, and more. The analyses use different assessment metrics such as
schedulability, resource utilization, speedup, runtime, and parallelism (cf. Chapter 7).

2Amalthea meta-model information can be found at the Application Platform Project for Multi Core
(App4mc) online documentation https://www.eclipse.org/app4mc/documentation/, visited 11.2020

2

https://www.eclipse.org/app4mc/documentation/


Section 1.2. Contributions

Thesis Statement

The holistic concern of constraints and requirements across the many-fold
heterogeneous domains in the automotive industry in terms of parallelism exploitation
requires new and appropriate design space exploration, optimization, and timing
verification approaches. These approaches have to account for, e.g., hardware
accelerators, GPUs, different function domains, broader network connectivity, task
chain latency, or specific communication paradigms, which are necessary for vehicle
evolution towards, e.g., highly assisted and autonomous driving.

The contributions outlined in the following Section 1.2 solve modern WCRT-Analysis,
Partitioning, and Mapping challenges, provide advanced solutions as well as formally
verified techniques to consider various constraints and optimize goals affected by the
intertwined nature of six-fold domain-crossing automotive systems (i.e., embedded, real-
time, mixed-critical, concurrent, heterogeneous, and distributed; cf. Chapter 2), and finally
give insights into DSE in context of parallelism exploration for automotive multi-core
systems.

1.2 Contributions

The following sections list the different research this thesis includes. Each topic is
briefly described and put into context. Basic research components and relationships
are outlined in Figure 1.2, whereas numbers in the lower right corners of components
reflect the Section which addresses the corresponding component. The main component

Constraints

Partitioning

Task and Memory 
Mapping

WCRT AnalysisGPU Offloading Resource Blocking & 
Contention

Task / Event Chain 
Latency

Safety

Affinity

Sequencing

Timing

Separation

…

TDRR

4

5.2,5.7
5.3

5.6

5.4

5.8
5.5

5.3

5.3

5.3

5.45.4.2, 5.6.4

Figure 1.2: Thesis’ research components and relationships. Task-release Delta-based
Runnable Reordering (TDRR) is a novel approach to reduce busy waiting outlined in

Section 5.8.1.

is WCRT-Analysis, which is influenced by all its surrounding boxes. In fact, response
times are (i) the major optimization goal for the mapping process (cf. Figure 1.2 dashed
background box) and (ii) influenced by not only various constraints but also GPU offloading
situations (cf. Figure 1.2 diagonal down background box) as well as resource blocking
and contention (cf. Figure 1.2 diagonal up background box). Constraints, indicated by

3



Chapter 1. Introduction

boxes with dashed borders, pervade all essential boxes, and just a constraint subset is
shown in Figure 1.2. They typically reflect requirements but also define properties as
well as necessities systems need to fulfill and consider to ensure correctness, compliance,
verification, and validation. Constraints can be of different types and describe, e.g.,
affinities (e.g., required peripheral access), separations (e.g., Freedom From Interference
(FFI)), timing properties (e.g., deadlines tasks have to meet), sequences (e.g., ensuring
causally correct execution orders), communication semantics (e.g., Logical Execution Time
(LET), implicit or explicit communication, synchronization), safety levels (cf. ASIL), and
more. This thesis considers such constraints for valid, effective, and efficient solutions of
the partitioning, mapping, and WCRT-analysis challenges. Model-checking, simulation,
model variability investigation, or tracing is out of scope.

1.2.1 Model-based Software Partitioning

The partitioning contribution of this thesis is the application of graph algorithms to
a set of atomic execution units (runnables3) to form tasks that potentially can run
concurrently on a target system. The partitioning process considers dependencies,
activation rates, instruction costs, and constraints such as safety groups, separations,
component tags, and communication overheads. The partitioning technologies neither
cover specific scheduling algorithms nor hardware properties such as processing speed,
memory architecture, accelerators, or similar. These properties are used during the
subsequent mapping contribution (cf. next Section 1.2.2). Following Foster’s PCAM
approach [23], partitioning in this thesis includes communication and agglomeration. The
initial partitioning research [4] has been further extended as outlined in Section 4.2.

1.2.2 Constrained Software to Processing Unit Mapping

Constrained software distribution in this thesis’ context covers the component deployment
problem for distributing tasks to multiple heterogeneous PUs on either a single system or
a network of systems or ECUs. The mapping terminology is used in this thesis for defining
static assignments, respectively allocations of tasks to PU, but also labels to memory, or
runnables to tasks (cf. terminology in Section 2.1, notations in Section 3.2).

This thesis’s mapping technologies consider an extensive amount of constraints typically
employed in the automotive industry. Since the mapping problem is known to be
NP-hard [28, 29]4, various DSEs meta-heuristics such as Genetic Algorithm (GA),
Constraint Satisfaction Problem (CSP), Simmulated Annealing (SA), Integer Linear
Programming (ILP), and greedy heuristics are investigated and compared according to
efficiency, usability, and result quality. Garey and Johnson showed in [28] that problems
faced in this thesis are a combination of NP-complete problems, i.e., multiprocessor
scheduling, precedence constrained scheduling, resource-constrained scheduling, scheduling
with individual deadlines, preemptive scheduling, and scheduling to minimize weighted
completion time. The task mapping problem with optimization is, in general, perceived as
being NP-hard in the strong sense [29]. Additionally, State-of-the-Art (SotA) challenges
such as GPU-offloading (cf. Section 1.2.5) are incorporated into optimization goals of
the DSEs to find not only feasible but also optimized solutions, which consider modern
architectures, requirements, as well as performance and application demands. Various

3Terminology explained in Section 2.1
4No algorithm is known that solves NP-hard problems in deterministic polynomial time

4



Section 1.2. Contributions

constraints are formally analyzed and applied to industrial models. The mapping research
was published at [20] and is further put into context and aligned with other research of
this thesis.

1.2.3 Constrained Data to Memory Mapping

Based on data affinities, access rates, data and memory size, memory types, and
communication channels, the data to memory mapping challenge is solved in this thesis,
forming the third significant contribution. As modern automotive systems tend to
centralize multiple ECUs into more powerful high-performance computers to cope with
highly assisted or even autonomous driving challenges, sophisticated memory architectures
have to be faced by developers and system designers. The effect of data to memory mapping
usually manifests in memory stalls, contention- and blocking delays, or different protocol
overheads, which need to be mitigated or even cleared in the best case. Such mitigation
approaches are formally investigated and further incorporated into optimization goals of
the mapping DSE implementation approaches. Corresponding ideas and initial approaches
were published at [17] and finalized in this thesis along with Section 5.7.

1.2.4 Task-Release-Delta-based Runnable Reordering

The TDRR approach addresses the reduction of busy waiting periods on a multi-PU system
based on task release times and scheduling tables calculated offline during the system design
process. The mechanism is based on resource blocking analysis for spinlocks, which are
used in Autosar to protect globally shared resources. This research was published at [9]
and forms a new approach to mitigate busy waiting and consequently reduce task execution
and response times.

1.2.5 CPU-GPU Response Time Analysis

Considering the process of offloading computation from a CPU to a GPU for Response
Time Analysis (RTA) approaches is another recent challenge that requires appropriate
formal verification within the automotive industry [30]. GPUs are increasingly used
in the automotive domain due to the high parallel computation capabilities, which are
significantly useful for highly concurrent processes, such as image processing. The latter is
crucial for highly assisted or even autonomous driving. Analytical solutions to the formal
verification challenges of response times across CPUs and GPUs were published at [19] and
form another contribution to this thesis. Due to the absence of solutions for such specific
environments, this contribution forms a novel approach for the automotive and real-time
community.

1.2.6 Task-Chain-Latency Analyses

In addition to CPU-GPU response time analysis, Task Chain Latency (TCL) and Event
Chain Latency (ECL) investigation raised many questions in the automotive domain
recently [31]. Especially the consideration of different communication paradigms, such
as explicit, implicit, and LET communication, influence the latency of task chains and
requires new analytical techniques. Various solutions have been proposed such as [32], [33],
or [34], but none has yet combined TCL/ECL with CPU-GPU RTA. As a consequence,
this thesis proposes novel TCL/ECL analyses in a heterogeneous CPU-GPU environment
by combining SotA research with results of CPU-GPU RTA.

5



Chapter 1. Introduction

1.3 Prior Work

Contributions presented in this thesis are based on the Amalthea model and most
technologies have been implemented along with the open-source Eclipse App4mc platform5

using Java. Amalthea is Autosar6 compliant and both models are introduced along with
dedicated Sections 3.1 and 2.3.1, respectively. Amalthea is Eclipse Modling Framework
(EMF)-based, has been developed since 2011, and still evolves in regular releases since
2014. Amalthea model entities are aligned to formal notations in Section 3.2. TDRR
was initially developed using Amalthea v0.8.3 and the mapping DSEs use Amalthea
v0.9.8, which is the latest Amalthea version technologies of this thesis are migrated to.
The model has its origins in the Amalthea Itea research project that was conducted
between 2011 and 2014. Its ITEA successor Amalthea4public ran between 2014 and
2017. Official project documents are published at the Itea online representation, i.e., Itea
Amalthea7 and Itea Amalthea4public8, respectively. Amalthea is also majorly used
in industrial projects as well as recent research projects such as AramisII9 or Panorama10.
Apart from AramisII, the author of this thesis took part in all the research projects
mentioned above. Amalthea terminology, semantic descriptions, and notations used
throughout this thesis are outlined in Chapter 3.

Significant research technologies this thesis implements are listed below and again
referenced to and put into context in the respective sections.

• Formal blocking time analysis of spinlocks in Autosar from [35]

• Formal Weighted Round Robin (WRR) WCRT analysis from [36]

• Formal Fixed Priority Preemptive Scheduling (FPPS) / Rate Monotonic Scheduling
(RMS) analysis based on [37] and [38]

• Formal offset-based RTA using transaction based on [39]

• Formal mixed-Preemptive RTA using preemption thresholds based on [40]

• Mapping technologies from [41], EPL2.0 licensed.

• The Jenetics library [42], Apache-2.0 licensed.

• The JGraphtT library [43], dual licensed under LGPL and EPL2.0

• The Choco library [44], BSD-licensed.

• The Amalthea model [45] and its App4mc platform, EPL2.0 licensed.

5https://www.eclipse.org/app4mc, visited 11.2020
6https://www.autosar.org, visited 11.2020
7https://itea3.org/project/amalthea.html, visited 11.2020
8https://itea3.org/project/amalthea4public.html, visited 11.2020
9https://www.aramis2.org, visited 11.2020

10https://itea3.org/project/panorama.html, visited 11.2020

6

https://www.eclipse.org/app4mc
https://www.autosar.org
https://itea3.org/project/amalthea.html
https://itea3.org/project/amalthea4public.html
https://www.aramis2.org
https://itea3.org/project/panorama.html


Section 1.4. Organization

1.4 Organization

This thesis is organized as follows. Chapter 2 provides fundamental basics for each of this
thesis’ contribution and gives insights into its technological environments. The statement
and scope of this thesis (cf. Section 1.1) is summarized and reflected in Section 2.9.

Amalthea terminology (the system model) and notations are presented in Chapter 3.

Subsequently, Chapter 4 outlines the partitioning process, i.e., forming tasks that
potentially can run in parallel. Just as for other technological contributions, a dedicated
section for related work can be found at the beginning of the chapter.

As a consecutive step to the partitioning, the mapping technologies and algorithms are
described in Chapter 5. The mapping processes are extended by technologies to cover
a broader software distribution across not only PUs, but also ECU networks on the one
hand, and to address various constraints across timing, safety, criticality, and reliability on
the other hand. These extensions also include timing verification along with RTA methods
across CPUs and also GPUs as well as sophisticated task chain latency elaborations. Since
Autosar relies on the Priority Ceiling Protocol (PCP) protocol for local resources but
uses simple spin-locks for globally shared resources, the novel TDRR approach is presented
in Section 5.8 to improve WCRTs based on Amalthea via reducing busy waiting periods.

To evaluate the contributions, Chapter 6 presents seven case study models the approaches
of Chapter 4 and 5 are applied to. Various details, properties, and contexts of both
industrial and hypothetical models are presented and compared.

Metrics, benchmarks, and various measurements are then presented in Chapter 7 by
applying the contributions under different configurations to the case study models. Results
are evaluated and discussed.

Finally, Chapter 8 forms a conclusion for this thesis and outlines the contribution’s benefits
for the research community in terms of Autosar as well as software parallelization and
distribution for automotive systems. Research worth being further investigated in future
work accompanies the conclusion in Section 8.2.

7



2
Background and Fundamentals

This chapter introduces various domains automotive systems employ and then
systematically outlines necessary background information and related work to this thesis’s
contributions.

Compared to most other industries, automotive systems are subject to requirements and
constraints from a higher amount of application domains. Consequently, automotive
systems

1. employ multi-processor architectures to meet performance and energy demands
(concurrency domain),

2. form a combination of hard- and software that serves a certain need across a larger
mechanical or electrical environment to produce outputs based on given inputs such
as data or events from peripherals (embedded domain),

3. are designed to produce outputs within predefined timing constraints (bounds) in
contrast to general purpose or mobile computing applications (real-time domain),

4. have to serve tasks of different criticality levels due to safety (cf. ASIL and
ISO2626211) demands and less critical applications (e.g. infotainment related) being
executed in the same environment (mixed-critical domain),

5. are constructed by a huge amount of ECUs connected through various networks such
as Controller Area Network (CAN), Local Interconnect Network (LIN), Automotive
Ethernet, Media Oriented Systems Transport (MOST), and others (distributed
domain),

6. and consist of heterogeneous PUs, due to the above mentioned domain diversity
(heterogeneous domain).

These domains make automotive systems highly-constrained and demand sophisticated
timing analyses and development tools. A dedicated community and domain-related
research usually investigate each of such domains. Automotive systems combine, extend,

11International Organization for Standardization (ISO)

8



Section 2.1. Basic Terms and Concepts

and integrate related technologies across domains and even add more approaches to meet
the diverse requirements.

The major focus of this thesis is on multiprocessor technologies. The two most obvious
reasons for applying multiprocessor technologies to automotive systems are (i) increasing
computing performance and (ii) reducing energy consumption. A program can be
calculated entirely concurrently in an ideal environment, and the system performance is
then proportional to the number of PUs. The formal and coarse outline of both program
performance and energy consumption is given in the Appendix H.1. In such an ideal
environment, twice the number of PUs increases the performance by two accordingly.
Though, in reality, software often does not have an ideal structure for being executed
coherently concurrently and parts may require running solely sequential. Furthermore,
overheads over single-processor execution stemming from, e.g., synchronization, scheduling,
memory management, multiprocessor protocols, and others result in the proportionality
coefficient between performance and the number of PUs being smaller than 1. Instead
of increasing the number of PUs, increasing the PU frequency could result in a similar
performance gain. Frequency scaling is often not possible though, due to physical
limits in transistor manufacturing and energy consumption depending on temperature
and transistor types and amounts [46], performance gain is not proportional to the
operating voltage but approximately with its square. As a consequence, doubling a system’s
frequency instead of the number of PUs results in eight times the power consumption when
assuming linear frequency-voltage relation, which is four times as costly as increasing the
number of PU. As a consequence, using multiprocessor technologies is the more reasonable
approach for (i) increasing performance and (ii) reducing energy consumption compared
with increasing frequencies or decreasing transistor size, even though additional PUs require
more complex system design and add various overheads.

New programming models and languages were introduced for multi-processor architectures
in the automotive domain due to challenges that were not present with single-processor
platforms. Additionally, migrating legacy software requires careful analysis and tools
to meet parallelization, synchronization, or memory demands. According to the latter,
a PU’s local on-chip level 1 cache, shared on-chip level 2 cache, and off-chip memory
require appropriate technologies to reduce cache interference, address real-time constraints,
provision memory mapping (layouts), reduce contention effects, and more. A classic,
but yet highly discussed, challenge specific to the automotive domain is the software
distribution across ECUs of heterogeneous multi-processor structures, which is also
addressed in this thesis.

2.1 Basic Terms and Concepts

This section describes terms and concepts used by the subsequent chapters and sections.
Runnables, Tasks, Labels, Stimuli, and other Amalthea meta-model entities are described
in Chapter 3 and similar and related models are outlined in Section 2.3. General
information on partitioning and mapping problems is briefly given in Section 2.5, but
more details and specific solutions are presented in the Chapters 4 and 5.

9



Chapter 2. Background and Fundamentals

2.1.1 Scheduling Generics

Since timing verification requires to consider scheduling, related terminology is outlined in
this section. Four main scheduling categories shown in Figure 2.1 can be used to distinguish
the basic scheduling concepts.

Partitioned

		𝜏!
		𝜏"

		𝜏#
Global

		𝜏$
		𝜏%

		𝜏&

		𝜏'

P1 P2 P3 P4 P1 P2 P3 P4

Cluster2

		𝜏%		𝜏"
		𝜏'

Cluster1

		𝜏!
		𝜏$		𝜏#

		𝜏&

Cache A Cache B

(c) (d)

Clustered 
Scheduling

Semi-Partitioned 
Scheduling

(b)

Global 
Scheduling

(a)

Partitioned 
Scheduling

P1 P2 P3 P4

Global

		𝜏! 		𝜏$
		𝜏%		𝜏"

		𝜏#
		𝜏&

		𝜏'

P1 P2 P3 P4

Partitioned

		𝜏!
		𝜏$		𝜏%		𝜏"

		𝜏#
		𝜏&

		𝜏'

		𝜏!		𝜏$ 		𝜏%
		𝜏"

		𝜏#
		𝜏&

		𝜏'

Figure 2.1: Basic concepts of (a) partitioned, (b) global,
(c) semi-partitioned, and (d) clustered scheduling

Partitioned scheduling (a) is used for automotive hard real-time systems, and tasks are
statically mapped to PUs based on sophisticated offline analyses provided by the mapping
process. Each PU then employs its own scheduler that schedules tasks locally according
to static priorities and rules provided by, e.g., RMS (preemptive, explained later in this
Section), which is still preferred in Autosar. In general, fixed-priority Deadline Monotonic
Scheduling (DMS), dynamic-priority schedulers such as Earliest Deadline First (EDF), or
WRR and others can be used at the same time locally on different PUs under partitioned
scheduling depending on the required guarantees the scheduler provides and the scheduled
task sets require.

In global scheduling, tasks are dynamically assigned to PUs during runtime. This
approach (employed by Global-Earliest Deadline First (GEDF), for instance) is usually
not applied in automotive systems due to complex timing verification, primarily when
deriving tight response time bounds for dynamic mapping and the migration of tasks
across PUs (see Section 2.3.1). Migration costs occur for global scheduling in case a
task is mapped to a different PU either (i) at task instance (job) bounds or (ii) at any
time. In both cases, migration costs must be taken into account for timing verification,
and resuming a task on a different PU after it was preempted usually involves higher
migration costs due to not only taking into account the inputs of the task, but also
the system state it was conceiving during preemption. Migration costs typically include
caches, registers, pointers, or even shared memory blocks. Consequently, the highly
intertwined coherency of cause-effect chains, states, modes, and constraints manifest in too

10



Section 2.1. Basic Terms and Concepts

many uncertainties, high overheads, and complex timing verification such that Autosar
prohibits task migration [47]. Nevertheless, Amalthea still supports global scheduling,
as shown in Section 3.1.4, which can be utilized by, e.g., Autosar Runtime for adaptive
Applications (ARA), which is though out of this thesis’ scope.

Semi-partitioned scheduling (c) has been introduced in [48], bounds the number of task
migrations, and hence reduces migration costs over global scheduling. Therefore, some
(usually just a few) tasks are allowed to migrate to other (soft real-time) PUs, and other
tasks are scheduled in partitioned fashion. The original semi-partitioned scheduling only
covers soft real-time constraints for tasks, which are allowed to migrate, such that their
application can at most be employed by ARA. Extensions to [48], which target at deriving
hard real-time scheduling bounds and have been studied in [49], are out of scope here too,
just as ARA. The same holds for clustered scheduling (d), which employs separated global
scheduling for clusters. Migration beyond clusters is not allowed. Instead of dividing tasks
into partitioned and globally scheduled task sets, which is required for semi-partitioned
scheduling, clustered scheduling necessitates splitting a task set into disjoint sets, each of
which is then scheduled across a cluster of PUs (semi-globally). According to [50], task
and PU clusters are constructed based on the use of cache memory.

In addition to scheduler categories, specific scheduling scheme properties must be
presented, such as whether a scheduler allows preemption or not. For critical software
that relies on the highest priority tasks being executed as quickly as possible, preemption is
necessary. Preemption allows critical tasks to preempt, i.e., interrupt, lower priority tasks
such that the low priority tasks stop being executed, and the critical tasks take over and
occupy the PU resource. Under Autosar, an executable entity in the preempted state is
denoted to be ready. An executable entity can be terminated to enter the suspended state,
from where it can be activated towards the preempted state. From being preempted, it
can resume towards the running state, from where the wait and preempt transitions reach
the waiting and preempted states, respectively. This state machine is further shown in
Figure 2.2 and part of the Autosar Runtime Environment (RTE) specification in [51,
page 149].

preempt

started

running

waiting
preempted
(ready)

suspendedwait

release

resume

terminate

activate

Figure 2.2: State machine for executable entities in Autosar

In terms of Amalthea, the states are further extended by distinguishing between task,
runnable, and component event entities, which are part of the Events meta-model. The
amount of event types (state machine transitions) for tasks, for instance, is increased to
12 to cover six main states polling, running, waiting, parking, ready, and active as well
as terminated and not initialized. More information on the Amalthea events model is
given in [45]. Preemptive tasks increase the system’s responsiveness, whereas preemption

11



Chapter 2. Background and Fundamentals

can be immediate, ignored, or at specific points during a task’s execution in Autosar.
The latter applies to cooperative tasks, which can be preempted immediately from higher
priority preemptive tasks or at runnable bounds [51, Chapter 1.4, page 33] from other
higher priority cooperative tasks, which is after the task’s current runnable finished its
execution. Operating System (OS) tasks are usually non-preemptive, and other tasks
are fully preemptive, i.e., they can be preempted immediately. Autosar scheduling is
consequently mixed-preemptive. RTA (cf. Section 2.6.2) for fixed-priority preemptive tasks
(FPPS) has been studied in many research articles such as [38, 52–55], and more, whereas
RTA for non-preemptive tasks (Fixed Priority Non-Preemptive Scheduling (FPNS)) [56]
and limited preemption (e.g., Fixed Priority Deferred Preemptive Scheduling (FPDS) [57]),
has gained fewer attention. Fixed preemption point (cooperative) scheduling has its origins
in [54], is one type of limited preemption scheduling, and must be distinguished from
preemption threshold and deferred preemption approaches. The former is investigated
in [58] and only allows tasks beyond a specific priority level to be preempted, and the
latter postpones preemption by a specific amount of time and has been investigated in [57].
These analyses are compared and put into context by a survey in [59]. Recent research
also tackles the mapping problem for minimizing the shared resource unit number (PUs )
under limited-preemptive scheduling in [60]. However, in this thesis, the optimization goal
is primarily minimizing response times for a given hardware model rather than optimizing
the hardware itself.

With automotive systems demanding a precise timing analysis for predictability and
determinism, an adequate timing model must cover assessing the various scheduling
situations. Figure 2.3 defines the typical timing parameters used throughout this thesis.

𝑂! ,# 𝐶!,#,$ time

∇!,#

𝐶! ,# =#𝐶!,#,$
$

𝑅!
𝐷!

𝜏!

𝜏%

𝐶!,#,& 𝜁!,#

𝑇!∆!,# ∇!,#'$∇!,#

Figure 2.3: Typical timing properties of a task

The arrival time 5i,z of a task τi’s z− th instance (job), is a specific point in time the task
intends to be scheduled, which often repeats periodically with period Ti. Due to blocking
or higher priority tasks, a task may have to wait until it is scheduled at a PU at release
time Ni,z. This waiting time is typically outlined as initial pending time, phasing [38],
or offset and denoted with Oi,z here. According to the Burns notation [61], the offset is
also known as release jitter and can vary across jobs, i.e., task instances. For preemptive
scheduling, the execution of a task may be interrupted several y times, such that the tasks
gross execution time may consist of several core execution times Ci,z,y. Hence, the total
gross execution time of a task instance (job) is defined by Ci,z =

∑
y Ci,z,y. The gross

12



Section 2.1. Basic Terms and Concepts

execution time can vary at different instances z, due to varying Worst Case Execution
Times (WCETs) C+

i and Best Case Execution Times (BCETs) C−i . The response time
Ri is the sum of the gross execution time, all preemption times in between, and the
initial pending time. WCRT-analysis is further presented in Section 2.6. The average
slack time ζi =

∑
z ζi,z
|z| can give insights about the task’s responsiveness, especially when

it is compared with the task’s response time. For instance, Chapter 7 uses the system’s
slackness ζ =

∑
i ζi
n (with n denoting the number of tasks) as a metric to compare the

responsiveness for different partitioning and mapping results. The notations above are
further consolidated in Section 3.2.

A task’s deadline Di represents a strict relative point in time, to which all of the task’s
instructions must have been executed concerning its arrival 5i,z. Hard real-time systems
demand zero tardiness such that no deadline is allowed to be missed. If a task is still being
executed or waiting for being executed at its deadline, its timing constraint is violated,
and safe or correct system behavior can not be guaranteed. A deadline violation result
depends on its type, either being hard, soft, or firm. According to safety standards (cf.
Section. 2.4), a hard timing constraint (deadline) violation can result in various risks and
hazards and ultimately cause human life loss. In contrast, a soft deadline violation may
result in a tolerated behavior such as a video frame being lost within the infotainment
system. Alternatively, systems can use tasks with firm deadlines, which denote that a
sporadic deadline violation is tolerable, but a repeated miss of deadlines is not. Deadlines
can be derived implicitly from the task’s period (cf. RMS), so that a task must at least
finish before its next instance arrives. Lehoczky has shown in [38] that RTA for Fixed-
Priority (FP) task sets can be processed for arbitrary deadlines using the level-i busy
period approach. This approach is used in this thesis, along with various adaptions and
extensions outlined in Section 5. Sanudo et al. also used that approach in [62] for tasks
with arbitrary deadlines along with the Formal Methods for Timing Verification (Fmtv)
challenge, but the closely related approach of this thesis further incorporates the various
constraints presented in Section 3.1.6.

Task priorities are either (a) static, (b) dynamic but fixed within an instance (a task
instance is often denoted as ’job’ in related work), or (c) fully-dynamic. Examples are
RMS (optimal for single PU fixed priorities [53]), EDF (optimal for dynamic priority [53]),
and Least Laxity First (LLF), respectively. The former defines static priorities that are
implied by task periods and never change later on so that deadlines are implicit. EDF
scheduling derives priorities once upon tasks’ arrivals so that task priorities are dynamic
across task instances but static for a single instance. LLF scheduling defines fully dynamic
priorities at arbitrary points in time. If priorities are not derived from task periods, the
Audsley method [63] is one of the well-known alternative priority assignment approaches.
The approach iteratively assigns priorities, beginning with the lowest, to tasks under the
condition that the task is schedulable and all other unassigned tasks have higher priorities.
Davis et al. have proven that the Audsley assignment is optimal for a set of scheduling
approaches and schedulability tests in [64]. Even though the priority assignment problem
has a significant effect on the utilization of resources such as the CAN bus as shown in [64],
priorities are assumed to be known a priori for this thesis’ technologies.

Schedulability defines whether a task set meets all its deadlines under a particular
scheduling algorithm. In contrast, feasibility denotes if a task set can meet its deadlines
disregarding the scheduling algorithm. An unfeasible task set is never schedulable, and

13



Chapter 2. Background and Fundamentals

a schedulable task set is always feasible. A feasible schedule can be schedulable for one
scheduling algorithm but may not be schedulable under another scheduling algorithm.
A good survey of schedulability tests is given in [49]. For instance, RMS exposes the
sufficiency test of Eq. 2.1 with n denoting the number of tasks.

n∑
i=1

Ci
Ti
≤ n

(
2

1
n − 1

)
(2.1)

This means, for n → ∞, the sum of all task costs Ci divided by period Ti (i.e. the task
utilization values) must be lower or equal to ln 2 ∼ 0.69 to be schedulable [53]. This value
is denoted as the utilization bound. Utilization values up to this bound are schedulable
as they pass the sufficiency test. Utilization results beyond the utilization bound require
further analysis and might be schedulable until the exact utilization bound (necessity test).
For instance, under RMS, task sets exposing a utilization between 69% and 100% can be
schedulable, if their periods are harmonic, i.e. the periods are integer multiple of each
other. For homogeneous multi-PU systems, the optimal exact utilization bound equals
the number of PUs. When trying to find the optimal utilization, the relationship of the
calculated utilization and the exact utilization bound can be used as a metric to quantify
utilization quality. EDF and LLF provide

∑n
i=1

Ci
Ti
≤ 1 schedulability tests and hence

allow 100% utilization without requiring harmonic task sets compared to RMS. Finally,
to ensure hard timing guarantees, this thesis uses WCRT tests that account for not only
specific scheduler properties, but also various (worst-case) situations and constraints. The
approach is close to exact schedulability tests that include blocking times, interference,
and network delays, which also have been investigated in [24, 65–67].

Optimality of EDF and LLF scheduling algorithms for single PUs has been proven in [68]
and [69], respectively. Using GEDF scheduling for multiple PUs has been studied a
lot, first along with soft real-time constraints [70] and later on for hard deadlines [71].
Although optimal online multi-PU scheduling for sporadic tasks is impossible as proven
in [72], various research addresses tightening utilization bounds on GEDF such as [73]
or [74]. Alongside GEDF, Proportionate Fairness (PFair) [75] has gained significant
research interest, which targets at granting processing resources to tasks proportionally
to their utilization factor. Therefore, PFair scheduling uses time quanta as schedule
points, is known to be optimal for global fixed-priority scheduling, but though exposes
several limitations such as constant execution times or implicit deadlines as stated in [76].
Over the last decade, many advancements have been published for global scheduling to
overcome different limitations and general drawbacks such as context-switch and priority
determination overheads, or the assumption of constant execution times. However, in
terms of classic Autosar with hard real-time constraints, determinism and tight latency
bounds as well as a precise analysis of overload conditions, at which low-priority tasks
may miss deadlines up to a bounded point, are in favor over dynamic priority scheduling
approaches such that partitioned RMS is still the prior choice over, e.g., GEDF scheduling
or similar global approaches that involve migration costs. If not stated otherwise, tasks
are considered to have hard real-time deadlines in this work.

In context with scheduling, the starvation term is used to investigate the influence of high
priority tasks to lower priority ones. Starvation needs to be investigated to guarantee that
lower priority tasks eventually get processing resources (for being scheduled and executed)
and do not starve, i.e., wait an unbounded amount of time. This thesis implicitly ensures

14



Section 2.1. Basic Terms and Concepts

freedom from starvation by considering deadlines on a holistic basis, i.e., low priority
tasks never starve if the formal analysis proved schedulability, which means that all tasks
complete their instructions at latest by their deadline.

Priority inversion defines the situation when a lower priority task is executed, although
a higher priority task arrived and demands for being scheduled. In a non-preemptive
scheduling situation, the priority inversion time can be as long as an entire task execution,
since a higher priority task may have arrived just right after the lower priority task, which
was just scheduled instantly. In First In First Out (FIFO) scheduling, the priority inversion
can be even much longer than a single task if multiple lower priority tasks arrived just before
the higher priority task. Bounding priority inversion is not only of interest for schedulers,
but also targeted by various resource sharing protocols for the multiprocessor context,
which are outlined in Section 2.8.

For parallel and concurrent systems, deadlocks and race conditions are typical
challenges developers need to face. Parallel executing tasks can run on a single PU system,
which means that tasks make progress over time, since the scheduler assigns processing time
in a specific fashion, although the actual execution is sequential. In contrast, the concurrent
progress of a system is defined by tasks making progress simultaneously, i.e., tasks are
scheduled on multiple PUs. Mutex implementations such as a monitor or a semaphore
can prevent race conditions by ensuring that resource changes are done mutually exclusive
and in a serializable fashion. Sequential resource accesses ensure that a task’s result only
depends on its input, but never on the order its runnables are executed. Deadlocks usually
require a more detailed analysis than race conditions since resource accesses can be nested,
and preemption may cause locks being held by preempted tasks.

2.1.2 Partitioned FPMP Scheduling

According to Autosar classic, scheduling is assumed to be partitioned, i.e., each
PU employs a single scheduler that is concerned with scheduling a fixed-priority
mixed-preemptive task set (Partitioned Fixed-Priority Mixed-Preemptive Scheduling
(PFPMPS)) [77]. Global scheduling, i.e., a single scheduler that dynamically releases
tasks across multiple PUs, could be employed by ARA, but is not in the scope of this
thesis. In PFPMPS, a task set is scheduled in isolation, which results in no migration
costs. The only interleaving influence is blocking of shared resources, i.e., buses, shared
memory, dedicated hardware, or similar exemplary shown in [78]. Applying RTA solely
for each PU is an established method according to existing literature. The scheduling
policy can be RMS, for instance, which has been proven to be optimal for single PUs
and fixed priorities [53] and hence is optimal for the partitioned scheduling case, too. Its
advantage is that complex timing verification, accompanied by the mapping DSE that
involves several constrains, can be calculated offline to optimize various metrics. This
process is NP-hard and requires appropriate mechanisms (cf. Section 5.9), e.g., polynomial-
time approximation algorithms to overcome the intractability. After the mapping process,
PFPMPS can be run on a heterogeneous multi-processor system serving all constraints,
requirements, and optimization goals. The two prerequisites (i) (offline) timing verification
and (ii) partitioning and mapping form two of the main contributions of this thesis, which
are automated and supported by various novel technologies. Although PFPMPS does
not provide sharing idle times in a cross-PU manner, ensuing strict timing and safety
guarantees is still crucial and SotA for industrial Autosar systems. Therewith, offline,

15



Chapter 2. Background and Fundamentals

RTA-verified, and holistic constraint considering partitioning and mapping processes have
to serve different goals such as temporal and spatial isolation. Thus, RTA is extended in this
thesis to cover modern hardware and software requirements, including timing verification
subject to partitioning and mapping for PFPMPS.

2.2 The Heterogeneous Era

Heterogeneity gained significant importance in the recent decade, and related research
will presumably continue growing in the near future. Panorama10, for instance, forms
an international research project for developing many-fold heterogeneous automotive
systems. More precisely, architectures in the automotive domain not only consist of many-
fold heterogeneous hardware platforms, but also involve heterogeneous function
domains and diverse parties in the development process, which imposes new challenges
during timing and constraint verification.

In terms of hardware, ARM’s big.LITTLE architecture is an example a of a heterogeneous
system consisting of different PU types. ARM’s big.LITTLE [79] initial system was released
in 2013 in the form of two 1.8GHz Cortex-A15 and two 1.2GHz Cortex-A7 cores. Later on
in May 2017, big.LITTLE was superseded by the DynamIQ architecture that increased the
number of cores per cluster to eight and improved voltage and cache management. The
Waters2019 challenge [30] (solved in Section 6.2) addresses the heterogeneous Nvidia
Jetson TX2 platform12, which consists of two 64-Bit Denver CPUs, four ARM Cortex-A57
MPCores and 256 Nvidia CUDA cores from the PascalTM GPU architecture. Nvidia
further targets more powerful high end architectures [80]. The Nvidia Jetson AGX
Xavier is currently under development and will feature new dedicated deep learning and
vision accelerators for artificial intelligence in addition to several other advancements to
outperform not only the Nvidia Jetson TX2 but also general-purpose computers. In
addition to heterogeneous PUs and accelerators, research also has to face varying memory
types, communication paradigms, and software of different criticality levels. For example,
data access times can vary between memory types, and having shared memory usually
requires mutual exclusion algorithms, synchronization mechanisms, deadlock, and race
condition prevention.

As mentioned above, the many-fold function domains, e.g., control engineering, stream
processing, and cloud or cognition computing, further accompany heterogeneous hardware.
Modern Adaptive Cruise Control (ACC) systems, for instance, use control loop algorithms
to keep a distance to a vehicle ahead based on front radar sensor values. The Enginge
Management System (EMS)’s target speed is adjusted by the ACC regarding either
acceleration, keeping the current speed, or, if required, the vehicle brakes are activated.
Additionally, image processing is used by speed sign recognition applications to adjust
the vehicle speed according to road traffic signs at the same time the ACC runs. The
latter application usually adjusts the ACC’s target speed. Finally, smart navigation
applications react to the latest traffic updates, which can also influence the vehicle speed.
Examples can be wrong-way driver notifications, recent road accidents, or dynamic speed
limitations on roads. In such situations, involved applications demand domain-related
requirements and affinities to, e.g., Digital Signal Processors (DSPs), GPUs, Floating Point
Units (FPUs), Field Programmable Gate Arrays (FPGAs), Aplication-Specific Integrated

12https://developer.nvidia.com/embedded/jetson-tx2, visited 11.2020

16

https://developer.nvidia.com/embedded/jetson-tx2


Section 2.3. Model-based Automotive Engineering

Circuits (ASICs) mobile network gateways, which have to be considered by appropriate
mechanisms during the development. Moreover, modern and next generation autonomous
vehicles require the domains to increasingly interact with each other.

Finally, the collaborating parties involved in developing automotive systems are
heterogeneous, too, since OEMs, tier suppliers, tool vendors, and semiconductor companies
jointly cooperate to achieve products that are verified to be integrated to cars, often
manufactured in series of millions. A hardware manufacturer might be concerned with
electromagnetic emissions or vibration isolation, whereas the tier one supplier targets
better resource utilization, and the OEM wants to reduce overall costs. Different party
goals, approaches, tools, and variants interfere with each other and significantly influence
the systems engineering process.

Using Model Based Systems Engineering (MBSE) is an established methodology in
the automotive industry and forms a reasonable approach to address challenges of the
heterogeneous era. The next Section 2.3 introduces various models and their benefits,
especially when addressing the above-outlined heterogeneity challenges. Additionally, the
heterogeneous era demands for significant innovation in timing verification (RTA) and DSE
tools to cope with the ever-increasing performance demands and at the same time meet
the vacillating concerns of real-world scenarios. Therefore, a combination of MBSE, RTA,
and DSE is presented in this thesis and applied to real-world benchmarks and models.

2.3 Model-based Automotive Engineering

Models are preferably used in the automotive industry due to the following benefits:

• Models are based on meta-models and hence formally defined.

• They can form an abstraction of entire systems or parts of a system to reduce
complexity and ease system analysis.

• Using models allows various partners involved in a product to exchange information
without having to exchange actual program code, i.e., their Intellectual Property
(IP).

• Models provide the basis for key artifacts, e.g., automated testing, traceability,
various analyses for timing, behavior and others, code generation, consistency
checking, and simulation.

• The above key artifacts can be used across various system development phases at
ease and often create less verbose data / memory footprint.

• Model-based design allows continuous validation and verification along with phases
of the V-Model from system design to implementation and testing.

Liebel et al. studied the use, challenges, and shortcomings of industrial MBSE in [81] via a
state-of-practice survey, and not only found out that MBSE is a widely established process
in the embedded and automotive domains, but also that (i) Eclipse-based tools, e.g., Eclipse
App4mc, are most frequently used next to Matlab/Simulink, and (ii) interoperability and
usability are common challenges. The latter issue can indeed be tackled by using a common
yet open-source basis such as Amalthea outlined in Section 3.1, which is already used
along with industrial projects and research such as [32–34, 40, 62, 82–93], and many more.

17



Chapter 2. Background and Fundamentals

The following Sections 2.3.1–2.3.6 outline various automotive related models whereas the
next Chapter 3 is dedicated to the Amalthea model used in this thesis.

2.3.1 Autosar

The Autosar de-facto standard is well established in the industry since it is used by nearly
every OEM and tier supplier. "Autosar is a worldwide development partnership of vehicle
manufacturers, suppliers, service providers, and companies from the automotive electronics,
semiconductor and software industry"6. The initial Autosar version was released in 2003,
and the latest release valid for this thesis is 4.4.0 and was released in late 2018. Its main goal
is to standardize the software architecture for ECUs to form cross-vehicle and -platform
variant interoperability, scalability, modularity, maintainability, and sustainability in
line with requirements and standards such as safety and ISO26262, respectively. It
defines standardized and highly configurable interfaces and design processes. Autosar
specifications are publicly available, but tool support such as Artop13 is reserved for
Autosar members only. Autosar exposes a meta model that has been advanced
by timing extensions [94] since version 4.0.1 (12.2009) through the Timing Augmented
Description Language (TADL), which forms the outcome of the two international research
projects Timmo and Timmo2Use14. Such extensions cover timing constraints (age,
synchronization, offset, order), events, and event chains, which are analyzed in this thesis’
Section 5.5. The Autosar layered software architecture is one of Autosar’s most known
specifications and describes components of and interfaces between Autosar software in
the form of Software Components (SWCs) in the application layer and services of the Basic
Software (BSW) layer. These two layers are connected through the RTE, and the basic
software runs on top of the ECU hardware. SWCs run independently of the infrastructure
using the Virtual Functional Bus (VFB) and usually employ a set of runnables. Runnables
are triggered by one or several events based on, for instance, the periodic task they are
running for, data receive events, notification events of other processing entities, server
function calls, and others. Communication between runnables is represented by label
accesses as outlined in the notations of Section 3.2. For intra-SWC communication,
such data is used as inter-runnable-variables whereas inter-SWC dependencies are realized
through port interfaces [95]. SWCs typically represent affinity constraints, which are
used for the software distribution technology presented in Chapter 5. Scheduling under
Autosar is FPs-based [47, Chapter 7.1.1], partitioned [47, Chapter 7.9.2], and tasks do
not migrate [47, Chapter 4.5.3]. As a consequence, this thesis concentrates on analyses for
FPPS.

Since 2017, ARA is released, which extends Autosar by a hypervisor and allows Posix-
based OSs. Additionally, to some extent, even Linux OSs are used in the automotive
domain [96] that further increase the technology diversity. However, the concepts and
technologies provided in this thesis are concerned with Autosar classic.

2.3.2 Shim

Another model related to multi-processing and the automotive industry is ShimTM15

(Software-Hardware Interface for Multi-many-core). Shim provides an interface to

13https://www.artop.org, visited 11.2020
14http://adt.cs.upb.de/timmo-2-use/, visited 11.2020
15https://www.multicore-association.org/workgroup/shim.php, visited 01.2020

18

https://www.artop.org
http://adt.cs.upb.de/timmo-2-use/
https://www.multicore-association.org/workgroup/shim.php


Section 2.3. Model-based Automotive Engineering

exchange multicore hardware platform properties, which affect the software at the
architectural design level. Shim has been developed by a cooperation of academia and
industry and is maintained as well as extended by the Multicore Association. It
supports tools that focus on the architectural design level of multi- & many-core systems.
Therefore, various characteristics like communication channels between cores (e.g., routing,
message passing protocols), memory (e.g., memory size, access latency, hierarchy, topology,
coherency), and other cores or accelerators (e.g., instructions, special execution units,
address space) are described in an EXtensible Markup Language (XML) schema. By
exchanging the Shim XML from a hardware vendor for a dedicated hardware platform,
tool vendors can use this description as an interface to optimize and analyze system
configuration and implementation such as the mapping of software tasks to hardware as
well as performance analyses. Software architecture, middleware, runtime environment,
OS, or hypervisor related properties like scheduling are though not supported by Shim.

2.3.3 SysML

SysML [97] is a general-purpose systems modeling language initiated in 2007 and
standardized by the Object Management Group (OMG). SysML aims at covering
challenges of complex multi-disciplinary systems via using MBSE. In contrast to
conventional document-based design specification approaches, SysML explores domain
models (or model-based specifications) as the primary format for information exchange
between engineers, while directly involving project stakeholders in early development
stages. Capturing consistent system requirements, system contexts, use cases, boundary
conditions, functions, and their subsystem interfaces from different interacting engineering
disciplines (such as software, hardware, engine, control, power electronics, mechanics,
etc.) down to the detailed design at the component level are in the scope of SysML.
Hence, SysML is trying to address the growing variability of products and the increasing
complexity from different domains. Besides, these domains are often mixed up in new,
often beforehand, unforeseen operation contexts, which leads to potential interoperability
problems. Therefore, an architecture model comprises a structured set (or a graph)
of logically interconnected model elements that provide the ability to automatically
query a context of any function with corresponding requirements, structure, behavior,
parameters, and intended scenarios of its use during any development phase. Traceability,
validation, and verification can thus be applied to specifications and requirements,
boundary conditions, and interfaces for system components from different domains.

Since SysML does not provide methodologies to guide engineers along with using the
MBSE technology, other tools and specifications like Incose Object-Oriented Systems
Engineering Method (OOSEM [98]), Sysmod [99], Architecture Analysis and Design
Integrated Approach (ARCADIA) [100], IBM Rational Unified Process for System
Engineering (RUP-SE) [101], SPES/SPES XT [102], and others can be used along with
SysML. Although the interest in SysML and the MBSE methodology has grown in the last
decade [103], criticism exists regarding an extensive use of language extendability in terms
of Unified Modeling Language (UML) profile extensions across developers from different
domains. The resulting interoperability of SysML models further manifests in the standard
format for storing SysML metadata information, i.e., OMG XML Metadata Interchange
(XMI) [104], which becomes increasingly tool and vendor specific. Due to the generic
nature and syntactic and semantic overlap with UML, SysML models lack in precise and
unambiguous semantics to provide formal verification or model checking methods.

19



Chapter 2. Background and Fundamentals

2.3.4 Real-time Calculus

The Real Time Calculus (RTC) is a deterministic queuing theory model to find hard
performance bounds for real-time systems. RTC extends the Network Calculus [105], which
also uses the stochastic queuing theories and targets data flows and queuing networks,
by real-time concepts. In contrast to this thesis’ analytical approaches, RTC uses event
streams along with cumulative functions (request and delivery curves) to simulate not
only the arrival of tasks but also, e.g., available resources. In fact, Amalthea provides an
interface to RTC since the Stimulation model includes arrival curve descriptions. RTC is
closely related to Compositional Performance Analysis (CPA), which has been used along
with pyCPA to solve recent challenges in automotive systems development (cf. Section 6.2)
in [106] for WCRTs analysis and in [33] for data age and reaction latency values derivation
under different communication paradigms (cf. Section 5.5). However, together with model
checking and discrete event simulation, stochastic and deterministic queuing theory is not
in scope of this thesis since much research is already available for these techniques such
as [107–112], or [113]16 among others.

2.3.5 Automotive Spice

Automotive Spice17 is a process assessment and reference model developed by a common
special interest group of automotive OEMs, the Procurement Forum, and the Spice User
Group. It considers requirements of ISO/IEC 33004 ("Requirements for process reference,
process assessment and maturity models" [114]) and defines groups and processes that need
to be involved in the development process. For instance, the Spice reference model defines
primary-, organizational-, and supporting life cycle processes. Primary life cycle processes
are grouped into acquisition, supply, system engineering, and software engineering process
groups, whereas organizational groups are structured into the management process-, reuse
process-, and process improvement process groups. The groups are in charge of various
processes along the V-model from requirements specification to system qualification test
and various processes in between. An assessment rates different processes according to
capability levels and process attributes. Automotive Spice imposes specific requirements
parties involved in developing automotive systems need to fulfill. Verification is one of those
processes which includes timing analysis. Consequently, this thesis’s technologies form
mandatory processes required by Automotive Spice established by OEMs, tier suppliers,
and tool vendors.

2.3.6 Other Models

East-Adl18 is an approach to model automotive architectures on an abstract basis and
its initial version 2.0 was released in 2008. Asam Mdx (Association for Standardization
of Automation and Measuring Systems - Model Data eXchange format) is another model
which was initially released in 2006 by German OEMs and suppliers for automotive systems
and specifically addresses software modeling. The current format is XML and contains
descriptions of function interfaces, parameters, variable data, and scheduling. ASAM works
in cooperation with Autosar and ISO such that Autosar specifications, like the SWC-
Template, are strongly influenced by ASAM MDX [91]. Further extensions have been

16As part of the Synopsys Inc. CoMET System Engineering IDE http://www.synopsys.com, visited
11.2020

17Automotive Spice http://www.automotivespice.com, visited 11.2020
18East-Adl www.east-adl.info, visited 11.2020

20

http://www.synopsys.com
http://www.automotivespice.com
www.east-adl.info


Section 2.4. Safety & Criticality Levels

outlined in research such as TADL [115], which covers the logical time and different time
bases and units to utilize synchronous languages for timing analysis. Additionally, models
of computation and communication exist such as Polygraph that extends Synchronous
Data Flow (SDF) with frequency and communication arithmetic [116]. The Polygraph
model uses the Marte19 modeling language and hence provides interfaces to schedulability
analysis tools like Polarsys Time4Sys, Mast [117]20, and PyCPA [106]. In combination
with Papyrus, which is the graphical modeling tool, or Capella Tools21, further interfaces
likely exist for using Pegase22 or Cheddar23. More information on schedulability analysis
and simulation tools is given in Table 2.1.

TADL [115] has not been added to Autosar, Asam Mdx is neither open-source
nor publicly accessible, and East-Adl does not include the broad characteristics of
Amalthea. Polygraph seems to be a promising approach, but as stated in [116], some
components related to SDF are still closed source. With the analysis of the above-outlined
models, Amalthea has been identified as the most appropriate model for investigating
partitioning, mapping, and timing verification challenges for the automotive domain.
Amalthea is further described in Chapter 3.

With SysML trying to mitigate the effect of heterogeneous function domains, automotive
Spice addressing, among others, increasing complexity due to heterogeneous parties
involved in the development process, and Amalthea, Autosar, East-ADL, Shim,
and others covering abstraction, systems engineering, architecture, and system modeling,
the technology stack is already getting dense without even taking safety, distribution,
parallelization, timing verification, DSE, resource optimization, and other technologies in
the scope of this thesis into account. The latter are described and put into context in the
following.

2.4 Safety & Criticality Levels

Automotive functional safety is often referred to as ISO26262 due to the international
recognized ISO, which has worldwide members of 162 countries. The ISO26262 standard
defines requirements and processes to exclude hazards caused by malfunctioning systems.
Therefore, electric components from sensors, actuators, networks, over microcontrollers to
ECUs must be analyzed according to properties defined in the standard. Such properties
must be measured along with safety reviews, audits, and assessments. ISO26262 includes
ASILs, which classify a software’s relation to potential hazards and risks. ASILs are derived
from risk assessment, which is based on severity, frequency, and controllability values, i.e.,
the possible damage impact, the probability of exposure, and the driver’s possibility to
react to the malfunction, respectively. ASIL classes, i.e., criticality levels, reach from A to
D, whereas D defines the most critical risk or hazard. Considering functional safety during
automotive systems development has been investigated in dedicated research, e.g., in [118].
Model-based safety analyses using error models and error propagation across SWCs has
been studied in, e.g., [119, 120] and is out of scope here.

Figure 2.4 shows an example of four CPUs with dedicated schedulers for each ASIL.
19Marte http://www.omg.org/omgmarte/, visited 11.2020
20Mast http://mast.unican.es/, visited 08.2020
21Polarsys https://polarsys.org/capella/, visited 11.2020
22Rtaw-Pegase https://www.realtimeatwork.com/software/rtaw-pegase/, visited 11.2020
23Cheddar https://bit.ly/3kPzqIq, visited 11.2020

21

http://www.omg.org/omgmarte/
http://mast.unican.es/
https://polarsys.org/capella/
https://www.realtimeatwork.com/software/rtaw-pegase/
https://bit.ly/3kPzqIq


Chapter 2. Background and Fundamentals

Typically, partitioned scheduling is preferred for hard real-time software and global
scheduling for soft real-time. Criticality levels can but do not necessarily have to respect
priority levels, such that the priorities of ASIL-D tasks are higher than priorities of tasks
from ASILs C–A.

CPU1 CPU2 CPU3 CPU4

RMRM RMRM

EDFEDF EDFEDF

G-EDF

Best Effort

Level D

Level C

Level B

Level A

higher criticality
(static priority)

lower criticality
(static priority)

Soft real-time

Hard real-time

Not real-time

Figure 2.4: Example on schedulers used for different criticality levels based on [121]

In this thesis, ASILs are considered during the partitioning and mapping technologies as
outlined accordingly in Chapter 4 and 5, respectively. Thus, to guarantee, e.g., FFI for
ASIL-D, engineers can choose isolation from lower ASILs or even any other software, which
is decoded into separation constraints. Alternatively, dedicated hardware such as FPGAs
can be used for spatially increasing FFI for safety critical tasks, which has been studied
in [89] and used along with Amalthea and App4mc. FPGAs therefore require advanced
configurations and modeling to form deterministic execution units. Results of [89] show
that timing analysis for safety critical tasks can be significantly mitigated and hardware
interference can be reduced in a mixed FPGA-CPU environment. The approach can be
used in combination with analyses of this thesis via a corresponding model, but the case
study models presented in Chapter 6 do not contain such information.

When using separation constraints as the first choice, the provided technologies still
guarantee meeting timing constraints (deadlines) by formal verification according to
priorities and the scheduling paradigm even if the amount of, e.g., ASIL-D software exceeds
hardware capabilities such that FFI can not be guaranteed by isolation. In that case, ASIL-
D software is required to have higher priorities than software that is tagged for ASIL levels
C–A. Consideration of redundancy, which is also applied to higher ASIL software as stated
in [122], is not in scope here due to the generality of this thesis’ technologies. However,
Amalthea and the MBSD provides to manually model redundancy and priority values at
ease, such that a corresponding consideration is, in general, possible.

2.5 Software Distribution

Software distribution for automotive systems gained significant importance in recent
years due to the increasing demands of advanced driver assistance systems, autonomous
driving, as well as architectural changes towards the centralization and consolidation of
functional domains and ECUs [96]. Additionally, standardization, as mentioned in the
previous sections (e.g., Autosar, automotive Spice, collaboration across Tier suppliers,
OEMs, and various tool vendors, and requirements from legacy applications) necessitate
sophisticated approaches when applying software distribution methodologies to the already

22



Section 2.5. Software Distribution

Mapping 
Methodologies

Design-time
(for static 
workload)

Run-time (for 
dynamic workload)

Heterogeneous 
Architecture

Homogeneous 
Architecture

Heterogeneous 
Architecture

Homogeneous 
Architecture

Centralized 
Management

Distributed 
Management

Centralized and 
Distributed 

Management

Figure 2.5: Mapping taxonomy from [123]

highly constrained domain of automotive systems.

The fundamental concern of software distribution in the Autosar context is the
partitioning of runnables, i.e., atomic functions, to tasks and the mapping of such tasks
to PUs across microcontrollers and ECUs. More precisely, given a set of runnables R =
{r1, ...rp} and a set of PUs P = {P1, ..., Pu} , the goal is to find (a) a distinct runnable to
task assignment M τ

ra = [1, n] : ∀ra ∈ R, a ≤ p; p = |R|;n = |T | that is calculated by the
partitioning process and forms the task set T , and (b) a distinct task to PU assignment
MP
τi ∈ [1, u] : ∀τi ∈ T , i ≤ n, u = |P| denoted as mapping. Both technologies are valid if

and only if there exists precisely one task assignment for each runnable and hence a single
PU mapping for each task. From the formal analysis perspective, minimizing WCRTs
under the partitioning and mapping problems (load balancing) is an NP-hard problem [28].
This two-phase approach yields many advantages such as distribution flexibility, level-
based pairings, or separations, and the consideration of various constraints described in
Section 5.1. While this rather generic perceiving challenge has been studied for decades,
the mandatory domain-specific constraints’ holistic concern has been either omitted or only
partially investigated. By making use of the Autosar compliant Amalthea model, this
thesis’s work applies to a widely established superset of automotive constraints on the one
hand (cf. Section 5.1), and further covers industry-driven requirements on the other hand.

Related work stretches across a wide variety of application domains. Figure 2.5 shows
a taxonomy of mapping problem methodologies with the highlighted left parts being
addressed in this thesis. Partitioning and mapping are investigated during design time
for homogeneous and heterogeneous hardware, and workload and communication behavior
are assumed to be known and predefined. In this scenario, DSE is typically addressed
by dedicated heuristics, Mixed Integer Linear Programming (MILP), GAs, or Constraint
Programming (CP) (see Section 2.7). However, automotive systems demand various
requirements combined by its six-fold domains introduced in Section 2, which all DSE

23



Chapter 2. Background and Fundamentals

approaches have to address. For example, processor affinities are beneficial regarding
application performance, fault tolerance, or security as stated in [124, 125]. Such PU
affinity for tasks is considered via arithmetical constraints in Chapter 5, ensuring that a
solution must contain given task to PU pairing. Similarities exist compared with robotics,
logistic, or avionics domains, but only the latter typically exposes similar criticality and
network interface levels. In this context, typical optimization goals reach from execution
time, energy consumption, resource utilization to reliability, or solution quality, as stated
in a mapping survey in [123].

Typical greedy heuristics to the mapping problem have been outlined in [126] such as
First Fit (FF), Best Fit (BF), Worst Fit (WF), decreasing utilization, or decreasing
criticality. Although such greedy approaches do not optimize any system parameters,
they are often taken as reference mappings. Approaches to software distribution in this
thesis assume a predefined PU set. Task allocation strategies that only consider a task set
and processing capabilities (instructions per second), but not a predefined number of PUs
(those approaches assume to have n number of tasks, theoretically scheduled on n PUs in
the worst case) as described in [127] are not in scope.

2.6 Timing Verification

Timing verification is the basis for WCRT analysis to ensure that all system’s deadlines
are met, and resources are used efficiently under all given properties and circumstances.
Approaches for timing verification presented in this thesis use formal schedulability
analysis, RTA, and holistic methodologies. Hamann et al. have argued in [128] that holistic
approaches require an increasing number of equations and dependencies per component
and timed automata scale exponentially. However, holistic approaches can consider global
performance effects much easier than compositional analysis, which potentially results in
tighter timing bounds [129]. In general, it is common practice that timing verification is
covered by measurements and tracing of software on target-hardware, which requires that
both are available by the time the measurements are performed. However, if such process
is not automated, it is highly error-prone due to manual configuration and setup, and the
absence of hardware and software in early development phases further highly aggravate
early timing verification and estimation. Consequently, appropriate methodologies and
tools have been invented and used for timing verification and performance analysis,
exemplary given in Table 2.1. The order of tools is arbitrary within a cell, and the table
does not intend to be an exhaustive survey of timing verification tools and performance
analyses. Tools are assigned to a methodology based on their primary concern, but they
may cover different concerns. For instance, some simulation tools, CPA, model checking,
and formal analysis techniques also claim to cover holistic analyses.

24



Section 2.6. Timing Verification

Methodology Short Description Example Tools
Simulation Hardware and software models

are triggered by discrete event sets
(imitation of environment). Behavior
and non-functional properties can be
investigated by debugging / tracing a
simulation scenario. Usually, not every
possible situation can be covered.

SystemC, SCoPE [130]
INCHRON chronSim24

Vector TA-Toolsuite25

RTaW-Pegase [131]
Simulink26

Compositional
Analysis (CPA)

Creating request, delivery, arrival, and
service curves to feed a system and
propagate events through a model,
which consists of several components
connected via a network. Schedulability
analysis complexity is reduced
by calculations done component-wise
instead of globally.

RTC (cf. Section 2.3.4)
pyCPA [106]
Symtavision/Luxoft
SymTA/S [132]

Model Checking Using, e.g., temporal logic to define a
correctness property, which is checked
against a formal model (e.g. timed
automata that includes states, clocks,
transitions, actions, etc. )

UPPAAL [133]
KRONOS [134]
Romeo [135]
SPIN27, DREAM28,
MUNTA29

Formal
Analysis

Apply schedulability and utilization
tests as well RTA and End-to-End
(E2E) latency equations to abstract
software and hardware models. Mostly
addresses worst and best case situations
only.

Mast 30 [117]
Cheddar23

Holistic
Analysis

Extends formal analysis (or CPA)
by bus communication delays based
on various protocols (e.g. Time
Division Multiple Access (TDMA)),
offsets, arbitrary deadlines, resource
sharing, synchronization etc.

Tindell et al. [136]
Pop et al. [137]
Palencia et al. [138]

Table 2.1: Timing verification and performance analysis methods and tools

The double line in Table 2.1 separates formal and holistic analyses, which are in the primary
scope of this thesis, from other timing verification techniques. Italic references in the last
row and column of Table 2.1 denote research rather than available tools.

Investigating safety constraints or failure rates in combination with causality analysis is
often performed by model checking. This algorithmic technique systematically explores all

24chronSIM https://www.inchron.com/tool-suite/chronsim/, visited 11.2020
25TA Toolsuite https://bit.ly/34u8Fll, visited 11.2020
26Simulink https://www.mathworks.com/products/simulink.html, visited 11.2020
27Spin http://spinroot.com/spin/whatispin.html, visited 11.2020
28Dream http://dre.sourceforge.net/, visited 11.2020
29Munta https://github.com/wimmers/munta, visited 11.2020
30Mast https://mast.unican.es, visited 11.2020

25

https://www.inchron.com/tool-suite/chronsim/
https://bit.ly/34u8Fll
https://www.mathworks.com/products/simulink.html
http://spinroot.com/spin/whatispin.html
http://dre.sourceforge.net/
https://github.com/wimmers/munta
https://mast.unican.es


Chapter 2. Background and Fundamentals

system’s states and configuration to discover erroneous or undesired situations. Leitner-
Fischer et al. apply model checking in [122] to an automotive scenario (airbag control unit)
to analyze FFI along with ISO26262. Their work shows that model checking can be used
to verify FFI by ensuring that a safe state is reached under any circumstances, even when
injecting a deadlock situation. However, model checking has shown issues such as the state
explosion problem [139], which makes alternatives more attractive.

To classify timing verification and performance analysis techniques via covered features
and properties, a recent "Survey of Timing Verification Techniques for Multi-Core Real-
Time Systems", which is given in [140], provides a good feature set and overview of recent
timing verification techniques used in the embedded real-time domain, which also applies
to automotive systems. In accordance with [140], this thesis’ contributions can be outlined
as shown in Table 2.2. The assessment is done by combining publications [4, 9, 17, 19, 20]
as well as new content, e.g. from Section 5.5. Abbreviations are outlined in the following
list.

Type of Analysis Timing Model HW properties SW properties
I W S M E γ Mi ID Pt #C #L LM GM IC Pr Ph Is
X x X X X x X H,P N N C,S,BM C,S,BM B,NoC X X X

Table 2.2: Timing verification features of this thesis based on [140]

Consequently, timing verification mechanisms used in this thesis cover all of the SotA
properties outlined by [140] except Cache Related Preemption Delay (CRPD) as described
in the following in more detail (colors and notations in line with [140]):

1. I = Interference Analysis: Since tasks are not necessarily executed in isolation,
tasks can interfere with each other and influence each other’s timing properties.
For instance, RMS or WRR scheduling (cf. Sections 5.4.2 and 5.6.2) consider
priorities and preemption, which significantly influence response times. Furthermore,
the memory mapping approach presented in Section 5.7 considers various network
interfaces between hardware modules such as ECUs.

2. W = WCET: This thesis identifies worst-case situations and considers WCET
bounds for a set of tasks running on a target platform. WCETs are assumed to
be given and not derived from dedicated WCET analysis technologies except the
derivation of time from a task’s instructions on a specific PU (lower case x denotes
minor feature consideration).

3. S = Schedulability Analysis: As part of Section 5.2, this thesis considers utilization
and schedulability analyses.

4. M = Mapping Analysis: In addition to schedulability analyses, Section 5.9 solves
the task to PU mapping problem and optimizes towards different fitness functions.
WCRT optimization, for instance, involves interference I, WCET W, schedulability
S, mapping M, and details of the following.

5. E = Execution time bounds (WCET) are assumed to be given with the Amalthea
model.

6. γ = CRPDs are not considered. Foundations of CRPD (CPMD), i.e., the timing

26



Section 2.6. Timing Verification

costs of resuming a task execution after a preemption accompanied by cache
affinity loss, have been provided in [141]. Adding CRPD to the WCRT analysis
would manifest in assessing the number and size of accessed labels and worst-case
preemption numbers per task.

7. Mi = Migration delays are accounted via Inter Process Trigger (IPT) entities for
offloading tasks to GPUs. Consequently, migration delays are not considered in the
classical sense, since task migration across cores is not allowed in PFPMPS (only
applicable to global scheduling). Instead, CPU-GPU migration is covered by Copy
Engine (CE) operations to copy data from a triggering tasks, which calls the IPT,
to the GPU task and vise versa (indicated by a lower case x in Table 2.2).

8. ID = Interference delay values are considered via local and global blocking delays
during copy engine operations, events, and synchronous or asynchronous GPU task
offloading.

9. Pt = H,P: Platform properties of hardware are considered in terms of bus arbitration
and heterogeneous PUs (H), which may cause different task execution times without
necessarily linear relations. Local and global memory accesses across predictable
platforms (P) with memory contention, peripheral affinities, and acceleration features
are covered, too. Many-core platforms (M) with advanced isolation mechanisms of
Network on Chip (NoC)s or Common-Off-The-Shelf platforms (C) are not in the
focus of this thesis.

10. #C = The number of PUs is N (cf. Chapter 5). Investigations of Chapter 7
addresses the task mapping problem towards up to 64 cores, which is yet not an
upper bound.

11. #L = Number of memory levels is N here, since the Amalthea model provides
arbitrary memory level hierarchies through structure and connection entities (cf.
UML class diagram of Figure 3.4: [1..*] self composition of HwStructure + [1..*]
HwConnection composition). In fact, port connections can span over various levels
such that access latency (delay constants) values must be summed up and even
investigated throughout multiple paths if there are multiple ways to access some
memory throughout connection handlers and ports.

12. LM = Local memory delays are considered regarding access latencies based on
the local memory type, which can be of type cache (C), scratchpad (S), or banked
memory (BM).

13. GM = Global memory is, in the same way, accounted as local memory and is further
subject to contention delays.

14. IC = Interconnect interference can be caused by buses (B) or NoCs. Such influence
is outlined in Section 5.7.

15. Pr = Precedence graph properties play an important role for Runnable Sequencing
Constraints (RSCs), causal relationships, and form the basic requirements for TDRR
described in Section 5.8.1. In addition to runnable sequencing, task precedence
constraints are covered in Section 4.2, respectively edges eϕ in the edge set E .

16. Ph - Phased execution is addressed by the implicit communication paradigm.

27



Chapter 2. Background and Fundamentals

17. Is - Software isolation is covered by considering the LET paradigm as well as
separation constraints.

Maiza et al. assign 119 references to the above properties and features in [140], none of
which covering the broad characteristics of Table 2.2 nor the Amalthea focus.

2.6.1 WCET Analysis

WCET analysis has been investigated especially in [142] and [113] for timing verification
and optimization. Commercial tools exist to solely cover WCET analysis like AbsInt
aiT WCET 31. The influence of shared caches, interconnection structures, buses, inter PU
dependencies, and modes are analyzed and a WCET optimization Evolutionary Algorithm
(EA) is presented to reduce WCET by improved resource scheduling in [113]. The latter
has a similar idea compared with TDRR presented in this thesis (cf. Section 5.8.1). The
mechanism is called "WCET-driven Multi-Core Instruction Scheduling" (WMIS ), whereas
instructions can be mapped to runnables from TDRR. Both mechanisms are compile-time
optimizations. The primary difference is that TDRR decides the runnable order based on
calculated schedules that address task release delta values and runnable dependency graphs,
and WMIS considers TDMA bus scheduling for tasks running on machines separated
by a TDMA bus. TDRR can be extended for holistic schedule tables also to cover bus
arbitration. For multi-processor machines, shared memory accesses are assumed not to
require TDMA bus connections and hence achieve fewer overheads. For distributed ECUs
connected through buses, TDRR can potentially adapt to network interfaces by considering
transmission delays exemplarily shown along with the CAN bus in Section 5.7. In general,
WCETs are considered as static given values in this thesis.

2.6.2 FPPS WCRT Analysis

WCRT investigation serves the purpose of guaranteeing schedulability, i.e., the assurance
that no task deadlines are ever violated for a given system of scheduler, task sets, and
WCETs. Formal WCRT analysis based on FPPS has history. Liu and Layland provide
the fundamentals in [53] by proving that the critical instant, i.e., the situation that all
tasks arrive at the same time, forms the worst-case situation from which WCRTs can be
derived and by proving the RMS / Fixed Priority Scheduling (FPS) utilization bound of
U = n(21/n − 1) with n denotes the number of tasks. This work is extended by Lehoczky
in [38] for arbitrary deadlines by introducing the level-i busy period, which is also known as
the windowing technique. Lehoczky shows in [38] that a window (level-i busy period) has
to be investigated from the critical instant to guarantee to find the WCRTs of tasks. The
technique is re-evaluated in [143] together with more recent related work. To determine
the length of such window, a recursive function is needed that uses the iterative fixed
point lookup, i.e., the function stops when the result of two consecutive calculations do
not change. Tindell and Clark extend Lehoczky’s work in [136] for a holistic RTA. A task’s
response time is subject to blocking, which is defined by a factor based on the PCP analyzed
in [144] and a set of tasks that have a higher priority than the task under investigation.
The consideration of communication through buses accompanies holistic RTA. Tindell et
al. therefore analyze response times over a generic TDMA bus (mutually exclusive to PUs)
based on fixed message priorities and FIFO message queuing.

31https://www.absint.com/ait/index.htm, visited 11.2020

28

https://www.absint.com/ait/index.htm


Section 2.7. Design Space Exploration of Intractable Optimization Problems

Since then, the real-time research community uses these basics for several further analyses,
of which the work by Davis et al. [145] should be pointed out due to the focus on holistic
(network-wide) non-preemptive scheduling. Their work includes the estimation of CAN
transmission and response times based on the message identifier length, the transmission
time for a single bit, and the data bytes to be transmitted. Given that CAN messages are
non-preemptive, the maximal blocking time is defined by the longest transmission time of
all lower priority messages. Finally, the work uses jitter parameters imposed to a message
at the time it is released, the blocking delay, and the busy period length to calculate the
total worst-case CAN message delay. A detailed presentation of the formulas, how they
are applied to Amalthea models, and what additions are incorporated for this thesis are
outlined in Section 5.7.2.

Partitioned fixed-priority non-preemptive scheduling is further investigated in [146], which
uses sporadic Directed Acyclic Graph (DAG) tasks (RTA for DAG tasks covered in [147])
and the self-suspending scheme to overcome non-preemption issues. A task suspends itself
when a precedence constraint is not satisfied. Self-suspension-based scheduling has gained
lots of research interest [29] in the past, but similar to other scheduling approaches such
as GEDF, it is out of this thesis’ scope since it has not been applied to Autosar and the
automotive domain.

2.7 Design Space Exploration of Intractable Optimization
Problems

As mentioned in Section 1.2.2, this thesis primarily deals with solving the runnable
partitioning, memory mapping, and task mapping challenges with respect to
optimizing, e.g., processor utilization and response times, via applying polynomial-time
approximation methods in form of DSE meta-heuristics. Apart from processor utilization
and response time optimization, (a) platform minimization, (b) priority assignment, and
(c) policy selection belong to typical optimization goals. For the former (a), based on a
task and PU set, a task mapping, a scheduling policy, and a locking protocol, the goal
is to find the minimal amount or frequency of PUs being used. This goal also often
correlates with energy minimization. Concerning policy selection (c), based on a task and
PU set, a task mapping, and a scheduling policy, the goal is to identify a locking protocol
that keeps the system schedulable while potentially optimizing other criteria. Variations
and combinations of the above and similar problems have been investigated in [148] and
addressing (a)–(c) are potential optimization goals, which could be tackled in future work
beyond this thesis.

In general, DSE approaches can be categorized into meta-heuristics, hybrid, and exact
techniques. The following outlines some of the basic properties of such DSE methods and
argues, which and why some have been applied to the partitioning and mapping problems.

2.7.1 Local Search

When dealing with optimization problems, a local search algorithm or heuristic starts with
finding an arbitrary solution and then iteratively moves to a neighbor solution. Local
search is often chosen due to its simplicity. However, implementation often follows a
greedy scheme, i.e., choices are made regarding optimal decisions within a specific stage,
which often is not the optimal choice in a global sense. Moreover, local search often

29



Chapter 2. Background and Fundamentals

scales bad, since iteration over direct neighbors can be very costly and time-consuming.
Hence, (greedy-based) local search often misses global optima and valuable parts of the
solution space. Furthermore, local search often has a dedicated model or application to
work with, and its applicability to different problems is minimal. Consequently, other
more appropriate DSE paradigms are chosen to overcome the limitations of local search
algorithms to solve partitioning and mapping problems.

2.7.2 Simulated Annealing

The SA paradigm is probably the easiest way to overcome local optima trap issues of
local search by applying stochastic value changes instead of neighbor investigations only.
As a meta-heuristic to approximate a globally optimal solution (not exact as ILP), SA
initially finds an arbitrary solution and then compares it with one or more other solution(s).
Inspired by annealing in metallurgy, SA decides probabilistically, which solution is more
worthy and chosen as the comparator for the next iteration. The probability of this decision
process is defined by programmed temperature and energy attributes. The temperature
changes in each iteration via some function and usually meets zero at the end of the search
process. As a consequence, worse solutions are also taken into account to overcome local
optima. The energy difference, which is the subtraction of the solutions’ energy values,
denotes their fitness, i.e., quality.

To tweak a SA algorithm, the initial temperature, probability function (annealing
schedule), and compared solution set can usually be configured. By the time the
temperature meets zero, the selected solution is good enough, i.e., it may not be the exact
optimum but at least within a close range to it. SA is easy to implement, but identifying
useful configuration parameters is often crucial for finding good results in an appropriate
amount of time. For this thesis, the SA implementation along with measurements in
Chapter 7 were outperformed by the GA approaches and hence SA is excluded from
corresponding measurements.

2.7.3 (Mixed-) Integer Linear Programming

ILP and MILP are probably the most common techniques for DSE in terms of software
parallelization for heterogeneous MultiProcessor System-on-Chips (MPSoCs) as stated
in [142]. They are exact techniques to be applied to optimization problems, which can
be described by integer variables. Therefore, a linear objective function is defined that
can be optimized towards maximal or minimal values and depends on several constraints,
each described as linear functions, too. MILP allows some variables to be of non-integer
natures compared with ILP, which only allows integer values. Since there is no polynomial-
time algorithm to solve MILPs, relaxation is used for solving MILPs, which results in a
lower bound on the optimal solution. These methods are especially famous due to their
mathematical ease and application to problems that (a) are subject to a lower number of
constraints or (b) require only binary decisions. MILP has scalability issues for large-scale
problems as stated in, e.g., [149, 150] but still finds application to recent resource-oriented
partitioning or scheduling problems such as [60, 151, 152], and many more.

2.7.4 Genetic Algorithms

GAs are a particular type of EAs and have similarities to SA algorithms, due to both
approaches using stochastic search methods during the search space investigation [153].

30



Section 2.7. Design Space Exploration of Intractable Optimization Problems

Though, instead of three parameters to configure a SA process, a GA provides many more
configurations and a more sophisticated search space investigation. The GA meta-heuristic
is inspired by evolutionary theory and consists of an initial population of phenotypes,
genotypes, chromosomes, and genes as well as mutation and crossover operations. From
the initial population (random solution set), better generations (solutions) are iteratively
created by applying mutation and crossover operations to chromosomes (properties) of a
selected solution set. Consequently, a new offspring is created and added to the population,
and less-fit individuals are dropped. A population’s individual (a single solution) is defined
by a fitness value that is usually taken as the optimization criteria. A gene encodes
a parameter via its allele, which is part of a solution, e.g., a task to PU mapping. A
chromosome consists of at least one gene. If multiple genes construct a chromosome,
they must be of the same type and domain. If genes of different types or different
domains are required, multiple chromosomes must be implemented. A genotype then
consists of a chromosome set, whereas a phenotype is defined by precisely one genotype.
Finally, a population if formed by a sequence of phenotypes (individuals), i.e., one or
more chromosome sets. This thesis makes use of the Jenetics library [42] to encode the
above-outlined model. Jenetics then provides various interfaces to define selection and
altering operations, i.e., selecting individuals for recombination to produce offsprings and
creating genetic diversity by applying mutation, recombination, or crossover operations.
A mutation defines the probability of a gene (resp. genotype and chromosome) to be
altered, i.e., changed. Recombination, in contrast to mutation, swaps single or multiple
(multi-point crossover) genes between two individuals. In essence, only some of the fittest
individuals of a generation are stochastically chosen for the mutation process that forms
new generations with modified genes. A GA terminates on different properties, which can
be the number of generations, a predefined fitness value, the number of generations to
which the fitness values do not improve (i.e., steady fitness), resolution time, and others.

Along with publication [11], a GA is combined with SA towards a Hybrid Genetic
Algorithm (HGA) by using SA as an evolution stream to undo crossover operations of
the GA, if the SA criteria are not fulfilled. This process can potentially improve the GA
resolution time and hence convergence speed. Cordes has shown in [142, p. 107] that ILP
solvers are not preferred for multi-objective DSE, which though can be tackled by GAs
and hence are incorporated in this thesis.

2.7.5 Constraint Programming

In contrast to mathematical programming such as MILP, quadratic programming,
genetic programming, and others, constraint programming not only covers most of the
mathematical operations but also comes with powerful paradigms to further constrain
combinatorial problem spaces and consequently increase exploration efficiency. CP belongs
to the hybrid techniques and can thus be used to prove an optimal solution or find solutions
close to the optimum. Perron stated in [154] that the usage of CP is beyond MILP for
optimizing applications in industrial operations research projects such that CP becomes
a viable and promising approach to be in focus for the task to PU mapping outlined in
Chapter 5. CP has also increasingly found application in modern design space exploration
processes due to its more natural and flexible modeling capabilities [154]. CP can be used
as a paradigm to either satisfy constraints of a CSP or to optimize variables for Constraint
Optimization Problems (COPs). Therefore, CP requires to define a model that consists
of (a) variables, (b) domains, (c) constraints, and optionally (d) optimization goals.

31



Chapter 2. Background and Fundamentals

Example 2.1: CP Basics

Given is (a) an integer i that is (b) allowed to take values from 1 to 10, which is hence
its initial domain, i.e. i ∈ [1, 10]∩N. The first constraint is given by allowing (c) only
even numbers, i.e., i%2 = 0. With the domain and the first constraint, the example
can already be used for a CSP, which would result in solutions i = {2, 4, 6, 8, 10}.
With an optimization goal (d), such as min(i), a COP can be set, which results in
only one optimal solution, i.e. i = 2.

A valid solution to the CSP only exists if all its constraints are satisfied. Constraints can
be of logical, arithmetical, set, graph, or real-value nature, for instance. The advantage of
CP over MILP is (i) the natural programming of relations between variables (constraints),
(ii) the vast flexibility in modeling beyond the scope of integers, and (iii) the search space
investigation methodology. For the latter, one can pick between, adjust, and modify various
filtering algorithms to prune incompatible values for valid solutions from a variable’s
domain. Then, all constraints related to such domain change are revised because the
domain reduction can further affect other variables and deduce their domains, which is
called propagation. In other words, when the search process runs and inconsistent
value combinations regarding the defined constraints and assigned values or domain
reduction are identified, these findings are propagated so that infeasible solutions that
violate any constraints are removed from the solution space (i.e., backtracking). Custom
search heuristics and backtracking can be systematically applied to the model to remove
inconsistencies that could have been discovered multiple times in regular search procedures.
Incremental assignments combined with backtracking search or complete assignments
combined with the stochastic search are examples for such search heuristics. In general,
CP also allows proving optimal solutions or unsatisfiability of a CSP [155].

In Section 5, a CP model, as well as its application to Amalthea is outlined, to consider
a broad set of automotive software constraints such as pairings, separations, activations,
sequences, ASIL properties and more when distributing software across tasks and PUs
of vehicles. Even though additional timing constraints have been formulated in [115],
only those applied to Amalthea and Autosar are addressed in this thesis. Results are
compared with existing DSE approaches such as GAs, dedicated heuristics, and ILP-based
solutions.

2.7.6 Other DSE and Mapping Heuristics

A valuable, yet not exhaustive, study is provided by Braun et al. in [156] that investigates
Opportunistic Load Balancing (OLB), Minimum Completion Time (MCT), Min-min,
Max-min, duplex, GA, SA, Genetic Simulated Annealing (GSA), Tabu search, and A*
heuristics. More recently, Wang et al. published in [95] a comparison of different DSE
methodologies in terms of the mapping problem across Autosar applications. Both
publications [95] and [156] clearly identify GA to consistently give the best results. More
DSE methods have been used along with the mapping problem such as Ant Colony
Optimization (ACO) [157, 158], Chicken Swarm Optimization (CSO) [159], Particle Swarm

32



Section 2.8. Sharing Resources and Blocking Times

Optimization (PSO) [160], Simulated Annealing and Tabu Search (SAT) [161], Integer
Non-Linear Programming (INLP) [162], or Bat Algorithm (BA) [163] (a recent analysis
is given in [164]). Nevertheless, those approaches are out of this thesis’ scope due to
(i) ILP, GA, and CSP satisfy the requirements to cope with the problems addressed in this
thesis and (ii) the scarce availability of the former meta-heuristics as open-source libraries,
respectively their implementation overheads required if being implemented from scratch.

2.8 Sharing Resources and Blocking Times

Blocking analysis is required for a correct RTA, especially in the multi-processor domain,
since shared resources must often be mutually exclusive and hence require appropriate
mechanisms to ensure priority inversion bounding as well as deadlock or race condition
prevention. Blocking from shared resources is found the major influence on response times
for PFPMPS, and a corresponding survey was published by Abel et al. in [78]. For
instance, accesses to shared I/O peripherals, global memory, or special purpose units (e.g.,
FPU) often require mutually exclusive access for deterministic and causally correct system
execution. Locks, mutex algorithms, and various protocols support mutual exclusion by
managing critical sections, i.e., the program code accessing the shared resource, but also
introduce processing overheads that affect the system’s responsiveness, i.e., tasks’ response
times.

The Ph.D. research by Negrean [77] covers a good analysis of blocking times under
typical scheduling policies and resource sharing protocols among Autosar. Lock-free
and wait-free approaches that use buffers, queues, or heaps, which can be alternatively
used for synchronization, are discussed in [165] and are neither reflected in Autosar nor
investigated here.

In the situation of a lock being hold already by the time a task wants to lock it, the task
can either spin over acquiring the lock until it becomes available, which is known as busy
waiting, or suspend under the assumption that the scheduler resumes it as soon as the
blocking task holding the lock releases it. In Autosar, the former is employed by spinlocks
for data shared globally between PUs, and the latter is used along with the OSEK Priority
Ceiling Protocol (OPCP) for data shared among tasks locally on a single PU [47, 166],
which are described in the following sections.

2.8.1 Sharing Local Resources in Autosar: PCP vs OPCP

The principle of the PCP is similar to the Priority Inheritance Protocol (PIP), i.e., when
a shared resource is accessed but already locked, the locking tasks inherits the priority of
the accessing task. Task priorities are assumed to be fixed and known, such that resource
ceilings can be computed for all resources, which is the highest priority of tasks accessing
the resource as shown in Eq. 2.2 with πlc(CSv) denoting the local priority ceiling for the
critical section CSv. In line with related work, a system’s highest priority is π1 and π2 is
one priority level lower than π1 so that π1 > π2.

πlc(CS
v) = max

j:τj locally accessing CSv
πj (2.2)

Priority changes induced by the PCP do not influence the fixed priority scheduler process.
The system priority ceiling is dynamic during the system execution and defined by the

33



Chapter 2. Background and Fundamentals

maximal allocated resource ceiling priority at a given point in time. It is used to allow
higher priority tasks to preempt lower priority tasks that hold a lock until the higher
priority task wants to lock the same resource. At that time, the lower priority task inherits
the system priority ceiling that was low at the time the lower priority task was running
in the Critical Section (CS) and then raised to high due to the higher priority task trying
to lock the CS. In addition to PIP, a task under the PCP only enters a critical section
when it is free, and there is no risk of chained blocking or deadlock. As a consequence,
PCP is deadlock-free, and blocking can be bounded to at most one critical section length,
which is highly beneficial over, e.g., the PIP or the Non Preemption Protocol (NPP). PCP
has been introduced and analyzed in [144] according to direct, push-through, and ceiling
blocking times.

The OPCP corresponds to the Highest Locker Protocol (HLP) and features the same
benefits as PCP and further eases implementation due to no priority inheritance and hence
no system ceiling priority tracking. The major difference of OPCP and PCP is that PCP
does not suffer from long inheritance related inversions as OPCP [167], which is shown in
Figure 2.6. Based on the average response time across tasks, Figure 2.6 a) provides an

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝜏!

𝜏"

𝜏#

OSEK PCPPCP

Running

Running in Critical Section

Ready

Directly Blocked

Indirectly Blocked

𝜏!

𝜏"

𝜏#
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

OSEK PCPPCP

a)

b)

Figure 2.6: PCP vs OPCP in two situations :
a) OPCP and b) PCP feature better response times

example of OPCP performing better than PCP primarily driven by the high priority task’s
response time, i.e. ROPCPτH

= 4 < 7 = RPCPτH
. Despite that, a different situation shown in

Figure 2.6 b) can result in PCP performing better than OPCP, which is mostly caused by
the medium priority task’s response time RPCPτM

= 1 < 4 = ROPCPτM
. Task arrival times are

the same for PCP and OPCP in the respective situations provided in Figure 2.6.

2.8.2 Sharing Global Resources in Autosar

The PCP is migrated to distributed PU systems by Rajkumar et al. for partitioned
suspension-based scheduling along with the Distributed Priority Ceiling Protocol
(DPCP) [168] and adapted towards shared memory along with the Multiprocessor Priority
Ceiling Protocol (MPCP) in [169]. MPCP (a) minimizes remote blocking of global
resources shared across PUs and (b) bounds priority inversion via boosting a locking
task’s priority to a higher priority than every other task across the entire system [170].

34



Section 2.8. Sharing Resources and Blocking Times

Instead of the suspension-based protocols like MPCP or DPCP, Stack Resource Protocol
(SRP) (known to be optimal for single PU systems) and Multiprocessor Stack Resource
Policy (MSRP) [171] were proposed as spin-based protocols for partitioned scheduling.
Furthermore, the Flexible Multiprocessor Locking Protocol (FMLP) is presented by Block
et al. in [172] to cover both global and partitioned scheduling. FMLP does not restrict
CS nesting or having periodic tasks only. A recent systematic review on multi-processor
real-time locking protocols is given in [148] and analyzes the problems and benefits across
existing research beyond spinlocks and OPCP used in Autosar. In [148] also ensues
prior work by Wieder et al. [35], which already outlined some missing definitions of the
Autosar spinlock type.

Although the research community presented the protocols mentioned above for multi-
processor environments, the Autosar consortium decided to stick to simple spinlocks to
protect global resources without defining FIFO-, priority-ordered, or unordered spinlocks,
under the opinion of development ease and flexibility [47].

Section 5.4.1 provides an analysis of local direct blocking, local push-through blocking,
ceiling blocking, and global blocking, whereas the latter assumes FIFO queues, which
makes global blocking pessimistic due to the imposed blocking delay being proportional to
the amount of PUs.

35



Chapter 2. Background and Fundamentals

2.9 Summary and Motivation

(I) Automotive systems require a holistic, model-based, and formally verified analysis
for exploring parallelism and concurrency along with heterogeneous, distributed
(networked), mixed-critical, embedded, concurrent, and real-time domains.

(II) The vast amount of constraints and requirements impose a huge complexity for such
analyses.

(III) Partitioning and task mapping go hand in hand with WCET and WCRT
minimization and hence require sophisticated algorithms and meta-heuristics to solve
the problem of minimizing timely interference, while meeting all timing constraints as
well as modern high-performance demands of development activities towards highly
assisted and even automated driving applications.

(IV) Existing DSE and timing verification methodologies must be advanced to address
modern many-fold heterogeneous CPU-GPU architectures through considering
synchronous and asynchronous task to GPU offloading, as well as new blocking,
contention, queuing, CE, task chain latency effects under different communication
paradigms such es explicit, implicit, and LET.

(V) Open-source models must provide the possibility to (a) exchange automotive
system details without real code, (b) cover all typical automotive system details,
(c) be industrially used along with a dedicated open-source Integrated Development
Environment (IDE) across various Tier suppliers and OEMs, (d) be compliant to
Autosar, and (e) provide Application Programming Interfaces (APIs) to simulate,
analyze, visualize, and adapt models or even extend the meta-model.

(VI) No work exists that meets the above challenges I–V.

The technologies and contributions of this thesis fill the gap of VI by addressing the
challenges I–IV via (I) covering the cross-domain requirements and constraints, (II) using
appropriate heuristics and meta-heuristics to cope with the problems’ complexity, and
(III/IV) providing tooling to cover and formally verify constraints for optimized solutions
along with advanced (new) concepts for (i) WCET and WCRT minimization, (ii) task
chain latency analysis, as well as (iii) CPU-GPU task offloading and execution.

Just one model is identified of covering requirements of item V, namely Amalthea, which
is presented in the following Chapter 3.

36



3
System Model

This chapter outlines and defines not only the semantics of various Amalthea entities
(sections 3.1–3.1.7) but also their mathematical notation in Section 3.2, used for analyses
throughout this thesis. Notations are based on the Burns standard notation [61] and
presented in Table 3.1. Some minor notations deviate from the Burns notation, e.g., the
task set T instead of τ due to consistency reasons, i.e., having uppercase calligraphic
symbols for all sets. Subscripts are mostly used for identification purposes via an index
value, and superscripts are used for type identification. For instance, Bs,+

i denotes the
worst-case (+) global blocking (s) of task τi. The notation Table 3.1 is intended to be used
as a reference throughout this document.

3.1 Amalthea

The Amalthea model [45] is chosen as the primary model for this thesis because it is
Autosar compliant, entirely open-source, used by the automotive industry, and easily
accessible through the App4mc platform. It consists of several basis models namely
software, hardware, stimuli, components, events, operating system, constraints,
mapping, custom property32, common elements, config, measurements, and property
constraints (by early 2020, Amalthea v0.9.8 ). The Amalthea and Autosar models
have many entities in common but also particular distinctions, which have been studied
in [173]. Essentially, Amalthea covers most aspects available in either Autosar or
ASAM MDX and further includes various extension points to be able to define nearly
any possible automotive system. Since version 0.9, Amalthea even covers data and ECU
network modeling, which has been identified as a deficit in older versions according to [173].
In addition to Autosar, Amalthea features model entities of OS runtimes and various
OS resources, multiple stimuli, function domains, complex call graphs, generic limits
for metrics, data coherency groups, and affinity constraints. Bold highlighted model
entities are used in this thesis throughout Chapter 4–7, and outlined in the following
Sections 3.1.1–3.1.7. Much more information about the model itself and entities not used
in this thesis is available online at [45].

Figure 3.1 shows both the partitioning and the mapping approaches integrated into the

32This thesis makes only used of bold highlighted Amalthea models.

37



Chapter 3. System Model

App4mc platform.

Modeling

Partitioning Tracing

Mapping Code Generation

AMALTHEA

System Model

AMALTHEA

Trace Model

Figure 3.1: Amalthea platform: development cycle and features based on [45]

Both partitioning and mapping processes read and extend various Amalthea models
entities based on the process’ input, configuration, and corresponding model analyses.
Further topics like Modeling, Code generation and Tracing provide necessary features for
comprehensive system engineering, but are not in scope here.

The Amalthea model has been developed by various partners of research projects
mentioned in Section 1.3, but primarily by the Robert Bosch GmbH company. By taking
part in this development, the author of this thesis also took part in some decisions for the
Amalthea model evolution itself, primarily with the Eclipse App4mc Committer role,
but the main contributions address the partitioning plugin and RTA tools.

3.1.1 Amalthea Software Model

The software model forms the primary input for this thesis’ implementation and gives
information about runnables, labels, tasks, ticks, dependencies, and more, based on
Autosar notations.

Definition 3.1: Runnable

A runnable ra ∈ R is a representation of atomic program code. It consumes
instructions ca, may read and write labels (↑a, ↓a) ⊆ L, and call OS entities such
as semaphores, events, other runnables, inter-process activations, or others along with
its activity graph. A runnable’s instructions is defined by the sum of ticks or execution
needs:

ca =
∑
j

ca,j (3.1)

Here, ca,j represents the j− th constant value derived from an execution needs or ticks
entry within the runnable’s activity graph.

38



Section 3.1. Amalthea

The runnable Definition 3.1 assumes that instructions are represented as constant values.
Whenever other types are existent in the model, worst case or upper bound parameters
are taken as a reference to meet timing verification requirements, i.e., guaranteeing various
timely properties even at the worst possible (worst case) situation. Switching from
WCET/WCRT to BCET/Best Case Response Time (BCRT) analysis is though just a
matter of process configuration. Figure 3.2 shows different software meta model entities as
screenshots from [174], with root entities in the first column, task / runnable activity graph
items in the second, and tick / execution need items in the third column as of Amalthea
version 0.9.8. These screenshots do not show the properties for different entities, which
are partially referred to textually in the following if necessary. A comprehensive property
outline goes beyond the scope of this thesis but can be found at [45].

ac
ti
va

ti
on

s
m

od
es

type definitions

ac
ti
vi

ty
 g

ra
ph

 i
te

m
s

software meta model
software entity example
hardware entity example

Figure 3.2: Amalthea software model v0.9.8 entities excerpt [174]. Dashed lines
indicate possible entity containment provided by the Amalthea meta-model.

The third column of Figure 3.2 shows some model examples (as indicated by the legend)
to provide some insights into how the various instructions and distribution entities are
modeled and put in context with features or specific hardware definitions.

A runnable is often derived from a code function that runs sequentially, i.e., it can not be
subdivided further. Instructions are represented as execution needs for certain features
or generic ticks in terms of Amalthea as shown in Figure 3.2. Both entities can be
hardware independent or hardware specific. These values are then required on a PU for
being executed and represent, e.g., an arithmetical operation. Execution needs or ticks
are assumed to be known and provided as part of the input models in this thesis.

39



Chapter 3. System Model

Definition 3.2: Instructions

Instructions can be represented as beta distribution, boundary, constant, Gauss
distribution, histogram, statistic, uniform distribution, or Weibull estimator
distribution values. Each representation is further modeled as either (I) execution
needs, which can be hardware feature specific, e.g., refer a dedicated instructions per
second κx parameter, which is again referenced by specific PUs or structures such
as an ECU, or (II) ticks, which can be PU definition specific or entirely hardware
independent.

To derive the normalized execution time csa,x per second for a runnable ra on a PU Px,
Eq. 3.2 is used for periodicity (Tra) given in pico seconds.

ca,x =


ca
fx
·
⌈

1012

Tra

⌉
if ca is ticks constant

ca
fx·κx ·

⌈
1012

Tra

⌉
if ca is execution need constant

(3.2)

A Weibull estimator distribution, which is provided by the Democar model (cf. Section 6.4)
for instance, is a continuous probability function consisting of two parameters scale λ and
shape k, which define different probability density functions. Just as beta (cf. Figure 6.2)
and other distribution parameters, such functions are especially useful when not only
verifying WCRTs, but also probabilities, average values and similar through simulation
or tracing. As pointed out at the runnable Definition 3.1, instructions are referenced by
runnables via a single value ca, which seems to contradict the instruction Definition 3.2.
The former assumption necessary to concentrate on worst-case scenarios for schedulability
and safety verification.

Instructions are shown in Figure 3.2’s third column along with three examples, namely
(i) beta distribution, (ii) constant, and (iii) statistic values. Here, execution needs are used
for (i) the beta distribution and (ii) constant values as well as (iii) statistic values make
use of ticks. The execution needs of the beta distribution (i) refer to a hardware features
category, whereas ticks of the constant (ii) and statistic example (iii) refer to a specific PU
definition. Beta distributions are further used for generating models along with Section 6.5
and Figure 6.2. This thesis does not assess timing properties in regard to the distribution
or probability of, e.g., response or execution times. Consequently, any reference to such
instructions relates to worst, i.e. upper bound, and best, i.e. lower bound values, which
are denoted as c+

a and c−a , respectively.

In general, hardware-independent instructions are modeled as ticks and a default entry.
Extended entries, which can be modeled in addition to default ticks, must reference a
specific hardware definition (HWDefinition, see Figure 3.2, third column bottom), such
that extended ticks are used along with time derivation for a specific set of PUs that
belong to the corresponding hardware definition. Default ticks can be applied to any
PU, which belongs to a hardware definition that is not included in any extended ticks of
the same processing entity. Alternatively, execution needs can be modeled, which require
to reference a hardware feature category (see Figure 3.2, third column top: arrows from
the execution need example entity to the hardware feature category entity, outline the
coherency reference). As outlined in the Amalthea documentation [45, Execution Time

40



Section 3.1. Amalthea

Section], execution times can always be translated into ticks and then ignored for further
time evaluation. For this translation, a mapping dependent recipe can be used and allows
nearly arbitrary computation prescripts, specifically designed for flexibility. Since hardware
definitions can reference one or more feature categories, execution needs define a lower
instruction modeling level and provide decimal coherences (in contrast to ticks, which are
always distinct) for features that can be included for multiple hardware definitions (see
also class diagram 3.4).

Any runnable instructions can be included multiple times within a runnable’s activity
graph. In this thesis, it is assumed that ca is constructed by the sum of all runnable
activity graph items (cf. Definition 3.1). By accounting for extended and feature-specific
instruction entities, hardware-dependent heterogeneous execution times are considered.
Such instructions are denoted as ca,x with x being the PU index the task, which
accommodates the corresponding runnable, is mapped to (MP

τi = x;M τ
ra = i ⇔ MP

ra = x,
cf. notations of Table 3.1). Further properties of runnables used in this thesis are ASIL
levels, activation, and tag references for the partitioning, and the label size property for
the label to memory mapping. Execution conditions and other runnable parameters are
not used in this thesis. Runnables are grouped into tasks by the partitioning process with
a specific ordering, as outlined in Chapter 4.

The following Definition 3.3 outlines the terminology of labels, i.e. notation and
semantics, which are derived from the Autosar standard, e.g. from GetResource() and
ReleaseResource() calls.

Definition 3.3: Label

Labels L = {l1, ...lq} represent data such as variables, parameters, data structures, or
similar. They are accessed by processing entities such as runnables or tasks and consist
of a size parameter lsv.

Data must be allocated to memory, which is provided in the mapping model (Section 3.1.5).
Due to various PUs having different access latency values to the varying memories and
types, the memory mapping influences task execution and response times. For example,
Intel’s Nehalem CPU architecture accesses L1-cache memory by four cycles, L2 cache with
ten cycles, whereas IBM’s power-6 architecture requires four cycles to access L1 cache as
well, but 24 cycles to access L2 cache, and in general, more than 100 cycles have been found
for modern multi-PU systems and significantly higher cycles, e.g., 240 cycles for accessing
Dynamic Random Access Memory (DRAM) in [175]. In practice, the largest observed
label sizes from industrial models (see Chapter 6) are in the range of several megabytes.
Labels are read and or written as part of runnables’ or tasks’ activity graphs. For this
thesis, label access activities are assumed to be modeled on runnable level only.

41



Chapter 3. System Model

Definition 3.4: Task

A task τi ∈ T is a tuple of {Ti,Ri, Ci, πi, Di,Li, agi, pti}, respectively a period, an
ordered aggregation of runnables referring to the same activation Ti, instructionsa, a
priority, a deadline, a set of accessed labels (memory demand), an activity graph, as
well as a preemption type along with further coherences of the Amalthea meta-model.
A task’s instructions are defined by the sum of its runnables’ instructions:

Ci =
∑
a

ca with ra ∈ Ri : M τ
ra = i (3.3)

The preemption type of a task is either preemptive, cooperative (is either preempted
immediately from higher priority preemptive tasks or at runnable boundaries from
higher priority cooperative tasks), or non-preemptive.

aA set of instructions if hardware-specific instructions are available

Since multiple tasks can exist for the same activation, a runnable to task mapping is not
distinct and rather forms flexibility in the system design process to optimize various goals
such as responsiveness, which manifests in minimizing task response times. For this thesis,
a single runnable to task mapping is assumed, such that a runnable must not be assigned
to more or less than one task. Tasks can potentially reference multiple activations, but
this thesis assumes a single activation pattern for each task. Within an activity graph agi,
a task can interact with various model entities such as runnables, channels, events, labels,
modes, semaphores, server calls, and more or consume instructions while being scheduled
on a PU through activity graph items (agi = {agii,1, ...}). This thesis’ most-used entities
are runnable calls and inter-process triggers. The former defines Ri, i.e., the runnables
called by task τi in order of the position in the activity graph agi. The latter (inter-process
triggers) are used to trigger other processes (e.g., tasks or runnables) that are mapped
to, e.g., other PUs. A task’s WCET C+

i,x for a PU Px is either assumed to be known a
priori or can be derived from its static instructions Ci (cf. Section 2.6.1), the frequency and
optionally the instructions per second of a PU. Commercial tools to retrieve WCET bounds
exist such as aiT WCET Analyzer from AbsInt GmbH [176], RapiTime by Rapita Systems
Ltd. [177], or Bound-T by Tidorum Ltd. [178], whereas research tools from academia such
as Chronos [179], TuBound [180], OTAP [181], CalcWCET167 [182], OTAWA [183], or
SWEET [184] have also found their application to real-world scenarios.

A DAG model composed of vertices and edges is not directly given in Amalthea, but the
partitioning process (cf. Chapter 4) makes use of the JgraphT library33 to construct a DAG
from tasks T and edges E derived from accesses to labels. The derivation of edges based
on label accesses is part of the partitioning Chapter 4. The DAG is then used to analyze
precedence constraints (dependencies), paths, and structures to group runnables into tasks
to minimize communication overheads, balancing load, and maximizing parallelization
potential.

Two more Amalthea software model entities should be mentioned, namely activations
and process prototypes. Both are preliminary elements for stimuli and tasks,

33JgraphT library https://jgrapht.org, visited 11.2020

42

https://jgrapht.org


Section 3.1. Amalthea

respectively. Such preliminaries are dedicated to early system design phases to keep system
complexity low and provide easily accessible items for DSEs, such as partitioning. As soon
as results of this early DSEs are ready to be used for, e.g., the task mapping process,
activation, and Process Prototype (PP) entities are migrated to stimuli and tasks by a
one-to-one transformation. After that, tasks and stimuli can be enhanced by further
information obtained by tracing, simulation, or requirements analyses such as extended
ticks, advanced offset, arrival curves, ASIL levels, and many more.

3.1.2 Hardware Model

The hardware model is designed to be close to the Shim and Autosar standards but
still provides more flexibility to consider typical automotive hardware, such as ECUs or
networks consisting of domain-related bus systems. The hardware model is required by
the memory (cf. Section 5.7) and task mapping (cf. Chapter 5) processes. When using
App4mc, entities of Figure 3.3 can be used to model hardware information.

Figure 3.3: Amalthea hardware model v0.9.8 entities excerpt [174]

The most relevant information is given in PU, frequency, and memory definitions. The
latter is defined by data rate, data size, and access latency values, which can be of various
instruction types mentioned in Definition 3.2. Latency values are used by blocking analysis,
the memory mapping process, and timing verification. The various entities of Figure 3.3
are further put into context in the meta-model class diagram of Figure 3.4, which also
provides the types of features, structures, ports, and port interfaces. The most flexibility
is given by the recursive [0...∗] relation of HwStructures, which can be of various types, as
shown in the right middle part of class diagram 3.4. Type definitions of Figure 3.4 provide
typical bus interfaces and hardware levels of the automotive domain.

43



Chapter 3. System Model

Figure 3.4: Amalthea hardware model v0.9.8 main class diagram [45]

In line with software model characteristics shown in Figure 3.2, the HWFeature class of
Figure 3.4 provides the flexibility of, e.g., scaling instructions for various PUs that reference
specific HWFeatures. This reference is not shown in Figure 3.4 and is part of the PU
definition (cf. Figure 3.3, second column) that is required for every PU instance.

Port interfaces are required to model network communication throughout an arbitrary
hierarchy of hardware modules of different structure types. HWDomains define the
frequencies of PUs in terms of the frequency domain or the voltages for the power domain.
Such values are used to derive task execution times or power consumption of hardware
under the respective domain. HwModules are contained in structures across different
structure types and define major hardware entities, which inherit from either a PU, memory,
cache, or connectionHandler (cf. Figure 3.3). In this thesis, structure entities are used
for deriving access latency values along the shortest paths from one module to another
through connections, ports, connection handler, module hierarchies, and entire networks.

44



Section 3.1. Amalthea

Definition 3.5: Processing Unit

A processing unit Px ∈ P references a frequency and power domain, of which the
former is used to derive time for instructions via its frequency value fx in Hz. It can
be included on arbitrary levels across hardware modules defined by structure types such
as systems, ECUs, micro-controller, System on Chips (SoCs), clusters, groups, arrays,
areas, or regions. PUs can further contain ports, caches, and access elements. A PU’s
capacity is defined in Eq. 3.4 and provides the number of instructions the PU can
execute in one second, with κx denoting the Instructions Per Cycle (IPC) hardware
feature.

pucx = fx · κx (3.4)

Given Definitions 3.1–3.5 and Eq. 3.1, WCETs can be calculated as shown in the following
Example 3.1.

Example 3.1: Execution Time Derivation

Given is a task τi requiring C+
i = 2780 default upper bound execution needs

(instructions) for being executed every Ti = 100ms. The execution time calculation
for τi being mapped to a processor Px, which runs at a frequency fx = 200MHz
and contains a HWFeature ‘IntructionsPerCycle‘ with value κx = 1.2, is given in
Equation 3.1.

Csi,x =
2780 · 1012

200 ∗ 106 · 1.2 · 100 · 109
= 115.83µs per second

This equation uses normalization towards one second with picosecond scaling. The
same task on another processor Py, which runs at the same frequency but features
a κy = 1.0 value, results in Csi,y = 139µs. The same result is calculated for a ticks
instruction type with the default value of 2780 that does not refer to a hardware
feature category.

Hence, the general WCET calculation, normalized towards one second indicated by
superscript s, is shown in Eq. 3.5 and execution time without normalization is given in
Eq. 3.6. With the periodicity given in pico seconds, the latter fraction

⌈
1012

Ti

⌉
gives the

amount of times the task is executed per second.

C+,s
i,x =

C+
i

fx · κx
·
⌈

1012

Ti

⌉
with Ti in picoseconds (3.5)

C+
i,x =

C+
i

fx · κx
(3.6)

An example hardware model is presented in Figure 3.5, which shows some of the Nividia
Jetson TX212 properties. Another example is later shown in Figure 5.10, which shows a
hypothetical ECU network.

45



Chapter 3. System Model

Figure 3.5: Amalthea hardware model v0.9.8 excerpt for the Nvidia Jetson TX2 board

This hardware model of Figure 3.5 is used for the WATERS challenge outlined in Section 6.2
along with the CPU-GPU timing verification methods of Section 5.6.

For every PU and memory pairing, explicit read and write delays can be modeled based on
instructions (df. Definition 3.2). This thesis assumes that these instructions are modeled
according to accessing a 64 Byte cache line cld (just as described in [30]). Therefore,
three latency derivation methods can be used that rely on (1) concrete instructions cx,d,
(2) the communication (port interface) bit with bwx,d, or (3) the communication data rate
drx,d. Given that the data rate is defined by drx,d = fx · bwx,d8 , the three above mentioned
derivations are shown in Eq. 3.7 exemplary for read access ↑x,d between PU Px and memory
md, but the same holds for write accesses ↓x,d.

↑x,d=
cx,d

fx · κx
=

cld
drx,d

=
cld · 8

fx · κx · bwx,d
(3.7)

As a consequence, the cache line access delay in instructions is defined by cx,d = cld·8
bwx,d

,
which can be validated if multiple properties (1)–(3) are given in the same model. The next
Example 3.2 shows the derivation of read access delays for either a cache line, a connection
bit width, and a data rate.

46



Section 3.1. Amalthea

Example 3.2: Read Access Delay Calculation Methods

Assuming a 2 GHz PU Px with an IPC value κx = 1 that requires 8 instructions to
read a cache line cl = 64 Byte from memory md, the read latency is:

↑x,d=
8

2 · 109 · 1 = 4 ns

If the instructions are unknown, but the connection bit width is given as bwx,d = 64,
the read latency is then (nominator is a cache line in bit):

↑x,d=
64 · 8

2 · 109 · 1 · 64
= 4 ns

Finally, given a read data rate drx,d = 16 GB/s (or bandwidth), the read latency is:

↑x,d
64

16 · 109
= 4 ns

With properties of the software and hardware Amalthea models, many time related delays
can already be calculated, but stimuli, OS overheads, constraints, and mapping models,
which are necessary for timing verification, are still required and hence outlined next.

3.1.3 Stimulation Model

The stimulation model contains activation values referenced by the tasks and runnables
of the software model. Periodic, sporadic, and inter-process activation values are in the
scope of this thesis. Definition 3.6 outlines the periodic stimulus terminology along with
the properties the Amalthea model entity provides.

Definition 3.6: Periodic Stimulus

A periodic stimulus is defined by an offset, recurrence (interval), minimal distance
value, and optional entities for jitter distribution, execution conditions, and mode value
lists. At least a recurrence value is required to derive the period Ti for a task τi.

Execution conditions and mode value lists are dedicated specifically for operation modes
and hence not used in this thesis just as the jitter distribution, which is omitted due to
its focus on simulation and probabilistic analyses. The major offset, recurrence, and jitter
properties are shown in Figure 3.6 [45].

47



Chapter 3. System Model

Offset Recurrence

Time

JitterJitter

OccurrenceOccurrence
Start

Figure 3.6: Stimulation model: periodic properties [45]

Due to priorities, memory contention, scheduling policies, or other system properties, the
arrival time (start) of a task can differ from its release time. The latter defines the
actual execution start of a task. Control-loop applications typically employ periodicity
to regularly measure sensors and control actuators based on various control engineering
loops. Deadlines in this context are required to stabilize closed-loop control as originally
published by Liu and Layland in [53]. Periodic offsets are further used along with inter-
process activation values and asynchronous GPU offloading, so that (i) the second part of a
task τi, constituted by activity graph items after the task’s GPU calculation trigger event,
is activated after the GPU finishes the offloaded calculation34, and (ii) other tasks can
execute during task τi is passively waiting for the GPU to finish the offloaded instructions.
A more detailed analysis of this situation is presented in Section 5.6.

Sporadic stimuli are defined by a minimal inter-arrival time and consequently form a
generalization of periodic stimuli based on [49] and [185]. Consequently, sporadic stimuli
can be treated as periodic ones, and hence, they are incorporated into this work’s
approaches. Periodic bursts, which have been studied in, e.g., [186], are supported in
Amalthea, but they are not considered here. This also holds for a-periodic stimuli
such as single, arrival curve [77], event, variable rate [55], or intra-sporadic [75] stimuli.
Dynamic mode-, state-, or parameter-dependent asynchronous activation patterns can also
exist in Autosar or Amalthea, and in correspondence with [187], a deadline of an
asynchronously activated task is defined by half of its period. This generalization has
been implemented as an intermediate step via migrating corresponding stimuli to entities
employing half of the original period, but since mode-dependent task response time analysis
has been already studied in [77], a more advanced mode-dependent analysis is omitted here.

3.1.4 Operating System Model

Information of the OS is required to consider scheduler properties such as the type (e.g.,
RMS) and its overheads, but also for considering resource protection approaches such
as semaphores potentially imposing blocking delays. Semaphores have a PCP flag in
Amalthea to identify tasks that can have a higher priority than their initially modeled
fixed-priority. Semaphores can be of type resource, counting, or spinlock for bounding the
number of concurrent accesses to one or more tasks, and to define whether the blocked
tasks are either suspended or has to actively poll the semaphore to get access to the shared

34The offloaded response time defines the offset value.

48



Section 3.1. Amalthea

resource, respectively. The latter causes wasted CPU resources due to busy waiting, which
is further analyzed in Section 5.8.1.

Scheduler and OSs themselves can be hierarchically ordered under Amalthea because
schedulers can have parent associations with other schedulers and due to OSs providing
a recursive [0...∗] relationship. The scheduler hierarchy permits, e.g., that a global
scheduler is associated with several partitioned schedulers, such that the latter are
occupying their executing PU, and scheduling their responsible tasks, only if the former
global scheduler grants it. An example for this situation is available at the App4mc
platform [174, Documentation>User Guide>Examples>Scheduler Examples]. Those
Scheduler Associations can further contain arbitrary parameter extensions or scheduling
parameters in the form of key-value pairs, each of which can be associated with min budget,
max budget, and replenishment values, which can each take arbitrary time parameters. The
App4mc model entity hierarchy is shown in Figure 3.7.

Figure 3.7: App4mc OS model v0.9.8 entities excerpt [45]

Amalthea provides a comprehensive set of fixed-priority, dynamic-priority (see
Section 2.1.1), Pfair [75], and reservation-based server scheduler [188]35, which go
beyond the scope here and can be found at [174, Documentation>Data Models>OS
Model>Scheduler>Scheduler Algorithm]. Schedulers can consume ticks, access labels, and
may contain scheduler specific parameters. In this thesis, however, the focus is mainly on
FPPS and RMS, which have already been outlined in Section 2.1.1. In general, a scheduler
requires an executing PU and it can have multiple responsible PUs if the scheduler employs

35Reservation-based server scheduler release a-periodic tasks whenever no periodic task is active

49



Chapter 3. System Model

a global scheduling mechanism. More details of these entities are defined by the mapping
model described in the next Section 3.1.5.

3.1.5 Mapping Model

The mapping model primarily contains the task to PU mappings as the result of the task
mapping process (cf. Section 5.2) and the label to memory mappings (cf. Section 5.7).
The basic entities to be modeled are shown in Figure 3.8.

Figure 3.8: App4mc mapping model v0.9.8 entities excerpt [45]

The following Definition 3.7 outlines the task to PU mapping terminology regarding
notation and semantic.

Definition 3.7: Task-PU Mapping

A task to PU mapping

MP
τi = x⇒ τi is allocated to Px (3.8)

is distinct such that a task must be mapped to exactly one PU. MP
τi can be represented

as (i) a task ∼ or (ii) a scheduler allocation if the latter references a task scheduler.
A task mapping is transitive with the runnable mapping, i.e. :

MP
τi = x⇔MP

ra = x ∀ ra : M τ
ra = i respectively M τi

ra = 1 or ra ∈ Ri (3.9)

Since this thesis assumes a distinct runnable to task partitioning M τ
ra , an Amalthea

Runnable Allocation, which provides MP
ra , i.e. a runnable to PU mapping, is implicit

and can be derived transitively from the task mapping. Hence, no additional (redundant)
model elements are used for MP

ra .

A Task Allocation (cf. Definition 3.7 (i)) defines MP
τi for each task and hence references

a task τi and a PU Px. It may also refer to the scheduler of the OS model and may
contain Parameter Extensions and/or Scheduling Parameter similar to the Scheduler
Associations outlined in OS model of Section 3.1.4. The same definition holds for
Interrupt Service Routine (ISR) allocations. If no affinity is modeled within the task
allocation, the mapping can be derived from the referred scheduler’s responsible PU, which
must be distinct for partitioned-FPPS.

50



Section 3.1. Amalthea

Scheduler Allocation (cf. Definition 3.7 (ii)) entities refer to (a) a scheduler of the
OS model and define (b) the PU a scheduler runs on and (c) what PUs it is responsible
for. For RMS and partitioned-FPPS, the scheduler allocation properties Executing- and
Responsible PU entities are the same: ∀ MP

τi = x ∃! a scheduler, which executes and
schedules tasks on Px. Multiple responsible PUs are only valid for global and partially-
global schedulers.

Definition 3.8: Runnable Partitioning

A runnable partitioning M τ
ra = i is distinct such that a runnable must be mapped to

exactly one task. It is implicitly given by a task’s activity graph, which contains the
corresponding runnable call.

M τi
ra = 1⇒ ra ∈ Ri ⇒ ra is called by τi (3.10)

Memory Mapping entities are used for defining the runnable, task, and label (data) to
memory allocations: Mm

ra ,M
m
τi ,M

m
lv

= d. Each memory mapping defines a distinct memory
entity of the hardware model and further defines a position address (usually in hexadecimal
notation). Memory-division (e.g., Random Access Memory (RAM) / Read Only Memory
(ROM) blocks), virtual memory- (controlling allocations in memory by linker of the data
specification), and physical-sections (actual allocation after the linker ran) are not in the
scope of this thesis, and more information can be found at [45].

3.1.6 Constraints Model

The constraints model plays a major role for this thesis due to its name-implied process
affinity to CP used in Section 5. Its entities in App4mc are partly shown in Figure 3.9.

Figure 3.9: App4mc constraints model v0.9.8 entities excerpt [45]

In the following, various constraint semantics are outlined and their notation and formalism
can be found in Appendix H.2.

51



Chapter 3. System Model

• Affinity Constraints

– Runnable / Task Pairing with PU(s) / Scheduler: A processing entity (i.e.
task or runnable) or set of processing entities must not be executed on PUs or
scheduler other than the one(s) specified as the target set. According formalism
can be found in Appendix H.2, Eq. H.4–H.5.

– Runnable / Task Separation from PUs / Scheduler: A processing entity (i.e.
task or runnable) or set of processing entities must not be executed on either
PUs or scheduler specified as the target set. According formalism can be found
at the constraints appendix H.2, Eq. H.6–H.7.

– Runnable / Task Pairing: If no target is specified in this constraint, all entities
across groups must be allocated to the same target. In this case, the number
of groups take no effect. In Eq. H.9, x denotes any PU index and indicates
that PU mappings must be the same across tasks and i denotes any task
index and indicates that runnables within this constraint must be partitioned,
i.e. grouped, into the same task. According formalism can be found at the
constraints appendix H.2, Eq. H.8–H.9.

– Runnable / Task Separation: If no target is specified in this constraint, the
groups within this constraint must be separated, i.e. each group’s entity
mapping (for tasks the mapping concerns PUs, runnables are concerned with
tasks) must differ from the other groups’ entity mappings. According formalism
can be found at the constraints appendix H.2, Eq. H.10–H.11.

– Tag Affinity (e.g. for SWCs, ASILs): Instead of PU entity groups, above
outlines affinity constraints can be related to tags, too. Since tags are often
used to specify, e.g. SWCs, such tags can be used as groups / sets, so that
no new groups need to be added and groups can be consistently used through
various processes. Notation wise, replacing τ and r with tag can be used across
equations H.5–H.11.

– Data to Memory Pairing: A label or set of labels must be allocated to the target
memory or any of the memories within the set of target memories. An example
is later on given along with Eq. 5.77.

– Data from Memory Separation: A label or set of labels must not be allocated
to the target memory or any of the memories within the set of target
memories. This constraint is further outlined along with Eq. 5.78 at the software
distribution and timing verification Chapter 5.

• Timing Constraints

– Delay: Based on TADL [115] and [189], the occurrences of two different events
(source and target) must follow a strong (one-to-one), neutral (reaction), or
weak (unique reaction) relation within a specified time window, which consists
of a lower and upper bound values. Further formalism and outline can be found
at appendix H.2.5 Eq. H.12

– Event Chain / Task Chain Latency

52



Section 3.1. Amalthea

∗ Age: The last event chain response (last event of the chain) must not finish
later than the specified deadline based on data produced by the stimulus
event (cf. Eq. 5.50)

∗ Reaction: At least one event chain response must have finished by the
specified relative deadline based on data produced by the stimulus event.
The calculations of αγg , ργg are part of Section 5.5.2.

• Runnable Sequencing Constraints: RSCs define a strict partial order of
runnables. A runnable must not start executing before all of its predecessors, i.e.
runnables contained in prior groups of the RSC, finished execution. More information
given in Section 4.2.3.

• Event Chain Constraints: Based on TADL [189], this constraint defines a
parameter for minimum completed items as well as parallel and sequence sections.
This thesis found event chain latency constraints sufficient and hence the TADL-
based event chains are omitted here.

• Data Age Constraints: The value of a label lv must not be older than the specified
time value. Or in other words: The data of lv must be updated after at least the
specified time value. More information is given in Section 5.5.1.

For any type of requirement constraints, repetition, synchronization, data coherency group,
data stability group, and physical section constraints, [45] provides further information that
is out of scope here.

3.1.7 Other Amalthea Specifics

Figures 3.2–3.9 often show the custom property entity, that can be used for arbitrary needs
as outlined in the following Definition 3.9.

Definition 3.9: Custom Property

Custom properties can be used with nearly every Amalthea model entity and allow
to specify any values, types, and parameters, which are not already included in the
meta-model.

Finally, runtime [45, Section: Developer Guide>Model Utilities>Runtime Utilities] and
deployment [45, Section: Developer Guide>Model Utilities>Deployment Utilities] utility
functions are used in this thesis whereas several further functions are implemented. Fixes
to the above utilities and new tools and components were committed to the official App4mc
repository during this research.

53



Chapter 3. System Model

3.2 Formal Notations

The following notations of Table 3.1 formally outline a subset of Amalthea model entities
used throughout this thesis. Each notation is further put into context in its respective
section, and the following table intends to be used as a consolidated reference table.

Description Notation
PUs set P = {P1, ..., Pu}
Number of PUs u
PUs index 1 ≤ x, y ≤ u
Frequency fx
Hardware Feature (e.g. IPC) κx
Memory block set M = {m1, ...mµ}
Number of memories µ
Memory index 1 ≤ d ≤ µ
Memory size msd
Bit width bwx,d in Bits
Cache line length clmd in Bytes
Data rate drx,d
Read access latency between Px and md ↑x,d
Write access latency between Px and md ↓x,d
Label set L = {l1, ..., lq}
Number of Labels q
Label index 1 ≤ v, w ≤ q
Label size lsv
Label Mapping Mm

lv
= [1, µ]; or as boolean matrix: Mm

l

Local critical section CSΘ

Global critical section CSφ

Critical section length wCS
Runnable set R = {r1, ..., rp}
Number of Runnables p
Runnable index 1 ≤ a, b ≤ p
Runnable activation Tra (in ps for execution time calculation)
Runnable instructions ca
Runnable execution time on Px ca,x
a-th runnable of task τi ri,a
Runnable’s read labels ↑ra⊂ L
Number of times label lv is read by ra ↑#ra,v
Runnable’s written labels ↓ra⊂ L
Runnable ra’s activation Tra
Number of times label lw is written by ra ↓#ra,w
Runnable’s accessed labels Lra = (↑a ∪ ↓a)
Runnable to task index mapping M τ

ra = [1, n]

Runnable to task boolean mapping M τ
r (p× n);∀a, i : M τi

ra =

{
1 if M τ

ra = i

0 otherwise
Runnable to PU index mapping MP

ra = [1, u]

Runnable to PU boolean mapping MP
r (p× u);∀a, x : MPx

ra =

{
1 if MP

ra = x

0 otherwise

54



Section 3.2. Formal Notations

Description Notation
Runnable’s number of CSΘ accesses #CSΘ

a = |Lra∩Lrb | : ∀lv ∈ Lrb∃τj with lv ∈
Lτj ;MP

ra = MP
rb

;M τ
ra 6= M τ

rb

Runnable’s number of CSφ accesses #CSφa = |Lra ∩Lrb | : ∀lv ∈ Lrb∃τj with lv ∈
Lτj ;MP

τj 6= MP
ra ;M τ

ra 6= M τ
rb

Task set T = {τ1, ..., τn}
Number of tasks n
Task index 1 ≤ i, j ≤ n
Runnables contained in task τi Ri : ∀a with ra ∈ Ri : M τ

τa = i
b-th runnable within task τi ri,b
Task τi’s accessed labels Lτi = (↑τi ∪ ↓τi)
Task instructions Ci =

∑
a ca : ra ∈ Ri

Task execution time on Px Ci,x =
∑

a ca,x
Task execution time on Px per second Csi,x
Task (periodic) activation Ti
Task priority πi
Task Deadline Di

Tasks on Px Tx ⊂ T ; ∀x, y with x 6= y : Tx ∩ Ty = ∅
Task to PU index mapping MP

τi = [1, u]

Task to PU boolean mapping MP
τ (n× u);∀i, x : MPx

τi =

{
1 if MP

τi = x

0 otherwise
Task’s read labels ↑i= ∪

b

(
↑rb : M τ

rb
= i
)

Task’s written labels of τi ↓i= ∪
b

(
↓rb : M τ

rb
= i
)

Task instance (job) z
Task instance arrival (absolute) 5i,z

Task instance release (absolute) Ni,z
Task instance response (absolute) Hi,z
Task response time (dep. on mapping) Ri
Task response time for spec. job Ri,z = Hi,z −5i,z

Global blocking of task τi Bs
i

Local blocking of task τi Bpi
i

Task / event chain set Γ = {γ1, ..., γk}
Number of task chains k
Task chain index 1 ≤ g, h ≤ k
j-th task within γg τg,j
Implicit communication ι
LET communication λ
Explicit communication ε
Age latency α36

Reaction latency ρ

Weighted edge set E = {e1, ...}
Edge index ϕ
Edge eϕ = {esϕ, etϕ, ecϕ} with
Edge source esϕ = [1, p] : (↓τesϕ ∩ ↑

τ
etϕ

) 6= ∅

36E.g. the worst case task chain age latency for implicit communication is denoted as α+
g,ι; age latency

can also be applied to labels denoted as αlv

55



Chapter 3. System Model

Description Notation
Edge target etϕ = [1, p] : (↓τesϕ ∩ ↑

τ
etϕ

) 6= ∅
Edge communication cost ecϕ
Utilization U
Jitter J
Window w
Network message index ν
Constraint Φ

Speedup S
Parallelism ξ
Slackness ζ
Span ς
Solution S

Applicable to ca, Ci, Ri, α, ρ,B, ↑x,d, ↓x,d, ew:
Worst-Case + e.g. c+

a

Best-Case − e.g. c−a

Table 3.1: Formal Amalthea-based system model notation

Indexes x, y, v, w, a, b, i, j, g, h, d are ∈ N, i.e. positive natural numbers. Some indexes,
e.g. i, j, k, x, y, are not distinct throughout this entire thesis, due to their additional use
along with, e.g. paths, edges, cycles, RSCs, Semaphores, and TDRR conflict intervals,
or more. This is due to some notations and definitions just section-wise require indexes,
which are not further incorporated at other sections. Hence, no separate and distinct index
notation is required and reusing existing indexes at limited extent eases readability due to
not introducing a vast amount of indexes.

A runnable, task, or label mapping is either of integer or boolean nature denoted as M τ
ra

and M τi
ra for runnables and MP

τi and MPx
τi for tasks, respectively. This mapping notation

serves readability and comprehension ease and follows the distinct transitivity shown in
Eq. 3.11.

M τ
ra = i⇔

(
M τi
ra = 1 ∧ ∀j = [1, n]; j 6= i : M

τj
ra = 0

)
MP
ra = x⇔

(
MPx
ra = 1 ∧ ∀y = [1, u]; y 6= x : M

Py
ra = 0

)
MP
τi = x⇔

(
MPx
τi = 1 ∧ ∀y = [1, u]; y 6= x : M

Py
τi = 0

) (3.11)

An edge eϕ of a precedence graph denotes a partial order between two runnables, such that
esϕ ≺ etϕ and is represented by an Amalthea RSC with two groups, containing esϕ in the
first group and etϕ in the second group. In general, RSCs can be constituted by multiple
groups, each containing multiple runnables. The RSCs generated during the partitioning
process (cf. Chapter 4) contain only two groups, each of which containing exactly one
distinct runnable. Notation wise, R≺i,rb is a set of runnables preceding rb within τi so that
for every runnable within this set, there exists a forward path containing rb as target, i.e.
∀ra ∈ R≺i,rb∃e

s
ϕ = ra; e

t
ϕ′ = rb; eϕ, eϕ′ ∈ pathk.

The system model notation of Table 3.1 is intended to provide a clear scope but yet
flexibility in modeling specific industrial needs. A more comprehensive description of model
entities is online available [45] and goes beyond the scope of this thesis.

56



4
Software Partitioning

This chapter is based on publications [4] and [20], of which concepts of the latter are
further provided in Section 4.3.2. As stated in Section 2.5, software partitioning is crucial
for optimizing timing properties and investigating different task mapping scenarios on
a multi-PU system. However, basic heuristics such as bin-packing algorithms do not
consider various constraints regarding timing, reliability, safety, affinity, and others that
are mandatory in the automotive industry. Finding an optimal partitioning of runnables to
tasks (cf. Definition 3.8) for the purpose of concurrently executing tasks on different PUs is
an NP-complete problem [190]. Hence, the following Sections outline custom partitioning
heuristics to form tasks from runnables while considering different constraints and targeting
goals such as load balancing, reducing inter-task dependencies, or maximizing speedup.

The two graph-based partitioning heuristics Critical Path Partitioning (CPP) and Earliest
Start Schedule Partitioning (ESSP) were implemented by the author of this thesis from
scratch using the Amalthea model, the Eclipse App4mc platform, and the JgraphT
library33, and the CP-based bin-packing and Constraint-Programming-based Partitioning
via Cumulative Constraints (CP-PC) approaches were implemented using Amalthea and
the choco library37. The former two are publicly available as part of the open-source Eclipse
App4mc platform. The latter CP-based partitioning approaches are part of App4mc
in rudimental form38, but consolidated implementation is planned to be contributed to
App4mc soon, too. No direct contributions to either the Amalthea model or to one of
the used libraries were necessary.

4.1 Related Work on Software Partitioning

Over the years, several strategies for partitioning and mapping in the context of embedded
software have been developed. A recent thesis by Kienberger [90] assesses partitioning
approaches along with Amalthea and this work, namely CPP and ESSP and shows that
they benefit over, e.g., hierarchical task graphs or RunPar [191] by supporting verification,
data validation, mapping, tool support, and scalability. In essence, the PCAM approach,
denoted as "Split, then analyze" is used along with (a) partitioning that bundles strongly
connected runnables based on predefined sizes and (b) bin-packing-based mapping that

37http://www.choco-solver.org, visited 11.2020
38Rudimentary unit tests for the Democar Model exist in App4mc

57

http://www.choco-solver.org


Chapter 4. Software Partitioning

considers timing constraints, dependency conflicts, and constraint violation. Even though
no specific algorithmic details or implemented approaches are given in [90], it is shown
that corresponding tools form mandatory components within the development process of
industrial multi-PU systems in Autosar and the fitness of results can potentially be
improved in terms of partitioning and mapping.

Multi-Level Partitioning (MLP), which is based on [192, 193], can be used to avoid tasks
that contain a long runnable sequence, i.e., runnables that depend on results produced by
direct predecessors such that a long path constituted by a sequence of RSCs exists. MLP
has been omitted here in order to decompose (cf. Section 4.2.4) as few edges as possible
and due to partitioning results not creating too long runnable sequences in the observed
case studies (cf. Section 6). Furthermore, in [90], the model and task splitting is argued
to be an appropriate solution for avoiding unnecessary high search efforts. However, this
thesis’s approaches show that many challenges can still be approached without model or
task splitting. Nonetheless, the model and task splitting concepts can be used and applied
with concepts presented in this work to reduce DSE resolution time.

Lowinski et al. [92, 93] use HLEFT list scheduling extended by three greedy heuristics
to either maximize speedup, called earliest execution, reduce cross partition precedence
constraints, called maximal parents, or increase the gradient, i.e., slackness towards
a synchronization point, of created partitions. Precedence constraints are ensured by
synchronization points, to which runnables may have to wait in case a synchronization
point has no gradient. These approaches are very close to CPP and ESSP presented in this
work, and follow similar ideas. The ESSP heuristic is a combination of earliest possible
execution and min distance heuristics, and partitioning also uses metrics like speedup,
inter-task communications, and slackness as evaluation criteria. However, the significant
difference between [93] and this work is the reverse engineering concept, i.e., splitting
existing tasks, compared with forming tasks from scratch presented here.

Comparable heuristics used to evaluate partitioning and also task mapping algorithms can
be FF, BF, or WF heuristics based on Baruah and Fischer [194]. These have also been
used by, e.g., von der Brüggen [29] in a similar context. Given that these heuristics provide
simple Greedy distribution mechanisms, their resolution time is significantly low, but on
the contrary, data progression in the form of RSCs is not considered, and hence these
heuristics are out of focus here.

The work by Saidi et al. in [195] is another approach close to the partitioning ideas
presented in this thesis. The work uses an ILP approach to minimize (a) cut-costs (sum
of inter-PU communications) of a weighted runnable DAG and (b) deviation from optimal
load balancing (

∑
a ca
u , with u being the number of PUs and ca denoting the ticks of a

runnable) for the purpose of forming one partition (sub-graphs) for each PU. However,
the approach does not consider heterogeneous platforms or cycles that typically occur in
runnable or task graphs. Graph cuts are arbitrary in [195], whereas partitioning in this
thesis considers parallel regions via investigating fork and join scenarios.

In [196], partitioning is achieved by creating one or a few dispatcher tasks that contain
runnables of different periods, offsets, and execution orders. Relative deadlines guarantee
the timeliness, and the approach tends to form a static bare metal runnable scheduling.
However, using a dispatcher task for runnables of different periods is not in line with
the Autosar standard, which intends OS scheduler to do so. Also, the approach

58



Section 4.1. Related Work on Software Partitioning

neither considers precedence nor shared resource constraints and indeed imposes several
disadvantages when being applied to multi-processor architectures due to the effects of
inter-PU communication.

In [95], the used model is close to Amalthea-based concepts used here, since it considers
(a) execution time for various processors and (b) data access times across different
memories. SA, GA, and Tabu-search are used to investigate the design space of distributing
runnables across PUs. The optimization goal is comparable to the mapping of Section 5 and
minimizes load subject to (i) execution time on a PU, (ii) periodicity, and (iii) data access
times as well as (iv) PU-load and (v) memory-load constraints. Though, schedulability,
resource conflicts, and advanced timing verification for, e.g., task chains, are not considered.

In [197], runnable partitioning and task mapping are addressed, including the avoidance
of cyclic dependencies. Runnable synthesis is based on synchronous models (e.g., derived
from Simulink) using modularity (number of runnables), reusability (avoid feedback loops),
and schedulability (minimize the number of periods) metrics via MILP. Secondly, a greedy
heuristic is used for allocating runnables to tasks and PUs so that a runnable is either
added to a task running with the same period on the same PU or to a newly generated
task. This phase considers RSCs, memory penalties for order relaxation, as well as offset-
based schedulability. Alternatively, SA is also used for the above process in [197]. It is
shown that SA has significantly higher resolutions time, generates better solutions in only
two of nine cases, and results in even no solution two other cases. The mapping approach
is similar to the greedy Data Flow Graph (DFG) approach, which is outperformed by
meta-heuristics, especially for larger models in this work (cf. Section 7). The runnable
synthesis seems valuable but is out of scope in this thesis due to the assumption that
runnables are already given. In general, a comparison of the two-phase approach used
here with the one phase methodology, i.e., from runnables to PUs and tasks in a single
greedy algorithm presented in [197], could be addressed in future work but is omitted here
because greedy approaches show worse results compared with meta-heuristics in observed
case study models of Section 6.

Bin-packing, which is used along with the CP approach in this chapter using the choco
library39, is combined with a least-loaded algorithm by Monot et al. in [198]. However, no
precedence constraints are considered, and sorting runnables by decreasing CPU utilization
should only be applied to independent runnables.

Furthermore, various scheduling publications like [199, 200] or hardware and software co-
synthesis articles using GAs like [201] also address challenges close to the partitioning
problem of this thesis. However, approaches presented here neither require a unique exit
vertex nor entity duplication.

Finally, no research was found that considers all of the following properties,
namely (1) considering precedence constraints while optimizing speedup and inter-
task dependencies, (2) decomposing cycles into a runnable DAG, (3) using cumulative
constraints for solving the partitioning problem, (4) using open-source models compliant
to Autosar, and (5) comparing results from greedy partitioning heuristics with those
from meta-heuristics. The presented CP-PC approach leaves the greedy heuristic domain
that includes ESSP or approaches of [90, 93] so that optimal results can be found given

39Thus, bin-packing is dominated by cumulative constraints via ensuing that all RSCs are kept with CP-
PC

59



Chapter 4. Software Partitioning

a corresponding configuration of the CP solver. Along with the presented CP-PC, CPP,
and ESSP approaches, all above mentioned properties (1)–(5) can be met.

4.2 DAG-based Runnable to Task Partitioning

Partitioning Amalthea models is divided into four parts, as shown in Figure 4.1.

(a) Activation 
Aggregation

(b) Communication 
Analysis

(d) Partitioning

(a) (b) (d)

r12

r7

r10

r9

r11

r2

r4

r1

r13

r8r14

r3 r6r5

(c) Cycle Decomposition 
(Relaxation)

r1 r2

r4 r12 r13

r3 r5 r6

r9 r10 r11

r14 r7 r8

r2 r3

r5 r6 r7

r11
r10r9

r13r12

r4

r1

r8

r14

Runnable set ℛ of
different activations 

(background fill)

𝜏!

𝜏"

𝜏#

𝜏$

𝜏%

r2r1

r12r4 r13

r9r3 r6r5

r10 r11

r7 r8r14

Task set 𝒯

Figure 4.1: Partitioning phases: activation and label access analysis → cycle
decomposition → graph partitioning

The first part (a) is the aggregation of runnables that reference the same activation,
which is most often defined by a periodic stimulus. Then, communication is analyzed
in (b), to construct a directed graph, which is decomposed into a DAG by the third
process (c). In general, DAGs used along with Amalthea are weighted, i.e., Weighted
Directed Acyclic Graphs (WDAGs), since runnables that represent vertices are weighted
according to the ticks they require for execution, just as edges, which are defined by RSCs
and the corresponding labels written and read by the edge’s source and target entities.
Finally, the DAG is analyzed based on greedy heuristics CPP and ESSP to form tasks that
can be mapped to PUs in (d). Alternatively to greedy DAG-based partitioning approaches,
the CP-PC meta-heuristic (cf. Section 4.3) uses cumulative constraints derived from RSCs
together with affinity and separation constraints as well as a task number rather than the
complete DAG structure as input data. Each phase (a)–(d) is outlined in more detail in
the following.

4.2.1 Activation Aggregation

Before analyzing the runnable communications, the initial phase addresses aggregating
runnables referencing the same activation, such that any group only contains runnables
of the same activation. Mixing multiple activations within a task or partition has been
investigated in, e.g., [196], but is out of scope here due to not being supported by Autosar.
Aggregations are modeled within PPs that reference a specific activation and define pre-
task states for analysis purposes. PPs are thus temporary and transformed into tasks at
the end of the partitioning process.

The definition of Eq. 4.1 is in line with the pairing affinity constraint Φr,pair of Eq. H.9
such that runnables referring different activation values are not permitted to be located in

60



Section 4.2. DAG-based Runnable to Task Partitioning

the same PP.

PP = {pp1, ...} with ∀ra, rb ∈ Rppj , a 6= b : Tra = Trb (4.1)

Programmatically, this phase creates runnable sets for every activation and assigns
runnables accordingly.

4.2.2 Pairing and Separation Constraints

Affinity respectively pairing and separation constraints are denoted with Φ and have a
single source entity set, e.g. runnables, combined with a set of entities to be paired with
or separated from, which can by of type runnable, task, PU, SWC, ASIL, tag or similar.
In terms of Amalthea, SWCs, ASILs, and tags are represented as tag groups contrarily
to PUs, which have a dedicated model entity within affinity constraints. The runnables
of an affinity constraint are derived via notation R(Φ) and the target set, e.g. PUs via
P(Φ). The pairing constraint approach shown in Eq. 4.2 forces every runnable within a
pairing constraint to be partitioned to the same PP. It uses the runnable to task mapping
notation M τ

ra = i, which means that runnable ra is partitioned to task τi, i.e. ppi.

∀ra, rb ∈ R(Φr,pair); a 6= b : M τ
ra = M τ

rb
(4.2)

Alternatively, Eq. 4.2 can be replaced with Eq. 4.3 so that all runnables of a PP reference
the same ASIL (or SWC, or tag) or none. In other words, runnables contained in a PP are
allowed to refer to at most one ASIL (or SWC or tag).

∀ra ∈ Rppj : ASIL(ra) = ASIL(Φr,pair
x ) ∨ ra 6∈

⋃
y

(
ASIL(Φr,pair

y )
)

(4.3)

The latter allows more flexibility since the runnable set of the pairing constraint is allowed
to be allocated to multiple PPs, which is not the case for Eq. 4.2. Eq. 4.3 instead limits
the amount of ASIL references per PP to 1 whereas Eq. 4.2 allows multiple ASILs per PP.
Since flexibility is of major interest during the parititoning, Eq. 4.3 is chosen for the CP-PC
approach. Eq. 4.2 and Eq. 4.3 also apply for constraints, that neither refer a tag group
not any target entity set. If a pairing constraint contains a target PU set, the partitioning
process applies Eq. 4.3 so that corresponding runnables are simply combined in the same
PP and the task mapping process later on has to consider the specific PUs (transitivity of
Def. 3.7 imposes that Eq. H.5 includes Eq. H.4).

Separation constraints are covered in Eq. 4.4 exemplary shown for ASILs and they are
further extended in the appendix at Eq. H.6 and Eq. H.10.

∀j : if
(
Rppj ∩R(Φr|sep

x )
)
6= ∅ then ∀ra ∈ Rppj : ASIL(ra) 6= ASIL(Φr|sep

x ) (4.4)

Eq. 4.4 ensures that for any PP that contains a runnable of the separation constraint, all
the corresponding PP’s runnables do not reference the entity specified in the separation
constraints, exemplary shown for an ASIL in Eq. 4.4. Furthermore, if neither a tag group
nor a target set is given in a runnable separation constraint, the runnable set is assumed

61



Chapter 4. Software Partitioning

to be separated from all other separation constraints, which is defined in Eq. 4.5.

∀ra ∈ Rppj : ra ∈
(
R \

⋃
y

(
R(Φr|sep

y )
)
∪R(Φr|sep

x )

)
(4.5)

Figure 4.2 additionally supports Eq. 4.5 by visualizing the runnable sets across all
runnables, the union of separation constraint runnables and runnables contained in a single
separation constraint.

𝑅 "𝑅 Φ!
"|$%&

!

𝑅 Φ'
"|$%&

Figure 4.2: Set illustration for retrieving runnables for a PP according to a separation
constraint

4.2.3 Dependency Analysis

After the activation-based aggregation and ensuring that pairing and separation constraints
are covered, each PP is analyzed for precedence constraints derived from label accesses.
Given a set of runnables R (cf. Definition 3.1) as the input, a dependency graph (Weighted
Directed Graph (WDG)= {R, E}) is formed. Graph vertices are represented by runnables
and their required ticks for execution define their weights. If runnable A writes a label
and another runnable B reads the same label, an Amalthea RSC within the constraints
model is created. This RSC then contains A as source runnable and B as target runnable.
In other words, dependencies are automatically derived from label accesses and stored
within the constraints model representing directed edges. The corresponding constraint
is defined in Eq. 4.8. A graph’s edges E correspond these RSCs so that every edge has
a source and a target entity and hence is directed. Notation wise, an edge’s source and
target runnables are addressed via es and et, respectively. As a consequence, an edge’s
runnable pair es, et hold the condition ↓es ∩ ↑et 6= ∅, i.e. at least one written label of es is
read by et. Additionally, an edge defines a weight ec that is calculated via Eq. 4.6. The
edge weight defines the communication cost between its source and target runnables. It
is based on (a) the accessed labels’ size lsv and (b) the read / write latency ↑x,d / ↓x,d
between the PU Px that executes the runnable and the memory md the label is mapped
to. The read / write latency (b) computation is based on md’s cache line length clx and
either the bit width bwx,d or the data rate drx,d, which may differ among different PUs,
memories, and especially ECUs (more info see Example 3.2). If no access latency model
entity is modeled for ↑x,d or ↓x,d, 9 cycles are assumed for accessing global memory or
local memory of different PUs, and 1 cycle is assumed for local Px memory as proposed
in [187]. By replacing 9 with 9 + n− 1, maximal FIFO arbitration at the crossbar can be
considered as described in [32]. Memory access costs ecϕ calculation is based on the implicit
communication paradigm, i.e., labels are read at the beginning of a task’s execution and

62



Section 4.2. DAG-based Runnable to Task Partitioning

written at its end (more details are given in Section 5.5.1).

ecϕ =
∑

v:lv∈↓esϕ

(
1012

Tesϕ
· ↓#esϕ,v · ↓xv ,d ·

⌈
lsv
clxv

⌉)
+

∑
w:lw∈↑etϕ

(
1012

T
etϕ

· ↑#etϕ,w · ↑xw,d′ ·
⌈
lsw
clxw

⌉)
with Mm

lv
= d;MP

τi = xv;M
m
w = d′;MP

τj = xw

(4.6)

As of Table 3.1, ↓#ra,v denotes the number of times runnable ra writes label lv. Eq. 4.6
directly applies to explicit communication, but for implicit and LET communication, the
term ↓#esϕ,v · ↓xv ,d must be replaced with ↓#esϕ,v · ↓xv ,dl + ↓xv ,d, whereas dl denotes the local
memory or cache of the entity executing esφ, to which the access latency is usually the lowest.
The same holds for the second part of Eq. 4.6 that represents delays of written labels. In
fact, based on [30], using Local Random Access Memory (LRAM) dl is also mandatory,
if source and target entities are mapped to the same PU, i.e. if MP

esϕ
= Metϕ

= Px ⇒ md

is local memory of PU Px. More detail about the communication paradigms is given in
Section 5.5. If either task to PU mapping or label to memory mapping is not available,
↓xv ,d respectively ↑xw,d′ are assumed to be 1. To sum up, every edge is represented by
eϕ = {esϕ, etϕ, ecϕ} ∈ E with esϕ, etϕ ∈ R.

To maximize responsiveness and minimize data propagation delays, an edge’s source
must have finished its execution before the target starts executing within a PP so that
∀eϕ ∈ Eppj : Hesϕ ≤ Netϕ , i.e., the absolute finish time of the source runnable must be
smaller than the absolute arrival time of the target runnable. Then, the result of the
second partitioning phase are PPs that consider RSCs as shown in Eq. 4.7

ppj ={Rppj , Eppj} with Rppj ⊆ R; Eppj ⊆ E ;∀ra, rb ∈ Rppj : Tra = Trb
∀eϕ ∈ Eppj : esϕ(ppj) < etϕ(ppj)

(4.7)

Here, es(ppj) denotes the position respectively index of runnable rs in ppj . However, since
RSCs may not inherently be derived from label accesses and to comply with the constraint
notation used throughout this document, the notation Φ≺ϕ = {rs, rt} is used for all RSCs.
Consecutively, Eq. 4.7 applies just equally to all RSCs Φ≺ϕ as shown in Eq. 4.8.

∀x with Φ≺x = {rsx, rtx} : rsx(ppj) < rtx(ppj) iff M τ
rsx

= M τ
rtx

= j (4.8)

Amalthea actually provides several groups within a RSC, which yields in Eq. 4.9, given
that ra,x(Φ≺) denotes the runnable ra of the x-th RSC group. However, this advanced
RSC implementation has been omitted for analyses ease and RSCs are generated with two
groups only in this work.

∀a with ra,x(Φ≺);∀b with rb,y(Φ≺); y > x : ra(ppj) < rb(ppj) iff M τ
ra = M τ

rb
= j (4.9)

The following Example 4.1 gives a quick idea of a possible RSC structure and corresponding
viable runnable sequences within a PP.

63



Chapter 4. Software Partitioning

Example 4.1: RSC

Given the following example RSC Φ≺x = {{r2, r6, r5}, {r4, r9}, {r1}}, valid PP
permutations are e.g. Rppj = {r6, r5, r2, r9, r4, r1} or Rppj = {r2, r6, r5, r4, r9, r1}
since ∀a ∈ [2, 5, 6], b ∈ [4, 9], c = 1 : ra(Rppj ) < rb(Rppj ) < rc(Rppj ).

As the next step, the following Section 4.2.4 outlines the approach for transforming the
recently obtained graphs into runnable DAGs.

4.2.4 Cycle Decomposition

The runnable graph derived from label accesses must be a-cyclic to assess a runnable’s
topology within the graph and preceding or succeeding paths such that partitions can be
formed that potentially run concurrently across PUs without violating RSCs. Therefore,
the JgraphT library33 is used for finding cycles based on cycle algorithms presented
in [202, 203] due to being java-based and compliant to Eclipse IP policy. Detected
cycles are decomposed, i.e., particular edges are relaxed. Relaxation has been studied
in [91] and requires careful timing analysis regarding, e.g., event or task chain latency
constraints. However, since manual cycle decomposition, in general, is error-prone and
inefficient, a cycle decomposition heuristic is outlined in the following to propose an edge
relaxation across a set of cycles for the goal of (i) minimizing the total number of edges
being decomposed and (ii) forming a graph that results in a minimal schedule length,
respectively topology, given equal runnable weights. The following outlines this relaxation
heuristic, which is based on finding the Minimal Feedback Arc Set (MFAS) to relax as few
dependencies as possible. Therefore, several assumptions need to be made, and notations
and definitions must be outlined. Due to these outlines mostly stem from graph theory
and impede the focus here on cycle decomposition, corresponding formalism is shifted to
the appendix at H.3, which targets the definition of a path, constituted by edges, a path
set, cycles, and a cycle set. The Cycles cardinality is the highest number of edges that
need to be relaxed to obtain a DAG. However, since some edges may be part of more than
one cycle, corresponding edges are ordered firstly by the number of cycles they are involved
with and secondly by their weight ec. The goal is to find the minimal amount of edges for
forming a DAG, which is known as the MFAS problem [204] and is NP-hard [28]40. The
MFAS set definition is given in Eq. 4.10 and imposes Eq. 4.11, which means that a PP
without edges contained in the MFASppj set results in a cycle free graph, i.e. DAG.

MFASppj = {eϕ, ...} with ∀ϕ : eϕ ∈ cycle (4.10)
Eppj \MFASppj ⇒ Cyclesppj = ∅; (4.11)

The objective can be formalized as minimize |MFASppj | s.t. Eq. 4.10 and Eq. 4.11.

Algorithm 1 presents the Amalthea-based MFAS calculation heuristic that specifically
concerns a PP so that cycles and paths involve only parameters of the PP and not the
entire system model. Consequently, Algorithm 1 is applied separately to every PP. It is
constituted by two parts, which (i) sort edges by the number of cycles they are involved

40For the MFAS terminology, a feedback matches a cycle and an edge, respectively RSC, matches an
arc.

64



Section 4.2. DAG-based Runnable to Task Partitioning

with as well as increasing edge weight within a potential edge decomposition list and (ii)
iteratively take edges from the latter list, put them into a MFAS list and update the
former list until no cycles are left, respectively. When the algorithm finishes, all edges
contained in the MFAS list are decomposed from RSCs into access precedence entities,
which indicate follow up processes like timing verification that runnables involved with
access precedences are allowed to work with data (labels) produced by runnables of
prior instances, respectively periods.

The pem map of Algorithm 1 is used for keeping the edge prioritization order according to
the optimization goals considered in lines 7–9, and 18. It is necessary to update this map
for every relaxation iteration since each edge removal results in a new Cy# value for all
map entries that involve the removed edge within one of their cycles. The algorithm stops
when all cycles are removed and line 14 returns true.

Algorithm 4.1: Amalthea-based MFAS Algorithm
Data: ppj = {Rppj , Eppj }, Cycles
Result: MFASppj : Eppj \MFASppj ⇒ Cyclesppj = ∅

1 let pem denote an ordered edge map map(eϕ, {#Cy(ϕ), ecϕ,mpl(ϕ)}) (initially empty)
2 foreach edge eϕ ∈ Eppj do
3 let #Cy(ϕ) be the number of cycles eϕ is involved with
4 if (#Cy(ϕ) == 0) then continue (next foreach loop iteration)
5 let ecϕ be the edges weight according to Eq. 4.6

6 let mpl(ϕ) initially be the sum of edge and vertex weights mpl(ϕ) =
∑a=|Rppj

|
a=1 ca +

∑b=|Eppj |
b=1 ecb

7 put eϕ to pem (with #Cy(ϕ), ecϕ, and mpl(ϕ) values) at position k so that ∀i ∈ [1, k − 1] :

8 #Cy(i) ≥ #Cy(ϕ)
9 if (#Cy(i) == #Cy(ϕ)) then eci ≤ ecϕ

10 end
11 while |Cycles| 6= ∅ do
12 let eϕ be the first entry in the priority edge map eϕ = pem.getkeys.get(0)
13 let CCϕ be the superset of edges across all cycles that involve eϕ CCϕ =

⋃
j cyclej : eϕ ∈ cyclej

14 if removing eϕ results in a path (etϕ ∧ esϕ) /∈ Cycles(Eppj \ eϕ) then
15 foreach eϕc ∈ CCϕ do
16 set mpl(ϕc) to the maximal path length including esϕ ∧ etϕ and excluding eϕ
17 reorder eϕc ∈ pem to index k, so that ∀i ∈ [1, k − 1] :
18 if

(
#Cy(i) == #Cy(ϕ) ∧ eci == ecϕ

)
then mpl(i) ≤ mpl(ϕc)

19 end
20 end
21 add eϕ to MFASppj and add a new eϕ-correspondent access precedence
22 remove eϕ from Eppj and pem and all cycles containing eϕ from Cycles

23 decrease #Cy(ϕ) in pem for every edge e(CCϕ)

24 end

To retrieve the MFAS, the super set of edges across all cycles (cf. lines 2–4) is ordered by
(a) the descending amount of cycles the edges are involved with (cf. Algorithm 1 line 8),
(b) ascending weight (cf. Algorithm 1 line 9), and (c) ascending maximal path length (or
topology if there are equal runnable weights, its calculation is shown in Eq. 4.12) of the
resulting graph(s) (cf. Algorithm 1 line 18). While (a) and (c) correspond to the previously
outlined optimization goals, (b) is used to account for edge weights in a way that lower
communication cost (edge weight) is preferred over higher costs in case multiple edges
exist for the same amount of cycles they are involved with. Line 6 in Algorithm 1 ensures
that any edge, which does not result in a DAG when being removed (cf. Algorithm 1
line 14), receives a low priority (high value), i.e. the sum of all vertex and edge weights,
to prefer edges for relaxation that receive a lower mpl(ϕ) value according to the resulting
path length when being relaxed (cf. Algorithm 1 line 16), which corresponds to goal (c).

65



Chapter 4. Software Partitioning

Finally, lines 11–22 in Algorithm 1 process the transformation towards effective DAGs such
that (a) the transformed edge set is minimal, (b) relaxed (cut) edges involve comparably
low communication efforts, and (c) DAGs have a comparably low critical path length. In
terms of Amalthea, edges, represented by RSCs, are transformed to AccessPrecedence
entities. AccessPrecedences represent indirect dependencies and allow runnables to work
with data of produced by predecessor entities of previous iterations. This process is often
utilized in later engineering phases e.g. code generation, which then consider increased data
age constraints for data related to the AccessPrecedence. Lines 23 and 22 are necessary
to adjust the priority structure pem due to an edge removal affecting #Cy property and
reduces the number of cycles (cf. line 21). The following hypothetical example provides
further insights into the algorithm’s functionality.

Example 4.2: Cycle Decomposition

Given is directed graph consisting of 5 runnables r1–r5, 8 edges, e1–e8, and 4 cycles
cycle1–cycle4 as shown in Figure 4.3 (a).

(b)

r1

r5

r4

r2

r3

e1

e2e3

e5

e4

e6

e7

e8

(c)

r1r5

r4 r2

r3

e1

e2

e3

e5

e4

e6

e7

e8
r1r5

r4

r2

r3

e1

e2

e3

e5

e4

e6

e7

e8

(d)(a)

r1

r5

r4

r2

r3

e1

e2

e3
e5 e4

e6

e7

e8

cycle1

cycle3

cycle2

cycle4

Figure 4.3: Graph cycle relaxation example: (a) runnable input graph with four
cycles and (b)-(d) relaxed graphs decomposing (b) e5, e3, (c) e5, e2, and (d) e5, e1

Formally, the following sets are defined: R = {r1, r2, r3, r4, r5}; E =
{e1, e2, e3, e4, e5, e6, e7, e8}; e1 = {r1, r2, 1}; e2 = {r2, r3, 1}; e3 = {r3, r1, 1}; e4 =
{r3, r4, 1}; e5 = {r4, r3, 1}; e6 = {r5, r6, 1}; e7 = {r3, r5, 1}; e8 = {r1, r4, 1} with equal
edge and vertex weights shown in Figure 4.3 (a).

Based on Eq. H.15, the following cycles are derived: cycle1 = {e1, e2, e3}; cycle2 =
{e4, e5}; cycle3 = {e5, e6, e7}; cycle4 = {e3, e5, e8}. This set leads to the MFAS
MFAS = {e5, e2}, since initially e5 ∈ {cycle2, cycle3, cycle4}; e3 ∈ {cycle1, cycle4}
and {e1, e2, e4, e6, e7, e8} are each in exactly one cycle. As a consequence, e5 is chosen
first due to solving three cycles. With this relaxation, only a single cycle remains and
e3 is now involved in as many cycles as e1 and e2 such that #Cy is not the decisive
selection parameter anymore Cycles = {cycle1 = {e1, e2, e3}}. Since this example
assumes equal communication costs, mpl forms the primary selection influence. This

66



Section 4.2. DAG-based Runnable to Task Partitioning

is important since the final resulting DAG highly depends on the final relaxation
decision, as relaxing e3 results in a single path (sequence, topology 5, cf. Figure 4.3
(b)) whereas relaxing e2 results in a DAG of topology 3 (cf. Figure 4.3 (c)), i.e. two
runnables exist for the second and third topological levels.

The pem structure states are as follows with the index denoting the relaxation
iteration:

• pem1 = { (e5, {3, 1, 13}) , (e3, {2, 1, 13}), ...)}

• pem2 = { (e2, {1, 1, 3}) , (e1, {1, 1, 4}), (e3, {1, 1, 5})}

And since the first entries in pem, highlighted with gray background here, are chosen
for relaxation (cf. Algorithm 1 line 12), the MFAS result of the above example is
MFAS = {e5, e2}.

In general, relaxation may result in cutting a graph into independent graphs. Therefore,
the mplE metric (cf. Eq. 4.12) concerns an arbitrary edge set instead of a DAG only. Such
set can be derived from a PP for instance, which can contain multiple independent graphs.

mplE = max
i∈[1,|PathsE |]

j=|pathi|∑
j=1

(
ces(i,j) + ec(i, j)

)
+ cet(i,|pathi|)

 (4.12)

The notation ces(i,j) represents the runnable instructions of j-th edge source within the
i-th path. The CPP partitioning also makes use of Eq. 4.12 as outlined in Section 4.2.6. A
maximal path length mpl defines the longest sequential path from an entry vertex, which
has no incoming edge, to an exit vertex, which has no outgoing edge. Minimizing mpl is
useful for the partitioning to form partitions that can be executed concurrently, i.e. the
resulting graph provides a wider structure (more runnables per topological level) rather
than fewer and longer sequences of runnables.

Summing up, activation rates (periods Ta, Eq. 4.1), communication costs (edge weights
ec), instructions (runnable weights ca), affinity constraints (4.2–4.4), and precedence
constraints (based on edges E , cf. Eq. 4.8) are now considered. Any further affinity
constraints such as runnable separations are aligned with Eq. 4.1 such that separate PPs
are created in case runnable separation constraints exist for runnables referring the same
activation: ∀ ra ∈ Φ

r|sep
x , rb ∈ Φ

r|sep
y : j 6= k with ra ∈ Rppj ; rb ∈ Rppk whereas Φ

r|sep
x

denotes the set of runnables within the x-th group of the separation constraint and Φ
r|sep
y

y-th correspondingly. Pairing runnables referring to different activations contradicts the
condition of Eq. 4.1, and hence corresponding constraints are ignored.

4.2.5 Independent Graph Aggregation

Finally, to further exploit graph structures, separating independent graphs into different
PPs has been added to the partitioning process. Therefore, definitions on a DAG and
runnables of a path are given in the appendix at Eq. H.17 and Eq. H.18. The set of
runnables involved with a DAG is denoted as R(DAG) and a DAG’s edges as E(DAG).

67



Chapter 4. Software Partitioning

Independent graphs do not share any data or runnable, as shown in Eq. 4.13.

∀ra ∈ R(DAGi);∀rb ∈ R(DAGj) :(⋃
a

Lra ∩
⋃
b

Lrb

)
= ∅ ; (R(DAGi) ∩R(DAGj)) = ∅ (4.13)

Example 4.3: Independent Graph Partitioning Democar

For instance, assuming equal activation references for the Democar model and
its runnable graph shown in Figure H.1, three independent graphs are derived
namely one for the isolated DiagnosisArbiter runnable, another one for the
throttle runnables APedSensor, APedVoter, ThrottleSensor, ThrottleController,
and ThrottleActuator, and the third one for the rest of the Democar’s runables.
Contrarily, taking the actual activation parameters into account, the independent
graph aggregation, configured to separate every independent runnable, results in 20
runnables, which is comparably high considering the total number of 43.

Separating independent graphs into different tasks provides less inter-task communication,
which can be exploited by the task mapping process since no communication costs emerge
for independent tasks when being mapped to different PUs or ECUs. To avoid too many
PPs being created based on independent graphs (cf. Example 4.3), which happens for
some case study models outlined in Chapter 6, the independent graph aggregation can
be configured to only separate graphs beyond a specified threshold, i.e., the number of
runnables.

As an intermediate summary, PPs at this point provide WDAGs based on runnables,
their instructions as weights, and communication costs for weighted edges. Runnable
aggregations consider activation references, independent graphs, ASIL and SWC pairing
and separation constraints. Based on this state, DAG-based partitioning heuristics as
outlined in the next two Subsections 4.2.6 and 4.2.7 can be applied to generate tasks.

4.2.6 Critical Path Partitioning

Based on DAGs created by the processes described in the previous sections, the partitioning
process targets at splitting up PPs to execute runnable sets concurrently. The idea of the
CPP is that the Critical Path (CrPa) forms the lower bound on a graph’s or set of graphs’
schedule length, i.e., the total time to execute a complete DAG [205]. For a graph set, the
maximal Critical Path Length (CPL) across all graph’s CrPas forms the lower bound on
the Schedule Length (SL). The CrPa is defined as the path with the maximal path length
across all DAG’s paths as shown in Eq. 4.14, which makes use of Eq. 4.12.

CrPa(DAG) = pathi : mplE(DAG) = mplEpathi (4.14)

Relaxing an edge within a CrPa is avoided due to increased execution time caused by
communication overheads and data being exchanged across task or possibly even beyond
PU or ECU boundaries. In case the graph structure shows an extensive sequence and a

68



Section 4.2. DAG-based Runnable to Task Partitioning

significantly low amount of branches (multiple runnables on different topological levels),
relaxation at the CrPa could be exceptionally allowed (addressed in, e.g., [91]). However, it
is omitted here due to the considered models (cf. Chapter 6) providing good results without
splitting the CrPa, primarily due to the generated models not resulting in significant long
runnable sequences.

CPP assigns the CrPa to the first PP and the graph’s branches to further PPs following the
algorithm shown in Algorithm 4.4. The CrPa is defined by runnables and dependencies,
forming a path from an entry vertex to an exit vertex, of which the sum of computation
and communication costs is the maximum [206]. Branches next to the CrPa never exceed
the CrPa’s SL execution or cause the CrPa to wait on input data. Yang et al. presented
in [207] that CPP, denoted as dominant sequence clustering, provides comparable or even
better performance than much-higher-complexity heuristics. The CPP algorithm makes
use of earliest initial time eita and latest start time lsta values for runnables. These values
are calculated in the Algorithm 2 and Algorithm 3, respectively.

Algorithm 4.2: Calculation of eita
Data: DAG, ra
Result: eita

1 eita ← 0
2 foreach pathj ∈ Paths : ra ∈ R(pathj) do
3 cpl← 0; /*Current path length*/
4 foreach eϕ ∈ pathj do
5 cpl← cpl + cesϕ
6 if etϕ == ra then
7 cpl← cpl + cetϕ
8 break
9 end

10 end
11 if cpl > eita then eita ← cpl; /*Get maximum here*/
12 end

The shifting potential of a runnable is then defined by the subtraction lsta − eita and
defines to what extent a runnable can be shifted with regard to the CrPa to not violate
any RSC.

Algorithm 4.3: Calculation of lsta
Data: DAG, ra
Result: lsta

1 lsta ← mplE(DAG) ; /*CrPa*/
2 maxsl← 0; /*Maximal succeeding length*/
3 foreach pathj ∈ Paths : ra ∈ R(pathj) do
4 suclj ← 0
5 indj,a ← index of ra in pathj
6 for int i = indj,a; i ≤ |pathj |; i+ + do
7 suclj ← suclj + cesj,i
8 end
9 suclj ← suclj + cet

j,|pathj |

10 if suclj > maxsl then maxsl← suclj ; /*Get maximum here*/
11 end
12 lsta ← lsta −maxsl

Here, eti,j denotes the target runnable of the j-th edge of path pathi. Based on eita and
lsta, a set of runnables assignable ar to some point in time ppt < mpl(DAG) can be
derived such that ar(ppt) ⊆ R(DAG) with ∀ra ∈ at(ppt) : eita ≤ ppt ≤ lsta. This is

69



Chapter 4. Software Partitioning

used in lines 6 of the CPP Algorithm 4.4.

Algorithm 4.4: CPP Algorithm
Data: R, E
Result: PPs, respectively Mτ

ra
∀ ra ∈ R

1 find CrPa = maximplpathi and assign its runnables R(CrPa) to pp1

2 while not all runnables are assigned to PPs: R 6=
⋃
iRppi do

3 let ppj be a new PP and set the PP time to 0 ppt = 0
4 while ppt < CrPa do
5 update eita and lsta values forall ra in R(path(ra))
6 let ar(ppt) be the runnable set assignable to ppt so that (eita ≥ ppt; lsta ≤ ppt)∀ra ∈ ar(ppt)
7 if (|ar| == 0) then
8 set ppt to minb (eitb) : rb ∈ ar(ppt)
9 else if (|ar| == 1) then

10 add ra to Rppj and set Mτ
a = j with ra = ar(ppt).get(0)

11 ppt+ = ca
12 else
13 add rb to Rppj and set Mτ

b = j : (lstb − eitb) ≤ (lsta − eita) ∀ ra ∈ ar
14 ppt+ = cb
15 end
16 end
17 end

Line 5 is necessary, since every assignment of a runnable to a PP may influence eit and
lst values of runnables connected to the assigned runnable through a path. The algorithm
creates PPs, respectively tasks, in line 3 and checks time-wise in line 6 what runnables
can be assigned according to eit and lst values, that ensure RSCs. In other words, all
preceding runnables must have finished their execution when a runnable starts executing.
If no runnables can be assigned to the current time slot ppt, line 8 increases its value to a
point, at which a runnable or a set of runnables becomes available. If the former situation
is the case, i.e. only one runnable is available, line 10 assigns that runnable to the current
PP and the ppt value at the current PP is increased according to the assigned runnable’s
instructions ca. For the latter case, in which multiple runnables are available, line 13 selects
a runnable, which has the lowest shifting potential value (lst− eit). This heuristic results
in low task numbers while preserving the maximal schedule length in the form of the CrPa.
Finally, the algorithm stops when all runnables are assigned (cf. line 4).

Example 4.4: Calculating Runnables’ eit and lst Values & Applying CPP

Given is the cycle decomposition result DAG of Example 4.2’s Figure 4.3 (c)
represented as R = {r1, r2, r3, r4, r5} and edges E = {e1, e3, e4, e6, e7, e8} with
e1 = {r1, r2, 1}, e3 = {r3, r1, 1}, e4 = {r3, r4, 1}, e6 = {r5, r4, 1}, e7 = {r3, r5, 1}, e8 =
{r1, r4, 1}. The runnables’ eit and lst values are then eit = lit = {1, 2, 0, 1, 2}. This
example results in no shifting potential for any runnable due to the high number of
edges and equal runnable weights.

If edge e3 is removed, runnables r1 and r2 would gain a shifting potential of 1 by
the following new values eit∗ = {0, 1, 0, 2, 1}; lst∗ = {1, 2, 0, 2, 1}, e.g. lstr1 − eitr1 =
1− 0 = 1, which is used in Algorithm 4.4 line 13.

When applying Algorithm 4.4 to the example result DAG of Figure 4.3 (c), two PPs
are created, i.e. PP1 = {r3, r5, r4} from line 1 and PP2 = {r1, r2} via iterating three

70



Section 4.2. DAG-based Runnable to Task Partitioning

times through the while loop at line 4 for ppt ∈ (0, 2) ∩ N, whereas line 8 is executed
for ppt = 0 and line 10 for ppt = 1 and ppt = 2, since the assignable runnables set
contains 0 and 1 entries, respectively.

Since the CPP is not able to limit the number of tasks, the following ESSP algorithm is
presented that defines an alternative to CPP.

4.2.7 ESS Partitioning

ESSP is based on earliest start schedule (eit cf. Eq. 2) values and features a PP / task
number limitation. For this purpose, only runnables’ eit values (cf. Eq. 2) are needed that
define the sum of the longest preceding path’s instructions. The value of n, which is the
number of tasks being created, is predefined for the following Algorithm 4.5.

Algorithm 4.5: ESSP Algorithm
Data: Runnable set R, Edge set E, Partition number n
Result: PPs repsectively Mτ

a ∈ [1, n]∀ra ∈ R
1 create empty PPs: ∀i ∈ [1, n] ∃ ppi
2 let ppst[n] denote a sum of assigned instructions array for each ppi, initially 0 for all entries
3 while not all runnables are assigned to PPs: R 6= R(∪ippi) do
4 let rb be the runnable with the lowest eit value across unassigned runnables

eit(rb) = mina (eita)∀ra ∈ R \ ∪iR(ppi) (choose runnable with max ca if there are multiple)
5 let prb be the set of direct predecessors of rb: ∀ra ∈ prb : et(ra) = rb
6 let ppi denote the selected PP
7 if the last entry of any ppj contains a runnable in prb then
8 set ppi to ppj , which has the highest ppt value and contains rb’s predecssor

ppi = ppj with ppst[j] = maxk(ppst[k]); prb ∩R(ppj) 6= ∅
9 else

10 let lpt be the lowest PP time across all PPs :lpt = minj ppst[j]
11 let ppt(prb) be the highest finish time of all predecessor runnables
12 if ppt(prb) > lpt then
13 select a PP so that runnable rb starts after all its predecessors

ppi = ppj : ppst[j] ≥ ppt(prb)
14 else
15 select PP with lowest start time ppi = ppj : ppst[j] = lpt

16 end
17 assign rb to ppi, set Mτ

b = i and increase ppst[i]+ = cb
18 end

In line 11, ppt(prb) denotes the maximal finish time across PPs of all predecessor runnables
prb, i.e. ppt(prb) = maxa ppta with ra = esϕ and etϕ = rb. Assuming that intra-task
communication can be neglected and only inter-task costs should be considered, line 12
must be extended from ppt(prb) > lpt to ppt(prb) + ecϕ with es(ϕ) = ra and et(ϕ) = rb.
However, the shown algorithm assumes communication costs to be even for intra and inter
task data exchange for the same PU and additional communication costs between PUs are
accounted during the task to PU mapping process.

In case a complete sequential runnable ordering would define the algorithm’s input, all
runnables are assigned to the same partition (task), since line 7 in Algorithm 4.5 considers
dependencies and distributing a sequence of runnables would increase overall execution
time due to additional synchronization and communication. Line 10 in Algorithm 4.5
ensures that load is balanced among partitions in case no parent of the runnable is located
at the current PPs, since the runnable is assigned to the PP featuring the lowest utilization
derived from ppt and no RSC is violated (parent assignment consideration of line 12).

71



Chapter 4. Software Partitioning

ESSP provides a fixed number of partitions, few inter-task communications, and a balanced
load across partitions. Assessments are presented in Section 7.1.

Example 4.5: ESSP Applied to the Cycle Decomposition Example Result

Given is the same runnable DAG as of Example 4.4, i.e. R = {r1, r2, r3, r4, r5}
and edges E = {e1, e3, e4, e6, e7, e8} with e1 = {r1, r2, 1}, e3 = {r3, r1, 1}, e4 =
{r3, r4, 1}, e6 = {r5, r4, 1}, e7 = {r3, r5, 1}, e8 = {r1, r4, 1}.

The first assigned runnable is r3 with the lowest eit value 0 at Algorithm 4.5 line 2.
Since weights are equal, line 2 arbitrarily selects either r1 or r5 as the next runnable
to be assigned. In this example, r1 is selected and assigned to the same PP as r3,
since line 5 found r3 as a direct predecessor of r1 and line 8 gets executed accordingly.
The next runnable is r5 and since the single existing PP does not contain r5’s direct
predecessor r3 as its last entry, line 10 and following lines are executed, which assign
r5 to the second PP at position 1, which means that there is an empty slack between 0
and 1 at the second PP. With runnable r2 being assigned next, its direct predecessor r1

is located as the last entry of the first PP and line 8 allocates r2 accordingly. Finally,
r4 is selected and allocated to the second PP via lines 12 and 8 and the final result is
pp1 = {r3, r1, r2}, pp2 = {−, r5, r4}.

Due to arbitration at line 4, the second possible result is pp1 = {r3, r5, r4} and
pp2 = {−, r1, r2}.

4.3 CP-based Partitioning

As a further alternative to DAG-based partitioning, CP-based approaches are outlined in
the following that ease programming extensions and new constraints in a programmatically
natural way. Equations outlined in the following partially show ’.constraint’ notations
in line with the used java API of the used Choco library.

4.3.1 CP-P via Arithmetical Constraints

The CP-based partitioning can make use of various arithmetical constraints, similar to
using ILP. The Choco library37 has been found a reasonable CP-solver since it not only
provides easy to use arithmetical as well as pairing or separation constraints that can
be combined with RSCs mentioned in Section 3.1.6, but also bin-packing constraints as
outlined in Section 4.3.2. More details on the CP paradigm itself are given in Section 5.1.

The following equations restrict the problem of partitioning runnables to tasks via a variety
of constraints. The first constraint shown in Eq. 4.15 outlines the activation aggregation
and applies consecutively to ASILs, SWCs, tags, or runnable pairings. It ensures that
runnables referencing the same activation are assigned to the same partition, i.e., task. In
other words, a partition must not contain runnables that commonly reference more than
one activation.

∀ a, i with M τ
ra = i : .allEqual (Tra) (4.15)

However, the amount of tasks per activation is not restricted by this constraint, which

72



Section 4.3. CP-based Partitioning

means that multiple tasks can exist for the same activation. Since runnables inherit their
properties such as instructions and activations to tasks, similar constraints also hold for
the mapping process, i.e., the constraint of Eq. 4.15 is also applied to the task mapping
(cf. Section 5.2).

After ensuring the activation aggregations and affinity constraints, Eq. 4.8 and 4.9 are used
for ensuring RSCs. As mentioned earlier, RSCs can potentially have multiple groups that
each reference an arbitrary amount of runnables. Here, CP has benefits over the heuristic
implementation of Section 4.2.7 and 4.2.6 since the constraint implementation is of Eq. 4.9
is much less verbose. The CP implementation uses only arithmetical constraints with the
smaller expression for every RSC group and corresponding runnables in combination with
their position within a PP. Subsequently, the runnable to task partitioning constraint can
be defined that implements the optimization goal. This definition can be done in two
different ways, either using a boolean matrix or an integer array, outlined in the following.

CP-P Using a Boolean Assignment Matrix
A boolean runnable assignment matrix can be used with two .sum constraints as shown in
Eq. 4.16 and Eq. 4.17.

∀ ra ∈ R :
∑
i

M τi
ra = 1 (4.16)

Eq. 4.16 ensures that a runnable is assigned to exactly one task.

∀ τi ∈ T , ra ∈ R :
∑
a,i

M τi
ra = |R| = o (4.17)

Eq. 4.17 ensures that all runnables are assigned.

To further balance runnable loads across tasks, Eq. 4.18, a minimal task load can be set
to a lower bound value (lbτ ) for each task. This lower bound shrinks the solution space
and increases efficiency by reducing the CP solver’s resolution time.

∀ τi ∈ T :
∑
a

(
M τi
ra · ca

)
≥ lbτ (4.18)

Instead of the lower task load bound and with the assumption that the number of tasks is
always lower than the number of runnables (o < m), Eq. 4.18 can be replaced by Eq. 4.19.

∀ τi ∈ T :
∑
a

M τi
ra ≥ 1 (4.19)

This ensures that at least one runnable is assigned to each task. The lower bound definition
in Eq. 4.18 has though been found useful for larger models to significantly reduce resolution
time.

CP-P Using an Index Integer Array
Instead of a boolean assignment matrix, an integer array can be used that directly refers to
a task index for an assignment decision. This is shown Eq. 4.20, which replaces Eq. 4.16–
4.17.

M τ
ra ∈ [1, |T |] (4.20)

73



Chapter 4. Software Partitioning

Accordingly, the lower bound equations of Eq. 4.18–4.19 change to Eq. 4.21–4.22.

∀ a, j with M τ
ra = j :

∑
a

(ca) ≤ lbτj (4.21)

∀j : .count(M τ
ra = j) ≥ 1 (4.22)

However, summing up a subset of array values based on index assignments (Eq. 4.21), has
been found most efficient when altering the index with the help of another boolean matrix
combined with a .scalar constraint as shown in the following Java-Listing 4.1.

1 [ . . . ]
2 // n=NB_TASKS, p=NB_RUNNABLES
3 Model choco = new Model ( ) ;
4 int [ ] runnableCosts = getRunnableCosts ( ) ;
5 IntVar [ ] taskLoad = choco . intVarArray ( "TaskLoad" , n , getMinRunInstr ( ) ,

getInstrSum ( ) ) ;
6 IntVar [ ] rnnblMppngInt = choco . intVarArray ( "RunMapInt" , p , 1 , n ) ;
7 BoolVar [ ] [ ] rnnblMppngBool = choco . boolVarMatrix ( "RunMatBool" , n , p) ;
8 IntVar minLoad = choco . intVar ( "MinLoad" , getMinRunInstr ( ) , getInstrSum ( ) ) ;
9 for ( int i =0; i<n ; i++) { // every task

10 for ( int a =0;a<p ; a++) { // every runnable
11 rnnblMppngBool [ i ] [ a ] . eq ( rnnblMppngInt [ a ] . eq ( i ) ) . post ( ) ;
12 }
13 choco . s c a l a r ( rnnblMppngBool [ i ] , runnableCosts , "=" , taskLoad [ i ] ) . post ( ) ;
14 }
15 for ( int a=0; a<p ; a++) { // every runnable
16 choco . sum( ArrayUt i l s . getColumn ( rnnblMppngBool , a ) , "=" ,1) . post ( ) ;
17 }
18 for (RSC r s c : getRSCs ( ) ) { // every RunnableSequencingConstraint
19 choco . arithm ( getRunIndInTask ( r s c . getSource ( ) ) , "<" , getRunIndInTask ( r s c .

getTarget ( ) ) ) . post ( ) ;
20 }
21 IntVar minTaskLoad = choco . intVar ( "minTaskLoad" , getMinRunInstr ( ) ,

getInstrSum ( ) ) ;
22 choco . min (minTaskLoad , taskLoad ) . post ( ) ;
23 choco . s e tOb j e c t i v e (Model .MAXIMIZE, minTaskLoad ) ;
24 choco . g e tSo l v e r ( ) . s o l v e ( ) ;
25 [ . . . ]

Listing 4.1: CP-P for Load Balancing Using Index Variables

In Listing 4.1, line 11 is the main logic for binding an index to a vector of a matrix by
setting M τi

ra to 1 (true), iff M τ
ra = i, and to 0 otherwise. Combining the integer array with

reification for applying certain constraints only for specific conditions is much less efficient
than the approach presented in Listing 4.1. The same holds for a set-constraint-based
CP partitioning so that the approaches using reification and set constraints are omitted
for measurements of Section 7.1. Using either a boolean matrix directly or combining an
integer array and a boolean matrix has not shown significant efficiency differences. Since
the boolean assignment matrix approach requires a fewer amount of variables, it is chosen
for measurements presented in Chapter 7.

74



Section 4.3. CP-based Partitioning

4.3.2 CP-P via Bin-Packing Constraints

The bin-packing constraint requires an integer-based bin variable array bins, a binary bin
assignment matrix baitems×#bins, and a load array that accumulates weights of the items.
In terms of Amalthea, PPs represent the bins, and runnables represent the items so that
ca values are used for the item weights. The constraint is then straight forward and shown
in Eq. 4.23.

.binPacking(ba, weights, load); (4.23)

Optimization for bin-packing is in line with previous approaches, respectively Lines 8–23 of
Listing 4.1. The bin-packing constraint can be combined with others such as the previously
outlined activation, SWC, tag, ASIL, pairing aggregation or separation, sequencing (cf.
Section 3.1.6) or similar constraints for a valid CP-based partitioning DSE. Minimizing
the maximal value of the load array via Eq. 4.24 ensures balanced loads across tasks.

minimize max
j

(loadj) (4.24)

Since the number of bins is configurable and not only the maximal bin load but
also, e.g., the total cost of inter-task communication can be minimized (among others)
while satisfying all constraints, the CP-based partitioning forms a practical approach for
addressing the partitioning problem of assigning runnables to tasks based on Amalthea.

4.3.3 CP-P via Cumulative Constraints

The used Choco library also provides a constraint namely cumulative, which can be
exploited for the partitioning process. Instead of integers, the cumulative constraint applies
to task variables, which do not correspond Amalthea but Choco tasks, and consist of
three parameters, i.e. start, weight, and end. For the partitioning purpose, Choco tasks
are derived from Amalthea runnables. A task’s weight value is modeled via its WCET
and the constraint ensures that endτ = startτ +weightτ . In addition to task variables, the
cumulative constraint requires (a) heights and (b) capacity arguments. The former defines
resources the task requires for being executed and is set statically to 1 for every task. The
latter argument, i.e., capacity, is the number of available resources and set to the number
of partitions that are supposed to be generated. Then, Listing 4.2 can be used for applying
the cumulative constraint to a Choco model derived from Amalthea model properties.

chocoModel . cumulat ive ( tv , he ights , chocoModel . intVar (n) ) . post ( ) ;

Listing 4.2: Choco cumulative constraint on CP-P

Similar to the bin-packing constraint, the objective for cumulative task partitioning is
modeled via minimizing the maximal end time across all tasks. RSC are ensured via an
arithmetical expression for each runnable and all its predecessors that ensures a runnable
start variable being higher than all its predecessors end values, which is shown in the
following Listing 4.3

chocoModel . arithm ( runStart [ r index ] , ">=" , runEnd [ predindex ] ) . post ( ) ;

Listing 4.3: Precedence constraints on CP-P using cumulative constraint

75



Chapter 4. Software Partitioning

Although providing nearly the same functionality, the CP-PC approach has shown much
lower resolution times compared to the bin-packing methodology and hence it is used for
comparisons in the remainder of this thesis prior to the bin-packing methodology.

4.4 Partitioning Metrics and Summary

The partitioning approaches CPP, ESSP, and CP-PC form tasks with the primary goal
of balancing load while considering precedence constraints, cycles, activation periods, as
well as separation and pairing, respectively affinity constraints. Reasonable metrics used
to evaluate the effectiveness of DAG-based partitioning are derived from [205] and defined
as

(i) span, which is the length of the CrPa for CPP and the maximal partition length in
general,

ς∞ = max
i
Ci = max

i

∑
a

ca : M τi
ra = 1 (4.25)

(ii) parallelism, which is the sequential runtime, respectively work (i.e. the sum of all
DAG instructions), divided by the parallel runtime, i.e. span ς∞ when assuming that
the number of PUs is at least as high as the number of tasks u ≥ n respectively all
tasks can be executed concurrently,

ξ =

∑
iCi
ς∞

(4.26)

(iii) slackness, which is the factor by which the parallelism exceeds the number of PUs,

ζ =

∑
iCi

n · ς∞ (4.27)

(iv) and speedup, which is defined by the fraction of sequential runtime (on the fastest
PU) and the span for a specific task allocation

SM =

∑
iC

+,s
i,y : Py = (max

x
pucx) ∑

i:MPx
τi

=1

C+,s
i,x

 : Px = max
y
Uy

(4.28)

In general, assessing speedup requires a reference, which can be either the sequential
execution assuming a single PU (cf. [205], used in Eq. 4.28), or the proportion of sequential
program code (cf. [208]), which usually is defined by the span ς, or the number and
capacities of PUs assuming optimal concurrent program code such that every single
instruction can be distributed. For the latter, which forms the coarse-grained theoretical
bound, heterogeneous capacities can be considered via factors concerning the maximal PU
capacity, as shown in Eq. 4.29.

ŜP =
∑
x

pucx
ˆpuc

with ˆpuc = max
x

pucx (4.29)

76



Section 4.4. Partitioning Metrics and Summary

Eq. 4.29 hence gives the maximal theoretical speedup value for a heterogeneous system.
However, Amdahl’s law rather considers improving program code fractions by specific
factors, which is not quite applicable to the partitioning and task allocation approaches.
Instead, concurrently executing tasks running on other PUs may mitigate their original
execution time by 100%, and hence Amdahl’s law reduces to 1

pssw
, which is the inverse of

sequential code fraction. For instance, given that the CrPa constitutes 10% of the program
and the parallel code can be evenly distributed across other PUs without exceeding the
CrPa length, the maximal speedup of SM = 1/(1/10) = 10 can be achieved. If load
balancing results in the situation of a PU running the CrPa and executing additional tasks,
the speedup must be derived from the PU with highest utilization, i.e., SM = 1

maxx Ux
. The

actual speedup calculation of a task allocation set is shown in Eq. 4.28 and defined by the
sequential execution time on the fastest PU divided by the parallel run time. It is used
as a rough estimation since no information about scheduling, network delays, memory
contention, or resource blocking is incorporated. Eq. 4.28 normalizes towards one second
just as pucx and C+,s

i,x do. If assuming unlimited resources and perfect resource utilization
without any overheads, the speedup corresponds to the parallelism value. The following
example shows the calculation of span, parallelism, and slackness along with a hypothetical
runnable DAG consisting of ten runnables.

Example 4.6: Partitioning Metrics

The example of Figure 4.4 shows a runnable DAG on the left-hand side, whereas
runnables are indicated as an oval forms their height represents the required ticks
to execute the runnable. Dependencies are represented as arrows and derived from
runnables’ label accesses. On the right-hand side of Figure 4.4, results of CPP and
ESSP heuristics are shown, of which the latter is configured towards both two and
three amounts of tasks.

A1

I2

B3C4

D9

F2

J4

E1

G5

H3

D9 J4

B3 G5 F2 I2

C4 A1 E1 H3

A1 C4 E1 F2 G5 J4

B3 D9 H3 I2

A1 D9 J4

B3 E1 F2 H3 I2

C4 G5

D9 J4

B3 G5 F2 I2

C4 A1 E1 H3

C
P
P

E
SS
P
2

E
SS
P
3

C
P
-P
C
3

Figure 4.4: Example runnable DAG and partitioning solutions

The previously outlined metrics are presented in the following Table 4.1 given that
work =

∑
a ca = 34.

77



Chapter 4. Software Partitioning

TCPP = TCP−PC TESSP2 TESSP3

ς 13 17 14

ξ = SM 34
13 ≈ 2.62 34

17 = 2 34
14 ≈ 2.43

ζ 34
3·13 ≈ 0.87 34

2·17 = 1 34
3·17 ≈ 0.87

Table 4.1: Example partitioning metric results for span, parallelism, and slackness

Since CPP targets exactly the sequential code fraction for being assigned to a separate
task, CPP achieves the optimal speedup factors according to Amdahl’s law when ignoring
scheduling and other overheads produced by concurrent software execution. Additionally,
the CPP algorithm considers all precedence constraints and assures that no other generated
partition (task) exceeds the CrPa’s length. Both other algorithms ESSP and CP-PC trade
span ς, i.e., the lower bound of execution time, for task number limitation and thereby often
do not achieve maximal speedup values when reducing the number of partitions. However,
for the same amount of partitions, both ESSP and CP-PC approaches often show similar
or even equal speedup results compared to CPP. CP-PC finds optimal speedup values for
even a lower number of tasks compared with CPP. Figure 4.5 shows a system’s theoretical
speedup S as a function of the CrPa length ς for three different amount of partitions.

2 2 2 2 2 2 2 2 2
8 8 8 8 8 8 8 8 8

Nodes 1000 1000 1000 1000 1000 1000 1000 1000 1000
Cores 4 4 4 4 4 4 4 4 4
CPLength 5 10 25 50 100 250 500 750 1000
WCSpeedup4 3.95256917 3.89483934 3.73134328 3.48735833 3.08404009 2.28963938 1.60192231 1.23190638 1
WCSpeedup2 1.99203187 1.98216056 1.953125 1.90657769 1.81983621 1.60128102 1.33422282 1.14351058 1
WCSpeedup8 7.78210117 7.52587018 6.84931507 5.9568131 4.72533963 2.91651476 1.78054752 1.28143521 1
S_2 2 2 2 2 2 2 2 1.33333333 1
S_4 4 4 4 4 4 4 2 1.33333333 1
S_8 8 8 8 8 8 4 2 1.33333333 1
Amdahl_2 1.99004975 1.98019802 1.95121951 1.9047619 1.81818182 1.6 1.33333333 1.14285714 1
Amdahl_4 3.9408867 3.88349515 3.72093023 3.47826087 3.07692308 2.28571429 1.6 1.23076923 1
Amdahl_8 7.7294686 7.47663551 6.80851064 5.92592593 4.70588235 2.90909091 1.77777778 1.28 1

?

Cormen

Amdahl

0

1

2

3

4

5

6

7

8

9

550500

Sp
ee

du
p 

S

Span   (Critical Path Length)
2 Partitions Amdahl 4 Partitions Amdahl 8 Partitions Amdahl

2 Partitions th. max. 4 Partitions th. max. 8 Partitions th. max.

𝜍

Figure 4.5: Theoretical speedup for 2, 4, 8 partitions based on [208] and [205] for 1000
instructions

Obviously, the shorter the CrPa length ς is, the higher speedup can be achieved. It is
an essential characteristic of both ESSP and CP-PC to minimize the partition number,
i.e., if the configured partition amount exceeds the number of critical path partitions,
both approaches create empty partitions and hence provide results equal or close to CPP.
If activation parameters are considered, which is ignored in this section for investigating

78



Section 4.4. Partitioning Metrics and Summary

broader graphs, the partitioning approaches iteratively split existing activation partitions,
starting with the one consuming maximal instructions per second. If this runnable set
is an entire sequence, the next highest instruction consuming runnable activation set is
selected. Hence, this process applies CP-PC and ESSP to runnable activation subsets in a
subdivision-by-two-manner, which is greedy on the one hand, but still respects activation
parameters, load balancing, and precedence constraints on the other hand.

The partitioning approaches’ application to, as well as further evaluation and discussion
on the case study models of Chapter 6, is given in the consolidated evaluation Chapter 7.
It shows that partitioning using cumulative task constraints, which is denoted as CP-PC,
is more effective than the greedy ESSP, since partition lengths are generally lower than
ESSP results while considering all RSCs. In contrast, the resolution time of CP-PC is
higher compared with ESSP.

Summing up this chapter, three major approaches are shown that automatically form tasks
as an ordered list of runnables referring to the same activation and considering several
constraints, primarily RSCs. Formally, the partitioning result is given as the uniqueness
quantification ∀ a ∃! M τ

ra ∈ [1, n]. As the next step, tasks can be allocated to PUs, and a
partitioned scheduler for every PU can activate these tasks so that they potentially execute
concurrently. By following the two-phased approach, i.e., runnable partitioning and task
mapping, the number of allocations is subject to a mere fraction compared with allocating
runnables directly to PUs.

79



5
Constrained Software Distribution & Timing Verification

This chapter primarily deals with DSE of the mapping problem, i.e. allocating tasks to PUs
using different meta-heuristics as well as several timing verification techniques. Contents
of this chapter have been partially published in [4] and [20].

In contrast to the partitioning’s focus on determining an ideal granularity and runnable
distribution for the executable software partitions, the goal of the mapping process is
to find a task allocation to the PUs of a multi- or many-PU hardware target system
while fulfilling constraints and optimizing goals such as load balancing. Based on
the partitioning’s outcome, tasks with different priorities, execution times, activation
periods, communication demands, and more must not violate constraints such as (PU-
) affinities, timing, safety (ASIL) aggregations, communication cost limits, as well as
deadlines i.e., timing constraints, and consider various aspects of heterogeneous, networked,
hierarchical, embedded, multi-PU architectures when being assigned to PUs. Software
distribution is considered as a holistic allocation across heterogeneous PUs but also across
ECUs connected through various network types in contrast to software parallelization,
which rather concerns partitioning and allocation across homogeneous multi-PUs. Since
partitioned scheduling allows using well studied single PU schedulers, the multi-PU
challenge significantly manifests in finding a static and optimized mapping. This challenge
is closely related to bin-packing, which is known to be NP-hard [28], and corresponding
(meta-)heuristics are required to cope with intractability.

A variety of algorithms and technologies exist along with DSE for software distribution
across real-time, embedded, multiprocessor, and mixed-critical systems. The automotive
domain not only combines those domains (cf. beginning of Chapter 2), but even
introduces further constraints and requirements due to several design decisions, standards,
or evolved methodologies (cf. Section 2.3). Though, solutions and tools are
predominantly proprietary, often lack in perspicuity, and sophisticated approaches towards
the comprehensive concern of constraints are relatively rare.

Along with the presentation and application of typical constraints required for distributing
automotive software across the PUs of vehicles in this chapter, three example mapping COP
approaches are outlined in Chapter 7 to investigate and compare resolution time, scalability,
and result quality between each other as well as GA, ILP, and dedicated heuristics.
Benchmarks on hypothetical and industrial models (cf. Chapter 7) shows that the

80



Section 5.1. Related Work on Constrained Software Distribution

constraint-based approaches sometimes outperform other meta-heuristics regarding quality
and effectiveness and predominantly provide more natural and advanced programming of
intertwined constraints.

5.1 Related Work on Constrained Software Distribution

Before presenting the COP in Section 5.2, SotA software distribution approaches especially
in context of CP are highlighted in this section.

Xiao et al. have shown in [209] that satisfying reliability goals and reducing resource
consumption is challenging for precedence-constrained, mixed-critical, parallel, and
embedded systems. However, the Amalthea model used in this thesis is based on
Autosar and highly differs from the presented reliability goal in [209], which is based on
the constant failure rate per time unit combined with ensuring that tasks are mapped to
processors that maximize a particular reliability value. In contrast, approaches presented
in this thesis ensure reliability via considering the various constraints such as affinities,
pairings, separations, activations, safety levels, and more.

Thiruvady et al. studied the component deployment problem for vehicles in [158], which
is similar to the partitioning and mapping problems of this work via CP. However, due
to the consideration of only three constraints (memory, colocation, and communication),
their approach covers just a subset of this thesis’s constraints.

Oliveira et al. provide one of the few publications that compares MILP with CP for the Job
Shop Scheduling Problem (JSSP) in [210]. Their results show that CP outperforms MILP
in many cases and that CP is assessed as being the prior choice over MILP in generic cases.
The GA approach, however, has neither been applied to the JSSP problems in [210] nor
compared with CP or MILP. Also, JSSP does not cover the specific constraints presented
in this work.

Limtanyakul et al. apply CP to test scheduling approaches for the automotive industry
in [211]. Although the problem is different from this work’s partitioning and mapping
approaches, results have shown that the automotive domain comprises typical requirements
and constraints that CP can ideally utilize such that CP-based DSE can potentially be
more effective and efficient.

Along with the Fmtv benchmark, which is further outlined in Section 6.1 and used in
Chapter 7, several research activities have been published in the recent years regarding
solutions towards event chain latency calculation [212], memory contention delay analysis
under different communication paradigms [34, 213], WCET and WCRT analyses [84], label
mapping [85] and more. More precisely, properties of the initial Fmtv model are published
in [187] along with the challenges of calculating effect-chain delays, worst-case response
times considering memory accesses, optimizing the task to PU mapping, and evaluating
execution platforms. The original challenge is extended in [128] by providing an Amalthea
model and the outline of challenges for timing verification considering heterogeneous
memory access delays, RTA for mixed preemptive tasks activated periodically, sporadically,
and engine synchronously, and optimizing label placement, i.e., data to memory mapping.
Solutions are proposed in [62] and [84] via analytical approaches, in [82] using the
MAST tool, in [40] via the RTAna tool, and in [83] via the RTSim tool. In 2017,
additional challenges were outlined in [31] for addressing memory contention, event chain

81



Chapter 5. Constrained Software Distribution & Timing Verification

reaction and age delays, and explicit, implicit, and LET communication paradigms.
The Amalthea model was updated to provide label update frequencies, a sophisticated
memory architecture, and event chains. Solutions were again presented accordingly along
with [85] using analytical approaches along with MILP and GA, in [34] using solely
analytical methods, in [86] using the Prelude tool, in [32] using the MAST tool, and in [33]
using CPA via the pyCPA tool. In 2019, a new Amalthea model and new challenges
were outlined in [30] for addressing RTA and optimizing task to PU mapping for CPU-
GPU task offloading, CE operations, synchronous and asynchronous offloading analyses,
and CPU-GPU memory interference. Solutions are proposed accordingly in [19, 87, 88,
214]. The latter is a fundamental part of and extended in this Chapter. Along with the
Fmtv publications, none is found covering the broad constraints and properties described
in this thesis and, e.g., Table 2.2.

Hilbrich et al. present a CP approach towards safety, time, and mixed critical systems
in [215]. However, there are specific differences to the Amalthea model. For instance,
label (memory) accesses, label sizes, access rates, runnable sequencing, stimuli diversity,
or event chains of Amalthea require new solutions for approaches of [215].

Krawczyk et al. present task mapping algorithms based on Amalthea via ILP and
GA in [41]. Cuadra et al. in [11] extended these towards the incorporation of SA.
These approaches are extended and taken as references to compare them to CP results
obtained in Chapter 7. GA-based applications to automotive systems have also been
investigated in [216]. Those results show, similar to generic multi-objective GAs in [217],
that evolutionary algorithms scale well, especially for large-scale problems.

Along with the investigation of related work, no publication could be found that considers
(i) a broader set of automotive constraints, (ii) timing verification, and (iii) an analysis
of different DSE methodologies for the partitioning and mapping problems, based on
Autosar or Autosar compliant models. The broader constraint set (i), which is
part of the Amalthea meta-model, provides typical combinatorial patterns, which can
be exploited by CP in a programmatically natural as well as straightforward way. In
contrast, programming many-fold intertwined linear inequalities via ILP or expansive
fitness functions requiring sophisticated gene and chromosome altering as well as crossover
operation configuration for GA can significantly aggravate the DSE so that the CP
approach is presented and investigated in the following. For comparison and evaluation
purposes, ILP and GA are used and evaluated, too, and presented in Chapter 7.

Before starting with presenting the various CP constraints, some notations and model
coherences must be outlined. The partitioning result denoted asM τ

ra ∈ [1, n] is a distinctive
runnable to task assignment based on Chapter 4 and the task to PU mapping result is
denoted accordingly as MP

τi ∈ [1, u]. The latter mapping is distinctive too, i.e., each
runnable and task must be assigned statically to exactly one target, i.e., task and PU,
respectively. With the partitioning result, a task τi contains an ordered sequence pathi
of ra runnables: Rτi = {ri,1, ...ri,rx}. PUs P can be obtained from higher abstraction
levels such as microcontrollers, PUs, or ECUs, whereas communication costs are considered
according to the modeled architecture properties such as labels, label sizes, label accesses,
and access rates (cf. Eq. 4.6, respectively Definition 3.3). Each PU Px is associated with
a frequency fx and an instructions per cycle value κx such that execution times C+

i,x can
be calculated for every task as of Eq. 3.6. Runnables inherit their activation to the tasks
they are assigned to: ∀ a with M τi

ra = 1 : T (ra) = T (τi). Just as runnable instructions ci,

82



Section 5.1. Related Work on Constrained Software Distribution

task instructions are derived based on worst-cases, i.e. upper bounds of, e.g. Weibull or
other distributions (cf. Definition 3.2) in Amalthea. Average values, lower bounds, and
especially the distribution type can be utilized by simulation approaches such as [218] or
others, but are out of scope here. The instruction cost of a task is defined by the sum of
its contained runnable instructions as of Eq. 3.3 and can be transformed into a time-based
value for a specific PU based on Eq. 3.6. It is assumed that tasks’ deadlines are implicit
to their activation. For sporadic activation, the lower bound value is used to consider
worst-case arrival rates for the corresponding tasks.

Data propagation between tasks is assumed to be covered by the asynchronous use of shared
labels. To determine communication costs, a communication model like explicit, implicit,
or LET is preferred to be used in terms of Autosar. The WCRTs of runnables and
tasks depend on scheduling and corresponding preemptions. The response time analysis
from Baruah et al. in [219] that has been extended by Balsini et al. in [83], can be
used to calculate WCRT as well as event chain latency properties via recurrence relations.
Besides, recent response time analysis solutions for adaptive variable-rate tasks presented
by Biondi et al. in [220] can be further incorporated into advanced RTA for EMS-typical
software with a precise estimation of worst-case interference. The configuration presented
in [220] is omitted here, to achieve comparable results regarding the existing evolutionary
algorithms, ILP solutions, and heuristics in Chapter 7. The mentioned model entities and
constraints excellently apply to CP paradigm due to the highly combinatorial parameter
and property coherencies. The vast amount of sets, relations, and properties constitute all
data a constraint model requires to potentially solve a CSP and further optimize parameters
of a COP. For example, aggregations such as activations, tags, or ASIL properties can be
directly converted to .allEqual(x[]) constraints that guarantee that a valid solution must
have equal values for all variables in x. As this is a noteworthy advantage over, e.g. ILP,
which is used in Chapter 7 for comparison, the main ILP implementation on a utilization
constraint is given in the following Excursus 1.

Excursus 1: ILP Mapping

This excursus is mostly part of publication [4] and forms the ILP-based mapping
referred to in Chapter 7 for comparing and evaluating the different DSE paradigms.
ILP-based strategies have been studied to support the creation of Pareto-optimal
mapping solutions, optimized towards specific goals, e.g., minimizing the total
execution time [221] or energy consumption [222]. The execution time minimization
strategy minimizes the accumulated instructions of all tasks assigned to a PUs across
all PUs. Since determining such an optimal allocation is well known to be an NP-
complete problem [28], finding solutions for significantly larger models usually requires
a substantial amount of time. The functionality for solving the ILP models is provided
by the open-source oj! Algorithms librarya. The resolution time of the execution
time minimization approach is exponential with the number of tasks and hence not
appropriate for larger models. The load balancing ILP formulation is given in Eq. 5.1.

83



Chapter 5. Constrained Software Distribution & Timing Verification

minimize Loadmax s.t.

∀x :
∑
i

MPx
τi · Ci,x ≤ Loadmax with MPx

τi =

{
1 : MP

τi = x

0 otherwise

∀i :
∑
x

MPx
τi = 1

(5.1)

Eq. 5.1 uses Ci,x of Eq. 3.6 and hence considers heterogeneous PU systems. However,
Eq. 5.1 may quickly result in infeasible solutions since no periods are considered (no
normalization). As a consequence, the ILP formulation is adjusted to allocate tasks to
PUs under the goal of keeping all PU utilization values as low as possible. Therefore
a PU’s utilization is based on the sum of task utilization values shown in Eq. 5.2.

minimize ÛP s.t. ∀x : ÛP ≥ UPx (5.2)

This is implemented as an addition to the original publication in [4] to produce
comparable results for Chapter 7.

ahttp://ojalgo.org/, visited 11.2020

In general, the simplified derivation of a PU’s utilization and the maximal PU utilization
are shown in Eq. 5.3 and 5.4, respectively. For getting more realistic utilization values,
contention, blocking, OS, and more delays must be added, which is shown in the later
course of this section in Eq. 5.9.

UPx =
∑

i:MP
τi

=x

Ui,x with Ui,x =
Ci,x
Ti

(5.3)

ÛP = max
x

UPx (5.4)

Yet, Excursus 1 shows a rather simple ILP-based utilization minimization and does not
cover the following properties:

1. Blocking times imposed by locally and globally shared resources (cf. OPCP, solution
in Section 5.4.1)

2. Memory contention (see Section 5.4.1)

3. Network message transmission times (Eq. 5.10)

4. Memory access delays (Eq. 4.6)

5. Task chain latency constraints for age and reaction delays as well as implicit and
LET communication patadigms (cf. Section 5.5)

6. Any type of timing verification such as RTA, synchronous and asynchronous GPU
offloading (cf. Section 7.3.3) etc.

As a consequence, the following sections present decoding Amalthea models into
constraints used by a COP solver for the mapping of tasks to PUs while respecting the
above mentioned properties.

84

http://ojalgo.org/


Section 5.2. Task Mapping Constraints

5.2 Task Mapping Constraints

This Section describes a subset of constraints applied to the Amalthea meta-model
outlined in Chapter 3, for calculating the task to PU mapping. Constraints are modeled
using the open-source choco-library and its solver from Prud’homme et al. [44]. The task
mapping problem is transposed into a COP so that CP techniques can be used to solve it.
Various constraints are outlined, and their application to the mapping problem is formally
presented. Because using task indexes as identifiers imposes additional constraints with
increased domains compared to using a boolean matrix when using CP, which is already
mentioned in the partitioning Chapter 4, the boolean matrix MP

τ shown in Eq. 5.5 is
used in favor to the index mapping MP

τi . The latter can, in fact, still be used if being
arithmetically put into relation with the boolean matrix, as shown earlier at the notation
section in Eq. 3.11. This coherency can be beneficial for certain constraints that require
using indexes and for readability. A column of MP

τ , denoted as ~MPx
τ , gives a mapping

vector to PU Px for all tasks, and a row, denoted as ~MP
τi gives the mapping vector for task

τi across all PUs.

MP
τ (n× u) =

M
P1
τ1 ... MPu

τ1
...

. . .
...

MP1
τn ... MPu

τn

 with MPx
τi =

{
1 if MP

τi = x

0 otherwise
(5.5)

Just as for the partitioning problem, the mapping must implement distinction constraints
similar to equations 4.16 and 4.17. This means that tasks must be mapped to exactly one
PU, i.e., when having the boolean matrix MP

τ (n ×m), the sum of boolean values (true
= 1) across all PUs must be 1 for each task as stated in the following Eq. 5.6.

∀ τi ∈ T :
∑
x

MPx
τi = 1 (5.6)

And as a consequence, every task is mapped to exactly one PU and hence the sum over all
boolean assignment values equals the number of tasks n as shown in Eq. 5.7.

∀ Px ∈ P, τi ∈ T :
∑
i,x

MPx
τi = |T | = n (5.7)

Additional constraints follow that consider the various model properties such as safety levels
and avoid arbitrary results. Eq. 5.9 begins with defining the PU utilization constraint and
ensures that no PU is assigned with a set of tasks that exceeds the PU’s execution capacity
pucx (cf. Eq. 3.4). Therefore, the task assignment vector ~MPx

τ for all tasks at PU Px (a
column of the matrix shown in Eq. 5.5) is multiplied with the execution time vector ~CPxτ for
all tasks at the PU Px. Hence, given the scalar product 〈 ~MPx

τ , ~CPxτ 〉 =
∑

i

(
C+,s
i,x ·MPx

τi

)
,

the PU capacity constraint is defined by Eq. 5.8 using the normalized execution time of
Eq. 3.5.

∀ Px ∈ P :
〈
~MPx
τ , ~CPxτ

〉
≤ pucx (5.8)

However, this capacity constraint does not consider OS overheads, blocking, contention,
or memory access delays. Thus, instead of the capacity constraint of Eq. 5.8, a utilization
constraint is implemented that considers these additional overheads with the task’s periodic

85



Chapter 5. Constrained Software Distribution & Timing Verification

activation, as shown in Eq. 5.9.

∀ Px ∈ P :
〈
~MPx
τ , ~UPxτ

〉
≤ 1 with UPxτi =

(
C+
i,x +B+

i + L+
i (com)

Ti

)
+Ox

(5.9)

For a correct utilization, it is important that all values have the same time unit, e.g.,
picoseconds. The accumulated worst-case blocking B+

i and label access delays L+
i (com)

are outlined in Eq. 5.28 and 5.30, respectively. They consider both locally shared resources,
i.e. pi-blocking, and globally shared resources , i.e. s-blocking. Under Autosar, the latter
are usually protected by spinlocks and have a much higher influence on task execution and
response times due to busy waiting. The calculation of s-blocking Bs

i for a task τi is
outlined in Eq. 5.24, data access costs are defined in Eq. 5.30, and the calculation of
memory contention is presented in Eq. 5.25. These delays are accounted for along with
execution times C+

i,x (cf. Eq. 5.33) and OS overheads on PU Px denoted Ox in Eq. 5.9. The
additional overheads Ox on a PU Px are assumed to be produced by OS tasks, scheduling
overheads, context switches, etc. and are accounted for via static constants. An example
for such overheads is a task scheduler that consist of computation items that are required
for each task invocation. Just as for task execution times, the overheads are summed up
towards one second based on the task periods of every task the scheduler is responsible for.
Additionally, OS overheads have a dedicated model entity in the Amalthea OS model,
provide tick parameters, and refer to APIs or ISRs. The former can be of various types,
such as task activation, event call, Inter-OS-Application Communicator (IOC) read or
write access, request or release resource or spinlock, among others. For each occurrence of
any of those model entities within a runnable’s or task’s activity graph, the corresponding
overhead ticks are normalized to one second via the invoked periodicity and added to Ox
accordingly.

Another constraint to be considered is the costs of data being exchanged between PUs either
on the same ECU or even across ECUs. Since intra-ECU communication is accounted for
within access delays to labels, under the assumption that corresponding data is mapped to
memory accessible from every PU within the ECU, inter-ECU communication is of primary
interest here, which is derived from the amount and delays of bus messages. Data shared
between tasks running on different ECUs requires transmission over a bus and induces
delays denoted as R+

ν , which are outlined in the dedicated Section 5.7.2. Accumulated
inter-ECU communication costs are denoted as ccx for a PU Px and calculated exemplary
according to CAN messages for tasks accessing the same data and running on different
ECUs, i.e. Lτi ∩ Lτj 6= ∅ : i 6= j;MECU

τi 6= MECU
τj . Inter-ECU communication costs

depend on the task to PU mapping MP
τ and label to memory allocation Mm

l . Therefore,
the label mapping approach of Section 5.7 is assumed to be used before retrieving CAN
message delays. For a given label to memory and task to PU mapping, communication
costs are derived from (a) the labels shared across tasks and (b) the normalized label access
delays Lsi (com), which include the access rate Ti, the label size in Byte lsv, and either the
hardware cache line in Byte cld, bit with bwx,d, or data rate drx,d between a PU Px and a
memory md.

Eq. 5.10 outlines the communication cost calculation for a PU Px, which accumulates
the CAN message transmission delays outlined in Section 5.7.2. Here, mappings of tasks
across hardware hierarchies are transitive similar to transitivity of Definition 3.7 so that

86



Section 5.3. Affinity Constraints

MECU
ra = j ⇒M τ

ra = i;MP
τi = x;MECU

Px
= j.

cc+
x (MP

τ ) =
∑
ϕ

R+
ν (ϕ) with ∀ϕ : MECU

esϕ
6= MECU

etϕ
;MP

esϕ
= x (5.10)

The total communication cost across all PUs is then cc+ =
∑

x cc
+
x . The condition of

Eq. 5.10 regarding ϕ is the requirement on message delays Rν(ϕφ) between PUs across
ECUs connected through a bus (inter-ECU communication). The network message delays
depend on the bus type, and calculating response times of CAN messages is presented in
Section 2.6.2, respectively Eq. 5.69. A message ν is derived from the written label set of a
task for labels read by any other task on a different ECU.

To ensure timeliness for all network messages, the constraint of Eq. 5.11 ensures that all
network message response times are lower or equal to their deadline. Once again, deadlines
are assumed to be implicit and hence derived from the task’s period sending the message.
It must be noted here that the notation response does not relate to a response message
rather than the time difference between the message’s ready time, i.e. the message is
queued at the message controller, and the message’s successful transmission time.

∀ϕ : R+
ν (ϕ) ≤ Dν(ϕ) with MECU

esϕ
6= MECU

etϕ
;MP

esϕ
= x (5.11)

For calculating Eq. 5.10 programmatically using CP, either reification (e.g., using
.ifThenElse Choco notation) or boolean variables are required that are used in
combination with the task to PU mapping variables to estimate the communication costs
for a given mapping. For instance, adding a CAN message to the communication cost
calculation of Eq. 5.10, requires that the corresponding tasks are mapped to different
ECUs. Along with using the Choco library, boolean variables were found more efficient.

Finally, to reduce the solution space and speed up the resolution process, a lower bound
on PU utilization can be added by using the following equations 5.12 and 5.13 (notably
similar to partitioning equations 4.18 and 4.19).

∀ Px ∈ P :
∑
i

MPx
τi · Ci,x ≥ lbP (5.12)

∀ Px ∈ P :
∑
i

MPx
τi ≥ 1 (5.13)

In addition to the feasibility check using utilization constraints, timing verification and
RTA are required to verify that response times are always lower than the tasks’ deadlines,
which guarantees schedulability. This verification is part of Section 5.4.

5.3 Affinity Constraints

Affinity constraints in terms of Amalthea are outlined in Section 3.1.6 and formalized
in more detail here. Pairing and separation constraints are the main affinity types and
stretch over different software (left stack in Figure 5.1) as well as hardware abstraction
levels (right stack in Figure 5.1).

87



Chapter 5. Constrained Software Distribution & Timing Verification

Lower Level

Higher Level

Runnable

Task

Processing Unit

Microcontroller

ECU

System

SWC

Tag (e.g. ASIL)

pair / separate

Figure 5.1: Affinity constraint levels

Any software entity or set of entities from the left can have an arbitrary pairing to or
separation from an entity or set of entities of the hardware abstractions on the right. These
constraints include the lowest functional level (runnables) over task and up to application
levels for the software as well as the lowest hardware level for PUs over microcontroller to
ECU- and system levels. For generality purposes, any abstraction levels are denoted as swa
and hwa in the following for software abstraction and hardware abstraction, respectively.

A pairing Φhwa
swa = {swa, hwa}; swa = {swai, ...};hwa = {hwaj , ...} is implemented such

that for all entities in swai ∈ swa, the relative complement indexes of hwaj i.e. hwa′j must
be 0 as shown in Eq. 5.14.

∀ i with swai ∈ Φhwa
swa : M

hwa′j
swai = 0 (5.14)

For separation constraints, the constraint implementation is even easier, since no target
set relative complement has to be found as shown in Eq. 5.15.

∀ i with swai ∈ Φswa|∅ : M
hwaj
swai = 0 (5.15)

The following example gives a quick look into applying the constraints to a SWC.

Example 5.1: SWC Pairing

Assuming a SWC pairing constraint for SWC = {τ1, τ3} with a micro controller
µC = {P2, P4} within a system that provides four PU in total (ΦµC

SWC = {SWC,µC}),
the pairing constraint imposes MP1

τ1 = 0;MP3
τ1 = 0;MP1

τ3 = 0;MP3
τ3 = 0, since

hwa′j = {P1, P3}, i.e. all indexes not in hwaj , respectively hwa′j = P \ hwaj with
hwaj ⊂ P.

The abstraction levels of Figure 5.1 manifest in hierarchies, i.e. a tag is a set of SWCs
or other groups, a group / SWC is a set of tasks, which is a set of runnables. The
pairings are then applied to the lowest levels, i.e., runnable and PU set-wise.

Taking the same example as separation constraint ΦSWC|µC = {{τ1, τ3}, {P2, P4}},
the constraint imposes MP2

τ1 = 0;MP4
τ1 = 0;MP2

τ3 = 0;MP4
τ3 = 0.

A typical use case for a separation constraint is the separation of a highly critical task from

88



Section 5.3. Affinity Constraints

an interfering task using the same hardware, e.g., a FPU, an I/O interface, or similar.

In addition to software entity pairing with, respectively, separating from hardware entities,
the target hardware group can remain empty within such constraint to separate or pair
software entities disregarding any hardware. Such pairing has been found useful in
industrial projects for, e.g., event chains, functionally strong connected software, or FFI
requirements. However, since no strict target is defined, statically removing solutions from
the solution space as done in Eq. 5.14 and Eq. 5.15 is not possible. Dynamic approaches
using CP can be implemented either by applying reification (.reifyWith()), If-Then
constraints, which impose reification, element constraints, or expressions to derive, e.g.,
task sets for every PU index x, exemplarily shown in Listing 4.1, line 11 for the runnable
partitioning. The latter uses equal (.eq) expressions for setting M τx

ra = M τ
ra = x?1 : 0, i.e.

coupling the boolean matrix with integer mapping values. Once again, index i is used for
software abstraction entities, and PU-independent pairing is shown in Eq. 5.16.

∀ swai ∈ Φ∅swa : MP
swai = x with x ∈ [1, u] (5.16)

Accordingly, the separation constraint without hardware entities is shown in Eq. 5.17.

∀ swai ∈ Φswa|∅ : MP
swai 6= x with x ∈ [1, u] (5.17)

The constraints can be applied recursively through the hierarchies down to runnables,
but as of task to PU mapping, the lowest software abstraction level is defined by tasks.
The main difference to the constraint referring a hardware entity is that some software
entity values are just constrained to have the same value, but not a specific value. The
constraints above mostly show inequality equations but their implementation does not
necessarily require arithmetical constraints using (=, 6=,≤,≥, <,>) operators and instead
use, e.g., .allDifferent(MP

swai) for separation constraints or .Member(MP
τi ,hwaj) for

PU pairing constraints.

Finally, another affinity constraint is implemented that ensures the existence of a hyper
period for PU’s task set. This constraint is outlined in Excursus 2 and allowed to be
violated if the activation parameters are too diverse.

Excursus 2: Hyper-periods

Scheduling tasks that are part of a hyper period was, and still is, a common practice
in industrial, automotive application development. Using hyper periods is not only
involved with legacy software, which, by the time it was developed, hardly could be
timely verified otherwise, but also beneficial for more humanly reasoning of cause and
effect chains. The corresponding analysis includes verification, which can be covered
solely by considering a hyper period, i.e., the least common multiple of all activation
values, which is by a considerable magnitude lower than its pendant, i.e., a time frame
by the length of all tasks periods’ multiplication.

As a consequence, another optional constraint is implemented for considering a hyper

89



Chapter 5. Constrained Software Distribution & Timing Verification

period existence as shown in Eq. 5.18:

∀ τi with MPx
τi = 1 : ∃ v · Ti = Thx; v ∈ N; Thx <

∏
i

Ti (5.18)

By replacing MPx
τi = 1 with MP

τi = x, the constraint can be applied to one PU or a
subset of PUs. Eq. 5.18 states that each task τi of a task set mapped to a PU Px
must reference an activation that is part of a hyper period set, i.e. a least common
multiple exists for all activation periods on a PU, that is lower than the multiplication
of all periods. In other words, a hyper period is the least common multiple of a set of
periods, so that a single integer (v) exists for every period that results in the hyper
period when being multiplied with every period (v · Ti = Thx). Such validation can
be used to lessen the pessimism of RTA approaches such as [219] and examine WCRT
values for scheduling approaches for a given task to PU mapping set.

Given the above and the previous sections’ constraints, the CP-based task to PU mapping
can already be executed. However, results may only be feasible but not schedulable.
Consequently, the following Section 5.4 presents the timing verification mechanisms and
CP application for typical automotive software.

5.4 Timing Constraints and Verification

Since an environment determines the pace of software execution, timing verification
according to various timing constraints is crucial to guarantee a safe, correct, efficient,
and requirements satisfying system. In the following, such timing constraints are outlined,
and corresponding analysis techniques are defined and applied to Amalthea models and
its notation of Section 3.2. More precisely, analysis techniques include the investigation of
blocking and contention delays (cf. Section 5.4.1) as well as schedulability along with CPU
WCRTs for RMS as an FPPS example (cf. Section 5.4.2), which are further extended by
reaction, propagation, and age latency constraints across implicit and LET communication
for task chains (cf. Section 5.5) and RTA for mixed CPU-GPU environments in Section 5.6.

5.4.1 Blocking and Memory Contention

Data operations can be delayed in multi-PU and shared memory environments due to
mutual-exclusive access to a specific memory. Various hardware interfaces may be mutually
exclusive too, but here, the focus is on simultaneous access from different PUs to the same
memory, which results in delays due to contention for at least one PU [223]. Specifically,
memory blocking is often also referred to as the average miss penalty [175]. Such CSs
require appropriate protection or access techniques to ensure correct and deterministic CS
usage and hence avoid race conditions. With the locking concept of, e.g., semaphores, such
mutual exclusion can be addressed, and as a consequence, blocking delays can be accounted
for during the timing verification process. If no explicitly modeled Amalthea semaphore
is used to protect a CS, the access time between the PU executing the corresponding task
and the memory the labels are mapped to, as well as the label sizes, are used to derive the
blocking delay.

Before the blocking delays are formally presented, the actual critical section windows must
be defined. A CS window is denoted as wCS and either depends on a specific label (cf.

90



Section 5.4. Timing Constraints and Verification

Eq. 5.19) or a semaphore access (cf. Eq. 5.21) as part of a task’s activity graph agi.

wCS(τi, lv) = ↓x,d ·
⌈
lsv
clx

⌉
with MP

τi = x; d =

{
Mm
lv

for com = ε

local memory of Px for com = ι ∨ λ
(5.19)

w+
CS(τi) = max

lv∈↓τi
wCS(τi, lv) with

lv ∈
{
CSΦ

τi =
(
Lτi ∩ CSΦ

)
for s-Blocking

CSΘ
τj : τj ∈ lp(τi) ∧MP

τi = MP
τj for pi-Blocking

(5.20)

Here, CSΦ
τi is the intersection of labels accessed by task τi and labels contained in

the set of global critical sections CSΦ, i.e. CSΦ
τi =

(
Lτi ∩ CSΦ

)
and ∀lv ∈ CSΦ :

l∈Lτi∩Lτj with MP
τi 6= MP

τj . As a reminder, ε stands for the explicit communication model
and ι, λ for implicit and LET communication paradigms. In the worst-case scenario, every
label access is fraught with contention due to other PUs being granted access to the same
shared label first under the assumption that cross PU memory accesses are granted in
FIFO fashion.

With semaphores, Amalthea provides protecting entire parts of a runnable’s or task’s
execution graph. Therefore, Eq. 5.21 accumulates all activity graph item costs cagij ,i,x
that are located in the activity graph sequence between locking a semaphore Semk and
unlocking it.

wCS(Semk, τi) =
∑

agin∈agi:(lock(Semk)≺agin≺unlock(Semk))

cagin,x with MP
τi = x (5.21)

w+
CS(Sem, τi) = max

k
wCS(Semk, τi) (5.22)

Activity graph items are shown in Figure 3.2, second column, and can be transformed to
time values based on Definition 3.2 and Eq. 3.6. Given that the execution of code is a
often a multitude higher than memory accesses, the time value of Eq. 5.21 is usually much
higher than the time value of Eq. 5.19.

In addition to resource blocking, non-preemptive blocking, which results in priority-
inversion, must be analyzed, too, due to Autosar potentially allowing cooperative and
preemptive task types. Cooperative tasks can be preempted immediately by higher priority
preemptive tasks or at runnable bounds by higher priority cooperative tasks such that any
cooperative task τi : pti = c can be blocked by at most the longest runnable of any lower
priority cooperative tasks on the same PU.

Furthermore, CS accesses are assumed to only happen at a task’s response time or period
under the assumption that labels are copied into local (cache) memory and written back
to shared memory at response time or period for implicit and LET communication,
respectively. Reading data from memory is henceforth assumed to be potentially concurrent
without memory protection. Concurrent read accesses make blocking investigation much
easier since data blocking may only occur once for every task execution instance.

Based on the assumptions mentioned above, blocking in Autosar is categorized into the
following types, which require a distinct label mapping d = Mm

lv
as well as distinct runnable

and task mappings M τ
ra and MP

τi .

91



Chapter 5. Constrained Software Distribution & Timing Verification

1. Local direct blocking Bpi: A high priority task τ1 wants to acquire a lock, which
is already hold by a low priority task τ2. Both tasks run on the same PU. Task τ1 is
locally blocked by task τ2. The locks are called semaphores and the arbitration protocol
suspension-based [77, p. 55]. This blocking type is also known as pi-blocking [29, 224].

2. Global direct blocking (non-preemptive) Bs: A task τ1 holds a lock, which task τ2

wants to lock from a different PU. Task τ2 is blocked remotely by task τ1 and actively
spins to acquire the lock. The lock is called spinlock and the protocol spinning-based.
In [224], this blocking type is referred to as s-blocking.

3. Non-preemptive blocking caused by cooperative tasks Bnpc: A cooperative task
is blocked due to a lower priority cooperative task is executing a runnable.

4. Non-preemptive blocking caused by ignored preemption Bnp: A task is blocked
due to a lower priority task being executed and preemption is ignored.

5. Memory Contention Bmc: A task is blocked by the label it is trying to access due to
the label being already accessed by a task running on another PU. The memory access
policy is assumed to be ordered in a FIFO queue for PUs.

The following blocking types are often addressed in related work, but do not apply to work
of this thesis as described accordingly.

(a) Local push-through (indirect) blocking based on PCP: A task is blocked due
to a higher priority task being directly blocked by a low priority task via priority
inheritance. Since OPCP/HLP does not inherit priorities, this local indirect blocking
is not necessary for PCP.

(b) Local ceiling blocking: A task τ1 is blocked by a lower priority task τ2 that inherited
τ1’s priority due to chained blocking risk. This situation is also only necessary for PCP,
not OPCP / HLP.

(c) Local indirect blocking caused by globally blocked tasks: A task τ1 is
preempted by a higher priority task τ2 locally, which is globally blocked on a spinlock
hold by a task τ3 on another PU. Indirect blocking is already accounted for during
RTA, since direct local and global blocking is added to WCETs (cf. Eq. 5.33), and
preemption time frames (higher priority tasks’ interference on lower priority tasks)
are considered in RTA equations.

(d) Global indirect blocking: A task is blocked on a globally shared resource hold by
another task, which is preempted or blocked on a different (nested) resource. Since
nesting is not allowed and interrupts are disabled for running tasks running a global
CS, this blocking type does not apply to Autosar and work of this thesis.

Blocking situations (a), (b), and (d) do not have to be considered in Autosar, since
according to the Autosar OS specification [47]:

(i) OPCP (HLP) does not inherit priorities,

(ii) global CSs are always non-preemptive41,

41While running in a spinlock protected CS, interrupts are assumed to be suspended, i.e., a task working
with a spinlock protected resource can not be preempted

92



Section 5.4. Timing Constraints and Verification

(iii) nesting spinlocks should be avoided in general.

If necessary, the Autosar specification requires tasks to access spinlocks in a specific
order, free of cycles and deadlocks.

With the CS windows and blocking types being sorted out, the local and global blocking
delays can be defined and calculated for tasks. Assuming OPCP and that multiple low
priority tasks (index j) sequentially lock different semaphores (index k), during which
multiple activity graph items are called (index n, Eq. 5.21), the higher priority task is
locally blocked at most a single maximal critical section length Bpi

i as shown in Eq. 5.23.

Bpi,+
i = max

j∈lp(i)
wΘ
CS(τj)

with MP
τj = MP

τi ∧ wΘ
CS(τj) = max

(
max
k

wCS(Semk, τj), w
+
CS(τj)

)
and Semk ∈ agi

(5.23)

Here, the maximal CS window length is based on either the semaphore locking from Eq. 5.21
or the label contention from Eq. 5.19.

Having the LET and implicit communication paradigms in mind, the CS window length
should be increased to the execution time of a runnable, because any shared label
update in between runnables’ executions would be overwritten without protecting the
shared labels and eventually cause data inconsistencies. For instance, preemption may
cause a high priority task’s result to be overwritten by a lower priority task after being
resumed, which copied data much earlier than the high priority task. However, this would
drastically increase the spurious effect of blocking times and hence implicit and LET-based
communications allow using shared resources concurrently given that data progression is
much easier to trace (strict points in time to write data into shared memory) and control.
If specific shared resources must still be locked for safety purposes, semaphores should be
added to ensure corresponding mutual exclusion.

For deriving the global s-blocking delays, spinlocks, used in Autosar to protect globally
shared resources, are assumed to be granted in a FIFO fashion [31] and implemented via
semaphores. The worst-case global blocking time is then the sum of maximal semaphore
locking times across other PUs for every semaphore lock window, as shown in Eq. 5.24.

Bs,+
i =

∑
k:Semk∈agi

 ∑
y\MP

τi

max
j:Semk∈agj∧MP

τj
=y

(wCS(Semk, τj))

 (5.24)

Other spinlock types than FIFO-ordered spinlocks have been studied in [35] but are out
of scope here. Because Eq. 5.24 distinguishes between both CS lengths and corresponding
maximal interference for each of the CSs, the s-Blocking computation forms a precise
blocking analysis for Amalthea models, which is finer-grained than, e.g., an integer
multiple of the worst-case CS accesses time of lower priority tasks based on the amount of
CS accesses used in [60].

In addition to s-blocking and pi-blocking, which rely on semaphore implementation,
additional delays must be accounted for when shared data is accessed from shared memory
and not protected by semaphores. These delays stem from memory contention across PUs,

93



Chapter 5. Constrained Software Distribution & Timing Verification

and they are dynamically calculated using different (i) source PUs, (ii) target memories,
(iii) accesses delays, and (iv) data from different tasks shown in Eq. 5.25.

Bmc,+
i =

∑
lv∈CSΦ

τi
:Mm

lv
6=LRAMx

 ∑
y\(MP

τi
=x)

max
j:lv∈CSΦ

τj
;MP

τj
=y

(wCS(τj , lv))

 with |Plv \ Px| ≥ 1

(5.25)
Here, Plv is the set of PUs that execute at least one task accessing label lv, LRAMx is
the local RAM of Px, and task τi is mapped to PU Px, i.e., MP

τi = Px. This contention
equation significantly improves the contention calculation of [30], since

(a) varying label accesses of different tasks,

(b) various access latency values between different PUs and memories,

(c) only shared labels (CSs),

(d) varying label sizes,

(e) dual-ported LRAM42,

(f) arbitrary baseline parameters, and

(g) FIFO memory arbitration [31]

are considered.

Calculating blocking delays caused by cooperative tasks only applies to those of the
corresponding preemption type, i.e., τi : pti = c, and it is defined by the longest runnable
of other lower priority cooperative tasks mapped to the same PU as shown in Eq. 5.26.

Bnpc,+
i = max

a
(ca,x) : M τ

ra = j; ptj = c (is cooperative) ; i 6= j;MP
τi = MP

τj = MP
ra = x

(5.26)
For ignoring preemption entirely, the worst-case non-preemptive blocking is defined by the
most prolonged task running on the same PU as shown in Eq. 5.27.

Bnp,+
i = max

j
Ci,x : MP

τi = MP
τj = x ∧ ptj = np (is non-preemptive) (5.27)

Eq. 5.27 usually applies to OS tasks following Autosar and the blocking time is
outlined here for reasons of integrity, but the investigated models (cf. Chapter 6) do
not include such model entities. In a mixed-preemptive environment, both above outlined
blocking times are combined to Bmp

i = maxj∈lp(i)(max(Bnp
j , Bnpc

j )). Both cooperative
and non-preemptive blocking delays must be accounted during RTA via an increased
level-i window and adjusted equations for task start and end times as provided in [62],
which is analyzed in the following Section 5.4.2. Generally, since only either local
resource, cooperative, or non-preemptive blocking can interfere locally with a task, Eq. 5.26
and Eq. 5.27 are included in Eq. 5.23 as additional parameters of the outer max term
Bpi,+
i = max

(
maxj∈lp(i)w

Θ
CS(τj), B

npc,+
i , Bnp,+

i

)
.

The following Example 5.2 gives an overview of the typical pi- and s-blocking delays.

42Labels mapped to LRAMx can be accessed concurrently from PU Px and the crossbar

94



Section 5.4. Timing Constraints and Verification

Example 5.2: Local and Global CS Blocking

Given are three tasks running on the same PU with descending priority
T = {τH , τM , τL}, with arrival times OH = 3,OM = 2,OL = 0 and
activity graphs agH = {tick, tick, CS2, tick}, agM = {tick, CS1, tick}, agL =
{tick, CS1, CS1, CS1, tick, tick, CS2}. Figure 5.2 shows the Gantt chart for the
execution of these three tasks. Arrows pointing up denote a task arrival.

𝜏! Executing

𝜏" CS1 Access

𝜏# CS2 Access

Bpi,1 Bpi,2
CH

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 5.2: Local blocking example

Here, the CH length is the direct preemption of τL by τH , which is part of the RTA
calculation and also affects the response time of τM . Bpi

1 is the local blocking of τM
by τL, which continues after the preemption CH as Bpi

2 . The example shows a total
pi-blocking to τM of two ticks caused by τL. The worst-case situation, which results
in Bpi

τM = 3, arises with τM arriving one tick earlier. Since CS2 is accessed by at most
a single tick by τL, the total local blocking imposed to τH is 1 correspondingly.

The same example is shown in the following Figure 5.3, with the minor derivation that
all tasks are running on different homogeneous PUs (τH → P1, τM → P2, τL → P3).
Here, task τH is preempted on P1 for one time instant after one tick due to an
additional hypothetical task on P1. This adaption has been made to show the worst-
case blocking situation to τH , which is imposed by τL at time instant 6 for a single
tick. Furthermore, τM is blocked by τL for one cycle at time instant 3. Since τL
actually occupies CS1 for three cycles, the worst-case global blocking to task τM is
Bs,+
τM = 3.

P1 Bs,2 Executing

P2

P3

Bs,1
CS1 Access

CS2 Access

Blocking
1 2 3 4 5 6 7 8 9

𝜏!

𝜏"

𝜏#

Figure 5.3: Global blocking example

95



Chapter 5. Constrained Software Distribution & Timing Verification

Finally, pi- and s-blocking as well as memory contention delays are accumulated for
retrieving a single blocking delay value imposed to a task via Eq. 5.28.

B+
i = Bpi,+

i +Bs,+
i +Bmc,+

i (5.28)

Equations 5.23–5.27, i.e. memory contention latency and blocking values, are considered
as Bi during the task mapping DSE process as part of the RTA for CPUs, which is further
outlined in the next Section 5.4.2 (Eq. 5.34). These techniques are used in Autosar for
ensuring mutual exclusive memory access across PUs globally and tasks locally. According
to GPUs, a dedicated model is presented in Section 5.6 Eq. 5.56.

5.4.2 CPU Response Times and Schedulability

To formally verify that all tasks meet their deadlines, formal methods can be used to derive
WCRTs that must be smaller than the tasks’ deadlines, as shown in Eq. 5.29. These formal
methods include appropriate RTA that can be applied to Amalthea models as outlined
in the following.

∀i : R+
i (S) ≤ Di

∀z : Ri,z ≤ Di
(5.29)

Here, S denotes a solution, i.e. a runnable to task partitioning, task to PU mapping, and
label to memory mapping (cf. Definition 5.11). An important assumption for calculating
response times as well as event chain latency values across a networked environment is the
incorporation of varying instruction values (cf. Definition 3.2). This becomes of major
importance not only when considering heterogeneous PUs, but especially for executing
complex image processing applications, which significantly benefit from GPUs regarding
execution time.

As stated in Section 2.6.2, the RTA used in this thesis is based on the critical instant
introduced by Liu and Layland in [53], extended first by Lehoczky for arbitrary deadlines
in [38], later on by Tindell and Clark in [136] for holistic RTA, and by Keskin et al. in [225]
for preemption threshold scheduling, which is incorporated via its revision of Buttazzo et
al. in [59]. New adjustments of this thesis include the incorporation of precise label access
delays Eq. 5.30, copy operations caused by implicit and LET communication paradigms
Eq. 5.32, and various blocking types of Eq. 5.28 into Eq. 5.33.

Before the RTA methodology is presented, some adaptations to a task’s execution
time must be outlined first. Based on several aforementioned assumptions, a task’s
actual execution time not only depends on (a) its instructions on a PU (cf. Eq. 3.6),
but also on (b) the latency of accessing data, (c) the contention that may occur for
accessing unprotected shared resources, and the blocking of either (d) cooperative (or
non-preemptive) lower priority tasks or (e) critical section accesses. The execution time
for instructions is covered by Ci,x whereas the factor (c) is accounted for in Bi. Hence,
only the label access latency must be defined since neither communication costs ccx nor
edge costs ec(ϕ) presented in Eq. 5.10 and 4.6 account access delays for a single tasks
based on a communication paradigm. Accordingly, Eq. 5.30 is presented, whereas the
communication paradigm com ∈ (ε, ι, λ) can be either explicit, implicit, or LET-based.
Implicit and LET paradigms both copy data into local memory at the beginning of
their execution and write back labels either at the end of the task execution for implicit
communication or at the end of the period for LET. Thus, the label access costs for implicit

96



Section 5.4. Timing Constraints and Verification

(ι) and LET (λ) communication shown in Eq. 5.30 must be advanced with copy in/out
latency parameters Lcio,i, which is further shown in Eq. 5.32. Equations 5.30–5.32 assume
MP
τi = x ; mdl being the local memory of Px ; Mm

lv
= d; and Mm

lw
= d′.

Li(com) =



∑
lv∈↑τi

(
↑#i,v · ↑x,d ·

⌈
lsv
clx

⌉)
+
∑

lw∈↓τi

(
↓#i,w · ↓x,d′ ·

⌈
lsw
clx

⌉)
, if com is ε

Lcio,i +
∑

lv∈↑τi

(
↑#i,v · ↑x,dl ·

⌈
lsv
clx

⌉)
+
∑

lw∈↓τi

(
↓#i,w · ↓x,dl ·

⌈
lsw
clx

⌉)
, if com is ι ∨ λ

(5.30)

If an access delay (e.g. read ↑x,d) is given in instructions, its time value is calculated just
as for task instructions as given in Eq. 3.6, e.g., 50 instructions on a 200MHz PU with 1
instructions per cycle: ↑x,d= 50

200∗106Hz
= 250ns. Li(com) can further be normalized to

one second, denoted Lsi (com) by considering a task’s period as shown in Eq. 5.31.

Lsi (com) = Li(com) · 1012

Ti
with Ti in ps (5.31)

Since LET and implicit communication induce additional copy operations, Eq. 5.32
provides the delay calculation for (i) reading read labels from any memory location they
are mapped to, (ii) writing the same into local memory, (iii) reading all written labels from
local memory, and (iv) writing the same to their original location.

Lcio,i =
∑
lv∈↑τi

(
(↑x,d + ↓x,dl) ·

⌈
lsv
clx

⌉)
+
∑
lw∈↓τi

((
↑x,dl + ↓x,d′

)
·
⌈
lsw
clx

⌉)
(5.32)

Given all possible blocking delays, data access costs based on different communication
paradigms, and execution times derived from an instruction set of a task, the total worst-
case execution for a task on a CPU C+,CPU

i,x can be calculated, which is shown in the
following Eq. 5.33. Finally, the total WCET influenced by (a)–(e) is shown in Eq. 5.33.

C+,CPU
i,x = C+

i,x +B+
i + Li(com) (5.33)

Based on Eq. 5.33, the first constraint covers the feasibility test shown in Eq. 5.9 based on
a utilization constraint, implemented to quickly sort out invalid solutions during the DSE
process.

Classical RTA for mixed-preemptive fixed-priority tasks using recurrence relation [62]
incorporates mapping decisions and varying instruction sets correspondingly as shown in
Eq. 5.34 with R0,+

i,x = C+,CPU
i,x .

Rz,+i,x = C+,CPU
i,x +

∑
h∈hp(i)

⌈
Rz−1,+
i

Th

⌉
· C+,CPU

h,x (5.34)

As defined in Section 3.2, R+
i,x denotes the WCRT of task τi on PU Px. However,

Eq. 5.34 requires that the worst-case situation happens at the critical instant, which
denotes the simultaneous release of all higher priority tasks at the same time the task
under investigation is released. The critical instant can be used with RMS, but when

97



Chapter 5. Constrained Software Distribution & Timing Verification

considering arbitrary deadlines, the level-i busy period method is required, expressed in
the following section.

WCRT for Arbitrary Deadline Fixed Priority Mixed-Preemptive Scheduling

Based on Lehoczky’s work [38], which is applied to Amalthea in [62], and revised
for mixed-preemptive task sets in [59], the WCRT for Fixed-Priority Mixed Preemptive
Scheduling (FPMPS) using arbitrary deadlines, i.e. a task’s deadline and response time is
allowed to be greater than its period Di ≥ Ti, Ri ≥ Ti, can be calculated using the level-i
busy period window, which assumes that the worst-case response time may not necessarily
occur at the critical instant but within the busy period. Based on Eq. 5.33, the level-i
busy period length is derived by Eq. 5.35 using recurrence relation and the initialization
wi,x(0) = Bmp

i + C+,CPU
i,x . This includes the local and global blocking as well as memory

contention accounted for with C+,CPU
i,x as of Eq. 5.33 and the blocking delays of cooperative

and non-preemptive tasks via Bmp
i .

wi,x(q) =Bmp
i +

∑
h∈hep(i)

⌈
wi(q − 1)

Th

⌉
· C+,CPU

h,x

with q ∈ [1, n] ∩ N : wi,x(n) = wi,x(n− 1)

(5.35)

Here, hep(i) includes all tasks (task indexes) of higher priority than τi and τi itself too
(hep = higher and equal priority). Consequently, the number of task jobs that need to be
checked for the worst-case situation is Zi =

⌈
wi,x(q)
Ti

⌉
. During the busy period wi,x(q), the

worst-case finish time of a task instance (job) is calculated using Eq. 5.36.

f+
i,x(z) =

∑
h∈hp(i)

⌈
f+
i (z − 1)

Th

⌉
· C+,CPU

h,x + z · C+,CPU
i,x (5.36)

And finally, the worst-case response time for a fixed priority mixed preemptive task with
an arbitrary deadline is defined in Eq. 5.37 as the maximal time interval between the job’s
release and finish time over all jobs within the busy period.

R+,CPU
i,x = max

z∈[1,Zi]

(
f+
i,x(z)− (z − 1) · Ti

)
(5.37)

Equations 5.35–5.37 are derived from [62], respectively [59], and depend on a partitioning
as well as task and label mappings (cf. Def. 5.11). The initialization of f+

i,x(0); s+
i,x(0)

are in line with the references, i.e., f+
i,x(0) = s+

i,xCi,x and s+
i,x(0) = Bmp

i +
∑

h∈hp(i)Ch,
respectively. The advancement over [62] and [59] presented here is the fine grained
incorporation of various resource blocking delays (Bpi, Bs, Bmc) and the application to
a multi-PU ECU network (Bmp considers PU mapping and hence applies to an entire
Autosar system rather than a single PU) based on data available through Amalthea.

For mixed-preemptive tasks, the level-i window length and the finish time calculation are
added with blocking delays by the maximal lower priority non-preemptive runnable Bnpc

or task Bnp, which has also been used in [62]. Non-preemptive sections may result in the
self-pushing-phenomenon, i.e., high priority tasks being released during a non-preemptive
lower priority task pushing everything ahead such that higher delays of subsequent tasks
arise. Hence, not only the level-i busy window is required, but also a slight adjustment of

98



Section 5.5. Task Chain Latency Analyses

response time analyses based on preemption thresholds [62], denoted $ so that Eq. 5.36 is
advanced to Eq. 5.38.

f+
i,x(z) = s+

i,x(z) + Ci,x +
∑

h∈$(i)

(⌈
f+
i,x(z − 1)

Th

⌉
−
(⌊

s+
i,x(z − 1)

Th

⌋
+ 1

))
Ch,x

with s+
i,x(z) = Bmp

i +
∑

h∈hp(i)

(⌊
s+
i,x(z − 1)

Th

⌋
+ 1

)
Ch,x + z · Ci,x

(5.38)

Assigning equal thresholds to tasks based on the highest priority across all cooperative tasks
results in the original Eq. 5.36. However, as shown in [59], a careful threshold assignment
is necessary to avoid deadline misses, e.g. the approach by Saksena and Wang in [226].

5.5 Task Chain Latency Analyses

Task Chain Latency Analysis (TCLA) and corresponding bounds on worst-case data
propagation and cause-effect chains is just as important as meeting task deadlines for
automotive systems. Therefore, related work, assumptions, and definitions are given in the
following Section 5.5.1 and Amalthea-based approaches to calculate the various latency
values are given in Section 5.5.2. Assumptions and definitions include implicit and LET
communication paradigms, which are part of the Autosar-Specification [51], as well as
data sampling, reaction, propagation, and age delay interpretations.

5.5.1 Related Work, Assumptions, and Definitions on TCLA

The determination of cause and effect chain delays, which is an Autosar timing extensions
term [94], can stretch across abstractions like events, tasks, and even runnables, as well as
call graph items. While end-to-end latency analysis is in general reasonable and possible
across all these abstractions, task chains are in focus in the following, due to typical
automotive requirements mostly refer to tasks such that, e.g., a task chain between a sensor
task to an actuator task with all processing in between must take no longer than x time
units. The motivation of TCLA stems from vehicle body electronics, at which reaction
delays have to be strictly bounded and verified, as well as typical control engineering
applications that necessitate the verification of data age delays [227]. However, related
work often uses varying semantics for the same or similar entities. For instance, Feiertag
et al. define in [227] a reaction delay as an interval between the first initiator and the first
responder of a task chain and an age delay as the time interval between the last initiator and
the last responder of a task chain. A valuable contribution has been presented by Becker et
al. in [228] that identifies the data age constraints as "the most complex timing requirement
in these systems". Becker also considers explicit, implicit, and LET communication for
task chains.

In this thesis and in line with the semantic of the word chain, a task chain γg represents
an ordered sequence of tasks on the same PU (cf. Eq. 5.39) such that no task appears
twice in the chain and for every two subsequent tasks τg,j , τg,j+1, a dependency exists such
that at least one label is written by τg,j and read by τg,j+1, i.e. ∀j ∈ [1, |γg| − 1] : ↓τ(γg,j)

99



Chapter 5. Constrained Software Distribution & Timing Verification

∩ ↑τ(γg,j+1) 6= ∅ (cf. path, Eq. H.13).

Γ ={γ1, ...}
γg ={τg,1, ...}
τg,j =j-th task in task chain γg

(5.39)

Consequently, in contrast to a task DAG, a task chain is a serial sequence of tasks with no
fork or join dependencies. Accordingly, a task chain also represents data propagation and
a cause-effect chain. This definition is in line with [62, 87, 115, 214, 228–230]. Davare et al.
differ slightly in [231] by allowing different paths, but the proposed calculation stays the
same by adding up all periods and response times. Schlatow et al. mention in [230] that
task chains do not necessarily have to propagate data through labels and can be arbitrary.
In general, Schlatow et al. are correct with the assumption, and concepts presented in this
thesis generally also apply to task chains without data propagation. However, the main
purpose of timing constraints for task chains is to bound data propagation delays and
hence cause-effect chains, which form important requirements for developing automotive
systems and hence are of concern in this thesis. In contrast to [227], the work presented
in this thesis assumes a single (distinct) initiator for a task chain instance.

Definition 5.1: Task Chain Initiator

A task chain initiator is the first task of a task chain (entry task).

τg,1 = initiator of γg = {τg,1, τg,2, ...} (5.40)

A task chain instance is initiated by its initiator, and as a consequence, the number of
initiated task chain instances within an arbitrary time interval t equals the number of
its initiator’s periods, i.e. z(γg, t) =

⌊
t

Tγg,1

⌋
. Potentially, every task chain initialization

can propagate data to the task chain’s responder (cf. Definition 5.2) but over- (cf.
Definition 5.4) and under-sampling (cf. Definition 5.3) may result in newer or more recent
data that dominates the former task chain instance.

Definition 5.2: Task Chain Responder

A task chain responder is the last task of a task chain (exit task).

τg,n = responder of γg = {τg,1, τg,2, ..., τg,n} with n = |γg| (5.41)

Each of the task chain instances can have multiple responding tasks, such that early and
late reaction delays can be derived. Related work also often refers to event [115, 232], cause-
effect [62, 228] or data chains [229] rather than task chains [214, 230]. However, the concepts
mostly apply to the TCLA of this thesis, since just the abstraction level or notation differs.
Data sampling denotes the propagation of data between two entities, e.g., tasks. Due to
the fact that tasks can have varying periods across the task chain, propagation between

100



Section 5.5. Task Chain Latency Analyses

task chain entities can be over- or under sampled such that a task’s result (a) serves as an
input for several subsequent task chain entity instances or (b) does not serve as an input
at all due to the fact that the subsequent tasks already use newer results produced by new
task instances. Corresponding definitions are given in Definition 5.3 and 5.4.

Definition 5.3: Under Sampling

The situation when a source task is executed more than once before its successor
executes is denoted under-sampling.

Under-sampling results in some data produced by a source task not being used throughout
the rest of the task chain at all, since newer data produced by the same task is already
available.

Definition 5.4: Over Sampling

When a target task executes more than once before its predecessor provides new results,
data produced by the predecessor task is oversampled, and the situation is denoted
oversampling.

Oversampling results in the same data being used multiple times by a target task and is
the only reason that reaction and age latency values of a task chain can differ.

As a next step, latency types must be defined, i.e. reaction (cf. Definition 5.5) and age
latency (cf. Definition 5.6).

Definition 5.5: Task Chain Reaction Latency ρg

The time between a task chain’s initiator arrival to the first task response of the task
chain’s responder is denoted as task chain reaction latency. This delay can differ
for each task chain instance, such that the worst and best-case latency values can be
analytically derived.

In other words, a task chain’s reaction time latency is the earliest time data traverses a task
chain from an entry task to an exit task. By analyzing a task chain’s worst reaction latency
based on Definition 5.5, time-critical delays can be verified, such as the delay between a
brake pedal sensor activation and a brake actuator task.

101



Chapter 5. Constrained Software Distribution & Timing Verification

Definition 5.6: Task Chain Age Latency αg

The time between a task chain’s initiator arrival to the last task response of the task
chain’s responder is denoted as task chain age latency. The next execution instance
(job) of the task chain’s responder uses data produced by a newer, i.e., later, task chain
initiator.

When analytically bounding the worst-case task chain age latency, a responder task can
be guaranteed to use data produced at most the specified time value ago. Definitions 5.5
and 5.6 are in line with [115, 228] but not with [30, 227, 232] since the latter use multiple
initiators.

Definition 5.7: Data Age Latency αlv

The duration a label version persists in memory is denoted as data age latency.

A data age constraint is typically applied for, e.g., control engineering applications, to
guarantee that data is regularly updated within at least the specified time bounds. Usually,
data (a label) age latency is defined by the lowest period of tasks writing to the label shown
in Eq. 5.42.

αlv = min
i
Ti : lv ∈↓τi (5.42)

If the label under consideration is written by more than one task, the interleaving periods
of tasks writing to the label usually result in a significantly lower average data age delay.
For all data age constraints, the analyzed data age must stay below a specified value as
shown in Eq. 5.43.

Φlv ,↓ = {lv, tspec} : αlv ≤ tspec (5.43)

The three latency types data aging (αlv ,ι assuming lv ∈↓τi), task chain reaction (ρg,ι), and
task chain aging (αg,ι) are shown exemplary for implicit communication in Figure 5.4 based
on an example T = {τi, τj , τk}; γg = {τk, τj , τi};Ti = 15;Tj = 20;Tk = 30. Further Gantt
charts based on the same example are given in the appendix at Section H.7 for outlining
different communication, worst- and best-case, and varying period situations.

For deriving a task chain end-to-end latency, assumptions towards communication
paradigms must be made, which define at what point in time data is read from and
written to memory. Although Autosar provides three major paradigms in general, namely
explicit, implicit, and LET communication, only the latter two are considered in this thesis
due to being more used in industrial applications and their benefit of eased timing analysis.
While explicit communication allows random access to labels at any point in time, implicit
communication strictly reads all labels at the beginning of the accessing entity’s execution
and writes labels at the end of its execution. LET spreads these memory accesses even
further as labels are not written at the end of an entity’s execution, but at the end of its
period. These paradigms are proposed as challenges in [31] and have been studied in, e.g.,
[34, 212].

102



Section 5.5. Task Chain Latency Analyses

WC BCWC

Ri
-

!i

!j

!k

Ti Ri
+

"lv
+

#g,!
"g,!

"lv
-

BC

$g={!k,!j,!i}

Figure 5.4: Example Gantt chart on task chain reaction and aging as well as data aging
latency

Definition 5.8: Implicit Communication ι

Implicitly communicating entities, e.g., tasks, copy all read labels into local memory
at the beginning of their execution (release time) and write written labels into shared
memory by the time their instructions finished execution.

Implicit communication follows read-execute-write semantic [31].

Definition 5.9: LET Communication λ

To ease data propagation analysis, tasks under LET communication always read labels
at a task’s arrival time and write written labels after the task’s period, i.e., at the
arrival of the task’s next job.

Explicit data accesses result in high uncertainty about data propagation across tasks,
runnables, or task chains. No assumptions are made such that data accesses can
occur at arbitrary points in time. Due to having no memory copy overheads, explicit
communication can result in rapid data propagation across tasks sharing data. However,
the crucial disadvantage of explicit communication is the aggravated analysis of data
propagation along cause and effect chains over arbitrary time intervals. Hence, the
Autosar consortium decided to use implicit and LET communication, such that explicit
data access analyses are omitted in this thesis. TCL assessment for LET, which decouples
computation and communication, is targeted in [31] as part of the WATERS Fmtv
challenges, and addressed in [32–34, 212] with the result that the overhead imposed by LET
is neglectable. LET significantly reduces latency deviation and jitter, and has been used

103



Chapter 5. Constrained Software Distribution & Timing Verification

in the industry [212]. Isolating computation from communication is a practical approach
to reduce shared cache conflicts, bus contention, shared cache contention, buffer conflicts,
and request reordering processes in the memory controller [233].

5.5.2 Identifying Task Chain Latency Bounds

This section outlines calculations required to bound age and reaction delays of task chains
for implicit and LET communication. Examples on various worst and best-case situations
regarding LET and implicit communication for age and reaction delays are presented in
the appendix Section H.7 along with three tasks in Figures H.2–H.11. More precisely,
Figures H.2–H.11 show Gantt charts for task chains, respectively A: worst-case age latency
on increasing periods and implicit communication; B: early worst-case reaction latency
on increasing periods and implicit communication; C: best-case reaction and worst-case
age latency on decreasing periods and implicit communication: D: worst-case age and
reaction latency on decreasing periods implicit communication; E: worst-case age latency
on alternation periods and implicit communication; F: worst-case reaction latency on
decreasing periods and LET communication; G: best-case reaction latency on decreasing
periods and LET communication; H: worst-case reaction latency on increasing periods
and LET communication; I worst-case age and reaction latency on alternating periods and
LET communication; and J: best-case reaction latency on increasing periods and LET
communication.

The association between Figures H.2–H.11’ examples, latency types, and communication
paradigms is given in Table 5.1.

ρ+
ι ρ−ι α+

ι ρ+
λ ρ−λ α+

λ

γ1 B / H.3 C43 / H.4 A / H.2 H / H.9, I44 J / H.11 H / H.9
γ2 D / H.5 C / H.4 E45 / H.6, C F / H.7 G / H.8 I44 / H.10

Table 5.1: Association between Figures H.2–H.11’s task chain examples and
corresponding latency types as well as communication paradigms

Figures H.2–H.11 assume implicit deadlines derived from task periods, and response
times being arbitrary, but lower than the period. Black arrows denote worst-case data
propagation, light gray arrows represent data propagation of a different task chain
instance, dotted arrows denote best-case data propagation, and dashed arrows represent
the propagation of data produced by a succeeding task instance that dominates data of
the task chain in focus. The latter situation is shown in Figure H.9 and increasing periods
can be observed that result in over-sampling and not every task chain instance provides a
distinct output. Furthermore, diagonal filled boxes indicate the execution of a task at a
specific point in time, necessary for the corresponding task chain to be valid, i.e. a worst-
case situation to not dominate data used in the task chain under analysis (e.g. (C): the
second job of task τk must execute at the end of its period such that τj uses data from τk
produced 2 · Tk ago).

The best-case reaction delays are presented first. Since best-case age delays are not

43The best-case reaction delay is the same across varying task periods.
44The period of τj H.9/ H.10 has been reduced to 10 to show a difference in α and ρ.
45The period of τk is used twice (replaces τi) to show the situation of alternating periods.

104



Section 5.5. Task Chain Latency Analyses

of interest and do not provide meaningful information to be used during developing
automotive systems, corresponding analysis is omitted here. The best-case task chain
reaction latency for implicit communication can be calculated by considering the
sum of all task’s best-case response times within task chain γ = {τ0, ...}, as given in
Eq. 5.44.

ρ−g,ι =
∑
j

R−j + 1 : τj ∈ γg (5.44)

The best-case task chain reaction latency is shown in Figure H.4.

For LET communication, the calculation (best-case task chain reaction latency based
on LET) is similar to Eq. 5.44, except replacing the response time with the period, since
communication via shared data only takes place at each task’s period. The equation is
shown in Eq. 5.45 for Figures H.8 and H.11 accordingly.

ρ−g,λ =
∑
j

Tj + 1 : τj ∈ γg (5.45)

To guarantee that written data is read by a task chain’s successor, the best-case equations
add a single time value (+1), which is also shown in a single time value between tasks in
Figures H.4, H.8, and H.11.

The worst-case task chain reaction latency value calculations are nearly the same
for implicit and LET communication as shown in Eq. 5.46 and 5.47, whereas the latter
replaces the response time with the period due to the same reason mentioned for Eq. 5.44
and 5.45.

ρ+
g,ι =

∑
j

R+
g,j +

j=|γg |∑
j=2

(min (Tj , Tj−1)) (5.46)

Eq. 5.46 assumes that data is read at the beginning of a task’s arrival since the jitter
between arrival and release can vary for every task job and hence a more tight task
chain reaction latency bound can not be provided. Compared with the calculation of task
chain reaction delays presented in [234], Eq. 5.46 uses min(Tj , Tj−1) instead of Tj only,
since data propagation is not only constrained by a single task, but also its predecessor,
whereas the worst-case situation depends on the lower period, e.g., the first task τi shown
in Figure H.3 on the one hand, but also the second task τj in H.5, on the other hand.
Additionally, Eq. 5.46 does not consider best-case response times as done in [83] (from all
found reaction calculations, [83] is the closest to equations used here), as the worst-case
reaction slightly differs from (last-to-first) L2F semantics in [83]. In fact, [227] and [83] use
different semantics, especially for L2F, L2L since the former refers to specific input and
output intervals and the latter to data propagation. This thesis uses the reaction notation
defined in [115], which defines the time between a task chain’s initiator arrival and the
first responder’s finish time. This definition is also denoted as L2F in [83]. An age latency
is the last finish time of a task chain’s responder before the next responder job uses data
produced in a newer task chain instance. This definition is denoted as L2L in [83].

The worst-case task chain reaction latency for LET communication assumes that
for every two consecutive tasks in the task chain, the target task just started execution
when the source task wrote its results. As a consequence, every result (task write process)
is delayed by two periods, except for the initiator task, which is accounted for with a single

105



Chapter 5. Constrained Software Distribution & Timing Verification

period as shown in Eq. 5.47.

ρ+
g,λ = Tg,1 +

j=|γg |∑
j=2

(2 · Tj) with τj ∈ γg (5.47)

Equations 5.46 and 5.47 hold for Figures H.3 and H.5 for implicit communication as well
as H.7, H.9, and H.10 for LET.

Next, the most straightforward approach of getting the worst-case task chain age
latency is to consider two consecutive task chain instances and assume the worst-case
reaction for the second one. Then, by adding the period of the initiator to the worst-case
reaction delay and subtracting the response time of the responder, the worst-case age delay
can be calculated, as shown in Eq. 5.48.

α+
g,ι = Tg,1 + ρ+

g,ι − Tg,|γg | (5.48)

In Eq. 5.48, ’−Tg,|γg |’ comes from ’−R+
g,|γg | − (Tg,|γg | −R+

g,|γg |)’. As shown in H.2 and H.4,
increasing or decreasing periods have no effect on the age latency derivation.

When calculating the worst-case age delay for LET communication, the response time
must be replaced with the period for the responder task as well as the communication type
for the reaction delay to LET, i.e. λ, from Eq. 5.48, as shown in Eq. 5.49.

α+
g,λ = Tg,1 + ρ+

g,λ − Tg,|γg | (5.49)

Finally, instead of task chain propagation, data propagation delays are also of interest
during the development of automotive systems. Therefore, entities reading a particular
label and all succeeding entities that depend on those reading entities must be considered.
For instance, in Figure H.2, any read label by task τi (e.g., label A) influences the entire
task chain. Even if other entities in the task chain do not use the label, the results
(other labels) can be influenced by the computation based on label A. Consequently, data
propagation can be calculated for all entities reading the label set X, and all entities with
any dependency to set X. This approach results in a vast amount of data propagation
paths and requires DAGs, i.e., no cyclic dependencies. In general, every possible path of a
task DAG could be transformed into a task chain and Eq. 5.44–5.49 can be applied to all
of those paths to investigate data propagation on a holistic level.

Furthermore, data propagation can also be related to both, a specific task chain and
dedicated data. If the label is read at the task chain’s source entity, then the data
propagation equals the task chain reaction latency. If the label is read in between tasks
of the task chain, by e.g. Task τj from Figure H.2, the data propagation is lower than
the task chain reaction, since it excludes Ti, respectively R−i , across equations Eq. 5.44,
Eq. 5.45, and Eq. 5.46. Dedicated data propagation calculation is a matter of finding the
shortest (best-case) and longest (worst-case) path over a DAG that consists of response
time or period-weighted vertices. In this thesis, propagation delays are considered for task
chains only and data-dedicated analysis is omitted here.

To add task chain age and reaction delay constraints to the solution space investigation
of the mapping process (cf. Section 5.2), the following Eq. 5.50 is applied, which uses Φγg

across age α and reaction ρ delays as well as implicit ι and LET λ communication in the

106



Section 5.6. GPU Timing Verification

form of a specified deadline for the task chain γg in, e.g., picoseconds.

∀g :


ρ+
γg ,ι ≤ Φρ

γg ,ι

ρ+
γg ,λ
≤ Φρ

γg ,λ

α+
γg ,ι ≤ Φα

γg ,ι

α+
γg ,λ
≤ Φα

γg ,λ

(5.50)

In addition to task chain delays, runnable event chains may also be of interest and provide
a fine-grained analysis of data propagation [34]. A runnable event chain reaction latency
defines the time it takes for data (i.e. a label or set of labels) to propagate to the end of the
chain, respectively from the initiator runnable to the responder runnable (notation in line
with Definition 5.1 and 5.2). However, [34] is based on a different assumption regarding
propagation, reaction, and age latency values. In line with [115], a runnable chain latency
only differs from TCL results when assuming explicit communication. For implicit and
LET communication, data only propagates at task response time or period bounds, which
includes all data accessed by runnables, which are part of the task’s activity graph. Hence,
runnable event chain delays are out of scope here. For explicit runnable communication
and corresponding delay analyses, the approach of Martinez et al. [34] can be used.

5.6 GPU Timing Verification

Recent development activities in the automotive domain have risen challenges when
applying RTA, memory contention analysis, and data access latency estimation to
Autosar compliant models, including GPUs. The WATERS community published
a corresponding challenge in 2019 [30]. This community established along with the
ECRTS conference and has been working on solving various challenges since 2010,
whereas specifically automotive challenges are outlined since 2015 [187], such as worst-
case end-to-end latency derivation along complex cause-effect chains [128], communication
paradigms [31], WCET / WCRT for advanced shared memory architectures [62], optimized
application mapping, and sophisticated models for multi-core execution platforms.
Mapping tasks to PUs to optimize various metrics increase complexity and require
appropriate advancements to conventional formal RTA methods. Metrics have to address
a) task chain reaction and aging delays, b) response times under the consideration of costs
induced by offloading instructions to GPUs and copying data to GPU dedicated memory
regions across highly heterogeneous hardware architectures with different memory types,
processing speeds, peripherals, accelerators, and more, and c) the use of sophisticated
memory contention models. The proposed challenge [30] can be tackled by advanced
RTA for mixed-preemptive tasks under FPMPS running on CPUs using the windowing
technique of [38] and [225] combined with WRR RTA for GPU tasks [36]. Additionally,
delays produced by GPU CE operations and differences of asynchronous and synchronous
GPU offloading mechanisms must be accounted for. The challenge has been addressed
in [87, 88, 214], and [19], whereas the latter is presented in the following.

Instead of using WRR scheduling RTA for the GPU, Capodieci et al. exemplary show
in [235] how EDF policies can be applied to the Nvidia TX2 platform, which is in the focus
of the WATERS2019 challenge. They also show that the use of GPUs in automotive
systems is reasonable and provides significant benefits over using CPUs only. They

107



Chapter 5. Constrained Software Distribution & Timing Verification

compare the schedulability ratio with the original Nvidia scheduler as a function of task set
utilization and different time slice lengths. Therefore, the host, i.e., GPU dispatcher that
schedules copy, computation, and graphic engine operations, is triggered by a new software
scheduler to implement EDF policies. Results show that trading performance for real-time
requirements significantly increases schedulability. Unfortunately, contributions are not
publicly available, so that approaches to derive response times presented here remain in
line with [30], i.e., WRR as well as NVidia TX2 Rule-based Scheduling (TX2RS) based
on [236]. The latter forms an alternative approach to WRR and is based on information
revealed in [236]. This alternative is presented in Section 5.6.2 using the Nvidia-specific
scheduling rules to avoid invasive software dispatching in addition to the host scheduler as
of [235].

Recent research also identifies various pitfalls for executing time-sensitive tasks on a
GPU [237]. Especially explicit (user-defined) and implicit (API defined) synchronization
causes unclear blocking delays due to kernels waiting for others to start, operations
preventing concurrent kernel execution, or CPU tasks being blocked even though
asynchronous offloading is issued. Although Multi-Process Service (MPS) overcomes many
of those issues as stated in [237], MPS is not available for the Nvidia TX2 platform such
that work of this thesis assumes running tasks as user-defined streams in a shared address
space. Memory operations such as allocation, set, or copy cannot run concurrently across
streams on the Nvidia TX2 such that the WATERS2019 challenge assumes a single custom
stream per task as well as memory operations being accounted within the tasks’ GPU ticks.

The WATERS2019 challenge model is given as an Amalthea model2 and can be accessed
by the App4mc 5 platform. By using above mentioned assumptions, the WCRTs for CPU
tasks are calculated using the approach presented in Section 5.4.2 and GPU response times
are calculated by using the methodology of the following Section 5.6.

Since (a) Eq. 5.25 already accounts all PUs accessing a label written by a CPU task denoted
with index y and (b) the copy operation is handled by the dedicated CE, no additional costs
must be added to CPU tasks in addition to ticks, preemption, blocking, and contention
interference presented in Section 5.4.2 for CPU task response times.

5.6.1 Copy Engine

Before a GPU task starts executing, the CE needs to copy all accessed labels into
the dedicated GPU region. The CE reads all labels accessed by a task from different
memories, writes them into a dedicated GPU memory location of the global memory, and
after the GPU execution finished, all labels are written back to their original location.
Since this mechanism conceptually corresponds the copy operations for implicit and LET
communication, equations 5.30 5.32 can be reused here by simply replacing mdl with the
dedicated GPU memory region.

The resulting data copy flow is then CE↑x(GPU),d(lv)
⇒ CE↓x(GPU),d(GPU)

⇒ GPUexecution ⇒
CE↑x(GPU),d(GPU)

⇒ CE↓x(GPU),d(lv)
, i.e. accessed data is read and written for both their

original location and the dedicated GPU region. Eq. 5.51 presents the delay imposed by
reading labels to be copied from their original location md and writing them into GPU
memory md′ as well as reading them from the same location md′ and writing them back

108



Section 5.6. GPU Timing Verification

to where they were read at the beginning md.

CE+
a,i =

∑
lv∈Lτi

⌈
lsv

clGPU

⌉
·
(
↑GPU,d + ↓GPU,d + ↓GPU,d′ + ↑GPU,d′

)
with Mm

lv = d (5.51)

In addition to the actual copy operation time C+
a,i, contention CE+

c,i and queuing CE+
q,i

delays need to be considered. The former is shown in Eq. 5.52 as a function of a label set
to be copied and shared globally as well as varying access delays from other PUs to the
labels’ original location (cf. wCS(τj , lv) Eq. 5.19).

CE+
c,i =

∑
lv∈(↓τi∩CSΦ)

 ∑
x\GPU

max
j:MP

τj
=x

(wCS(τj , lv))

 (5.52)

Due to queuing copy operations at a single CE, no pi-blocking and only s-blocking (caused
by a PU Px in Eq. 5.52) affects the CE.

The CE queuing delay is derived from the maximal copy operations among tasks mapped
to the GPU and triggered from a CPU, as shown in Eq. 5.53, which assumes FIFO-ordered
CE queuing.

CE+
q,i =

∑
x\MP

τi

max
j:MP

τj
=x
CE+

j (5.53)

Given predefined label and task mappings and latency values from each PU to each memory,
the total CE time that sums up label access, queuing, and contention delays is provided
in Eq. 5.54.

CE+
i = CE+

q,i + CE+
c,i + CE+

a,i (5.54)

Equations 5.51–5.54 assume that multiple read accesses can be executed concurrently,
and write operations must always be mutually exclusive. During the implementation
of the CE latency calculation, situations were identified, to which labels were written
back to their original place, but not changed during the GPU execution. Consequently, a
small adjustment of the CE access delay in Eq. 5.51 is implemented, which only accounts
written, i.e., changed labels to be chosen for being written back to their original location.

Example 5.3: CE Time Calculation

Given is a task τ1 that accesses a single label l1 of size 128 Bytes located at
memory m1. The is offloaded to a GPU running at 2GHz. The GPU access delays
are five read cycles and six write cycles for memory m1, as well as seven read
cycles and eight write cycles to access GPU memory. The CE access delay is then

CE1 =
( 128

64 )·(5+6)

2·109 + 2·(7+8)
2·109 = 26ns. Label access times during a task execution are

accounted for within C+,GPU
i . For instance, assuming that label l1 is read three times

and written twice during execution, label access latency Lτ1 =
( 128

64 )·(3·7+2·8)

2·109 = 37ns
is already account for within Ci,x if Px is of type GPU.

109



Chapter 5. Constrained Software Distribution & Timing Verification

5.6.2 GPU RTA based on WRR Scheduling

WRR scheduling applies to the Nvidia TX2 GPU, since offloaded instructions from CPU
tasks enter a run-queue and are then scheduled as channels in round-robin fashion [236].
Therefore, channels have different or equal time slice lengths, three different priorities, and
run non-preemptively. During a WRR schedule, preemption can only take place at time
slice boundaries.

Since notations for executable entities deviate compared to CPUs, GPU semantics are as
follows. An application is subdivided into a single (cf. [30]) custom (user-defined) stream,
which is a queue (sequence) of copy and computation operations, i.e. kernels46. As a
consequence of using custom streams that do not run as a NULL stream [237], kernels
are free from synchronizing with previous ones [30]. A stream is further subdivided into
channels based on a predefined time slice property, such that a hardware WRR scheduler
schedules channels. Due to separate copy and execution engines, copy operations of one
channel may execute concurrently to the kernel execution of another channel since the
usual execution flow follows copy in, execute, copy out. In line with [30], the following
assumptions are made:

1. CPU tasks are scheduled in fixed-priority mixed-preemptive fashion (RTA presented
in Section 5.4.2)

2. Memory access delays for GPUs are already accounted for within a kernel’s ticks,
such that Li is set to 0 for GPU kernels when calculating the execution time (cf.
Eq. 5.33).

3. CPU contention is given in [30] as:

Bmc
i,x = bli,x + (Kx ·#Ci) + sGPU · bGPU (5.55)

with #Ci denoting the number of processors that run at least one task, which accesses
at least one label accessed by τi. The baseline bli,x is derived from a PU’s access
latency to memory, all labels accessed by τi, and the cache line length clx so that
bli,x = Li(com) cf. Eq. 5.30. Kx and sGPU are constants derived from the memory
contention model [238] in conjunction with information given in the forum47. This
Eq. 5.55 has been implemented in favor of Eq. 5.25 for producing comparable results
along with the WATERS community. However, Eq. 5.25 in combination with concrete
labels, label sizes, semaphores, access latency between different PUs and memories,
as well as the PU’s cache line, gives more realistic bounds than Eq. 5.55. Eq. 5.55 only
accounts a single cache line access delay multiplied with the number of PUs accessing
the same data as the task under consideration, and critical sections of semaphores
are not covered at all.

4. GPU contention is given as:

Bmc,GPU
i = blGPU + 0.5 ·#C (5.56)

with blGPU being a 3ns constant for a 64B cache line and #C the number of CPUs

46A kernel represents a GPU task and inherits its notation, i.e. τi is a kernel iff MP
τi = x and Px is of

type GPU
47WATERS forum thread https://bit.ly/2IlLXTe, visited 11.2020

110

https://bit.ly/2IlLXTe


Section 5.6. GPU Timing Verification

offloading tasks to the GPU. Again, this Eq. 5.56 can be advanced by considering
model entity properties as shown in Eq. 5.52 and Eq. 5.53.

5. Copy operations of the CE are handled by the GPU.

6. Data is always transferred in form of an integer multiple of a complete cache line (i.e.
64 Bytes, cf. Eq. 5.25).

7. In line with [30], any memory access-, blocking-, or contention- delays are already
accounted for within the ticks for the GPU kernels48.

8. A GPU kernel’s execution strictly follows the kernels’ time slice lengths, which may
only be shortened by finishing a kernel’s execution at some round-robin turn before
its time slice terminates.

9. As a consequence to the previous item 8, no cooperative or non-preemptive blocking
must be imposed to C+,GPU

i,x . Due to the fact that a GPU utilizes highly concurrent
code, adding non-preemptive policies could significantly reduce concurrency, e.g.
9/10 GPU resources waiting for a slow 1/10 GPU occupying non-preemptive kernel.

10. In line with item 9, cooperative and non-preemptive tasks must not be allocated to
a GPU.

Excursus 3: Round Robin Turn

A Round Robin Turn (RRT) under WRR is the sum of each GPU kernel’s time slice
lengths θi shown in Eq. 5.57.

RRT =
∑
i

θi : MP
i = x;x is GPU (5.57)

After the CE operation time is calculated in Section 5.6.1, WCRTs of GPU kernels must
be evaluated based on WRR scheduling (cf. [30]) using the GPU kernel execution time
shown in Eq. 3.6. Note here that as stated at the previous seventh assumption item 7,
memory access times and blocking delays are accounted for within the GPU ticks already
so that C+

i,x is used instead of CCPU,+i,x , respectively no Li and Bi instructions are included.
The execution time can also be normalized towards one second via Eq. 3.5. The work
of this thesis includes the implementation of RTA described in [36] for WRR scheduling
apart from the specific burst stimulus consideration, which is not part of the model in
scope. The implementation makes use of the windowing-technique proposed by Lehoczky
in [38] to check for the WCRT of kernels with arbitrary deadlines within the busy period
derived from the critical instant, i.e., the situation when all kernels arrive at the same
time. The algorithm considers interference of other kernels within a round-robin turn,
kernel interference of the previous round-robin turns, requested execution times until each
time slice window, periodic kernels with different execution times and time slices to derive

48Local and global resource blocking (pi- and s-blocking) would impose high real-time uncertainty and
it is nearly impossible to derive predictable scheduling that includes blocking delays in a highly concurrent
GPU system [237].

111



Chapter 5. Constrained Software Distribution & Timing Verification

accurate round-robin timing behavior without much pessimism. The following calculation
of a GPU kernel response time R+,GPU

i (q) is further explained in [36], whereas I(q) denotes
the interference of the analyzed task with other tasks, during the q-th window.

RGPU
i (q) = q · C+,GPU

i + I(q)− (q − 1) · Ti
RGPU,+
i = max

q
RGPU
i (q)

(5.58)

The essential benefit of this approach and its analytical calculation is its work-conserving
manner that considers the cases of kernels not utilizing their entire time slice, such that
round-robin turns vary in length over time. An example Gantt chart in line with the
example of [36], except considering burst stimuli, is given in the Appendix H.9.

Since copy operations are performed by a dedicated CE, no label copy in/out costs induced
by the communication paradigm must be accounted for GPU kernels, i.e. Lcio,i = 0 if
MP
τi = x and Px is GPU (cf. Eq. 5.32 and Eq. 5.30).

To optimize the task to CPU-GPU mapping, a GA is implemented that includes potential
task allocations to the GPU. The GA is configured to either optimize (a) the response
time sum across all tasks and kernels, (b) task chain reaction or age delays, or (c) load
balancing. For every solution, various metrics can be measured, such as individual and
accumulated response times, the PU utilization values and their consolidated standard
deviation, memory accesses delays, task chain reaction and age delays, the CE operation
time, and contention delays, each of which can be considered for worst- and best-case
execution times, different communication paradigms, and synchronous or asynchronous
offloading delays. In terms of schedulability, the simple utilization test of Eq. 5.3 is added to
the GA chromosome validation to traverse the solution space more quickly. This validation
especially sorts out kernel sets for the GPU that exceed the GPU’s computational resources.

The consideration of synchronous and asynchronous GPU offloading operations is presented
in Section 5.6.4 right after the following Section 5.6.3 that presents a WRR scheduling
alternative that covers more properties of GPU kernels for the Nvidia TX2 platform, i.e.,
blocks, grids, and threads. The alternative, denoted as TX2RS, primarily reflects existing
knowledge and insights about real-time properties discovered for the Nvidia Jetson TX2
hardware, which is in focus of the WATERS2019 challenge.

5.6.3 GPU RTA based on Nvidia Jetson TX2 rules

Apart from WRR scheduling, commercial and proprietary details of the Nvidia TX2
scheduler, which is the target platform of the WATERS2019 challenge, are investigated
in, e.g., [236, 237, 239]. Assuming run-to-completion policy on the GPU, its execution
engine is never preempted and no interference has to be considered under TX2RS. Instead,
advanced properties, semantics, and notations have to be outlined for GPU instructions
when considering properties provided by Nvidia. A kernel τi, consist of a single grid of
blocks gi = (x × y). A single block ba,b with a ∈ [1, x]; b ∈ [1, y]; a, b ∈ N consists of
another grid of bi = (i× j) threads. As a consequence, a kernel consists of gi · bi = x ·y · i · j
threads and its sequential execution time based on instructions is calculated via Eq. 5.59.

CTX2R
i,x =

Ci · gi · bi
fx · κx

(5.59)

112



Section 5.6. GPU Timing Verification

CTC2R,s
i,x = CTX2R

i,x · 1012

Ti
with Ti in picoseconds (5.60)

A kernel’s utilization is given by UTX2R
i = Ci·gi·bi

Ti
, such that the GPU utilization can

be derived as UPx =
∑

τi:MP
τi

=x

UTX2R
i . Due to finding an optimal number of threads per

kernel being a challenging process as various publications show, e.g., [240–243], the
following assumes equal thread numbers per kernel and a single symmetric multi-processor
potentially serving 4096 threads. Threads are scheduled in warps, which represent a group
of 32 threads, by the warp scheduler. Nvidia developers recommend using block sizes 128,
256, 512, or 1024 since these values are more likely to take full advantage of the GPU
resources as stated in [244, 245]. Although providing a wide range of memory types, e.g.,
global-, constant-, texture-, block-shared-, thread-local-, and thread-register memories, as
shown in Table 5.2, the WATERS2019 model does not contain this granularity. Due to
this lack of information, memory access latency values used in the following are based on
the simplified version from [30], i.e., using constant read and write access latency values
for Global Random Access Memory (GRAM) and cache memories.

Memory Properties Scope Lifetime
Global R/W, slow, big Grid Application
Texture ROM, fast, optimized for 2D/3D processing Grid Application
Constant ROM, fast, constants Grid Application
Shared R/W, fast, on-chip Block Block
Local R/W, slow, used if registers are full Thread Thread
Registers R/W, fast Thread Thread

Table 5.2: Overview of Nvidia TX2 GPU memory types, properties, scope, and lifetime

The following additional assumptions are used to ease RTA for TX2RS:

1. The TX2RS scheduler’s FIFO run-queue is filled with entire kernels49.

2. A single symmetric multiprocessor SM is assumed for the Nvidia TX2 platform such
that the maximal number of threads that can be allocated in the SM at some point
in time is bmax = 4096.

3. All blocks have the same amount of threads: ∀τi : bi = b with MP
τi = x and Px being

a GPU (bi is a kernel’s block height in Figure 5.5).

4. Kernels can have different numbers of blocks gi (gi ·b is the kernel height in Figure 5.5)
as well as different block execution times (kernel’s block width in Figure 5.5).

5. Blocks within the same kernel have equal execution time.

6. The maximal number of blocks executing on the GPU is gmax = bmax
b .

7. The number of free blocks at time t is denoted as gf (t).

49Theoretically, a combination of WRR and TX2RS could be implemented that does not assume entire
kernels but kernel time slices as entities in the run-queue. This would manifest in (a) replacing Ci,x with
θi and (b) counting the scheduled time slices (#θ) and instances (activations) for every kernel scheduled
on the GPU such that Algorithm 5.1 stops when #θj · θj ≥ Tj .

113



Chapter 5. Constrained Software Distribution & Timing Verification

8. Kernels are de-queued in FIFO order either immediately (the first kernel(s) at the
queue’s head), delayed, or partially delayed (for a block subset), which depends on
already de-queued running kernels.

9. Later arriving kernel jobs entering the run-queue for being released due to, e.g., their
periodic activation, do not affect the response time calculation due to being behind
the kernel under consideration in the run-queue.

10. To retrieve the WCRT for a GPU kernel, the critical instant is assumed so that
all other kernels potentially running on the GPU are in front of the kernel under
consideration τj in the run-queue, i.e. τj is located at the run-queue’s tail and all
other kernels are located before τj . An alternative approach for FIFO scheduling is
given in [246] and could decrease pessimism of the previous assumption. However,
significant adaptation would be required to consider grids, blocks, and threads in
addition to the used τi = {Oi, Ci, Ti, Di} task model in [246].

11. The previous assumption item 10 imposes
∑

i:MP
τi

=x;x is GPU
(Ci · gi · bi) ≤ mini Ti ·gmax

and ∀i : Ci ≤ mini Ti.

12. No kernel exists more than once in a run-queue. Otherwise, implicit deadlines would
be violated.

Alternatively to the worst-case run-queue assumption 10, a hyperperiod existence and
distinct priority-based ordering of kernels for entering the run-queue can be assumed,
which reduces pessimism. The alternative approach results in a distinct run-queue for
the critical instant and lower response times for higher priority kernels compared with
assuming a worst-case run-queue being filled with all other kernels already. However,
the entire hyperperiod must be investigated for finding worst-case response times because
frequent high priority kernels being executed first along with their initial instance may
experience a non-empty run-queue at later instances, which results in increased response
times compared with the initial instance correspondingly. This approach is promising for
being investigated in future work mentioned in Section 8.2.

In contrast to partitioned PU scheduling that assumes a single computational resource
(CPU) for each scheduler shared across tasks over time, GPU TX2RS adds a dimension
by the availability of multiple resources (in form of threads). Hence, TX2RS requires the
gf (t) metric to define the available amount of blocks at some point in time t based on
dispatched kernels (scheduled kernels until t). Figure 5.5 shows exemplary the semantics
of gf (t), gτi , b, and gmax. In contrast to CPU tasks, GPU kernels are a tuple of period,

𝑔! 𝑡" = 4

𝑔! 𝑡#
= 6

𝑔
$
%&
=
6

𝑡" 𝑡#
𝐶'!

𝑔 '
!
'𝑏 𝜏"

𝑔'! = 2

𝑏

Figure 5.5: Semantics of available blocks at different points in time on a GPU

114



Section 5.6. GPU Timing Verification

execution time, grid size, and block size, respectively τi = {Ti, CGPUi , gi, bi}. The following
Algorithm 5.1 constructs a complete worst-case schedule to find a GPU task’s WCRT.

Algorithm 5.1: Nvidia TX2 Response Time Algorithm
Data: Tx with ∀τi ∈ Tx : MP

τi
= x, Px is GPU

Result: Ri,x∀τi ∈ Tx and R+
j,x

1 initialize ta = 0; gf = gmax; rq = {T : τj = rq[|T |] i.e. queue tail};h = ∅;
2 let e denote the index for entries in h such that he[1] is the first value of the e-th entry in h;
3 while rq contains τj do
4 let τi denote the head of rq
5 if gf (ta) ≥ gi then
6 Ri,x = ta + Ci; /*set response time for τi*/
7 add (fi, gi) to h; /*update the current schedule*/
8 gf = gf − gi; /*update the available blocks*/
9 dequeue τi from rq;

10 else
11 gi = gi − gf ; /*update required blocks of τi*/
12 add (ta + Ci, gf ) to h; /*update the current schedule*/
13 index = e : he[1] = minx hx[1]; /*find next available blocks*/
14 ta = hindex[1]; /*update current time*/
15 gf = hindex[2]; /*update the available blocks*/
16 remove hindex from h;
17 end
18 end
19 R+

j,x = R|rq|,x;

A good way to traverse the stages of this Algorithm 5.1 is using an example, which is
shown in Example 5.4.

Example 5.4: TX2R Scheduling

The following example of Figure 5.6 is used to illustrate the progression of
Algorithm 5.1. The input is defined by T = {τ1 = {15, 4, 2, 512}, τ2 =
{15, 8, 2, 512}, τ3 = {15, 2, 4, 512}, τ4 = {15, 5, 7, 512}}, the run-queue is filled
chronologically, i.e. rq = {τ1, τ2, τ3, τ4} and the response time to be found is
R+,GPU

4 . The result schedule is shown in Figure 5.6, which is constructed iteratively
by Algorithm 5.1.

𝜏!,#

𝜏#,!

𝜏!,!

𝜏$,! 𝜏%,!
𝜏#,#

𝜏$,#

𝜏$,$

𝜏$,%

𝜏%,#

𝜏%,$

𝜏%,%

𝜏%,&
𝜏%,'

𝜏%,(

Figure 5.6: Nvidia TX2 schedule example & trace of Algorithm 5.1

115



Chapter 5. Constrained Software Distribution & Timing Verification

The first three while loop iterations (cf. Algorithm 5.1 line 3, rep. rows # 1–3 in
Table 5.3), are straight forward since gf (ta) ≥ gi is true such that Algorithm 5.1
lines 6–9 are executed, which results in h = {(4, 2), (8, 2), (2, 4)}. In the fourth
iteration, no free threads are available, such that Algorithm 5.1 lines 11–16 are
executed. In fact, τ4 must be split into three regions for being completed, which is done
by four times executing Algorithm 5.1 lines 11–16 and once executing Algorithm 5.1
lines 6–9 as shown in the following trace Table 5.3.

# ta gf gf ≥ gi? gi h Ri
1 0 8 y 2 h = {(4, 2)} R1 = 4

2 0 6 y 2 h = {(4, 2), (8, 2)} R2 = 8

3 0 4 y 4 h = {(4, 2), (8, 2), (2, 4)} R3 = 2

4 0 0 n 7 h = {(4, 2), (8, 2), (5, 0)} −
5 2 4 n 3 h = {(8, 2), (5, 0), (7, 4)} −
6 4 2 n 1 h = {(8, 2), (7, 4), (9, 2)} −
7 5 0 n 1 h = {(8, 2), (9, 2), (10, 0)} −
8 7 4 y − h = {(8, 2), (9, 2), (10, 0), (12, 1)} R+

4 = 12

Table 5.3: Example TX2RS WCRT algorithm trace for Figure 5.6

Bold highlighted values in h of Table 5.3 indicate the value pair used in Algorithm 5.1
line 13 to find the next closest possible start time for the current kernel to be scheduled
or a block subset of the same.

Hence, Algorithm 5.1 calculates response times for a given run-queue and the WCRT for
the last entry in the run-queue. For calculating WCRTs across all kernels, Algorithm 5.1 is
applied to n = |Tx| run-queues, so that every kernel is located at a run-queue’s end once,
i.e. ∀i ∈ [1, n] ∃! rqi : τi = rqi[n] with i ∈ N;n = |Tx|;MP

τi = x;Px is GPU . Furthermore,
the order of kernels in the run-queue can influence a kernel’s response time, such that meta-
heuristics can potentially be used to identify a worst-case run-queue order. However, due
to lack of required information such as blocks, threads, or warps in the available model,
the investigation of worst-case run-queue orders is omitted here, just as the comparison of
TX2RS RTA for the evaluation Chapter 7.

5.6.4 CPU-GPU Response Times

In 2011, Lakshaman already mentioned in [247] that the use of GPUs in real-times systems
is likely to increase in the future. Corresponding research has still open challenges, which
are outlined, e.g., in [30] to analyze not only mapping entire tasks to GPUs as kernels, but
also to investigate offloading instructions to a GPU either synchronously or asynchronously.
Therefore, a CPU task (I) starts execution on a CPU, (II) triggers the GPU by starting
(II.a) data copy operations for the CE and (II.b) instructions for the execution engine,
(III.a) waits for the GPU to finish the offloaded computation or (III.b) suspends to yield
PU resources to other tasks on the same CPU, and (IV) continues execution on the CPU
either (IV.a) using results of the offloaded and finished GPU instruction set or (IV.b) not
using job-related GPU results. Distinguishing (III.a)/(III.b) and (IV.a)/(IV.b) is necessary
since in the synchronous offloading case, the triggering CPU task actively waits until the
GPU finishes its instructions, which is not the case for asynchronous offloading. On the

116



Section 5.6. GPU Timing Verification

one hand, the waiting yields an immediate propagation of data due to no synchronization
being required. On the other hand, CPU cycles are wasted during the active waiting
period. To avoid wasting CPU cycles, the CPU computing resources can be exploited
by other tasks when asynchronously offloading instruction sets to the GPU. However, this
asynchronous offloading requires additional synchronization efforts to ensure the offloading
task’s progression using results of the offloaded (GPU) instruction set. The two different
concepts are shown in Figures 5.7 and 5.8 for synchronous and asynchronous offloading,
respectively.

GPU

CPU PRE Task2

GPU

active wait POST Task3

𝑅!!𝑅!"𝑅!#

Figure 5.7: Synchronous GPU kernel offloading without copy operations

passive wait

GPU

CPU PRE Task2

GPU

aoc POST Task3

asynchronous offloading costs

𝑅!! 𝑅!" 𝑅!#

Figure 5.8: Asynchronous GPU kernel offloading without copy operations

To offload an instruction set to a GPU as a kernel in terms of Amalthea, an offloading
CPU task must exist50 that follows the structure (a) pre processing (PRE) → (b) trigger
GPU instruction set via inter-process-trigger event → (c) wait & clear events → (d)
post processing (POST). The wait and clear events are only required for synchronous
offloading. If those events are not contained in an offloading task, it is assumed to be
asynchronous. The offloading task Amalthea structure is exemplary shown in Figure 5.9.

Figure 5.9: Amalthea example structure for a CPU task offloading a GPU kernel

50For the WATERS2019 challenge, the naming of offloading tasks follows a
”PRE_TASKNAME_gpu_POST” naming convention.

117



Chapter 5. Constrained Software Distribution & Timing Verification

Since asynchronous offloading, i.e., passive waiting, allows other tasks to execute (cf.
Task2 in Figure 5.8), the throughput is higher for asynchronous offloading compared to
the synchronous case, if the penalty, denoted as Asynchronous Offloading Costs (AOC), is
shorter than the active waiting section. An AOC represents the latency between the end of
GPU kernel and the start of the post-processing phase. Those additional costs are required
to reconstruct the offloading task’s state to the time it was released initially. AOCs usually
occupy less processing resources compared with the relatively longer active waiting period
during synchronous offloading. The structure shown in Figure 5.9 is only required if the
triggered task is mapped to a GPU. Otherwise, the triggering task is obsolete and can
be ignored for RTA. For the task mapping process, this means that only tasks that have
a corresponding offloading respectively triggering task can potentially be mapped to the
GPU. This limitation is another example of pairing or separation constraints, such that
either (a) CPU only tasks must be separated from GPUs or (b) paired with the GPU set.

Synchronous Offloading

The synchronous offloading RTA is implemented using the conventional RTA from
Section 5.4.2 based on Lehoczky’s work [38]. The only necessary adaption for synchronous
offloading is the extension of the triggering task’s τi execution time via using Eq. 5.61.

C+,sync
i,x = C+,CPU

i,x + CE+
i +R+

j,y with τj being triggered by τi (5.61)

In Eq. 5.61, CE+
i is used from Eq. 5.54 for considering CE operations. Here, the CE

always runs sequentially to the execution engine of the same kernel and might be further
delayed due to queuing caused by multiple tasks issuing the CE at the same time. A CE
queuing delay is included in CE+

i and described in Eq. 5.53. Hence, the original execution
time for a task is extended towards the inclusion of the CE time for the triggered task
and its response time at the GPU. The term ’being triggered by τi’ requires an inter-
process-trigger event from τi to τj as part of τi’s activity graph, which is shown as the
fifth element from the top in Figure 5.9.

Asynchronous Offloading

To calculate response times that consider passive waiting for asynchronously offloading
instructions, the triggering task is split into two parts, i.e., PRE (denoted i′) and POST
(denoted i′′) processing tasks. While the former receives every activity graph item’s
execution time until the trigger event, the latter receives all execution time after the trigger
event, including PRE processing costs and the AOC penalty. Additionally, the latter task
obtains an offset value Oi, which equals the PRE task’s length plus the triggered GPU
task’s response time shown in Eq. 5.62.

τi is split into τi(PRE) and τi(POST), i.e., τi′ and τi′′

C+,async
i′,x =

k<n∑
k=1

c+
agii,k

with n = index of trigger event of τi’s activity graph

C+,async
i′′,x =

k=|agi|∑
k=n

c+
agii,k

+ AOCi

Oi′′ = C+
i′,x +R+

j,y with τi triggering τj

(5.62)

118



Section 5.7. Data to Memory Mapping

Due to the additional offset, the existing RTA is extended based on [39] for the
asynchronous offloading approach, in which passive waiting can be utilized by other tasks.
The offset consideration makes use of the imposed interference method since the critical
instant derivation used for the synchronous offloading is not viable when having offsets
for the asynchronous case. Therefore, task sets with the same periodic activation but
different offsets are combined in transactions denoted as Γ = {Γ1, ...} : Γd = {τd,1, ...},
whereas the index d is used as a transaction index. Based on these transaction sets,
a transaction’s imposed interference during an iteratively increasing time interval is
computed (denoted Wd,h(Ri, t)). The iterations on increasing the time interval end via
fix-point lookup for the response time calculation of the task under consideration, i.e.
R+,offs
i,x = R

+,offs(n)
i,x with R+,offs(n)

i,x = R
+,offs(n−1)
i,x . The offset-based RTA using transactions

is used from [39] and available in the appendix H.4. Notations of Equations H.19–H.24 are
derived from [39] and just slightly adapted to fit notations of this thesis.

Asynchronous instruction set offloading to the GPU allows tasks to use the PU resources of
the PU that offloads a task until results of the offloaded instruction sets are available from
the GPU. With the implemented combination of FPPS using the windowing technique
and the offset-based CPU RTA for asynchronous offloading as well as WRR scheduling
for offloaded GPU tasks, timing verification can be investigated for a hybrid CPU-GPU
environment. This timing verification is used for the mapping DSE in a mixed CPU-
GPU environment to guarantee schedulability and both valid and optimized mapping
solutions as well as both synchronous and asynchronous offloading configurations. The
latter is evaluated for the WATERS model in Section 7.3.3 as being the only available
model providing mixed CPU-GPU properties.

5.7 Data to Memory Mapping

Data to memory mapping that includes labels, i.e. shared variables and constants, code,
and OS entities is often assumed to be static and either defined by the system designer
or by default set to affinity locations of software components mainly working with the
corresponding memory. However, optimized solutions can significantly mitigate temporal
costs caused by accessing data distributed across Non Uniform Memory Access (NUMA)
architectures. Therefore, event chains, response times, activation patterns, contention,
and a variety of hardware properties such as memory type, memory size, memory access
type, and memory affinities must be considered. Furthermore, label mapping costs
must be analyzed regarding ECU networks consisting of buses, hardware hierarchies,
and arbitrary connections of ports and hardware entities. Various timing properties
for automotive applications are effected by data to memory mapping, especially in a
typical environment of distributed, heterogeneous, and mixed-critical systems. System
designers may overlook optimal data mapping solutions due to various constraints emerging
from safety, affinity, timing, reliability, fault-tolerance, and similar demands. Since the
modeling of comprehensive system environments is common practice in the automotive
industry, new technologies can automatically cope with such challenges and overcome
manual and error-prone processes by addressing problems on a much broader level using
DSE along with timing verification techniques. For example, centralization effects can
be investigated in early design phases without the need for hardware validation, actual
software implementation, or sophisticated simulation tools.

Figure 5.10 shows a typical constellation of an ECU network subset in the automotive

119



Chapter 5. Constrained Software Distribution & Timing Verification

context. Real-world automotive networks usually consist of significantly more ECUs,

ECU1 ECU2 ECU3 ECU4

LIN CH

P P

P P

P

P

CAN CH

PPP
P

P P

Fl
as

h
EE

PR
O

M
G

R
A

M

M
em

or
y 

C
H

P

P

P

P

P

P

P

SOC1 SOC2
PPP PP

LR
A

M
1

LR
A

M
2

NIC CH

P

P

P P

PP

P

PP PPP PP

P

P

PP

P
P

P

P

P

PP

P

……

…

Connection Handler

Memory

System On Chip

ECU

Legend P Port

Figure 5.10: ECU network example with ports, connections, memories, connection
handler, and hardware structures

which is omitted here for comprehension purposes. The same holds for detailed views
of ECUs 2–4. The example is constructed using the Amalthea hardware model notations
consisting of ports, internal and external connections, connection handlers, memories, and
computational elements on various abstraction levels, e.g., DSP, FPGAs, CPUs, GPUs,
micro-controllers, or similar (cf. Section 3.1.2). Connections within a connection handler
(denoted ’CH’) are shown as internal connections. Ports can be defined as initiators or
responders and can implement interfaces such as CAN, Flexray, LIN, MOST, Ethernet,
Serial Peripheral Interface (SPI), Inter Integrated Circuit (I2C), Advanced eXtensible
Interface Bus (AXI), Advanced High-performance Bus (AHB), or Advanced Peripheral
Bus (APB). ECU1 features five memory instances of four different types as well as two
PUs in Figure 5.10. Due to contention and blocking interference and varying access
delays, execution and response times are significantly influenced by data being located
in different memories, such as global or local RAM, Non Volatile Random Access Memory
(NVRAM), ROM, Electrically Erasable Programmable Read Only Memory (EEPROM),
Flash or similar, and the data sizes, access rates, or the hardware structure. For instance,
the PU on SoC1 can take between 2 and 3 cycles to access LRAM1, whereas accesses to the
Flash memory cache can be 20 cycles or more. While most of the existing research assumes
fixed worst-case memory access costs driven by contention, blocking, and scheduling, a
sophisticated network, as shown in Figure 5.10 comprises a broad heterogeneous NUMA
structure that needs to consider the dynamics of network protocols, connection handler
properties, access patterns, and port interfaces to make memory mapping as effective and
the execution of tasks as efficient, as possible.

Data distribution across different memories of various types while considering access
types, access costs, access rates, contention, blocking, and various hardware properties
to minimize total interference delays is an NP-complete problem [248]. To cope with the
intractability, a GA, a CP approach and a dedicated heuristic are outlined in the following

120



Section 5.7. Data to Memory Mapping

that minimize costs influenced by the data to memory mapping, after revising related work
in the next Section 5.7.1.

5.7.1 Related Work on Data to Memory Mapping

The RTC [249] (cf. Section 2.3.4) toolbox for Matlab provides calculating end-to-end
delays, buffer requirements, response times, or throughput of networked systems, among
others. While RTC can assess real-time properties, deployment feasibility, and more, it
does not provide tools to adjust or optimize a given memory mapping.

Schneider [250] outlines the challenges and requirements of memory management units
for automotive ECUs and investigates approaches of the general-purpose computing
domain regarding protection granularity, memory efficiency, and real-time behavior.
The publication clearly shows the importance and relevance of sophisticated memory
management for the automotive domain.

Kumar et al. [248] present formulations and solutions to the data layout problem, which
is closely related to the label mapping problem of this thesis. In [248], the data layout
problem is addressed via ILP, SA, GA, and a heuristic, whereas work presented here
uses a GA and CP. Another difference is that Kumar et al. take memory stall cycles
as a performance metric, derived from the number of data accesses and the stall cycles,
which do not depend on the size of accessed data. Furthermore, affinity constraints are
not covered in [248], which are crucial for automotive systems. Yet, there are valuable
extensions in [248] such as memory architecture exploration and the comparison of logical
and physical data mapping approaches.

In [251], Broquedis, et al. advance the OpenMP runtime to dynamically perform
thread and memory placement to provide dynamic load distribution under application
requirements and hardware constraints such as affinities. In contrast, this thesis’s
approaches account for memory utilization offline to provide a static mapping, which
complies with the Autosar standard and considers explicitly various timing and network
constraints.

Antony et al. [252] account various memory placements along with access delays and
memory bandwidth assessments on different NUMA platforms running Solaris and Linux.
Although the benchmarks do not cover specific real-time properties, results show that local
placement is not always the best strategy, and sophisticated mapping significantly improves
application performance.

Avissar et al. present a compiler-based approach to automatically partition data for
memory units using binary ILP in [253]. The used system model is close to this thesis’
model and corresponds to the minimization of label mapping costs MCl. Nevertheless,
this thesis’s contribution goes beyond [253] via considering Autosar related constraints,
analyzing response times, and incorporating sophisticated network structures containing,
e.g., the CAN bus.

Along with the WATERS community, label mapping optimization is the third part
of the WATERS2016 [128] and the fourth part of the WATERS2017 [31] challenges.
However, presented solutions are more rudimental than this thesis’ approach due to
distinguishing between local, remote, and global memory only and having homogeneous
access delays across PUs i.e., nine cycles to global and remote as well as one cycle to

121



Chapter 5. Constrained Software Distribution & Timing Verification

local memory. In contrast, by considering arbitrary access delays and hierarchies of
memories, this thesis’s approach provides an Amalthea-based data mapping solution
with increased generality. Solutions of the WATERS community are presented as follows
with short solution descriptions, whereas all approaches lack network delay consideration,
heterogeneous memory access delays, and GPU interference.

• In [82] and [32], shared labels are mapped to global memory and labels only accessed
by one task are mapped to the local memory of the PU the accessing task is mapped
to. This straightforward procedure misses minimized temporal interference and
results are especially ineffective if memory limits are reached and frequently accessed
or huge shared data chunks are allocated to local memory.

• In [84], a greedy label mapping algorithm is proposed that maps all labels to global
memory and secondly maps labels to local memory in descending order of label access
number divided by the period (access rate) based on a label index, a memory index,
and the memory size. Albeit avoiding arbitrary allocations for reaching memory size
limits, this greedy algorithm maps labels to global memory if the memory with the
highest access rate is already fully utilized, although there could be another local
memory that may reduce access delays even further, and hence the algorithm misses
optimal label mappings, too. In general, due to the greedy structure, the approach
may also miss global optima.

• In [85], a GA and an ILP solution to the label mapping problem are presented.
The approach is close to this thesis’s solution since response times are taken as an
optimization goal, and memory contention is considered as well. However, the model
in [85] only considers local and remote access delays, and no memory size constraint
is considered.

• In [86], a greedy label mapping is presented that considers memory size, access rates,
hyper periods, and minimizes contention. Even though this seems quite reasonable,
response time optimization, including network delays and heterogeneous memory
access delays, gives more realistic and usable solutions in terms of timing efficiency.

Before starting to outline the advanced label mapping approaches, some assumptions must
be noted as follows.

• A PU’s local memory is dual-ported so that both the PU and the crossbar can access
the local memory at the same time. Consequently, contention effects only remote
PUs.

• Data progression between runnables of the same task is considered through local
(private) memory.

• LET and implicit communication based Copy-in and copy-out operations are
implemented as CSs.

These assumptions are in line with [33], memory contention Eq. 5.25, access latency
Eq. 5.30, and edge costs Eq. 4.6 calculations.

For optimization purposes along with the presented meta-heuristics, i.e., GA and CP
approaches for data to memory mapping, CAN message transmission delays, denoted as
CAN message response times Rν between ECUs, must also be considered that are subject

122



Section 5.7. Data to Memory Mapping

to (a) lower priority bus blocking, (b) priority-based queuing, and (c) several message
constants and bus properties as outlined in the next Section 5.7.2. Based on this holistic
interference analysis, data propagation through an ECU network can be bounded according
to worst-case situations to minimize access, blocking, contention, and network transmission
delays. The latter are outlined in the following Section 5.7.2.

5.7.2 CAN Message Transmission Delays

Typically, the start of a CAN message’s transmission occurs at the end of a task’s execution
by e.g., following the implicit communication paradigm (cf. Definition 5.8), if task results
are required by one or more tasks running on another ECU, as shown in Eq. 5.63 with ν
denoting a CAN message.

∀ν : ∃lv with |ECUlv | ≥ 2 and ECUlv =
⋃

ECUy :lv∈Lτi ;MECU
τi

=y

(5.63)

Additionally, due to varying task response times and the corresponding variety in CAN
release times as well as mutually exclusive CAN bus occupation, the WCRT for CAN
messages must be analyzed in an appropriate context. The CAN bus can be seen as a
globally shared resource granted access to based on a priority ordered queue. Sent messages
are non-preemptive and have a static priority similar to Fixed Priority Non-Preemptive
(FPNP) scheduling. The approach by Tindell et al. [254] published in 1994 was refuted
by Davis et al. [145] in 2007 about 13 years later, which shows that CAN messages must
be analyzed over a busy-window that begins with the critical instant to provide realistic
CAN transmission delays. Here, the window is denoted as level-ν busy-period, which is the
maximum consecutive amount of time the CAN bus is occupied by messages that have an
equal or greater priority than message ν. The analytic approach for determining worst-case
response times in CAN networks under consideration of busy-periods is further presented
in [143]. After ensuring that the bus utilization is less than one (

∑
ν
Cν
Tν
≤ 1, ν is used as

the index for a CAN message), the duration wν of a level-ν busy period is calculated via
Eq. 5.64.

wzν = Bν +
∑

νi∈hep(ν)

⌈
wz−1
ν + Jνi
Tνi

⌉
Cνi (5.64)

The minimal interval between two occurrences of the νi-th higher priority message is
represented by Tνi and equals the sending task’s period for periodically sent messages.
In case a task is activated sporadically, its minimal inter-arrival time is used for Tνi .

Eq. 5.65 defines the payload of a CAN message cν(τj) based on summed up label sizes of
labels that are part of the intersection between (1) τj ’s accessed labels Lτj , and (2) globally
shared labels CSΦ, which are accessed by at least one task τi mapped to a different ECU.

cν(τj) =
∑

lv∈(Lτj∩CSΦ)

lsv + COMτj

with ∀v : lv ∈ CSΦ ∧ li ∈
(
Lτi ∩ Lτj

)
with MECU

τi 6= MECU
τj ; i 6= j

(5.65)

Here, Autosar COMmunication Module (COM)τj is given as a custom property (cf.
Def. 3.9) of τj and defines the Autosar COM BSW costs for inter-ECU communication,
similar to IOC for inter-PU communication on the same ECU. After the CAN message

123



Chapter 5. Constrained Software Distribution & Timing Verification

payload is known, some constants must be derived from the Amalthea model to estimate
the maximum transmission time Cν of a CAN message. One of these properties is the
transmission time for a single bit τbit, which can be derived from the static CAN network’s
baud rate. Another property is the CAN message identifier bit length, which can be either
11 or 29 according to the CAN protocol. Based on the payload and the identified length,
the transmission time can be calculated as shown in Eq. 5.66. The constants 55, 80, and
10 are obtained from CAN protocol properties such as bit stuffing that includes Cyclic
Redundancy Check (CRC) bits, error frames, as well as control, arbitration and data
fields [143].

Cν =

{
(55 + 10sν) τbit for 11-bit identifiers
(80 + 10sν) τbit for 29-bit identifiers

(5.66)

As the next step, the non-preemptive priority-based CAN bus arbitration scheme must be
taken into account to estimate the WCRT R+

ν (q) for the q-th instance of a CAN message ν.
It is obtained as shown in Eq. 5.67 by summing up the queuing jitter Jν , the queuing delay
Wν(q), and the transmission time Cν . By subtracting q ·Tν in Eq. 5.67, the relative WCRT
for the q-th instance of message ν is calculated. The queuing jitter Jν is usually derived
from hardware profiling, and an analytical jitter derivation is omitted here.

Rν(q) = Jν +Wν(q)− q · Tν + Cν (5.67)

The queuing delayWν(q) for the q-th instance of ν (shown in Eq. 5.67) is determined using
the recurrence relation Eq. 5.68 and W z

ν (0) = Bν + Cν .

W z
ν (q) = Bν + q · Cν +

∑
∀h∈hp(ν)

⌈
W z−1
ν + Jh + τbit

Th

⌉
Ch (5.68)

The last parameter to be determined is the blocking delay Bν . As CAN messages are
naturally non-preemptive, the worst-case blocking time B+

ν imposed to ν is defined by the
maximal transmission time Cν′ of lower priority (lp) messages on the bus. At most one
lower priority message can block the CAN bus for a message ν, i.e. Bν = maxν′∈lp(ν)Cν′ .

Finally, the WCRT of a CAN message ν is determined by finding the maximal CAN
message response time across all instances within the level-ν-busy-period.

R+
ν = max

z
Rν(z) with z ∈

([
1,

⌈
wzν
Tν

⌉]
∧ N

)
(5.69)

Based on Eq. 5.64–5.69 [143], data to memory mapping can be approached holistically,
i.e. across ECUs. Therefore, a greedy heuristic, an EA, and a CP approach are
outlined in the following. The heuristic is a quick and straightforward method to map
labels, ordered by size decreasingly, to memory featuring the lowest MCmdlv

value, i.e.
Mm
lv

= d : MCmdlv
= mind′MC

md′
lv

. If a memory instance is full, the memory with
the next lowest MCmdlv

value is chosen. Since this Greedy approach may miss optimal
mappings, Sections 5.7.3 and 5.7.5 present the CP and EA approaches to solving the data
to memory mapping optimization problem.

124



Section 5.7. Data to Memory Mapping

5.7.3 CP-based Data to Memory Mapping

In terms of CP, the initial constraint that has to be applied to the label mapping matrix
Mm

l is a sum constraint that ensures that all labels are mapped to exactly one memory
instance as shown in Eq. 5.70. This methodology has already been used for the partitioning
and task mapping (cf. Chapter 4 M τ

r and 5 MP
τ , respectively), and the label mapping

is represented by a (q × µ), i.e., number of labels × number of memories, boolean matrix
Mm

l = Mmd
lv

(q × µ).
∀ lv ∈ L :

∑
d

Mmd
lv

= 1 (5.70)

Additionally, the memory size constraint must be respected such that no memory is
assigned with more bits than it actually can save, as shown in Eq. 5.71.

∀md :

 ∑
v:M

md
lv

=1

lsv +
∑

i:M
md
τi

=1

csi +
∑

s:M
md
oss=1

oss

 ≤ msd (5.71)

Eq. 5.71 shows Mmd
τi , which denotes the mapping of a task to memory, csi, which denotes

the code size of τi, Mmd
s denoting the mapping of an OS service to memory, and oss

representing the OS service memory size required to operate the OS service.

After ensuring that labels are mapped once, and memory sizes are not exceeded,
optimization goals can be defined. For optimizing label to memory mapping only (a broader
optimization methodology is presented in Section 5.9), the goal is twofold: minimizing
(I) the overall access latency and (II) the accumulated network message delays. The first
optimization goal considers label access numbers and access rates, memory access latency
delays, the runnable to PU mapping, label sizes, and the bit width of the communication
channel, respectively cache line length. Consequently, the total label mapping cost is
derived from the binary label mapping Mm

l , the number of accesses to the label per second
derived from activation rate Ta, read and written labels ↑a, ↓a, runnable mapping MP

r (to
PUs), and read as well as write latency values between PU and memories ↑x,d, ↓x,d. The
overall label mapping cost calculation is given in Eq. 5.72 and constituted by the sum of
all labels’ mapping costs, each of which is defined by the dot product of cost and mapping
vectors.

MCl =
∑
v

~Mm
lv · ~MC

m

lv (scalar constraint)

with ~MC
m

lv =
(
MCm1

lv
, ...,MC

mq
lv

)
and MCmdlv

=
∑

a:lv∈↑ra

(
↑#ra,v · ↑x,d ·

⌈
lsv
clx

⌉)
+

∑
b:lv∈↓rb

(
↓#rb,v · ↓y,d ·

⌈
lsv
cly

⌉)
with MP

ra = x;MP
rb

= y

(5.72)

Here, ↑#ra,v denotes the number of read accesses per second of ra and ↓#rb,v the number of
write accesses per second of rb to label lv. In terms of implicit and LET communication,
these values are derived from the periodicity only due to assuming data being copied
into local (cache) memory for a task instance. Copy operation of Eq. 5.32 are therefore
accounted within Ci,x. Although being close to the dependency Eq. 4.6, Eq. 5.72 does
not consider a source and target runnable from a dependency, but rather accumulated

125



Chapter 5. Constrained Software Distribution & Timing Verification

and normalized access costs over all runnables for a specific label to memory mapping in
MCmdlv

, all possible memory mappings for a specific label ~MC
m

lv , and the accumulated
label mapping costs for a specific label mapping MCml .

As an intermediate summary for the label mapping optimization approach, solutions can
be assessed by access delays across all tasks and inter-ECU communication costs defined
by the amount and response times of CAN network messages.

To get a better understanding of variables and constraints, the following hypothetical and
small Example 5.5 provides an analysis of mapping costs for three memories, two PUs,
four runnables, and five labels. The optimization goals are to minimize (1) the total label
mapping costs in Eq. 5.73 via Eq. 5.72 and (2) the maximal PU load in Eq. 5.74 via Eq. 5.4.
If Eq. 5.9 is used instead of Eq. 5.4, label access costs are also accounted in the utilization
optimization, which is omitted here to keep Example 5.5 simple. Equations 5.73 and 5.74
are preferred over, e.g., load balancing in Eq. 5.1 or the sum of label access costs via
Eq. 5.30, since the former use normalization via taking periodicity into account. WCRT
optimization of tasks and CAN messages (cf. Eq. 5.98) is outlined in Section 5.9.

minimize MCl (5.73)

minimize ÛP (5.74)

Example 5.5: CP-based Data Mapping Cost Optimization

Assuming three memoriesM = {m1,m2,m3}, two PUs P = {P1, P2}, four Runnables
R = {r1, r2, r3, r4} that access five labels L = {l1, l2, l3, l4, l5} such that ↑r1= ∅, ↓r1=
{l1, l3}, ↑r2= {l2}, ↓r2= {l3}, ↑r3= {l3}, ↓r3= {l5}, ↑r4= {l2, l5}, ↓r4= {l4}, and access
latency values (same for read and write) ↑P1,m1= 2, ↑P2,m1= 1, ↑P1,m2= 3, ↑P2,m2=
2, ↑P1,m3= 1, ↑P2,m3= 4. The two homogeneous PUs can execute up to four instructions
per second, i.e., puc1 = puc2 = 4, the four runnables each execute a single instruction
and they are executed once per second, i.e., ∀ra ∈ R : Tra = 1; cra,x = 0.25s;ura = 1

4 .
There are 53 = 125 solutions for mapping the labels to memories and 42 = 16 solutions
for mapping runnables to PUs and 16 · 125 = 2000 solutions for all combinations of
runnable and label mappings. The dependency graph derived from label accesses is
shown in the right part of Figure 5.11.

r1 r4r2 r3

l1 l2 l3 l4 l5 m1 m2 m3

P1 P2

2 1 3 2 1 4

r1

r4

r2

r3

𝑀"
#

𝑀$
%

Figure 5.11: Memory mapping example

126



Section 5.7. Data to Memory Mapping

Without load balancing constraints, the result is shown in Eq. 5.75. Adding load
balancing as the primary goal, the result changes as shown in Eq. 5.76.

Mm
l =


0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

 ;MP
r =


1 0
1 0
1 0
1 0

 ;MCm
l =


0 0 1
0 0 2
0 0 3
0 0 1
0 0 2

 ;MCl = 9; ÛP = 1

(5.75)

Mm
l =


0 0 1
1 0 0
1 0 0
1 0 0
1 0 0

 ;MP
r =


1 0
0 1
1 0
0 1

 ;MCm
l =


0 0 1
2 0 0
5 0 0
1 0 0
3 0 0

 ;MCl = 12; ÛP = 0.5

(5.76)
The Pareto-optimal solution set is shown in Figure 5.12 along with the two
optimization goal values PU utilization (y-axis) and label mapping cost (x-axis).
Solutions of the Pareto front are indicated with circles, of which the most left one
represents Eq. 5.75 and Eq. 5.76 gives the details of the solution (12; 0.5) in Figure 5.12.

0.5

0.6

0.7

0.8

0.9

1

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25M
ax

 P
U

 U
ti

liz
at

io
n

Acumulated Label Mapping Costs

Figure 5.12: Dominating solutions and pareto front of the label mapping example

Access latency calculation outlined in Eq. 5.30 covers write and read dependent delays
based on instructions cx,d, contention Bmc, the cache line length clx, bit width bwx,d, or
data rate drx,d, labels Li and their size lsv, as well as PU properties such as frequency fx
and IPC κx. With considering R+

ν , data propagation delays across ECUs, i.e., network
transmission delays are also considered via protocol properties such as the type and bit
width of ports and, e.g. message priority queuing, bus data rate, and data overhead
caused by identifiers, additional checksum data etc. as shown in Eq. 5.64–5.69, respectively
Section 5.7.2. As the next step, necessary data separation, pairing, and communication
paradigm dependent data aging constraints must be incorporated, which is part of the next
section.

5.7.4 Data Separation, Pairing, and Aging Constraints

FFI is not only of relevance for tasks across PUs, but also for data across memories.
Hence, the label to memory mapping must consider separation and pairing constraints
just as tasks in Eq. 5.14 and 5.15. Therefore, data pairing and separation constraints are

127



Chapter 5. Constrained Software Distribution & Timing Verification

defined in Eq. 5.77 and 5.78, respectively.

Φm
l = {L(Φm

l ),M(Φm
l )} with L(Φm

l ) ⊆ L;M(Φm
l ) ⊆M (5.77)

For instance, Φm
l = {{l1, l2}; {m2}}, {{l3}; {m1,m3}}} ⇒ Mm

l1
= Mm

l2
= m2;Mm

l3
=

m1 ∨m3 means that labels l1 and l2 must be allocated to memory m1 and label l3 can be
allocated to either memory m1 or m3.

Φl|m = {L(Φl|m),M(Φl|m)} with L(Φl|m) ⊆ L;M(Φl|m) ⊆M (5.78)

These constraints can now be applied to the label mapping variables as shown in Eq. 5.79
and 5.80.

∀ lv ∈ L(Φl|m);∀md ∈M(Φl|m) : Mm
lv ∈ (([1, q] \ d) ∧ N) (5.79)

∀ lv ∈ L(Φm
l ) : Mm

lv ∈M(Φm
l ) (5.80)

Finally, the data aging constraints can be applied to either implicit or LET communication.
Data aging constraints mostly have their origin in requirements for sensors refreshing data
in memory so that precise analysis for event propagation and event reaction is possible and
corresponding timing guarantees can be made.

Definition 5.10: Data Aging

A data aging constraint demands a label to be updated at least after n time units.

A data age constraint’s CP application for Amalthea models based on notations of
Section 3.2 and Definition 5.10 is given in the following Eq. 5.81. The communication
paradigm com is either implicit (cf. Definition 5.8) or LET (cf. Definition 5.9), i.e.
com ∈ {ι, λ}, due to being used in favor of explicit communication under Autosar,
which may result in inconsistent data propagation [212].

Φlv ,↓ = {Lα} : w+
lv ,↓ ≤ Lα(Φlv ,↓) (5.81)

Eq. 5.81 makes use of the worst-case write window w+
lv ,↓ for a label lv, which is derived

from all tasks writing to lv in terms of implicit communication. This derivation is required
because the worst-case window of a label not being updated does not necessarily depend
on the task with the lowest period for implicit communication. Instead, it is defined by
a consecutive occurrence of a task’s BCRT followed by its WCRT. The window the label
is not updated in such a situation is then the sum of a tasks’ periods and its WCRT
subtracted by its BCRT, as shown in Eq. 5.82.

w+
lv ,↓(ι) = min

i:lv∈Li

(
Ti +R+

i −R−i
)

(5.82)

Under LET, the writing process of data to memory is executed at the end of a period across
tasks. This approach makes data age derivation significantly easier since distinguishing
between worst and best cases is not necessary, and the refresh rate is simply a task’s

128



Section 5.7. Data to Memory Mapping

period, as shown in Eq. 5.83.
w+
lv ,↓(λ) = min

i:lv∈Li
Ti (5.83)

The CP approach to the data mapping problem uses the choco library37 to find a data
mapping to memory represented as the boolean variable matrix Mm

l . Results are assessed
by the accumulated mapping costMCl. Solutions are required to satisfy all of the following
constraints.

1. A sum constraint on each array of the Mm
lv

vector ensuring that each label is exactly
mapped once.

2. A scalar constraint acrossMm
lv

andMCmdlv
used for optimization, i.e. reducing timely

memory access interference.

3. A sum constraint over MCmdl to derive the total mapping costs MCl for the above
optimization.

4. A scalar constraint for calculating the sum of label sizes assigned to a memory
instance and an arithmetical constraint to ensure that this sum does not exceed
the memory size. The latter is applied to each memory.

5. Several arithmetical constraints for various affinities.

In the next Section 5.7.5, the evolutionary data mapping algorithm is presented that uses
Eq. 5.64–5.83 and forms an alternative to the CP-based approach. Due to the high amount
of labels beyond ten-thousand, e.g., for the FMTV model, the GA provides a reasonable
alternative to CP in terms of scalability.

5.7.5 Evolutionary Data to Memory Mapping

The implemented EA uses the jenetics java library [42]. The fitness function is presented
in Eq. 5.85, whereas S denotes a chromosome that encodes Mm

l based on a static MP
τi .

The notation RN represents the average CAN message response time of Eq. 5.84 and N is
the set of CAN messages, each represented with index ν.

R
N

=
∑
ν

(
R+
ν

|N |

)
(5.84)

Additionally, each fitness calculation is accompanied by various constraint checks to ensure
validity, listed below.

1. Distinct label, code, and OS service to memory mapping as of Eq. 5.70

2. Memory size limitation in Eq. 5.71

3. Data separation in Eq. 5.79

4. Data pairing in Eq. 5.80

5. Data Aging in Eq. 5.42

If a constraint is violated, the solution, i.e., a chromosome encoding the label allocation
matrix, is marked invalid and omitted for the GA’s crossover operation, respectively it is

129



Chapter 5. Constrained Software Distribution & Timing Verification

not chosen for reproduction to form a new population. To speed up the solution process
and weighting the optimization goals (a) accumulated normalized label access delay and
(b) average CAN message response time, a reference is required to align the fitness function
to. Then each optimization goal can be normalized with regard to an initial solution,
which is defined by the first valid solution found during the GA resolution shown as the
denominators of Eq. 5.85.

minimize f(S) =
MCl
MC1

l

+
R
N

R
N,1

(5.85)

More information on the GA configuration and results of mapping data to memory
of the hardware primarily assessed by the total data mapping cost MCl is given in
Section 7.5. A concrete label mapping affects results of the task to PU mapping namely
(accumulated) task response times

∑
iR

+
i , (accumulated) task chain reaction and age

delays
∑

γ ργ and
∑

γ αγ , PU utilization, but also blocking and contention times.

5.7.6 Summary on Memory Mapping

The presented description of typical memory mapping constraints under a variety of
automotive specific hardware properties as well as the consideration of CAN network
properties as an example, provides valuable insights into modern memory mapping for
automotive systems. The formal outline and description of constraints, timely costs, and
optimization criteria present important characteristics and foundations for data mapping
analysis. The application of CP and EA being appropriate meta heuristics to meet the
problem’s intractability yield optimized solutions incorporating multiple optimization goals
and the consideration of various constraints. Therefore, CP provides easy to use variables,
domains, and constraint types in terms of implementation, which, in contrast, need to be
manually programmed for the EA at its fitness function. However, the latter benefits from
shorter resolution time in most cases.

The next Section 5.8 presents a novel approach to reduce global blocking interference for
Autosar based on Amalthea. The outlined concept improves execution and response
times by reducing busy waiting for globally shared mutually exclusive resources across
tasks.

130



Section 5.8. Improved Global Critical Section Management

5.8 Improved Global Critical Section Management

CSs are one of the major influences on jitter and execution time deviation in a distributed
multi-PU context. Since the Autosar standard intends to use spinlocks for global CSs,
varying busy waiting time frames occur due to tasks spin-locking on CSs, which is inefficient
for inherently long CSs. Foundations and backgrounds to spin-locking is presented in
Section 2.8.2 and a further analysis of blocking times Bs, which correspond busy waiting,
is presented in Section 5.4.1 (cf. w+

CS(τi) for s-Blocking and w+
CS(Semk, τi)). In terms

of Amalthea, a CS is defined by a not empty accessed label union of two tasks either
mapped to the same PU for local CSs or mapped to different PUs for global CSs, i.e.
CSΘ : ∅ 6= Lτi∩Lτj with i 6= j,MP

τi = MP
τj and CS

φ : ∅ 6= Lτi∩Lτj with i 6= j,MP
τi 6= MP

τj ,
respectively.

The automotive industry uses spinlocks due to (a) implementation simplicity, (b) the
resulting ease of determining timely coherencies, (c) spinlocks maintaining cache affinity,
(d) the avoidance of scheduler invocations and context switches, and (e) claiming that
the CS accesses are inherently short. Nonetheless, spinlocks permit priority inversion and
deadlocks, of which the former are usually only bounded in a FIFO-queuing sense. Some
of these challenges are avoided by preventing spinlock nesting entirely. This nesting
avoidance is implemented either by returning an error to the task requesting an already
hold lock or via suspending all interrupts such that the locking task can not be preempted.
Both approaches are ineffective regarding implementation overhead and starvation [255].
Additionally, development efforts have to be explicitly invested to ensure such inherently
short CS accesses. Also, CS locking times may increase in modern automotive systems
due to the growth of shared data in, e.g., image processing or the use of CEs. As a
consequence, spinlocks may impose significant blocking delays to the system, as shown
in [35]51. Despite that, it is desired not to deviate from the Autosar defined standard
by, e.g., introducing new mechanisms to cope with global CSs. Instead, the spin locking
periods can potentially be evaded due to flexibility in executing instructions of a task
based on runnables while preserving the spinlock mechanism. This flexibility stems from
runnable dependency graphs presented in the partitioning Chapter 4.

Whenever two or more runnables exist for the same topological level of a runnable DAG,
i.e., runnable fork dependencies exist within the same task, the corresponding runnables’
execution order has no influence on the task outputs and also no effect on the task’s results.
In other words, two runnables ra and rb on the same topological runnable DAG level within
the same task are allowed to switch positions such that either ra ≺ rb or rb ≺ ra, since
no order constraint, respectively RSC, is violated and hence no deviation in execution
time or data propagation occurs. This fundamental reordering concept also prevents race
conditions since the task result does not change even when using a reordered runnable set.
This ordering flexibility not only holds for the same topological level but also for the entire
graph paths, as shown in the following Example 5.6.

51Wieder et al. investigate Autosar spinlock blocking in [35] especially regarding queuing such as FIFO,
unordered, priority-ordered, and combined priority- and FIFO-ordered spinlock queues under preemptable
and non-preemptable task scheduling.

131



Chapter 5. Constrained Software Distribution & Timing Verification

Example 5.6: Runnable Ordering Flexibility

r1

r3

r4r2

r5

Figure 5.13:
Simple example
runnable DAG

Given five runnables R = {r1, r2, r3, r4, r5} with dependencies E =
{{r1, r2}, {r2, r3}, {r1, r4}, {r4, r5}}, there exist six possibilities to
order runnables within the task, i.e.,

s1 = {r1, r2, r3, r4, r5};
s2 = {r1, r2, r4, r3, r5};
s3 = {r1, r2, r4, r5, r3};
s4 = {r1, r4, r2, r3, r5};
s5 = {r1, r4, r2, r5, r3};
s6 = {r1, r4, r5, r2, r3};

Using any of these six task permutations effects the same task
result due to no RSC, respectively cause-effect, violation.

Assuming possible preemption at any time or at runnable bounds for preemptive and
cooperative tasks respectively, a change of the runnable order does not affect the system,
since task results are published at the end of the execution or at the end of the period
for implicit and LET communication respectively. Based on such flexibility in ordering
runnables within a task, tasks can avoid busy waiting by reordering runnables for
estimating concurrent situations. This approach is denoted TDRR in the following. TDRR
assumes that CSs accesses are not part of accessed labels being copied into local memory
by a task’s release time any copied back by the task’s response time (at next arrival for
LET). Hence, CSs are explicitly part of a runnable in form of spinlock locking and unlocking
activity graph items. For measurements presented in Chapter 7, these spinlock activity
graph items are generated for all accesses to globally shared labels. In other words, copied
labels for implicit LET communication are those locally shared, or not shared at all, and
globally accessed labels are handled in explicit fashion and extended by spinlock accesses.

Some research activities can be found that address the challenge of reducing CS accesses
in Autosar such as [256]. Via using the concept of pseudo resources, resource locking
sequence lists are calculated offline, and resource accesses are then called at appropriate
points in time depending on those offline calculated lists. Pseudo resources are used
to increase a task’s priority by specific values required for fixed-priority scheduling with
deferred preemptions. To avoid deadlocks and priority inversion, CSs are exited in reverse
order as they entered the CSs. However, in contrast to [256], TDRR applies to runnables
within a task based on the runnable DAG and it is not limited to limited-preemptive fixed
priority scheduling.

In contrast to RunPar [191] that schedules tasks sequentially, TDRR assumes that
runnables of different tasks can be executed concurrently, resulting in less idle intervals.
Moreover, the supertask approach presented in [257] improves response time based on
the speedup metric for a single instance of a task but has the disadvantage of requiring
a least common multiple period of tasks contained in the supertask. Consequently, the

132



Section 5.8. Improved Global Critical Section Management

runnables of tasks with higher periods are scheduled more often, and the total system load
is increased.

Due to the construction of tasks, the task to PUs mapping, and scheduling being statically
defined once during application configuration [191], runtime calculation of new runnable
orders may involve excessive overheads. However, Kluge et al. have shown in [166] that
online task filtering can be used in Autosar to efficiently schedule tasks while considering
resource conflicts and active tasks. This approach can be extended to schedule task
instances with off-line calculated runnable orders for a given point in time to reduce busy
waiting periods while not violating precedence constraints.

In general, managing mutual exclusion of shared resources has been addressed by various
locking protocols and evolved to meet different challenges, e.g., dynamic priorities or nested
global CSs. Instead of busy waiting for a resource for spinlock protocols, semaphore
protocols use the suspension-based scheme to yield lower priority tasks to execute if an
occupied resource blocks the higher priority task. Such protocols have been investigated
for priority inversion, schedulability analysis, deadlocks, mutual exclusion, nested resource
accesses and more properties and further protocols were developed, e.g., FMLP [172],
Real-time Nested Locking Protocol (RNLP) [258], Preemptable Waiting Locking Protocol
(PWLP) [259], O(m) Locking Protocol (OMLP) [260] and others. A recent study [261]
shows for global fixed-priority scheduling that the early FMLP and PIP protocols still
outperform newer semaphore protocols in most scenarios. In [262], Brandenburg shows how
MPCP, FIFO Multiprocessor Locking Protocol (FMLP+), DPCP, and Distributed FIFO
Locking Protocol (DFLP) perform for partitioned fixed-priority scheduling. Alternatively,
Gai et al. further provide in [171] blocking analyses for local blocking, non-preemptive
blocking, and remote blocking upon the MSRP protocol, i.e., one of the few spinlock-based
protocols applicable to Autosar.

The significant difference of TDRR compared to above mentioned suspension-based
semaphore protocols and MSRP is the crucial concept of preserving the spinlock global CS
protection mechanism while minimizing busy waiting within the same task, i.e., exploiting
computing resources by runnables of the same task instead of grating the resources to
other tasks. This approach significantly eases the analysis of cause-effect chains and
timely determination across blocking, contention, and response times. Hence, TDRR
aims at filling the gap between semaphore-based protocols and spinlock-based protocols,
such that the latter can also be applied to applications with longer CSs without creating
significant spinning delays. Therefore, TDRR assumes given initial runnable orders from
the partitioning process. In [92, 93] and [4], respectively Chapter 4, precedence constraint
based partitioning is presented for the purpose of parallelizing program code in form of
a runnable set based on the Amalthea model. CPP, ESSP, and CP-based partitioning
strategies of Chapter 4 preserve precedence constraints, which are required for TDRR and
ensure a causally correct task behavior. Other approaches apply to TDRR too, but require
re-validation if precedence constraints are violated.

In the following, the TDRR approach is illustrated to achieve a reduction of remote blocking
under the assumption of spinlocks being used to protect globally shared resources.

133



Chapter 5. Constrained Software Distribution & Timing Verification

5.8.1 Task-Release-Delta-based Runnable Reordering

TDRR serves the purpose of sequentializing parallel accesses to shared resources, resulting
in reduced task response times, improved timing predictability, and increased parallel
efficiency. To achieve sequential resource accesses, runnables are reordered within a task
based on precedence constraints and the system state in form of release-delta times. Instead
of introducing another protocol, an estimation of possible resource conflicts, i.e., concurrent
accesses to a shared resource according to task release times, is used to mark situations in
which busy waiting occurs. Based on the release time of a predecessor task Nτ≺(τi) and
the release time of the current task (to be scheduled) Nτi , a runnable order is chosen from
a list of possible task release delta situations δτj→τi = {σi,j,1, ...} calculated at design time
to reduce conflicts as much as possible. Hence, TDRR is subdivided into the following six
processes for all possible task pairs.

(I) Identification of all tasks’ access intervals to CSs.

(II) Calculation of all possible task release delta conflicts and corresponding intervals
based on release delta situations σi,j,x ∈ δτi→τj ∈ ∆φ that result in busy waiting due
to spin locks being accessed concurrently.

(III) Combination of release delta conflict intervals for considering multiple CSs for
interleaving release-delta conflicts.

(IV) Retrieving all conflicting runnables’ conflict interval for a specific release delta
conflict.

(V) Calculating runnable orders ROi,j,x for every release delta conflict interval σi,j,x ∈
δτi→τj ∈ ∆φ.

(VI) Keeping track of release times at runtime to derive task release delta values upon
a task’s release and choose a design-time calculated runnable order at run time
correspondingly.

A runnable order ROi,j,x defines a runnable sequence for the x-th conflict interval σi,j,x
for δτi→τj ∈ ∆φ. The approach’s benefit is the analysis of concurrent accesses to shared
memory at early design steps, its application to Autosar models, and improved system
performance due to reduced task execution and response times. The TDRR concept is
shown in Figure 5.14.
Figure 5.14 shows the runnable dependency graph on the left, which is used to (1) create
tasks in form of initial runnable orders during the partitioning process shown at top
centered rectangle in Figure 5.14 and (2) calculate additional runnable orders based on
specific release time delta conflicts via TDRR shown at the bottom centered rectangle of
Figure 5.14. If a specific release delta value is detected at runtime of the program for a task
pair, which means that the release delta is in between the release delta conflict interval
shown in the right part of Figure 5.14, the corresponding new runnable order replaces the
initial order.

A task constructed by the partitioning process defines the initial runnable order based
on precedence constraints, which are preserved for new runnable orders calculated by the
TDRR process (V). Precedence constraints are derived from the edge set E . A task τi
of the task set T contains a runnable order in form of its activity graph, which contains
runnable call activity graph items based on the outcome of the partitioning. An alternative

134



Section 5.8. Improved Global Critical Section Management

RO𝛿0
RO𝛿1
RO𝛿2
…

RO𝛿0
RO𝛿1
RO𝛿2
…

RO𝛿0
RO𝛿1
RO𝛿2
…

Runnable 
dependency graph

Initial runnable orders

Runnable order set (𝛿)

r1 r4 r6
r3 r5 r8
r2 r7

RO𝛿0
RO𝛿1
RO𝛿2
…

Runtime
Partitioning

TDRR

t

r1

r4

r6

r3

r5

r8

r2

r7

l1 l2

Figure 5.14: TDRR concept to reduce busy waiting

runnable order ROi,j,x is a task’s runnable order permutation respecting all precedence
constraints. TDRR introduces some new notations outlined in the following Table 5.4.
In general, a conflict interval ci consists of a start and an end time, i.e., ci = [ts, te).
The superscript notation p denotes derivation from partitioning, i.e. initial runnable
orders. Here, Ra(σδi,j,x) denotes the set of runnables in task τi, of which each shares

Description Symbol & Details
Runnable access conflict interval cipra cf. Eq. 5.88
Task’s access conflicts interval set cipi =

⋃
ra∈R(σpx)

cipra

Task’s access conflicts σpi = {σpi,1, ...} : σpi,x = {Ri,x, {CSi,x,1, ...}}
Task release delta conflict matrix ∆φ(n× n)

Task release delta conflict set of a
task pair

δτi→τj = {σδi,j,1, ...} i-th row and j-th column of
∆φ

Delta conflict σδi,j,x = {ciδi,j,x,Ra,R`}
Runnable conflict interval for a
release delta and runnable

cirbi,j,x : rb ∈
(
τj ∪R`(σδi,j,x)

)
Runnable order ROi,j,x deals with (σδi,j,x)

Table 5.4: TDRR notations

one or more labels with at least one runnable in R`(σδi,j,x) of task τj . Conversely, every
runnable in R`(σδi,j,x) shares one or more labels with at least one runnable in Ra(σδi,j,x).
Notations of Table 5.4 are exemplary applied to the example runnable DAG of Figure 5.14
in Example 5.7.

135



Chapter 5. Constrained Software Distribution & Timing Verification

Example 5.7: TDRR Notations of Figure 5.14’s Runnable DAG

For the example runnable DAG of Figure 5.14, the following details are calculated
under the assumption that every runnable executes a single instruction / tick.

σpτ1 = {{{r4}, {l1}}, {{r6}, {l2}}}
cipr4 = [1, 2); cipr6 = [2, 3)

cipτ1 = {cipr4 , cipr6}
σp2 = {{r3}, {l2}}
cipτ2 = {[0, 1)}
σp3 = {{r2}, {l1}}
cipτ3 = {[0, 1)}

∆φ =

0 [0, 2) [1, 3)
0 0 0
0 0 0


σδτ1,τ2,1 = {[0, 2), {r4}, {r3}}
σδτ1,τ3,1 = {[1, 3), {r6}, {r2}}

Based on the above data, runnable orders can be calculated, e.g., for σδτ1,τ2,1 =
{[0, 2), {r4}, {r3}}, so that r3 is not executed within [0, 2) via, e.g., runnable order
ROτ1,τ2,1 = {r5, r8, r3}, which avoids busy waiting at runnable r3 for τ1 being released
in between [0, 2) before τ2.

The purpose and methodology of corresponding calculations is presented in the next
Section 5.8.2.

5.8.2 Calculating Potential Conflicts

This section includes processes (I)–(III) mentioned in the previous Section 5.8.1.

Firstly, a conflict of a task pair requires that the intersection of written labels is not empty
as shown in Eq. 5.86.(

↓τi ∩ ↓τj
)
6= ∅ with i 6= j ∧MP

τi 6= MP
τj ∧

(
↓τi ∩ ↓τj

)
⊆ CSφ (5.86)

Due to the runnables potentially accessing different global CSs, and multiple tasks being
released before the task under analysis accessing those CSs, the idea is first to investigate
all possible access conflicts across task pairs, which can, later on, be considered in common
sense to identify the most valuable runnable order for a runtime situation (cf. Section 5.8.4).
Hence, a (n×n) matrix for all tasks is used that defines for every task pair a set of release
delta conflicts that define the cause and situation of busy waiting. This matrix is denoted
as ∆φ with entries δτi→τj , which correspond the i-th row and j-th column of ∆φ as shown

136



Section 5.8. Improved Global Critical Section Management

in Eq. 5.87.

∆φ =

δτ0→τ0 ... δτ0→τn
...

. . .
...

δτn→τ0 ... δτn→τn

 : n = |T | (5.87)

Within ∆φ, a single element defines a release delta conflict set δτi→τj = {σδi,j,1, ...}, each
of which consists of a delta conflict interval ciδi,j,x, a former runnable set Rai,j,x ⊆ Ri, and
a latter runnable set R`i,j,x ⊆ Rj with ∀ra ∈ Rai,j,x,∀rb ∈ R`i,j,x : (↓ra ∩ ↓rb ∩CSφ) 6= ∅.
Collecting both conflicting runnable sets is essential to, later on, derive the time frame
the latter runnables must not be executed, which depends on the time frame of the former
runnables. An interval [ts, te) includes the lower but excludes upper limit. The release delta
conflict defines that if τi is released within the intervals cii,j,x before τj , a busy waiting
period occurs. In other words, the relative release time of τi, denoted as Nτi(t), must be
within any release delta conflict interval

(
ts(ci

δ
i,j,x) ≤ Nτi(t) < te(ci

δ
i,j,x)

)
∀x ∈ δτi→τj prior

to τj for busy waiting to occur. The relative release time Nτi(t) is the delta, i.e. difference,
of a task’s release time to time t, e.g. assuming τi was released at Nτi = 4 and the current
time is t = 14, then Nτi(t) = t− Nτi = 14− 4 = 10.

(I) The calculation of access intervals is based on the start and end times of runnables
accessing CSs at their initial order (partitioning), which are given as cipra : (↓ra ∩CSφ) 6= ∅.
In contrast to release delta conflicts σδi,j,x, an access conflict σpi contains a single runnable
set and a CS set instead of a conflict interval and two runnable sets. Since runnables of
a task can access different CSs multiple times, all access-intervals for a task pair to CSs
accessed by these two tasks must be investigated. These intervals are collected together
with the corresponding CSs so that the CS access interval sets for two tasks are given as
σpi = {σpi,x, ...}, σ

p
j = {σpj,y, ...} : σpi,x = {Ri,x, {CSi,x}}. A runnable access conflict interval

is defined in Eq. 5.88.
cipra = [tps, t

p
e) : tps < tpe

tps(ci
p
ra) = tps(ra) =

b=posra−1∑
b=1

crb

tpe(ci
p
ra) = tpe(ra) = tps(ra) + cra

(5.88)

Here, tps(ra) = ts(ci
p
ra) denotes the start time of runnable ra within its task based

on the initial order created by the partitioning and is defined by the sum of runnable
execution times of runnables positioned prior to ra, i.e. t

p
s(ra) =

∑b=posra−1
b=1 crb and posra

representing the position of a runnable within the task τj52.

(II) Afterwards, the release delta conflict intervals are calculated for every task pair’s
access intervals that (i) access the same CS and (ii) hold the condition that tps(cipra) <
tps(ci

p
rb) : ra ∈ Ri,x; rb ∈ Rj,y; (↓ra ∩ ↓rb ∩CSφ) 6= ∅, i.e. the access interval of the former

released task starts later than the access interval of the latter task. This is calculated in
Algorithm 5.2 line 5 i.e. via Eq. 5.89.

ciδi,j,x = [ts, te) : ts < te

ts(ci
δ
i,j,y) = (tps(ci

p
ra)− tpe(ciprb)) ∩Q+

0 with ra ∈ R(σpi,x); rb ∈ R(σpj,y)

te(ci
δ
i,j,y) = (tpe(ci

p
ra)− tps(ciprb)) ∩Q+

0 with ra ∈ R(σpi,x); rb ∈ R(σpj,y)

(5.89)

52For instance, given τi = {ra, rb, rc} ⇒ posrc = 3

137



Chapter 5. Constrained Software Distribution & Timing Verification

Here, the ‘∩Q+
0 ‘ notation is included to extract negative values in case the end time of rb is

higher than ra’s start time. Positive rational numbers are chosen here, to cover situations
handling, e.g., fractions of a second. If time values are all given based on a smallest scale,
e.g., pico seconds, Q+

0 can be replaced with N. The following Example 5.8 shows this
process along with a simple hypothetical model.

Example 5.8: Calculation of Access Intervals / Conflicts

Given is a task τj calling three runnables in order Rj = {r1, r2, r3}, each of which
executing one time unit whereas r2 executes a CS CSk. First, the access interval for τj
is cipr2 = {[1, 2)} and the access conflict is σpτj = {{r2}, {CSk}}. A second task τi calls
another three runnables Ri = {r4, r5, r6}, each of which executing two time units and
the second runnable r5 executes the same CS CSk. Consequently, the access interval
is cipr5 is {[2, 4)} and the access conflict is σpτi = {{r5}, {CSk}}. Based on Eq. 5.89,
the resulting delta conflict interval is ciδi,j,1 = [2 − 2, 4 − 1) = [0, 3) and the conflict
σi,j,1 = {{[0, 3)}, {r2}, {r5}}.

Note that there is no conflict for calling τj before τi in this example, since no access
conflict’s start time of task τj is higher than an access conflict start time at τi.

(III) To consider all possible busy waiting situations across CS accesses on a holistic level,
release delta conflict interval intersections must be found and split into (1) the lower relative
complement, (2) the intersection, and (3) the higher complement. The new intersection
conflict (2) combines both conflicts’ CS accesses and a corrsponding runnable set is derived
that should be avoided for being executed at the latter task. This interval splitting process
is outlined in the following Example 5.9.

Example 5.9: Splitting Conflict Intervals

Assuming two delta conflicts σδi,j,1 = {[1, 4), {ra}, {rc}}, σδi,j,2 = {[3, 5), {rb}, {rc}}, a
release delta conflict intersection exists at [3, 4) for runnables ra and rb. Hence, the
intersecting release delta conflicts are divided into σi,j,1 = {[1, 3), {ra}, {rc}}, σi,j,2 =
{{[3, 4)}, {ra, rb}, {rc}}, σi,j,3 = {[4, 5), {rb}, {rc}}, which correspond the lower
complement, intersection, and higher complement.

The formalism of merging release delta conflicts via interval intersections is shown in
lines 13–22 of Algorithm 5.2. As a consequence, all release delta conflict intervals for
a δτi→τj set are distinct as shown in Eq. 5.90.

∀x, y with σi,j,x, σi,j,y ∈ δτi→τj ; (x, y) ∈ N;x < y :

ts(ci
δ
i,j,y) ≥ te(ciδi,j,x);

ciδi,j,x ∩ ciδi,j,y = ∅
(5.90)

The following Algorithm 5.2 provides the process of calculating release delta conflicts δτi→τj

138



Section 5.8. Improved Global Critical Section Management

based on access intervals so that the former contain (a) the release delta intervals resulting
in busy waiting for τi being released prior to τj and (b) the corresponding runnable
sets Rai,j,x,R`i,j,x for every release delta conflict interval that provides necessary data to
reorder runnables at τj by shifting R`i,j,x backwards based on Rai,j,x as shown in the RO
Algorithm 5.3, to reduce busy waiting.

Algorithm 5.2: Release-δ Interval Conflict Calculation based on Access Conflicts
Data: CS access intervals for two tasks σpi , σ

p
j

Result: Release delta conflict set δτi→τj
1 n←1
2 δτi→τj ← ∅
3 forall access conflicts σpj,y ∈ σ

p
j do

4 forall access conflicts σpi,x ∈ σ
p
i : ∅ 6= (CSi,x ∩ CSj,ya); te(ci

p

ra∈σp
i,x

) ≥ ts(ciprb∈σp
j,y

) do

5 ciδi,j,n ← [ts(ci
p
i,x)− te(cipj,y), te(ci

p
i,x)− ts(cipj,y)); /*set release delta conflict interval*/

6 Rai,j,n = runnables accessing CSj,y from
τi : (CSj,y ∈↓ra ) ∧ ts(cipra )− ts(ciδi,j,n) = te(ci

p
rb )∀ra ∈ Rai,j,n

7 R`i,j,n = runnables accessing CSi,x from
τj : (CSi,x ∈↓rb ) ∧ te(ciprb ) + ts(ciδi,j,n) = ts(ci

p
ra )∀rb ∈ R`i,j,n

8 σδi,j,n ← {ciδi,j,n,Rai,j,n,R`i,j,n}; /*set release delta conflict*/
9 δτi→τj ← (δτi→τj ∪ σδi,j,n); /*Changing result → add new release delta conflict*/

10 n←n+1
11 end
12 end
13 forall y, x with (σδi,j,x, σ

δ
i,j,y) ∈ δτi→τj : x 6= y do

14 if (ciδi,j,x ∩ ciδi,j,y) 6= ∅ then
15 ciδi,j,n ← (ciδi,j,x ∩ ciδi,j,y); /*set new release delta conflict interval via intersection*/
16 Rai,j,n ← (Rai,j,x ∪Rai,j,y); /*combine conflicting prior runnables*/
17 R`i,j,n ← (R`i,j,x ∪R`i,j,y); /*combine conflicting latter runnables*/
18 σi,j,n ← {ciδi,j,n,Rai,j,n,R`i,j,n}; /*set new release delta conflict*/
19 δτi→τj ← (δτi→τj ∪ σi,j,n); /*Changing result → add new release delta conflict*/
20 ciδi,j,x ← (ciδi,j,x \ ciδi,j,y); /*Changing result → reduce to lower complement*/
21 ciδi,j,y ← (ciδi,j,y \ ciδi,j,x); /*Changing result → reduce to upper complement*/
22 n←n+1
23 end
24 sort release delta conflicts chronologically and update indexes

aCSi,x denotes the CS set for access interval σpi,x

In the following, a ’conflict’ relates to a release delta conflict if ’access conflict’ is
not explicitly mentioned. Lines 13–22 of Algorithm 5.2 create new conflicts based on
corresponding interval intersections to significantly reduce the total number of conflicts.
This may sound contradicting, but due to lines 20–21 often result in empty conflict
intervals if one is a proper subset of the other, i.e. ts(ci

δ
i,j,x) ≥ ts(ci

δ
i,j,y) ∧ te(ciδi,j,x) ≤

te(ci
δ
i,j,y), the conflict combination actually results in a reduced number of conflicts. The

implementation of the algorithm further ensures that release delta interval complements
(set in lines 20–21) are distinct such that if a complement results in two or three intervals,
a new conflict is created accordingly (e.g. [2, 8) \ [3, 4) ⇒ [2, 3), [4, 8)). Furthermore,
lines 13–22 ensure that all runnables potentially conflicting for a release time interval
are considered on a holistic basis and that all conflicts are distinct for δτi→τj , i.e.
∀(x, y) ∈ N, x < y with σi,j,x, σi,j,y ∈ δτi→τj : (te(ci

δ
i,j,x) ≤ ts(ci

δ
i,j,y)). This approach is

realized to avoid inserting a runnable at a conflict situation that solves one conflict but not
another one due to different CS accesses. For example, having σi,j,x = {[1, 2), {ra}, {rc}}
and σi,j,y = {[0, 5), {rb}, {rc}} after executing lines 3–12, lines 13–22 result in σi,j,x =

139



Chapter 5. Constrained Software Distribution & Timing Verification

{∅, {ra}, {rc}}, σi,j,y = {{[0, 1), [2, 5)}, {rb}, {rc}}, and σi,j,n = {{[1, 2)}, {ra, rb}, {rc}}.
Finally, line 24 cleans up results since lines 20–22 probably result in inconsistent indexes n
and the chronological sorting of conflicts is required for Algorithm 5.3 of the next section.

Instead of lines 13–22 of Algorithm 5.2, which combine and split conflicts, merging them is
possible, too. The merge process could reduce the number of runnable orders even further
and avoid likely redundant RO, however, it results in more runnables being prevented to
execute at the access interval so that finding runnable orders to avoid busy waiting gets
more difficult. Not only the number of runnables increases, but also the runnable conflict
interval cirai,j,x length, these runnables are not supposed to be executed within, increases.
Ultimately, no available runnables may fit into the runnable conflict interval and less busy
waiting can be reduced. Thus, instead of merging multiple conflict intervals, the chosen
algorithm, used in analyses of Section 7.4, splits and combines them resulting in a less
reduction runnable order number on the one hand but potentially increased busy waiting
reduction.

5.8.3 Calculating Runnable Orders for Conflicts

This section includes processes (IV) and (V) outlined in Section 5.8.1. The calculated
runnable order is distinct for three parameters, i.e. a predecessor task τi, a task to which
the runnable order applies τj , and a delta conflict interval ciδi,j,x ∈ σi,j,x.

(IV) Due to a runnable order considering not a precise delta release time but an entire
release delta conflict interval, the time frame for a conflicting runnable must be calculated
correspondingly. This approach is realized using the runnable’s access interval and
extending it by the conflict interval length, as shown in Eq. 5.91.

cirbi,j,x = [ts, te)

ts(ci
rb
i,j,x) = (tps(ra)− te(ciδi,j,x)) ∩Q+

0

te(ci
rb
i,j,x) = tpe(ra)− ts(ciδi,j,x) with ra ∈ Ra(σδi,j,x); rb ∈ R`(σδi,j,x)

(5.91)

This process is visualized along with an example in Figure 5.15.

ra

rb

∆𝑡!
			𝑡! 			𝑡" = 𝑡

𝑐𝑖!,",$% = {[1,4)}

𝛿		!,"(𝑡) = 3

𝑐𝑖'!
( = {[1,2)}

𝑐𝑖!,",$
'! = {[0,4)}

…

…
𝑐𝑖'"
( = {[3,5)}

Figure 5.15: Intervals of label accesses, release delta conflicts, and runnable conflicts

140



Section 5.8. Improved Global Critical Section Management

(V) The second last and most crucial TDRR process is the runnable order calculation.
Therefore, precedence constraints on task level are used, i.e. all edge’s source and target
runnables are contained in the task under consideration. Precedence constraints (causality)
of tasks across PUs may span over two task periods due to uncertainty of release jitter,
such that considering causality within runnables of a single task is reasonable for TDRR.
Precedence constraints are represented as edges E(DAGτj ) derived from Amalthea RSCs,
which are part of the runnable DAG of a task τj . In addition to edges, a runnable DAG
also contains runnables R(DAGτj ) so that DAGτi = {E ,R}. A runnable’s predecessor
set is derived from all preceding paths path≺x (ra) = E≺ra ⊆ E(DAGτj ) : et|E≺ra |

= ra and its
runnables are represented as shown in Eq. 5.9253.

R≺ra =
⋃
ϕ

esϕ : eϕ ∈
⋃
x

path≺x (ra) (5.92)

It is important to note that the runnable set positioned prior to runnable ra, i.e.
∪rb : posrb < posra does not necessarily match its predecessors R≺ra but in turn, all
predecessors must have a lower position, i.e. ∀rb ∈ R≺ra : posrb,τi < posra,τi .

Using the runnable DAG and calculations described above, available runnables for replacing
a conflicting runnable while not violating intra-task precedence constraints can be derived.
Runnables available to be shifted towards a conflict interval have to fulfill the following
three conditions. Firstly, since the initial order is retained before the conflict’s start time,
only later runnables can be moved to the conflict interval (first condition in Eq. 5.93). This
approach ensures that no precedence constraint is violated due to reordering a predecessor
runnable. In addition, runnables assignable to ts(cirai,j,x) must all have their predecessors
assigned prior to the conflict interval start time (second condition in Eq. 5.93). Finally,
reordering runnables of a task may result in new undetected conflicts that were not present
using initial orders. Hence, calculatingRavail(t) only considers runnables that do not access
CSs (third condition in Eq. 5.93).

∀ra ∈ Ravail(t) :


tps(ra) > t

∀rb ∈ R≺ra : te(rb) ≤ t
(Lra ∩ CSφ) = ∅

(5.93)

The corresponding process of conflict identification and retrieving runnables for such
conflicts is outlined along with the following Example 5.10.

53More DAG-based notations are given in the Appendix H.3.

141



Chapter 5. Constrained Software Distribution & Timing Verification

Example 5.10: Identifying Conflicts & Potentially Resolving Runnables

Given are two tasks with runnable orders Ri = {r1, r2, r3} and Rj = {r4, r5, r6},
whereas all runnables execute one time unit, except r6, which consumes 2 time units.
Runnables r2 and r5 access a global CS. No further dependencies exist between
the runnables for simplicity reasons, and no further CSs are accessed to have the
highest flexibility in reordering runnables. The start time of the conflict runnable r5

is tps(r5) = 1 since only r4 is called prior to r5. Its end time is tpe(r5) = 1 + cr5 = 2.

For this example, the conflict set δτi→τj contains only a single conflict due to having
only one runnable pair accessing the same CS. The corresponding conflict interval
is based on access conflicts, i.e. σpτi = {{(1, 2)}, {CS}}, σpτj = {{(1, 2)}, {CS}}
(cf. line 5 in Algorithm 5.2) such that the following conflict is calculated: σδi,j,1 =
{{(0, 1)}, {r2}, {r5}}. According to Eq. 5.91, the runnable conflict interval is then
cir5i,j,1 = (1 − 1, 2 + 1) = (0, 3). Available for jumping in for r5 is only Ravail(t =
1 = tps(rb)) = {r6} (cf. Eq. 5.93). Hence, calling the runnable order RO(σi,j,1) =
{r4, r6, r5} solves the conflict and busy waiting can be prevented.

To retrieve new runnable sequences, an algorithm is required to investigate valid and
appropriate task permutations, i.e. runnable orders for conflictsRO(σδi,j,x). This algorithm
depends on (a) a task pair (τi, τj), (b) all conflicts σi,j,x ∈ δτi→τj , (c) the runnable
dependency graph DAG(τj), and (d) the initial runnable orders ROpτj , provided by
the partitioning process (cf. Chapter 4; (c) and (d) are indirectly given with τi, τj).
Algorithm 5.3 shows the implementation of the described concept and calculates a set
of runnable orders RO(δτi → τj) for conflict intervals given in σi,j,x via moving conflict-
unaffected runnables to conflicting intervals based on their precedence constraints, i.e.
∀ra, rb : posra,τi < posrb,τi with ra ≺ rb, execution time, and global CS accesses.

In Algorithm 5.3 line 4, it should be noted that tps is based on the partitioning and
calculated via Eq. 5.88, which, as noted already, includes predecessors R≺(ra) but also
runnables without a dependency relation to the considered runnable. In other words,
runnables positioned prior to the runnable under consideration are addressed based on
the initial task runnable order, which is denoted with posrb < posra , i.e. rb has a lower
task position index than ra. Lines 10 and 11 are used to fill the conflict interval as soon
as possible, i.e., with a runnable that fits effectively into the conflict interval. Hence, via
sorting the available runnables in line 10 and choosing one, filling the conflict interval most
appropriately, ensures that the amount of runnables being moved is kept low. This greedy
decision could potentially be improved, since, e.g., using a combination of short runnables
may result in filling the conflict interval more appropriately, i.e. without exceeding the
interval significantly, than the single longer runnable. However, since the greedy approach
has shown valuable improvements already, this optimization is omitted here.

142



Section 5.8. Improved Global Critical Section Management

Algorithm 5.3: Calculation of RO(δτi→τj ) for a Conflict Interval Set
Data: τi, τj , δτi→τj , TRES_BWA
Result: RO(δτi→τj )∀x with σi,j,x

1 forall ciδi,j,x with σδi,j,x ∈ δτi→τj do
2 persistBW ← 0; /*Optimistically, all busy waiting can be removed*/
3 forall ra ∈ Ra(σδi,j,x) do
4 ts ← (tps(ra)− te(ciδi,j,x)) ∩ Q+

0

5 te ← (tpe(ra)− ts(ciδi,j,x)) ∩ Q+
0

6 RO(σi,j,x)←ROpτj
7 while ts < te do
8 let Ravail(ts) denote assignable runnables at ts without the conflicting runnables

rb ∈ R`(σi,j,x) : Lra ∩ Lrb 6= ∅ according to Eq. 5.93
9 if |Ravail(ts)| > 1 then

10 sort Ravail(ts) by increasing crn with rn ∈ Ravail(ts)
11 let rs denote the first entry with crs ≥ (te − ts) or the last entry of Ravail(ts) if no

runnable exceeds (te − ts)
12 move rs to ts within RO(σδi,j,x); /*Changing result*/
13 ts ← ts + crs
14 else if |Ravail(ts)| == 1 then
15 move rs = Ravail(ts)[0] to ts within RO(σδi,j,x) ; /*Changing result*/
16 ts ← ts + crs
17 else
18 persistBW ← persistBW + 1; /*Not all busy waiting can be removed*/
19 ts ← ts + 1

20 end
21 end
22 if persistBW>TRES_BWA then split ciδi,j,x and repeat from line 4; /*ci splitting*/
23 add RO(σi,j,x) to RO(δτi→τj )

24 end

Algorithm 5.3 is applied to all system’s task pairs vise versa, i.e. n2−n times. Consequently,
calculating a runnable order for each ciδi,j,x interval ensures that all conflicts, all release δ
values, and all tasks are considered. An interval may combine multiple overlapping CSs
such that no runnables are available at line 11 in Algorithm 5.3 to avoid all busy waiting
periods for a specific situation. Nevertheless, lines 7 and 8 try to reduce this as much
as precedence constraints allow it. The first loop at line 1 iterates among all conflict
intervals and corresponding runnables for each of these intervals. Line 7 then considers all
points in time within these intervals. Line 8 identifies assignable runnables to a specific
position and line 12 shifts the most effective runnable (identified by line 10) one after
another into the conflicting interval and correspondingly moves the conflicting runnable(s)
backwards until the problematic runnable left the conflict interval (ts ≥ te cf. line 7). If no
runnable is available in line 8, busy waiting periods can not be prevented but are minimized
due to checking every time instant via line 19. During the application of Algorithm 5.3
to real-world scenarios (cf. Chapter 6), cases can be observed that show relatively long
conflict intervals that reduce the flexibility of reordering runnables because many of a
task’s runnables are writing to CSs. To overcome this issue, lines 2, 18, and 22 are added.
These lines keep track of whether the time frame of unavoidable busy waiting (line 18) goes
beyond some threshold (TRES_BWA), and if yes, splits the conflict interval into disjoint parts
(e.g. σ1,2,1 = {[2, 8), {r2}, {r7} ⇒ σ1,2,1 = {[2, 5), {r2}, {r7};σ1,2,1′ = {[5, 8), {r2}, {r7}).
As later on shown along with Example 5.11, this conflict interval splitting increases the
effectiveness of TDRR for inherently long CSs.

Finally, runnable orders are calculated for all conflicts δτi→τj ∈ ∆φ and saved as ROi,j,x
in ROφ, whereas the number of conflicting delta situations x is not constant across task

143



Chapter 5. Constrained Software Distribution & Timing Verification

pairs. ROφ is intended to be saved into a read-only memory for the PU that schedules the
task set. Thus, TDRR applies to every PU in a partitioned scheduling based system for a
task set scheduled at the corresponding PU, i.e., ∆φ

Px
(n×n) : MP

τi = x;n = |TPx |; τi ∈ TPx .

5.8.4 Applying new Runnable Orders at Runtime

This section includes the last process (VI) outlined in the TDRR overview of Section 5.8.1
and describes the approach of applying TDRR at runtime.

At each release time of a task τj , the system is observed whether there are tasks executing
that fulfill all of the following three conditions:

(1) They share a conflicting label with τj ,

(2) τi was released earlier than τj and did not yet finish its execution (reach the response
point), and

(3) the release time difference between τi and τj is within at least one cii,j,x ∈ δτi→τj
conflict interval.

Each of these conditions is formally outlined in Table 5.5, respectively.

(1) ((Lτi ∩ Lτj ) 6= ∅) ⊆ CSφ; i 6= j; i, j ∈ N (cf. Eq. 5.86)
(2)

(
Nτi ≤ Nτj

)
∧
(
Ti + Nτi > Nτj

)
(3)

(
ts(σi,j,x) ≤ (Nτj − Nτi) ≤ te(σi,j,x)

)
for at least one Interval σi,j,x ∈ δτi→τj

Table 5.5: Conditions to identify conflicting tasks at runtime

If all three conditions are given, the latter task τj is released with a runnable order that
minimizes busy waiting, calculated via Algorithm 5.3. An empty set element in ∆φ denotes
that the corresponding tasks do not conflict in any way, e.g. δτ0→τ1 = ∅ means that if τ0

is released earlier than τ1, no conflict occurs between them. The following Example 5.11
shows all six processes (I)–(VI) of TDRR.

Example 5.11: TDRR with three Tasks

Figure 5.16 illustrates three tasks T = {τ1, τ2, τ3} calling the following runnables
R1 = {r1, r2, r3, r4, r5},R2 = {r6, r7, r8},R3 = {r9, r10, r11, r12}, each of which
executes a single time unit. Runnables accessing the same CS are r2, r5, r6, r9, and r11

indicated with ’L’ in Figure 5.16. As soon as two runnables access the same label at
the same time, shown as vertical gray filled rectangles with white dots in Figure 5.16,
a conflict occurs such that one task has to busy-wait for the resource due to the
spinlock protecting the CS, i.e., ’L’. Task release delta valuesa, to which such conflicts
occur, are indicated below the horizontal time axis of the first upper Gantt chart in
Figure 5.16. The same chart shows the initial RO execution resulting in busy waiting,
and the lower Gantt chart presents task executions for the same release delta values

144



Section 5.8. Improved Global Critical Section Management

without any busy waiting due to reordered runnables. In this example, it is assumed
that there are no precedence constraints between the runnables and that task release
times are recorded during runtime upon a common time basis.

L L L L L L L L L L L L

L L L L

L L L L L L L L L L L L

L L L L L L L L L L L L

L L L L

L L L L L L L L L L L L

𝛿𝜏1➝𝜏3 𝛿𝜏3➝𝜏1 𝛿𝜏1➝𝜏2 𝛿𝜏3➝𝜏2 𝛿𝜏1➝𝜏3 𝛿𝜏1➝𝜏2 𝛿𝜏1➝𝜏3

In
iti

al
 R
O

s
T

D
R

R
 r

es
ul

ts
𝜏 1

𝜏 2
𝜏 3

𝜏 1
𝜏 2

𝜏 3

Figure 5.16: Example on three conflicting tasks, five label accesses, and eight task
release delta values resulting in busy waiting

The corresponding delta matrix is shown i Eq. 5.94.

∆φ =

 0 {σδ1,2,1, σδ1,2,2} {σδ1,3,1, ..., σδ1,3,4}
{σδ2,1,1 = ∅} 0 {σδ2,3,1}
{σδ3,1,1} {σδ3,2,1} 0

 (5.94)

The contents of Eq. 5.94’s delta entries are given in Eq. 5.95.

σδ1,2,1 = {[0, 2), {r2, r5}, {r6}}
σδ1,2,2 = {[3, 5), {r2, r5}, {r6}}
σδ1,3,1 = {[0, 1), {r2}, {r9}}
σδ1,3,2 = {[1, 2), {r2, r5}, {r9, r11}}
σδ1,3,3 = {[2, 3), {r5}, {r11}}
σδ1,3,4 = {[3, 5), {r5}, {r9}}
σδ2,3,1 = {[0, 2), {r6}, {r9}}
σδ3,1,1 = {[0, 2), {r11}, {r2}}
σδ3,2,1 = {[0, 2), {r11}, {r6}}

(5.95)

The next consecutive step is to calculate runnable orders, which is exemplary shown for
σδ1,3,3. Initially, the ci

r11
1,3,3 interval, i.e. the time frame r11 must not be executed due to

r5 is derived via rp5 = [4, 5) and is ciδ1,3,3 = {[2, 3), {r5}, {r11}} = [4− 3, 5− 2) = [1, 3).
Then, at ts = 1 runnables r10 and r12 are available and r10 is chosen since it
corresponds to the initial runnable order. Here, the sorting and runnable section
across lines 10 and 11 in Algorithm 5.3 do not take effect due to equal execution
times. At ts = 2, runnable r12 is available and assigned correspondingly such that
the result is ROciδ1,3,3 = {r9, r10, r12, r11}, which is the last result shown at τ3 at

145



Chapter 5. Constrained Software Distribution & Timing Verification

Figure 5.16’s bottom right corner.

It must be noted here that three solutions within the lower Gantt chart of Figure 5.16
represent exceptional cases indicated by dark gray filled and white dotted boxes with
"L" inside the box. These runnable orders are valid for the specific release delta
value rather than a release delta interval. For the latter, which is used by TDRR, the
provided solutions of Figure 5.16 do not directly represent results based on conflict
intervals of Eq. 5.95, since they do not avoid busy waiting for the values provided
in Eq. 5.95. The solutions are instead created by reducing the conflict interval to
shorter intervals, which increases the amount of total runnable orders for a task set
on the one hand, but also increases the chances to reduce further busy waiting via a
more fine-grained analysis of task release delta values on the other hand. The latter
is achieved via conflict interval splitting such that shorter periods potentially allow
more flexibility in reordering runnables. For instance, the situation σδ1,2,1 including
ci1,2,1 = {[0, 2), {r2, r5}, {r6}} should be split into [0, 1) and [1, 2) since [0, 2) results
in cir21,2,1 = [1− 2, 2− 0) = [0, 2) and cir51,2,1 = [4− 2, 5− 0) = [2, 5) such that r2 and r5

occupy the shared resource for the entire execution time of τ2 i.e. [0, 5) and no runnable
order can be found to avoid busy waiting. However, splitting the conflict interval into
[0, 1) and [1, 2) results in cir21,2,1 = [1−1, 2−0) = [0, 2) and cir51,2,2 = [4−1, 5−0) = [3, 5)
such that the time slot [2, 3) gets available and RO1,2,1 = {r7, r8, r6} can be used
to avoid busy waiting for Nτ1→τ2 ∈ [0, 1), respectively RO1,2,2 = {r7, r6, r8} for
Nτ1→τ2 ∈ [1, 2).

aSpecific values are shown, but the delta release conflict interval is always a time range.

Having the above metrics, ROs can be calculated that define for each interval ciδi,j,x ∈
δτi→τj ∈ ∆φ and corresponding conflicting tasks a runnable order for a latter released task.
The following last TDRR example gives a short outline of how to derive the available set
of runnables at a certain point in time based on a runnable DAG.

Example 5.12: Retrieving Ravail(t) from a Runnable DAG

Figure 5.17 illustrates (a) an example runnable DAG for a task whereas two runnables
r1 and r4 are assumed to access a global CS, (b) a corresponding initial runnable order,
and (c) a runnable order representing the result of Algorithm 5.3. Dependencies are
shown as arrows and runnables as rectangles with a specific width that represents
their corresponding execution time.

r1 r2 r6 r4 r3 r5 r7

r6 r1 r2 r3 r5 r4 r7

r1

r7

r5

r2

r3 r4 r6
(a)

(b)

(c)

Figure 5.17: (a) Example DAG, (b) initial RO, (c) adapted RO no conflicts

146



Section 5.9. Summary of Constrained Software Distribution & Timing Verification

The conflict produced by a prior released task is assumed to be given as σi,j,1 =
{[3, 5), {ra, rb}, {r1, r4}} and hence affects the two runnables highlighted with diagonal
gray lines in Figure 5.17. From reverse engineering, the following access intervals of
τi can be derived: rpa = [3, 5) and rpb = [10, 11). Algorithm 5.3 initially starts with
ts = 3 − 5 ∩ N0 = 0 and ends with ts = 5 − 3 = 2 (cf. Eq. 5.91, cir1i,j,1 = [0, 2)).
For the start point, available runnables are Ravail(0) = {r2, r5, r6}, since these
runnables neither have predecessors nor access a global CS. From this set, line 11
of Algorithm 5.3 identifies r6 as the most suitable runnable being inserted at t = 0
since it fills the gap entirely and does not further exceed the interval. Afterwards,
the interval cir4i,j,1 = [5, 8) is investigated since ts = tps(rb) − te(ci

δ
i,j,1) = 10 − 5 =

5; te = tpe(rb) − ts(ci
δ
i,j,1) = 11 − 3 = 8. Thus, at ts = 8, available runnables are

Ravail(8) = {r3, r5}, since r4 accesses a global CS and {r5, r4} ∈ R≺r7 are not assigned
yet, i.e., r7 is not assignable. Then, r3 is preferred over r5 due to filling the conflict
interval more than r5. Afterwards, r5 is assigned subsequently for ts = 7 so that the
final result is defined by RO(σδi,j,1) = {r6, r1, r2, r3, r5, r4, r7}.

The quality of TDRR results can be assessed by the longest busy waiting period avoided
with the help of new runnable orders calculated by TDRR for all tasks, as shown in Eq. 5.96.
This time frame depends on a task pair τi and τj as well as delta conflicts σi,j,x ∈ δτi→τj
and is normalized with regard to a task’s execution time Cj .

C−,improved = max
j
C−,improvedj

C−,improvedj =

max
i∈[1,n]\j,x∈[1,|δτi→τj |]

 ∑
rb∈(Rj∩R`i,j,x)∧(↓rb∩↓τi )6=∅

(crb)− persistBWi,j,x


Cj

(5.96)
The metric of Eq. 5.96 is used in Section 7.4 to derive the maximal task execution time
reduction in % of the case study model outlined in Chapter 6.

5.9 Summary of Constrained Software Distribution &
Timing Verification

This chapter includes various solutions for distributing software across a heterogeneous
network of PUs under strict timing verification and the consideration of many-fold
constraints. Therefore, various challenges are solved via different (meta-)heuristics roughly
summarized in Table 5.6.

Challenge (Meta-) Heuristics Reference and Notes
Partitioning CP, CPP, ESSP, CP-PC Chapter 4
Task to PU
Mapping

CP, ILP, GA, DFG Section 5.2; RTA for CPUs, GPUs,
RMS, FPPS, FPMPS, WRR, and Offsets
considering blocking and contention as
well as TCLA for implicit and LET
communication.

147



Chapter 5. Constrained Software Distribution & Timing Verification

Challenge (Meta-) Heuristics Reference and Notes
Data (Label) to
Memory
Mapping

CP, GA Section 5.7

WCET
minimization

TDRR Section 5.8.1

Table 5.6: Tackled challenges and used (meta-) heuristics

Formally, a mapping solution to these challenges is defined by the following Definition 5.11.

Definition 5.11: Mapping Solution

A mapping solution S consists of the runnable partitioning matrix M τ
ra, the task to

PU mapping matrix MP
τ , and the label to memory mapping Mm

l . A solution is valid
iff all constraintsa are satisfied.

aThe summary of constraint types and their implementation is given in Tables 5.8 and 5.9.

A mapping solution can be assessed by various metrics, which are configured along with
the DSE process’ optimization criteria. Typical optimization goals are shown in Table 5.7.
Many metrics are assessed as mean values via over-line notation over a set of metrics,
whereas bounds, i.e., maximal or minimal values of the corresponding set can be of interest,
too. Although optimizing mean values increases resolution time compared to bounded
optimization, the mean values represent an entire metric set instead of min/max bounds
only and hence potentially yield better overall representation of the optimization goal.

Criteria Description Notation Eq.
Responsive-
ness

The earlier a task responds, the better is
its responsiveness. To assess relative and
not absolute values, a task’s response time
can be put into relation with its deadline.
The lower the corresponding value is, the
better is the responsiveness. The metric
is known as normalized response time and
can be minimized towards a set’s maximal
value or its average. Additionally, the total
response time sum RTS can be minimized.

mNRT = ˆNRT
NRT
RTS

5.97
(via
5.37,
5.58,
and
H.19)

Network
Load

A lower average normalized CAN message
response time results in a lower network
load. The partitioning approach of Chapter 4
further constitutes an essential role for the
number of CAN messages.

R
N,+ 5.69,

5.98

148



Section 5.9. Summary of Constrained Software Distribution & Timing Verification

Criteria Description Notation Eq.
Load
Balancing
(PU
Utilization)

By minimizing the maximal PU load, average
load balancing is achieved, which potentially
yields in lowering the voltage and energy
consumption54. A PU’s utilization is
derived from the division of its load by its
capacity and provides the proportion of used
computing resources.

ÛP =
max
x

(UPx )
5.3,
5.74;
4.23,
4.24;
5.9

Task Chain
Reaction

When minimizing average or maximal task
chain reaction
delay, the system responsiveness is improved
regarding specific task chains instead of all
tasks (cf. responsiveness).

ργ ; ρ̂γ 5.46,
5.47

Task Chain
Aging

Task chain aging minimization ensures that
task chain data is updated as frequent as
possible.

αγ ; α̂γ 5.48,
5.49

Memory
Access
Costs

Minimizing label mapping costs requires a
task to PU mapping and can be either
calculated in isolation or together with the
task to PU mapping. Results serve a similar
goal such as responsiveness.

MCl 5.73,
5.72,
5.30

Multi-
Criteria

The criteria above can be combined such that
Pareto fronts serve choosing solutions from a
solution set serving multiple goals (exemplary
shown in Example 5.5).

- E.g.
Ex. 5.5

Table 5.7: Optimization criteria

Table 5.7 provides four average notations that sum up entity related properties and divide
the result by the number of entities, which is shown exemplary for the average normalized
response time NRT in Eq. 5.97 (n = |T | and i ∈ ([1, n] ∩ N) ∀ τi ∈ T ). The maximal
Normalized Response Time (mNRT) metric is used in, e.g., [90] or [263] and also shown in
Eq. 5.97, along with the response time sum RTS, which is used for this thesis.

minimize mNRT = max
i

(
R+
i

Di

)
;minimize NRT =

∑
i

(
R+
i
Di

)
n

;minimize RTS =
∑
i

R+
i

(5.97)
The difference between mNRT and NRT metrics is the optimization focus, which lies on
all tasks for the latter case and on a single task for mNRT. Assuming that the system’s
highest priority task has a relatively high utilization, the corresponding task defines the
lower bound on mNRT. All other tasks are then not optimized due to this upper bound,
which is not the case for minimizing the average NRT. In contrast, the latter approach may
result in some task’s response time being very close to its deadline, because the average
slack influenced by other tasks may be lower due to other tasks achieving high slack values.
Chapter 7 uses the RTS metric (denoted RTSO) to focus solely on response times rather
than responsiveness. The latter can be configured easily but is omitted for measurements

54Assuming the simplistic energy voltage approximation of appendix H.1.

149



Chapter 5. Constrained Software Distribution & Timing Verification

in Chapter 7, due to already having a generic PU utilization metric (denoted LBO).

The load balancing optimization is usually implemented via minimizing the maximal
PU utilization in percent as shown in Eq. 5.74. Instead of minimizing the maximal
PU utilization, maximizing the minimal PU utilization is also possible. However, the
latter approach has shown a longer resolution time, which is disadvantageous for large
industrial models. This is due to the fact that if the upper bound on PU utilization is
found, the minimize(maxx U

P
x ) approach would stop the resolution process whereas the

maximize(minx U
P
x ) process still continues aligning (maximizing) the remaining utilization

values. Since minimizing the maximal PU utilization provides sufficient results across cases
studied in Section 6, the approach has been chosen over maximize(minx U

P
x ).

Since no explicit deadlines are given for CAN messages, average CAN message response
times are used as a metric, which is shown in Eq. 5.98. Therefore, N is the set of CAN
messages and hence |N | is its number.

minimize RN,+ =

∑
ν∈[1,|N |]∩N

R+
ν

|N | (5.98)

Due to the many-fold requirements crucial to the automotive industry, single-objective
optimization is often not sufficient. Various multiple criteria such as FFI, average
normalized response time, load balancing, inter-PU communication or similar can be in
focus of optimization at the same time such that multi-objective approaches are reasonable.
As a result of a multi-objective optimization, several Pareto-optimal solutions may exist
that feature different optimized criteria values located at the Pareto-front, i.e., all those
optimization value pairs have at least one better criteria value than other value pairs of the
Pareto-front. Formally, given a Pareto-Front consisting of a set of value pairs xi, yi, then
∀i, j ∈ [1, i]∩N; i 6= j : (xi > xj ⇒ yi < yj)∨(xi < xj ⇒ yi > yj). Optimization parameters
can also be weighted and combined into a single fitness value, which requires aligning the
criteria values. For example, having three solutions and two optimization criteria (oc1, oc2)
to be minimized such as oc1 = [2, 3, 8]; oc2 = [4, 3, 1], the third solution would be omitted
when equally weighting the optimization criteria (·1), since the third solution’s accumulated
value is higher than the results from solutions 1 and 2 (2 + 4 = 6; 3 + 3 = 6; 8 + 1 = 9).
However, when weighting oc1 with 3, the results are 2+3 ·4 = 14, 3+3 ·3 = 12, 8+3 ·1 = 11
and consequently solution three would be the best one. For the measurements presented
along with the software distribution approaches in Section 7.2, namely CPMO, a regular
Pareto-front is calculated, which is also assessed in Figures 7.11 and 7.12. Therefore, inter-
PU communication costs, cf. Eq. 5.10, are combined with load balancing for the task to
PU mapping, so that both criteria are optimized towards their minimum value for the
CPMO approach of Section 7.

Table 5.8 briefly summarizes the Amalthea constraints and their CP constraint pendant
based on [44], respectively their implementation context.

Amalthea constraint Choco [44] constraint
Runnable-, Task-, ASIL-, or Tag- Pairing .allEqual; .arithm(=); .element
Runnable-, Task-, ASIL-, or Tag-
Separation

.allDifferent; .arithm( 6=);

.notMember
Runnable Sequencing .arithm(<,=);.allDifferentEx0; .max

150



Section 5.9. Summary of Constrained Software Distribution & Timing Verification

Amalthea constraint Choco [44] constraint
PU Utilization .scalar; .count; .min / .max
Partitioning .binpacking; .min; .sum; .scalar;

.cumulative
Activations .allEqual; .arithm(≤); .and; .or
Inter-task Communication .addClausesXorEqVar;

.ifThen;.arithm(=); .count; .and

Table 5.8: Used constraint types for partitioning and task to PU mapping

Table 5.8 implicitly shows the CP benefits in contrast to, e.g. MILP, since the number
of constraints remains relatively small and their usage is more natural compared with a
combination of multiple inequality definitions.

Finally, Table 5.9 gives an overview of the various constraints, corresponding notations,
and applications in the form of equation references outlined in this chapter.

Name Equation(s) / Listing
Runnable Activation 4.1, 4.15
Runnable/ Task/ SWC/ Tag pairing with PU/ micro
controller / ECU

4.2, 4.3 / 5.14, 5.16

Runnable/ Task/ SWC/ Tag separation from PU/
micro controller / ECU

4.4, 4.5/ 5.15, 5.17

Runnable sequencing 4.8, 4.9, Lst. 4.3
Cyclic Dependencies 4.11
Runnable Partitioning 4.16, 4.17, Lst. 4.2
Runnable Balancing 4.23, 4.24, Lst. 4.1
Task Load Balancing 5.1
Task PU Mapping 5.6, 5.7
PU Capacity 5.8 using 3.4
PU Utilization 5.9
Deadline 5.29
Data Age 5.42
Label Mapping 5.70
Memory Size Limit 5.71
Label Pairing with Memory 5.77, 5.80
Label Separation from Memory 5.78, 5.79

Table 5.9: Constraints summary and equation references

In general, CP-based approaches benefit from a vast amount of constraints available to be
applied to different variables and various intertwined relationships. A wide flexibility in
combining optimization goals across minimizing average or maximal normalized response
times, average slackness, end-to-end task chain latency values, memory access times,
CAN message response times and more can be achieved. Both bad load balancing and

151



Chapter 5. Constrained Software Distribution & Timing Verification

high communication costs increase response times caused by additional interference of
CAN messages or increased blocking or contention such that timing verification and
schedulability tests may reach their limits. Especially highly utilized models cause
constraint validations, which accompany the DSE approaches (cf. Table 5.9), to fail for a
significant part of the problem space, such that the solution space is often quite narrow.
For any meta heuristic approaching the DSEs for large models and highly utilized PUs, its
configuration must be carefully set, which is crucial for solving the challenges of Table 5.6
along with case study models presented in the next Chapter 6.

In terms of novelty, this chapter presents

I. precise outlines, definitions, and applications of various automotive specific
constraints for the DSE of software distribution across PUs and ECUs,

II. advanced RTA considering

(a) data access delays between PUs and memories,

(b) CE operations,

(c) synchronous and asynchronous task offloading,

(d) contention and blocking interference,

(e) WRR scheduling and TX2RS for GPUs, and FPPS or FPMPS with considering
offsets for CPUs,

(f) inter-PU and inter-ECU communication costs,

III. task chain reaction and age delay calculations across both implicit and LET
communication paradigms,

IV. a multi-objective data to memory mapping GA , and

V. TDRR as a method to reduce busy waiting for spinlocks.

No related work is available that either covers such holistic analyses or applies to an
Autosar compliant modeling environment. When including the various approaches I–V
to the DSE of task mapping for Amalthea models, it is expected that

(i) performance bottlenecks, error-prone manual task distribution processes, and
constraint violations can be avoided and detected in early system design phases via I,

(ii) realistic WCRTs can be calculated in a mixed CPU-GPU environment such as the
Nvidia TX2 hardware via II,

(iii) system design phases are improved due to coherent and extensive timing analyses
via II/III,

(iv) task execution efficiency, respectively timeliness, is improved via incorporating label
mapping IV to RTA and using V,

(v) data access and blocking delays can be reduced via IV, and

(vi) automotive software execution efficiency increases as a consequence of realistic WCRT
bounds and a holistic task distribution DSE.

152



6
Case Study Models

This chapter briefly introduces the origin, scope, intention, and contents of various
Amalthea models, which are used as inputs for the previous chapters’ contributions
to obtain and evaluate results. The focus is on seven models presented in the following
sections 6.1–6.5. Beyond these seven models, several hypothetical examples were created
in correspondence with both examples used in this thesis (an overview is available in
Appendix D) and examples from literature, e.g., [36, 38, 62]. Though, these example
models are used primarily for approach validation and consequently omitted for evaluation
here. A comparison of model entities and properties such as the number of runnables,
tasks, activations, labels, dependencies, the sum of all instructions, average label accesses
per task and runnable is part of Section 6.6 and shown in Table 6.2 and Figure 6.3.

6.1 Fmtv

The initial Fmtv-challenges were published in 2015 by researchers of the Robert Bosch
GmbH company in [187]. It was the initial step to provide real-world automotive
benchmarks without violating IP restrictions by providing abstract information. Many
model details are part of the original publication and challenge outlines, which have become
a fundamental part of the Waters workshop since then, because such challenges attracted
many researchers over the years. The main topic is name implied, Fmtv, which form crucial
requirements to cope with, e.g., safety, reliability, real-time, or fault-tolerance demands.
The Waters19 model (cf. Section 6.2), for instance, is the latest Amalthea model
published along with the Waters workshop by the time this thesis is written.

The initial challenges address verifying timing properties and coherences in the automotive
domain alongside the following four topics.

1. TCLA

2. RTA andWCET analysis taking into account shared memory blocking and contention
for multi-PU platforms

3. Runnable to task partitioning (cf. Chapter 4), task to PU mapping (cf. Chapter 5)
and label to memory allocation (cf. Section 5.7) optimization problems demanding
for DSE

153



Chapter 6. Case Study Models

4. Application of the Fmtv Amalthea model to the above outlined challenges

Major foundations for addressing these topics are inherent parts of the background
Chapter 2 such as the system’s heterogeneities and domains along with many physical
processes, varying dynamics, the co-existence of sampled and reactive data, different timing
domains, and sophisticated communication channels and dependencies.

In 2016, abstractions published in [187] turned into a publicly available Amalthea model
along with [128], which did not violate IP policies since Amalthea does not contain
executable code or concrete software behavior implementation. The modeled system
contains abstract entities of a modern EMS with hard real-time demands, criticality levels,
task chains, and more. Furthermore, new challenges were presented, i.e., investigating
end-to-end latency bounds across different scheduling approaches, varying activation types,
cause-effect chains, and finding optimized label mapping methods.

In 2017, the challenges were further extended by adding the consideration of the
three different communication paradigms (a) Explicit Communication (EC), (b) Implicit
Communication (IC), and (c) LET along with [31]. The Waters19 model, outlined in
the next Section 6.2 [30], is the latest addition to the set of published Fmtv (Waters)
models.

The real-time community took great acceptance of the Waters challenges and tackled
these in several publications, which are predominantly available at the Waters community
forum55 but also used in further research context such as [264]. A throughout analysis of
research addressing Fmtv challenges along with the WATERS community is analyzed in
Section 5.1.

6.2 Waters19

For the Waters workshop in 2019, an entirely new model was published in line with new
challenges that arise with the interest in autonomous driving and increasing computing
power. Image processing is a mandatory part of the former evolution, which makes
the use of GPUs inevitable. The Waters19 Amalthea model56 contains much fewer
entities compared to the previously described Fmtv model (cf. Figure 6.3) and features
abstractions of an end-to-end autonomous driving application prototype for the Nvidia
TX2 platform, which is used for GPU RTA in Section 5.6 of this thesis. The application
contains throttle, steering, and brake signals required to navigate a vehicle through a map
created by image processing tasks. The challenge also states that the application also
addresses emergency maneuvers by high priority tasks that detect potential risks such as
obstacles amid the driving path. Out of the nine major tasks, five tasks can only be
executed on the CPU, three are can potentially be executed on any PU (namely SFM,
Localization and Lane_Detection), and one task must run on Nvidia’s PascalTM GPU
architecture (namely Detection). The basic application structure in form of a task DAG
is shown in Figure 6.1 and based on the original publication [30].

55WATERS community forum online at: https://bit.ly/2NEkwFI, visited 11.2020
56Waters19 model available online at: https://bit.ly/37IarPZ, visited 11.2019

154

https://bit.ly/2NEkwFI
https://bit.ly/37IarPZ


Section 6.2. Waters19

Lidar Grabber Localization

Detection

EKF Planner DASM

CAN polling SFM Lane DetectionCPU Task
GPU Task
CPU/GPU Task

Cloud Pose (x,y,yaw)

Vehicle status

Occupancy grid
Bbox

Depth estimation
Lane boundaries

Steering, speedx,y,yaw,vel,yaw rate

Vehicle status Vehicle status

Figure 6.1: Waters19 application structure based on [30]

Rectangles represent tasks that communicate with others via data being exchanged and
represented by directed labeled arrows, of which the label indicates the label name written
by the source task, where the arrow begins, and read by the target task. In addition to the
above mentioned nine major tasks, which form the application itself, five other tasks are
contained in the model that address generic OS overheads and PRE/POST tasks, required
for all tasks that may execute on the GPU. The latter tasks explicitly perform the offloading
operations, i.e., calling a PRE-processing runnable, an inter-process event trigger for the
GPU task, optionally the wait event (cf. synchronous offloading), and a POST-processing
runnable according to [30]. Not only PRE/POST tasks have to be executed for starting
a GPU task, but also dedicated copy in/out runnables within the call sequence of the
offloaded task, which performs the data copy operations. In turn, if a task, which could
potentially run on a GPU, is scheduled on a CPU, neither PRE/POST tasks nor copy
in/out runnables have to be executed, and hence, these overheads can correspondingly be
ignored during the RTA process.

The missing content of the Waters19 Amalthea model for TCLA are task chains. Hence,
for analyses in this thesis, task chains are derived based on the task graph of Figure 6.1
to tackle TCLA. Therefore, all paths from entry to exit tasks are collected and shown in
Table 6.1.

Task chain Tasks
γ1 Lane_detection, Planner, DASM
γ2 SFM, Planner, DASM
γ3 CANbus_polling, Planner DASM
γ4 CANbus_polling, EKF, Planner, DASM
γ5 CANbus_polling, Localization, EKF, Planner, DASM
γ6 Lidar_Grabber, Localization, EKF, Planner, DASM
γ7 Lidar_Grabber, Planner, DASM
γ8 Detection, Planner, DASM

Table 6.1: Task chains of the WATERS model

Task chains of Table 6.1 are manually created, which requires (I) an additional event model
that contains events for every task, (II) event chains γg within the constraints model, and
(III) sub event chains within event chains (II) for every source target task pair within the
task chain. For instance, γ8 requires two sub event chain entities that contain Detection
and Planner as stimulus entries and Planner and DASM as response entries, respectively.

155



Chapter 6. Case Study Models

The proposed challenges are similar to the previous Fmtv ones with the major difference
of considering the GPU architecture. More precisely, the focus is on RTA that includes
CE operations, memory contention between different CPUs and the GPU, as well as
synchronous or asynchronous offloading types, which are all covered in Section 5.6. The
second challenge is to minimize task chain latency delays based on the limited mapping of
the nine tasks.

6.3 Aim

The anonymized industrial model (Aim) has been granted access to by a project partner
during the Amalthea4public project, and it represents a real automotive ECU similar to
the Fmtv model. It is anonymized such that mock-up descriptions replace original names.
The amount of labels is ∼ 4.7 times higher than for the Fmtv model, but other model
entities are relatively close to the Fmtv model contents.

6.4 Democar

The Democar model has been the initial example in App4mc. It was published by P.
Frey along with his dissertation [265] in 2011 and also used in, e.g., [67, 266]. The model
entity names are derived from an EMS, but in terms of instructions, most values are
evenly modeled as value 80000, except for two runnables, which require 160000 instructions
each, such that its hypothetical basis is apparent. However, label accesses and the task
periods are close to real-world combustion EMS scenarios by using, e.g., accelerator pedal
sensor values combined with properties such as mass airflow, throttle angle, and engine
speed to derive the desired throttle position for a target engine speed via a control loop
implementation. The runnable dependency graph is included in the appendix as Figure H.1.
Initial tasks contain runnables ordered by periodic activations, namely 5ms, 10ms, and
20ms. As soon as partitioning is used to subdivide the original three tasks, inter-task
communication and the number of conflicts regarding TDRR increases, since DAGs are
cut, and more labels are shared between tasks.

6.5 Generated Models

Three additional generated models are included in measurements of the next Chapter 7 in
order to investigate a broader model diversity. The generation process applies to software
and hardware models. The software model generation defines min and max values for
labels, runnables, ticks, and stimuli, used with random and probabilistic functions to
generate Amalthea model entities. Generated values are uniformly distributed between
min and max, except for ticks, which are probabilistically derived from an α = 2, β = 2
BetaDistribution density function shown in Figure 6.2 with the dotted line, and read
and write accesses from runnables to labels, which are based on the α = 1, β = 3
BetaDistribution density function shown in Figure 6.2 with the dashed line. Values are
calculated by the use of the apache.commons.math357 library. The BetaDistribution has
been chosen due to the fact that it is capable of generating appropriate density functions by
using only the two α, β values, which eases the probabilistic generation process. In general,

57https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html, visited
11.2020

156

https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html


Section 6.6. Comparison of the Case Study Models’ Properties

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p
(x
|α
,β

)

Beta Distribution

α = 3.0, β = 3.0

α = 1.0, β = 3.0

Figure 6.2: Beta distributions used for probabilistic software entity generation

other similar functions can be used, too. Tasks are not generated due to the partitioning
process of Chapter 4 already providing this functionality. Therefore, the partitioning can
be configured to consider activation values, precedence constraints, cycles, and a specific
number of tasks. The hardware generation uses uniform distribution and generates random
numbers in between given lower and upper bounds for ECUs, CPUs, memory modules, and
frequencies, which are then randomly referenced by the generated PUs.

6.6 Comparison of the Case Study Models’ Properties

This section briefly compares the models introduced in Sections 6.4–6.5 based on
fundamental properties influencing efficiency and effectiveness of partitioning, task to PU
mapping, data allocation, and timing verification processes.

DEM FMTV AIM WATERS MG1 MG2 MG3
0

2

4

6

8

N
b

.
of

ru
n

n
ab

le
s
p

=
|R
|·

10
3

p = |R|
|Activations|
|E|
q = |L|
u = |P|

0

20

40

60

80

N
u

m
b

er
of

ac
ti

va
ti

on
s

0

5

10

15

20

N
u

m
b

er
of

ed
ge

s
|E
|·

10
3

0

2

4

6

N
u

m
b

er
of

la
b

el
s
q

=
|L
|·

10
4

0

2

4

6

8

N
u

m
b

er
of

P
U

s
u

=
|P
|

Figure 6.3: Bar chart on various properties of case study models

The precise data of Figure 6.3 is the available along with Table 6.2, whereas the former
visually presents the model properties of the seven models using different y-axis.

157



Chapter 6. Case Study Models

DEM. AIM FMTV WAT. MG1 MG2 MG3
Nb. Tasks n = |T | 3 77 21 14 30 120 100
Nb. TaskDeps |E| 2 525 51 23 435 3545 4633
Nb. Run. p = |R| 43 1297 1250 27 7954 5913 8759
Nb. Run. depend. 53 218984 4612 33 5931 5067 14114
Nb. Labels q = |L| 71 46929 10000 30 74596 47308 38072
Nb. Stimuli 3 77 19 13 24 90 4
TickSum

∑
a ca · 106 3.96 5.68 8.59 1132 43.9 3.2 48.5

Avg. LA per Task 29 698 584 4 986 182 325
Avg. LA per Run. 3 52 11 2 3 3 3
Avg. Nb. Bytes
accessed by Task

43 1397 1604 2009038 1968 366 648

Table 6.2: Various properties of all case study models used as benchmarks for the
evaluation

In Table 6.2, the average number of Bytes accessed by a task is calculated via Eq. 6.1.

∑
i

( ∑
v:lv∈Li

lsv

)
n

(6.1)

The average label size accessed by a task is comparably high for the WATERS19 model
due to image-processing and stream data occupying a high amount of memory. For the
cyan-colored PU bars of Figure 6.3, the upper parts, filled with a diagonal line pattern,
represent the amount of PUs deviating from the lower PUs bar part without diagonal
lines, and hence give coarse insights about the amount of heterogeneous PUs that differ
in frequency, instructions per cycle, or clock ratio. However, in addition to Figure 6.3,
Table 6.3 gives more details about the hardware heterogeneities with frequencies given in
MHz.

Model f1 |Px| : fx = f1 f2 |Px| : fx = f2 f3 |Px| : fx = f3

DEM 200 3 -
AIM 50 3 -
FMTV 200 4 -
WATERS 2000 4 2000 2 1500 1
MG1 100 2 50 6 -
MG2 600 2 200 2 -
MG3 600 2 200 2 -
FMTV* 200 16 -
MG3* 60 32 20 32 -

Table 6.3: Case study model’s PU frequencies in MHz and numbers

In general, the number of PUs shown in Figure 6.3 has been used to calculate quality values
for the evaluation shown in, e.g., Figure 7.7, but more PUs can be modeled to calculate
wider software mapping as exemplarily shown in Figure 7.8. Compared with other models,

158



Section 6.6. Comparison of the Case Study Models’ Properties

the Democar model contains the fewest number of entities because it represents a single
hypothetical ECU only, and it has been manually modeled with academic origin in [265].
The amount of RSCs and labels is also comparably low for the Waters19 model, which
shows nearly the most amount of PUs and heterogeneity. The generated models all have
heterogeneous hardware and higher numbers of runnables compared to Democar, Fmtv,
Aim, and Waters19 models, whereas the Fmtv and Aim contain homogeneous PUs only.

In addition to the above-outlined model properties, the appendix provides additional chord
charts for some models in H.6 showing dependencies between runnable and task entities.
Due to the high amount of entities, not every information can be perceived, even though
the figure is vector graphic based. During software application development processes,
data dependencies may quickly get out of the developer’s scope such that an extensive
sharing of variables between tasks can be the result. To avoid these overheads, chord
plots can be useful to visualize data dependencies and identify data stressing tasks or
parameters. Figure H.1 gives an impression of such data dependencies as well as their
communication costs, indicated by the width of connections, respectively arcs, between
the entities positioned on the circumference.

With the seven outlined case study models, partitioning, task mapping, TDRR, and
the various timing verification approaches can be applied to a sufficiently large, diverse,
partially industrial relevant, and realistic set of models that is expected to give valuable
insights into the approaches’ efficiency, scalability, and result quality to be investigated
and compared in the following Chapter 7.

159



7
Metrics and Evaluation

This chapter presents measurements for the contributions (1) runnable to task partitioning,
(2) task to PU mapping, (3) label to memory allocation, (4) RTA for tasks along with
results from (2) and (3), (5) TCLA, and specific metrics such as accumulated contention,
blocking times, and others obtained from DSE results. The metrics are outlined for
assessing result quality and efficiency of solutions to the challenges (1)–(5) outlined in
Chapter 4 and 5. The metric measurement results are obtained by applying corresponding
calculations to the models described in the previous Chapter 6.

7.1 Runnable to Task Partitioning

To assess and compare the different partitioning approaches, they are applied to each
of the case study models of Chapter 6 and assessed according to the parallelism and
slackness metrics as well as the proportion of the partitioning result’s span compared to the
(optimal) CPP’s span outlined in Section 4.4. For these assessments, activation groups and
constraints that result in a subdivision of runnables are ignored. Consequently, the models
are partitioned based on a much broader DAG level and more dependencies to consider
for each partition. Partitioning assessment measurements are shown in Figure 7.1, which
shows the percentages of parallel and sequential code as the main factors influencing
the various metrics. Moreover, Figure 7.1 provides insights about the relationship of the
maximal partition length to the CrPa length (span ς) across (a) the same amount of
partitions for ESSP and CP-PC , and (b) nESSPl = nCP−PCl =

⌊
2
3 · nCPP

⌋
i.e two-

thirds of the CPP partition number nCPP for ESSP , indicated as ESSP_l, and CP-PC ,
indicated as CP-PC_l, across all case study models. The two-thirds reduction of the CPP
partition number is chosen for getting an impression of the increase in partition length
when lowering the number of partitions compared to the CrPa, which forms the lower
bound on execution time to execute the complete runnable DAG.

Firstly, the generated models show a much higher percentage of parallel code due to the
randomly generated accesses to labels, which results in rather low critical path lengths
compared to models with industrial focus, i.e., AIM, FMTV, WATERS, and Democar.
However, higher parallel code percentages provide more flexibility for forming the tasks
due to less precedence constraints necessary to be considered such that the performance of
CPP, ESSP, and CP-PC gain a near bin-packing characteristic for the generated models.

160



Section 7.1. Runnable to Task Partitioning

lCP-PC CPP

CPPCP-PC

CPPlESSP

CPPESSP

Democar
(4,2)

FMTV
(21,14)

AIM
(9,6)

WATERS
(2,1)

MG1
(729,486)

MG2
(506,337)

MG3
(417,278)

% parallel code 0.71 0.95 0.88 0.43 1.00 1.00 1.00
% sequential code 0.29 0.05 0.12 0.57 0.00 0.00 0.00
𝜍 / 𝜍 1.00 1.08 1.41 1.00 1.54 1.47 1.32
𝜍 / 𝜍 1.85 1.53 1.89 1.75 1.94 1.95 1.83
𝜍 / 𝜍 1.00 1.00 1.00 1.00 1.01 1.01 1.00
𝜍 / 𝜍 1.85 1.46 1.44 1.75 1.51 1.50 1.50

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Figure 7.1: Various partitioning metric results across case study models. The span ς
results of ESSP and CP-PC approaches are put in relation to the CrPa span.

This fact manifests in a larger solution space causing higher resolution times, increased
number of partitions, and more optimization potential ultimately resulting in a more
generic assessment of the partitioning approaches. The solution space is not entirely
investigated for metrics presented in Figure 7.1, and hence CP-PC does not equal CPP
results since the solution space exploration time was limited to two hours. In Figure 7.1, the
first number in brackets behind the model abbreviation name indicates the CPP partition
number and the second number represents the lowered partitions amount for ESSP_l and
CP-PC_l. Another interesting fact the measurements of Figure 7.1 reveals is the general
domination of CP-PC over ESSP. The results of ESSP are worse (higher value) for every
case study model except for Democar and WATERS models that have equal span values
compared with CP-PC. CP-PC matches the optimal CPP solutions for all models except
MG1 and MG2. Even for the latter, the deviation is just one % from the optimum, much
lower than up to 54% for ESSP (cf. MG1). As mentioned already, optimal values were just
slightly missed due to the resolution time limitation. Only the Democar and WATERS
models result in equal partitions for ESSP and CP-PC for both partition numbers due
to the relatively small amount of total runnables but many dependencies such that less
flexibility is given during the runnable partitioning exploration.

For the AIM and FMTV models, deviations for the number of CPP partitions were
discovered during the measurements, due to the cycle decomposition method (cf.
Section 5.6.1) not scaling well with the relatively high number of dependencies, especially
for the AIM model (218984). No simple cycle algorithm of either Szwarcfiter and
Lauer [267] O(p+ |E| · |Cy|), Tarjan [203] O(p · |E| · |Cy|), Johnson [268] O(((p+ |E|) · |Cy|),
or Tiernan [269] O(p.constp) found all cycles within a one hour runtime. Consequently,
an alternative cycle decomposition method is used to remove cycles by decomposing a
random dependency of the first found strongly connected components (i.e., runnables that
can reach each other through a dependency path). Due to this method being highly
efficient but not very effective, results can be produced in a short time period and used
for the partitioning assessment by ignoring the goal of decomposing as few dependencies
as possible. The latter can still be achieved through a more fine-grained analysis of the

161



Chapter 7. Metrics and Evaluation

cycle identification approaches, which is beyond the partitioning assessment scope. The
arbitration during the cycle decomposition causes both varying partition numbers and
span lengths. This variance is shown in box plots of Figure 7.2 taken from 100 consecutive
partitioning measurements, whereas star symbols indicate the solutions arbitrarily chosen
for metric comparison measurements of Figure 7.1. In addition to Figure 7.1, Figure 7.3

5

6

7

8

9

10

11

12

13

14

n(AIM)

5.0E+5
5.5E+5
6.0E+5
6.5E+5
7.0E+5
7.5E+5
8.0E+5
8.5E+5
9.0E+5
9.5E+5
1.0E+6

span(AIM)

14
16
18
20
22
24
26
28
30
32
34

n(FMTV)

2.8E+5

3.3E+5

3.8E+5

4.3E+5

4.8E+5

5.3E+5

5.8E+5

6.3E+5

6.8E+5

span(FMTV)

Figure 7.2: Variance in partition number and span for AIM and FMTV models due to
arbitration within the cycle decomposition phase

provides slackness metrics and hence the proportion of parallelism and the number of
partitions for all partitioning approaches and all case study models. The closer the slackness
is to 100%, the more balanced the partitions are. ESSP falls behind and creates much less

Democar
(4,2)

FMTV
(21,14)

AIM
(9,6)

WATERS
(2,1)

MG1
(729,486)

MG2
(506,337)

MG3
(417,278)

CPP 86.50% 97.48% 96.00% 87.50% 99.58% 99.51% 99.71%
ESSP 86.54% 90.60% 67.91% 87.45% 64.71% 67.68% 75.57%
CP-PC 86.54% 97.47% 95.98% 87.45% 98.81% 98.95% 99.37%
ESSP 93.75% 95.79% 76.26% 100.00% 76.97% 76.81% 81.86%
CP-PC 93.75% 99.90% 99.96% 100.00% 99.19% 99.68% 99.66%

60%
65%
70%
75%
80%
85%
90%
95%
100%

l

l

Figure 7.3: Slackness ζ results across partitioning approaches and case study models

effective partitions as shown by lower slackness values. Information derived from Figure 7.3
is further twofold. On the one hand, partitioning results show a good load balancing,
derived from slackness values close to 100% in general. The smaller the slackness value is,

162



Section 7.1. Runnable to Task Partitioning

the higher is the variance in the sum of instructions across the created partitions. Actual
parallelism (slackness’ nominator) are shown in Table 7.1. On the other hand, it is observed
that lowering the number of partitions yields in higher slackness values, i.e., maximal
parallelism is traded for load balancing across tasks. Apart from the generated models,

Democar FMTV AIM WATERS MG1 MG2 MG3
ξCPP 3.46 20.47 8.64 1.75 725.94 503.52 415.77
ξESSP 3.46 19.03 6.11 1.75 471.73 342.47 315.11
ξESSPl 1.88 13.41 4.58 1.00 374.08 258.85 227.58
ξCP−PC 3.46 20.47 8.64 1.75 720.29 500.71 414.38
ξCP−PCl 1.88 13.99 6.00 1.00 482.07 335.92 277.06

Table 7.1: Parallelism ξ results across partitioning approaches and case study models

CPP results in a partition number that equals the model’s parallelism value rounded up
to the next integer value. Specific parallelism values are given in Table 7.1. The increase
in partition number for the generated models compared to the parallelism value is though
very small and just exceeds the value by only three, two, and one partitions for MG1,
MG2, and MG3, respectively (cf. the number of partitions indicated by the first number
in brackets of Figure 7.3, and parallelism values of Table 7.1). This observation can be
referred to the fact that (i) the amount of generated models’ partitions is rather high and
the span relatively low, and as a consequence (ii) the deviation in instructions required
for some runnables necessitates creating additional partitions when respecting precedence
constraints.

Finally, efficiency must be compared across the partitioning approaches. Of course, this is
a significant disadvantage of CP-PC compared with CPP and ESSP due to using the Choco
solver engine instead of a greedy-based heuristic, which requires much more computational
resources. The following resolution time measurements are taken from a computer using
an Intel i9 9th-gen 8-core processor with 32GB RAM. Measurements are repeated ten
times, and the average resolution time values across these ten measurements are shown in
Figure 7.4. Due to the high flexibility in allocating runnables across tasks and the high
amount of runnables for the generated models, the resolution time limitation was set to
one hour compared to one minute for the Democar, WATERS, FMTV, and AIM models.
Additionally, the solver was configured to stop as soon as the result quality of ESSP was
reached. The reduced task number limitations for ESSP and CP-PC are shown here, too,
since they show meaningful resolution time efficiency when the CrPa does no constitute the
most prolonged partition. The latter may significantly reduce the solution space, resulting
in no meaningful resolution time measures, since having larger solution spaces, which is
achieved by reducing the number of partitions, increases resolution time.

On average across all case study models, ESSP takes 1.36 times longer than CPP. CP-
PCl, i.e. CP-PC with a task number configured to two thirds of CPP’s resulting task
number, already struggles at the Democar model, which has only 43 runnables. However,
even though CP-PCl does not investigate the entire solution space due to resolution time
limitation, results are still better than ESSP, which is shown by the previous measurements
via, e.g., an increased parallelism value. The model property differences cause a high
deviation in the resolution time factor for CP-PC compared to ESSP, which reaches from
1.29 for the AIM model up to 150 for the WATERS model. On average across all case
study models excluding the small WATERS and Democar models, the resolution time of

163



Chapter 7. Metrics and Evaluation

l

l

Democar WATERS FMTV AIM MG1 MG2 MG3
CPPC 43 450 30999 58520 1883986 198337 1757597
CPPC 30 300 27486 32365 1630316 183223 1727342
ESSP 6 3 3843 27253 23074 13738 40219
ESSP 6 3 3676 25146 23208 13811 40080
CPP 29 25 1366 13799 32517 14124 40615

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Figure 7.4: Resolution time in milliseconds across all case study models

CP-PC and CP-PCl is approximately 27 and 30 times the ESSP resolution time. It is
important to note that in the general case, CP-PC finds valuable solutions better than
ESSP early, and the rest of the CP-PC resolution time is spent on investigating the
entire solution space, i.e., all possible results to prove the optimum. Since proving the
optimum is not always required and improving ESSP results is of primary interest, it is
reasonable to say that CP-PC outperforms ESSP with an acceptable increase in resolution
time. Results obtained in Figure 7.4 are therefore configured for at least providing the
span of the ESSP result. When comparing the generated models with FMTV and AIM,
which provide comparable runnable numbers, Figure 7.4 shows that with an increase of
the proportion of parallel code towards one and respectively a proportion of sequential
code towards zero, the resolution time increase for CP-PC over ESSP grows. Especially
when considering the AIM model, resolution times do not significantly deviate between
the partitioning approaches. Here, CP-PC takes approximately 1.29 times the resolution
of ESSP for partitioning 1297 runnables into nine tasks.

To conclude, CP-PC is the clear winner for partitioning runnable sets into potentially
concurrently executing tasks when strictly defining the number of partitions. Even given a
low amount of precedence constraints and hence high flexibility in distributing runnables,
the resolution time is still reasonable, and resulting partitions are close to the optimal
parallelism of runnable DAGs. If the partition amount is allowed to be arbitrary, CPP
should be preferred because it provides partitions respecting the CrPa, i.e., the lower
bound on the execution time for the complete runnable set while keeping the resolution
time much lower compared to CP-PC. The concurrent execution of a CP-PC, ESSP,
or CPP partitioned applications potentially benefits from reduced application execution
times and, e.g., less energy consumption than sequential execution due to the potential of
running more PUs with lower frequencies [270]. All approaches are based on Amalthea
such that a variety of e.g. Autosar models can leverage the benefits of partitioning
by using Amalthea importers and exporters to and from established tools used in the
automotive industry. CP-PC, ESSP, and CPP form the first Amalthea-based open-source
contributions for valuable software partitioning in the automotive industry considering

164



Section 7.2. Software Distribution

Abbr. Description
DFG Data flow graph heuristic [41]
ILP Integer linear programming using oj!algoa [41]
GA Genetic algorithm using jenetics [42] [41]
CP Constraint programming without any optimization using the library from [44]
CPLB CP + optimization for load balancing, i.e., minimizing the maximal PU

utilization using the library from [44]
CPMO CPLB + optimization for inter PU communication costs (ipuc) → multi

objective optimization using the library from [44]

Table 7.2: DSE approaches applied to task-PU mapping DSE

the broad constraint set of Table 5.9. The consideration of a broader constraint set
provides an automated and optimized generation of tasks that results in efficient data
progression as well as tasks potentially being executed concurrently without much inter-
task communication.

7.2 Software Distribution

Various (meta-)heuristics are used and implemented along with this thesis to explore the
solution space of software distribution for automotive systems. More precisely, each of the
use case models’ task set (cf. Table 6.2) is explored according to being mapped to the
models’ PUs via six DSE approaches outlined in Table 7.2. The CP-based approaches,
highlighted with gray background in Table 7.2, were implemented from scratch using
the Choco library [44]. ILP, DFG, and GA are accessible from the reference [41] as
indicated and are used for comparison purposes. However, significant changes had to
be made to the latter approaches to be compliant to Amalthea 0.9.8, which address
heterogeneous hardware features via utilization metrics, and to consider instruction types
such as ticks and execution needs, among others. Available implementations only cover
minimizing instructions across PUs, which is inappropriate for load balancing according
to heterogeneous systems. These necessities were identified when applying the new
WATERS19 model to a measurement cluster for solving the mapping problem using ILP,
GA, DFG, CP, CPLB, and CPMO, at which the former two approaches failed. As a
consequence, implementation is refactored to target PU utilization, which results in more
reasonable load balancing.

For the DSE comparison, the maximal PU utilization ÛP in %, inter PU communication
ipuc, speedup S, and resolution time treso(ms) metrics are used. Inter-PU communication
considers the access rate, label size (and cache line), and the task to PU mapping shown
in Eq. 7.1.

ipuc(MP
τ ) =

∑
i,j∈[1,n]

ipuci,j =

0 if i = j ∨MP
i = MP

j∑
v:lv∈(↓τi∩↓τj )

⌈
lsv
cl

⌉
· 1012

Ti in ps otherwise


(7.1)

The CPMO approach uses the ipuc metric as a coarse indicator for inter-PU
communication, but CAN message delays can potentially be used here via incorporating
equations of Section 5.7.2, too. Access latency values between PUs and memories, denoted

165



Chapter 7. Metrics and Evaluation

as ↓x,d, require a label to memory mapping and are ignored for the presented metrics due to
(1) the models mostly not providing the required information (neither access latency values
nor label mappings), and (2) the increasing complexity due to the circular dependency
between access cost derivation, which depends on the task to PU mapping that in turn
depends on the access cost derivation. The latter is not intractable to solve, but has been
omitted along with provided measurement results shown in Table 7.3, since the simplified
version already gives a good representation of inter PU communication. However, label to
memory mapping evaluation is presented for a static task to PU mapping in Section 7.5.
For an advanced RTA-based mapping, a new GA approach is implemented, outlined in
Section 7.3, and includes the various constraints and analyses described in Chapter 5.

To conduct the measurement clusters across DSEs and use case models, the partitioning
process forms a crucial requirement for configuring the different task numbers. Therefore,
the extended ESSP approach is used, which considers the activation groups and
splits partitions in order of highest IPC first. The comparison of DSEs approaches
in Table 7.2 does not infer generality since there are many-fold parameters to
configure, which significantly affect efficiency (resolution time) and effectiveness (e.g.
maximal PU utilization). This configuration includes (a) the modeling of genes,
chromosomes, population, and others according to parameters to be set during DSE,
(b) the implementation of mutation and crossover operations, and (c) the limitation
implementation by time, fitness, number generations, or similar for the GA or (i) the
modeling of variables (graph, integer, real, set, and more), (ii) constraints (arithmetical,
logical, set, graph, and more), and (iii) search strategies (bounded, activity-based, smallest
domain / lower bound, greedy branching, random, and more) for CP.

Metric measurement results obtained by applying the DSE heuristics of Table 7.2 to the
models of Table 6.2 are shown in Table 7.3 and also as bar chart resolution time and
utilization plots across Figures 7.5 and 7.6.

18
0

18
0

60
0

18
0

30
0

60
0

60
0

18
0

30
0

0

10

20

30

DFG ILP GA CP CPLB CPMOR
es

ol
ut

io
n 

ti
m

e 
in

 s

DEM AIM FMTV WATERS MG1 MG2 MG3

Figure 7.5: Different DSE’s resolution times in seconds for case study models

Bars of Figure 7.5 with an open-top (no closed top bar line) required the resolution time
indicated in the bar’s base. The maximal time is limited to ten minutes, whereas every
10% of the resolution time (1 minute in this case) solutions of CP and CPMO are checked
to be existent and whether they increased in number over the last 20% of resolution time.
If both conditions are met, the solver is stopped to lower the resolution time since many
cases were observed that did not improve the solution fitness after early solution findings.
Consequently, the maximal resolution time is only met twice for the ILP approach and once

166



Section 7.2. Software Distribution

M
od

el
|T
|

|P
|

Ŝ
P

D
S
E

Û
P

ip
u
c

t r
e
so

S
M

D
S
E

Û
P

ip
u
c

t r
e
so

S
M

D
E
M

19
1*

3
3

D
FG

96
.8

53
00

82
2.
52

C
P

96
.8

54
00

13
2.
52

IL
P

96
.8

55
00

61
0

2.
52

C
P
LB

96
.8

54
00

14
2.
52

G
A

96
.8

49
00

91
6

2.
52

C
P
M
O

96
.8

44
00

11
7

2.
52

A
IM

12
0

3
3

D
FG

37
.6
1

13
86

37
67

63
9

2.
98

C
P

44
.0
8

14
01

78
58

34
2.
54

IL
P

39
.4
7

14
57

05
72

26
42

2.
84

C
P
LB

37
.4
0

13
85

93
88

18
60

1
3.
00

G
A

37
.4
7

14
40

45
30

36
46

2.
99

C
P
M
O

44
.1
9

13
82

29
87

60
00

0
2.
54

F
M
T
V

10
0

4
4

D
FG

12
.4
1

36
87

54
32

2
3.
63

C
P

15
.0
8

35
76

11
38

2.
99

IL
P

11
.3
2

39
89

08
58

85
3.
98

C
P
LB

11
.2
8

35
60

01
18

60
6

4.
00

G
A

11
.2
7

36
40

41
25

89
4.
00

C
P
M
O

15
.7
0

34
51

07
60

00
0

2.
87

W
A
T
E
R
S

14
2+

4+
1

6.
75

D
FG

89
.0
0

94
27

52
47

83
6.
16

C
P

85
.2
5

60
48

47
26

17
6.
43

IL
P

88
.2
8

55
02

93
58

41
90

6.
21

C
P
LB

82
.9
1

84
76

05
10

22
6.
61

G
A

82
.9
1

82
87

02
06

38
21

6.
61

C
P
M
O

89
.0
0

16
42

67
07

14
06

6.
16

M
G
1

12
0

2+
6

5
D
FG

73
.1
9

25
90

7
58

5
3.
96

C
P

90
.3
4

25
20

3
83

3.
21

IL
P

64
.5
6

26
00

7
60

00
00

4.
49

C
P
LB

58
.5
0

25
14

8
18

60
00

4.
96

G
A

59
.0
3

26
07

8
27

28
8

4.
91

C
P
M
O

99
.2
5

23
80

3
30

60
00

2.
92

M
G
2

51
2

3+
3

5
D
FG

22
.3
9

73
40

8
48

5
4.
26

C
P

30
.2
5

70
28

4
30

7
3.
15

IL
P

-
C
P
LB

21
.4
0

75
93

9
13

73
4.
45

G
A

22
.3
9

72
02

3
27

95
5

4.
27

C
P
M
O

36
.3
9

64
93

4
60

00
00

2.
62

M
G
3

51
2

2+
2

2.
67

D
FG

26
.0
5

32
92

7
29

4
1.
33

C
P

24
.2
0

32
71

5
16

2
1.
44

IL
P

-
C
P
LB

13
.1
0

31
11

2
18

60
00

2.
65

G
A

13
.1
0

31
09

9
27

67
2

2.
65

C
P
M
O

32
.2
0

31
54

4
30

60
00

1.
08

F
M
T
V
*

12
8

16
16

D
FG

38
.2
7

45
56

84
23

9
11

.7
8

C
P

43
.1
2

45
77

49
25

0
10

.4
6

IL
P

-
C
P
LB

29
.9
7

45
74

02
55

80
00

15
.0
5

G
A

33
.3
8

45
50

62
46

23
13

.5
1

C
P
M
O

57
.7
4

42
45

43
18

00
00

0
7.
81

M
G
3*

51
2

32
+
32

42
.6
7

D
FG

19
.2
3

42
68

2
11

90
18

.0
6

C
P

29
.5
3

42
71

8
24

86
2

11
.7
6

IL
P

-
C
P
LB

08
.4
9

42
62

2
18

60
00

40
.8
8

G
A

15
.2
2

42
58

1
27

29
6

22
.8
1

C
P
M
O

-

T
ab

le
7.
3:

D
SE

re
su
lt
s
fo
r
ca
se

st
ud

y
m
od

el
s:

ut
ili
za
ti
on

Û
P
in

%
an

d
re
so
lu
ti
on

ti
m
e
t r
es
o
in

m
ill
is
ec
on

ds

167



Chapter 7. Metrics and Evaluation

for CPMO. In general, the GA DSE appears to be the best trade-off between resolution
time and optimization and hence, it is used for the task-chain delay and label mapping
DSE in Sections 7.3.2 and 7.5, respectively. Figure 7.6 extends Table 7.3 by comparing the
resulting maximal PU utilization.

0

20

40

60

80

100

DEM AIM FMTV WATERS MG1 MG2 MG3M
ax

im
al

 P
U

 u
ti

l. 
in

 %

DFG ILP GA CP CPLB CPMO

Figure 7.6: Maximal PU utilization across case study models and DSE approaches

Figure 7.6 supports the statement of GA being a general good trade-off due consistently
meeting the lowest PU values in line with CPLB. No result for the ILP approach at
Amalthea model MG3 is shown due to the solver not finding any feasible solution within
the limit of 10 minutes.

The DSE heuristics can further be analyzed to the broader task and PU sets by configuring
the partitioning accordingly or adding varying and hypothetical PUs to the Amalthea
models. Corresponding results are presented in Figure 7.7, which compares the maximal
PU utilization ÛP and inter PU communication costs ipuc according to three different
task numbers (light gray markers) across the DSE heuristics for all models (each in a
separate scatter plot (a)–(f)) except the WATERS model. The latter is excluded from these
measurements because it only provides a single runnable per task (that requires instructions
for being executed) with almost individual activation parameters, such that partitioning
cannot subdivide the existing task set, and no varying task numbers are feasible. For other
case study models, task and PU configurations are indicated along with each subplot’s
title. The colored (darker filled) markers represent the average over the three (gray) task
number configurations. In all cases, the CPLB and GA heuristics result in the two best
load balancing results by consistently providing the lowest maximal PU utilization values
(cf. Table 7.3). Essentially, the lower-left a marker in Figure 7.7 is, the better the solution
is due to the lower maximal PU load and inter-PU communication, respectively. CP and
CPMO approaches show worse results compared with GA and CPLB due to no optimizing
at all and trading load balancing for reducing inter PU communication costs, respectively.
With an increasing number of PUs and tasks, CPMO and ILP results get worse due to
scalability issues and resolution time restrictions, which have been set to allow comparing
the results based on similar resolution time. The CP approach does not result in very
effective outcomes, but as shown in Figure 7.9, its resolution time is the lowest for nearly
all measurements. The inter PU communication cost ipuc is only optimized for CPMO and
hence arbitrary for other DSEs. In general, the best ÛP values are achieved for CPLB and
GA. CP results in the quickest resolution times. As a greedy heuristic, the DFG approach
quickly finds good solutions for the Democar and AIM models, but in turn, suffers from

168



Section 7.2. Software Distribution

20
00

30
00

40
00

50
00

In
te

r
P

U
co

m
m

u
n

ic
at

io
n

co
st

s
ip
u
c

85
.0

87
.5

90
.0

92
.5

95
.0

97
.5

10
0.

0

MaximalPUutilizationÛ
P

(a
)

D
em

oc
ar

n
=

6,
10

,1
9

D
F

G

IL
P

G
A

C
P

C
P

L
B

C
P

M
O

32
00

00
34

00
00

36
00

00
38

00
00

40
00

00
In

te
r

P
U

co
m

m
u

n
ic

at
io

n
co

st
s
ip
u
c

12141618 MaximalPUutilizationÛ
P

(b
)

F
M

T
V

n
=

30
,6

5,
10

0

D
F

G

IL
P

G
A

C
P

C
P

L
B

C
P

M
O

17
50

20
00

22
50

25
00

27
50

In
te

r
P

U
co

m
m

u
n

ic
at

io
n

co
st

s
ip
u
c
·1

03

12
.5

15
.0

17
.5

20
.0

22
.5

25
.0

27
.5

MaximalPUutilizationÛ
P

(c
)

A
IM

,
n

=
80

,1
00

,1
20

D
F

G

IL
P

G
A

C
P

C
P

L
B

C
P

M
O

25
00

0
26

00
0

27
00

0
28

00
0

In
te

r
P

U
co

m
m

u
n

ic
at

io
n

co
st

s
ip
u
c

6070809010
0

MaximalPUutilizationÛ
P

(d
)

M
G

1
n

=
80

,1
00

,1
20

D
F

G

IL
P

G
A

C
P

C
P

L
B

C
P

M
O

65
00

0
67

50
0

70
00

0
72

50
0

75
00

0
In

te
r

P
U

co
m

m
u

n
ic

at
io

n
co

st
s
ip
u
c

20253035404550 MaximalPUutilizationÛ
P

(e
)

M
G

2
n

=
12

8,
25

6,
51

2

D
F

G

IL
P

G
A

C
P

C
P

L
B

C
P

M
O

22
50

0
25

00
0

27
50

0
30

00
0

32
50

0
In

te
r

P
U

co
m

m
u

n
ic

at
io

n
co

st
s
ip
u
c

1520253035 MaximalPUutilizationÛ
P

(f
)

M
G

3
n

=
12

8,
25

6,
51

2

D
F

G

IL
P

G
A

C
P

C
P

L
B

C
P

M
O

F
ig
ur
e
7.
7:
Û
P

(i
p
u
c)

re
su
lt
s
fo
r
va
ri
ou

s
D
SE

s
ac
ro
ss

D
E
M
,F

M
T
V
,A

IM
,M

G
1,

M
G
2,

an
d
M
G
3
ca
se

st
ud

y
m
od

el
s

169



Chapter 7. Metrics and Evaluation

local optima and hence only average results for all other case study models. In general,
the DFG approach has no point in favor, albeit not relying on any third-party library.

Given that many-fold constraints can be easily incorporated with CP in contrast to DFG,
ILP, or GA, CP is an appropriate choice for quickly identifying valid solutions while
considering a variety of constraints that all need to be fulfilled in a given solution. As
soon as larger models are addressed, i.e., subplots (b)-(f) in Figure 7.7, CPLB and GA
create the best (lower ÛP ) results for most measurements. Even setting the resolution
time to a single minute creates better results than DFG or ILP approaches in many cases.
For instance, at the generated model (d) MG1, CPLB results in the lowest ÛP across all
DSEs. Reducing the resolution time often causes the ILP solver not to provide any feasible
result. Measurements provided in Figure 7.7 feature a resolution time of ten minutes,
at which ILP does provide results for MG2 at 512 partitions. Since solutions are found
after 20 Minutes, resolution times are raised for MG2 and MG3 accordingly. A significant
influence on resolution time is whether there exists a relatively large task that contains a
sequence of runnables, i.e., a task that can not be further subdivided. If this task occupies
more utilization than the sum of all other task instructions divided by the sum of all PU
capacities, it forms the lower bound on execution time (assuming that it is mapped to the
fastest PU) and investigating a considerable part of the solution space is obsolete since
the optimization goal does not change due to the comparably longer task. As the DFG
heuristic sorts tasks by their instruction costs and assigns those beginning with the largest
chronologically to an ordered list of PUs beginning with the fastest (most instructions per
second), addressing situations with long CrPas (tasks) works well, which is the case for
the Democar and AIM cases, but not with other case study models, which provide more
flexibility and somewhat balanced tasks.

Figure 7.8 presents the speedup of (a), the MG1 model, and (b), the Fmtv model, along
with an increasing number of homogeneous PUs (speedup(number of PUs u)). The used
speedup calculation is based on [28] and provided in Eq. 7.2.

S =

∑
j

(
min
k

(C+,s
j,k )

)
max
k

(∑
j
C+,s
j,k | taj,k = 1

) (7.2)

Here, the nominator defines the minimal sequential runtime of all tasks being mapped
to the fastest PU. The denominator depends on the task mapping and identifies the
maximal runtime across all PUs, i.e., parallel runtime. This speedup calculation applies
to a heterogeneous PU structure and can be seen as the fraction of the time before the
parallelization and the time after the parallelization, as introduced in [28].

Due to limited dependencies between the tasks and runnables and a relatively homogeneous
instruction distribution, almost optimal speedup factors can be reached, whereas CPLB
found the best values according to Figure 7.7 (f) and Figure 7.8. Surprisingly, the DFG
approach creates better results for the MG3 model compared to GA. However, this is not
the case for the Fmtv model, as shown in Figure 7.8 (b) due to its more heterogeneous
nature. While ILP does not scale beyond eight PUs for the given resolution time at all,
CPLB requires significantly more runtime after the amount of 16 PUs. The optimal,
model-independent, speedup value equals the number of PUs, but is barely achievable due

170



Section 7.2. Software Distribution

1
2
3
4
5
6
7
8
9

10
11
12

2 4 8 16 32 64

Sp
ee

du
p 

(S
)

Number of Processing Units (u) FMTV

DFG ILP GA CP CPLB CPMO

(b)

1

6

11

16

21

26

31

36

2 4 8 16 32 64

Sp
ee

du
p 

(S
)

Number of Processing Units (u) MG3

DFG ILP GA CP CPLB CPMO

(a)

Figure 7.8: Speedup(u) of different DSE results for MG3 and Fmtv models

to communication costs and varying task sizes.

With the Fmtv model (cf. Figure 7.8 (b)), such speedup is saturated already at 16 PUs
because there is a single task that cannot be subdivided further and consequently forms
the lower bound on schedule length. To avoid saturation, the model would have to provide
fewer dependencies and more homogeneous tasks regarding their sum of instruction costs.
While the difference between GA and CPLB is smaller in (b) than in (a), CPLB still
provides the best results for all number of PUs. As mentioned before, the DFG approach
produces worse results in (b), whereas CP achieves better results than in (a). Other than
that, results are similar to the MG3 model in (a).

Figure 7.9 presents the resolution time of different DSE approaches for an increasing
number of tasks for (a) the Democar and (b) the Fmtv model. Results show that the
multi-objective constraint programming approach CPMO scales worst with the number of
tasks as it is the only approach with multi-objective optimization. The CPLB approach
also does not scale very well, but the measurements often show that reasonable solutions
are found nearly as quick as the GA approach does, and the rest of the resolution time is
used to search the entire problem space. Furthermore, as soon as a single task defining the
lower bound on the maximal PU utilization, i.e., a comparably large task that contains
a high amount of instruction and is consequently mapped to the fastest PU, CPLB runs

171



Chapter 7. Metrics and Evaluation

quicker than ILP, DFG, or GA. If tasks’ instructions are balanced, CPLB scales worse
than ILP with the number of tasks but better with the number of PUs. It is important
to note that CPLB is always able to find at least a valid solution, while the ILP solver
fails, e.g., for eight PUs and more (cf. Figure 7.10), even with hours of resolution time.
Concerning larger models, the single objective constraint approach (CPLB) outperforms
almost every DFG, ILP, and GA result (except Figure 7.7 (e) and (f) for |T | = 512)
whereas the CPMO tends to create worse results beyond a task number of 65. The peak

10 15 20
Number of tasks

0

250

500

750

1000

1250

1500

R
es

ol
u

ti
on

ti
m

e
in
m
s

(a) Democar

DFG

ILP

GA

CP

CPLB

CPMO

40 60 80 100
Number of tasks

0

20000

40000

60000

R
es

ol
u

ti
on

ti
m

e
in
m
s

(b) FMTV

DFG

ILP

GA

CP

CPLB

CPMO

Figure 7.9: Resolutiontime(n) of different DSEs for (a) Democar and (b) Fmtv

for ILP at 11 tasks has been verified over multiple measurements and is probably caused
by an increased number of optimal solutions by coincidence, due to the partitioning to
this particular amount of tasks results in multiple equally loaded tasks. Figure 7.9 (a)
shows that the CP approaches with optimization do not scale well with the number of
tasks, and the CP and DFG approaches are yet the quickest with insignificant deviations.
When applying the various DSEs to bigger models, the situation is similar: CPLB meets
its limits to investigate the complete solution space at about 20 tasks. CPLB, however,
finds valid solutions already at the same time the CP approach does (< 5ms), while ILP
may not provide solutions before its resolution time at all.

The following line charts of Figures 7.9 and 7.10 provide information about the DSE’s
scalability, depending on the number of tasks and PUs on the X-axis as indicated.
Figure 7.10 presents the resolution time treso (a) and the ipuc values (b) of different DSE
approaches along with an increasing number of PUs u for the Fmtv model. Once again,
CPMO performs with its maximal runtime definition (here set to 15 minutes), and CP
finds valid solutions most quickly. The GA approach performs well but still takes longer
than CP for each result. The worst scaling behavior shows the ILP approach. Above eight
PUs, the ILP solver did not find a valid solution at all. CPMO does also not scale well
with the number of PUs and fails beyond 16 PUs for the same resolution time restriction.
Interestingly, the CPLB approach starts with requiring the full defined runtime but drops
to a minimum resolution time with 16 PUs and above. This resolution time reduction
is due to the fact that below 16 PUs, the solution space covers a huge variety of task
to PU mapping combinations resulting in different maximal PU utilizations. As soon as
16 or more PUs are available, one relatively huge task defines the lower bound of PU
utilization and mapping the other tasks to other PUs does not reduce this minimal PU

172



Section 7.2. Software Distribution

22 24 26

Number of processing units u = |P |

0

20

40

60

R
es

ol
u

ti
on

ti
m

e
in
s

(a) treso(u) FMTV

DFG

ILP

GA

CP

CPLB

CPMO

22 24 26

Number of processing units u = |P |

25

30

35

40

45

In
te

r
P

U
co

m
.

co
st

s
ip
u
c
·1

04

(b) ipuc(u) FMTV

DFG

ILP

GA

CP

CPLB

CPMO

Figure 7.10: (a) Runtime(u); (b) ipuc(u) of different DSEs for Fmtv

utilization. Consequently, since the optimization targets only to minimize the upper PU
utilization bound but not maximizing the lower bound (this would contrarily keep the
CPLB resolution time high), its optimization is done, and solutions are available quickly.
Figure 7.10 (b) also shows a linear increase in communication costs with the increasing
number of PUs as well as the CPMO approach with the lowest ipuc values.

As soon as a heterogeneous structure of PU is present, the ÛP metric is necessary to
overcome limitations of, e.g., reducing the absolute maximal IPC per PU. Additionally,
the CP solver can be configured to a specific initialization to overcome the arbitrary
initial assignment values that often create an undesired homogeneous mapping along with
the heterogeneous system. For example, instead of the PU utilization constraint only,
the initial assignment could feature another lower bound comparable to Eq. 4.19, i.e.,
∀x :

∑
iM

Px
τi ≥ 1 with n ≥ u. Assuming that the task number is higher than the number

of PU, this equation ensures that at least one task is mapped to each PU.

Finally, Pareto front plots are presented in Figures 7.11 and 7.12 and give insights to the
CPMO result sets, which are selected by lower ipuc values in Table 7.3, but in fact, provide
a solution set, of which each entry (x marker in Figure 7.11) represents a solution that
has an individual combination of (minimized) optimization parameters. The dotted trend
line is added to help identify dominating solutions that have comparably good optimization
value pairs, which are found below the trend line. Not all models result in a high amount
of solutions for a Pareto front, especially given that CPMO does not scale well with the
number of tasks.

As an intermediate summary, it is observed that various DSE provide broad flexibility
for engineers facing the highly constrained problem of distributing automotive software
to heterogeneous hardware with varying architectural structures and patterns. The
lightweight CP approach without any optimization provides valid solutions faster than any
other comparable approach, such as DFG, ILP, or GA. The single objective optimization
approach CPLB provides optimal or nearly optimal solutions for most of the measurements.
The CPMO approach covers multi-objective optimization with accessible Pareto fronts
in an appropriate amount of time. For optimal results, however, the multi-objective
CPMO approach requires significantly more time. A great benefit of using the CP

173



Chapter 7. Metrics and Evaluation

𝑈"!𝑈"!

15

20

25

30

35

10 12 14 16 18 20 22 24 26 28 30 32 34 36

In
te

r 
P

U
 c

om
. ・

10
4

Maximal PU utilization      in %

(a) FMTV n=30

31
31
32
32
33
33
34
34
35
35

12 13 14 15 16 17 18 19 20 21 22 23 24

In
te

r 
P

U
 c

om
. ・

10
4

Maximal PU Utilization      in %

(b) FMTV n=100

Figure 7.11: Pareto-front line charts for CPMO across the Fmtv model partitioned into
(a) 30 and (b) 100 tasks

𝑈"!

5

7

9

11

13

15

40 45 50 55 60 65 70 75 80 85 90 95 100

In
te

r 
P

U
 c

om
. ・

10
6

Maximal PU utilization     in %

AIM n=20

Figure 7.12: Line chart for CPMO Pareto-front of AIM model partitioned into 20 tasks

paradigm is also an automatic constraint validation that informs programmers about any
contradicting or flawed model entities, variable bounds, or constraints. Such validation
requires additional efforts when using different DSEs. CP applies very well to highly
constrained domains consisting of combinatorial design spaces typically employed by
automotive systems. It preserves the natural modeling and programming activities while
providing optimal, Pareto-optimal, or near-optimal solutions in reasonable resolution time.
Typical automotive constraints, consecutive constraint modeling, and solving partitioning
and task mapping problems with a constraint solver are presented. Optimization goals
can be easily changed or adapted without the necessity to combine or introduce new linear
inequalities, which is required for ILP, or adjusting the fitness evaluation method for GA
approaches. However, if resolution time is crucial and the modeling of genes, chromosomes,
crossover operations, and more does not impose too much overhead, GA approaches should
be in favor due to scaling better with the problem space.

7.3 CPU-GPU Response Times and Task Chain Delays

As mentioned before, the task to PU mapping problem not only requires DSE approaches
for addressing optimization goal(s), but also necessitates verifying various timing
properties, e.g., guaranteeing that worst-case task (chain) response times are always lower

174



Section 7.3. CPU-GPU Response Times and Task Chain Delays

than their deadlines or covering GPU timing constraints and characteristics, which is
addressed in Chapter 5.6 and evaluated in this section. As the WATERS case study
model is the only one providing GPU information, this section solely considers the
WATERS(2019) model and addresses the work and research in line with the challenges
proposed in [30] and partially published in [19].

The WATERS challenges’ Amalthea models often include some inconsistency on purpose,
which is required to be found by the addressees. For the 2019 model, this inconsistency is
constituted by the task Planner, which has a periodic activation of 12ms, but an execution
time higher than its period >12ms for any PU. On behalf of this issue, the Planner’s
periodic activation is increased to 15ms to provide feasibility.

As the previous Section 7.2 shows, the GA approach to the mapping problem including
RTA is promising and hence implemented using the jenetics library [42]58. To restrict
the solution space for tasks constrained to run on either CPUs only, GPUs only, or both,
instead of decoding a single chromosome with multiple integer genes, each task mapping is
encoded within a dedicated chromosome consisting of a single integer gene. Consequently,
genes can have different domains, which is impossible when encoding multiple genes within
the same chromosome. The implemented GA includes timing verification in the form of
RTA for CPU and GPU task sets and can be configured to optimize the following metrics.

I RTSO = Response Time Sum Optimized includes:

i the sum over all tasks’ worst-case response times across CPUs and GPUs, i.e.,
minimize R+

T =
∑

iR
+
i that involves equations 5.37, 5.58, and H.19,

ii the total memory access latency (cf. Eq. 5.72),

iii the total CE latency (cf. Eq. 5.54), and

iv the total task contention (cf. Eq. 5.55).

II TCO = Task Chain latency sum Optimized minimizes the sum of all task chain
latency values using either of Eq. 5.44, 5.45, 5.46, 5.47, 5.48, or 5.49 depending on
whether (a) worst or (b) best task chain (c) reaction or (d) age delay for (e) implicit
or (f) LET communication paradigms is targeted.

III LBO = Load Balancing Optimized minimizes the maximal PU utilization (minimize
ÛP = maxx U

P
x and UPx given in Eq. 5.8).

IV EV = No optimization at all - similar to the CP-based DSE approach of Section 7.2,
but verification of all constraints, namely pairings, separations, sequencing, mapping,
capacity, and deadlines (cf. Table 5.9), which also hold for all above GA
implementation approaches.

V SYN = Response time sum optimized, but under synchronous offloading59, i.e., an
offloading task’s execution time is increased by the offloaded task’s response time (only
used in and valid for measurements of Section 7.3.3).

58Many other similar libraries exist, but jenetics has been chosen due to its compliance to Eclipse’s IP
policies and its Java-based implementation.

59The SYN mapping can also be executed asynchronously, which is denoted ASYN

175



Chapter 7. Metrics and Evaluation

Combinations of the above metrics are possible in general and RTA as well as constraint
consideration is integrated within the GA’s fitness function and the modeling of genes and
chromosomes.

7.3.1 Time Slice Derivation for GPU WRR Scheduling

During the investigation of time slice lengths and weights for the WRR scheduling on
the GPU, ticks of the Detection task were reduced to one-tenth of its original values,
i.e., CGPU,+Dectection∗ = CGPU,+Dectection · 1

10 , for enabling three tasks running on the GPU without
exceeding the GPU’s capacity, i.e., having a feasible task set of three tasks on the GPU.
These three tasks are Detection, Localization, and SFM. Figure 7.13 shows average
normalized task slack times derived from Eq. 7.3 along with different base time slices θ
(x-axis) and weights, i.e., individual time slice lengths per task derived from the base time
slice θ.

ζ
′
=
∑
i

(
Ti −R+

i

Ti

)
· 1

|TGPU |
(7.3)

More precisely, Figure 7.13 compares equal weights, i.e., same θ time slice lengths, priority
weights derived from periods, whereas the highest priority has the highest value πi,
utilization weights of Eq. 5.3 multiplied with the number of tasks mapped to the respective
GPU, and the utilization weights only.

1ms 2ms 5ms 10ms 20ms 50ms 100ms
θ

50

60

70

80

ζ
′ ·

10
0

60.84 63.02 65.04 75.15 76.15 75.50 74.18
72.95 76.15 75.98 76.81 76.15 75.50 74.18

54.21 54.58 55.33 55.33 59.04 64.50 64.50
54.58 54.58 59.04 66.48 66.57 75.50 76.81

Average normalized slack time in % (base time slice length) = ζ
′ · 100 (θ)

(a) Same θ (b) θ · πi (c) θ · Ui,x (d) θ · Ui,x · n

Figure 7.13: Influence of time slice derivation methods and different base time slice
lengths (θ) on slack times: (a) equal, (b) priority, (c) utilization· n, and (d)

utilization-based time slices

For all time slice base values except 100ms, the priority-based time slice derivation shows
the highest (best) average normalized slack times. Using the task utilization results in
the lowest, i.e., worst results. The equal time slice length method is outperformed by
the priority-based one, although results converge with increasing base time slice lengths
towards the same results. Finally, the utilization multiplied with the number of tasks
method only outperforms others at 100ms due to time slice lengths start exceeding the
actual task execution times and hence a near non-preemptive scheduling emerges. As
a consequence, some tasks finish execution using only a single RRT and others require
more turns. However, a valuable assessment can be made if not only average slack
times are addressed, but also the standard deviation across all GPU task’s slack times.
Therefore, Figure 7.14 provides insights into each time slice weighting approach’s standard

176



Section 7.3. CPU-GPU Response Times and Task Chain Delays

deviation across all base time slice lengths. Even though equal and priority-based time

Same θ θ · πi θ · Ui,x θ · Ui,x · n

40

50

60

70

80

90
S

la
ck

ti
m

e
in

%
=
T
i−
R

+ i

T
i
·1

00

Average Slack Time in % (θ -derivation method)

Figure 7.14: Average slack time deviations of different time slice derivation methods

slice methods show nearly the same 76% slack time medians, lower whisker as well as
lower and upper quartiles are higher and hence better for the priority-based approach,
making it the time slice derivation in favor of the others. This fact is also supported by
the slack time bar plot in Figure 7.13, which also shows the best slack times except for
the 100ms base times slice length. In general, it is not recommended to choose too large
time slice lengths since the round robin fashion, i.e., sharing the computing resource across
multiple entities continuously, reduces when time slices reach towards execution times or
even periods. In fact, since the SFM task with a period of 66ms is mapped to the GPU
in the measurements, choosing 100ms can potentially cause deadline misses, even though
WRR is work conserving, because a higher priority task uses the entire time slice before
SFM’s time slice is scheduled. The measurements shown in Figures 7.13 and 7.14 are only
schedulable due to the mentioned assumption of reducing the Detection execution time
and using rate monotonic priorities. It can be concluded that the priority-based time slice
derivation method outperforms others presented here and is chosen consequently for the
timing verification measurements of the next sections.

7.3.2 Task Chain Latency Analyses

This section applies the methodologies of Section 5.5 to the WATERS19 case study model.
There are no explicit task chains given in the challenge model, but the following task chains
can be derived based on the information flow of Figure 6.1. Abbreviations of each task
chain are given in brackets aligned right in the following list.

γ1 = {Lane Detection→ Planner→ DASM} (LD-P-DA)
γ2 = {SFM→ Planner→ DASM} (SF-P-DA)
γ3 = {CAN polling→ Planner→ DASM} (CA-P-DA)
γ4 = {CAN polling→ EKF→ Planner→ DASM} (CA-EK-P-DA)
γ5 = {CAN polling→ Localization→ EKF→ Planner→ DASM} (CA-Lo-EK-P-DA)

177



Chapter 7. Metrics and Evaluation

γ6 = {Lidar Grabber→ Localization→ EKF→ Planner→ DASM} (Li-Lo-EK-P-DA)
γ7 = {Lidar Grabber→ Planner→ DASM} (Li-P-DA)
γ8 = {Detection→ Planner→ DASM} (D-P-DA)

Based on those task chains γ1 − γ8, various task chain latency values shown in Table 7.4
with corresponding equation references can be calculated. Results when applying those
equations to the WATERS model across mappings EV–LBO are shown in Table 7.5.

Description Notation Equation
Worst-case task chain reaction delay implicit ρ+

ι 5.46
Best-case task chain reaction delay implicit ρ−ι 5.44
Worst-case task chain reaction delay LET ρ+

λ 5.47
Best-case task chain reaction delay LET ρ−λ 5.45
Worst-case task chain aging delay implicit α+

ι 5.48
Worst-case task chain aging delay LET α+

λ 5.49

Table 7.4: Task chain latency types overview, notation, and equation reference

Best-case aging delays are omitted in Table 7.4, since no reason could be found that
such metrics can be of relevance. All measurements are based on asynchronous offloading
except the ’SYN’ approach shown in Table 7.5, which is further explained in the following
Section 7.3.3. In general, task chain aging delays are much higher than reaction delays,
which can also be seen in Figure H.2 due to considering two consecutive task chain
instances instead of properties of a single instance only. All LET task chain delays are
independent of response or execution times since only periods are taken into account. As
a consequence, LET-based task chain delays are also independent of the mapping under
the schedulability assumption and consequently outlined once, denoted as ’ALL’ for all
mappings in Table 7.5. Although LET makes latency estimation much easier, delays are
much longer than implicit results. It is observed that the load balancing approach results in
the worst task chain delays. This supports the statement of memory operations, blocking,
and contention significantly affecting response times and hence task chain latency, too.
Even the early valid mapping outperforms the load balancing approach. In turn, the
range distribution between best- and worst-case task chain delays is the lowest for the load
balancing approach. Since the TCO approach’s target is to minimize exactly the worst-case
implicit task chain reaction sum, Table 7.5 shows the lowest values for TCO accordingly.
In total, the worst-case task chain delays are approximately 10%, 25%, and 9% higher for
the worst LBO result compared with the TCO results for ρ+

ι , ρ
−
ι , and α+

ι , respectively.
The asynchronous offloading approach exceeds the synchronous one by 35.8% and TCO
by ≈39%. As an intermediate summary, it can be derived that synchronous offloading has
a disadvantageous effect for task chain latency delays and that valid task to PU mappings
effects task chain latency delays by up to 25% for the WATERS19 model.

In addition to the task chain results of Table 7.5, the concrete task mappings, response
times, s-, and pi-blocking delays are given along with periods and execution times for all
tasks in Table 7.7, further extended towards contention, CE delays, accumulated label
access costs, and normalized task response time in Table 7.6.

178



Section 7.3. CPU-GPU Response Times and Task Chain Delays

T
as
k
ch
ai
n
na

m
e

W
or
st
-c
as
e
im

pl
ic
it

re
ac
ti
on

de
la
y
ρ

+ ι
ρ

+ λ
ρ
− λ

α
+ λ

E
V

R
T
SO

T
C
O

LB
O

A
SY

N
SY

N
A
LL

A
LL

A
LL

LD
-P

-D
A

75
.3
7

84
.7
6

84
.3
6

75
.3
7

99
.9
2

99
.9
2

10
6

86
16

7
SF

-P
-D

A
13

5.
88

12
2.
19

13
1.
65

14
8.
98

12
6.
30

12
6.
30

23
8

15
2

29
9

C
A
-P

-D
A

31
.1
4

31
.5
5

26
.9
1

31
.1
4

32
.4
5

32
.4
5

50
30

55
C
A
-E

K
-P

-D
A

50
.1
5

53
.1
7

46
.3
2

50
.1
5

51
.4
6

51
.4
6

80
45

85
C
A
-L
o-
E
K
-P

-D
A

75
4.
46

75
8.
41

69
7.
57

74
2.
85

71
5.
96

10
39

.0
1

16
80

84
5

16
85

Li
-L
o-
E
K
-P

-D
A

82
3.
93

82
2.
63

75
9.
58

81
2.
47

76
8.
24

10
91

.2
8

17
33

88
3

17
61

Li
-P

-D
A

63
.6
1

56
.1
5

51
.5
1

63
.7
6

47
.7
2

47
.7
2

73
53

10
1

D
-P

-D
A

43
9.
54

35
7.
46

40
6.
66

50
5.
62

41
4.
50

57
5.
50

64
0

42
0

83
5

SU
M

23
74

.0
7

22
86

.3
3

22
04

.5
7

24
30

.3
5

22
56

.5
6

30
63

.6
5

46
00

25
14

49
88

T
as
k
ch
ai
n
na

m
e

B
es
t-
ca
se

im
pl
ic
it

re
ac
ti
on

de
la
y
ρ
− ι

W
or
st
-c
as
e
im

pl
ic
it

ag
e
de

la
y
α

+ ι

E
V

R
T
SO

T
C
O

LB
O

SY
N

E
V

R
T
SO

T
C
O

LB
O

SY
N

LD
-P

-D
A

55
.3
7

64
.7
6

64
.3
6

55
.3
7

79
.9
2

13
6.
37

14
5.
76

14
5.
36

13
6.
37

16
0.
92

SF
-P

-D
A

49
.8
8

36
.1
9

45
.6
5

62
.9
8

40
.3
0

19
6.
88

18
3.
19

19
2.
65

20
9.
98

18
7.
30

C
A
-P

-D
A

16
.1
4

16
.5
5

11
.9
1

16
.1
4

17
.4
5

36
.1
4

36
.5
5

31
.9
1

36
.1
4

37
.4
5

C
A
-E

K
-P

-D
A

20
.1
5

23
.1
7

16
.3
2

20
.1
5

21
.4
6

55
.1
5

58
.1
7

51
.3
2

55
.1
5

56
.4
6

C
A
-L
o-
E
K
-P

-D
A

30
9.
46

31
3.
41

25
2.
57

29
7.
85

27
0.
96

75
9.
46

76
3.
41

70
2.
57

74
7.
85

72
0.
96

Li
-L
o-
E
K
-P

-D
A

34
0.
93

33
9.
63

27
6.
58

32
9.
47

28
5.
24

85
1.
93

85
0.
63

78
7.
58

84
0.
47

79
6.
24

Li
-P

-D
A

43
.6
1

36
.1
5

31
.5
1

43
.7
6

27
.7
2

91
.6
1

84
.1
5

79
.5
1

91
.7
6

75
.7
2

D
-P

-D
A

21
9.
54

13
7.
46

18
6.
66

28
5.
62

19
4.
50

63
4.
54

55
2.
46

60
1.
66

70
0.
62

60
9.
50

SU
M

10
55

.0
7

96
7.
33

88
5.
57

11
11

.3
5

93
7.
56

27
62

.0
7

26
74

.3
3

25
92

.5
7

28
18

.3
5

26
44

.5
6

Table 7.5: Task chain latency analysis results in ms

In line with the challenge description [30], an offloading task is omitted (zero execution
time), if the triggered task is executed on a CPU. All tasks meet their deadlines, whereas
the worst normalized response time is surprisingly contained in the RTSO mapping for the
Planner task. This is caused by the optimization goal targeting the response time sum,

179



Chapter 7. Metrics and Evaluation

which indeed is the lowest for RTSO, instead of the mNRT metric. The local pi-blocking
occurs scarce and yields low delays. This fact is due to the rather rare occasion of a task
with lower priority runs on the same PU and accesses the same label(s) and due to some
tasks accessing labels that are not shared at all (especially tasks that can potentially run
on the GPU). For Table 7.7, Core0 and Core1 are Denver PUs and Core2–Core5 represent
the ARM PUs in line with the naming of the WATERS19 Amalthea model.

C
on

te
nt
io
n

C
E

co
st
s

T
as
k

E
V

R
T
SO

T
C
O

LB
O

E
V

R
T
SO

T
C
O

LB
O

O
SO

ve
rh
ea
d

-
-

-
-

-
-

-
-

Li
da

rG
ra
bb

er
8.
75

02
8.
75

02
8.
75

02
8.
75

02
-

-
-

-
D
A
SM

0.
00

9
0.
00

9
0.
00

19
0.
00

9
-

-
-

-
C
A
N
bu

sp
ol
lin

g
0.
00

05
0.
00

26
0.
00

26
0.
00

29
-

-
-

-
E
K
F

0.
02

3
0.
02

3
0.
02

3
0.
02

59
-

-
-

-
P
la
nn

er
4.
40

86
4.
00

78
0.
76

15
4.
40

86
-

-
-

-
P
R
E
SF

M
gp

uP
O
ST

-
2.
82

38
-

-
-

-
-

-
P
R
E
Lo

ca
liz

at
io
ng

pu
P
O
ST

-
-

1.
59

81
-

-
-

-
-

P
R
E
La

ne
de

te
ct
io
ng

pu
P
O
ST

-
-

-
-

-
-

-
-

P
R
E
D
et
ec
ti
on

gp
uP

O
ST

12
.0
31

3
2.
57

81
-

12
.0
31

3
-

-
-

-
SF

M
8.
75

-
8.
75

8.
75

-
2.
73

09
-

-
Lo

ca
liz
at
io
n

0.
79

91
0.
79

91
-

0.
79

91
-

-
2.
54

13
-

La
ne

de
te
ct
io
n

0.
93

76
0.
93

76
4.
37

56
0.
93

76
-

-
-

-
D
et
ec
ti
on

-
-

-
-

1.
37

5
2.
64

02
2.
25

06
1.
37

5

La
be

lA
cc
es
s
C
os
ts

R
+ i
T
i

T
as
k

E
V

R
T
SO

T
C
O

LB
O

E
V

R
T
SO

T
C
O

LB
O

O
SO

ve
rh
ea
d

-
-

-
-

0.
7

0.
5

0.
73

2
0.
52

4
Li
da

rG
ra
bb

er
1.
09

38
1.
09

38
1.
09

38
1.
09

38
0.
84

4
0.
60

6
0.
60

6
0.
84

9
D
A
SM

0.
00

13
0.
00

13
0.
00

05
0.
00

13
0.
26

2
0.
26

2
0.
21

0.
26

2
C
A
N
bu

sp
ol
lin

g
0.
00

01
0.
00

03
0.
00

03
0.
00

03
0.
04

0.
04

0.
04

0.
04

E
K
F

0.
00

29
0.
00

29
0.
00

29
0.
00

29
0.
26

7
0.
44

2
0.
29

4
0.
26

7
P
la
nn

er
0.
40

08
0.
40

08
0.
16

03
0.
40

08
0.
96

2
0.
98

9
0.
69

7
0.
96

2
P
R
E
SF

M
gp

uP
O
ST

1.
88

25
0.
75

3
1.
88

25
1.
88

25
-

0.
13

6
-

-
P
R
E
Lo

ca
liz

at
io
ng

pu
P
O
ST

0.
94

01
0.
94

01
0.
37

6
0.
94

01
-

-
0.
02

8
-

P
R
E
La

ne
de

te
ct
io
ng

pu
P
O
ST

0.
50

01
1.
25

02
0.
50

01
0.
50

01
-

-
-

-
P
R
E
D
et
ec
ti
on

gp
uP

O
ST

1.
71

88
0.
68

75
0.
68

75
1.
71

88
0.
47

9
0.
03

1
0.
07

1
0.
80

9
SF

M
1.
26

52
0.
21

08
1.
26

52
1.
26

52
0.
51

7
0.
16

7
0.
51

7
0.
71

6
Lo

ca
liz
at
io
n

0.
37

6
0.
37

6
0.
15

67
0.
37

6
0.
72

3
0.
72

6
0.
56

2
0.
69

4
La

ne
de

te
ct
io
n

0.
50

01
0.
50

01
1.
25

02
0.
50

01
0.
6

0.
73

7
0.
80

1
0.
6

D
et
ec
ti
on

0.
28

64
0.
28

64
0.
28

64
0.
28

64
0.
54

0.
57

5
0.
80

5
0.
54

Table 7.6: WATERS contention, CE costs, label access costs, and R+
i /Ti results in ms

180



Section 7.3. CPU-GPU Response Times and Task Chain Delays

In
pu

t
D
et
ai
ls

M
ap

pi
ng

M
P τ i

T
as
k

T
i

C
+ i,
A
R
M

C
− i,A
R
M

C
+ i,
D
en
v
er

C
− i,D

en
v
er

C
+ i,
G
P
U

C
− i,G
P
U

G
iv
en

E
V

R
T
SO

T
C
O

LB
O

(A
)S
Y
N

O
SO

ve
rh
ea
d

10
0

50
50

50
50

-
-

C
or
e0

C
or
e2

C
or
e4

C
or
e4

C
or
e3

C
or
e2

Li
da

rG
ra
bb

er
33

13
.6
6

10
.1
6

10
.8
7

9.
79

-
-

C
or
e1

C
or
e4

C
or
e2

C
or
e3

C
or
e5

C
or
e1

D
A
SM

5
1.
86

1.
3

1.
3

1.
05

-
-

C
or
e0

C
or
e4

C
or
e5

C
or
e1

C
or
e2

C
or
e4

C
A
N
bu

sp
ol
lin

g
10

0.
6

0.
4

0.
6

0.
4

-
-

C
or
e0

C
or
e0

C
or
e3

C
or
e4

C
or
e3

C
or
e4

E
K
F

15
4.
76

3.
98

4.
43

4.
09

-
-

C
or
e4

C
or
e2

C
or
e5

C
or
e4

C
or
e5

C
or
e2

P
la
nn

er
15

13
.2
4

9.
62

12
.4
4

9.
54

-
-

C
or
e3

C
or
e5

C
or
e3

C
or
e0

C
or
e4

C
or
e5

P
R
E
SF

M
gp

uP
O
ST

66
7.
9

6.
33

6.
71

5.
41

-
-

C
or
e0

C
or
e2

C
or
e1

C
or
e5

C
or
e3

C
or
e3

P
R
E
Lo

ca
liz
at
io
ng

pu
P
O
ST

40
0

17
.6
4

7.
34

14
.5
2

6.
12

-
-

C
or
e0

C
or
e2

C
or
e2

C
or
e1

C
or
e5

C
or
e4

P
R
E
La

ne
de

te
ct
io
ng

pu
P
O
ST

66
8.
23

6.
79

7.
63

6.
08

-
-

C
or
e5

C
or
e1

C
or
e5

C
or
e0

C
or
e1

C
or
e1

P
R
E
D
et
ec
ti
on

gp
uP

O
ST

20
0

4.
71

4.
01

4.
09

3
-

-
C
or
e5

C
or
e2

C
or
e0

C
or
e0

C
or
e5

C
or
e3

SF
M

66
29

.5
24

.1
4

27
.8
1

22
.1
8

7.
90

7.
05

G
P
10

B
C
or
e3

G
P
10

B
C
or
e2

C
or
e2

C
or
e0

Lo
ca
liz

at
io
n

40
0

38
7.
42

36
6.
52

29
4.
81

27
6.
71

12
4.
00

11
7.
00

G
P
10

B
C
or
e0

C
or
e0

G
P
10

B
C
or
e1

G
P
10

B
La

ne
de

te
ct
io
n

66
51

.0
4

47
.8
4

42
.2
4

38
.4
4

27
.3
3

24
.5
0

G
P
10

B
C
or
e1

C
or
e1

C
or
e5

C
or
e0

C
or
e0

D
et
ec
ti
on

20
0

-
-

-
-

11
6.
00

10
8.
00

G
P
10

B
G
P
10

B
G
P
10

B
G
P
10

B
G
P
10

B
G
P
10

B
W
or
st
-C

as
e
R
es
po

ns
e
T
im

es
R

+ i,
x

s-
B
lo
ck
in
g

pi
-B

lo
ck
in
g

T
as
k

E
V

R
T
SO

T
C
O

LB
O

A
SY

N
SY

N
E
V

R
T
SO

T
C
O

LB
O

E
V

R
T
SO

T
C
O

LB
O

O
SO

ve
rh
ea
d

70
.0
3

50
73

.2
5

52
.4
2

70
.0
3

70
.0
3

-
-

-
-

-
-

-
-

Li
da

rG
ra
bb

er
27

.8
7

20
20

28
.0
2

11
.9
8

11
.9
8

1.
28

13
0.
34

38
0.
51

56
0.
34

38
-

-
0.
46

88
8.
75

02
D
A
SM

1.
31

1.
31

1.
05

1.
31

1.
31

1.
31

0.
00

06
0.
00

06
0.
00

03
0.
00

06
-

-
-

0.
00

9
C
A
N
bu

sp
ol
lin

g
0.
4

0.
4

0.
4

0.
4

1.
71

1.
71

0.
00

13
0.
00

11
0.
00

04
0.
00

14
0.
00

01
0.
00

03
-

0.
00

05
E
K
F

4.
01

6.
63

4.
41

4.
01

4.
01

4.
01

0.
00

26
0.
00

53
0.
00

2
0.
00

28
0.
00

03
-

0.
00

03
0.
02

3
P
la
nn

er
14

.4
3

14
.8
4

10
.4
6

14
.4
3

14
.4
3

14
.4
3

0.
68

65
0.
39

45
0.
21

54
0.
68

67
-

0.
09

38
-

4.
40

86
P
R
E
SF

M
gp

uP
O
ST

-
8.
99

-
-

-
-

0.
64

0.
11

29
0.
63

55
0.
64

-
-

-
-

P
R
E
Lo

ca
liz
at
io
ng

pu
P
O
ST

-
-

11
.2
5

-
24

.5
34

7.
55

1.
12

69
0.
19

19
1.
01

89
0.
18

96
-

-
-

-
P
R
E
La

ne
de

te
ct
io
ng

pu
P
O
ST

-
-

-
-

-
-

0.
00

01
0.
25

01
0.
62

51
0.
25

01
0.
25

-
-

-
P
R
E
D
et
ec
ti
on

gp
uP

O
ST

95
.8

6.
27

14
.1
5

16
1.
87

17
.7
6

17
8.
76

0.
37

76
0.
37

76
0.
14

32
0.
37

76
-

-
-

12
.0
31

3
SF

M
34

.1
4

11
.0
5

34
.1
4

47
.2
4

24
.5
6

24
.5
6

1.
89

0.
76

05
1.
88

55
1.
89

-
-

-
8.
75

Lo
ca
liz

at
io
n

28
9.
31

29
0.
23

22
5

27
7.
69

22
5

22
5

1.
88

11
1.
88

14
1.
31

66
1.
88

14
-

-
-

0.
79

91
La

ne
de

te
ct
io
n

39
.6
3

48
.6
2

52
.8
5

39
.6
3

64
.1
8

64
.1
8

0.
00

01
1.
25

02
0.
50

01
0.
50

01
-

-
-

0.
93

76
D
et
ec
ti
on

10
8

11
5.
05

16
1

10
8

16
1

16
1

1.
95

31
0.
92

19
0.
78

13
1.
95

31
-

-
-

-

Table 7.7: WATERS mapping, response times, and blocking results in ms
181



Chapter 7. Metrics and Evaluation

Tables 7.7 and 7.6 refer to BCET, the adjusted sync model, i.e., task SFM being periodically
executed every 66 instead of 33 ms (cf. Section 7.3.3), and corresponding mappings
to form consistent measurements throughout this chapter. The appendix also provides
measurements for WCET, the original model, and the various mapping optimization
approaches at Section H.8.

Memory contention based on the given challenge equations [30] is comparably pessimistic
and can cause high delays for memory-intensive tasks such as the offloading operators.
However, these delays are unlikely to occur in a real scenario due to the GPU’s dedicated
CE and the rather low probability of concurrent access to the high amount of memory
required by the GPU tasks. In most cases, the GPU tasks use this memory in a dedicated
fashion. Thus, the memory contention calculation used here (cf. Eq. 5.25) is much less
pessimistic than the one provided in [30] by considering the precise labels and access delays
across PUs rather than assuming that every accessed cache line can be subject to contention
by all PUs in the system. According to local pi-blocking, measured values are in the range
of nanoseconds and microseconds, but the delays caused by global s-blocking go beyond
a millisecond. Hence, Section 7.4 investigates to reduce such s-blocking times along with
TDRR measurements.

7.3.3 Synchronous and Asynchronous Offloading

The process of a CPU task triggering a GPU task and actively waiting for its
finalization describes synchronous offloading. Therewith, the triggering task occupies
the PU significantly more due to active waiting such that its response time increases
correspondingly. Since the WATERS2019 challenge model features already highly utilized
PUs, setting the synchronous offloading to true is infeasible with the given model since
no mapping can be found, which is free from exceeding a PU’s capacity across all PUs.
Especially GPU resources are limited because the task Detection must execute on the
GPU, derived from ticks being only modeled explicitly for the GPU, but not for any
other PU. However, when considering best-case execution times and increasing the periodic
activation of the task ‘PRE_SFM_gpu_POST‘ from 33 to 66ms, a valid result, that guarantees
all task deadlines being met, can be found for the response time sum optimization
indicated as SYN and the diagonal lines in Figure 7.15. To be able to compare results
comprehensively, this model adaptation is used for measurements in the following if not
indicated otherwise. Having two tasks Detection and Localization mapped to the GPU
in this scenario, their triggering task’s response times increase from approximately 17.76 to
178.76ms and from 24.50 to 347.55ms respectively (cf. Table 7.7), which is approximately
10 and 14.2 times of their asynchronous response times. This change results in a total
response time sum increase from 620.47 to 1104.51ms, which is a factor of ≈ 1.78 compared
with the asynchronous response time sum. Consequently, latency and RTA measurements
consider asynchronous task offloading in the following if not mentioned otherwise.

Figure 7.15 presents task chain latency results of the eight outlined task chains according to
the EV, RTSO, TCO, LBO, and (A)SYN mapping results for best-case execution times and
the increased activation for task ‘PRE_SFM_gpu_POST‘. The scenario is chosen as it provides
the only schedulable synchronous result, which is presented as SYN. ASYN denotes the
same mapping, but under asynchronous offloading. Additionally, Figure 7.15 shows the
summed up delays of all task chains for each mapping in the lower right bar chart with
additional information about the sum of best-case task chain reaction delays for implicit

182



Section 7.3. CPU-GPU Response Times and Task Chain Delays

0 100 200 300 400 500 600 700 800 900 1000 1100

LD-P-DA

SF-P-DA

CA-P-DA

CA-EK-P-DA

CA-Lo-EK-P-DA

Li-Lo-EK-P-DA

Li-P-DA

D-P-DA

SYN ASYN LBO TCO RTSO EV

2374.1 2286.3 2204.6 2430.3 2256.6

3063.6

10
55
.1

96
7.
3

88
5.
6

11
11
.3

93
7.
6 17
44
.6

500
1000
1500
2000
2500
3000

EV RTSO TCO LBO ASYN SYN

!𝜌#,%&
#

Figure 7.15: Implicit worst-case task chain reaction delays for BCET and different
mappings in ms, and additional bar chart (lower right corner) of the same values

accumulated, and compared with implicit best-case task chain reaction delays (bars with
dashed lines)

communication in dashed bars. Analyzing any mapping for synchronous offloading results
in violating at least one deadline except for the SYN mapping due to the significant increase
of CPU cycles caused by actively waiting for the GPU task to finish. Since only three
task chains include tasks being executed on the GPU, namely D-P-DA, Li-Lo-EK-P-DA,
and CA-Lo-EK-P-DA, SYN, and ASYN solutions are the same for all other task chains
in Table 7.5. Deviations between task chain delays are mainly caused by contention,
blocking, and scheduling interference, but obviously, the highest differences are within the
synchronous (SYN) and asynchronous (all other mappings) offloading mechanisms. Task
chains always include the offloading (Pre...Post) tasks, which are required to be executed
if a task chain’s task is mapped to the GPU. By measuring the same mapping (SYN and
ASYN) for both offloading mechanisms, an increase of the implicit worst-case task chain
reaction delay of 3063.6

2256.6 − 1 ≈ 35.8% is derived.

Additionally, the PU utilization results across all GA mapping results with either different
or no optimization focus (only EV does not have an optimization goal), are shown in
Figure 7.16 and Figure 7.17. It must be noted here that the given mapping is slightly
ambiguous since task schedulers for PRE_SFM_gpu_POST and PRE_Localization_gpu_POST
do not have a distinct affinity but instead, an affinity to either of the Denver CPUs. The
following measurements assume that both of the tasks mentioned above are allocated to
the Denver1 CPU. Allocating those to Denver2 could mitigate the utilization of Denver1
beyond 100%, as shown in Figure 7.16. However, the actual infeasibility issue of the GPU
utilization remains. Furthermore, the published Amalthea model provides several task
allocations with a distinct PU affinity, which is used to define the task to PU mapping, but

183



Chapter 7. Metrics and Evaluation

the scheduler they are assigned to is responsible for other PUs despite their PU affinity.
The latter distraction is though ignored in the following under the assumption that task
allocation affinity primarily defines the task to PU allocation, which is also in line with
the Amalthea model documentation in [45].

GPU ARM1 ARM2 ARM3 ARM4 Denver1 Denver2
EV 81.70 76.57 89.83 40.98 50.00 93.03 75.36
RTSO 82.80 93.76 46.98 76.57 64.44 83.44 84.13
TCO 82.80 81.41 88.92 43.34 60.91 84.99 89.43
LBO 81.70 62.35 74.61 76.57 81.01 82.08 54.78
SYN 82.80 81.41 26.07 46.72 87.40 146.79 44.04
Given 147.50 0.00 87.40 31.41 14.71 105.03 32.60

0

25

50

75

100

125

150

M
ax

im
al

 P
U

 u
ti

liz
at

io
n 

in
 %

EV RTSO TCO LBO SYN Given

Figure 7.16: Maximal PU utilization values ÛP for EV, RTSO, LBO, TCO, and SYN GA
solutions as well as the given mapping under WCET

For comparison purposes with the previous measurements, but also reasoning the more
critical worst-case scenarios, both utilization diagrams are provided here according to
(i) the synchronous offloading model based on BCET and an SFM task period increase
to 66ms in Figure 7.17 on the one hand, and (ii) the original model based on WCET
in Figure 7.16 on the other hand. According to the given mapping model, infeasibility is
revealed for both cases due to the GPU being utilized by 124.73% and 147.5%, respectively.
Furthermore, task instructions, contention, and blocking delays result in 105% utilization
of the Denver1 PU so that deadlines are violated for tasks running on this PU for the
given model mapping. Except for the given and SYN mappings, of which the latter is only
(hardly, cf. 99% at Denver2 PU) feasible for BCET as shown in Figure 7.17, Figure 7.16
shows feasible utilization values (computed via Eq. 5.9), which are verified for schedulability
via response times being all lower than their deadlines as shown in Table 7.7.

In addition to Figures 7.16 and 7.17, Figure 7.18 presents measurements of different metrics
along with the three optimized mappings and the early valid mapping. Due to infeasibility,
some of those metrics could not be calculated for the given mapping model, which is
hence omitted in Figure 7.18. Interestingly, the load balancing solution shows the worst
results for most metrics except the CE latency sum and LBO’s minimization goal, i.e.,
maximal PU utilization. In contrast, the response time minimization approach forms most
inner values in the radar chart 7.18 as of metrics response time sum, task contention
sum, label access costs sum, and s-blocking sum, while the maximal PU utilization is

184



Section 7.3. CPU-GPU Response Times and Task Chain Delays

GPU ARM1 ARM2 ARM3 ARM4 Denver1 Denver2
EV 54.00 89.23 36.21 56.48 63.50 59.34 66.77
RTSO 64.58 31.95 67.50 50.00 62.45 56.84 65.77
TCO 77.40 36.21 30.48 80.26 81.26 73.56 22.22
LBO 54.00 62.21 63.49 63.50 60.22 57.66 64.45
ASYN 77.40 76.27 11.50 31.46 63.50 90.93 38.50
SYN 77.40 76.27 90.99 49.54 63.50 90.93 99.00
Given 124.73 0.00 63.50 26.27 12.19 84.34 29.38

0

20

40

60

80

100

120

140
M

ax
im

al
 P

U
 u

ti
liz

at
io

n 
in

 %

EV RTSO TCO LBO ASYN SYN Given

Figure 7.17: Maximal PU utilization values ÛP for EV, RTSO, LBO, TCO, SYN
(AYSN) GA solutions as well as the given mapping under BCET consideration

close to the LBO solution on the second-best position. By these outcomes, it is derived
that minimizing response times is a more valuable optimization goal compared with load
balancing optimization.

Moreover, two metrics stick out, namely the low pi-blocking for the task chain optimization
and the low CE latency for both the EV and LBO mappings. The former is caused by
only two tasks in total that share few labels with lower priority tasks on the same PU,
namely CANBusPolling, which shares 1kB label Vehicle_status_host with the lower
priority EKF task on the same PU and pi-blocking according to Eq. 5.23 and Eq. 5.31 is
d 1000

64 e·40

2·109 = 320ns and task Planner, which shares a 750kB label Bounding_box_host with

task Pre_Detection_gpu_Post leading to another pi-blocking delay of d
750000

64 e·16

2·109 = 93.8us
so that the sum ≈ 94.1us is much lower compared with label sizes and causing pi-blocking
at other tasks of other mapping solutions. The low CE latency for EV and LBO solutions
is due to only offloading the Detection task to the GPU (cf. Table 7.7). The configuration
for measurements of Figures 7.16 and 7.18 are considering BCET, asynchronous offloading,
only written labels for the CE and offloaded task, and 1ms · πi for the GPU time slice
derivation. The latter is outlined in the following Section 7.3.1. Following the optimization
goals, TCO shows the lowest task chain latency value, RTSO the lowest response time sum,
and LBO the lowest maximal PU utilization.

It can be concluded that timing verification and task mapping optimization are complex
processes for designing automotive systems with lots of possibilities, metrics, and properties
to both optimize or verify via constraint satisfaction. It is usually a demanding process
to identify a single best solution, and various metrics must be taken into account for

185



Chapter 7. Metrics and Evaluation

0

0.5

1

Response Time
Sum

 Task Contention
Sum

 Label Access
Costs Sum

 CE Latency Sum

Task Chain
Latency Sum

Maximal PU
Utilization

s-Blocking Sum

pi-Blocking Sum

EV RTSO TCO LBO

0.98
0.94

0.91

1.00

0.9

1

EV RTSO TCO LBO

Task Chain Latency Sum

0.93

0.78 0.83

1.00

0.7
0.8
0.9

1

EV RTSO TCO LBO

Response Time Sum

1.00

0.76
0.91

0.72
0.7

0.85
1

EV RTSO TCO LBO

Maximal PU Utilization

Figure 7.18: Radar and bar charts for various metric measurements in % for four
different mapping results

retrieving not only valid but also constraints and requirements preserving results for
multiple optimization goals. For task chain delays, it is observed that ρ+

ι < α+
ι < ρ+

λ < α+
λ

with no standard deviation for LET, and standard deviations σρ+
ι

= 8.08%, σρ−ι = 15.34%,
and σα+

ι
= 5, 64%. The synchronous task to GPU offloading has shown much worse results

than asynchronous offloading, even given the asynchronous offloading penalty when not
actively waiting for an offloaded task’s result. Measurements provided in this Section
show that optimizing response times can be more valuable than balancing load only, since
the vast amount of constraints and shared resource coherencies significantly interfere with
execution and response times, especially in the heterogeneous multi-PU environment.

7.4 TDRR Analyses

This section presents results obtained by applying the TDRR approach of Section 5.8 to
the case study models of Chapter 6. Table 7.8 gives the measured metrics, but first, the
approach is exemplary outlined with the Democar model, as it provides appropriate model
properties to revise TDRR’s intend.

The Democar’s original task configuration comprises three tasks running periodically every
5, 10, and 20 ms. This task set results in a total of 26 labels used by more than one task.
Based on these labels, two release delta situations are identified, namely Task_10ms →
Task_20ms and Task_10ms → Task_5ms, that potentially cause busy waiting under the
assumption that these tasks are mapped to different PUs. Task_20ms → Task_10ms does
not result in busy waiting, since the conflicting access interval at Task_20ms is located
at its first and only runnable so that executing Task_20ms before Task_10ms does not
affect the latter. Task_20ms and Task_5ms do not share any labels. For the two delta
situations, four and 13 conflict intervals are found respectively, which can be merged
into a total of five intervals, to which new runnable orders can be calculated due to the
interval merging process outlined in Section 5.8.2 and Algorithm 5.2. Using these runnable
orders in corresponding situations, the time spent for busy waiting can be reduced by
100% so that the worst-case task execution time can be reduced by maximal ≈ 15.4% for
δTask_10ms→Task_5ms as shown in the Gantt chart of Figure 7.19. The calculated runnable

186



Section 7.4. TDRR Analyses

… BA SLA BPSD DSD …

BFV BA BPPV1&2 DV1&2

BW EBA ESLA BW EBPS EDS EVSS EWSS APS TS MAFS

EDS EBA ESLA EVSS EBPS EWSS APS TS MAFS
reduced R𝜏5ms

Commonly accessed labels
𝜏10ms

𝜏5ms, reordered

𝜏5ms, init

t

𝜹𝜏10ms➝𝜏5ms

Figure 7.19: Tdrr applied to the Democar model [265], case δt10ms→5ms = 64 · 103,
ROt5ms resulting in a busy waiting reduction of 16 · 103 instructions

orders based on Algorithm 5.3 provide conflict-free executions across all task release delta
values in case of the Democar model. If, for example, Task_10ms is released 792 · 103

instructions before releasing Task_5ms, busy waiting occurs at Task_5ms for 88 · 103

instructions due to runnable BrakeActuator having locked label BrakeForceVoltage.
While a busy waiting of the first runnable would as well shift all succeeding runnables, there
can still occur further busy waiting (cf. Figure 7.19, second BW block). The reordering of
runnables achieves reducing the execution time of task Task_5ms by 16·103

(88+16)·103 ≈ 15.4%

such that no busy waiting occurs at all. This case is shown in Figure 7.19, which uses
abbreviations in the boxes as acronyms for runnables and accessed label names, e.g.,
EBA=EcuBrakeActuator of the Democar model. Across all conflicting intervals, the five
calculated ROs eliminate busy waiting entirely.

The amount of RO calculation increases drastically as soon as conflict intervals are nested
among multiple tasks, which is the case for the AIM model. For such cases, different task
release delta values have to be combined as provided by the number of merged conflict
intervals in Table 7.8. This combination depends on each runnable’s length within the task
being subject to runnable reordering, the number of runnables within the task, and their
dependencies, i.e., the runnable DAG. Busy waiting reduction could not be calculated for
the WATERS model due to tasks mostly running a single runnable such that no reordering
and hence no busy waiting reduction is possible. Table 7.8 provides TDRR metrics of all
case study models and values for the maximal execution time reduction for conflicting tasks
based on Eq. 5.96. Results of Table 7.8 make use merging conflict intervals, given that
observed merged interval lengths are small enough to be covered by reordering runnables.
Especially the amount of independent runnables helps TDRR to avoid conflicts. Due to the
AIM model having an immense amount of inter runnable dependencies, TDRR is further
configured to allow cutting edges in a runnable DAG to be able to merge conflicts and
still find appropriate runnable orders that cover replacing conflicting runnables of merged
intervals.

The TDRR concept also assumes that a task’s runnable order is based on an initial task
configuration in form of a runnable sequence. However, (I) a task may have already been
released upon a different permutation due to preliminary conflict, i.e., a conflict of at least
two prior released tasks. In such situations, the predicted release delta conflicts do not
match actual busy waiting periods due to shared resource access happening at different
points in time than expected as a prior task was already reordered. However, flagging
predecessor tasks running either in initial runnable sequence or in TDRR mode could avoid
these situations. Another situation, which has not been taken into account, is (II) the
interleaving of delta conflict intervals of multiple predecessor tasks. This interleaving

187



Chapter 7. Metrics and Evaluation

Model Number
of access
conflicts

|cip|

Number
of conflict
intervals

|ciδ|

Number
of merged

conflict
intervals

Number of
runnable

orders
|RO|

Maximal task
exec. time
reduction

in %
Democar 17 12 12 5 15.385
FMTV 1918 2479 715 1203 3.191
AIM 15160 183461 5838 9322 15.091
MG1 5636 5746 247 5389 0.537
MG2 5031 5077 72 4959 3.624
MG3 13959 14166 529 13430 2.026
WATERS19 23 23 0 23 -

Table 7.8: TDRR results for case study models

happens in the unlikely situation of multiple predecessor tasks, running each on different
PUs and not on the PU the task subject to TDRR is scheduled on, were released within a
delta conflict interval before the task subject to TDRR. This situation could be tackled by
prioritizing the runnable reordering, which results in a potentially higher busy waiting
reduction. A throughout analysis of both situations (I) and (II) is omitted since no
simulation or hardware application was conducted to estimate the probability of such
situations and their obstructive effect. Based on the proposed solution concepts, busy
waiting may still exist for (I) shortly subsequent TDRR delta conflicts or (II) multiple
predecessor tasks being both released within delta conflict intervals. Nonetheless, these
situations are expected to occur on rare occasions and still result in not entirely eliminated
but still reduced execution times in the general case. TDRR’s major disadvantage is
(III) the assumption of a predecessor task’s static runnable order, which can potentially
be interrupted due to preemption, such that conflict intervals deviate from the estimated
intervals. In this preemption case, a new runnable order may still result in busy waiting
periods. In other words, TDRR works well for non-preemptive tasks and could be improved
for preemptive scheduling. An advanced simulation of TDRR, the investigation of an
online-based runnable reordering, and its adjustment towards preemptive tasks can be
investigated with future work as outlined in Section 8.2.

To conclude, using TDRR to potentially execute tasks with different off-line calculated
runnable orders to reduce busy waiting is successfully applied to Amalthea models.
TDRR is the first approach towards having varying runnable orders within a task in
Autosar while preserving precedence constraints and not accompanying significant re-
validation efforts for retaining the system’s software behavior. While some challenges
remain to be addressed in future work, execution times can be improved by up to ≈ 15%,
which yields better overall system performance.

7.5 Label Mapping

This section provides results of solving the data to memory mapping problem outlined
in Section 5.7. Since case study models of Chapter 6 except FMTV do not provide
AccessElement entities and no or very few memories, some model extensions were
conducted as follows. The FMTV model is the only model providing all information needed
to perform the label mapping. The WATERS model contains a single global memory and

188



Section 7.5. Label Mapping

cache memories for all PUs but only AccessElements for the GRAM are available so that
access delays to caches are generated. This generation is based on [31] such that accesses
to global memory, omitted for the WATERS model but used for other models, take nine
instructions, and cache accesses a single or eight instruction depending on whether the
cache is local or remote cache. The generated models MG1–MG3 as well as the Democar
and AIM models are extended to provide this memory access structure, such that a single
GRAM is added, to which the access latency is always nine instructions. Local LRAM
memories for every PU, to which the corresponding PU takes one access instruction, require
eight instructions when being accessed by other PUs. The memory sizes are generated so
that the GRAMmemory can host 60% of accumulated required memory and all LRAMs can
host 50% total memory required

u . As a consequence, LRAMs memories (or Caches in case of the
WATERS model) are expected to be utilized by nearly 100% and the GRAM hosts labels
either rarely accessed in total or being of smaller size. The GA’s fitness is implemented
using Eq. 5.72.

The following Figure 7.20 shows a typical fitness calculation over a logarithmic time scale
of base ten. With the very high amount of labels for AIM and FMTV models, the GA’s
engine configuration, i.e., population size, number of survivors, offset selection, and altering
has a crucial effect on fitness improvement over time. For the FMTV model, a population
size of 500, 10 survivors, a Truncation-based offspring selector, and a multi-point crossover
altering with 90% probability at 500 positions, is found useful. This configuration provides

2

3

4

5

6

7

8

9

10

11

12

1 10 100F
it

ne
ss

 (
ac

cu
m

ul
at

ed
 la

be
l a

cc
es

s 
co

st
s)

・
10
6

Resolution time in s 

Figure 7.20: FMTV label mapping fitness value (treso)

an improvement of the given FMTV label mapping access costs of 7288113 ticks after ≈ 81
seconds and to a final near-optimal fitness of 2320814 ticks after ≈ 8 minutes resolution
time60. For the accumulated access cost metric, this result forms a reduction of 68.2% to

60The fitness of 2320814 did not improve over many generations so that the given result is argued to be
near-optimal considering that the solution space was not investigated completely.

189



Chapter 7. Metrics and Evaluation

the original label mapping cost.

Finally, Table 7.9 shows various metrics relevant to the label mapping measurements across
all case study models. Notation-wise, R-LRAM represents the remote LRAM from a
different PU. For the WATERS model, specific LA delays are given as 5|40|16|1|8, which
relate to GPU → GRAM, ARM → GRAM, Denver → GRAM, local cache, and remote
cache.

Model Memory
sizes

LA costs
for

GRAM
only

mapping

Final
Fitness

Total
Label

Size Sum
in Bits

LA costs
per Byte
GRAM|
LRAM|

R-LRAM

LA Costs
Reduc. cmp.

to GRAM
mapping in

%
Democar generated 136350 67650 824 9|1|8 50.39
FMTV given 113409832 2320814 218904 9|1|8 97.95
AIM generated 51062013 10002572 750864 9|1|8 80.41
WATERS partially

given
78824 9257 1272488192 (5|40|16)|1|8 88.26

MG1 generated 2335871 999759 1194816 9|1|8 57.2
MG2 generated 4630007 1211921 757976 9|1|8 73.82
MG3 generated 1181268 381107 608048 9|1|8 67.74

Table 7.9: Label mapping results for case study models

Due to the high availability of LRAM for the FMTV and WATERS model, comparably
high access latency reductions can be achieved compared to mapping all labels to global
memory, yielding in a reduction by 97.95% and 88.26%, respectively. For all other models,
reduction percentages are still above 50%, which emphasizes the need for analyzing data
to mapping for an efficient task execution yielding relatively low memory access delays.

The label mapping is a crucial process in timing verification. Compared with using global
memory only, measurements across the case study models show that effective label mapping
can reduce access times by up to 97.95%. However, given that the amount of labels goes
beyond 46000 for the AIM model, careful analysis of the GA’s configuration is required to
efficiently and effectively traverse the solution space. Focusing on only one of the latter
properties results in either a lousy convergence to a local optimum or an inappropriate
increase in resolution time.

7.6 Implementation Remarks

Partitioning approaches of this thesis have been submitted open-source as contributions
to the App4mc5 platform. The timing analysis tools as well as label and task mapping
approaches implemented along with this thesis are likely to be included in App4mc in the
future.

When comparing different DSEs in Section 7.2, their configuration and implementation
is crucial especially when comparing resolution time. Implementing constraints along
with the CP solver, for instance, can be done in various ways. For example,
u[x].eq(c_ips[x].div(puCap[x] / uRes)).post() , which seems to be a regular
constraint for setting a division across parameters to a result variable, runs a magnitude

190



Section 7.6. Implementation Remarks

slower than u[x] = c_ips[x].div(puCap[x] / uRes).intVar() . Moreover, the variety
of model details, execution situations, people involved, i.e., programming styles and
skills, and especially the vast amount of possible measurement configurations necessitate
to keep track of version, configuration, and environment data for recording reasonable,
reproducible, and valuable measurements.

Apart from the partitioning (Eclipse) plugin, more than 27 thousand lines of Java code are
part of activities this thesis involves. The seven case study Amalthea models comprise
≈ 1.7 million lines of XML, which increases significantly, given that various adjustments
and results are saved in separate Amalthea models.

191



8
Conclusions and Outlook

This chapter concludes the contributions and results of this thesis addressing challenges
in the context of modern, highly constrained, distributed, heterogeneous, mixed-critical,
embedded, real-time systems within the automotive industry.

Firstly, runnable partitioning and task mapping approaches and their benefits in
developing automotive multi-PU systems are provided in Chapter 4 and 5, respectively.
Different analyses, such as the cycle elimination, activation consideration, precedence
constraints, or the model-based design, address various demands of the automotive industry
and form a necessary phase during the exploration of parallelism based on runnables
forming the atomic program parts in Autosar. By using the interfaces of the Amalthea
model, Autosar compliant applications can be automatically split into concurrently
executing tasks and distributed across multiple PUs. Therefore, CP-PC, ESSP, and CPP
techniques for runnable WDAGs are used to form tasks either based on a predefined task
number or automatically via the critical path. The evaluations of Section 7.1 show that
CP-PC is the most effective approach according to speedup, schedule length / span, and
slackness metrics.

Secondly, ILP, GA, DFG, and various CP-based methods are presented and compared
for the task to PU mapping problem. The methods support finding (near) optimal
task to PU allocations towards various goals such as response times, load balancing,
or task chain latency. Therefore, the approaches include considering various outlined
constraints according to, e.g., affinities or broader timing constraints such as deadlines61.
Solutions are presented towards necessary response time analyses and timing verification
challenges for high-performance automotive systems. Not only the formal outline of CPU
and GPU response time analyses are provided, but also the application to Autosar
compliant Amalthea models. The analyses cover different scheduling paradigms (FPPS,
RMS, FPMPS, TX2RS, and WRR), contention models, memory access types and delays,
offloading patterns (synchronous vs. asynchronous), task chain latency as well as locking,
queuing, and blocking delays. Results are presented along with applying the approaches to
seven case study Amalthea models of Chapter 7 and further comparing results obtained
from different configurations and optimization goals. The WRR scheduling has been
investigated towards four different time slice derivation methods, of which the base time

61An overview of constraints is given in Table 5.9.

192



Section 8.1. Summary

slice multiplied with the task priority derivation method has shown lower response times on
average. Mapping results involving CPU-GPU timing verification are calculated primarily
via GAs due to scaling better than ILP, CP, or other investigated heuristics. Results
obtained from an advanced CPU-GPU mapping are also presented along with various
configurations such as BCET or WCET consideration, synchronous or asynchronous GPU
offloading, different time slice derivation methods, communication paradigms, task chain
delays, and various metrics such as pi- and s-blocking, contention, CE delays, PU utilization
and label access costs. Measurements are based on four primary task to PU mapping results
constituted by an early valid (EV), response time optimized (RTSO), task chain optimized
(TCO), and load balancing optimized (LBO) solution. For the WATERS model, each
of the calculated mappings outperforms the given mapping for most metrics. In general,
optimizing response times is identified as being a good trade-off across various metrics.

Thirdly, the TDRR approach and its algorithms are presented and applied to the same
seven Amalthea case study models. Even though several assumptions are necessary and
open issues remain unsolved, first results show reductions of busy waiting delays by 100%
resulting in potential WCET reduction of up to 15%.

Fourthly, the data to memory allocation problem is addressed and solved via
an advanced GA covering affinity constraints, many-fold heterogeneous access delays,
numbers, rates, and types, as well as label sizes. Compared with allocating all data to
GRAM, accumulated access delays are reduced by up to 97.95% and on average by 73.7%
across the seven Amalthea case study models.

With App4mc being the major open-source tool for Autosar-based systems in the
automotive industry, increasing research and industry interest based on citations and
number of App4mc downloads, and continuous evolution of App4mc as a mature Eclipse
project, the use of Amalthea and relevance of tooling provided in this dissertation are
expected to grow with vehicle progression towards autonomous driving and beyond.

8.1 Summary

For a short and concise overview, two following lists summarize contributions and observed
results. First of all, Amalthea-based approaches are given and evaluated for solving

1. the partitioning problem of allocating runnables to tasks,

2. the mapping problem of allocating tasks to PUs,

3. the mapping problem of allocating data to memory,

4. the disadvantageous behavior of busy waiting delays caused by Autosar spinlocks,

5. complex timing verification considering

(a) RTA for FPPS along with either RMS, offsets-based FPPS, or arbitrary
deadlines, FPMPS, and WRR,

(b) blocking analysis,

(c) contention analysis,

(d) task chain latency analyses,

193



Chapter 8. Conclusions and Outlook

(e) GPU-CPU interactions (synchronous and asynchronous offloading, CE queuing
and blocking analysis),

(f) network delays (based on CAN messages), and

(g) hardware heterogeneities.

Challenges are revised with recent research, outlined with corresponding mathematical
notations, and approached with various DSE heuristics as well as different case study
models. Along with those case study models, evaluations show that:

I) the vast amount of constraints and requirements necessitates the use of appropriate
DSE heuristics and solvers,

II) GAs form a generically good approach to large intractable problems,

III) CP is a great paradigm to naturally and flexibly approach typical automotive
timing and allocation constraints,

IV) timing verification must be approached across various metrics (cf. Figure 7.18) to
avoid local optima as well as major system performance bottlenecks during DSE,

V) individual challenges, i.e., challenges I–V from above, can be approached in
isolation, but the immense complexity when combining those imposes significant
scalability issues,

VI) asynchronous GPU task offloading results in better response times compared with
synchronous offloading in most cases,

VII) mapping data across all system memories can decrease accumulated access times
by up to ≈ 97.95% compared with GRAM-only mapping,

VIII) TDRR can reduce worst-case task execution times by up to ≈ 15.39%,

IX) using task priorities for weighting time slice lengths for WRR mostly dominates
equal or utilization-based approaches, and

X) CP-PC partitioning based on CP outperforms the greedy ESSP heuristic.

Statements VI–X support the thesis statement (cf. Section 1.1) by each addressing
optimization along with data to memory mapping, GPU task offloading, execution time
reduction, GPU timing verification, and runnable partitioning, respectively. Statements I–
IV address DSE as well as timing verification and align to the thesis statement via
concluding that CP (III) and GA-based (II) DSE approaches presented in this thesis
form effective and necessary methodologies for modern automotive systems. With the
contributions 1–5, this thesis addresses the required design space exploration, optimization,
and timing verification approaches in order to account for, e.g., hardware accelerators,
GPUs, different function domains, broader network connectivity, task chain latency, or
specific communication paradigms (cf. Section 1.1).

194



Section 8.2. Ongoing and Future Work

8.2 Ongoing and Future Work

During the various implementation and evaluation activities of this dissertation, several
assumptions are made that can be revised, and ideas unveiled that can be addressed in
future work. Beginning with the partitioning, typically used, e.g., in [126, 271], metrics
such as BF, WF, or FF can be implemented and compared with ESSP, CPP, or CP-PC,
even though result quality is expected to be worst for either BF, WF, or FF. A promising
addition to CPP, CP-PC, and ESSP is MLP, which is based on [192, 193], and can be used
to, e.g., avoid comparably long tasks caused by data progression through many sequential
dependencies. As stated in [90], MLP includes the coarsening of graphs through selecting
contraction edges based on weights and a predefined threshold, to which the edge’s source
and target entities are merged. This approach allows identifying strongly connected entities
and hence cut graphs based on a predefined threshold. These cuts are supposed to result
in balanced subgraphs and relatively low inter-subgraph communication. However, since
decomposing (cutting) edges is supposed to be kept as low as possible, it is only used along
with the cycle decomposition in this work, but MLP could extend existing work in the
future to lower task lengths.

Along with timing verification, a valuable investigation is the application of TDRR and
CPU-GPU RTA all along with various metric measurements to either a simulation tool or
an actual hardware platform combined with a tracing tool to validate analytical results
on the one hand and further explore the distribution between BCRTs and WCRTs or
average response times on the other hand. This could also be accompanied with, e.g., the
PARSEC Benchmark suite outlined in [272] to run different programs stressing memory
and the PUs, or to derive further models in addition to the case study models of Chapter 6.
Such application could be, for instance, valuable for the AIM model, since actual software
implementation could be used for verifying measurement results presented with analyses
across Chapter 7. This topic was problematic during the course of this research since
real-world applications are subject to strict IP policies and the implementation of tasks
executing runnables with varying runnable orders further requires not only knowledge
about the implemented software, but also adaptation of, e.g., the scheduler, which can
be a complex process given that most of the Autosar BSW is generated using verified
and commercial tools. Furthermore, hybrid SA/CP/GA could be investigated to further
improve efficiency and well known scheduling approaches such as EDF or resource protocols
such as MSRP could be further integrated. In terms of CPU-GPU RTA, a combination of
WRR and TX2RS, and the consideration of cooperative or non-preemptive tasks on the
GPU are open challenges worth for being investigated and approached in the future. As
mentioned in the corresponding section, TX2RS can also be investigated for worst-case run
queue orders to achieve more accurate response time bounds, or for hyper-periodic kernel
sets using priority-based run-queue ordering. In fact, TX2RS RTA could be approached
with the help of CP similar to CP-PC but with varying task heights based on a kernel’s
block size to overcome the current algorithms greedy basis.

Three major limitations to TDRR are already discussed in Section 7.4 and indicated
by (I)–(III). TDRR could further be investigated for using data conflict graphs [273] or
runnable interaction graphs [274] for calculatingROs. Additionally, determining overheads
caused by RO look-ups during execution time and the memory required to store ROs and
the task release times is an open topic. Also, the effect of frequent task preemptions on
conflicts can be investigated along with simulation or tracing tools. Another interesting

195



Chapter 8. Conclusions and Outlook

study is the direct comparison of spinlock-based TDRR with semaphore based approaches
disregarding Autosar. This advancement could also lead to utilizing TDRR in other OSs
to schedule sub-tasks more efficiently. Moreover, the greedy decision within TDRR to fill
a conflict interval by choosing a runnable, of which its instructions are closest to the access
conflict interval, could be replaced with a combination of runnables getting closer to filling
the interval via, e.g., using a bin packing algorithm.

Finally, generic challenges that seem to be interesting research directions are a) the use
runnables being called more than once in a task or across tasks, resulting in multi-sets,
b) the investigation of different priority assignment approaches revised at, e.g., [64], the
incorporation of CRPD analyses, or c) policy selection and platform minimization as
potential optimization goals.

196



Appendices

197



A
List of Figures

1.1 Foster’s PCAM approach: Partitioning, Communication, Agglomeration,
and Mapping [23], also known as parallelization, application task graph,
binding, and resource allocation [24] . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis’ research components and relationships. TDRR is a novel approach
to reduce busy waiting outlined in Section 5.8.1. . . . . . . . . . . . . . . . . 3

2.1 Basic concepts of (a) partitioned, (b) global, (c) semi-partitioned, and (d)
clustered scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 State machine for executable entities in Autosar . . . . . . . . . . . . . . 11
2.3 Typical timing properties of a task . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Example on schedulers used for different criticality levels based on [121] . . 22
2.5 Mapping taxonomy from [123] . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 PCP vs OPCP in two situations : a) OPCP and b) PCP feature better

response times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Amalthea platform: development cycle and features based on [45] . . . . . 38
3.2 Amalthea software model v0.9.8 entities excerpt [174]. Dashed lines

indicate possible entity containment provided by the Amalthea meta-model. 39
3.3 Amalthea hardware model v0.9.8 entities excerpt [174] . . . . . . . . . . . 43
3.4 Amalthea hardware model v0.9.8 main class diagram [45] . . . . . . . . . 44
3.5 Amalthea hardware model v0.9.8 excerpt for the Nvidia Jetson TX2 board 46
3.6 Stimulation model: periodic properties [45] . . . . . . . . . . . . . . . . . . 48
3.7 App4mc OS model v0.9.8 entities excerpt [45] . . . . . . . . . . . . . . . . . 49
3.8 App4mc mapping model v0.9.8 entities excerpt [45] . . . . . . . . . . . . . 50
3.9 App4mc constraints model v0.9.8 entities excerpt [45] . . . . . . . . . . . . 51

4.1 Partitioning phases: activation and label access analysis → cycle
decomposition → graph partitioning . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Set illustration for retrieving runnables for a PP according to a separation
constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Graph cycle relaxation example: (a) runnable input graph with four cycles
and (b)-(d) relaxed graphs decomposing (b) e5, e3, (c) e5, e2, and (d) e5, e1 . 66

4.4 Example runnable DAG and partitioning solutions . . . . . . . . . . . . . . 77

198



Appendix A. List of Figures

4.5 Theoretical speedup for 2, 4, 8 partitions based on [208] and [205] for 1000
instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Affinity constraint levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Local blocking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Global blocking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Example Gantt chart on task chain reaction and aging as well as data aging

latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5 Semantics of available blocks at different points in time on a GPU . . . . . 114
5.6 Nvidia TX2 schedule example & trace of Algorithm 5.1 . . . . . . . . . . . . 115
5.7 Synchronous GPU kernel offloading without copy operations . . . . . . . . . 117
5.8 Asynchronous GPU kernel offloading without copy operations . . . . . . . . 117
5.9 Amalthea example structure for a CPU task offloading a GPU kernel . . . 117
5.10 ECU network example with ports, connections, memories, connection

handler, and hardware structures . . . . . . . . . . . . . . . . . . . . . . . . 120
5.11 Memory mapping example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.12 Dominating solutions and pareto front of the label mapping example . . . . 127
5.13 Simple example runnable DAG . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.14 TDRR concept to reduce busy waiting . . . . . . . . . . . . . . . . . . . . . 135
5.15 Intervals of label accesses, release delta conflicts, and runnable conflicts . . . 140
5.16 Example on three conflicting tasks, five label accesses, and eight task release

delta values resulting in busy waiting . . . . . . . . . . . . . . . . . . . . . . 145
5.17 (a) Example DAG, (b) initial RO, (c) adapted RO no conflicts . . . . . . . 146

6.1 Waters19 application structure based on [30] . . . . . . . . . . . . . . . . . 155
6.2 Beta distributions used for probabilistic software entity generation . . . . . 157
6.3 Bar chart on various properties of case study models . . . . . . . . . . . . . 157

7.1 Various partitioning metric results across case study models. The span ς
results of ESSP and CP-PC approaches are put in relation to the CrPa span.161

7.2 Variance in partition number and span for AIM and FMTV models due to
arbitration within the cycle decomposition phase . . . . . . . . . . . . . . . 162

7.3 Slackness ζ results across partitioning approaches and case study models . . 162
7.4 Resolution time in milliseconds across all case study models . . . . . . . . . 164
7.5 Different DSE’s resolution times in seconds for case study models . . . . . . 166
7.6 Maximal PU utilization across case study models and DSE approaches . . . 168
7.7 ÛP (ipuc) results for various DSEs across DEM, FMTV, AIM, MG1, MG2,

and MG3 case study models . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.8 Speedup(u) of different DSE results for MG3 and Fmtv models . . . . . . . 171
7.9 Resolutiontime(n) of different DSEs for (a) Democar and (b) Fmtv . . . . 172
7.10 (a) Runtime(u); (b) ipuc(u) of different DSEs for Fmtv . . . . . . . . . . . 173
7.11 Pareto-front line charts for CPMO across the Fmtv model partitioned into

(a) 30 and (b) 100 tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.12 Line chart for CPMO Pareto-front of AIM model partitioned into 20 tasks . 174
7.13 Influence of time slice derivation methods and different base time slice

lengths (θ) on slack times: (a) equal, (b) priority, (c) utilization· n, and
(d) utilization-based time slices . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.14 Average slack time deviations of different time slice derivation methods . . . 177

199



Appendix A. List of Figures

7.15 Implicit worst-case task chain reaction delays for BCET and different
mappings in ms, and additional bar chart (lower right corner) of the
same values accumulated, and compared with implicit best-case task chain
reaction delays (bars with dashed lines) . . . . . . . . . . . . . . . . . . . . 183

7.16 Maximal PU utilization values ÛP for EV, RTSO, LBO, TCO, and SYN
GA solutions as well as the given mapping under WCET . . . . . . . . . . . 184

7.17 Maximal PU utilization values ÛP for EV, RTSO, LBO, TCO, SYN (AYSN)
GA solutions as well as the given mapping under BCET consideration . . . 185

7.18 Radar and bar charts for various metric measurements in % for four different
mapping results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.19 Tdrr applied to the Democar model [265], case δt10ms→5ms = 64·103,ROt5ms
resulting in a busy waiting reduction of 16 · 103 instructions . . . . . . . . . 187

7.20 FMTV label mapping fitness value (treso) . . . . . . . . . . . . . . . . . . . 189

H.1 Chord charts of different models’ task and runnable dependencies . . . . . . 233
H.2 Gantt chart on implicit worst-case task chain age delay example with

increasing periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
H.3 Gantt chart on implicit worst-case task chain reaction delay example with

increasing periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
H.4 Gantt chart on implicit worst-case task chain age delay and implicit best-

case reaction with decreasing periods . . . . . . . . . . . . . . . . . . . . . . 234
H.5 Gantt chart on implicit worst-case task chain age and reaction delay example

with decreasing periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
H.6 Gantt chart on implicit worst-case task chain age delay example with

alternating periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
H.7 Gantt chart on LET-based worst-case task chain reaction delay example

with decreasing periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
H.8 Gantt chart on LET-based worst-case task chain age and best-case reaction

delays example with decreasing periods . . . . . . . . . . . . . . . . . . . . . 235
H.9 Gantt chart on LET-based worst-case task chain age and reaction delays

example with increasing periods . . . . . . . . . . . . . . . . . . . . . . . . . 235
H.10 Gantt Chart on LET-based worst-case task chain age and reaction delays

example with alternating periods . . . . . . . . . . . . . . . . . . . . . . . . 236
H.11 Gantt Chart on LET-based best-case task chain reaction delay example with

increasing periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
H.12 Example Gantt chart on WRR scheduling based on [36] and the task set of

Table H.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

200



B
List of Tables

2.1 Timing verification and performance analysis methods and tools . . . . . . . 25
2.2 Timing verification features of this thesis based on [140] . . . . . . . . . . . 26

3.1 Formal Amalthea-based system model notation . . . . . . . . . . . . . . . 56

4.1 Example partitioning metric results for span, parallelism, and slackness . . . 78

5.1 Association between Figures H.2–H.11’s task chain examples and
corresponding latency types as well as communication paradigms . . . . . . 104

5.2 Overview of Nvidia TX2 GPU memory types, properties, scope, and lifetime 113
5.3 Example TX2RS WCRT algorithm trace for Figure 5.6 . . . . . . . . . . . . 116
5.4 TDRR notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.5 Conditions to identify conflicting tasks at runtime . . . . . . . . . . . . . . . 144
5.6 Tackled challenges and used (meta-) heuristics . . . . . . . . . . . . . . . . . 148
5.7 Optimization criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.8 Used constraint types for partitioning and task to PU mapping . . . . . . . 151
5.9 Constraints summary and equation references . . . . . . . . . . . . . . . . . 151

6.1 Task chains of the WATERS model . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 Various properties of all case study models used as benchmarks for the

evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3 Case study model’s PU frequencies in MHz and numbers . . . . . . . . . . . 158

7.1 Parallelism ξ results across partitioning approaches and case study models . 163
7.2 DSE approaches applied to task-PU mapping DSE . . . . . . . . . . . . . . 165
7.3 DSE results for case study models: utilization ÛP in % and resolution time

treso in milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.4 Task chain latency types overview, notation, and equation reference . . . . . 178
7.5 Task chain latency analysis results in ms . . . . . . . . . . . . . . . . . . . . 179
7.6 WATERS contention, CE costs, label access costs, and R+

i /Ti results in ms 180
7.7 WATERS mapping, response times, and blocking results in ms . . . . . . . 181
7.8 TDRR results for case study models . . . . . . . . . . . . . . . . . . . . . . 188
7.9 Label mapping results for case study models . . . . . . . . . . . . . . . . . . 190

201



Appendix B. List of Tables

H.1 Democar runnable dependency graph . . . . . . . . . . . . . . . . . . . . . . 232
H.2 WATERS mapping, response times, and blocking results in ms . . . . . . . 237
H.3 WATERS contention, CE costs, label access costs, and R+

i /Ti results in ms 238
H.4 Example task set based on [36] . . . . . . . . . . . . . . . . . . . . . . . . . 239
H.5 Overview of delays derived from labels and label accesses . . . . . . . . . . . 240

202



C
List of Algorithms

4.1 Amalthea-based MFAS Algorithm . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Calculation of eita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Calculation of lsta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 CPP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 ESSP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Nvidia TX2 Response Time Algorithm . . . . . . . . . . . . . . . . . . . . . 115
5.2 Release-δ Interval Conflict Calculation based on Access Conflicts . . . . . . . 139
5.3 Calculation of RO(δτi→τj ) for a Conflict Interval Set . . . . . . . . . . . . . . 143

203



D
List of Examples

2.1 CP Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 Execution Time Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Read Access Delay Calculation Methods . . . . . . . . . . . . . . . . . . . . . 47
4.1 RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Cycle Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Independent Graph Partitioning Democar . . . . . . . . . . . . . . . . . . . . 68
4.4 Calculating Runnables’ eit and lst Values & Applying CPP . . . . . . . . . . 70
4.5 ESSP Applied to the Cycle Decomposition Example Result . . . . . . . . . . 72
4.6 Partitioning Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1 SWC Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Local and Global CS Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 CE Time Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4 TX2R Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 CP-based Data Mapping Cost Optimization . . . . . . . . . . . . . . . . . . . 126
5.6 Runnable Ordering Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.7 TDRR Notations of Figure 5.14’s Runnable DAG . . . . . . . . . . . . . . . . 136
5.8 Calculation of Access Intervals / Conflicts . . . . . . . . . . . . . . . . . . . . 138
5.9 Splitting Conflict Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.10 Identifying Conflicts & Potentially Resolving Runnables . . . . . . . . . . . . 142
5.11 TDRR with three Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.12 Retrieving Ravail(t) from a Runnable DAG . . . . . . . . . . . . . . . . . . . 146

204



E
List of Definitions

3.1 Runnable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Periodic Stimulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Task-PU Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8 Runnable Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 Custom Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1 Task Chain Initiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Task Chain Responder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Under Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Over Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5 Task Chain Reaction Latency ρg . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Task Chain Age Latency αg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.7 Data Age Latency αlv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.8 Implicit Communication ι . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.9 LET Communication λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.10 Data Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.11 Mapping Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

205



F
Bibliography

[21] Robert R. Schaller. “Moore’s Law: Past, Present, and Future.” In: IEEE Spectr.
34.6 (June 1997), pp. 52–59. issn: 0018-9235. doi: 10.1109/6.591665.

[22] A. O. Caldeira and A. J. Leggett. “Influence of Dissipation on Quantum Tunneling
in Macroscopic Systems.” In: Phys. Rev. Lett. 46 (4 Jan. 1981), pp. 211–214.

[23] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995. isbn: 0201575949.

[24] Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and
Leandro Soares Indrusiak. “A Survey and Comparative Study of Hard and Soft Real-
Time Dynamic Resource Allocation Strategies for Multi-/Many-Core Systems.” In:
ACM Comput. Surv. 50.2 (Apr. 2017). issn: 0360-0300. doi: 10.1145/3057267.

[25] Jianjiang Ceng, Jeronimo Castrillon, Weihua Sheng, Hanno Scharwächter,
Rainer Leupers, Gerd Ascheid, Heinrich Meyr, T. Isshiki, and H. Kunieda. “MAPS:
An Integrated Framework for MPSoC Application Parallelization.” English. In: 45th
Design Automation Conference (DAC ’08). Anaheim, CA, USA: ACM, June 2008,
pp. 754–759. isbn: 978-1-60558-115-6. doi: 10.1145/1391469.1391663.

[26] Christos Baloukas et al. “Mapping Embedded Applications on MPSoCs: The
MNEMEE Approach.” In: vol. 105. Jan. 2011, pp. 165–179. doi: 10.1007/978-
94-007-1488-5_10.

[27] Christof Ebert and Capers Jones. “Embedded Software: Facts, Figures, and Future.”
In: Computer 42.4 (Apr. 2009), pp. 42–52. issn: 0018-9162. doi: 10.1109/MC.2009.
118.

[28] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.
isbn: 0716710455.

[29] Georg von der Brüggen. “Realistic Scheduling Models and Analyses for Advanced
Real-Time Embedded Systems.” PhD thesis. Technical University Dortmund, 2019.

[30] Arne Hamann, Dakshina Dasari, Falk Wurst, Ignacio Sanudo, Nicola Capodieci,
Paolo Burgio, and Marko Bertogna. “WATERS Industrial Challenge 2019.” In:
International Workshop on Analysis Tools and Methodologies for Embedded and
Real-Time Systems (WATERS) co-located with the Euromicro Conference on Real-
Time Systems (ECRTS) (2019). Online at https : / / bit . ly / 2RhDkMQ, visited
09.2020.

206

https://doi.org/10.1109/6.591665
https://doi.org/10.1145/3057267
https://doi.org/10.1145/1391469.1391663
https://doi.org/10.1007/978-94-007-1488-5_10
https://doi.org/10.1007/978-94-007-1488-5_10
https://doi.org/10.1109/MC.2009.118
https://doi.org/10.1109/MC.2009.118
https://bit.ly/2RhDkMQ


Bibliography

[31] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, Falk Wurst,
and Dirk Ziegenbein. “WATERS Industrial Challenge 2017.” In: 8th International
Workshop an Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS) co-located with the Euromicro Conference on Real-Time Systems
(ECRTS) (2017). Online at https://bit.ly/2ReOQZ8, visited 09.2020.

[32] Juan M Rivas, J Javier Gutiérrez, Julio L Medina, and Michael González Harbour.
“Comparison of Memory Access Strategies in Multi-core Platforms Using MAST.”
In: International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (2017).

[33] Johannes Schlatow, M Mischa, and Rolf Ernst. “Compositional Analysis of the
WATERS Industrial Challenge 2017.” In: WATERS workshop of the Euromicro
Conference on Real-Time Systems (ECRTS) 2017 (2017).

[34] Jorge Martinez, Ignacio Sa, Paolo Burgio, and Marko Bertogna. “End-To-End
Latency Characterization of Implicit and LET Communication Models.” In:
Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS) (2017).

[35] Alexander Wieder and Björn B. Brandenburg. “On Spin Locks in AUTOSAR:
Blocking Analysis of FIFO, Unordered, and Priority-Ordered Spin Locks.” In:
Proceedings of the 2013 IEEE 34th Real-Time Systems Symposium. RTSS ’13. USA:
IEEE Computer Society, 2013, pp. 45–56. isbn: 9781479920068. doi: 10.1109/
RTSS.2013.13.

[36] Razvan Racu, Li Li, Rafik Henia, Arne Hamann, and Rolf Ernst. “Improved
Response Time Analysis of Tasks Scheduled Under Preemptive Round-Robin.”
In: Proceedings of the Int. Conference on Hardware/Software Codesign and System
Synthesis. CODES+ISSS. ACM, 2007, pp. 179–184. isbn: 978-1-59593-824-4. doi:
10.1145/1289816.1289861.

[37] W. Liu, J. Yi, M. Li, P. Chen, and L. Yang. “Energy-Efficient Application Mapping
and Scheduling for Lifetime Guaranteed MPSoCs.” In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2018), pp. 1–1. issn:
0278-0070. doi: 10.1109/TCAD.2018.2801242.

[38] J. P. Lehoczky. “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines.” In: Real-Time Systems Symposium, 1990. Proceedings., 11th. RTSS.
IEEE, Dec. 1990, pp. 201–209. isbn: 0-8186-2112-5. doi: 10.1109/real.1990.
128748.

[39] K. Traore, E. Grolleau, A. Rahni, and M. Richard. “Response-Time Analysis of
Tasks with Offsets.” In: Proceedings of the Conference on Emerging Technologies
and Factory Automation. Sept. 2006, pp. 1–8. doi: 10.1109/ETFA.2006.355182.

[40] Ingo Stierand, Philipp Reinkemeier, Sebastian Gerwinn, and Thomas Peikenkamp.
“Computational Analysis of Complex Real-Time Systems - FMTV 2016 Verification
Challenge.” In: Proceedings of the 7th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-Time Systems, Toulouse, France. WATERS.
2016.

[41] Lukas Krawczyk, Carsten Wolff, and Daniel Fruhner. “Automated Distribution of
Software to Multi-core Hardware in Model Based Embedded Systems Development.”
In: Proc. of the 21st Int. Conf. on Information and Software Technologies (ICIST).
Springer Int., 2015, pp. 320–329. isbn: 978-3-319-24770-0. doi: 10.1007/978-3-
319-24770-0_28.

207

https://bit.ly/2ReOQZ8
https://doi.org/10.1109/RTSS.2013.13
https://doi.org/10.1109/RTSS.2013.13
https://doi.org/10.1145/1289816.1289861
https://doi.org/10.1109/TCAD.2018.2801242
https://doi.org/10.1109/real.1990.128748
https://doi.org/10.1109/real.1990.128748
https://doi.org/10.1109/ETFA.2006.355182
https://doi.org/10.1007/978-3-319-24770-0_28
https://doi.org/10.1007/978-3-319-24770-0_28


Bibliography

[42] F. Wilhelmstötter and Various Contributors. Jenetics is an advanced Genetic
Algorithm, Evolutionary Algorithm and Genetic Programming library, written in
modern day Java. Online at: http://jenetics.io/, visited 04.2020.

[43] Barak Naveh and Contributors. JGraphT - A free Java Graph Library. Online at
http://jgrapht.org/, visited 04.2020.

[44] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Solver
Documentation. Online at: http://www.choco-solver.org, visited 04.2020. TASC,
INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016.

[45] AMALTHEA / AMALTHEA4public Consortium and Contributors. AMALTHEA
Data Models - Online Documentation. Online at: https://www.eclipse.org/
app4mc/documentation/, visited 04.2020.

[46] Freescale Semiconductor, Inc. (by 2020: NXP Semiconductors). Embedded Multicore:
An Introduction. Online at: https://bit.ly/2t61QrT, visited 01.2020. 2009.

[47] AUTOSAR Consortium. AUTOSAR - Specification of Operating System; Release
4.4.0. Online available at: https://www.autosar.org/standards/, visited 02.2020.
Oct. 2018.

[48] James H. Anderson, Vasile Bud, and Umamaheswari C. Devi. “An EDF-based
Scheduling Algorithm for Multiprocessor Soft Real-Time Systems.” In: 17th
Euromicro Conference on Real-Time Systems (ECRTS’05) (2005). doi: 10.1109/
ECRTS.2005.6.

[49] Dirk Müller. “Schedulability Tests for Real-Time Uni- and Multiprocessor Systems.”
Habilitation. TU Chemnitz, 2014.

[50] John M. Calandrino, James H. Anderson, and Dan P. Baumberger. “A Hybrid
Real-Time Scheduling Approach for Large-Scale Multicore Platforms.” In: 19th
Euromicro Conference on Real-Time Systems (ECRTS’07) (2007), pp. 247–258.
doi: 10.1109/ECRTS.2007.81.

[51] AUTOSAR Consortium. AUTOSAR - Specification of RTE Software; Release 4.4.0.
Online available at: https://www.autosar.org/standards/, visited 03.2020. Oct.
2018.

[52] M. Joseph and P. Pandya. “Finding Response Times in a Real-Time System.”
In: The Computer Journal 29.5 (Jan. 1986), pp. 390–395. issn: 0010-4620. doi:
10.1093/comjnl/29.5.390.

[53] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment.” In: J. ACM 20.1 (Jan. 1973), pp. 46–61. issn:
0004-5411. doi: 10.1145/321738.321743.

[54] Alan Burns. “Preemptive Priority-Based Scheduling: An Appropriate Engineering
Approach.” In: Advances in Real-Time Systems. USA: Prentice-Hall, Inc., 1995,
pp. 225–248. isbn: 0130833487.

[55] Alessandro Biondi, Scuola Superiore, Sant Anna, Marco Di Natale, Scuola
Superiore, Sant Anna, Giorgio Buttazzo, Scuola Superiore, and Sant Anna.
“Response-Time Analysis for Real-Time Tasks in Engine Control Applications.”
In: ICCPS (2015), pp. 120–129. doi: 10.1145/2735960.2735963.

[56] Mircea Negrean and Rolf Ernst. “Response-time Analysis for Non-Preemptive
Scheduling in Multi-Core Systems with Shared Resources.” In: 7th IEEE
International Symposium on Industrial Embedded Systems (SIES’12) (2012),
pp. 191–200. doi: 10.1109/SIES.2012.6356585.

[57] Reinder J. Bril, Johan J. Lukkien, and Wim F.J. Verhaegh. “Worst-case response
time analysis of real-time tasks under fixed-priority scheduling with deferred

208

http:// jenetics.io/
http://jgrapht.org/
http://www.choco-solver.org
https://www.eclipse.org/app4mc/documentation/
https://www.eclipse.org/app4mc/documentation/
https://bit.ly/2t61QrT
https://www.autosar.org/standards/
https://doi.org/10.1109/ECRTS.2005.6
https://doi.org/10.1109/ECRTS.2005.6
https://doi.org/10.1109/ECRTS.2007.81
https://www.autosar.org/standards/
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/2735960.2735963
https://doi.org/10.1109/SIES.2012.6356585


Bibliography

preemption.” In: Real-Time Systems 42.1-3 (2009), pp. 63–119. issn: 09226443. doi:
10.1007/s11241-009-9071-z.

[58] Yun Wang and M. Saksena. “Scheduling Fixed-Priority Tasks with Preemption
Threshold.” In: Proceedings Sixth International Conference on Real-Time
Computing Systems and Applications. RTCSA’99 (Cat. No.PR00306). Dec. 1999,
pp. 328–335. doi: 10.1109/RTCSA.1999.811269.

[59] Giorgio Buttazzo, Marco Bertogna, and Gang Yao. “Limited Preemptive Scheduling
for Real-Time Systems. A Survey.” In: IEEE Transactions on Industrial Informatics
9.1 (Feb. 2013), pp. 3–15. issn: 1941-0050. doi: 10.1109/TII.2012.2188805.

[60] Z. Dong, C. Liu, S. Bateni, K. Chen, J. Chen, G. v. d. Brüggen, and J. Shi.
“Shared-Resource-Centric Limited Preemptive Scheduling: A Comprehensive Study
of Suspension-Based Partitioning Approaches.” In: 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). Apr. 2018, pp. 164–176.
doi: 10.1109/RTAS.2018.00026.

[61] Robert I. Davis. “Burns Standard Notation for Real-Time Scheduling.” In: In Real-
Time Systems: The Past , the Present, and the Future (2013), pp. 1–4.

[62] Ignacio Sanudo, Paolo Burgio, and Marko Bertogna. “Schedulability and Timing
Analysis of Mixed Preemptive-Cooperative Tasks on a Partitioned Multi-Core
System.” In: Proceedings of the 7th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-Time Systems, Toulouse, France. WATERS.
2016.

[63] N.C. Audsley. Optimal Priority Assignment And Feasibility Of Static Priority Tasks
With Arbitrary Start Times. Tech. rep. YCS-164. Department of Computer Science,
University of York, 1991.

[64] Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns. “A
Review of Priority Assignment in Real-Time Systems.” In: J. Syst. Archit. 65.C
(Apr. 2016), pp. 64–82. issn: 1383-7621. doi: 10.1016/j.sysarc.2016.04.002.

[65] Robert I. Davis, A. Zabos, and A. Burns. “Efficient Exact Schedulability Tests
for Fixed Priority Real-Time Systems.” In: IEEE Transactions on Computers 57.9
(2008), pp. 1261–1276. doi: 10.1109/TC.2008.66.

[66] Sanjoy K. Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Sebastian Stiller. “Improved Multiprocessor Global Schedulability Analysis.” In:
Real-Time Systems 46.1 (2010), pp. 3–24. doi: 10.1007/s11241-010-9096-3.

[67] Piotr Dziurzanski, Amit Kumar Singh, Leandro Soares Indrusiak, and Björn
Saballus. “Hard Real-Time Guarantee of Automotive Applications during Mode
Changes.” In: Proceedings of the 23rd International Conference on Real Time and
Networks Systems. RTNS ’15. Lille, France: Association for Computing Machinery,
2015, pp. 161–170. isbn: 9781450335911. doi: 10.1145/2834848.2834859.

[68] Michael L. Dertouzos and A. K. Mok. “Multiprocessor Online Scheduling of Hard-
Real-Time Tasks.” In: IEEE Trans. Softw. Eng. 15.12 (Dec. 1989), pp. 1497–1506.
issn: 0098-5589. doi: 10.1109/32.58762.

[69] Michael L. Dertouzos. “Control Robotics: The Procedural Control of Physical
Processes.” In: IFIP Congress. 1974, pp. 807–813. url: http://dblp.uni-trier.
de/db/conf/ifip/ifip74.html#Dertouzos74.

[70] Sanjoy K. Baruah and John Carpenter. “Multiprocessor Fixed-Priority Scheduling
with Restricted Interprocessor Migrations.” In: J. Embedded Comput. 1.2 (Apr.
2005), pp. 169–178. issn: 1740-4460. doi: 10.1109/EMRTS.2003.1212744.

209

https://doi.org/10.1007/s11241-009-9071-z
https://doi.org/10.1109/RTCSA.1999.811269
https://doi.org/10.1109/TII.2012.2188805
https://doi.org/10.1109/RTAS.2018.00026
https://doi.org/10.1016/j.sysarc.2016.04.002
https://doi.org/10.1109/TC.2008.66
https://doi.org/10.1007/s11241-010-9096-3
https://doi.org/10.1145/2834848.2834859
https://doi.org/10.1109/32.58762
http://dblp.uni-trier.de/db/conf/ifip/ifip74.html#Dertouzos74
http://dblp.uni-trier.de/db/conf/ifip/ifip74.html#Dertouzos74
https://doi.org/10.1109/EMRTS.2003.1212744


Bibliography

[71] James H. Anderson and H. Leontyev. “A Unified Hard/Soft Real-Time
Schedulability Test for Global EDF Multiprocessor Scheduling.” In: 2013 IEEE 34th
Real-Time Systems Symposium. Los Alamitos, CA, USA: IEEE Computer Society,
Dec. 2008, pp. 375–384. doi: 10.1109/RTSS.2008.15.

[72] Nathan Fisher, Joël Goossens, and Sanjoy K. Baruah. “Optimal Online
Multiprocessor Scheduling of Sporadic Real-time Tasks is Impossible.” In: Real-
Time Systems 45.1-2 (2010), pp. 26–71. doi: 10.1007/s11241-010-9092-7.

[73] Kecheng Yang and James H. Anderson. “Optimal GEDF-based Schedulers that
allow Intra-Task Parallelism on Heterogeneous Multiprocessors.” In: 12th IEEE
Symposium on Embedded Systems for Real-time Multimedia, ESTIMedia 2014,
Greater Noida, India, October 16-17, 2014. IEEE, 2014, pp. 30–39. doi: 10.1109/
ESTIMedia.2014.6962343.

[74] Xu Jiang, Nan Guan, Di Liu, and Weichen Liu. “Analyzing GEDF Scheduling for
Parallel Real-Time Tasks with Arbitrary Deadlines.” In: Design, Automation &
Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-
29, 2019. Ed. by Jürgen Teich and Franco Fummi. IEEE, 2019, pp. 1537–1542. doi:
10.23919/DATE.2019.8714859.

[75] Anand Srinivasan. “Efficient and Flexible Fair Scheduling of Real-time Tasks on
Multiprocessors.” PhD thesis. University of North Carolina at Chapel Hill, 2003,
p. 200.

[76] Michael Deubzer. “Robust Scheduling of Real-Time Applications on Efficient
Embedded Multicore Systems.” PhD thesis. Technische Universität München,
Lehrstuhl für Informationstechnik im Maschinenwesen, 2011.

[77] Mircea Florin Negrean. “Performance Analysis of Multi-Core Multi-Mode Systems
with Shared Resources - Principles and Application to AUTOSAR -.” PhD thesis.
Technischen Universität Braunschweig, 2016.

[78] Andreas Abel et al. “Impact of Resource Sharing on Performance and Performance
Prediction: A Survey.” In: CONCUR 2013 – Concurrency Theory. Springer Berlin
Heidelberg, 2013, pp. 25–43. isbn: 978-3-642-40184-8. doi: 10.7873/DATE.2014.
109.

[79] Peter Greenhalgh. Big.LITTLE Processing with ARM CortexTM-A15 & Cortex-A7
- Improving Energy Efficiency in High-Performance Mobile Platforms. White Paper,
Online: https://bit.ly/2GHP8Xa, visited: 09.2020. 2011.

[80] Nvidia Corporation. Jetson AGX Xavier and the New Era of Autonomous Machines.
Online at: https://bit.ly/2RNTGMP, visited 01.2020.

[81] Grischa Liebel, Nadja Marko, Matthias Tichy, Andrea Leitner, and Jörgen Hansson.
“Model-Based Engineering in the Embedded Systems Domain: An Industrial Survey
on the State-of-Practice.” In: Softw. Syst. Model. 17.1 (Feb. 2018), pp. 91–113. issn:
1619-1366. doi: 10.1007/s10270-016-0523-3.

[82] Juan M Rivas, J Javier Gutiérrez, Julio L Medina, and Michael González Harbour.
“Calculating Latencies in an Engine Management System Using Response Time
Analysis with MAST.” In: International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS) (2016).

[83] Alessio Balsini, Alessandra Melani, Pasquale Buonocunto, and Marco Di Natale.
“FMTV 2016: Where is the Actual Challenge?” In: Proceedings of the 7th
International Workshop on Analysis Tools and Methodologies for Embedded and
Real-Time Systems, Toulouse, France. WATERS. 2016.

210

https://doi.org/10.1109/RTSS.2008.15
https://doi.org/10.1007/s11241-010-9092-7
https://doi.org/10.1109/ESTIMedia.2014.6962343
https://doi.org/10.1109/ESTIMedia.2014.6962343
https://doi.org/10.23919/DATE.2019.8714859
https://doi.org/10.7873/DATE.2014.109
https://doi.org/10.7873/DATE.2014.109
https://bit.ly/2GHP8Xa
https://bit.ly/2RNTGMP
https://doi.org/10.1007/s10270-016-0523-3


Bibliography

[84] Junchul Choi, Donghyun Kang, and Soonhoi Ha. “A Novel Analytical Technique
for Timing Analysis of FMTV 2016 Verification Challenge Benchmark.” In:
Proceedings of the 7th International Workshop on Analysis Tools and Methodologies
for Embedded and Real-Time Systems, Toulouse, France. WATERS. 2016.

[85] Alessandro Biondi, Paolo Pazzaglia, Alessio Balsini, and Marco Di Natale. “Logical
Execution Time Implementation and Memory Optimization Issues in AUTOSAR
Applications for Multicores.” In: International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS) (2017).

[86] Claire Pagetti and Onera Enseeiht Tuhh. “WATERS Industrial Challenge 2017
with Prelude.” In: International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (2017).

[87] Daniel Casini, Paolo Pazzaglia, Alessandro Biondi, Giorgio Buttazzo, and
Marco Di Natale. “Addressing Analysis and Partitioning Issues for the WATERS
2019 Challenge.” In: WATERS Workshop of the ECRTS Conference (2019).

[88] Alexander Diewald, Simon Barner, and Selma Saidi. “Combined Data Transfer
Response Time and Mapping Exploration in MPSoCs.” In: WATERS Workshop
of the ECRTS Conference (2019).

[89] Steffen Vaas, Peter Ulbrich, Marc Reichenbach, and Dietmar Fey. “Application-
Specific Tailoring of Multi-Core SoCs for Real-Time Systems with Diverse
Predictability Demands.” In: Journal of Signal Processing Systems 91.7 (July 2019),
pp. 773–786. issn: 1939-8018. doi: 10.1007/s11265-018-1389-0.

[90] Julian Kienberger. “Systematic and Methodical Analysis, Validation and
Parallelization of Embedded Automotive Software for Multiple-IEU Platforms.”
PhD thesis. University of Augsburg, 2019, p. 196.

[91] Martin Lowinski. “Parallelization of Legacy Automotive Control Software for Multi-
Core Platforms.” PhD thesis. Technische Universität Berlin, 2019, p. 168.

[92] Martin Lowinski, Dirk Ziegenbein, and Sabine Glesner. “Partitioning Embedded
Real-Time Control Software based on Communication Dependencies.” In: Proc. of
the Int. Workshop on Modelling in Automotive Software Engineering. 2015, pp. 2–11.

[93] Martin Lowinski, Dirk Ziegenbein, and Sabine Glesner. “Splitting Tasks for
Migrating Real-Time Automotive Applications to Multi-Core ECUs.” In: 11th IEEE
Symp. on Industrial Embedded Systems. 2016. doi: 10.1109/SIES.2016.7509418.

[94] AUTOSAR Consortium. AUTOSAR Classic Platform v4.4.0: Specification of
Timing Extensions. Online available at: https://www.autosar.org/standards/,
visited 01.2020. Oct. 2018.

[95] Wenhao Wang, Sylvain Cotard, Fabrice Gravez, Yael Chambrin, and Benoit
Miramond. “Optimizing Application Distribution on Multi-Core Systems within
AUTOSAR.” In: 8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016). TOULOUSE, France, Jan. 2016.

[96] Arne Hamann. Real-time Systems Engineering @ Bosch. Slides published along
with a guest lecture at Friedrich-Alexander-Universität Erlangen-Nürnberg,
Department of Computer Science 4 (Distributed Systems and Operating Systems),
Echtzeitsysteme. Online at: https://bit.ly/36hrE1x, visited 01.2020.

[97] Object Management Group. OMG Systems Modeling Language (OMG SysML),
Version 1.6. Online at: https://www.omg.org/spec/SysML/1.6, visited 01.2020.

[98] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML:
The Systems Modeling Language, Third edition. 3rd ed. MK/OMG Press. Morgan
Kaufmann, Oct. 2014. isbn: 978-0-12-800202-5.

211

https://doi.org/10.1007/s11265-018-1389-0
https://doi.org/10.1109/SIES.2016.7509418
https://www.autosar.org/standards/
https://bit.ly/36hrE1x
https://www.omg.org/spec/SysML/1.6


Bibliography

[99] Tim Weilkiens. SYSMOD - The Systems Modeling Toolbox - Pragmatic MBSE with
SysML, 2nd Edition. Dec. 2016. isbn: 9783981787580.

[100] J.-L Voirin. Model-based System and Architecture Engineering with the Arcadia
Method. Nov. 2017, pp. 1–368. isbn: 9781785481697.

[101] Murray Cantor. “Rational Unified Process for Systems Engineering: Part 1.” In:
Journal of Systems Architecture - JSA (Jan. 2003).

[102] Klaus Pohl, Manfred Broy, Heinrich Daembkes, and Harald Hnninger. Advanced
Model-Based Engineering of Embedded Systems: Extensions of the SPES 2020
Methodology. 1st. Springer Publishing Company, Incorporated, 2016. isbn:
3319480022.

[103] International Council on Systems Engineering (INCOSE). System Engineering
Vision 2025. Online at: https://bit.ly/37pVYsd, visited 01.2020. July 2014.

[104] Object Management Group. XML Metadata Interchange (XMI) Specification.
Online at: http://www.omg.org/spec/XMI/, visited 01.2020.

[105] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Vol. 2050. Lecture Notes in
Computer Science. Springer, 2001. isbn: 3-540-42184-X.

[106] Jonas Diemer, Philip Axer, and Rolf Ernst. “Compositional Performance Analysis
in Python with pyCPA.” In: 3rd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS) (2012). Online at
http://retis.sssup.it/waters2012/accepted/102_Final_paper.pdf, visited
09.2020.

[107] Kai Richter. “Compositional Scheduling Analysis Using Standard Event Models.”
In: (2005), p. 236.

[108] Martijn Hendriks. “Model Checking Timed Automata.” PhD thesis. Radboud
Universiteit Nijmegen, 2006. isbn: 9090203788.

[109] Christian Bradatsch. “Multicore-Entwicklungsplattform für den Automobilbereich.”
PhD thesis. Universität Augsburg, Fakultät für Angewandte Informatik, 2016.

[110] Florian Kluge. tms-sim – Timing Models Scheduling Simulation Framework Release
2016-07. July 2016. doi: 10.13140/RG.2.1.2544.0246.

[111] Michael Deubzer, Martin Hobelsberger, Juergen Mottok, Frank Schiller, Reiner
Dumke, Markus Siegle, Ulrich Margull, Michael Niemetz, and Gerhard Wirrer.
“Modeling and Simulation of Embedded Real-Time Multicore Systems.” In:
Proceedings of the 3rd Embedded Software Engineering Congress (2010),
pp. 228–241.

[112] Matthias Freier. “Analysis of Real-Time Capabilities of Dynamic Scheduled System
Applications.” PhD thesis. Karlsruher Institut für Technologie (KIT), 2016.

[113] Timon Kelter. “WCET Analysis and Optimization for Multi-Core Real-Time
Systems.” PhD thesis. Dortmund University, 2015.

[114] VDA QMC Working Group 13 / Automotive SIG. Automotive SPICE Process
Assessment / Reference Model; Version 3.1. Online at: https://bit.ly/3asMZbA,
visited 01.2020; Revision ID 656. Nov. 2017.

[115] Marie-Agnés Peraldi-Frati, Arda Goknil, Julien DeAntoni, and Johan Nordlander.
“A Timing Model for Specifying Multi Clock Automotive Systems: The Timing
Augmented Description Language V2.” In: 2012 IEEE 17th International
Conference on Engineering of Complex Computer Systems (2012), pp. 230–239.
doi: 10.1109/ICECCS20050.2012.6299218.

212

https://bit.ly/37pVYsd
http://www.omg.org/spec/XMI/
http://retis.sssup.it/waters2012/accepted/102_Final_paper.pdf
https://doi.org/10.13140/RG.2.1.2544.0246
https://bit.ly/3asMZbA
https://doi.org/10.1109/ICECCS20050.2012.6299218


Bibliography

[116] Shuai Li, Matteo Morelli, Ansgar Radermacher, Jérémie Tatibouët, Pauline Deville,
Arnault Lapitre, Sébastien Gérard, and Chokri Mraidha. Polygraph Tool Suite:
Configuration and Conformity Validation for Data Flow Based Real-Time Systems.
2019.

[117] Michael Gonzalez Harbour, Jose Carlos Palencia Gutierrez, Jose Javier Gutierrez
Garcia, and Juan Maria Rivas Concepcion. Modelling and Analysis Suite for Real
Time Applications (MAST 1.5.1) - Analysis Techniques used in MAST. https:
//mast.unican.es/mast_analysis_techniques.pdf, visited 02.2020. 2015.

[118] Martin Hillenbrand. “Funktionale Sicherheit nach ISO 26262 in der Konzeptphase
der Entwicklung von Elektrik/Elektronik Architekturen von Fahrzeugen.” German.
PhD thesis. 2012. 398 pp. isbn: 978-3-86644-803-2. doi: 10.5445/KSP/1000025616.

[119] Henrik Kaijser, Henrik Lönn, Matthias Tichy, Wenjing Yuan, and Saimir Baci.
“Tool Assisted Model Based Multi Objective Analyses of Automotive Embedded
Systems.” In: Proceedings of the 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems, 7th of July 2015, Lund, Sweden.
2015.

[120] Claudia Priesterjahn, Dominik Steenken, and Matthias Tichy. “Timed Hazard
Analysis of Self-healing Systems.” In: Assurances for Self-Adaptive Systems. Ed. by
Rogério de Lemos Javier Camara, Carlo Ghezzi, and Antonia Lopes. Vol. 7740.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2013, pp. 112–151.
doi: 10.1007/978-3-642-36249-1_5.

[121] James H. Anderson. “Having Fun Experimenting with Hardware Management
and Mixed Criticality on Multicore.” In: Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS) 2015, co-located
with the Euromicro Conference on Real-Time Systems (ECRTS) (2015). Keynote
Slides, available at: https://waters2015.inria.fr/files/2015/06/Waters2015-
Keynote.pdf.

[122] Florian Leitner-Fischer, Stefan Leue, and Sirui Liu. “Automated Freedom from
Interference Analysis for Automotive Software.” In: CARS 2016 : Critical
Automotive applications : Robustness & Safety. Ed. by Matthieu Roy. Villeurbanne:
CCSD, 2016. url: https : / / hal . archives - ouvertes . fr / CARS2016 / hal -
01375597.

[123] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel.
“Mapping on Multi Many Core Systems: Survey of Current and Emerging Trends.”
In: Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE (2013),
pp. 1–10. issn: 0738-100X. doi: 10.1145/2463209.2488734.

[124] Vincenzo Bonifaci, Björn B. Brandenburg, Gianlorenzo D’Angelo, and Alberto
Marchetti-Spaccamela. “Multiprocessor Real-Time Scheduling with Hierarchical
Processor Affinities.” In: 28th Euromicro Conference on Real-Time Systems, ECRTS
2016, Toulouse, France, July 5-8, 2016. 2016, pp. 237–247. doi: 10.1109/ECRTS.
2016.24.

[125] Hye Churn Jang and Hyun Wook Jin. “MiAMI: Multi-core aware Processor Affinity
for TCP/IP over Multiple Network Interfaces.” In: Proceedings - Symposium on
the High Performance Interconnects, Hot Interconnects (2009), pp. 73–82. issn:
15504794. doi: 10.1109/HOTI.2009.19.

[126] Owen R. Kelly, Hakan Aydin, and Baoxian Zhao. “On Partitioned Scheduling
of Fixed-Priority Mixed-Criticality Task Sets.” In: Proceedings of the 2011IEEE
10th International Conference on Trust, Security and Privacy in Computing

213

https://mast.unican.es/mast_analysis_techniques.pdf
https://mast.unican.es/mast_analysis_techniques.pdf
https://doi.org/10.5445/KSP/1000025616
https://doi.org/10.1007/978-3-642-36249-1_5
https://waters2015.inria.fr/files/2015/06/Waters2015-Keynote.pdf
https://waters2015.inria.fr/files/2015/06/Waters2015-Keynote.pdf
https://hal.archives-ouvertes.fr/CARS2016/hal-01375597
https://hal.archives-ouvertes.fr/CARS2016/hal-01375597
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1109/ECRTS.2016.24
https://doi.org/10.1109/ECRTS.2016.24
https://doi.org/10.1109/HOTI.2009.19


Bibliography

and Communications. TRUSTCOM ’11. USA: IEEE Computer Society, 2011,
pp. 1051–1059. isbn: 9780769546001. doi: 10.1109/TrustCom.2011.144.

[127] Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar. “Coordinated
Task Scheduling, Allocation and Synchronization on Multiprocessors.” In:
Proceedings of the 2009 30th IEEE Real-Time Systems Symposium. RTSS ’09. USA:
IEEE Computer Society, 2009, pp. 469–478. isbn: 9780769538754. doi: 10.1109/
RTSS.2009.51.

[128] Arne Hamann, Dirk Ziegenbein, Simon Kramer, and Martin Lukasiewycz. “FMTV
2016 Verification Challenge.” In: 7th International Workshop an Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS) co-located with the
Real-Time and Embedded Technology and Applications Symposium (RTAS) (2016).
Online at https://bit.ly/3horif4, visited 09.2020.

[129] Marek Jersak. “Compositional Performance Analysis for Complex Embedded
Applications.” PhD thesis. Technical University of Braunschweig, 2005. doi: 10.
1504/ijes.2005.008807.

[130] Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers, Gerd Ascheid,
and Laura Tosoratto. “Time-Decoupled Parallel SystemC Simulation.” English. In:
Proceedings of the Conference on Design, Automation & Test in Europe (DATE).
European Design and Automation Association, 2014. doi: 10.7873/DATE.2014.
204.

[131] N. Navet, S. Louvart, J. Villanueva, S. Campoy-Martinez, and J. Migge.
“Timing Verification of Automotive Communication Architectures using Quantile
Estimation.” In: Embedded Real-Time Software and Systems (ERTS) (2014).

[132] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and
Rolf Ernst. “System Level Performance Analysis - the SymTA/S Approach.” In:
IEE Proceedings Computers and Digital Techniques (2005). doi: 10.1049/ip-cdt:
20045088.

[133] Gerd Behrmann and Kim G. David Alexandre and Larsen. “A Tutorial on
Uppaal.” In: Formal Methods for the Design of Real-Time Systems: International
School on Formal Methods for the Design of Computer, Communication, and
Software Systems, Bertinora, Italy, September 13-18, 2004, Revised Lectures.
Ed. by Marco Bernardo and Flavio Corradini. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 200–236. isbn: 978-3-540-30080-9. doi: 10.1007/978-3-540-
30080-9_7.

[134] Sergio Yovine. “KRONOS: A Verification Tool for Real-time Systems.” In:
International Journal on Software Tools for Technology Transfer 1.1 (Dec. 1997),
pp. 123–133. issn: 1433-2779. doi: 10.1007/s100090050009.

[135] Didier Lime, Oliver H. Roux, Charlotte Seidner, and Louis Marie Traonouez.
“Romeo: A Parametric Model-Checker for Petri Nets with Stopwatches.” In: 15th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2009), Lecture Notes in Computer Science (2009).

[136] K. Tindell and J. Clark. “Holistic Schedulability Analysis for Distributed Hard
Real-Time Systems.” In: Microprocessing & Microprogramming 50 (Apr. 1994),
pp. 117–134. doi: 10.1016/0165-6074(94)90080-9.

[137] Traian Pop, Petru Eles, and Zebo Peng. “Holistic Scheduling and Analysis of
Mixed Time/Event-Triggered Distributed Embedded Systems.” In: Proceedings of
the Tenth International Symposium on Hardware/Software Codesign. CODES ’02.

214

https://doi.org/10.1109/TrustCom.2011.144
https://doi.org/10.1109/RTSS.2009.51
https://doi.org/10.1109/RTSS.2009.51
https://bit.ly/3horif4
https://doi.org/10.1504/ijes.2005.008807
https://doi.org/10.1504/ijes.2005.008807
https://doi.org/10.7873/DATE.2014.204
https://doi.org/10.7873/DATE.2014.204
https://doi.org/10.1049/ip-cdt:20045088
https://doi.org/10.1049/ip-cdt:20045088
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/s100090050009
https://doi.org/10.1016/0165-6074(94)90080-9


Bibliography

Estes Park, Colorado: Association for Computing Machinery, 2002, pp. 187–192.
isbn: 1581135424. doi: 10.1145/774789.774828.

[138] J. C. Palencia Gutierrez, J. J. Gutierrez Garcia, and M. Gonzalez Harbour. “Best-
case Analysis for Improving the Worst-case Schedulability Test for Distributed Hard
Real-time Systems.” In: Proceeding. 10th EUROMICRO Workshop on Real-Time
Systems (Cat. No.98EX168). June 1998, pp. 35–44. doi: 10.1109/EMWRTS.1998.
684945.

[139] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. “Model
Checking and the State Explosion Problem.” In: Tools for Practical Software
Verification: LASER, International Summer School 2011, Elba Island, Italy, Revised
Tutorial Lectures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–30.
isbn: 978-3-642-35746-6. doi: 10.1007/978-3-642-35746-6_1.

[140] Claire Maizaa, Hamza Rihani, Juan M. Rivas, Joel Goossens, Sebastian Altmeyer,
and Robert I. Davis. “A Survey of Timing Verification Techniques for Multi-Core
Real-Time Systems.” In: ACM Comput. Surv. 1, 1, Article 01 1.1 (2019), p. 46.
doi: 10.1145/3323212.

[141] Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson. “Cache-
Related Preemption and Migration Delays : Empirical Approximation and
Impact on Schedulability.” In: Proceedings of Sixth International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications (OSPERT).
2010, pp. 33–44.

[142] Daniel Alexander Cordes. “Automatic Parallelization for Embedded Multi-Core
Systems using High-Level Cost Models.” PhD thesis. Technische Universität
Dortmund, 2013.

[143] Gerardine Immaculate Mary, Z. C. Alex, and Lawrence Jenkins. “Response Time
Analysis of Messages in Controller Area Network: A Review.” In: Journal of
Computer Networks and Communications (2013). issn: 2090-7141. doi: 10.1155/
2013/148015.

[144] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization.” In: IEEE Transactions
on computers 39.9 (1990), pp. 1175–1185. doi: 10.1109/12.57058.

[145] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. “Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised.” In: Real-
Time Systems 35.3 (2007), pp. 239–272. issn: 09226443. doi: 10.1007/s11241-
007-9012-7.

[146] Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio Buttazzo.
“Partitioned Fixed-Priority Scheduling of Parallel Tasks Without Preemptions.”
In: Dec. 2018. doi: 10.1109/RTSS.2018.00056.

[147] Martin Stigge, Nan Guan, and Wang Yi. “Refinement-Based Exact Response-Time
Analysis.” In: Proceedings of the 2014 Agile Conference. AGILE ’14. USA: IEEE
Computer Society, 2014, pp. 143–152. isbn: 9781479957989. doi: 10.1109/ECRTS.
2014.29.

[148] Björn B. Brandenburg. Multiprocessor Real-Time Locking Protocols: A Systematic
Review. Online at: https://arxiv.org/abs/1909.09600, visited 12.2019. 2019.
arXiv: 1909.09600 [cs.DC].

[149] Ruslan Sadykov and Laurence A Wolsey. “Integer Programming and Constraint
Programming in Solving a Multimachine Assignment Scheduling Problem with

215

https://doi.org/10.1145/774789.774828
https://doi.org/10.1109/EMWRTS.1998.684945
https://doi.org/10.1109/EMWRTS.1998.684945
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1145/3323212
https://doi.org/10.1155/2013/148015
https://doi.org/10.1155/2013/148015
https://doi.org/10.1109/12.57058
https://doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.1109/RTSS.2018.00056
https://doi.org/10.1109/ECRTS.2014.29
https://doi.org/10.1109/ECRTS.2014.29
https://arxiv.org/abs/1909.09600
https://arxiv.org/abs/1909.09600


Bibliography

Deadlines and Release Dates.” In: INFORMS Journal on Computing 18.2 (2006),
pp. 209–217. issn: 1091-9856. doi: 10.1287/ijoc.1040.0110.

[150] J. N. Hooker. “A Hybrid Method for the Planning and Scheduling.” In: Constraints
Journal 10.4 (2005), pp. 385–401. issn: 13837133. doi: 10.1007/s10601- 005-
2812-2.

[151] Ze-Wei Chen, Hang Lei, Mao-Lin Yang, Yong Liao, and Jia-Li Yu. “Improved Task
and Resource Partitioning under the Resource-Oriented Partitioned Scheduling.”
In: Journal of Computer Science and Technology 34 (4 2019), pp. 839–853. doi:
10.1007/s11390-019-1945-5.

[152] Zaid Al-bayati, Youcheng Sun, Haibo Zeng, Marco di Natale, Qi Zhu, and
Brett Meyer. “Task Placement and Selection of Data Consistency Mechanisms for
Real-time Multicore Applications.” In: 21st IEEE Real-Time Embedded Technology
and Applications Symposium (RTAS) (2015), pp. 172–181. doi: 10.1109/RTAS.
2015.7108440.

[153] R Govindarajan. “On-Chip Memory Architecture Exploration Framework for DSP
Processor- Based Embedded System on Chip On-Chip Memory Architecture
Exploration of Embedded System on Chip.” In: (2008). doi: 10.1145/2146417.
2146422.

[154] Laurent Perron. “Operations Research and Constraint Programming at Google.” In:
Principles and Practice of Constraint Programming – CP 2011. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011. isbn: 978-3-642-23786-7.

[155] Jean Charles Régin. “Global constraints: A survey.” In: Springer Optimization and
Its Applications 45 (2011), pp. 63–134. issn: 19316836. doi: 10.1007/978-1-4419-
1644-0_3.

[156] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Boloni, Muthucumaru
Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, and
Bin Yao. “A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems.” In:
Journal of Parallel and Distributed Computing 61 (2001), pp. 810–837. doi: 10.
1006/jpdc.2000.1714.

[157] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo. “Ant Colony
Heuristic for Mapping and Scheduling Tasks and Communications on Heterogeneous
Embedded Systems.” In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 29.6 (June 2010), pp. 911–924. issn: 1937-4151.
doi: 10.1109/TCAD.2010.2048354.

[158] Dhananjay R. Thiruvady, Irene Moser, Aldeida Aleti, and Asef Nazari. “Constraint
Programming and Ant Colony System for the Component Deployment Problem.” In:
Proceedings of the International Conference on Computational Science, ICCS 2014,
Cairns, Queensland, Australia, 10-12 June, 2014. Vol. 29. 2014, pp. 1937–1947. doi:
10.1016/j.procs.2014.05.178.

[159] Meng X., Liu Y., Gao X., and Zhang H. “A New Bio-inspired Algorithm: Chicken
Swarm Optimization.” In: Advances in Swarm Intelligence ICSI, Lecture Notes in
Computer Science 8794 (2014), p. 5. doi: 10.1007/978-3-319-11857-4_10.

[160] Pradip Kumar Sahu, Tapan Shah, Kanchan Manna, and Santanu Chattopadhyay.
“Application Mapping Onto Mesh-Based Network-on-Chip Using Discrete Particle
Swarm Optimization.” In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 22 (2014), pp. 300–312. doi: 10.1109/TVLSI.2013.2240708.

216

https://doi.org/10.1287/ijoc.1040.0110
https://doi.org/10.1007/s10601-005-2812-2
https://doi.org/10.1007/s10601-005-2812-2
https://doi.org/10.1007/s11390-019-1945-5
https://doi.org/10.1109/RTAS.2015.7108440
https://doi.org/10.1109/RTAS.2015.7108440
https://doi.org/10.1145/2146417.2146422
https://doi.org/10.1145/2146417.2146422
https://doi.org/10.1007/978-1-4419-1644-0_3
https://doi.org/10.1007/978-1-4419-1644-0_3
https://doi.org/10.1006/jpdc.2000.1714
https://doi.org/10.1006/jpdc.2000.1714
https://doi.org/10.1109/TCAD.2010.2048354
https://doi.org/10.1016/j.procs.2014.05.178
https://doi.org/10.1007/978-3-319-11857-4_10
https://doi.org/10.1109/TVLSI.2013.2240708


Bibliography

[161] A. Alagarsamy and L. Gopalakrishnan. “SAT: A New Application Mapping Method
for Power Optimization in 2D - NoC.” In: 2016 20th International Symposium on
VLSI Design and Test (VDAT). May 2016, pp. 1–6. doi: 10.1109/ISVDAT.2016.
8064880.

[162] Jian-Jun Han, Dakai Zhu, Xiaodong Wu, Laurence T Yang, and Hai Jin.
“Multiprocessor Real-time Systems with Shared Resources: Utilization Bound and
Mapping.” In: IEEE Transactions on Parallel and Distributed Systems 25 (11 2014),
pp. 2981–2991. doi: 10.1109/TPDS.2013.302.

[163] Jiazheng Li, Guozhi Song, Yue Ma, Cheng Wang, Baohui Zhu, Yan Chai, and
Jieqi Rong. “Bat Algorithm Based Low Power Mapping Methods for 3D Network-on-
Chips.” In: Theoretical Computer Science. Springer Singapore, 2017, pp. 277–295.
isbn: 978-981-10-6893-5.

[164] Aravindhan Alagarsamy, Lakshminarayanan Gopalakrishnan, Sundarakannan
Mahilmaran, and Seok Bum Ko. “A Self-Adaptive Mapping Approach for Network
on Chip with Low Power Consumption.” In: IEEE Access 7 (2019), pp. 84066–84081.
issn: 21693536. doi: 10.1109/ACCESS.2019.2925381.

[165] Björn B. Brandenburg, John M. Calandrino, Aaron Block, Hennadiy Leontyev, and
James H. Anderson. “Real-Time Synchronization on Multiprocessors: To Block or
Not to Block, to Suspend or Spin?” In: Proceedings of the 14th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2008, April 22-24,
2008, St. Louis, Missouri, USA. IEEE Computer Society, 2008, pp. 342–353. doi:
10.1109/RTAS.2008.27.

[166] Florian Kluge, Chenglong Yu, Jörg Mische, Sascha Uhrig, and Theo Ungerer.
“Implementing AUTOSAR Scheduling and Resource Management on an Embedded
SMT Processor.” In: Proc. of th 12th Int. Workshop on Software and Compilers for
Embedded Systems. Nice, France: ACM, 2009, pp. 33–42. isbn: 978-1-60558-696-0.
doi: 10.1145/1543820.1543828.

[167] Rajib Mall. Real-Time Systems: Theory and Practice. Dorling Kindersley (India)
Pvt. Ltd, 2007. isbn: 978-81-317-0069-3.

[168] Ragunathan Rajkumar, Lui Sha,
and John P. Lehoczky. “Real-Time Synchronization Protocols for Multiprocessors.”
In: Proc. of the 9th IEEE Real-Time Systems Symp. (RTSS’88). 1988, pp. 259–269.
doi: 10.1109/REAL.1988.51121.

[169] Ragunathan Rajkumar. “Real-time Synchronization Protocols for Shared Memory
Multiprocessors.” In: 10th International Conference on Distributed Computing
Systems. 1990. doi: 10.1109/ICDCS.1990.89257.

[170] Renata Martins Gomes, Fabian Mauroner, and Marcel Baunach. “Collaborative
Resource Management for Multi-Core AUTOSAR OS.” In: Informatik aktuell:
Betriebssysteme und Echtzeit. Ed. by Wolfgang A. Halang and Olaf Spinczyk.
Springer-Verlag Berlin Heidelberg, 2015, p. 136. isbn: 978-3-662-48611-5. doi: 10.
1007/978-3-662-48611-5_11.

[171] Paolo Gai, Marco Di Natale, Giuseppe Lipari, Scuola Superiore, Sant Anna,
Alberto Ferrari, Claudio Gabellini, and Paolo Marceca. “A Comparison of MPCP
and MSRP when Sharing Resources in the Janus Multiple-Processor on a Chip
Platform.” In: IEEE Real Time Technology and Applications Symp. 2003, pp. 1–10.
doi: 10.1109/RTTAS.2003.1203051.

[172] Aaron Block, Hennadiy Leontyev, Björn B. Brandenburg, and James H. Anderson.
“A Flexible Real-Time Locking Protocol for Multiprocessors.” In: Int. Conf.

217

https://doi.org/10.1109/ISVDAT.2016.8064880
https://doi.org/10.1109/ISVDAT.2016.8064880
https://doi.org/10.1109/TPDS.2013.302
https://doi.org/10.1109/ACCESS.2019.2925381
https://doi.org/10.1109/RTAS.2008.27
https://doi.org/10.1145/1543820.1543828
https://doi.org/10.1109/REAL.1988.51121
https://doi.org/10.1109/ICDCS.1990.89257
https://doi.org/10.1007/978-3-662-48611-5_11
https://doi.org/10.1007/978-3-662-48611-5_11
https://doi.org/10.1109/RTTAS.2003.1203051


Bibliography

on Embedded and Real-Time Computing Systems and Applications. 2007. isbn:
0769529755. doi: 10.1109/RTCSA.2007.8.

[173] Andreas Sailer, Stefan Schmidhuber, Maximilian Hempe, and Michael Deubzer.
“Distributed Multi-Core Development in the Automotive Domain – A Practical
Comparison of ASAM MDX vs . AUTOSAR vs . AMALTHEA.” In: ARCS 2016;
29th International Conference on Architecture of Computing Systems. 2016, pp. 4–7.
isbn: 9783800741571.

[174] AMALTHEA / AMALTHEA4public Consortium and Contributors. Eclipse
App4mc - Application Platform Project for Multicore; IDE. App4mc Tool Platform
available for download at: https://www.eclipse.org/app4mc/downloads/, visited
04.2020.

[175] Xian-He Sun and Dawei Wang. “Concurrent Average Memory Access Time.” In:
Computer 47.5 (May 2014), pp. 74–80. issn: 0018-9162. doi: 10.1109/MC.2013.227.

[176] Christian Ferdinand and Reinhold Heckmann. “aiT: Worst-Case Execution Time
Prediction by Static Program Analysis.” In: Building the Information Society 156
(2004), pp. 377–383. doi: 10.1007/978-1-4020-8157-6_29.

[177] Rapita Systems Ltd. RapiTime Worst-Case Execution Time Analysis Tool kit.
Online at: https://bit.ly/2sUJ3j9, visited 12.2019.

[178] Tidorum Ltd. Niklas Holsti. “Bound-T Execution Time Analyzer.” In: (2004). http:
//www.bound-t.com/, visited 04.2020.

[179] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. “Chronos: A
Timing Analyzer for Embedded Software.” In: Science of Computer Programming
69.1-3 (12/2007) (2007), pp. 56–67. issn: 0167-6423. doi: 10.1016/j.scico.2007.
01.014.

[180] Adrian Prantl, Markus Schordan, and Jens Knoop. “TuBound - A Conceptually
New Tool for Worst-Case Execution Time Analysis.” In: 8th International Workshop
on Worst-Case Execution Time Analysis (WCET 2008) (2008). http://costa.
tuwien.ac.at/papers/wcet08-tubound.pdf, visited 12.2019, pp. 141–148.

[181] Benedikt Huber, Wolfgang Puffitsch, and Peter Puschner. “Towards an Open
Timing Analysis Platform.” In: 11th International Workshop on Worst-Case
Execution Time Analysis (July 2011).

[182] Raimund Kirner. “The WCET Analysis Tool Calcwcet167.” In: Proceedings of
the 5th International Conference on Leveraging Applications of Formal Methods,
Verification and Validation: Applications and Case Studies. ISoLA-12 Part II (2012),
pp. 158–172. doi: 10.1007/978-3-642-34032-1_17.

[183] TRACES Team. “OTAWA - Open Tool for Adaptive WCET Analysis.” In: (2014).
http://www.otawa.fr/, visited 04.2020.

[184] Björn Lisper. “SWEET - A Tool for WCET Flow Analysis (Extended Abstract).” In:
Leveraging Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications. ISoLA 8803 (2014). Ed. by Margaria T. and Steffen B.
doi: 10.1007/978-3-662-45231-8_38.

[185] Aloysius Ka-Lau Mok. “Fundamental Design Problems of Distributed Systems
for the Hard-Real-Time Environment.” PhD thesis. Massachusetts Institute of
Technology, Cambridge, MA, USA, 1983. url: http://hdl.handle.net/1721.1/
15670.

[186] Sophie Quinton, Mircea Negrean, and Rolf Ernst. “Formal Analysis of Sporadic
Bursts in Real-Time Systems.” In: Proceedings of the Conference on Design,

218

https://doi.org/10.1109/RTCSA.2007.8
https://www.eclipse.org/app4mc/downloads/
https://doi.org/10.1109/MC.2013.227
https://doi.org/10.1007/978-1-4020-8157-6_29
https://bit.ly/2sUJ3j9
http://www.bound-t.com/
http://www.bound-t.com/
https://doi.org/10.1016/j.scico.2007.01.014
https://doi.org/10.1016/j.scico.2007.01.014
http://costa.tuwien.ac.at/papers/wcet08-tubound.pdf
http://costa.tuwien.ac.at/papers/wcet08-tubound.pdf
https://doi.org/10.1007/978-3-642-34032-1_17
http://www.otawa.fr/
https://doi.org/10.1007/978-3-662-45231-8_38
http://hdl.handle.net/1721.1/15670
http://hdl.handle.net/1721.1/15670


Bibliography

Automation and Test in Europe. DATE ’13. Grenoble, France: EDA Consortium,
2013, pp. 767–772. isbn: 9781450321532. doi: 10.7873/DATE.2013.163.

[187] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. “Real World Automotive
Benchmarks For Free.” In: 6th International Workshop an Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS) co-located with the
Euromicro Conference on Real-Time Systems (ECRTS) (2015).

[188] Giorgio Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. 3rd. Springer Publishing Company, Incorporated,
2011. isbn: 1461406757.

[189] The TIMMO-2-USE Consortium. “TIMMO-2-USE: Timing Model – Tools,
Algorithms, Languages, Methodology, USE Cases; Deliverable D11.” In: (Aug.
2012). Online at https://bit.ly/2Rg2489, visited 03.2020.

[190] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors.
Cambridge, MA, USA: MIT Press, 1989. isbn: 0262691302.

[191] Sebastian Kehr, Milos Panic, Eduardo Quinones, Bert Boddecker, Jaume Abella,
Francisco J. Cazorla, and Günter Schäfer. “RunPar : An Allocation Algorithm for
Automotive Applications Exploiting Runnable Parallelism in Multicores.” In: Proc.
of the Int. Conf. on Hardware/Software Codesign and System Synthesis. ACM, 2014,
29:1–29:10. isbn: 9781450330510. doi: 10.1145/2656075.2656096.

[192] Cevdet Aykanat, B. Barla Cambazoglu, and Bora Uçar. “Multi-Level Direct K-
Way Hypergraph Partitioning with Multiple Constraints and Fixed Vertices.” In:
J. Parallel Distrib. Comput. 68.5 (May 2008), pp. 609–625. issn: 0743-7315. doi:
10.1016/j.jpdc.2007.09.006.

[193] Robert Preis, Burkhard Monien, and Stefan Schamberger. “Approximation
Algorithms for Multilevel Graph Partitioning.” In: Handbook of Approximation
Algorithms and Metaheuristics. Ed. by Teofilo F. Gonzalez. Chapman and
Hall/CRC, 2007. doi: 10.1201/9781420010749.ch60.

[194] Sanjoy K. Baruah and N. Fisher. “The Partitioned Multiprocessor Scheduling
of Sporadic Task Systems.” In: 26th IEEE International Real-Time Systems
Symposium (RTSS’05). 2005, 9 pp.–329. isbn: 0-7695-2490-7. doi: 10.1109/RTSS.
2005.40.

[195] Salah Eddine Saidi, Sylvain Cotard, Khaled Chaaban, and Kevin Marteil. “An
ILP Approach for Mapping AUTOSAR Runnables on Multi-Core Architectures.”
In: Proceedings of the 2015 Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools. RAPIDO ’15. Amsterdam, Holland: Association
for Computing Machinery, 2015. isbn: 9781605586991. doi: 10.1145/2693433.
2693439.

[196] F. Khenfri, K. Chaaban, and M. Chetto. “A Novel Heuristic Algorithm for Mapping
AUTOSAR Runnables to Tasks.” In: 2015 International Conference on Pervasive
and Embedded Computing and Communication Systems (PECCS). 2015, pp. 1–8.

[197] Peng Deng, Fabio Cremona, Qi Zhu, Marco Di Natale, and Haibo Zeng. “A Model-
Based Synthesis Flow for Automotive CPS.” In: Proceedings of the ACM/IEEE
Sixth International Conference on Cyber-Physical Systems. ICCPS ’15. Seattle,
Washington: Association for Computing Machinery, 2015, pp. 198–207. isbn:
9781450334556. doi: 10.1145/2735960.2735972.

[198] Aurélien Monot, Nicolas Navet, Bernard Bavoux, and Françoise Simonot-Lion.
“Multi-Source Software on Multicore Automotive ECUs.” In: IEEE Transactions

219

https://doi.org/10.7873/DATE.2013.163
https://bit.ly/2Rg2489
https://doi.org/10.1145/2656075.2656096
https://doi.org/10.1016/j.jpdc.2007.09.006
https://doi.org/10.1201/9781420010749.ch60
https://doi.org/10.1109/RTSS.2005.40
https://doi.org/10.1109/RTSS.2005.40
https://doi.org/10.1145/2693433.2693439
https://doi.org/10.1145/2693433.2693439
https://doi.org/10.1145/2735960.2735972


Bibliography

on Industrial Electronics 59.10 (2012), pp. 3934–3942. doi: 10.1109/TIE.2012.
2185913.

[199] Tae-Young Choe. “Task Scheduling Algorithm to Reduce the Number of Processors
using Merge Conditions.” In: International Journal on Computer Science and
Engineering (IJCSE) (Feb. 2012).

[200] K. Kanoun, D. Atienza, N. Mastronarde, and M. van der Schaar. “A Unified
Online Directed Acyclic Graph Flow Manager for Multicore Schedulers.” In: Design
Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific. 2014,
pp. 714–719. doi: 10.1109/ASPDAC.2014.6742974.

[201] Gregory S. Hornby, Lukas Sekanina, and Pauline C. Haddow. “Evolvable Systems:
From Biology to Hardware.” In: 8th International Conference on Evolvable Systems,
ICES 2008. Springer, 2008.

[202] J.L.Szwarcfiter and P.E.Lauer. “Finding the Elementary Cycles of a Directed Graph
in O(n+m) per Cycle.” In: Technical Report Series 60 (May 1974). doi: 10.1007/
BF01931370.

[203] Robert Tarjan. “Enumeration of the Elementary Circuits of a Directed Graph.” In:
SIAM Journal on Computing 2.3 (Sept. 1973), pp. 211–216. issn: 0097-5397. doi:
10.1137/0202017.

[204] Paola Festa, Panos M. Pardalos, and Mauricio G.C. Resende. “Feedback Set
Problems.” In: Encyclopedia of Optimization. Boston, MA: Springer US, 2009,
pp. 1005–1016. isbn: 978-0-387-74759-0. doi: 10.1007/978-0-387-74759-0_178.

[205] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
“Introduction to Algorithms.” In: vol. 3. MIT Press, 2009. Chap. 21, 24 and 27.

[206] Yu-Kwong Kwok and Ishfaq Ahmad. “Dynamic Critical-Path Scheduling: An
Effective Technique for Allocating Task Graphs to Multiprocessors.” In: Parallel
and Distributed Systems, IEEE Transactions on 7.5 (1996), pp. 506–521. doi: 10.
1109/71.503776.

[207] Tao Yang and Apostolos Gerasoulis. “DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors.” In: IEEE Transactions on Parallel and
Distributed Systems 5 (1993), pp. 951–967. doi: 10.1109/71.308533.

[208] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities.” In: Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey, 1967,
pp. 483–485. doi: 10.1145/1465482.1465560.

[209] Guoqi Xie, Yuekun Chen, Yan Liu, Yehua Wei, Renfa Li, and Keqin Li. “Resource
Consumption Cost Minimization of Reliable Parallel Applications on Heterogeneous
Embedded Systems.” In: IEEE Transactions on Industrial Informatics 13.4 (2016),
pp. 1629–1640. issn: 1551-3203. doi: 10.1109/TII.2016.2641473.

[210] Renata Melo e Silva de Oliveira and Maria Sofia F. Oliveira de Castro Ribeiro.
“Comparing Mixed & Integer Programming vs. Constraint Programming by
Solving Job-Shop Scheduling Problems.” In: Independent Journal of Management &
Production 6.1 (2015), pp. 211–238. issn: 2236-269X. doi: 10.14807/ijmp.v6i1.
262.

[211] Kamol Limtanyakul. “Scheduling of Tests on Vehicle Prototypes Using Constraint
and Integer Programming.” In: Operations Research Proceedings 2007. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 421–426. isbn: 978-3-540-77903-2.

[212] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst.
“Communication Centric Design in Complex Automotive Embedded Systems.” In:

220

https://doi.org/10.1109/TIE.2012.2185913
https://doi.org/10.1109/TIE.2012.2185913
https://doi.org/10.1109/ASPDAC.2014.6742974
https://doi.org/10.1007/BF01931370
https://doi.org/10.1007/BF01931370
https://doi.org/10.1137/0202017
https://doi.org/10.1007/978-0-387-74759-0_178
https://doi.org/10.1109/71.503776
https://doi.org/10.1109/71.503776
https://doi.org/10.1109/71.308533
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1109/TII.2016.2641473
https://doi.org/10.14807/ijmp.v6i1.262
https://doi.org/10.14807/ijmp.v6i1.262


Bibliography

29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Vol. 76. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 10:1–10:20. isbn: 978-3-95977-
037-8. doi: 10.4230/LIPIcs.ECRTS.2017.10.

[213] Frank Hannig, João M P Cardoso, Thilo Pionteck, Wolfgang Schröder-Preikschat,
and Jürgen Teich. “Architecture of computing systems – ARCS 2016: 29th
international conference Nuremberg, Germany, April 4-7, 2016 Proceedings.” In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 9637. 2016, pp. 173–184.
isbn: 9783319306940. doi: 10.1007/978-3-319-30695-7.

[214] Lukas Krawczyk, Mahmoud Bazzal, Ram Prasath Govindarajan, and Carsten Wolff.
“An Analytical Approach for Calculating End-to-End Response Times in
Autonomous Driving Applications.” In: WATERS Workshop of the ECRTS
Conference (2019).

[215] Robert Hilbrich and Michael Behrisch. “Improving the Efficiency of Dislocality
Constraints for an Automated Software Deployment in Safety-Critical Systems.”
In: Combined Proceedings of the Workshops of the German Software Engineering
Conference 2018 (SE 2018). Workshop on Software Engineering for Applied
Embedded Real-Time Systems, SEERTS’18. ceur-ws.org, Mar. 2018, pp. 90–95.

[216] Yiannis Papadopoulos and Christian Grante. “Evolving Car Designs using Model-
based Automated Safety Analysis and Optimisation Techniques.” In: Journal of
Systems and Software 76.1 (2005), pp. 77–89. issn: 0164-1212. doi: 10.1016/j.
jss.2004.06.027.

[217] Carlos M. Fonseca and Peter J. Fleming. “Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization.” In: Proceedings of the
Fifth International Conference on Genetic Algorithms (July 1993), pp. 416–423.
issn: 14639076.

[218] Stefan Stattelmann, Sebastian Ottlik, Alexander Viehl, Oliver Bringmann, and
Wolfgang Rosenstiel. “Combining Instruction Set Simulation and WCET Analysis
for Embedded Software Performance Estimation.” In: 7th IEEE International
Symposium on Industrial Embedded Systems (SIES) (2012), pp. 295–298. doi: 10.
1109/SIES.2012.6356600.

[219] Sanjoy K. Baruah, A. Burns, and Robert I. Davis. “Response-Time Analysis for
Mixed Criticality Systems.” In: Proceedings of the 2011 IEEE 32Nd Real-Time
Systems Symposium. RTSS ’11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 34–43. isbn: 978-0-7695-4591-2. doi: 10.1109/RTSS.2011.12.

[220] Alessandro Biondi, Marco Di Natale, and Giorgio Buttazzo. “Response-Time
Analysis of Engine Control Applications Under Fixed-Priority Scheduling.” In:
IEEE Transactions on Computers 67.5 (May 2018), pp. 687–703. issn: 0018-9340.
doi: 10.1109/TC.2017.2777826.

[221] Maciej Drozdowski. Scheduling for Parallel Processing. Computer Communications
and Networks. Springer, 2009, pp. i–xiii, 1–386. isbn: 978-1-84882-309-9.

[222] Yumin Zhang, Xiaobo Sharon Hu, and Danny Z Chen. “Task Scheduling and
Voltage Selection for Energy Minimization.” In: Proceedings of the 39th annual
Design Automation Conference. ACM. 2002, pp. 183–188. doi: 10 . 1109 / DAC .
2002.1012617.

[223] Donghyun Kang, Junchul Choi, and Soonhoi Ha. “Worst Case Delay Analysis of
Shared Resource Access in Partitioned Multi-Core Systems.” In: Proceedings of

221

https://doi.org/10.4230/LIPIcs.ECRTS.2017.10
https://doi.org/10.1007/978-3-319-30695-7
https://doi.org/10.1016/j.jss.2004.06.027
https://doi.org/10.1016/j.jss.2004.06.027
https://doi.org/10.1109/SIES.2012.6356600
https://doi.org/10.1109/SIES.2012.6356600
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1109/TC.2017.2777826
https://doi.org/10.1109/DAC.2002.1012617
https://doi.org/10.1109/DAC.2002.1012617


Bibliography

the 15th IEEE/ACM Symposium on Embedded Systems for Real-Time Multimedia.
ESTIMedia ’17. Seoul, Republic of Korea: Association for Computing Machinery,
2017, pp. 84–92. isbn: 9781450351171. doi: 10.1145/3139315.3139322.

[224] Björn B. Brandenburg. “Scheduling and Locking in Multiprocessor Real-Time
Operating Systems.” PhD thesis. USA, 2011. isbn: 9781267256188.

[225] U. Keskin, R.J. Bril, and J.J. Lukkien. “Exact Response-time Analysis for Fixed-
priority Preemption-Threshold Scheduling.” English. In: Proceedings of the 15th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA 2010, Bilbao, Spain, September 13-16, 2010). United States: Institute of
Electrical and Electronics Engineers, 2010, pp. 1–4. isbn: 978-1-4244-6848-5. doi:
10.1109/ETFA.2010.5640984.

[226] M. Saksena and Yun Wang. “Scalable Real-Time System Design Using Preemption
Thresholds.” In: Proceedings 21st IEEE Real-Time Systems Symposium, pp. 25–34.
doi: 10.1109/REAL.2000.895993.

[227] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Åke Jönsson. “A
Compositional Framework for End-to-End Path Delay Calculation of Automotive
Systems under Different Path Semantics.” In: RTSS 2008. 2008.

[228] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas
Nolte. “End-to-End Timing Analysis of Cause-Effect Chains in Automotive
Embedded Systems.” In: Journal of Systems Architecture 80.Supplement C (Oct.
2017). url: http://www.es.mdh.se/publications/4877-.

[229] Tomasz Kloda, Antoine Bertout, and Yves Sorel. “Latency analysis for data
chains of real-time periodic tasks.” In: IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA (2018), pp. 360–367. issn: 19460759.
doi: 10.1109/ETFA.2018.8502498.

[230] Johannes Schlatow and Rolf Ernst. “Response-Time Analysis for Task Chains with
Complex Precedence and Blocking Relations.” In: ACM Trans. Embed. Comput.
Syst. 16.5s (Sept. 2017). issn: 1539-9087. doi: 10.1145/3126505.

[231] Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello, Sri Kanajan,
and Alberto Sangiovanni-Vincentelli. “Period Optimization for Hard Real-Time
Distributed Automotive Systems.” In: Proceedings of the 44th Annual Design
Automation Conference. DAC ’07. San Diego, California: Association for Computing
Machinery, 2007, pp. 278–283. isbn: 9781595936271. doi: 10 . 1145 / 1278480 .
1278553.

[232] Saad Mubeen, Thomas Nolte, Mikael Sjödin, John Lundbäck, and Kurt-
Lennart Lundbäck. “Supporting Timing Analysis of Vehicular Embedded Systems
through the Refinement of Timing Constraints.” In: Softw. Syst. Model. 18.1 (Feb.
2019), pp. 39–69. issn: 1619-1366. doi: 10.1007/s10270-017-0579-8.

[233] Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan Raj Rajkumar. “Fractional
GPUs : Software-based Compute and Memory Bandwidth Reservation for GPUs.”
In: Proceedings of the Real-Time and Embedded Technology and Applications
Symposium. RTAS. 2019, pp. 29–41. isbn: 9781728106786. doi: 10.1109/RTAS.
2019.00011.

[234] Jalil Boudjadar and Simin Nadjm-Tehrani. “Schedulability and Memory
Interference Analysis of Multicore Preemptive Real-time Systems.” In: Proceedings
of the Int. Conference on Performance Engineering. ICPE. L’Aquila, Italy: ACM,
2017, pp. 263–274. isbn: 978-1-4503-4404-3. doi: 10.1145/3030207.3030233.

222

https://doi.org/10.1145/3139315.3139322
https://doi.org/10.1109/ETFA.2010.5640984
https://doi.org/10.1109/REAL.2000.895993
http://www.es.mdh.se/publications/4877-
https://doi.org/10.1109/ETFA.2018.8502498
https://doi.org/10.1145/3126505
https://doi.org/10.1145/1278480.1278553
https://doi.org/10.1145/1278480.1278553
https://doi.org/10.1007/s10270-017-0579-8
https://doi.org/10.1109/RTAS.2019.00011
https://doi.org/10.1109/RTAS.2019.00011
https://doi.org/10.1145/3030207.3030233


Bibliography

[235] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru. “Deadline-Based
Scheduling for GPU with Preemption Support.” In: 2018 IEEE Real-Time Systems
Symposium (RTSS). Dec. 2018, pp. 119–130. doi: 10.1109/RTSS.2018.00021.

[236] Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donelson
Smith. “GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed.” In: 2017
IEEE Real-Time Systems Symposium (RTSS) (2017), pp. 104–115. doi: 10.1109/
RTSS.2017.00017.

[237] Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita, James H. Anderson,
and F. Donelson Smith. “Avoiding Pitfalls when Using NVIDIA GPUs for Real-
Time Tasks in Autonomous Systems.” In: 30th Euromicro Conference on Real-Time
Systems (ECRTS 2018). Ed. by Sebastian Altmeyer. Vol. 106. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, 20:1–20:21. isbn: 978-3-95977-075-0. doi: 10.4230/
LIPIcs.ECRTS.2018.20.

[238] Roberto Cavicchioli and Nicola Capodieci and Marko Bertogna. “Memory
Interference Characterization Between CPU Cores and Integrated GPUs in
Mixed-Criticality Platforms.” In: Proceedings of the Int. Conference on Emerging
Technologies and Factory Automation. ETFA. 2017, pp. 1–10. doi: 10.1109/ETFA.
2017.8247615.

[239] J. Bakita, N. Otterness, James H. Anderson, and F. D. Smith. “Scaling Up:
The Validation of Empirically Derived Scheduling Rules on NVIDIA GPUs.” In:
OSPERT (2018), p. 49.

[240] D. Mukunoki, T. Imamura, and D. Takahashi. “Automatic Thread-Block Size
Adjustment for Memory-Bound BLAS Kernels On GPUs.” In: IEEE 10th
international Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSOC) (2016), pp. 377–384. doi: 10.1109/MCSoC.2016.32.

[241] R. Lim, B. Norris, and A. Malony. “Autotuning GPU Kernels via Static and
Predictive Analysis.” In: 46th International Conference on Parallel Processing
(ICPP) (2017), pp. 523–532. doi: 10.1109/ICPP.2017.61.

[242] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos. “Understanding the Impact
of CUDA Tuning Techniques for Fermi.” In: International Conference on High
Performance Computing Simulation (2011), pp. 631–639. doi: 10.1109/HPCSim.
2011.5999886.

[243] J. Kurzak, S. Tomov, and J. Dongarra. “Autotuning GEMM Kernels for The Fermi
GPU.” In: IEEE Transactions on Parallel and Distributed Systems 23.11 (Nov. 3),
pp. 2045–2057. doi: 10.1109/TPDS.2011.311.

[244] NVIDIA Corporation. NVIDIA CUDA C: Best Practices. Version 10.2.89 [Online]
available: https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
index.html, visited: 03-06-2020. Nov. 2019.

[245] NVIDIA Corporation. NVIDIA CUDA C: Programming Guide. Version 10.2.89
[Online] available: https://docs.nvidia.com/cuda/cuda- c- programming-
guide/index.html, visited: 03-06-2020. Nov. 2019.

[246] Sebastian Altmeyer, Sakthivel Manikandan Sundharam, and Nicolas Navet. The
Case for FIFO Real-time Scheduling. Tech. rep. Online: http://hdl.handle.net/
10993/24935. Fakultät für Angewandte Informatik, 2016, p. 12.

[247] Karthik S. Lakshmanan. “Scheduling and Synchronization for Multi-core Real-time
Systems.” PhD thesis. Carnegie Mellon University, 2011, p. 237.

223

https://doi.org/10.1109/RTSS.2018.00021
https://doi.org/10.1109/RTSS.2017.00017
https://doi.org/10.1109/RTSS.2017.00017
https://doi.org/10.4230/LIPIcs.ECRTS.2018.20
https://doi.org/10.4230/LIPIcs.ECRTS.2018.20
https://doi.org/10.1109/ETFA.2017.8247615
https://doi.org/10.1109/ETFA.2017.8247615
https://doi.org/10.1109/MCSoC.2016.32
https://doi.org/10.1109/ICPP.2017.61
https://doi.org/10.1109/HPCSim.2011.5999886
https://doi.org/10.1109/HPCSim.2011.5999886
https://doi.org/10.1109/TPDS.2011.311
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://hdl.handle.net/10993/24935
http://hdl.handle.net/10993/24935


Bibliography

[248] T.S. Rajesh Kumar, R. Govindarajan, and C.P. Ravikumar. “On-chip Memory
Architecture Exploration Framework for DSP Processor-based Embedded System
on Chip.” In: ACM Trans. Embed. Comput. Syst. 11.1 (Apr. 2012), 5:1–5:25. issn:
1539-9087. doi: 10.1145/2146417.2146422.

[249] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox. Online
at http://www.mpa.ethz.ch/Rtctoolbox. 2006.

[250] Jörn Schneider. “Why Current Memory Management Units are not Suited for
Automotive ECUs.” In: Automotive - Safety & Security. Vol. 210. LNI. GI, 2012,
pp. 99–114.

[251] François Broquedis, Nathalie Furmento, Brice Goglin, Raymond Namyst, and
Pierre-André Wacrenier. “Dynamic Task and Data Placement over NUMA
Architectures: An OpenMP Runtime Perspective.” In: Proceedings of the 5th
International Workshop on OpenMP. IWOMP ’09. DresdenG, Germany: Springer-
Verlag, 2009, pp. 79–92. isbn: 978-3-642-02284-5. doi: 10.1007/978-3-642-02303-
3_7.

[252] Joseph Antony, Pete P. Janes, and Alistair P. Rendell. “Exploring Thread and
Memory Placement on NUMA Architectures:
Solaris and Linux, UltraSPARC/FirePlane and Opteron/HyperTransport.” In: High
Performance Computing - HiPC 2006. 2006, pp. 338–352. isbn: 978-3-540-68040-6.
doi: 10.1007/11945918_35.

[253] Oren Avissar, Rajeev Barua, and Dave Stewart. “Heterogeneous Memory
Management for Embedded Systems.” In: Proceedings of the 2001 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems.
CASES ’01. Atlanta, Georgia, USA: ACM, 2001, pp. 34–43. isbn: 1-58113-399-5.
doi: 10.1145/502217.502223.

[254] K.W. Tindell,
H. Hansson, and A.J. Wellings. “Analysing Real-Time Communications: Controller
Area Network (CAN).” In: Proceedings 15th IEEE Real-Time Systems Symposium,
San Juan, Puerto Rico. 1994, pp. 259–265. doi: 10.1109/REAL.1994.342710.

[255] Karthik Lakshmanan. “AUTOSAR Extensions
for Predictable Task Synchronization in MultiCore ECUs.” In: Proc. of the SAE
World Congress and Exhibition (2011).

[256] Matthias Becker, Nima Khalilzad, Reinder J Bril, and Thomas Nolte. “Extended
Support for Limited Preemption Fixed Priority Scheduling for OSEK / AUTOSAR-
Compliant Operating Systems.” In: 10th IEEE Int. Symp. on Industrial Embedded
Systems 2 (2015). doi: 10.1109/SIES.2015.7185062.

[257] Sebastian Kehr, Milos Panic, Eduardo Quinones, Bert Boddeker, Jorge Becerril
Sandoval, Jaume Abella, Francisco J Cazorla, and Gunter Schafer. “Supertask:
Maximizing Runnable-Ievel Parallelism in AUTOSAR Applications.” In: Design,
Automation & Test in Europe (DATE). 2016, pp. 25–30. isbn: 9783981537079.

[258] Bryan C. Ward and James H. Anderson. “Supporting Nested Locking in
Multiprocessor Real-Time Systems.” In: Proc. of the 24th Euromicro Conf. on Real-
Time Systems. IEEE Computer Society, 2012, pp. 223–232. doi: 10.1109/ECRTS.
2012.17.

[259] Martin Alfranseder, Michael Deubzer, Benjamin Justus, and Christian Siemers.
“An Efficient Spin-Lock Based Multi-core Resource Sharing Protocol.” In: IEEE
Int. Performance Computing and Communications Conf. (2014), pp. 1–7. doi: 10.
1109/PCCC.2014.7017090.

224

https://doi.org/10.1145/2146417.2146422
http://www.mpa.ethz.ch/Rtctoolbox
https://doi.org/10.1007/978-3-642-02303-3_7
https://doi.org/10.1007/978-3-642-02303-3_7
https://doi.org/10.1007/11945918_35
https://doi.org/10.1145/502217.502223
https://doi.org/10.1109/REAL.1994.342710
https://doi.org/10.1109/SIES.2015.7185062
https://doi.org/10.1109/ECRTS.2012.17
https://doi.org/10.1109/ECRTS.2012.17
https://doi.org/10.1109/PCCC.2014.7017090
https://doi.org/10.1109/PCCC.2014.7017090


Bibliography

[260] Björn B. Brandenburg and James H. Anderson. The OMLP family of optimal
multiprocessor real-time locking protocols. 2012. doi: 10.1007/s10617-012-9090-1.

[261] Maolin Yang and Alexander Wieder. “Global Real-Time Semaphore Protocols : A
Survey , Unified Analysis , and Comparison.” In: Real-Time Systems Symp., 2015
IEEE. San Antonio, TX: IEEE, 2015, pp. 1–12. doi: 10.1109/RTSS.2015.8.

[262] Björn B. Brandenburg. “Improved Analysis and Evaluation of Real-time Semaphore
Protocols for P-FP Scheduling.” In: Proc. of the 19th Real-Time and Embedded
Technology and Applications Symp. (RTAS). IEEE Computer Society, 2013,
pp. 141–152. isbn: 978-1-4799-0186-9. doi: 10.1109/RTAS.2013.6531087.

[263] Stefan Schmidhuber, Michael Deubzer, Ralph Mader, Michael Niemetz, and
Jürgen Mottok. “Towards the Derivation of Guidelines for the Deployment of Real-
Time Tasks on a Multicore Processor.” In: Model-Based Safety and Assessment.
Ed. by Frank Ortmeier and Antoine Rauzy. Cham: Springer International
Publishing, 2014, pp. 152–165. isbn: 978-3-319-12214-4.

[264] Andreas Sailer. “Reverse Engineering of Real-Time SystemModels from Event Trace
Recordings.” PhD thesis. University of Bamberg Press: Otto-Friedrich-Universität
Bamberg, July 2019.

[265] Patrick Frey. “A Timing Model for Real-Time Control-Systems and its Application
on Simulation and Monitoring of AUTOSAR Systems Dissertation.” PhD Thesis.
Ulm University, 2010.

[266] J. H. Kim, I. Kang, S. Kang, and A. Boudjadar. “A Process Algebraic Approach to
Resource-Parameterized Timing Analysis of Automotive Software Architectures.”
In: IEEE Transactions on Industrial Informatics 12.2 (2016), pp. 655–671. doi:
10.1109/TII.2016.2527624.

[267] J. L. Szwarcfiter and P. E. Lauer. Finding the Elementary Cycles of a Directed
Graph in O(n + m) per Cycle. Univ. of Newcastle upon Tyne, Newcastle upon
Tyne, England, May 1974.

[268] Donald B. Johnson. “Finding All the Elementary Circuits of a Directed Graph.” In:
SIAM J. Comput. 4.1 (1975), pp. 77–84. url: http://dblp.uni-trier.de/db/
journals/siamcomp/siamcomp4.html#Johnson75.

[269] James C. Tiernan. “An Efficient Search Algorithm to Find the Elementary Circuits
of a Graph.” In: Commun. ACM 13.12 (Dec. 1970), pp. 722–726. issn: 0001-0782.
doi: 10.1145/362814.362819.

[270] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. “Scheduling for
Reduced CPU Energy.” In: Proceedings of the 1st USENIX Conference on Operating
Systems Design and Implementation. OSDI ’94. Monterey, California: USENIX
Association, 1994. url: http://dblp.uni-trier.de/db/conf/osdi/osdi94.html.

[271] K. Lakshmanan, D. d. Niz, R. Rajkumar, and G. Moreno. “Resource Allocation
in Distributed Mixed-Criticality Cyber-Physical Systems.” In: 2010 IEEE
30th International Conference on Distributed Computing Systems. June 2010,
pp. 169–178. doi: 10.1109/ICDCS.2010.91.

[272] M. Xu, L. T. X. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and I. Lee. “Holistic Resource
Allocation for Multicore Real-Time Systems.” In: 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). Apr. 2019, pp. 345–356.
doi: 10.1109/RTAS.2019.00036.

[273] Khalid Omar Thabit. “Cache Management by the Compiler.” PhD Thesis. Rice
University, Houston, USA, 1982.

225

https://doi.org/10.1007/s10617-012-9090-1
https://doi.org/10.1109/RTSS.2015.8
https://doi.org/10.1109/RTAS.2013.6531087
https://doi.org/10.1109/TII.2016.2527624
http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp4.html#Johnson75
http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp4.html#Johnson75
https://doi.org/10.1145/362814.362819
http://dblp.uni-trier.de/db/conf/osdi/osdi94.html
https://doi.org/10.1109/ICDCS.2010.91
https://doi.org/10.1109/RTAS.2019.00036


Bibliography

[274] Hamid Reza Faragardi, Kristian Sandstr, and Thomas Nolte. “An Efficient
Scheduling of AUTOSAR Runnables to Minimize Communication Cost in Multi-
core Systems.” In: 7th Int. Symp. on Telecommunications. 2014, pp. 41–48. doi:
10.1109/ISTEL.2014.7000667.

[275] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated
Circuits- A Design Perspective. 2ed. Prentice Hall, 2004. isbn: 8120322576.

226

https://doi.org/10.1109/ISTEL.2014.7000667


G
Affidavit (German)

Erklärung über die Eigenständigkeit der erbrachten wissenschaftlichen
Leistung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet. Bei der Auswahl und Auswertung folgenden Materials haben mir
die nachstehend aufgeführten Personen in der jeweils beschriebenen Weise unentgeltlich
geholfen.

1. Junhyung Ki hat Teile der Event-Chain Analysen am Amalthea Modell
implementiert.

2. The Bao Bui hat Teile der Blocking und Contention Analysen am Amalthea Modell
implementiert.

3. Daniel Paredes Zevallos hat aus konzeptueller Sicht an Teilen des TX2RS Verfahren
mitgewirkt, sowie rudimentäre Implementierungen am Amalthea Modell umgesetzt.

Weitere Personen waren an der inhaltlichen materiellen Erstellung der vorliegenden
Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von
Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder andere Personen) in
Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte
Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten
Dissertation stehen. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher
oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

....................................... .......................................
(Ort, Datum) (Unterschrift)

227



H
Content Appendices

H.1 Power and Performance Equations

Given Symmetric Multi Processors (SMPs), the IPC κ metric, the number of PUs |P|, and
a PU frequency f , the system performance can be defined by Equation H.1.

performance = |P| · IPC · f (H.1)

The time a program that requires IC instructions for being executed can then be estimated
via Eq. H.2.

timeIC =
IC

|P| · f · κ (H.2)

Here, increasing the number of PUs is reflected in the denominator such that time
performance is lower, i.e., better. Finally, the operation voltage VCC must be taken into
account for calculating the power a system requires as shown in the power approximation
Equation H.3 [275, page 210], with x denoting the PU index.

power =
∑
x

(
Capacitancex · fx · V oltage2

)
(H.3)

When assuming linear frequency voltage relation, which is a very simplified estimation and
means that increasing the frequency causes a voltage increase by the same factor, twice
the amount of PUs results in twice the power and doubling the frequency results in eight
times the original power. Reflecting the question on how to efficiently increase processing
performance, adding PUs is more reasonable than increasing the frequency.

H.2 Formalism on Affinity and Delay Constraints

H.2.1 Pairing

Φr,P = {R(Φr,P ),P(Φr,P )} with R(Φr,P ) ⊆ R;P(Φr,P ) ⊆ P;

∀ ra ∈ R(Φr,P ) : MP
ra = x with Px ∈ P(Φr,P )

(H.4)

228



Appendix H. Content Appendices

Φτ,P = {T (Φτ,P ),P(Φτ,P )} with T (Φτ,P ) ⊆ T ;P(Φτ,P ) ⊆ P;

∀ τi ∈ T (Φτ,P ) : MP
τi = x with Px ∈ P(Φτ,P )

(H.5)

H.2.2 Separation

Φr|P = {R(Φr|P ),P(Φr|P )} with R(Φr|P ) ⊆ R;P(Φr|P ) ⊆ P;

∀ ra ∈ R(Φr|P ) : MP
ra 6= x with Px ∈ P(Φr|P )

(H.6)

Φτ |P = {T (Φτ |P ),P(Φτ |P )}with T (Φτ |P ) ⊆ T ;P(Φτ |P ) ⊆ P;

∀ τi ∈ T (Φτ |P ) : MP
τi 6= x with Px ∈ P(Φτ |P )

(H.7)

H.2.3 Pairing - No Target

Φr,pair = R(Φr,pair) ⊆ R with ∀ ra ∈ R(Φr,pair) : M τ
ra = i (H.8)

Φτ,pair =T (Φτ,pair) ⊆ T with ∀ τi ∈ T (Φτ,pair) : MP
τi = x (H.9)

H.2.4 Separation - No Target

E.g. Φτ |sep = {{τ1, τ2}, {τ3, τ4}, {τ5}} must result in {MP
1 ,M

P
2 } 6= {MP

3 ,M
P
4 } 6= {MP

5 }.
A possible result is MP

1 = 4,MP
2 = 4,MP

3 = 1,MP
4 = 3,MP

5 = 2. To formally define this
relationship, the indexes g, h are used in Eq. H.11 as a group indexes within the constraint.
Runnable indexes a belong to groups g and runnable indexes b belong to groups h. MP

a,g

denotes the allocation of runnable ra of the g-th group in Φr|sep.

Φr|sep ={Rg(Φr|sep),Rh(Φr|sep), ...};Rg(Φr|sep) ∩Rh(Φr|sep) = ∅
with ∀ ra ∈ Rg(Φr|sep) ⊆ R;

∀ rb ∈ Rh(Φr|sep) ⊆ R : M τ
ra 6= M τ

rb
, g 6= h

(H.10)

Φτ |sep = {Tg(Φτ |sep), Th(Φτ |sep)...}; Tg(Φτ |sep) ∩ Th(Φτ |sep) = ∅
with ∀ τi ∈ Tg(Φτ |sep);

τj ∈ Th(Φτ |sep) : MP
τi 6= MP

τj ; g 6= h

(H.11)

H.2.5 Delay Constratins

ΦΓ = {τ0, τ1, w} :


one-to-one : ∀ z with τ0,z ∃! τ1(w),#z0 = #z1

reaction : ∀ z with τ0,z ∃ τ1(w)

unique-reaction : ∀ z with τ0,z ∃! τ1(w),#z0 ≥ #z1

(H.12)

Here, a window defines a starting- and end point in time w = {tlower, tupper}, τi(w) denotes
the occurrence of τi during window w, and #z0 represents the number of occurrences (jobs)
of task τ0. The above notation is based on task events τi,z, i.e. specific occurrences (jobs) of
task τi, but in general any modeled events of the Amalthea events model can be used. For
the one-to-one delay constraint, the number of occurrences across the source and target for
the specified time window must be the same (#z0 = #z1). The reaction delay constraint
allows any under- or over-sampling as long as there exists at least one target occurrence
within the window w. The unique-reaction constraint is a combination of one-to-one and

229



Appendix H. Content Appendices

reaction, but allows over-sampling, i.e. situations that the source occurs more often than
the target z0 ≥ z1.

H.3 Definitions on Paths, Cycles, and DAGs

A path is defined by a list of edges that are sequentially connected, i.e., an edge’s source
equals its predecessor’s target (cf. Eq. H.13, first condition), no source or target exists
more than once since that indicates a cycle (cf. Eq. H.13, second condition), no target
exists for the entry (first) source among all edges (cf. Eq. H.13, third condition), and no
source exists for the exit (last) target among all edges (cf. Eq. H.13, fourth condition).

path = {e1, ....} with ∀ i ∈ [1, |path| − 1]; k ∈ [1, |path|]; i 6= k;∀ ϕ with eϕ ∈ (E \ path) :

et(i) = es(i+ 1) ; es(i) 6= es(k) ; et(i) 6= et(k)

et(ϕ) 6= es(1) ; es(ϕ) 6= et(|path|) ; |path| ≥ 2

(H.13)
A path can also be related to a PP ppj such that path is replaced with pathppj and E
with Eppj in Eq. H.13. paths(ra) denotes all paths that include ra wither as source or
target runnable. Given the path definition in Eq. H.13, the finite set of paths is defined by
distinct path sets as shown in the following Eq. H.14.

Paths = {path1, ....}

with ∀ i, j ∈ [1, |Paths|]; i 6= j :

{
pathi \ pathj 6= ∅ if |pathi| ≥ |pathj |
pathj \ pathi 6= ∅ if |pathj | ≥ |pathi|

PathsE ⊆ Paths with ∀ i ∈ [1, |Paths|] : E ∩ pathi 6= ∅

(H.14)

As soon as any source or target vertex occurs more than once and not adjacently as source
and target within a directed sequence of vertices, the sequence contains a loop, respectively
cycle. This leads to the following definition of a cycle in Eq. H.15

cycle = {e1, ...} with ∀ i, j ∈ [1, |cycle| − 1]; i 6= j :

|cycle| ≥ 2 ; et(i) = es(i+ 1);

es(i) 6= es(j) ∩ et(i) 6= et(j) ; et(|cycle|) = es(1)

(H.15)

Given the cycle definition in Eq. H.15, the finite set of cycles is defined by distinct cycle
sets as given in the following Eq. H.16.

Cycles = {cycle1, ...}

with ∀ i, j ∈ [1, |Cycles|]; i 6= j :

{
cyclei \ cyclej 6= ∅ if |cyclei| ≥ |cyclej |
cyclej \ cyclei 6= ∅ if |cyclej | ≥ |cyclei|

(H.16)

Eq. H.17 gives the list of runnables contained in a path.

R(pathi) =

(⋃
ϕ

esϕ

)
∪ et(i, |pathi|) with eϕ ∈ pathi (H.17)

230



Appendix H. Content Appendices

Eq. H.18 defines a DAG based on Eq. H.17 and Eq. H.16.

DAG = {R, E} with ∀ra ∈ R;∀eϕ ∈ E ; ∀i, j ∈ [1, |PathsE |] :
ra ∈

(
esϕ ∪ etϕ

)
∈ R(DAG) ; CyclesDAG = ∅;

eϕ ∈ pathj with j ≥ 1;
R(pathi) ∩R(PathsE \ pathi) 6= ∅ with PathsE =

⋃
i pathi

(H.18)

H.4 Offset-based RTA using Transactions

This section’s formulas are derived from [39]. To retrieve a task’s response time under
offset consideration, all transactions’ interference are added to the tasks execution time as
shown in Eq. H.19.

R
+,offs;(n+1)
i,x = C+

i,x +
∑

Γd∈Γ

(
Wd

(
τi, R

+,offs;(n)
i,x

))
: R+,offs,0

i,x = C+
i,x (H.19)

For a single transaction, the maximal interference over all higher priority tasks within the
transaction Γd on a task τi is shown in Eq. H.20.

Wd(τi, t) = max
h∈hp(Γd,τi)

(Wd,h(τi, t)) (H.20)

The interference of the h-th task in transaction Γd on task τi at time t is shown in Eq. H.21.
Td denotes the common period of tasks in transaction Γd.

Wd,h(τi, t) =
∑

j∈hp(Γd,τi)

((⌊
t∗t,d,j,h
Td

⌋
+ 1

)
· Cd,j − xd,j,h(t)

)
(H.21)

Eq. H.21 introduces two additional parameters, i.e. t∗t,d,j,h and xd,j,h, which are shown in
Eq. H.22 and Eq. H.24, respectively.

t∗t,d,j,h = t− phase(τd,j , τd,h) (H.22)

The phasing of two tasks with the same period but different offsets using the modulo
operation % is shown in Eq. H.23.

phase(τd,j , τd,h) = (Td + (Od,j −Od,h)) % Td (H.23)

Lastly, Eq. H.24 gives the time value that task τd,j cannot execute until t due to τh as
xd,j,h(t)

xd,j,h(t) =

{
0 for t∗t,d,j,h < 0

max(0, C+
d,j,x − (t∗t,d,j,h%Td)) otherwise

(H.24)

231



Appendix H. Content Appendices

H.5 Runnable DAG of the Democar Model

AB
SC

al
cu
la
tio
n

AP
ed
Se
ns
or

AP
ed
Vo
te
r

Ba
se
Fu
el
M
as
s

B
ra
ke
A
ct
ua
to
r

B
ra
ke
A
ct
ua
to
rM
on
ito
r

Br
ak
eF
or
ce
Ac
tu
at
io
n

B
ra
ke
Fo
rc
eA
rb
ite
r

Br
ak
eF
or
ce
C
al
cu
la
tio
n

Br
ak
eP
ed
al
Se
ns
or
D
ia
gn
os
is

Br
ak
eP
ed
al
Se
ns
or
Tr
an
sl
at
io
n

Br
ak
eP
ed
al
Se
ns
or
Vo
te
r

Br
ak
eS
af
et
yM

on
ito
r

C
al
ip
er
P
os
iti
on
C
al
cu
la
tio
n

C
he
ck
Pl
au
sa
bi
lit
y

C
yl
N
um

O
bs
er
ve
r

D
ec
el
er
at
io
nS
en
so
rD
ia
gn
os
is

D
ec
el
er
at
io
nS
en
so
rT
ra
ns
la
tio
n

D
ec
el
er
at
io
nS
en
so
rV
ot
er

D
ia
gn
os
is
A
rb
ite
r

Ec
uB
ra
ke
Ac
tu
at
or

Ec
uB
ra
ke
Pe
da
lS
en
so
r

Ec
uD

ec
el
er
at
io
nS
en
so
r

E
cu
S
to
pL
ig
ht
A
ct
ua
to
r

Ec
uV
eh
ic
le
Sp
ee
dS
en
so
r

Ec
uW

he
el
Sp
ee
dS
en
so
r

Ig
ni
tio
nT
im
eA
ct
ua
tio
n

Ig
ni
tio
nT
im
in
g

In
je
ct
io
nT
im
eA
ct
ua
tio
n

M
as
sA
irF
lo
w
Se
ns
or

S
to
pL
ig
ht
A
ct
ua
to
r

Th
ro
ttl
eA
ct
ua
to
r

Th
ro
ttl
eC

on
tro
lle
r

Th
ro
ttl
eS
en
so
r

To
ta
lF
ue
lM
as
s

Tr
an
si
en
tF
ue
lM
as
s

Ve
hi
cl
eS
pe
ed
Se
ns
or
D
ia
gn
os
is

Ve
hi
cl
eS
pe
ed
Se
ns
or
Tr
an
sl
at
io
n

Ve
hi
cl
eS
pe
ed
Se
ns
or
Vo
te
r

Ve
hi
cl
eS
ta
te
M
on
ito
r

W
he
el
Sp
ee
dS
en
so
rD
ia
gn
os
is

W
he
el
Sp
ee
dS
en
so
rT
ra
ns
la
tio
n

W
he
el
Sp
ee
dS
en
so
rV
ot
er

Table H.1: Democar runnable dependency graph

232



Appendix H. Content Appendices

H.6 Model Chord Charts

ABSCalculation

APedSensor

APedVoter

BaseFuelMass

Brak
eActu

ato
r

Brak
eA

ctu
ato

rM
on

ito
r

Bra
ke

Fo
rce

Ac
tua

tio
n

Br
ak

eF
or

ce
Ar

bit
er

Br
ak

eF
or

ce
Ca

lcu
lat

ion

Br
ak

eP
ed

al
Se

ns
or

Di
ag

no
sis

Br
ak

eP
ed

al
Se

ns
or

Tr
an

sla
tio

n

Br
ak

eP
ed

al
Se

ns
or

Vo
te

r

Br
ak

eS
af

et
yM

on
ito

r

Ca
lip

er
Po

sit
ion

Ca
lcu

lat
ion

Ch
ec

kP
lau

sa
bil

ity
Cy

lNum
Obs

erv
er

Dece
ler

atio
nSensor

Diag
nosi

s

DecelerationSensorTranslation

DecelerationSensorVoter

DiagnosisArbiter

EcuBrakeActuator

EcuBrakePedalSensor

EcuDecelerationSensor

EcuStopLightActuator

EcuVehicleSpeedSensor

EcuW
heelSpeedSensor

IgnitionTim
eActuation

IgnitionTim
ing

InjectionTim
eActuation

M
assAirFlowSensor

StopLightActuator

ThrottleActuator

ThrottleController
ThrottleSensor

TotalFuelMass

TransientFuelMass

VehicleSpeedSensorDiagnosis

VehicleSpeedSensorTranslation

VehicleSpeedSensorVoter

VehicleStateMonitor

WheelSpeedSensorDiagnosis

WheelSpeedSensorTranslation

(a) Democar runnable dependencies

task0016

task0036

tas
k0

04
2

ta
sk

00
73

ta
sk

00
34

ta
sk

00
72

ta
sk

00
65

ta
sk

00
62

tas
k0

05
6

tas
k0

04
9

tas
k0

02
7

task0
061

task0020

task0004

task0007

task0012

task0028

task0031

task0037
task0045 task0011 task0058

task0063

task0026

task0003

task0066

task0023

task0077
task0075
task0040
task0069
task0018

task0074

task0010

task0006

task0076

task0033

task0044

task0008

task0019

task0039

task0030

task0013

task0047

task0067
task0015
task0024
task0021
task0009
task0005

(b) AIM task dependencies

OS_Overhead

Lid
ar

_G
ra

bb
er

DA
SM

CA
Nb

us
_p

oll
ing

EK
FPl
an

ne
r

PRE_SFM
_gpu_PO

ST

PRE_Localization_gpu_POST

PRE_Lane_detection_gpu_POST

PRE_Detection_gpu_POST

SFM

Localization

Lane_detection

(c) Waters19 task dependencies

OS_Ops_Function

Lid
ar_

Fu
nc

tio
n

CA
N_Fu

nc
tio

n

EK
F_

Fu
nc

tio
n

Pla
nn

er
_F

un
ct

ion

DA
SM

_F
un

ct
io

n

De
te

ct
io

n_
Pr

ep
ro

ce
ss

in
g

De
te

ct
ion

_P
os

tp
ro

ce
ss

ing

Lo
ca

liz
ati

on
_F

un
cti

on

Lane_Detectio
n_Fu

nctio
n

Lane_Detection_Preprocessing

Lane_Detection_Postprocessing

SFM_Function

SFM_Preprocessing

SFM
_Postprocessing

Localization_Preprocessing

Localization_Postprocessing

Detection_host_to_device

Detection_device_to_host

Lane_Detection_host_to_device

Lane_Detection_device_to_host

(d) Waters19 runnable dependencies

Angle_Sync

ISR
_1

ISR
_1

0
ISR

_1
1

ISR
_2

ISR
_3

ISR
_4

ISR
_5ISR
_6ISR
_7

ISR
_8

ISR
_9

Ta
sk

_1
00

0m
s

Ta
sk

_1
00

m
s

Task_10ms

Task_1m
s

Task_200m
s

Task_20ms

Task_2ms

Task_50ms

Task_5ms

(e) FMTV task dependencies

Figure H.1: Chord charts of different models’ task and runnable dependencies

233



Appendix H. Content Appendices

H.7 Task Chain Delay Examples

!i

!j

!k
"1,%+

A

Figure H.2: Gantt chart on implicit worst-case task chain age delay example with
increasing periods

!i

!j

!k
"1,%+

B

Figure H.3: Gantt chart on implicit worst-case task chain reaction delay example with
increasing periods

!2,$+

C

%i

%j

%k

&2,$-

Figure H.4: Gantt chart on implicit worst-case task chain age delay and implicit
best-case reaction with decreasing periods

!2,$+=&2,$+

D

'i

'j

'k

Figure H.5: Gantt chart on implicit worst-case task chain age and reaction delay example
with decreasing periods

234



Appendix H. Content Appendices

!2*,%+

E

&k

&k*

&j

'2*,%

Figure H.6: Gantt chart on implicit worst-case task chain age delay example with
alternating periods

!2,$+
%i

%j

%k

F

Figure H.7: Gantt chart on LET-based worst-case task chain reaction delay example with
decreasing periods

!i

!j

!k

"2,%-

G

&2,%+

Figure H.8: Gantt chart on LET-based worst-case task chain age and best-case reaction
delays example with decreasing periods

!i

!j

!k
"1,%+=(1,%+

H

Figure H.9: Gantt chart on LET-based worst-case task chain age and reaction delays
example with increasing periods

235



Appendix H. Content Appendices

!2’,%+
&i

&j*

&k

I

'2’,%+

Figure H.10: Gantt Chart on LET-based worst-case task chain age and reaction delays
example with alternating periods

!i

!j

!k
"1,%-

J

Figure H.11: Gantt Chart on LET-based best-case task chain reaction delay example
with increasing periods

236



Appendix H. Content Appendices

H.8 Various WCET Measurements for the WATERS Model
M
ap

pi
ng

M
P τ i

T
as
k

T
i

C
+ i,
A
R
M

C
− i,A
R
M

C
+ i,
D
en
v
er

C
− i,D

en
v
er

C
+ i,
G
P
U

C
− i,G
P
U

G
iv
en

E
V

R
T
SO

T
C
O

LB
O

O
SO

ve
rh
ea
d

10
0

50
.0
0

50
.0
0

50
.0
0

50
.0
0

-
-

C
or
e0

C
or
e5

C
or
e2

C
or
e2

C
or
e2

Li
da

rG
ra
bb

er
33

13
.6
6

10
.1
6

10
.8
7

9.
79

-
-

C
or
e1

C
or
e4

C
or
e3

C
or
e4

C
or
e1

D
A
SM

5
1.
86

1.
30

1.
30

1.
05

-
-

C
or
e0

C
or
e1

C
or
e5

C
or
e5

C
or
e3

C
A
N
bu

sp
ol
lin

g
10

0.
60

0.
40

0.
60

0.
40

-
-

C
or
e0

C
or
e0

C
or
e3

C
or
e1

C
or
e3

E
K
F

15
4.
76

3.
98

4.
43

4.
09

-
-

C
or
e4

C
or
e1

C
or
e2

C
or
e2

C
or
e3

P
la
nn

er
15

13
.2
4

9.
62

12
.4
4

9.
54

-
-

C
or
e3

C
or
e0

C
or
e1

C
or
e0

C
or
e0

P
R
E
SF

M
gp

uP
O
ST

33
7.
90

6.
33

6.
71

5.
41

-
-

C
or
e0

C
or
e1

C
or
e5

C
or
e5

C
or
e1

P
R
E
Lo

ca
liz

at
io
ng

pu
P
O
ST

40
0

17
.6
4

7.
34

14
.5
2

6.
12

-
-

C
or
e0

C
or
e0

C
or
e5

C
or
e0

C
or
e5

P
R
E
La

ne
de
te
ct
io
ng

pu
P
O
ST

66
8.
23

6.
79

7.
63

6.
08

-
-

C
or
e5

C
or
e3

C
or
e2

C
or
e3

C
or
e2

P
R
E
D
et
ec
ti
on

gp
uP

O
ST

20
0

4.
71

4.
01

4.
09

3.
00

-
-

C
or
e5

C
or
e0

C
or
e1

C
or
e4

C
or
e1

SF
M

33
29

.5
0

24
.1
4

27
.8
1

22
.1
8

7.
90

7.
05

G
P
10

B
G
P
10

B
C
or
e0

C
or
e1

G
P
10
B

Lo
ca
liz
at
io
n

40
0

38
7.
42

36
6.
52

29
4.
81

27
6.
71

12
4.
00

11
7.
00

G
P
10

B
C
or
e3

G
P
10

B
G
P
10

B
C
or
e5

La
ne
de

te
ct
io
n

66
51

.0
4

47
.8
4

42
.2
4

38
.4
4

27
.3
3

24
.5
0

G
P
10

B
C
or
e2

C
or
e4

C
or
e3

C
or
e4

D
et
ec
ti
on

20
0

-
-

-
-

11
6.
00

10
8.
00

G
P
10

B
G
P
10

B
G
P
10

B
G
P
10

B
G
P
10
B

R
es
po

ns
e
ti
m
es
R

+ i,
x

s-
B
lo
ck
in
g

pi
-B

lo
ck
in
g

T
as
k

E
V

R
T
SO

T
C
O

LB
O

E
V

R
T
SO

T
C
O

LB
O

E
V

R
T
SO

T
C
O

LB
O

O
SO

ve
rh
ea
d

50
.0
0

73
.9
4

73
.9
3

50
.0
0

-
-

-
-

-
-

-
-

Li
da

rG
ra
bb

er
23

.5
0

25
.3
1

22
.4
1

13
.0
6

0.
90

63
1.
07

82
0.
51

56
1.
46

88
-

-
-

-
D
A
SM

1.
30

1.
87

1.
87

1.
87

0.
00

03
0.
00

03
0.
00

03
0.
00

03
-

-
-

-
C
A
N
bu

sp
ol
lin

g
0.
60

0.
60

0.
60

2.
47

0.
00

04
0.
00

11
0.
00

08
0.
00

11
0.
00

01
-

-
0.
00
03

E
K
F

7.
04

4.
79

4.
79

9.
13

0.
00

32
0.
00

39
0.
00

21
0.
00

46
-

-
-

-
P
la
nn

er
14

.5
2

13
.3
6

13
.3
6

13
.3
2

0.
20

28
0.
21

33
0.
67

93
0.
30

19
0.
09

39
0.
09

38
0.
00

01
-

P
R
E
SF

M
gp

uP
O
ST

26
.9
7

-
-

23
.3
4

0.
10

84
0.
25

60
0.
25

60
0.
10

84
-

-
-

-
P
R
E
Lo

ca
liz

at
io
ng

pu
P
O
ST

-
43

.8
7

16
3.
44

-
1.
40

85
1.
01

89
1.
01

82
0.
37

81
-

-
-

0.
46
88

P
R
E
La

ne
de
te
ct
io
ng

pu
P
O
ST

-
-

-
-

0.
62

51
0.
62

51
0.
00

00
0.
62

51
-

-
0.
62

50
-

P
R
E
D
et
ec
ti
on

gp
uP

O
ST

10
4.
61

44
.8
5

63
.2
8

30
.7
0

0.
14

32
0.
14

32
0.
23

70
0.
23

70
-

-
-

-
SF

M
9.
90

30
.1
9

32
.5
9

9.
90

0.
75

60
1.
88

55
1.
88

55
0.
75

60
-

-
-

-
Lo

ca
liz
at
io
n

39
2.
12

24
0.
00

24
0.
00

39
2.
12

1.
31

51
1.
88

07
1.
31

64
0.
37

81
-

-
-

-
La

ne
de

te
ct
io
n

56
.0
5

56
.0
5

56
.0
5

56
.0
5

1.
25

02
1.
25

02
0.
00

00
1.
25

02
-

-
-

-
D
et
ec
ti
on

12
3.
90

17
3.
00

17
3.
00

12
3.
90

0.
78

13
0.
78

13
1.
81

25
0.
78

13
-

-
-

-

Table H.2: WATERS mapping, response times, and blocking results in ms

237



Appendix H. Content Appendices
C
on

te
nt
io
n

C
E

co
st
s

T
as
k

E
V

R
T
SO

T
C
O

LB
O

E
V

R
T
SO

T
C
O

LB
O

O
SO

ve
rh
ea
d

-
-

-
-

-
-

-
-

Li
da

rG
ra
bb

er
8.
75

02
8.
75

02
7.
65

65
1.
75

00
-

-
-

-
D
A
SM

0.
00

19
0.
00

90
0.
00

90
0.
00

90
-

-
-

-
C
A
N
bu

sp
ol
lin

g
0.
00

05
0.
00

29
0.
00

05
0.
00

26
-

-
-

-
E
K
F

0.
00

46
0.
02

59
0.
02

30
0.
02

30
-

-
-

-
P
la
nn

er
0.
72

14
0.
76

15
0.
76

15
0.
72

14
-

-
-

-
P
R
E
SF

M
gp

uP
O
ST

2.
82

38
-

-
2.
82

38
-

-
-

-
P
R
E
Lo

ca
liz

at
io
ng

pu
P
O
ST

-
8.
46

07
1.
59

81
-

-
-

-
-

P
R
E
La

ne
de

te
ct
io
ng

pu
P
O
ST

-
-

-
-

-
-

-
-

P
R
E
D
et
ec
ti
on

gp
uP

O
ST

-
-

12
.0
31

3
2.
57

81
-

-
-

-
SF

M
-

1.
87

50
1.
87

50
-

2.
73

09
-

-
1.
01

21
Lo

ca
liz
at
io
n

4.
23

04
-

-
4.
23

04
-

2.
54

13
2.
54

13
-

La
ne

de
te
ct
io
n

4.
37

56
4.
37

56
4.
37

56
4.
37

56
-

-
-

-
D
et
ec
ti
on

-
-

-
-

2.
57

57
2.
25

06
2.
31

51
1.
37

50

La
be

lA
cc
es
s
C
os
ts

U
+ i

=
R

+ i
T
i

T
as
k

E
V

R
T
SO

T
C
O

LB
O

E
V

R
T
SO

T
C
O

LB
O

O
SO

ve
rh
ea
d

-
-

-
-

0.
50

0
0.
73

9
0.
73

9
0.
50

0
Li
da

rG
ra
bb

er
1.
09

38
1.
09

38
1.
09

38
0.
43

75
0.
71

2
0.
76

7
0.
67

9
0.
39

6
D
A
SM

0.
00

05
0.
00

13
0.
00

13
0.
00

13
0.
26

0
0.
37

4
0.
37

4
0.
37

4
C
A
N
bu

sp
ol
lin

g
0.
00

01
0.
00

03
0.
00

01
0.
00

03
0.
06

0
0.
06

0
0.
06

0
0.
24

7
E
K
F

0.
00

12
0.
00

29
0.
00

29
0.
00

29
0.
46

9
0.
31

9
0.
31

9
0.
60

9
P
la
nn

er
0.
16

03
0.
16

03
0.
16

03
0.
16

03
0.
96

8
0.
89

1
0.
89

1
0.
88

8
P
R
E
SF

M
gp

uP
O
ST

0.
75

30
1.
88

25
1.
88

25
0.
75

30
0.
81

7
-

-
0.
70

7
P
R
E
Lo

ca
liz

at
io
ng

pu
P
O
ST

0.
37

60
0.
94

01
0.
37

60
0.
94

01
-

0.
11

0
0.
40

9
-

P
R
E
La

ne
de

te
ct
io
ng

pu
P
O
ST

1.
25

02
1.
25

02
1.
25

02
1.
25

02
-

-
-

-
P
R
E
D
et
ec
ti
on

gp
uP

O
ST

0.
68

75
0.
68

75
1.
71

88
0.
68

75
0.
52

3
0.
22

4
0.
31

6
0.
15

3
SF

M
0.
21

08
0.
50

61
0.
50

61
0.
21

08
0.
30

0
0.
91

5
0.
98

8
0.
30

0
Lo

ca
liz
at
io
n

0.
94

01
0.
15

67
0.
15

67
0.
94

01
0.
98

0
0.
60

0
0.
60

0
0.
98

0
La

ne
de

te
ct
io
n

1.
25

02
1.
25

02
1.
25

02
1.
25

02
0.
84

9
0.
84

9
0.
84

9
0.
84

9
D
et
ec
ti
on

0.
28

64
0.
28

64
0.
28

64
0.
28

64
0.
62

0
0.
86

5
0.
86

5
0.
62

0

Table H.3: WATERS contention, CE costs, label access costs, and R+
i /Ti results in ms

238



Section H.9. Example WRR Gantt Chart

H.9 Example WRR Gantt Chart

16
9

11
9

14
4

T
as
k1

7
9

6
7

T
as
k4

19
18

16
T
as
k3

40
23

T
as
k2

10
20

30
40

50
60

70

F
ig
ur
e
H
.1
2:

E
xa

m
pl
e
G
an

tt
ch
ar
t
on

W
R
R

sc
he
du

lin
g
ba

se
d
on

[3
6]

an
d
th
e
ta
sk

se
t
of

ta
bl
e
H
.4
.
T
he

en
ti
re

bu
sy

pe
ri
od

is
sh
ow

n,
co
ns
ti
tu
te
d
by

79
in
st
ru
ct
io
ns

an
d
12

ro
un

d
ro
bi
n
tu
rn
s,

w
he
re
as
↑
de
no

te
s
a
ta
sk
’s

ar
ri
va
la

nd
↓
de
no

te
s
it
s
re
sp
on

se
.
R
ec
ta
ng

le
s
w
it
h
a

nu
m
be

r
in
st
id
e
lo
ca
te
d
ab

ov
e
a
re
sp
on

se
ar
ro
w

in
di
ca
te

th
e
re
sp
on

se
ti
m
e
fo
r
th
e
co
rr
sp
on

di
ng

ta
sk

in
st
an

ce
.
T
hi
ck

da
sh
ed

re
sp
on

se
ti
m
es

in
di
ca
te

w
or
st
-c
as
e
re
sp
on

se
ti
m
es

of
a
ta
sk

w
it
hi
n
th
e
bu

sy
pe

ri
od

w
in
do

w
.

T
as
k

T
i

C
i

θ i
T
as
k1

3
15

2
T
as
k2

10
50

3
T
as
k3

7
30

5
T
as
k4

5
20

5

T
ab

le
H
.4
:
E
xa

m
pl
e
ta
sk

se
t
ba

se
d

on
[3
6]

239



Appendix H. Content Appendices

H.10 Delay Equations Overview

N
ot
at
io
n

N
am

e
C
on

si
d
er
ed

p
ro
p
er
ti
es

F
oc
u
s

U
se
d
fo
r

E
q.

e c
E
dg

e
co
st

R
at
e;

nb
ac
ce
ss
es
;l
ab

el
si
ze
;c

ac
he

lin
e;

m
em

or
y
ac
ce
ss

co
st

E
dg

e
i.e

.
tw

o
ru
nn

ab
le
s

P
ar
ti
ti
on

in
g;

D
A
G
;

C
yc
le

de
co
m
po

si
ti
on

4.
6

cc
x

C
om

m
un

ic
at
io
n

co
st

M
ap

pi
ng

;l
ab

el
si
ze
;C

A
N

Id
s;

bu
sy

pe
ri
od

C
A
N

m
es
sa
ge

R
T
A
;

In
tr
a-
E
C
U

co
m
m
un

ic
at
io
n

5.
10

w
C
S

C
ri
ti
ca
l

se
ct
io
n

w
in
do

w

P
U

m
em

or
y

ac
ce
ss

de
la
y;

la
be

l
si
ze
;

ca
ch
e

lin
e;

co
m
.

pa
ra
di
gm

Se
m
ap

ho
re

or
la
be

l
an

d
a

ta
sk

B
lo
ck
in
g

(R
T
A
)

5.
19

L
i(
co
m

)
N
or
m
al
iz
ed

ac
ce
ss

de
la
y

La
be

l
si
ze
;

ca
ch
e

lin
e;

m
em

or
y

ac
ce
ss

co
st
;

nu
m
be

r
of

ac
ce
ss
es
;c

om
pa

ra
di
gm

Si
ng

le
ta
sk

R
T
A
;

C
om

m
un

ic
at
io
n

pa
ra
di
gm

s

5.
30

ip
u
c

In
te
r

P
U

co
m
m
un

ic
at
io
n

A
cc
um

ul
at
ed

la
be

ls
iz
e
an

d
ra
te

ac
ro
ss

la
be

ls
sh
ar
ed

be
tw

ee
n

ta
sk

pa
ir
s
m
ap

pe
d
to

di
ffe

re
nt

P
U
s

M
ap

pi
ng

M
em

or
y

M
ap

pi
ng

7.
1

Table H.5: Overview of delays derived from labels and label accesses

240


	Introduction
	Thesis Statement and Scope
	Contributions
	Prior Work
	Organization

	Background and Fundamentals
	Basic Terms and Concepts
	The Heterogeneous Era
	Model-based Automotive Engineering
	Safety & Criticality Levels
	Software Distribution
	Timing Verification
	Design Space Exploration of Intractable Optimization Problems
	Sharing Resources and Blocking Times
	Summary and Motivation

	System Model
	Amalthea
	Formal Notations

	Software Partitioning
	Related Work on Software Partitioning
	DAG-based Runnable to Task Partitioning
	CP-based Partitioning
	Partitioning Metrics and Summary

	Constrained Software Distribution & Timing Verification
	Related Work on Constrained Software Distribution
	Task Mapping Constraints
	Affinity Constraints
	Timing Constraints and Verification
	Task Chain Latency Analyses
	GPU Timing Verification
	Data to Memory Mapping
	Improved Global Critical Section Management
	Summary of Constrained Software Distribution & Timing Verification

	Case Study Models
	Fmtv
	Waters19
	Aim
	Democar
	Generated Models
	Comparison of the Case Study Models' Properties

	Metrics and Evaluation
	Runnable to Task Partitioning
	Software Distribution
	CPU-GPU Response Times and Task Chain Delays
	TDRR Analyses
	Label Mapping
	Implementation Remarks

	Conclusions and Outlook
	Summary
	Ongoing and Future Work

	Appendices
	List of Figures
	List of Tables
	List of Algorithms
	List of Examples
	List of Definitions
	Bibliography
	Affidavit (German)
	Content Appendices
	Power and Performance Equations
	Formalism on Affinity and Delay Constraints
	Definitions on Paths, Cycles, and DAGs
	Offset-based RTA using Transactions
	Runnable DAG of the Democar Model
	Model Chord Charts
	Task Chain Delay Examples
	Various WCET Measurements for the WATERS Model
	Example WRR Gantt Chart
	Delay Equations Overview


