
Ideal Closures and Sheaf Stability

Jonathan Steinbuch
Fachbereich Mathematik/Informatik

Universität Osnabrück

Advisor: Holger Brenner

Submitted as a doctoral thesis in September 2020



ii



Contents

Introduction 1

Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Ideal closure operations 9

1.1 Ideal closure operations . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Tight closure . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Continuous closure and axes closure . . . . . . . . . . . . . . . 14

1.4 Monomial ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Descent and reduction modulo p . . . . . . . . . . . . . . . . . 19

2 Continuous and tight closure 21

2.1 Axes closure and valuations . . . . . . . . . . . . . . . . . . . 22

2.2 Smooth and étale . . . . . . . . . . . . . . . . . . . . . . . . . 24
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Introduction

“It is impossible to be a mathematician
without being a poet in soul.”

Sofia Kovalevskaya

One of the main goals of mathematics is to structure and classify the
objects and concepts arising in mathematical discourse. To make progress
towards this goal two methods are of special importance to lay bare the
hidden structure. One of those methods is to strip the descriptions of the
objects of as much unnecessary data as possible, to focus on the important
aspects. The other method is to characterize subclasses of objects that give
rise to better classification structures than would be possible for the whole
class.

Ideal closure operations are an example for the former method applied to
ideals in commutative rings and how they relate to different aspects of alge-
braic geometry. Semistability on the other hand is a property that enables
the latter method by allowing to algebraically describe the moduli space of
vector bundles that exhibit it. The two main components of this thesis are
a theorem showing containment of one ideal closure operation in another,
namely that continuous closure often contains tight closure, and a theorem
that allows to algorithmically determine semistability of a vector bundle.
This algorithm was implemented by the author as a computer program.

We will now introduce the relevant concepts properly. The most basic
example of an ideal closure operation is the radical of an ideal. The radical
of an ideal I ⊆ R consists of the elements in the ring R for which a power
lies in I. The radical condenses the information of I as far as it relates to
elementary algebraic geometry, specifically the zero set V (I): While there
are many ideals with the same zero set, they all have the same radical.

The central ideal closures in this thesis are tight closure and continuous
closure. Tight closure was introduced by Craig Huneke and Melvin Hochster
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2 INTRODUCTION

[28] and quickly showed some interesting results with the most prominent
being a new and simpler proof of the theorem of Briançon-Skoda. Formally
the tight closure I∗ of an ideal I in a commutative ring R of characteristic p
is the ideal consisting of the elements f ∈ R such that there exists a c ∈ R
not contained in any minimal prime of R (for example a nonzerodivisor) for
which cf q is an element of the Frobenius power I [q] of the ideal for almost
all q = pe.

Continuous closure was introduced by Holger Brenner [8] and naturally
comes up when thinking of ideal closures in terms of forcing equations, i.e.
equations that admit a solution if and only if an element is contained in an
ideal. An ideal I = (f1, . . . , fn) ⊆ R consists precisely of the elements f that
admit a solution (g1, . . . , gn) ∈ Rn to the forcing equation f = g1f1 + . . . +
gnfn. Various ideal closures can be constructed by instead allowing solutions
in ring extensions of R. The continuous closure in a finitely generated C-
algebra R is the ideal of elements that have a continuous solution to the
forcing equation, i.e. where the gi are continuous maps SpecR(C) −→ C.
Tight closure containment can also be checked via forcing equations, but in
a more subtle way, which opens up an avenue for computation of tight closure
which we will get back to later.

Now let’s describe the first part of the thesis, the relation between contin-
uous closure and tight closure. As continuous closure is a strictly character-
istic 0 concept and tight closure is originally a characteristic p concept, one
first has to find the right common ground to compare these notions. This is
found via valuative criteria for the containment of an element in a closure.
The continuous closure is very close to another closure, the axes closure,
which can be defined via rings that geometrically correspond to a scheme
that consists of normal curves which intersect transversally in one point, i.e.
a cross. For each of the axes of the ring we can define a valuation because
of the fact that a one-dimensional normal ring is a discrete valuation ring.
These valuations give a numerical criterion to check whether an element is
in the axes closure or not.

The axes closure has been introduced by Brenner in [8] as an attempt
to characterize algebraically the continuous closure, though it has failed to
exactly do that, since the two closures are different as Neil Epstein and Melvin
Hochster have shown [19, Example 9.2]. Still they are close: We always have
Icont ⊆ Iax and they coincide for primary ideals.

We prove that the tight closure of an ideal in an excellent, normal ring
with perfect residue fields at the maximal ideals is contained in its axes



INTRODUCTION 3

closure. An important step of the proof uses special tight closure introduced
by Adela Vraciu and Craig Huneke [34]. Their theory allows – as long as the
ring is normal – the splitting of tight closure into two summands, the ideal
itself and a ‘deeper’ part, the special tight closure. We show the containment
of special tight closure in the axes closure in Theorem 2.4.1 for rings of
characteristic p as well as in Theorem 2.5.1 for rings of equal characteristic
0. The characteristic 0 case is done by reduction to positive characteristic,
a method that connects properties that hold modulo the primes on a dense
subset of the spectrum of Z to their characteristic 0 property counterparts.

An application of semistability of vector bundles led us to the develop-
ment of the second main component of this thesis. A vector bundle is a
topological space that locally looks like the product of a base space and a
vector space and where on the overlapping of the local environments there is
a homeomorphism induced by linear maps on the vector spaces. For exam-
ple, if we have a circle as base space, there are – up to isomorphism – only
two one-dimensional vector bundles, a cylinder and a Möbius strip. There is
an equivalence of categories between isomorphism classes of vector bundles
and isomorphism classes of locally free sheaves, and sometimes we may use
these terms interchangeably.

For the computation of tight closure Melvin Hochster considered the
closely related solid closure instead, for which the question whether an ele-
ment belongs to the closure is equivalent to the question whether the com-
plement of a vector bundle is an affine scheme. The complement in question
is by construction isomorphic to the projective sprectrum of the respective
forcing algebra. Even with Hochsters insights, computing the tight closure
can be quite tricky. But Brenner developed some helpful methods for it [6].
However, those methods themselves rely on the semistability of vector bun-
dles or at least the ability to decide whether a vector bundle is semistable.
This is what the algorithm developed in the second part of this thesis wants
to address.

What is semistability? There exist several definitions depending on con-
text. All definitions of semistability in some sense express that the vector
bundle is at least as ample as all its subbundles, in the sense that subbundles
don’t have ‘more’ sections. We will restrict ourselves to curves in projec-
tive space, i.e. projective varieties corresponding to two-dimensional rings.
In that context we get a very ample sheaf OX(1) from the embedding of
the curve X in projective space. With respect to this very ample sheaf we
can define a slope µ(V ) of a vector bundle as the fraction of degree and
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rank. A sheaf is semistable if its slope is at least as big as the slopes of
all subbundles. In some contexts this is also called µ-stability or Mumford-
Takemoto-stability. See also the book by Daniel Huybrechts and Manfred
Lehn [35] and the original work by David Mumford [39].

Originally, semistable vector bundles were introduced in the context of
moduli spaces. As it turned out, there is no moduli space for the class of all
vector bundles, which can be shown using Castelnuovo-Mumford-regularity.
In general, sheaves can have any Castelnuovo-Mumford-regularity. As an
example, sheaves of the form O(l) ⊕ O(−l) are not semistable and have
Castelnuovo-Mumford regularity l. For semistable locally free sheaves, how-
ever, the Castelnuovo-Mumford-regularity is bounded by a number that only
depends on the underlying scheme. This makes it possible to construct a
moduli space.

Our method to compute semistability is to use Riemann-Roch-theory and
methods of multilinear algebra and twists to make destabilizing subsheaves
visible. Previous work on this has been done by Brenner in [12, Section
2](only in positive characteristic), and by Almar Kaid and Ralf Kasprowitz
in [36](only for sheaves over Pn). We will also give a concrete implementation
using linear algebra methods to compute destabilizing sections.

Since our method relies heavily on linear and multilinear algebra, we need
to provide the vector bundle in a computationally accessible way, which for
us means as a kernel sheaf that can be described globally as the kernel of a
matrix. Consequently we will consider sequences of the form

0 −→ F −→
⊕
OX(−di)

A−→ OX .

We want to decide semistability of F computationally. This leads us to
two problems. First we need to be aware of all subbundles E ⊆ F and check
whether there is one with slope µ(E) > µ(F). In addition we will only be
able to find global sections, so we need to make all subbundles visible as
global sections.

The solution we present is to use multilinear algebra methods, namely
symmetric and exterior powers in addition to twisting in order to transform
the situation in such a way that any destabilizing subbundle E has sufficiently
high slope so that it will have global sections, while F has negative slope so
that F can’t have global sections if it is semistable. The main theorems are
Theorem 4.4.1 and Theorem 4.4.2.

The implementation of the semistability algorithm requires very efficient



CHAPTERS 5

linear algebra implementations which were built for this purpose by the au-
thor. This can be found here: https://github.com/JonathanSteinbuch/

sheafstability.

Chapters

Chapter 1: Chapter 1 is a background chapter and recapitulates some of the
central concepts used in the subsequent chapter. It deals with ideal clo-
sure operations, particularly tight closure, continuous closure and axes
closure. Also the chapter includes a short description of the process of
reduction modulo a prime number which is the central concept used
to relate characteristic p notions like tight closure with characteristic 0
notions like continuous closure.

Some of the content in Chapter 1 was also part of the author’s Master
Thesis on János Kollár’s algebraic description of continuous closure
[45].

Chapter 2: This chapter deals with the connection between tight closure
and continuous closure and axes closure respectively. The main theo-
rem is that for primary ideals over excellent, normal rings with perfect
residue field the tight closure is contained in the axes closure. This is
proved using special tight closure [34] and valuative criteria for axes
closure. This is then used to also relate tight closure to continuous
closure for primary ideals in affine C-algebras as in that context con-
tinuous closure and axes closure coincide.

The main contents of Chapter 2 were published in the paper [10] that
the author wrote together with Holger Brenner.

Chapter 3: In this second background chapter locally free sheaves and their
relation to vector bundles are introduced. Next introductions to some
tools needed to deal with locally free sheaves like divisors, degree, twist
and stability follow. Lastly the chapter deals with curves and their
embedding into projective space and what it means for a curve to be
smooth.

Chapter 4: The algorithm for deciding semistability of kernel bundles on
curves is the central part of this chapter. Before that, however, we

https://github.com/JonathanSteinbuch/sheafstability
https://github.com/JonathanSteinbuch/sheafstability
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compute how rank, degree and slope of a vector bundle on a curve
change with symmetric and exterior powers. We also show how to
describe the symmetric and exterior powers of a kernel sheaf as kernel
sheaves again. This is necessary to give an algorithm that can actually
be implemented in a computer. To relate the way the algorithm works,
we give several examples.

There is also a section describing how to alter the algorithm to work
in positive characteristic using the Frobenius pullback.

The contents of Chapter 4 are going to be published in an upcoming
paper together with Holger Brenner [11].

Chapter 5: Here some applications of the semistability algorithm are de-
scribed. Semistable sheaves were first introduced to give a class of
sheaves where moduli functors can be corepresented, i.e. their moduli
spaces have a scheme structure. In this chapter we recall what this
means.

We also describe the concept of Harder-Narasimhan-filtration, which
gives the power to apply some methods that require semistability to
non-semistable sheaves. We explain how this is used in [6] to compute
the tight closure of an ideal and how the semistability algorithm from
this thesis can be employed here.

Chapter 6: In the last chapter we shine a light on several aspects of the im-
plementation of the semistability algorithm from chapter 4. In partic-
ular we describe our use of monomial orderings, Gröbner bases, mono-
mial bases, Hilbert polynomials and how to compute them.

Additionally we describe the data structures and methods used to im-
plement efficient integer value sparse matrix echelonization, which is the
work horse behind the algorithm. We also analyze some performance
characteristics of the implementation. Lastly we describe exactly how
to use the implementation to do your own semistability computations.
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Chapter 1

Ideal closure operations

This chapter recapitulates ideal closure operations.
The treatment of the topics in this chapter is relatively brief as giving

each the attention it deserves would make this thesis very long. For more
in-depth information we refer the reader to the relevant literature. A good
first source on ideal closure operations is the book of Irena Swanson and
Craig Huneke [33]. For tight closure we give several citations in the chapter
to the works of Melvin Hochster, Craig Huneke, Holger Brenner and others.

1.1 Ideal closure operations

The general idea behind ideal closure operations is to enlarge an ideal with
the goal to get rid of peculiarities of the ideal which are irrelevant to the
task at hand. As a result, how similar or different the closures of two ideals
are, often tells us more than the relation of the ideals themselves. Which
properties are highlighted depend on the specific closure, but often those
properties are of a geometrical nature.

For this work tight closure, continuous closure and axes closure are of
special importance.

Definition 1.1.1. A closure operation cl on a commutative ring R is an
unary operation on the set of ideals in R, satisfying the following properties:

extension I ⊆ Icl.

idempotence
(
Icl
)cl

= Icl.

9



10 CHAPTER 1. IDEAL CLOSURE OPERATIONS

order preservation Jcl ⊆ Icl for all ideals J ⊆ I.

If we have I = Icl then the ideal is considered cl-closed.
An elementary example of a closure operation is the radical of an ideal.

Definition 1.1.2. Let R be a commutative ring. The radical of an ideal
I ⊆ R is √

I :=
⋂
{p ∈ SpecR|I ⊆ p} .

In particular this means that
√
I contains all roots of elements of I in R.

It’s obvious from the definition that all ideals with the same radical define
the same zero set in SpecR. In this sense the radical is the correct geometrical
essence of an ideal.

Related to the radical is the following notion, which will become impor-
tant later. A primary ideal I is an ideal where xy ∈ I implies that either
x ∈ I or y ∈ I or x, y ∈

√
I.

Lemma 1.1.3. If the radical
√
I of an ideal I is a maximal ideal then I is

primary.

Proof. Otherwise for xy ∈ I, x /∈
√
I the ideal (x) +

√
I would properly

contain
√
I.

For a primary ideal I we often write that I is
√
I-primary to emphasize

the radical.
All closure operations cl have the basic properties that the finite inter-

section of cl-closed ideals is cl-closed and that Icl is the intersection of all
cl-closed ideals containing I. Also closure operations are well-behaved re-

garding sums, i.e.
(∑

α I
cl
α

)cl
= (
∑

α Iα)cl.
Another important classical closure operation is integral closure.

Definition 1.1.4. Let R be a commutative ring. The integral closure of an
Ideal I ⊆ R is

I :=

{
r ∈ R

∣∣∣∣∣∃n ∈ N ∀i ∈ {1, . . . , n} ∃ai ∈ I i : rn +
n∑
i=1

air
n−i = 0

}
.

For further reading on integral closure we recommend [33].
An important property that some closure operations have is persistence.
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Definition 1.1.5. A closure operation cl is persistent if ϕ(Icl) ⊆ (ϕ(I)S)cl

for all ring homomorphisms ϕ : R −→ S and all ideals I ⊆ R.

Lemma 1.1.6. Integral closure is persistent.

Proof. If we have an equation of integral dependence for r ∈ R over I ⊆ R,
we can map the equation via ϕ : R −→ S to get an equation of integral
dependence for ϕ(r) over ϕ(I)S.

Persistence is closely related to having test rings for a closure operation.

A class of test rings to a closure operation cl is a subclass T of the
category of rings such that f ∈ Icl ⊆ R if and only if ϕ(f) ∈ ϕ(I)T for all
algebra homomorphisms ϕ : R −→ T with T ∈ T .

Lemma 1.1.7. An ideal closure with a class of test rings is persistent.

Proof. Let I be an ideal in a ring R and let f ∈ Icl for a closure cl for which
T is a class of test rings.

Let ϕ : R −→ S be a homomorphism. We have to check if ϕ(f) ∈
(ϕ(I)S)cl. For this we take a test ring T ∈ T that allows a ring homomor-
phism ψ : S −→ T . In total we get a commutative diagram as follows.

R S

T

ϕ

ψ

The concatenation ψ ◦ ϕ makes T a ring for which f ∈ Icl implies
ψ(ϕ(f)) ∈ ψ(ϕ(I))T. Thus ψ(ϕ(f)) ∈ ψ(ϕ(I)S)T and cl is persistent.

Lemma 1.1.8. Let R be a commutative ring. A class of test rings for the
radical of an ideal I ⊆ R is the class of all fields.

Proof. For any map ϕ : R −→ K into a field the ideal ϕ(I)K is either 0
or K. In either case an element in the radical of I is mapped to the ideal
generated by ϕ(I).

On the other hand, because the radical is an intersection of prime ideals,
for any element f /∈

√
I we always have a prime ideal p which contains

√
I

but does not contain f . By construction we have a map R −→ R/p where f
is not in the image of I, and R/p is a field.
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Lemma 1.1.9. Let R be a noetherian integral domain. Then a test class for
integral closure is the class of discrete valuation domains.

An even smaller test class for integral closure consists of just all valuation
rings between R/p and κ(p) for every minimal prime p.

Proof. [33, Proposition 6.8.2 and Proposition 6.8.3].

1.2 Tight closure

In the introduction to [28], Melvin Hochster and Craig Huneke mention that
the notion of tight closure, which was introduced by them, facilitated some
remarkable algebraic results. For example they were able to give a simpler
proof to the theorem of Briançon-Skoda, which states that the integral closure
of the n-th power of an ideal with n generators of a regular ring is contained
in the ideal. In a survey article Winfried Bruns likens tight closure to be
synonymous with characteristic p methods in commutative algebra [13]. In
this section we recapitulate the important definitions.

To a ring R we denote with Ro the multiplicative system containing all
elements which are not in any minimal prime ideal.

Definition 1.2.1. Let N ⊆ M be modules over a noetherian ring R of
characteristic p > 0. We define the tight closure of N in M as

N∗M := {x ∈M |∃c ∈ Ro, q ∈ N : ∀pe > q : cxp
e ∈ N [pe]

M }.

Here N
[pe]
M := im(Fe∗(N) −→ Fe∗(M)), where Fe∗(M) is the e-th iteration

of the Frobenius functor. Consequently xp
e

stands for the image of x ∈ M
under the e-th Frobenius pullback of M .

We defined tight closure for modules and not just for ideals, to keep the
subsequent definition of test elements consistent with the exposition in [28].
However, the important case for us is when N = I is an ideal of R and
M = R itself. In this case I [p

e] is the ideal generated by the pe-th powers of
a set of generators of I.

Lemma 1.2.2. The tight closure of an ideal I in a noetherian ring of positive
characteristic is contained in the integral closure of I.

Proof. [28, Theorem 5.2]
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Definition 1.2.3. Let q be a power of p. An element c ∈ Ro is called a
q-weak test element if for every set of finitely generated modules N ⊆M we
have that x ∈ N∗M if and only if cxp

e ∈ N [pe]
M for all pe ≥ q.

An element c ∈ Ro is called a completely stable q-weak test element if its
image in the completion of every local ring of R is a q-weak test element.

If q = 1 we just call c a test element, or completely stable test element
respectively.

Theorem 1.2.4. Let R be a noetherian ring of characteristic p > 0. If R
is an algebra essentially of finite type over an excellent local ring or if the
Frobenius endomorphism is a finite morphism then R has a completely stable
test element.

Proof. [29, Theorem 5.10 and Theorem 6.1].

The following notion was introduced by Craig Huneke and Adela Vraciu
in [34].

Definition 1.2.5. Let I ⊆ R be an ideal in a local noetherian ring of prime
characteristic p. The special tight closure I∗sp is the ideal of all elements f
for which there exists a q0 > 0 such that f q0 ∈

(
mI [q0]

)∗
.

The most important point about special tight closure is that for any
ideal I in a local excellent normal ring with perfect residue field we have
I∗ = I+I∗sp. Note that despite its name special tight closure is not a closure
operation and in general doesn’t contain the ideal itself. Special tight closure
will play a crucial role in our proof that tight closure is contained in the axes
closure (Theorem 2.4.1).

Next we introduce solid closure, which is closely related to tight closure
and was introduced by Melvin Hochster [27]. We recall the definition here
because solid closure is susceptible to computations for which our algorithm
to decide semistability can be put to use.

Originally solid closure was defined via solid modules which we will not do.
Our definition follows the exposition in [3] and is equivalent to the original
because of [27, Corollary 2.4 and Proposition 5.3].

Definition 1.2.6. Let R be a noetherian ring and I := (f1, . . . , fn) ⊆ R.
Then we define the solid closure I? of I as follows: For an element f0 ∈ R we
have f0 ∈ I? if and only if for every maximal ideal m ⊆ R and every minimal
prime q ⊆ R̂m we have (with R′ := R̂m/q)

HdimR′

mR′ (R′[X1, . . . , Xn]/(f1X1 + . . .+ fnXn + f0)) = 0.
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Here HdimR′

mR′ denotes local cohomology, see [32].

The definition does not depend on the characteristic and in many cases
in positive characteristic it coincides with tight closure.

Theorem 1.2.7. Let I be an ideal in a noetherian ring R of characteristic
p > 0. Then I∗ ⊆ I?. If R contains a completely stable weak test element we
have I∗ = I?. In particular this is the case for rings essentially of finite type
over an excellent local ring or rings such that the Frobenius endomorphism
is finite.

Proof. This is [27, Theorem 8.6].

For the computations connections a characterization of solid closure with
fiber bundles is important. This is the topic of Section 3.7.

1.3 Continuous closure and axes closure

Definition 1.3.1. Let R = C[X1, . . . , Xn]/a be an algebra and let X =
SpecR(C) be the space of C-valued points of SpecR. We can embed R
into the ring of continuous functions C0(X). The continuous closure Icont

is the ideal consisting of all elements f ∈ R, that we can write as a linear
combination f = c1r1 + . . .+cmrm with continuous functions ci ∈ C0(X) and
ri ∈ I.

In other words Icont := i−1(i(I)C0(X)), if i : R ↪→ C0(X).
It’s important to note, that the continuous functions mentioned here refer

to continuity in the euclidean topology, i.e. the topology with open sets the
sets that contain for each point an open C-ball. In other contexts in this
thesis, when we talk about open sets we mostly refer to Zariski-topology, in
which the open sets are the complements of (closed) algebraic sets.

The continuous closure is persistent, because for a ring homomorphism
R −→ S, the induced map (SpecS)(C) −→ (SpecR)(C) is continuous. This
induces naturally a ring homomorphism of the rings of continuous functions.

A more algebraic closure operation that is somewhat close to continuous
closure is axes closure. There are multiple possible classes of test rings to
define it, all of which have in common that their geometric spectrum consists
of smooth irreducible curves (read axes) intersecting in one point.
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Definition 1.3.2. Let K be an algebraically closed field. A complete axes
ring is a ring of the form

K[[x1, . . . , xn]]/(xixj, i 6= j).

An axes ring is a reduced, one-dimensional, finitely generated ring R with
X = SpecR the union of smooth irreducible curves that meet in one singular
point P ∈ X and for which the completion at P is isomorphic to a complete
axis ring. An example for an axes ring is the polynomial axes ring, which is
a ring of the form

K[x1, . . . , xn]/(xixj, i 6= j).

Definition 1.3.3. Let K be an algebraically closed field of characteristic 0
and R a finitely generated, noetherian K-algebra. The axes closure Iax of an
ideal I ⊆ R is defined by either of the following classes of test rings.

1. Axes rings.

2. Complete axes rings.

3. Complete, excellent, seminormal, one-dimensional, local R-algebras.

For proofs of the equivalence and additional equivalent definitions of axes
closure see [19, Theorem 4.1 and Corollary 4.2].

Lemma 1.3.4. All ideals in axes rings over C are continuously closed.

Proof. This is [8, Lemma 3.6].

Together with persistence of continuous closure this means that for an
ideal I ⊆ R, R a finite type C-algebra and a morphism ϕ : R −→ T to an
axes ring T we have that f ∈ Icont implies f ∈ ϕ(I)T . But axes rings are
not test rings for continuous closure, because the converse is not true. An
explicit example is I = (u2, v2, uvx2) ⊂ C[u, v, x], where we have uvx ∈ Iax,
but uvx /∈ Icont [19, Example 9.2].

Nonetheless we have the following relations.

Proposition 1.3.5. In finite type C-algebras we have:

I ⊆ Icont ⊆ Iax ⊆ I ⊆
√
I.

Proof.
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I ⊆ Icont This is the extension property of closure operations.

Icont ⊆ Iax Let I ⊆ R be an ideal in a C-algebra of finite type and let
ϕ : R −→ T be a homomorphism for T an axes ring. Because of
persistence we have ϕ(Icont) ⊆ (ϕ(I)T )cont. Lemma 1.3.4 tells us
ϕ(I)T = ϕ(I)T cont for axes rings T . This shows Icont ⊆ Iax.

Iax ⊆ I Discrete valuation domains, the test rings for integral closure are
axes rings with one axis (see also [8, Remark 4.2]).

I ⊆
√
I An integral relation rn +

∑n
i=1 air

n−i = 0 with ai ∈ I implies rn ∈
(a1, . . . , an) ⊆ I.

This proposition will be extended in Chapter 2 of this thesis, where we
show that I∗ ⊆ Iax to give a connection between tight closure and continuous
closure. This is a meaningful connection between tight closure and continuous
closure, because Icont and Iax are so close together, they are even the same
in some cases.

1.4 Monomial ideals

An ideal I ⊆ R in a polynomial ring R = K[x1, . . . , xm] is called monomial
if it has a monomial set of generators f1, . . . , fn.

Monomial ideals make for good examples because they have some nice
properties. They appear naturally for example as the initial ideals in Gröbner
basis theory and also allow to compute some things for more general ideals,
for example when it comes to the Hilbert polynomial.

Square-free monomial ideals are combinatorially relevant, as they corre-
spond to simplicial sets. In this correspondence the variables of the ring
correspond to the nodes of the simplicial set. The simplicial set contains a
face if the product of the variables corresponding to its nodes is not in the
ideal.

In this section we will recall some properties of monomial ideals with
regards to ideal closure operations. One of the nice properties of monomial
ideals is that we can visualize them easily as subsets of Nn. The set ΓI =
{γ ∈ Nm : zγ ∈ I} consists of all exponents of I.
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Figure 1.1: This figure shows the set ΓI for I = (x7, x4y2, y8).

Lemma 1.4.1. The integral closure of a monomial ideal I in a polynomial
ring over an algebraically closed field is generated by the monomials with
exponents in the convex hull of ΓI .

Proof. Let the polynomial ring be K[x1, . . . , xm] and let I be generated by
monomials f1, . . . , fn. First of all the integral closure of a monomial ideal is
again a monomial ideal [33, Proposition 1.4.2].

Any monomial r in the integral closure I has by definition an equation
of integral dependence rk −

∑k−1
i=0 air

i = 0 with ai ∈ I. We can assume that
all the air

i are associated to rk, because the equation especially has to hold
for that monomial. Furthermore we can assume that r is nonzero and thus
there is an ai that is nonzero. Because the vector space generated by rk is
one-dimensional and all air

i are in it, we can also assume rk − airi = 0, and
after division by ri we have rk−i = ai, where ai is a product of monomials in
i. Thus for a monomial to be in the integral closure is the same as finding
natural numbers a, b1, . . . , bn such that ra = f b11 · · · f bnn . On exponent vectors
(er of r and efi for the fi) this is the same as finding positive rational numbers
such that er = b1ef1 + . . . + bnefn . The exponents of this form are exactly
the grid points in the convex hull of ΓI .

A more detailed discussion of this can be found in the rest of [33, Section
1.4].
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Figure 1.2: Here we see the convex hull (all marked points) and the interior
of the convex hull (all marked points minus the hollow point) of ΓI for I =
(x7, x4y2, y8).

The following lemma is built upon a lemma which we prove in Chapter
2.

Lemma 1.4.2. The axes closure of an R+-primary, monomial ideal I in a
polynomial ring R over an algebraically closed field is generated by the union
of I and the monomials with exponents in the interior of the convex hull of
ΓI .

Proof. Let (V, ν) be a discrete valuation ring with homomorphism ϕ : R −→
V and let w ∈ Γ̄0 be an element in the interior of the convex hull of Γ.
Let w = r1e1 + . . . + rnen be a convex combination for w, with the ei the
exponents of a generating family of I and ri ∈ Q≥0 such that

∑n
i=0 ri > 1.

Let k be the least common multiple of the ri. We have

kν(ϕ(zw)) = ν(ϕ(zkw))

= ν(ϕ(z
∑n
i=1 kriei))

=
n∑
i=1

kriν(ϕ(zei))

= k

n∑
i=1

riν(ϕ(zei)).
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Thus ν(ϕ(zw)) > min ν(ϕ(zei)) and this implies because of Lemma 2.1.1,
that zw ∈ Iax.

An element on the boundary of the convex hull, which is not in Γ, lies
in a hyperplane which because of the dimension m is spanned by exactly m
exponents e1, . . . , em of the generating family of I. We can apply a module-
finite transformation zi 7→ zδii such that all monomials of the hyperplane
have the same degree d. All ideal generators have degree at least d after
this transformation, because otherwise the hyperplane would intersect the
interior of the convex hull. [8, Lemma 4.6] deals with the fact that such a
module-finite transformation does not affect the axes closure.

For any polynomial we can assume that all but one monomial is in I
by enlarging the ideal if necessary. This means we can assume that we
have a monomial on the boundary but not in I, which after a module-finite
transformation is of the same degree as the generators of I. Now Lemma
2.1.2 tells us that f /∈ Iax.

Because the axes closure is contained in the integral closure, monomials
outside of the convex hull can’t be in the axes closure as of Lemma 1.4.1.

This shows the assertion by handling the three possible cases: monomials
in the interior, monomials on the boundary and monomials outside the convex
hull.

1.5 Descent and reduction modulo p

Reduction modulo p is the main ingredient in applying characteristic p meth-
ods to characteristic 0 cases. In order to perform reduction modulo p, we
need to fix descent data.

We will use descent in the sense of [30, 2.1]. We start with a finitely
generated noetherian algebra R over a field K and some finite number of
finitely generated algebraic structures (let’s denote one exemplarily as M
here, since most of these structures will be modules). The general idea is to
construct a finitely generated Z-algebra A and an A-free A-algebra RA such
that

• There is a prime ideal ν ⊂ A such that Aν/(νAν) is isomorphic to a
subfield of K.

• RA ⊗A K ∼= R.
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• Important properties of R are also true for RA. For example we may
want to preserve normality of R in RA.

• To every structure M we have an MA such that MA ⊗A K ∼= M .

• Important properties of M continue to hold for MA. In particular we
generally want to represent a free module M by a free module MA.

For every prime ideal µ in A we get a field κ(µ) = Aµ/(µAµ). If we tensor
RA with one of these fields κ := κ(µ) we get Rκ := RA ⊗A κ.

Example 1.5.1. In many cases K will be a field of characteristic 0. This
is the setting for reduction modulo p, which is used to relate rings in equal
characteristic 0 to rings in positive characteristic. Many properties hold for
R if and only if they hold for Rκ(µ) for all µ in a Zariski-dense open subset
of MaxSpecA.

We will construct A from Z by adjoining the necessary elements of K.
This will be a finite number of elements since all the structures are finitely
generated.

Since R is finitely generated and noetherian, it is of the form R =
K[x1, . . . , xn]/(f1, . . . , fm). We start by adjoining the coefficients of the fi
to get A0. Now with RA0 = Z[x1, . . . , xn]/(f1, . . . , fm) we are already in a
situation, where RA0 ⊗A0 K

∼= R. The same holds for all subrings of K con-
taining A0. We adjoin to A0 all coefficients in M and all the finite number
of inverses to get a larger Z-algebra A ⊇ A0 which makes MA free.

We represent an ideal I ⊆ R by further enlarging the Z-algebra A ⊆ R,
such that generators for I are in RA. If we want to check containment of a
specific element f ∈ R we also add an element fA ∈ RA with fA ⊗ 1 = f .

This allows us to define tight closure for rings in characteristic 0.

Definition 1.5.2. In the setting as above we define u ∈ IK∗ if there exists
a finitely generated Z-algebra A ⊆ R such that uκ ∈ I∗κ in the fibers Rκ for
κ in a dense open subset of SpecA.

It is worth noting that the tight closure IK∗ does not depend on the
choice of A. That there exists such a subalgebra of R is equivalent to the
same being true for all sufficiently large Z-subalgebras of R.



Chapter 2

Continuous and tight closure

We show that for excellent, normal equicharacteristic rings with perfect
residue fields the tight closure of an ideal is contained in its axes closure.
First we prove this for rings in characteristic p. This is achieved by using the
notion of special tight closure established by Huneke and Vraciu.

By reduction to positive characteristic we show that the containment of
tight closure in axes closure also holds in characteristic 0. From this we
deduce that for a normal ring of finite type over C the tight closure of a
primary ideal is inside its continuous closure.

The containment of tight closure inside the continuous closure is strict.
A basic result of tight closure theory tells us that tight closure of an ideal in
a regular ring is the ideal itself, but in the polynomial ring C[X, Y ] we have
X2Y 2 ∈ (X3, Y 3)cont.

The inclusion result doesn’t hold for nonnormal domains. In the ring

R = K[X, Y, Z]/(X2 − Y Z2) we have
(
X
Z

)2
= Y and its normalization is

K[U,Z] with U = X
Z

. Therefore X ∈ (Z)∗ in R. The map

R −→ K[X,Z]/(X2 − Z2) = K[X,Z]/(X + Z)(X − Z),

Y 7→ 1, X 7→ X,Z 7→ Z

shows however that X does not belong to the axes closure of Z and hence
for K = C not to the continuous closure.

21
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2.1 Axes closure and valuations

We will test axes closure with complete, excellent, local, one-dimensional,
seminormal rings as Definition 1.3.3 says we can do. These are very similar
to complete axes rings.

In fact, according to [19, Theorem 3.3], these rings can be constructed
as follows: Let m be the unique maximal ideal of R and k = R/m the
residue field. Then R is isomorphic to a subring of the product ring

∏n
i=1 Vi,

where (Vi,mi, Li) are discrete valuation rings whose residue fields are finite
extension fields of k.

In this product, R is the subring of all elements (v1, . . . , vn) ∈
∏n

i=1 Vi
such that the vi mod mi are congruent to the same element α in k. The
units of R are exactly the elements congruent to a non-zero α.

We define functions vali : R −→ N∪ {∞}, (v1, . . . , vn) 7→ valVi(vi), where
valVi is the valuation of Vi. Let vali(I) := min{vali(f) : f ∈ I}.

Over an algebraically closed field of equal characteristic every complete,
local, one-dimensional seminormal ring is isomorphic to a complete axes ring
and vice versa, a result for which in [19, Proposition 3.4] Bombieri [2] is cred-
ited. For complete axes rings, [8, Corollary 3.4] gives a valuative criterion for
ideal membership which can be extended with the same methods as follows.

Lemma 2.1.1. Let R be a complete, excellent, local, one-dimensional, semi-
normal ring, I ⊆ R an ideal in R and f ∈ R. If vali(f) > vali(I) for all
1 ≤ i ≤ n, then f ∈ I.

Proof. For every i ∈ {1, . . . , n} there is, by definition, a gi ∈ I with vali(gi) =
vali(I). Let xi be the generator of the maximal ideal mi. We can interpret
it as an element (0, . . . , 0, xi, 0, . . . , 0) of R, where xi is in the i-th position.
The product gi ·xi has order vali(I) + 1 in Vi. All elements of higher or equal
order are divisible by gi ·xi. Hence there exists hi ∈ Vi such that fi = gixihi,
where fi is the ith component of f . The element xihi has positive order, so
its value modulo mi is 0 and thus there exists the global element

yi = (0, . . . , 0, xihi, 0 . . . , 0) ∈ R .

So we can write

f = (f1, . . . , fn) =
n∑
i=1

giyi

and hence f ∈ I.
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Note that this is also true if vali(f) = vali(I) = ∞ for some i, we thus
consider ∞ >∞ for the purpose of this lemma.

Lemma 2.1.2. Let R = K[x1, . . . , xm] be a polynomial ring over a field
and let I = (f1, . . . , fn) ⊂ R be an ideal, with all generators having the
same positive degree d. For all other polynomials f of degree d we have
f ∈ Iax ⇔ f ∈ I.

Proof. We always have f ∈ I ⇒ f ∈ Iax because of the extension property
of closures, so we only have to prove the other direction.

Recall the identity theorem for polynomials [42, Satz 54.7] saying that
there is a k ∈ N and points αj = (αj1, . . . , αjm) ∈ Km for all j ∈ {1, . . . , k}
such that any pair of polynomials f, g ∈ R with degree ≤ d are the same if
and only if f(αj) = g(αj) for all j ∈ {1, . . . , k}.

For any α1l, . . . , αkl ∈ K we define a homomorphism

ϕ : K[z1, . . . , zm] −→ K[x1, . . . , xk]/(xixj, i 6= j), zl 7→ α1lx1 + . . .+ αklxk.

We apply ϕ to a monomial g ∈ R of degree d and get

ϕ(g) = ϕ

(
m∏
i=1

zrii

)

=
k∑
j=1

(
m∏
i=1

αriji

)
xdj

=
k∑
j=1

g(αj)x
d
j .

Because ϕ is a ring homomorphism the the equation ϕ(g) =
∑k

j=1 g(αj)x
d
j

holds for any polynomial g of degree d.
Take an f ∈ Iax. Because S = K[x1, . . . , xk]/(xixj, i 6= j) is a polyno-

mial ring of axes this implies that ϕ(f) ∈ ϕ(I), i.e. that ϕ(f) is a S-linear
combination of the ϕ(fi). Because both ϕ(f) and the ϕ(fi) have degree
d they are of the form

∑k
j=1 f(αj)x

d
j and

∑k
j=1 fi(αj)x

d
j . Because we have

the same degree on the left and right side we get ϕ(f) =
∑n

i=1 ciϕ(fi) with
ci ∈ K. With a coefficient comparison we get f(αj) =

∑n
i=1 cifi(αj) for all

j ∈ {1, . . . , k}. We can apply the identity theorem and choose the αj such
that f =

∑n
i=1 cifi.
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2.2 Smooth and étale

In this thesis both smoothness of schemes and smoothness of morphisms play
an important role.

Definition 2.2.1. A morphism of schemes f : Y −→ X of finite type over a
field K is called smooth (of relative dimension n) if

1. f is flat,

2. For irreducible components X ′ and Y ′ with f(Y ′) ⊆ X ′ we have

dimY ′ = dimX ′ + n,

3. For all points a ∈ Y we have dimK(a)(ΩY/X ⊗K(a)) = n.

We also say that Y is smooth over X.
Of special importance to us is the case when X = SpecK and Y is

integral. In this case the first condition is always true and the other two
become that ΩY/K is locally free of rank equal to dimY . In this case we also
just call Y smooth.

ΩY/X is the sheaf of Kähler differentials, which over an affine subset
SpecS ⊂ Y (with f(SpecS) ⊆ SpecR ⊆ X) is isomorphic to a module
ΩS/R generated by forms {ds|s ∈ S} modulo the relations given by deriva-
tion: d(s+ t) = ds+ dt, d(st) = sdt+ tds for s, t ∈ S and dr = 0 for r ∈ R.
Further treatment of Kähler differentials can be found in [26, Section 2.8].

Note that in the case X = SpecK,Y = K[x1, . . . , xn]/a we always have
dimK(a)(ΩY/K ⊗K(a)) ≥ dimY for every point a ∈ Y . This can be shown
with Noether normalization and transcendence degrees. Consider also [26,
Theorem II.8.6A].

Definition 2.2.2. The Jacobian to a family f1, . . . , fm ∈ K[x1, . . . , xn] is

J =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 .

Here ∂fi
∂xj

denotes the formal partial derivative of fi with respect to xj.
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The Jacobian can be used to determine smoothness for affine algebras.
If S = R[x1, . . . , xn] then ΩS/R =

⊕n
i=1 Sdxi. If T = S/I, where I =

(f1, . . . , fm) then we have ΩT/R = ΩS/R/M, the submodule

M ⊆
n⊕
i=1

Sdxi

being generated by the entries in (dx1, . . . , dxn) · J t.
Thus for closed points a we have ΩT/R ⊗K(a) ∼= coker J(a)t, where J(a)

stands for the matrix over K(a) where we input a in every entry of J .
Let Y = Proj (K[x0, . . . , xn]/(f1, . . . , fm)) , with the f1, . . . , fm homoge-

neous and let C∗Y be the affine cone over Y without the origin, with the
projection p : C∗Y −→ Y . Then there is an exact sequence

0 −→ ΩY/K −→ ˜ΩCY /K(−1) −→ OY −→ 0

induced by the Euler derivation. Thus rank(ΩC∗Y /K
) = rank(ΩY/K) + 1. This

allows us to check smoothness on the affine cone.
The following Lemma is known as the Jacobian Criterion for smoothness.

Lemma 2.2.3. Let X = Proj (K[x0, . . . , xn]/(f1, . . . , fm)) be a normal pro-
jective scheme of finite type over an algebraically closed field K. Then X is
smooth if and only if at every closed point a ∈ C∗X we have

rank


∂f1
∂x0

(a) . . . ∂f1
∂xn

(a)
...

...
∂fm
∂x0

(a) . . . ∂fm
∂xn

(a)

 ≥ codimPn X.

Proof. The point a projects to a closed point a′ ∈ X.
We compute that rank J(a) ≥ codimPn X if and only if

dimK(a′) ΩX/K ⊗K(a′) = dim ΩC∗X/K
⊗K(a)− 1

= rank coker J(a)t − 1

= rank ker J(a)− 1

= n+ 1− rank J(a)− 1

= n− rank J(a)

≤ n− codimPn X

= dimX.
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Because we always have dim ΩX/K ⊗K(a′) ≥ dimX this means that X
is smooth at a′. Because K is algebraically closed, the behaviour on closed
points already determines the behaviour on all points.

Note that we would technically only have to check the criterion on one
point of the cone above each closed point of X.

In the setting of the previous Lemma let t = codimPn X. We call the
ideal It(J) generated by the t-minors of J the Jacobian ideal of X.

Lemma 2.2.4. Let X = Proj (K[x0, . . . , xn]/(f1, . . . , fm)) be a normal pro-
jective scheme of finite type over an algebraically closed field K. Then X is
smooth if and only if V+(It(J)) = ∅.

Proof. By construction a point a ∈ V+(It(J)) is a point for which rank J(a) <
t = codimPn X, thus there is such a point if and only if X is not smooth.

2.3 Étaleness descends

The lemma in this section states the fact that for morphisms being smooth
and being étale descend. (For descent see Section 1.5) Remember that being
étale for schemes of finite type over a field means being smooth of relative
dimension 0.

Standard smoothness will play a role, which is defined as follows.

Definition 2.3.1. Let S = R[x1, . . . , xn]/(f1, . . . , fm) be an R-algebra, R a
ring and n ≥ m. Then S is called standard smooth if and only if

det


∂f1
∂x1

. . . ∂f1
∂xm

...
...

∂fm
∂x1

. . . ∂fm
∂xm


is invertible in S.

Lemma 2.3.2. Let L be a field of characteristic 0. Consider an L-algebra
homomorphism f : S −→ T of finitely generated L-algebras.

As described in Example 1.5.1 we can descend this, i.e.: We can find a
finitely generated Z-subalgebra A of L, finitely generated A-algebras SA and
TA. Also we find an A-algebra homomorphism fA : SA −→ TA such that
S = SA ⊗A L, T = TA ⊗A L and f = fA ⊗A L.

Furthermore we get:
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1. If f is smooth, we can choose A such that fA is smooth.

2. If f is étale, we can choose A such that fA is étale.

Proof. The process of descending diagrams of ring homomorphisms is de-
scribed in [30, 2.1.18]. So we only have to show that we can descend the
smoothness and étaleness.

1. There are finitely many elements gi ∈ T, i ∈ I = {1, . . . , r} such that
D(gi) cover SpecT and that Tgi is standard smooth over S [44, Tag
00TA]. We can assume that TA contains the gi and also the coefficients
with which they generate the unit ideal so we can also assume that the
D(gi) cover SpecTA. If we show that (TA)gi is standard smooth over
SA for all i ∈ I then TA will be smooth over SA. In the following we
will just assume that T is standard smooth.

This means that there exist f1, . . . , fc in S[Y1, . . . , Yn] such that T =
S[Y1, . . . , Yn]/(f1, . . . , fc) and that the determinant g of the Jacobian
of the fi is invertible in T . We will add the finitely many coefficients of
the fi and the inverse of g to A. Then we have the same representation
for TA which makes it standard smooth over SA.

2. We will use the characterization that a ring homomorphism S −→ T
is étale iff it is smooth and ΩT/S = 0. Smoothness descends by (1).

The sequence L −→ S −→ T induces the exact sequence of T -modules

ΩS/L ⊗S T −→ ΩT/L −→ ΩT/S −→ 0.

Here this means that we have a surjective map ΩS/L ⊗S T � ΩT/L.

We have a commutative diagram as follows.

TA T

SA S

A L
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According to [23, Proposition 0.20.5.5] there is a canonical isomorphism
ΩT/L

∼= ΩTA/A ⊗A L. By the same proposition we have

ΩS/L ⊗S T ∼=
(
ΩSA/A ⊗A L

)
⊗S T ∼=

(
ΩSA/A ⊗SA TA

)
⊗A L.

The second isomorphism is just a standard property of base change.

After choosing a basis each we can write the surjective map(
ΩSA/A ⊗SA TA

)
⊗A L� ΩTA/A ⊗A L

as a matrix multiplication. We can, by further enlargement of A, as-
sume that the finitely many coefficients occuring in the matrix are
contained in A. Then this matrix also describes the induced homomor-
phism ΩSA/A ⊗SA TA � ΩTA/A which thus is surjective.

If we put that into the respective exact sequence of TA-modules

ΩSA/A ⊗SA TA −→ ΩTA/A −→ ΩTA/SA −→ 0

the rightmost module ΩTA/SA is zero, thus SA −→ TA is étale.

The lemma will be important for the characteristic 0 tight closure inclu-
sion theorem, Theorem 2.5.1.

2.4 Positive characteristic

We prove the main result in positive characteristic using a result of Huneke
and Vraciu about the decomposition of tight closure in normal rings. Namely,
in [34, Theorem 2.1] they show that for a local, excellent, normal ring of
characteristic p the tight closure of any ideal can be written as

I∗ = I + I∗sp.

Here I∗sp denotes the special tight closure, which is the ideal of all elements
f for which there exists a q0 > 0 such that f q0 ∈

(
mI [q0]

)∗
.

Theorem 2.4.1. Let R be an excellent, normal ring of characteristic p such
that the residue field at every maximal ideal is perfect. Let I be an ideal which
is primary to a maximal ideal. Then I∗ ⊆ Iax.
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Proof. Let I be primary to the maximal ideal m. [19, Theorem 4.1(3)] says
that we can test the containment in the axes closure on complete, excellent,
local, one-dimensional, seminormal rings S with a ring homomorphism ϕ :
R −→ S. Thus we take such a ring and test whether the image of an element
f ∈ I∗ is in IS := ϕ(I)S.

Let n be the unique maximal ideal of S. If m 6= ϕ−1(n) then m 6⊆ ϕ−1(n)
and so I extends to the unit ideal in S and then f ∈ IS. So we can assume
that m = ϕ−1(n). Then ϕ factors through Rm. We also have f ∈ I∗Rm ⊆
(IRm)∗ by the persistence of tight closure. This means it suffices to show
f ∈ IS in the case that R is local (in effect we exchange R with Rm) and
R −→ S is a local homomorphism. This together with the other conditions
on R gives us a decomposition I∗ = I + I∗sp [34, Theorem 2.1]. Thus we
write f = g + h, where g ∈ I and h ∈ I∗sp.

By the definition of special tight closure there exists a q0 > 0 such that
hq0 ∈

(
mI [q0]

)∗
.

As above we can write S as the subring of a product
∏n

i=1 Vi. Let pi :
S −→ Vi be the i-th projection. Let us denote Ii := IVi and hi := pi(ϕ(h))
and ai = aVi with a = mS. Note that valVi(ai) > 0 as ai contains no units.

In a discrete valuation domain we have J = J = J∗ for all ideals J . Thus,

hq0 ∈
(
mI [q0]

)∗ ⇒ hq0i ∈
(
aiI

[q0]
i

)∗
= aiI

[q0]
i ,

by persistence of tight closure [30, Theorem 1.4.13], as S and Vi have com-
pletely stable weak test elements. For the valuation val := valVi on Vi this
gives the following inequalities.

val(hq0i ) ≥ val(aiI
[q0]
i )

⇒ q0 val(hi) ≥ val(ai) + q0 val(Ii)

⇒ val(hi) ≥
1

q0
val(ai) + val(Ii)

⇒ val(hi) > val(Ii).

The last inequality (which might be ∞ >∞) gives

vali(ϕ(h)) > vali(IS) .

By Lemma 2.1.1 the membership ϕ(h) ∈ IS follows. Thus h ∈ Iax and
f = g + h ∈ Iax.
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Theorem 2.4.2. Let I be an ideal in a normal domain R of finite type over
a perfect field K of characteristic p. Then I∗ ⊆ Iax.

Proof. Let f ∈ I∗. We work with ring of axes of finite type over K. So let
A be a seminormal onedimensional ring of finite type over K with only one
meeting point corresponding to a maximal ideal n of A and let ϕ : R −→ A
be a ring homomorphism. Then m := ϕ−1(n) is a maximal ideal of R. The
residue field at m is perfect and by the persistence of tight closure we also
have f ∈ IRm. So we work with the factorization Rm −→ A and since all
conditions for special tight closure hold true in Rm we can proceed as in the
previous proof.

Example 2.4.3. In the proof of the Theorem we use that the special tight
closure gives us elements which are in some way deeper inside the tight
closure. The inner integral closure I>1 also measures “deeper” elements in
a similar way and because I>1 ⊆ Iax it seems one might think to prove
the statement also for inner integral closure instead of axes closure. For m-
primary ideals this is possible but in general it doesn’t work. We have the
following simple example which was given to us by Neil Epstein that shows
I∗sp * I>1: Let R = K[[X, Y ]], I = (X),m = (X, Y ). Then XY ∈ I∗sp (we
can put c = qo = 1 in the definition of special tight closure), but XY /∈ I>1.

2.5 Equal characteristic 0

In the following we show a result similar to Theorem 2.4.2 for a ring R of
finite type over a field K of characteristic 0. For this we use the notion of
tight closure in characteristic 0 developed in several variants in [28] and in
more detail in [30].

The general idea is that of reduction modulo p as we elaborated on in
Example 1.5.1.

We want to check whether an element is in the axes closure and for this
we need a suitable version of axes ring. The finitely generated version for
axes rings in [19, Theorem 4.1(6)] is that of finitely generated étale extensions
S of polynomial axes rings

T = L[X1, . . . , Xn]/(XiXj, i 6= j)

over the algebraic closure L of K.
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Theorem 2.5.1. Let I be an ideal in a geometrically normal ring R of finite
type over a field K of characteristic 0. Then IK∗ ⊆ Iax.

Proof. To test whether an element f ∈ IK∗ is in the axes closure, we take a
K-algebra homomorphism ϕ : R −→ T to a finitely generated étale extension
T of a polynomial axes ring

S = L[X1, . . . , Xn]/(XiXj, i 6= j)

over the algebraic closure L of K (these rings characterize axes closure due
to [19, Theorem 4.1(6)]). We may assume that T is defined and étale over a
polynomial ring of axes over a finite extension field K ′ of K. Moreover, we
may assume that ϕ is defined over K ′. We replace K by K ′ and denote it K
again.

We perform the reduction described above such that we will get a finitely
generated Z-Algebra A and the following diagram of finitely generated A-
algebras.

RA TA

SA

ϕA

ψA

By further shrinking as described in Lemma 2.3.2, using the characterization
with Kähler differentials, we make sure that ψA is étale. We also choose A so
that Rκ will be normal for a dense open subset of fibers κ ([30, Propositon
2.3.17]).

We take a closed fiber Rκ of A −→ RA with characteristic p for which
fκ ∈ I∗κ. By Theorem 2.4.1 we have fκ ∈ Iaxκ .

Going from RA to Rκ is a base change, i.e. done by tensoring with κ.
Thus the induced morphism ψκ is étale. The inclusion fκ ∈ IκTκ follows.

Now assume that f /∈ IT . Then (f, IT )/IT is nonzero and free when
localized at a single element. Thus for a dense open subset of fibers it will
still be nonzero. But we have shown fκ ∈ IκTκ for the fibers over a dense
open subset, so we have a contradiction. It follows that f ∈ IT .

Theorem 2.5.2. For an ideal I primary to a maximal ideal in a normal,
affine C-algebra R we have I∗ ⊆ Icont = Iax.

Proof. This follows immediately from [19, Corollary 7.14] and Theorem 2.5.1.
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Example 2.5.3. Let R = K[X, Y, Z]/(Xm + Y m + Zm), m ≥ 2, and I =
(X, Y ). Assume that K is algebraically closed and that the characteristic
does not divide m. Then Z2 ∈ (X, Y )∗ but Z /∈ (X, Y )∗. These are well
known results with several proofs. We revover the second part by showing
that Z is not in the axes closure of (X, Y ). We write

Xm + Zm = (X − ξ1Z) · · · (X − ξmZ)

with some roots of unity ξ1, . . . , ξm. We have a map

R −→ S := K[U, V ]/(UV ), X −→ ξ2U − ξ1V
ξ2 − ξ1

, Z −→ U − V
ξ2 − ξ1

, Y −→ 0 .

This is well defined as we have U = X − ξ1Z and V = X − ξ2Z and the
map sends Xm + Y m +Zm = (X − ξ1Z)(X − ξ2Z) ·Q+ Y m to a multiple of
UV .

Modulo IS =
(
ξ2U−ξ1V
ξ2−ξ1

)
, the ring S becomes S ′ ∼= K[V ]/(V 2) but the

image of Z in S ′ is not 0, thus ZS /∈ IS.
This means, that there is an axes ring for which Z is not in the image of

the ideal, thus Z can’t be in the axes closure of I. Thus, by Theorem 2.5.1,
it can also not be in the tight closure, since R is normal.

Example 2.5.4. The containment of tight closure can not be extended
to one-dimensional test rings with regular components, we can not drop
the condition that the curves meet transversally. To see this, let R =
K[X, Y, Z]/(X3 + Y 3−Z3) with a field K of characteristic 6= 3 containing a
primitive third root of unity ζ and let again I = (X, Y ). Then Z2 ∈ (X, Y )∗.
However, if we go modulo Y we get

A = K[X,Z]/(X3 − Z3) = K[X,Z](X − Z)(X − ζZ)(X − ζ2Z)

and its spectrum consists of three lines lying in a plane meeting in one point.
In this ring we have Z2 /∈ IA = (X).

We conclude with some remarks and questions.

Remark 2.5.5. Our main results Theorem 2.4.2 and Theorem 2.5.1 are also
true under the weaker condition that R is a domain of finite type over a field
with the property that its seminormalization is already normal. This rests
upon the fact that any ringhomomorphism to an axes ring factors through
the seminormalization. This property means basically that the ring is uni-
branched in the sense that the completion is a domain.
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Remark 2.5.6. One might ask whether the used result of Huneke and
Vraciu is also true under weaker conditions. Is it true for a complete do-
main? Is it true for an excellent local analytically irreducible domain? Is it
true without the assumption that the residue field is perfect? The example
K[X, Y, Z]/(X2−Y Z2) localized at (X, Y −1, Z) mentioned in the introduc-
tion shows that it can not be true for local domains essentially of finite type
without any further assumption. This follows from the proof of Theorem
2.4.1, but can also be seen directly. We write W = Y − 1 and work in the
ring S = K[X,W,Z]/(X2 − WZ2 − Z2) localized at (X,W,Z). We have
X ∈ (Z)∗. We claim that it is not possible to write X = ZH+X−ZH with
H ∈ S and X − ZH inside the special tight closure of (Z).

To understand the special tight closure of (Z) one has to look at the tight
closure (ZZq0 ,WZq0 , XZq0)∗ for various q0 = pe0 . The tight closure can be
computed in the normalization K[U,Z], the extended ideal is

(Zq0+1, (U2 − 1)Zq0 , UZq0+1) = (Zq0+1, (U2 − 1)Zq0) .

Now assume that X − ZH ∈ (Z)sp∗, so

Xq − Zq0Hq0 ∈ (Zq0+1, (U2 − 1)Zq0)

for some q0. Then using X = ZU and cancelling with Zq0 gives

U q0 −Hq0 ∈ (Z,U2 − 1) .

Writing H = ZA + WB + P (X) (with A,B ∈ R and P (X) a polynomial
in X) shows that the containment is equivalent to U q0 − P q0

0 ∈ (Z,U2 − 1),
which is for odd characteristic a contradiction.

Remark 2.5.7. Is tight closure for normal affine C-algebras always inside
the continuous closure? Is tight closure for normal noetherian rings always
inside the axes closure?

Remark 2.5.8. As mentioned in the introduction, J. Kollár has given in [37]
an algebraic characterization of continuous closure, meaning an algebraically
defined closure operation for varieties which coincides with the continuous
closure if the base field is C. A natural question is whether tight closure of a
normal domain, in particular in positive characteristic, fulfills this algebraic
characterization.
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Remark 2.5.9. Is solid closure for normal noetherian rings inside the axes
closure? Solid closure agrees with tight closure in positive characteristic, but
can be strictly larger than tight closure in characteristic zero. An example
of P. Roberts shows in [41] that in the polynomial ring K[X, Y, Z] over a
field K of characteristic zero the inclusion X2Y 2Z2 ∈ (X3, Y 3, Z3)sc holds.
In this example we have indeed the containment in the axes closure and in
the continuous closure.

Remark 2.5.10. The completion of a ring of axes is the completion of a
(local version of a) one-dimensional Stanley-Reisner ring. Can the inclusion
of the tight closure (in the normal case) inside the axes closure be strengthend
to an inclusion inside the Stanley-Reisner closure ISR of an ideal? This
closure is defined by taking up to completion the Stanley-Reisner rings as a
test category. Note that I ⊆ ISR ⊆ Iax ∩ Ireg and I∗ ⊆ Iax ∩ Ireg. If we
consider Stanley-Reisner rings where the sheets always meet in one point,
then the arguments used in this chapter go through. The main problem is
to find a replacement for Lemma 2.1.1 in this setting.

Remark 2.5.11. Is there a reasonable subclass of continuous functions which
defines a tight closure type theory for normal C-algebras of finite type? In
particular, for a smooth variety it should not change the ideals.



Chapter 3

Sheaves and vector bundles

This chapter recapitulates some background on vector bundles and locally
free sheaves.

3.1 Locally free sheaves and vector bundles

A fiber bundle is a topological space that locally looks like the product of a
base space and a fiber space. Precisely it is defined as follows.

Definition 3.1.1. A fiber bundle consists of topological spaces V, F,X and a
continuous surjective projection map f : V −→ X that satisfies the following
condition: There is a covering of X by open sets such that for each open set
U in the covering there is a homeomorphism ψ : f−1(U) −→ U×F such that
the following diagram commutes.

f−1(U) U × F

U

ψ

f

V is called the total space, X the base space and F the fiber.

A special case of a fiber bundle are geometric vector bundles, where V and
X are schemes and the fiber is a vector space and the transition mappings
are linear.

Definition 3.1.2. A geometric vector bundle of rank n over a scheme X is
a scheme V together with the following data:

35
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1. A projection morphism f : V −→ X.

2. An affine open covering {Ui} of X.

3. Isomorphisms ψi : f−1(Ui) −→ An
Ui

such that for all i, j and all open
affine subsets U = SpecR ⊆ Ui∩Uj we have that ψi ◦ψ−1j : An

U −→ An
U

is induced by an R-linear algebra automorphism on R[x1, . . . , xn].

Remark 3.1.3. Note that if X is a scheme over a field k we will have An
Ui
∼=

Ui×An
k . This means that over each closed point a vector bundle is isomorphic

to a vector space kn. Also, in this case the R-algebra automorphisms are
automorphisms on U ×An

k which are given by a linear automorphism on An
k .

A section of a vector bundle is a scheme morphism s : U −→ V from
an open subset U ⊆ X such that f ◦ s = idU . To every vector bundle there
is a trivial (or canonical) global section which is given by mapping to zero
everywhere.

Proposition 3.1.4. Let X be a scheme. There is a contravariant equivalence
of categories between isomorphism classes of vector bundles of rank n on X
and isomorphism classes of locally free sheaves of rank n on X. To a vector
bundle f : V −→ X we associate the sheaf of sections S(V/X) which is
defined on an open set U ⊆ X by

S(V/X)(U) := {s : U −→ V : f ◦ s = idU}.

To a locally free sheaf F we associate the vector bundle

V (F) := Spec(SymF).

On an affine open subset U for which F(U) ∼= OX(U)n the symmetric alge-
bra takes the form Sym(F)(U) ∼= OX(U)[x1, . . . , xn]. This isomorphism of
sheaves of algebras induces the following isomorphism of schemes

ψ : Spec(SymF)(U) −→ An
U = SpecOX(U)[x1, . . . , xn].

The functors V and S are related by the following correspondence:

S(V (F)/X)∨ ∼= F .

Proof. [24, Proposition 11.7].
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Because of this equivalence of categories we will sometimes use the terms
vector bundle and locally free sheaf interchangeably.

An example that will be important are syzygy sheaves. Let X = ProjR,
the ring R a standard graded domain. A syzygy sheaf is the kernel sheaf of a
map

⊕n
i=1OX(−di) −→ OX , given by a one row matrix (f1, . . . , fn), where

fi ∈ R has degree di. We call this kernel Syz(f1, . . . , fn).

On the other hand consider

R′ = R[T1, . . . , Tn]/(
n∑
i=1

fiTi),

where the Ti have degree −di. Then the open set V := D+(R+) ∈ ProjR
is a vector bundle over X. The sheaf of sections of V is Syz(f1, . . . , fn). In
particular a global section corresponds to a homomorphism R′ −→ R, which
is given by the images si of the Ti. By construction these images form a
global syzygy (s1, . . . , sn) of f1, . . . , fn.

Of particular importance are vector bundles of rank 1, also called line
bundles. The corresponding locally free sheaves are called invertible sheaves.
Invertible sheaves form a group PicX with tensor multiplication as the group
operation. The neutral element is OX . To a rank 1 sheaf L the inverse is
L−1 = L∨ = Hom(L,OX).

In the following we will restrict ourselves to the case of smooth projective
curves.

Example 3.1.5. Take as an example the smooth projective curve X =
ProjR, where R = R[x, y, z]/(x2 + y2 − z2). On the affine chart given by
D+(z), this is the unit circle. Since all real points of the circle are already in
this chart, the curve is essentially the same as SpecR[x, y](x2 + y2 − 1).

A vector bundle of rank 1 consists as a set of a line above each point. The
simplest vector bundle of rank one over the circle is a cylinder. The cylinder
can be described as V = D+(R+) ⊆ ProjR[T ], where T has degree 0.
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The nonisomorphic alternative to the cylinder bundle is the Möbius bundle,
in which the lines turn around halfway along the circle.

A section of the cylinder bundle is a map X −→ V . On any open set
U ⊆ X it is defined by a map OU [T ] −→ OU , mapping T to a degree 0
rational function without poles on U . If we use the affine construction of
the curve the degree condition is removed. A rational function associates to
every point x ∈ X on which it is defined a value on the line over x.

For example the section defined by f(x) = x
z−y on the cylinder can be

viewed as the red line in the following picture.
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3.2 Divisors on curves

For the Riemann-Roch theory and to define the degree of a sheaf we will
need the concept of divisors. For a more in-depth treatment of the topic we
refer to [26, Section II.6], nonetheless we give an introduction.

There are Weil divisors and Cartier divisors, which will be defined below.
On a noetherian, integral, separated and locally factorial scheme there is a
1-to-1 correspondence. Also in this case the divisor class group denoted ClX
is isomorphic to the Picard group PicX. In particular smooth projective
curves have the property to be noetherian, integral, separated and locally
factorial, and we will restrict ourselves to that case.

A Weil divisor on a curve X is an element D of the free abelian group
DivX generated by closed points on X. The closed points in this group are
also called prime divisors.

The degree of a Weil divisor D =
∑n

i=1 aiPi on a scheme over an alge-
braically closed field is degD =

∑n
i=1 ai.

Let K be the function field of X. To a closed point P the valuation
vP : K∗ −→ Z, maps a nonzero rational function f ∈ K∗ to the multiplicity
of a zero or pole of f in P (poles are counted negative). If f has neither a
zero nor a pole in P then vP (f) = 0.

P Q

Figure 3.1: Rational function with zero and pole. ν(P ) = 1, ν(Q) = −1.

The divisor associated to a nonzero rational function f is the linear com-
bination of all points with their valuations (f) =

∑
P∈X vP (f) · P and called
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a principal divisor. Note that if the function has no pole or zero at a point
the valuation is 0. Two divisors D,E are called linearly equivalent D ∼ E if
their difference D − E is a principal divisor. We call the quotient group to
this equivalence relation the divisor class group Cl(X) := DivX/ ∼.

Next we define Cartier divisors for which we need the sheaves K∗ and O∗X .
Because we assume X to be integral the field of fractions defines a constant
sheaf K of which OX is a subsheaf. By O∗X and K∗ we denote the subsheaves
of invertible elements of the respective sheaves.

A Cartier divisor is a global section of the sheaf K∗/O∗X . This means
that a Cartier divisor can be described by giving a rational function fi for
each open set of an open cover Ui such that on an intersection Ui ∩ Uj the
quotient fi

fj
of the rational functions is a section of O∗X .

It’s clear that a Cartier divisor defines a Weil divisor with the coefficient
vY (fi) on every point Y ∈ Ui. On the other hand we can express any Weil
divisor locally as a principal divisor and glue the defining functions.

Every divisor D defines an associated invertible sheaf L(D). If D is
described as a Cartier divisor {(Ui, fi)} the associated sheaf is the subsheaf
of the sheaf of total quotient rings K generated as an OX-module on Ui by
f−1i . This gives a 1-1 correspondence between invertible subsheaves of K and
Cartier divisors, because to an invertible subsheaf L ⊆ K we can associate
the Cartier divisor given by inverses of local generators of L.

On any integral scheme we have for any invertible sheaf L that L⊗K ∼= K,
because K is a constant sheaf. The mapping L −→ L⊗ K thus describes L
as a subsheaf of K.

In addition for two divisors D and E we have that

L(D − E) ∼= L(D)⊗ L(E)−1.

and
D ∼ E ⇐⇒ L(D) ∼= L(E).

In total this gives us a natural isomorphism ClX ∼= PicX.
In the more general case of a noetherian normal scheme, which is not

necessarily a curve, the prime divisors are closed integral subschemes of codi-
mension one, but the rest of the theory stays the same.

Example 3.2.1. On PnK any divisor D is linearly equivalent to dH, where
H = {(x0 : . . . : xn) ∈ PnK |x0 = 0} is a hyperplane and d = degD. In this
situation the divisor can be written as D = V+(f), where f is a homogeneous
polynomial of degree d. This also determines the degree of D.
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Because the divisors are equivalent to those hyperplanes, we have

ClPnK ∼= PicPnK ∼= Z.

On the other hand we look at the twisting sheaf O(l) for l ∈ Z. The
twisting is based on the grading of the underlying graded ring, so assume
that we work on X = ProjR, where R is a graded ring. For any graded
R-module M we define M(l)d = Md+l. For M = R and sheafification this
can be used analogously to the construction of O to define the twisting sheaf
O(l).

All the twisting sheaves O(l) are invertible (with inverse O(−l)), so they
have to correspond to divisors. We have O(l) ⊗ K ∼= K. With regards to
this isomorphism the subsheaf O(l) ⊆ K is locally on D(xi) generated by
x−lj , where j 6= i. Thus the xlj describe the Cartier divisor on Ui and O(l)
corresponds to lH. In other words the O(l) for all l ∈ Z generate PicPnK .
Note that the invertible sheaf is generated by the inverse of the local function
describing the Cartier divisor.

3.3 Degree and twist

In this section we describe how to use divisors and invertible sheaves in the
case of projective curves.

Definition 3.3.1. If we take a smooth projective curve X it comes with an
embedding ϕ : X ↪→ PnK . We call OX(l) = ϕ∗(OPnK (l)) the twisting sheaf on
X.

In particular the twisting sheaves depend on the embedding of X.
We use multiple notions of degree. We already encountered the degree

of a divisor. Next we will define the degree of a projective variety and of a
locally free sheaf on a curve.

The degree of a projective variety X of dimension d is degX = r! · ad,
where ad is the leading coefficient of the Hilbert polynomial HilbX = adX

d+
. . .+ a0. We will handle Hilbert polynomials in more detail in Section 6.3.

For a plane curve X = Proj[x, y, z]/(f), the degree is degX = deg f .

Definition 3.3.2. For an invertible sheaf on a curve we define the degree as

deg(L(D)) := deg(D).
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To a locally free sheaf the determinant bundle
∧rankF F has rank 1 and

is thus an invertible sheaf. Thus we can define the degree as

deg(F) = deg(
rankF∧

F).

Remember that the degree of a divisor is the sum of the zeroes minus the
sum of the poles, each counted with multiplicity. The twisting sheaves O(l)
correspond to l-multiples of hyperplanes in the embedding space. Counted
with multiplicities there are exactly l ·degX intersection points with a curve
X. Thus we have

degOX(l) = l · degX.

With the definition of degree we can define semistability.

Definition 3.3.3. The slope of a locally free sheaf F on a smooth projective
curve X is defined as

µ(F) =
degF
rankF

.

A locally free sheaf F is called semistable if for all proper subsheaves E
we have µ(E) ≤ µ(F). It is called stable if for all proper subsheaves E we
have µ(E) < µ(F).

3.4 Embeddings and the affine cone

This chapter deals with the embedding and representation of curves in projec-
tive space, which will be important in Chapter 4. The best way to represent
curves from a computational perspective is as X = ProjK[x0, . . . , xn]/a,
where a is a homogeneous ideal of K[x0, . . . , xn]. The ring homomorphism
K[x0, . . . , xn] −→ K[x0, . . . , xn]/a induces a natural embedding X ↪→ Pn.

In this sense the embedding is equivalent to the ring over which we define
the curve.

As we worked out in Section 3.3 every embedding into projective space
comes with a twisting sheaf OX(1). Any invertible sheaf which can be re-
trieved by the pullback via an embedding to projective space is called a very
ample invertible sheaf. Because for the theoretical aspects to work only this
very ample invertible sheaf is needed, many authors require the scheme to be
equipped with a very ample invertible sheaf instead of the embedding, which
is equivalent. For the computations we do, however, need the embedding in
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the standard projective space, so for us the embedding approach makes more
sense.

In general let S be a graded affine ring and S+ =
⊕

i>0 Si the irrelevant
ideal. V (S+) ⊆ SpecS is the set of all prime ideals containing S+ and
corresponds to the origin. X = ProjS is defined as the set of all homogeneous
prime ideals not containing S+. We call CX := SpecS the affine cone of
X = ProjS.

The affine cone is important because any actual computations, such as
finding destabilizing global sections are actually done in graded rings and its
spectrum instead of the projective schemes themselves. Thus we have to be
sure that the important properties translate from the rings to the projective
curve.

Over projective space PnK = ProjR for R = K[x0, . . . , xn] the global
sections of O(l) are homogeneous degree l elements of R. In general for a
normal ring S = K[x0, . . . , xn]/a and X = SpecS we have an isomorphism
Γ∗(OX) :=

⊕
l∈Z Γ(X,OX(l)) ∼= S.

To any locally free sheaf F we define the sheaf twisted by l ∈ Z to be
F(l) := F ⊗ OX(l). By twisting, we can make “hidden parts” of the sheaf
visible in its global sections.

Remark 3.4.1. For a scheme of the form X = ProjS we always have a
map Sd −→ Γ(X,OX(d)), which maps a homogeneous degree d element f to
f
1
. In computations we work in Sd so we have to make sure that this map is

bijective. In general this is not the case, but it is if we assume S to be at least
two-dimensional and normal, i.e. an integrally closed domain. The bijectivity
can be shown in this case, because the elememts of Γ(X,OX(d)) can be
represented by elements of the quotient field fulfilling integrality equations.

Smooth schemes are always normal, but S is not necessarily normal. If X
is a normal complete intersection (in particular a normal plane curve), then
S is normal however, which covers most examples in the next section.

If we start with an integrally closed domain, the affine cone will be a
normal affine surface. The only possible nonregular point is the origin, thus
the projective curve associated to the ring is smooth.

On the other hand if we start with a sheaf F over a smooth scheme X =
ProjS, for which S is not normal, we take the integral closure S −→ S ′. The
induced morphism on schemes ν : X ′ = ProjS ′ −→ X is a finite morphism
between normal schemes. Thus the inverse image ν∗F is semistable if and
only if F is [35, Lemma 3.2.2].
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3.5 The moduli space of semistable sheaves

A very important aspect of semistable sheaves is that their moduli spaces
exhibit a scheme structure.

There are various constructions of moduli spaces of sheaves, one of the
first being Gieseker’s construction [20]. The following description of the
moduli space of sheaves follows the exposition in Huybrechts and Lehn [35].

Let X be a projective scheme with a fixed very ample line bundle OX(1)
(this is also called a polarized projective scheme) over an algebraically closed
field k. The moduli functor to a fixed polynomial P ∈ Q[n] is a functor
M =M′/ ∼ constructed as a quotient functor:

The contravariant functor M′ maps a scheme S over k to the set of
isomorphism classes of coherent sheaves on S×kX which have Hilbert poly-
nomial P and that are flat over S. The morphisms f : S ′ −→ S are mapped
by pulling back via f × idX . Let p : S ×k X −→ S be the projection. The
equivalence relation ∼ is defined by declaring two S-flat sheaves F and G on
X to be equivalent if there is a line bundle L on S such that F ∼= G ⊗ p∗L
on X × S.

A scheme corepresenting the functorM is called a moduli space MOX(1)(P )
of semistable sheaves with polarization OX(1) and Hilbert polynomial P . For
given data there is only one moduli space up to unique isomorphism. Some-
times we write M(P ), making the polarization implicit.

Example 3.5.1. Let X,OX(1) be a projective curve with d = degX and g
the genus of X. Then for any coherent sheaf F of rank r we have

Hilb(F)(n) = χ(F(n)) = rd · n+ degF + r(1− g).

Thus as the curve is fixed the only data that are determined by the Hilbert
polynomial are the rank and the degree of the sheaf. This means that the
moduli space Mr(d) := M(P ) parameterizes all semistable sheaves of fixed
rank and degree.

There is an alternative construction characterizing different moduli spaces
on X not by rank and degree but by rank r and isomorphism classes of
determinant bundles L ∼=

∧r F . Let’s denote these moduli spaces as Mr(L).
This is a finer classification, since the determinant bundle determines the
degree but not the other way round. In fact if we look at the morphism
Mr(d) −→ Picd,F 7→

∧r F we can view M(L) as the fiber over L ∈ Picd.
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To be able to construct the moduli space it’s important that the sheaves
in question form a bounded family.

Definition 3.5.2. A family of isomorphism classes of coherent sheaves on
a scheme X on k are called bounded if there is a k-scheme S of finite type
and a sheaf F on S × X such that every member of the family is a fiber
F|Spec k(s)×X for a closed point s ∈ S.

In particular this implies that there is an n0 ∈ Z such that H i(F(n0 −
i)) = 0 for all i > 0 and any F in the family, i.e. that the Castelnuovo-
Mumford-regularity of the members of the family is bounded from above (see
[35, Lemma 1.7.6]). For any sheaf there is always a Castelnuovo-Mumford-
regularity but in general the regularity depends on the sheaf.

Example 3.5.3. Fix a smooth projective curve (X,OX). The family of
sheaves Fl = O(−l)⊕O(l) has fixed degree and rank (0 and 2 respectively),
thus fixed Hilbert polynomial. But the Castelnuovo-Mumford-regularity of
Fl is l and thus not bounded. Of course these sheaves are not semistable
either as for l > 0 the subsheaf O(l) has slope l > µ(Fl) = 0.

Semistable sheaves with fixed Hilbert polynomial do form a bounded fam-
ily though [35, Theorem 3.3.7]. This is a vital ingredient for the construction
of the moduli space of semistable sheaves.

3.6 Multilinear powers

So far in this exposition we have used the tensor product as the vehicle of
ring change. In that function the tensor product allows us to see a module
under the light of a different ring. In this section we take tensor products
of a module with itself and the related operations of symmetric and exterior
powers. This is a technique used to reveal some inner properties of modules
and morphisms - for example it is central via diagonal morphisms to the
notion of separated morphisms. We will use these multilinear powers to
make semistability visible in the global sections of a sheaf.

We remind the reader that the tensor product M⊗RN of two R-modules
M and N is the module generated by pairs a ⊗ b, a ∈ M, b ∈ N . Between
these generators we have the relations that are necessary to make the tensor



46 CHAPTER 3. SHEAVES AND VECTOR BUNDLES

product multilinear, i.e.

(a1 + a2)⊗ b = a1 ⊗ b+ a2 ⊗ b,
a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2,

(r · a)⊗ b = r · (a⊗ b) = a⊗ (r · b).

The tensor product is functorial, it preserves direct sums in each component
and it is right exact.

The n-th tensor power T nM is
⊗n

i=1M , i.e. the n-th iterated tensor
product of M with itself. Based on this we define the symmetric and exterior
powers.

Definition 3.6.1. The n-th symmetric power SymnM of an R-module M
is the quotient of the n-th tensor power where all tensors which are permu-
tations of each other are identified, i.e. a ⊗ b = b ⊗ a. We write the residue
classes as a1 · · · an := a1 ⊗ . . .⊗ an.

Definition 3.6.2. Similarly the n-th exterior power
∧nM is the n-th tensor

power modulo the module generated by tensors which have the same factor
occurring multiple times (like a ⊗ a). We write the residue classes as a1 ∧
. . . ∧ an.

This means that in the symmetric powers the products are made commu-
tative (hence it is called symmetric). Similarly in the exterior powers they
are antisymmetric (as from (a+ b)⊗ (a+ b) = 0 and a⊗ a = 0, b⊗ b = 0 it
follows that a⊗ b = −b⊗ a).

3.7 Open sets that are affine schemes and

solid closure

In this section we talk about the characterization of solid closure via the
affineness of open sets of certain bundles. Again let I = (f1, . . . , fn) ⊆ R and
f0 ∈ R another element. Let U = D(I) be the open set defined by the ideal
I.

V := R[T1, . . . , Tn]/ (
∑n

i=1 fiTi) |U is a vector bundle. The sheaf corre-
sponding to V is F := Syz(f1, . . . , fn). We define another vector bundle
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V ′ := R[T0, . . . , Tn]/ (
∑n

i=0 fiTi) |U and a short exact sequence

0 −→ V −→ V ′
T0−→ A1

U −→ 0.

Note that the complement P(V ′) \P(V ) is isomorphic to the spectrum of
the forcing algebra to the forcing equation f0 + f1T1 + . . . + fnTn restricted
to the subset U [7, Remark 1.3].

If we want to work on projective schemes, we can use a graded version of
this construction. In this case we start with a standard graded algebra R and
a homogeneous R+-primary ideal I = (f1, . . . , fn) and f0 ∈ R homogeneous.
Then we fix an m ∈ N and introduce new variables Ti with deg Ti = m −
deg fi. With this we can similarly define vector bundles

Vm := D+

(
R+R[T1, . . . , Tn]/

(
n∑
i=1

fiTi

))

and

V ′m := D+

(
R+R[T0, . . . , Tn]/

(
n∑
i=0

fiTi

))
,

i.e. each time the open set defined by the irrelevant ideal R+ ⊆ R. There is
also again a short exact sequence

0 −→ Vm −→ V ′m
T0−→ A1

U(−e0) −→ 0.

We state the following lemma for the graded construction, but it can
essentially also be stated without the grading for any ideal primary to a
maximal ideal (see [3, Propositon 1.3]).

Lemma 3.7.1. Let R be a normal, standard graded ring of dimension d ≥
2. Let I = (f1, . . . , fn) be a homogeneous R+-primary ideal and f0 ∈ R
homogeneous. Then f0 ∈ I? if and only if the cohomological dimension of
P(V ′m)\P(Vm) is d− 1. If d = 2 this is equivalent to P(V ′m)\P(Vm) not being
an affine scheme.

Proof. See [3, Proposition 3.9].

The proof of this depends on a theorem of Serre relating the property of
being an affine scheme to cohomology[26, Theorem III.3.7].
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Another way to look at the short exact sequence of Vm and V ′m is the
corresponding short exact sequence of sheaves. To the short exact sequence

0 −→ F := Syz(f1, . . . , fn) −→
n⊕
i=1

OX(−ei) −→ OX −→ 0

there is the connecting homomorphism δ : H0(X,OX) −→ H1(X,F). Thus
for any homogeneous f0 of degree d0 there is a cohomology class c := δ(f0) ∈
H1(X,F). As H1(X,F) ∼= Ext1(OX ,F) the class c corresponds to an ex-
tension 0 −→ F(d0) −→ F ′(d0) −→ OX −→ 0. The sheaf F ′ corresponds to
the vector bundle V ′m.



Chapter 4

Deciding stability of sheaves

In the following sections we will describe in detail how the method to de-
termine semistability works, work out the machinery involved, give the algo-
rithm and compute some simple examples.

All our bundles will be on a smooth curve X ⊆ PrK over an algebraically
closed field K.

4.1 Degree and global sections

We recall basic notions for bundles on curves.
Any locally free sheaf is reflexive. All torsion-free sheaves on a curve are

locally free. As such torsion-free rank 1 sheaves on a curve are invertible.

Lemma 4.1.1. Let F be a locally free sheaf of rank r on a curve. There
exist an invertible sheaf L, a locally free sheaf F ′ of rank r− 1 and an exact
sequence:

0 −→ L −→ F −→ F ′ −→ 0.

Proof. See [46, Lemma 1.15].

For a noetherian, smooth scheme X, we have a natural isomorphism
between the divisor class group and the Picard group: ClX ∼= PicX. As
such we have a divisor class for every isomorphism class of invertible sheaves
on X and in particular if X is a smooth projective curve over an algebraically
closed field we can define the degree of an invertible sheaf L = L(D) by the
degree of the corresponding divisor.

49
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The degree of a locally free sheaf of rank r over a smooth projective curve
X is defined as

degF := deg
r∧
F .

The definition reduces the degree of a bundle to the degree of an invertible
sheaf L.

The slope of a locally free sheaf F on X is µ(F) := degF
rankF . A sheaf is

called stable if its slope is larger than the slope of any proper subsheaf and
semistable if its slope is at least as big as that of any subsheaf. We call a
subsheaf destabilizing if it violates the stability condition.

The theorem of Riemann-Roch for sheaves relates the degree and rank to
global sections and the genus g of the curve:

degF = χ(F) + r(g − 1).

χ(F) denotes the Euler-Poincaré characteristic, which on projective curves
is

χ(F) = dimH0(X,F)− dimH1(X,F),

and g is the genus of the curve. Here H0(X,F) is the vector space of global
sections of F . With the theorem of Riemann-Roch we get the following
inequality:

dimH0(X,F) ≥ degD − r(g − 1).

From this follows immediately:

Lemma 4.1.2. Let F be a sheaf on a smooth projective curve X. If µ(F) >
g − 1 then F must have a nontrivial global section.

We will also use the following fact.

Lemma 4.1.3. Let F be a sheaf on a smooth projective curve X. If µ(F) < 0
and F has a nontrivial global section, then F is not semistable.

Proof. Every nontrivial global section defines a map OX −→ F . We can
factor it through a line bundle of nonnegative slope to get OX � L ↪→ F .
Then L is a subsheaf of nonnegative slope, which can not exist in a semistable
sheaf of negative slope.

In the following sections we will use these two lemmas like follows: The
definition of slope gives a numerical minimum on the difference of the slopes
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of a subsheaf and the sheaf itself. We will enlarge this minimal gap using
multilinear algebra. This will allow us to make any potential destabilizing
subsheaf visible in terms of global sections.

Remark 4.1.4. If we don’t want to restrict ourselves to curves another sim-
ilar notion to (µ-)stability is Gieseker stability. A locally free sheaf F is
Gieseker stable if for every proper subsheaf E ⊂ F we have p(E) < p(F),

where p(F) = Hilb(F )
ad

is the reduced Hilbert polynomial, ad the leading coef-

ficient of the Hilbert polynomial. We say for two polynomials P,Q ∈ K[X]
that P ≥ Q if and only if for n � 0 we have P (n) ≥ Q(n). On curves the
two notions of stability agree, thus we will work with the somewhat more
easily accesible notion of µ-stability.

4.2 Symmetric and exterior powers

In this section we describe the multilinear operations we use. We will use
the sheaf versions of the tensor product, the symmetric power Symn and
the exterior power

∧n. These are each the sheafifications of their respective
module versions. We want to apply these operations to short exact sequences.

Lemma 4.2.1. Let 0 −→ E ψ−→ F ϕ−→ G −→ 0 be a short exact sequence of
locally free sheaves of finite rank over a scheme over characteristic 0. This
induces for every n ∈ N>0 exact sequences

0 −→
n∧
E −→

n∧
F −→

(
n−1∧
F

)
⊗ Sym1 G −→(

n−2∧
F

)
⊗ Sym2 G −→

· · · −→(
2∧
F

)
⊗ Symn−2 G −→(

1∧
F

)
⊗ Symn−1 G −→ Symn G −→ 0.



52 CHAPTER 4. DECIDING STABILITY OF SHEAVES

The leftmost map in this sequence is
∧n ψ. The maps in the middle of the

sequence are(
k∧
F

)
⊗ Symn−k G −→

(
k−1∧
F

)
⊗ Symn−k+1 G,

which are given by

f1 ∧ . . . ∧ fk ⊗ gk+1 · · · gn 7→
k∑
i=1

(−1)i−1f1 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . ∧ fk ⊗ ϕ(fi) · gk+1 · · · gn,

and

0 −→ Symn E −→ SymnF −→
(
Symn−1F

)
⊗

1∧
G −→(

Symn−2F
)
⊗

2∧
G −→

· · · −→(
Sym2F

)
⊗

n−2∧
G −→(

Sym1F
)
⊗

n−1∧
G −→

n∧
G −→ 0.

The leftmost map in this sequence is Symn ψ. The maps in the middle of the
sequence are

(
Symk F

)
⊗

n−k∧
G −→

(
Symk−1F

)
⊗

n−k+1∧
G,

which are given by

f1 · · · fk ⊗ gk+1 ∧ . . . ∧ gn 7→
k∑
i=1

f1 · · · fi−1 · fi+1 · · · fk ⊗ ϕ(fi) ∧ gk+1 ∧ . . . ∧ gn.

Proof. Since exactness is a local property we can assume we are working
with free modules over a ring and that the original sequence is splitting, i.e.
F ∼= E ⊕ G.
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We prove the exactness of the first sequence by induction over the rank r
of E . For r = 0 we have F ∼= G and the sequence is a well-known sequence of
multilinear algebra (see for example [43, §86,Aufgabe 20]), where the maps
are as stated in our Lemma.

For r ≥ 1 we fix an element v in a basis of E . Because F ∼= E ⊕ G it is
also an element of a basis of F . We write E = 〈v〉 ⊕ U , where U is a free
module of rank r − 1. Similarly we get F = 〈v〉 ⊕ U ′.

We have
∧k F ∼=

∧k U ′⊕
(∧k−1 U ′

)
⊗〈v〉 by the map which concentrates

every contribution of v to the last component. Because taking the tensor
product with a free rank 1 module is an isomorphism we even have

∧k F ∼=∧k U ′ ⊕
∧k−1 U ′. Similarly for

∧k E .

This allows us to write the sequence as the direct sum of two sequences
we know are exact by induction:

0 −→
n∧
U −→

n∧
U ′ −→

(
n−1∧
U ′
)
⊗ Sym1 G −→

· · · −→

(
1∧
U ′
)
⊗ Symn−1 G −→ Symn G −→ 0

and

0 −→
n−1∧
U −→

n−1∧
U ′ −→

(
n−2∧
U ′
)
⊗ Sym1 G −→

· · · −→

(
1∧
U ′
)
⊗ Symn−2 G

−→ Symn−1 G −→ 0 −→ 0.

Thus the sum sequence is exact as well. We want to prove that the map
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of the sum sequence is correct. Take a look at the diagram.(∧k F
)
⊗ Symn−k G

(∧k−1F
)
⊗ Symn−k+1 G

(∧k U ′
)
⊗ Symn−k G
⊕(∧k−1 U ′
)
⊗ Symn−k G

(∧k−1 U ′
)
⊗ Symn−k+1 G
⊕(∧k−1 U ′

)
⊗ Symn−k+1 G

If we map an element f1 ∧ . . .∧ fk ⊗ g + f ′1 ∧ . . .∧ f ′k−1 ⊗ g′ via the lower
right route we get

k∑
i=1

(−1)i−1f1 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . ∧ fk ⊗ ϕ(fi) · g

+
k−1∑
i=1

(−1)i−1f ′1 ∧ . . . ∧ f ′i−1 ∧ f ′i+1 ∧ . . . ∧ f ′k−1 ∧ v ⊗ ϕ(f ′i) · g′.

If we map via the upper left route we get

k∑
i=1

(−1)i−1f1 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . ∧ fk ⊗ ϕ(fi) · g

+
k−1∑
i=1

(−1)i−1f ′1 ∧ . . . ∧ f ′i−1 ∧ f ′i+1 ∧ . . . ∧ f ′k−1 ∧ v ⊗ ϕ(f ′i) · g′

+(−1)k−1f ′1 ∧ . . . ∧ f ′k−1 ⊗ ϕ(v) · g′,

but since v ∈ E we have ϕ(v) = 0, so the diagram commutes.
The second sequence works similarly. Again we start with a locally

free sheaf E of rank 0, where the dual of the exterior power case gives us
the sequence. For the dual sheaves we have the canonical isomorphisms
(
∧k F)∨ ∼=

∧k(F∨) and as we work over a ring of characteristic 0 we also
have (Symk F)∨ ∼= Symk(F∨) [43, Satz 83.7 and Satz 86.12].

We can also write the symmetric product of F ∼= U ′⊕〈v〉 as a direct sum
as follows:

Symk F ∼= Symk U ′ ⊕ Symk−1F ⊗ 〈v〉 ∼= Symk U ′ ⊕ Symk−1F .
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Notice how this time we have F itself in the second summand, so we have to
do a double induction over the exponent k and the rank.

For us the most important part of these sequences are the maps
∧nF −→(∧n−1F

)
⊗ Sym1 G and SymnF −→

(
Symn−1F

)
⊗
∧1 G, as they allow us

to explicitly describe the exterior and symmetric powers of a kernel bundle
as another kernel bundle.

Because we will first take the exterior power and afterwards the symmetric
power we will need the following two lemmas which shows that we can in the
same way describe the kernel of a sequence which is only left exact. The two
lemmas generalize [36, Proposition 4.1].

Lemma 4.2.2. Let 0 −→ E −→ F −→ G −→ . . . −→ 0 be an exact sequence
of locally free sheaves of finite rank over a scheme over a field of characteristic
0, where ϕ : F −→ G is the second map. Then

∧n E is the kernel of the map

n∧
F −→

(
n−1∧
F

)
⊗ G,

f1 ∧ . . . ∧ fn 7→
n∑
i=1

(−1)i−1f1 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . ∧ fk ⊗ ϕ(fi).

Also, Symn E is the kernel of the map

SymnF −→
(
Symn−1F

)
⊗ G,

f1 · · · fn 7→
n∑
i=1

f1 · · · fi−1 · fi+1 · · · fk ⊗ ϕ(fi).

Proof. Because all sheaves in the sequence are locally free so are the kernels
by induction starting from the right. We take the short exact sequence
0 −→ E −→ F −→ imϕ −→ 0 and construct the sequences of Lemma 4.2.1.

Let’s look at the sequence for the exterior power. The kernel of the map
is
∧nF −→

(∧n−1F
)
⊗ imϕ is

∧n E . Because of the local freeness of the

involved modules the map
(∧n−1F

)
⊗ imϕ −→

(∧n−1F
)
⊗ G is injective,

so the kernel doesn’t change if we concatenate with this map. The same is
true for Symn.

Lemma 4.2.3. Let 0 −→ E −→ F −→ G be an exact sequence of locally
free sheaves of finite rank over a smooth curve over a field of characteristic
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0, where ϕ : F −→ G is the second map. Then
∧n E and Symn E have the

same description as in Lemma 4.2.2.

Proof. The image imϕ ⊆ G is torsion free as a subsheaf of G. Thus imϕ is
locally free because over every point the structure sheaf is a principal ideal
domain [40, Theorem II.1.1.6]. We take the short exact sequence 0 −→ E −→
F −→ imϕ −→ 0 and construct the sequences of Lemma 4.2.1.

The rest of the proof is the same as for Lemma 4.2.2.

4.3 Rank, degree and slope

To work more easily with the degree and slope of the sheaves involved we
present some rank and degree computations.

First note that degree and rank are additive. In particular for a short
exact sequence, the degree and the rank of the middle sheaf is the sum of
the degrees and ranks respectively of the outer sheaves.

Lemma 4.3.1. Let E and F be locally free sheaves. We have deg(F ⊗ E) =
rank E · degF + rankF · deg E and rankF ⊗ E = rankF · rank E.

Proof. [46, Lemma 1.16].

Lemma 4.3.2. Let F be a locally free sheaf of finite rankF ≥ 1 on a
smooth projective curve over an algebraically closed field K and n ∈ N>0. We
have rank SymnF =

(
n+rankF−1

n

)
and for the degree we have deg SymnF =(

n+rankF−1
n−1

)
degF .

Also rank
∧nF =

(
rankF
n

)
and deg

∧nF =
(
rankF−1
n−1

)
degF .

Proof. We want to compute this via induction over n + rankF . For n = 1
the assertions are clear. For Symn of a line bundle L use that Symn L = L⊗n.
So the assertions are also true for every sheaf of rank 1.

We apply Lemma 4.1.1 to the dual of F and dualize again to get a short
exact sequence 0 −→ U −→ F −→ L −→ 0, where U has one rank less than
F and L is a line bundle. Note that degL = degF − degU .

We apply Lemma 4.2.1 to the sequence 0 −→ U −→ F −→ L −→ 0.
Because of

∧2 L = 0 we get the short exact sequence

0 −→ Symn U −→ SymnF −→
(
Symn−1F

)
⊗ L −→ 0.
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First we compute the rank of the symmetric powers by induction over
n+ rankF .

rank SymnF = rank Symn U + rank
(
L ⊗ Symn−1F

)
= rank Symn U + rank Symn−1F

=

(
n+ rankF − 2

n

)
+

(
n+ rankF − 2

n− 1

)
=

(
n+ rankF − 1

n

)
.

Now we do induction over n+ rankF for the degree.

deg SymnF = deg Symn U + deg
(
L ⊗ Symn−1F

)
= deg Symn U + deg Symn−1F + rank

(
Symn−1F

)
· degL

=

(
n+ rankF − 2

n− 1

)
deg(U) +

(
n+ rankF − 2

n− 2

)
degF

+

(
n+ rankF − 2

n− 1

)
· (degF − degU)

=

(
n+ rankF − 2

n− 2

)
degF +

(
n+ rank(F)− 2

n− 1

)
· degF

=

(
n+ rankF − 1

n− 1

)
degF .

For
∧nF we consider the short exact sequence

0 −→
n∧
U −→

n∧
F −→

(
n−1∧
Un−1

)
⊗ L −→ 0.

The right map is on affine subsets given by concentration of the contributions
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of L on the last factor. For n ≥ 2 we do induction over rankF .

rank
n∧
F = rank

n∧
U + rank

(
L ⊗

n−1∧
U

)

= rank
n∧
U + rank

n−1∧
U

=

(
rankU
n

)
+

(
rankU
n− 1

)
=

(
rankF
n

)
.

And similarly for the degree.

deg
n∧
F = deg

n∧
U + deg

(
L ⊗

n−1∧
U

)

= deg
n∧
U + deg

n−1∧
U + rank

(
n−1∧
U

)
· degL

=

(
rankU − 1

n− 1

)
degU +

(
rank(U)− 1

n− 2

)
degU

+

(
rankU
n− 1

)
· (degF − degU)

=

(
rankU
n− 1

)
degU +

(
rankU
n− 1

)
· (degF − degU)

=

(
rankF − 1

n− 1

)
degF .

Note that the rank of Symn(F) of a rank 1 sheaf stays 1 as we have used
in the proof.

Corollary 4.3.3. Let F and E be locally free sheaves on X and s ∈ N>0.
We have µ(

∧sF) = µ(SymsF) = s · µ(F) and µ(F ⊗ E) = µ(F) + µ(E).

Proof. This follows from Lemma 4.3.1 and Lemma 4.3.2.
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Lemma 4.3.4. Let F be a locally free sheaf over a normal projective variety
over an algebraically closed field of characteristic 0. Fix n ∈ N>0, k ∈ Z. The
following are equivalent:

1. F is semistable.

2. SymnF is semistable.

3. F ⊗O(k) is semistable.

Also the following is true: If F is semistable so is
∧nF .

Proof. Let first F be not semistable. Then a destabilizing subsheaf E ⊂ F
gives a destabilizing subsheaf Symn E ⊂ SymnF and a destabilizing subsheaf
E ⊗ O(k) ⊂ F ⊗O(k) (as O(k) is flat).

If however F is semistable, then it shown (for bundles over characteristisc
0) in [35, Corollary 3.2.10] that the symmetric and exterior powers are also
semistable.

4.4 Destabilizing subbundles and destabiliz-

ing sections

We want to determine if F is semistable by only looking at global sections.
By definition it is semistable exactly when there is no proper subbundle E
with µ(E) > µ(F).

Theorem 4.4.1. Let F be a locally free sheaf on a smooth projective curve
X of genus g over an algebraically closed field of characteristic 0 and r :=
rankF . Then F is semistable if and only if there does not exist a nontrivial
global section of (Symq F) ⊗ O(k), where q = (g − 1 + degX)n + 1, n =

r(r−1)
gcd(r,degF) and k =

⌈
−qµ(F)
degX

⌉
− 1.

Proof. First assume that F is not semistable. Take a destabilizing subbundle
E ⊆ F of rank s < r. Then

deg E
s

= µ(E) > µ(F) =
degF
r

and thus

µ(E)− µ(F) =

(
r · deg E − s · degF

r · s

)
≥ gcd(r, degF)

r(r − 1)
=

1

n
> 0.
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With this we calculate

µ ((Symq E)⊗O(k)) = qµ(E) + k degX

= qµ(E) +

(⌈
−qµ(F)

degX

⌉
− 1

)
degX

≥ q(µ(E)− µ(F))− degX

≥ q

n
− degX

=
(g − 1 + degX)n+ 1

n
− degX

= g − 1 +
1

n
> g − 1.

Thus (Symq E)⊗O(k) has a global section by Lemma 4.1.2 and this is also
a global section of (Symq F)⊗O(k).

Now let’s assume F is semistable. Then so is (Symq F)⊗O(k) by Lemma
4.3.4. We calculate its slope

µ ((Symq F)⊗O(k)) = qµ(F) + k degX

= qµ(F) +

(⌈
−qµ(F)

degX

⌉
− 1

)
degX

< qµ(F) +
−qµ(F)

degX
degX

= 0.

Being semistable with negative slope it can’t have any nontrivial global sec-
tions by Lemma 4.1.3, so we are done.

We will also prove the following variant of this theorem, which allows for
a smaller q (by at least a factor r − 1), but introduces the need to compute
the global sections of several exterior powers. In general it is unclear which
of these is easier to compute. While Theorem 4.4.1 seems simpler, there are
cases where a (parallelized) implementation of Theorem 4.4.2 is much faster
and easier (see Example 4.6.5). Note also that for rank r = 2 the theorems
are identical.

Theorem 4.4.2. Let F be a locally free sheaf on a smooth projective curve
X of genus g over an algebraically closed field of characteristic 0 and r :=
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rankF . Then F is semistable if and only if for every s < r there does not
exist a nontrivial global section of Symq(

∧sF) ⊗ O(k), where q = (g − 1 +

degX)n+ 1, n = r
gcd(r,s·degF) and k =

⌈
−qsµ(F)
degX

⌉
− 1.

Proof. First assume that F is not semistable. Take a destabilizing subbundle
E ⊆ F of rank s < r. By taking the s-th exterior product we get

∧s E ⊆∧sF , where
∧s E is the determinant bundle of E and as such invertible.

Then

deg E
s

= µ(E) > µ(F) =
degF
r

and thus

s(µ(E)− µ(F)) =

(
deg E − s degF

r

)
≥ gcd(r, s degF)

r
=

1

n
> 0.

With this we calculate

µ

(
Symq

(
s∧
E

)
⊗O(k)

)
= qsµ(E) + k degX

= qsµ(E) +

(⌈
−qsµ(F)

degX

⌉
− 1

)
degX

≥ qs(µ(E)− µ(F))− degX

≥ q

n
− degX

=
(g − 1 + degX)n+ 1

n
− degX

= g − 1 +
1

n
> g − 1.

Thus by Lemma 4.1.2 the invertible sheaf Symq(
∧s E) ⊗ O(k) has a global

section and this is also a global section of Symq(
∧sF)⊗O(k).

Now let’s assume F is semistable. Then so is Symq(
∧sF) ⊗ O(k) by
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Lemma 4.3.4. We calculate its slope

µ

(
Symq

(
s∧
F

)
⊗O(k)

)
= qsµ(F) + k degX

= qsµ(F) +

(⌈
−qsµ(F)

degX

⌉
− 1

)
degX

< qsµ(F) +

(
−qsµ(F)

degX

)
degX

= 0.

Being semistable with negative slope it can have no nontrivial global sections,
so we are done.

4.5 Syzygy sheaves

We want to describe the algorithm to decide semistability for kernel (or
syzygy) sheaves.

Let F be a kernel sheaf over a smooth projective curve X = ProjS,
S a normal 2-dimensional standard graded domain, which means that it is
embedded in an exact sequence as follows.

0 −→ F −→
n⊕
i=1

OX(−ei)
A−→

m⊕
j=1

OX(−dj).

As F is a subsheaf of a free sheaf it is torsion free and thus, because X
is a smooth curve, it is already locally free [40, Theorem II.1.1.6].

Mainly we deal with syzygy sheaves, i.e. the case where m = 1 and
A is a single row matrix A = (f1, . . . , fn). Then we denote the kernel as
Syz(f1, . . . , fn).

Remark 4.5.1. All vector bundles on a smooth projective curve X = ProjS
are isomorphic to bundles described in this way, at least after twisting and
change of coordinate ring. Concretely we have for a rank r sheaf F as in [5,
Lemma 2.3] a presentation Or+1

X −→ F −→ 0. The kernel is a line bundle.
The determinant sheaf of F is a line bundle. There is a twist n, where it

becomes a very ample line bundle L := detF ⊗OX(l). To every very ample
line bundle on X exists an embedding of X, we take the one for L. In practice
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we take as the new coordinate ring the ring generated by the determinant
bundle (The Proj of which is again the curve differently embedded). With
regard to this embedding the twisting sheaf becomes L. Thus without loss of
generality we can assume that the determinant bundle of F is OX(1). Then
the kernel line bundle must also be a twist of the structure sheaf.

In this case we have a short exact sequence

0 −→ OX(d) −→
r+1⊕
i=1

OX(ei) −→ F −→ 0.

By dualizing we can describe F∨ as a kernel bundle of a map

f :
r+1⊕
i=1

OX(−ei) −→ OX(−d),

which can be given by a matrix. Usually we will set d = 0 and adjust the
other twists.

Remark 4.5.2. For our method it is important to determine the rank and

the degree of F in an exact sequence 0 −→ F −→
⊕n

i=1OX(−ei)
A−→ OX .

Let X = ProjS, S = K[x1, . . . , xn]/I integrally closed and J ⊆ S the ideal
generated by the entries of A 6= 0. Because of additivity the rank is just
rankF = n− 1. The degree can be harder to compute:

Let L = imA ⊆ OX . The degree of
⊕n

i=1OX(−ei) is

deg
n⊕
i=1

OX(−ei) = − degX ·
n∑
i=1

ei.

Because of the additivity of degrees we have degF = − degX·
∑n

i=1 ei−degL.
If A is surjective (which is true if and only if J is S+-primary), computing
the degree is easy, as then degL = degOX = 0.

Otherwise we compute degL with the Hilbert polynomial as follows. Ob-
serve that for large n ∈ N we have

dimH0(X,L ⊗OX(n)) = χ(L ⊗OX(n))

= deg(L ⊗OX(n)) + 1− g
= deg(L) + n · degX + 1− g.
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Now dimH0(X,L⊗OX(n)) is exactly the number of degree n elements of J ,
i.e. the Hilbert polynomial of the module J with indeterminate n: Hilb(J).
We have

Hilb(J) = Hilb(S)− Hilb(S/J)

= n · degX + (1− g)− Hilb(S/J).

Thus we deduce degL = −Hilb(S/J) and

degF = − degX ·
n∑
i=1

ei + Hilb(S/J).

Lemma 4.5.3. Let X be a scheme, q ∈ N>0,n,m ∈ N, e1 . . . , en, d1 . . . , dm ∈
Z. We have

n⊕
i=1

OX(−ei)⊗
m⊕
j=1

OX(−dj) =
n⊕
i=1

m⊕
j=1

OX(−dj − ei).

Symq

(
n⊕
i=1

OX(−ei)

)
=

⊕
(a1,...,an)∈Nn,

∑n
i=1 ai=q

OX

(
−

n∑
i=1

ai · ei

)
,

q∧(
n⊕
i=1

OX(−ei)

)
=

⊕
I⊆{1,...,n},#I=q

OX

(
−
∑
i∈I

ei

)
.

Proof. Take g1, . . . , gn as a local basis of
⊕n

i=1OX(−ei). The lower two iden-
tifications are given by the basis ga11 · · · gann ,

∑n
i=1 ai = q, for the symmetric

power and the basis
∏

i∈I gi,#I = q, for the exterior power. With these
bases we have locally a map for the symmetric power for each (a1, . . . , an) as
follows

Symq

(
n⊕
i=1

OX(−ei)

)
−→

n⊗
i=1

OX(−ei)⊗ai = OX

(
−

n∑
i=1

ai · ei

)
.

These maps are surjective and only the corresponding basis element maps to
a nonzero value and they glue. The exterior power works analogously.
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Lemma 4.5.4. Let F = kerA be a kernel sheaf over a smooth curve X =
ProjS. Let A :

⊕n
i=1OX(−ei) −→

⊕m
j=1OX(−dj) and assume A sits in an

exact sequence as in Lemma 4.2.3. Then Symq F = kerAq, where

Aq : Symq

(
n⊕
i=1

OX(−ei)

)
=
⊕
a∈I

OX(−a · e) −→(
Symq−1

(
n⊕
i=1

OX(−ei)

))
⊗

m⊕
j=1

OX(−dj) =
⊕

(b,j)∈J

OX(−b · e− dj).

We index the columns of Aq by the set I = {a = (a1, . . . , an) ∈ Nn :
∑n

i=1 ai =
q} and the rows by the set J = {(b, j) = (b1, . . . , bn, j) ∈ Nn+1 :

∑n
i=1 bi =

q − 1, 1 ≤ j ≤ m}. The entries are

Aq,(b1,...,bn,j),(a1,...,an) =

{
0, if ∃i ∈ {1, . . . , n} : bi > ai

ai∗ · Aj,i∗ , otherwise; i∗ unique s.t. ai∗ > bi∗ .

Also,
∧q F = kerA∧q , where

A∧q :

q∧(
n⊕
i=1

OX(−ei)

)
−→

(
q−1∧(

n⊕
i=1

OX(−ei)

))
⊗

m⊕
j=1

OX(−dj).

We index the columns of A∧q by the subsets I ⊆ {1, . . . , n},#I = q and
the rows by the set of tuples (J, j), where J ⊆ {1, . . . , n},#J = q − 1 and
1 ≤ j ≤ m. The entries are

A∧q ,(J,j),I =

{
0, if J 6⊂ I

sign(i∗, I) · Aj,i∗ , otherwise; i∗ unique s.t. i∗ ∈ I \ J.

Here sign(i∗, I) = (−1)pos(i
∗), where pos(i∗) gives the position of i∗ in I,

induced by the order of {1, . . . , n}.

Proof. The matrices Aq and A∧q are the explicit descriptions of the maps
in Lemma 4.2.3 when the symmetric and exterior powers of direct sums of
invertible sheaves are expressed as in the previous lemma.
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Example 4.5.5. Take a plane smooth curve and over it the map O(−3)⊕2⊕
O(−2) −→ O which is given by the matrix A =

(
x3 y3 z2

)
. We look at

the matrix for the second symmetric power as given by Lemma 4.5.4:

A2 : O(−6)⊕3 ⊕O(−5)⊕2 ⊕O(−6) −→ O(−3)⊕2 ⊕O(−2).

It has the following entries (above and to the left we have written the sum-
mands to which the respective columns and rows correspond):

O(−6) O(−6) O(−5) O(−6) O(−5) O(−4)( )O(−3) 2x3 y3 z2 0 0 0
O(−3) 0 x3 0 2y3 z2 0
O(−2) 0 0 x3 0 y3 2z2

.

With this background we can formulate the steps we have to follow.

Algorithm 4.5.6. This algorithm decides semistability following the method
of Theorem 4.4.1.

1. Start with a smooth projective curve X = ProjS given by an integrally
closed domain S and a map

⊕n
i=1OX(−ei) −→ OX described by a

matrix A.

2. Compute the genus g and the degree of X (with the Hilbert polynomial
of X), rank(kerA) = n − 1 and the slope µ(kerA) = −deg kerA

n−1 . From
this compute q and k as in Theorem 4.4.1.

3. Compute Aq as in Lemma 4.5.4. It’s a map⊕
a∈I

OX(−e′a) −→
⊕
b∈J

OX(−d′b)

for some finite index sets I, J and some degrees as computed in the
Lemma.

4. Compute the dimension d of the vector space of global sections of the
kernel of the k-th twist of Aq.

5. kerA is semistable if and only if d = 0.
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Because in practice computing the dimension of the kernel becomes a lot
more resource-intensive for larger q and the corresponding k it is advisable
to first try some lower powers. If we are lucky the dimension of the kernel
will already be nonzero in which case we would already know that the sheaf
is not semistable.

If one wants to decide semistability with Theorem 4.4.2 instead of Theo-
rem 4.4.1 the only difference in the algorithm is to compute (A∧

,s)q instead
of just Aq, where q, s and k have the values given in Theorem 4.4.2.

4.6 Examples and computations

In this section we will give several examples. In some of these examples we
relate the outcome of our algorithm with more specific methods.

Example 4.6.1. Let’s start with some examples that have a positive result,
i.e. cases in which the algorithm can determine that the sheaf in question is
semistable.

Let X = ProjS, S = C[x, y, z]/f , where f is a homogeneous polynomial
such that S is normal and X smooth. In this example we will consider
syzygy sheafs of of the form Syz(xn, yn, zn), which have rank 2 and degree
−3n · degX.

As a first example we look at f = x4 + y3z + z4, for which X has genus
3. The theorem tells us to look at the the symmetric power q = 7. For
n = 1 we have to look at k =

⌈
3qn
2

⌉
− 1 = 10. There are no global sections

of Sym7(Syz(x, y, z))(10), thus Syz(x, y, z) is semistable. For n = 2, we get
k = 20 and again semistability. If we look further at n ≤ 10, for n = 3,
n = 4, n = 8 and n = 9 we find destabilizing sections, but for n = 5, n = 6,
n = 7 and n = 10 the syzygy sheaves are again semistable as we don’t find
global sections of the seventh symmetric power in the twists given by the
theorem.

We can also look at higher degree curves, for example for f = x10 +y9z+
z10 and find that the syzygy sheaves Syz(xn, yn, zn) for n = 1, n = 2 and
n = 3 are semistable. For this curve we have to look at symmetric power
q = 46 and for n = 3 the deciding twist is already 206. This means that
the resulting matrices become relatively large and the computations take a
while.
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Example 4.6.2. We look at S := C[x, y, z]/(x4+y3z+z4), the corresponding
smooth projective curve X ⊆ P2 of genus 3 and the kernel sheaf F :=
Syz(x3, y3, z2) of the surjective map

A : OX(−3)⊕2 ⊕OX(−2) � OX , (a1, a2, a3) 7→ (a1x
3 + a2y

3 + a3z
2).

OX(−3)⊕2 ⊕ OX(−2) has degree (−3 − 3 − 2) · deg(X) = −8 · 4 = −32
and rank 3, and OX has degree 0 and rank 1. Thus, because the map is
surjective we can use the additivity of degree and rank to determine that F
has degree −32, rank 2 and slope −16.

The theorem tells us to look at q = 7 and k = q · 4− 1 = 27. Indeed we
find global sections there, which means that it is not semistable. But we will
also see that already q = 4 and the corresponding k = 15 is enough.

For the first three symmetric powers there are no destabilizing global
sections, i.e. Γ(X, Symq F(k)) is empty in the twist given by k = q · 4 − 1
(the twist coming from Theorem 4.4.1) and lower.

We can see immediately from the curve equation that for q = 1 we have
the global section (x, z, z2) of F(4). The sheaf has slope 0, thus the proper
subsheaf generated by the section shows that F is not stable, but we have
not disproven semistability yet.

Let’s take the 4-th symmetric power of this situation. For every global
section of F(4) we immediately get a global section of the symmetric power
Sym4(F(4)) = Sym4(F)(16) by taking all possible products of 4 possibly
repeating factors out of x, z and z2. Consider Lemma 4.5.3.

Explicitly for the global section (x, z, z2) we get the global section

v = (x4, x3z, x3z2, x2z2, x2z3, x2z4, xz3, xz4, xz5, xz6, z4, z5, z6, z7, z8).

Again Sym4(F)(16) has slope 0. But we have x4 = −y3z − z4, so all entries
contain the factor z, which we can divide out. This way we get a new global
section

v′ = (−y3 − z3, x3, x3z, x2z, x2z2, x2z3, xz2, xz3, xz4, xz5, z3, z4, z5, z6, z7)

of Sym4(F)(15). But Sym4(F)(15) has negative slope, so we have shown
that F is not semistable. This is a way in which symmetric powers make
hidden destabilization visible.

The following example relates Grothendieck’s splitting principle with our
approach.
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Example 4.6.3. The ring S := C[x, y, z]/(x2 + y2 + z2) describes a quadric
curve. It is isomorphic to P1 and thus has genus 0. On it Syz(x2, y2, xz, yz) is
locally free of rank 3. The algorithm tells us that this sheaf is not semistable.
Let’s look at the situation from a different perspective to make sense of this.

If we twist by 3 we trivially find global sections, for example (z, 0,−x, 0).
This does not give a destabilizing sheaf however, because the degree of
Syz(x2, y2, xz, yz)(3) is (9 − 8) · 2 > 0. The twist by 2 does not have global
sections. Global sections in that twist would directly give destabilizing sub-
sheaves.

As a sheaf on P1 the syzygy sheaf Syz(x2, y2, xz, yz)(2) is a direct sum
of invertible sheaves and it has degree −4. So the only possibility without
global sections is

Syz(x2, y2, xz, yz)(2) = L−1 ⊕ L−1 ⊕ L−2,

where L is the invertible sheaf of degree one on the quadric when seen as a
P1. Note that L2 = OX(1).

From this direct sum decomposition we can already see that the second
symmetric power Sym2(Syz(x2, y2, xz, yz)) will have three invertible sum-
mands of highest degree namely (L−1(−2))2 = OX(−5) and the second exte-
rior power

∧2(Syz(x2, y2, xz, yz)) will have one such summand. The twist of
interest k in these powers becomes 5 and indeed if we twist by 5 the global
section space of the symmetric power turns out to be 3-dimensional and of
the exterior power 1-dimensional. These correspond - in accordance with the
theorem - to destabilizing subsheaves.

Remark 4.6.4. Example 4.6.3 shows that on P1 one can use Grothendieck’s
splitting theorem to check semistability, no symmetric or exterior powers
have to be computed explictly.

But even if P1 is given as a smooth quadric it is not clear how to find global
sections by only looking at the homogeneous coordinate ring. The restriction
of Syz(x, y, z) to any smooth quadric X ⊂ P2 is isomorphic to L−3 ⊗ L−3
(hence semistable), where L ∼= OP1(1) under an isomorphism P1 ∼= X, but
L can not be seen by looking at the global sections of Syz(x, y, z) only. In
Example 4.6.3 we help ourselves by inferring from the direct sum that there
have to exist global sections in some power.

Example 4.6.5. We have seen that any destabilizing subsheaf will be made
visible by high enough symmetric powers. But computing exterior powers
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can be very useful if there are destabilizing subsheaves of rank 2 or higher.
For a concrete example consider S := C[x, y, z]/(xn + yn + zn) and F =
Syz(x4 + y2z2, y4, z4, x7) (almost any combination of polynomials of degree
4,4,4 and 7 would do). The sheaf F is not semistable. The subsheaf E =
Syz(x4 + y2z2, y4, z4) is a destabilizing subsheaf of rank 2:

µ(E) =
−12n

2
>
−19n

3
= µ(F).

Because of E ’s shape as a rank 2 syzygy sheaf its second exterior power
becomes OX(−12) and has a global section if twisted by 12. However even
for n = 5 the fourth symmetric power Sym4(F) is the lowest power with a
destabilizing global section. For n = 9 the lowest symmetric power with a
destabilizing global section is Sym10(F). Consider Table 4.1.

n Genus g qmin q as of Theorem 4.4.1
1 0 1 1
2 0 1 7
3 1 2 7
4 3 1 31
5 6 4 61
6 10 2 31
7 15 8 127
8 21 2 169
9 28 10 73

10 36 8 271

Table 4.1: Table detailing the situation of Example 4.6.5 for several n. qmin

is the lowest power q = qmin for which Symq(F) has a destabilizing section.
We computed this with our implementation of the algorithm.

Example 4.6.6. Smooth curves X in the projective plane have genus g =
(degX−1)(degX−2)

2
. So with these, we only get g = 1, 3, 6, 10, . . .. But embedded

in higher dimensional projective space we can find curves to work over of any
genus.

A smooth curve of type (a, b) in P1×P1 has genus g = (a−1)(b−1). As an
explicit example look at the curve X given by the relation f = x30y0(y0+y1)+
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x31y1(y0 +2y1) = 0 for ([x0 : x1], [y0 : y1]) ∈ P1×P1. We can work with this in
our algorithm by using the Segre embedding given by C[z00, z01, z10, z11] −→
C[x0, x1, y0, y1], zij 7→ xiyj.

X is then given by generators of the ring-kernel of the Segre embedding
z11z00 − z10z01 together with the preimage of (f), generated by z200(z00 +
z01) + z10z11(z10 + 2z11) and z00z01(z00 + z01) + z211(z10 + 2z11). By the Jacobi
criterion and looking at the Hilbert polynomial we see that X is indeed a
smooth curve of genus 2 and degree 5. We have a curve of type (2, 3). It
is smooth and thus with regards to the Segre embedding it is projectively
normal [26, Exercise III.5.6(b)(3)], i.e. the ring with these three relations is
normal.

As example sheaves we compute: Syz(z01z11+z200, z01+z11, z10z00+z201, z10)
over X is semistable, but Syz(z01z11 + z200, z11, z10z00 + z201, z10) is not.

4.7 Positive characteristic

We needed characteristic 0 to ensure that the symmetric and exterior powers
of semistable sheaves are again semistable. This is not true in positive char-
acteristic. However, in positive characteristic the Frobenius pullbacks allow
us to construct a very similar algorithm.

The Frobenius pullback Fe∗F of a locally free sheaf F is the pullback of
F by the e-th power of the Frobenius homomorphism f 7→ fp

e
. There is

a surjective map from Fe∗ Syz(f1, . . . , fn) −→ Syz(fp
e

1 , . . . , f
pe

n ). It is even
bijective if the fi are primary to the irrelevant ideal S+. Thus global sections
of both sheaves are the same.

We mention the following immediate lemma.

Lemma 4.7.1. Let F be a locally free sheaf over a scheme of characteristic
p. Then deg (Fe∗F) = pe · deg(F) and µ (Fe∗F) = pe · µ(F).

Definition 4.7.2. Let F be a locally free sheaf over a smooth projective
curve over an algebraically closed field of characteristic p. F is called strongly
semistable if every Frobenius pullback is semistable.

It follows directly that if F is strongly semistable then also Fe∗(F) is
strongly semistable for every e ∈ N>0.

As already mentioned in the introduction, a positive characteristic version
of Theorem 4.4.1 was already proved in [12, Lemma 2.1]. Note that there is a
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small mistake in the statement of a corollary [12, Lemma 2.2] with regards to
the necessary Frobenius pullback, which we have corrected in our statement
of the theorem.

Theorem 4.7.3. Let F be a locally free sheaf on a smooth projective curve
X over a field of characteristic p and r := rankF .
F is strongly semistable if and only if there does not exist a nontrivial

global section of Fe∗(F)⊗O(k), for every e ∈ N and k =
⌈
−peµ(F)
deg(X)

⌉
− 1.

F is semistable if there does not exist a nontrivial global section of

Fe∗(F)⊗O(k),

for an exponent e ∈ N with pe ≥ (g − 1 + deg(X))n + 1, n = r(r−1)
gcd(r,degF) and

k =
⌈
−peµ(F)
deg(X)

⌉
− 1.

Proof. We first prove the second assertion, in the same way as in Theorem
4.4.1. First assume that F is not semistable. Take a destabilizing subbundle
E ⊆ F of rank s < r. Then

deg(E)

s
= µ(E) > µ(F) =

deg(F)

r

and thus

µ(E)− µ(F) =

(
r · deg(E)− s · deg(F)

r · s

)
≥ gcd(r, deg(F))

r(r − 1)
=

1

n
> 0.

With this we calculate

µ (Fe∗ (E)⊗O(k)) = peµ(E) + k deg(X)

= peµ(E) +

(⌈
−peµ(F)

deg(X)

⌉
− 1

)
deg(X)

≥ pe(µ(E)− µ(F))− deg(X)

≥ pe

n
− deg(X)

≥ (g − 1 + deg(X))n+ 1

n
− deg(X)

= g − 1 +
1

n
> g − 1.
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Thus Fe∗(E) ⊗ O(k) has a global section by Lemma 4.1.2 and this is also a
global section of Fe∗(F)⊗O(k).

Now to the first assertion. If F is not strongly semistable, some pullback
will not be semistable. So for some potentially higher power e the Frobenius
pullback Fe∗(F) will have a destabilizing global section.

Now let’s assume F is strongly semistable. Then so is Fe∗(F) ⊗ O(k).
We calculate its slope

µ (Fe∗ (F)⊗O(k)) = peµ(F) + k deg(X)

= peµ(F) +

(⌈
−peµ(F)

deg(X)

⌉
− 1

)
deg(X)

< peµ(F) +
−peµ(F)

deg(X)
deg(X)

= 0.

Being semistable with negative slope it can have no nontrivial global sections,
so we are done.

For finite fields it would be possible to give a bound on the necessary ex-
ponent to ascertain strong semistability. This is because the moduli space of
strongly semistable vector bundles (with given combinatorial data) is a vari-
ety. Over a finite field there are thus only finitely many Frobenius pullbacks
for any strongly semistable vector bundle until repetition. Thus it suffices
to check a fixed power to determine strong semistability. For computational
purposes this is not very helpful though, because the required Frobenius
power is very high.

Using exterior powers like in the characteristic 0 case allows us to state
the following variant of the theorem.

Theorem 4.7.4. Let F be a locally free sheaf on a smooth projective curve
X over a field of characteristic p and r := rankF .
F is semistable if for every s < r there does not exist a nontrivial global

section of Fe∗(
∧sF) ⊗ O(k), where e = dlogp((g − 1 + deg(X))n + 1)e,

n = r
gcd(r,s deg(F)) and k =

⌈
−pesµ(F)
deg(X)

⌉
− 1.

The same is true if we substitute the Frobenius power with the symmetric
power in this theorem.

Proof. For this direction the proof in Theorem 4.4.2 works fully for char-
acteristic p (for the Frobenius power as well as the symmetric power). A
destabilizing section prohibits semistability.
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Remark 4.7.5. It is possible to check semistability for the characteristic 0
case by reduction modulo p. This is based on the fact that any destabilizing
subsheaf in characteristic 0 would also occur as a destabilizing subsheaf in
characteristic p. Thus we could try primes p until we find one for which the
sheaf over characteristic p is semistable. Then we know that the correspond-
ing characteristic 0 sheaf is also semistable. This process has the potential
to be a computationally faster way to show semistability, because arithmetic
modulo p is faster. This effect is diminished by the fact that we might have to
try a lot of primes and that the degrees grow faster with Frobenius pullbacks.

Even more, if for all primes that we try the sheaves are not semistable or
if we cannot decide semistability for them, then we don’t know the semista-
bility of the corresponding characteristic 0 sheaf. In particular with this
method we can never decide semistability for a sheaf that is not semistable.
Still reduction modulo p could be a useful part in an adaptive approach to
determining semistability where you try different angles of attack at the same
time.



Chapter 5

Applications and connections

5.1 The Harder-Narasimhan filtration

Definition 5.1.1. Let F be a locally free sheaf on a smooth projective curve
X. A filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F

such that Fi/Fi−1 is semistable and for λi = µ(Fi/Fi−1) we have

λ1 > λ2 > . . . > λn

is called a Harder-Narasimhan filtration for F .

Lemma 5.1.2. Every locally free sheaf on a projective curve X has a unique
Harder-Narasimhan filtration.

Proof. See [35, Theorem 1.3.4].

At every step in the filtration the rank increases, thus the Harder-Nara-
simhan filtration has length at most the rank of the sheaf.

Let X = ProjK[x1, . . . , xm]/a be a smooth projective curve and let F =
Syz(f1, . . . , fn) be a syzygy sheaf.

A destabilizing section s = (s1, . . . , sn) of total degree k of F defines a
map O −→ F(k), which factors through a destabilizing invertible subsheaf
E of F . The subsheaf E is defined by the divisor of the zero points with
multiplicity of s on the curve. Thus if the section vanishes nowhere on the
curve then O is itself a destabilizing subsheaf of F(k).
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Example 5.1.3. For F = Syz(x2, y3, z2) over the smooth projective curve
X = C[z, y, x]/(x2y + y3 + z3) we have a destabilizing global section s =
(y, 1, z) in twist 3, i.e. s is a relation of total degree 3. The section never
vanishes, thus s defines a destabilizing subsheaf O(−3) ⊆ F . The line bundle
O(−3) is semistable, so this is the full Harder-Narasimhan filtration.

Example 5.1.4. The sheaf F = Syz(x3, xy2, z3) over the smooth projective
curve X = C[z, y, x]/(x3z + xy3 + yz3) has a destabilizing global section
s = (z, y, y) in twist 4. The section vanishes in the projective point P =
(1 : 0 : 0), which lies on the curve. The multiplicity of P is 1. Thus L(P )
is isomorphic to a destabilizing subsheaf of degree 1 mapped into F by the
factoring of the morphism given by s. The Harder-Narasimhan filtration is
L(P ) ⊆ F .

Remark 5.1.5. In our algorithm, we find destabilizing sections in symmetric
or exterior powers (or in the positive characteristic case Frobenius pullbacks)
of the syzygy sheaf F . In that case we know that there is a destabilizing
subsheaf of F , but we don’t have a general way of getting a computational
description of this destabilizing subsheaf.

In general we can’t expect to explicitly find this subsheaf, but we could
compute the maximal slope that occurs for a destabilizing section and as such
compute some of the numerical data of the Harder-Narasimhan filtration.

The destabilizing section of maximal slope corresponds to a maximal
destabilizing subsheaf F1. Then Symk(F1) ⊂ Symk(F) is the maximal desta-
bilizing subsheaf of the symmetric power (for this we need to be in character-
istic 0). We can now bound the maximal slope from below by finding global
sections of Symk(F1)(m) in various twists m. We can bound the maximal
slope from above by showing nonexistence of global sections Symk(F)(m).

Alternatively we can define a sequence mk as the minimal twists that
Symk(F)(mk) has global sections. Then the maximal slope is the limit of the
sequence mk

k
. Since the maximal slope is rational and because the behavior

from a certain k onwards becomes predictable this can be computed in finite
time.
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5.2 Computing tight closure using semistable

sheaves

Holger Brenner developed in [3], [4] and [6] a theory to fully compute solid
closure in the best case or at least give inclusion/exclusion bounds and check
containment in tight closure for a specified element. Since in many cases
solid closure coincides with tight closure this is also a way to compute tight
closure. This gives another application of semistability and shows the most
direct connection between the ideal closure part and the semistability part
of this thesis.

Semistability was also used in [9] to show for a specific example that tight
closure does not commute with localization.

The following two theorems give complete descriptions of the tight closure
in the case that the syzygy bundle of the ideal generators is semistable in
characteristic 0, or strongly semistable respectively in positive characteristic.

Theorem 5.2.1. Let R be be a two-dimensional normal standard-graded
domain over an algebraically closed field K of characteristic 0. Let I ⊆ R
be an R+-primary homogeneous ideal. Let f1, . . . , fn be a set of generators,
with degrees d1, . . . , dn and such that Syz(f1, . . . , fn) is semistable.

Then

I∗ = I +R≥ d1+...+dn
n−1

.

Proof. See [4, Theorem 8.1].

Theorem 5.2.2. Let A be a finitely generated normal Z-algebra of dimension
one and SA a standard-graded flat A-algebra such that for all large enough
p ∈ SpecA the fibers Sκ(p) are two-dimensional geometrically normal standard
graded κ(p) algebras.

Let I = (f1, . . . , fn) ⊆ SA be an S+-primary homogeneous ideal and
d1, . . . , dn be the degrees of the generators. Let F = Syz(f1, . . . , fn) and
assume that the generic fiber of F , i.e. Fκ(0), is semistable.

Then for all large enough p ∈ SpecA with Fκ(p) strongly semistable we
have

I∗κ(p) = Iκ(p) +R
κ(p),≥ d1+...+dn

n−1

.

Proof. See [4, Theorem 8.4].



78 CHAPTER 5. APPLICATIONS AND CONNECTIONS

Instead of going into detail on how these theorems work, we will describe
how the same techniques can be used in a refined way in the case that the
syzygy bundle is not semistable (see also [6]). In this situation the semista-
bility algorithm from chapter 4 can be employed.

If the syzygy sheaf is not semistable one can use the Harder-Narasim-
han filtration. If a sheaf is semistable its Harder-Narasimhan filtration
has length 1. Starting with the filtration there is an algorithm to decide
whether an element f0 ∈ R is in the tight closure of an R+-primary ideal
I = (f1, . . . , fn) over a normal two-dimensional standard-graded K-domain
over an algebraically closed field. If the maximal destabilizing subsheaf of
Syz(f1, . . . , fn) is semistable it can always give a complete answer.

In order to compute the Harder-Narasimhan filtration one has to find
destabilizing subsheaves. The semistability algorithm does not produce desta-
bilizing subsheaves of the original sheaves. But it finds destabilizing sections
of a symmetric power respectively Frobenius power of the sheaf.

Note that for the Frobenius power of the syzygy sheaf we have

Fe∗ Syz(f1, . . . , fn) = Syz(fp
e

1 , . . . , f
pe

n ).

The right hand side is the syzygy sheaf of I [p
e]. Thus by taking Frobenius

powers we are actually looking at the tight closure of I [p
e]. The containment

of an element f ∈ R in the tight closure I∗ of an ideal can be determined in
any Frobenius pullback Fe∗R, because f ∈ I∗ if and only if f q ∈ (I [q])∗.

Thus in positive characteristic in many cases we can use the semista-
bility algorithm to compute the Harder-Narasimhan filtration of a suitable
Frobenius power and with that compute the tight closure of an ideal.

For simplicity we will restrict ourselves to ideals I generated by three
homogeneous elements. In that case the key to deciding whether an element
is in the tight closure I∗ is the following Lemma. We actually compute the
solid closure I?, but remember that for positive characteristic in many cases
I? = I∗, see Theorem 1.2.7.

Lemma 5.2.3. Let R be a two-dimensional normal standard-graded domain
over an algebraically closed field K of characteristic 0 or p� 0 (p large in the
same sense as in Theorem 5.2.2) and I = (f1, f2, f3) an R+-primary ideal.
Take a power q = pe, with e ∈ N. Further assume that F := Syz(f1, f2, f3)
is not strongly stable on X = ProjR and that there is a short exact sequence

0 −→ L −→ F ′ −→M −→ 0,
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with F ′ = Fe∗(F). Also assume that degL ≥ µ(F ′) ≥ degM.
Let f0 ∈ R be an element of degree m which corresponds to a cycle c ∈

H1(X,F(qm)). By pull-back we get a cycle c′ ∈ H1(X ′,F ′(qm)) which has
the image c̄ ∈ H1(X ′,M(qm)). Then f0 ∈ I? if and only if at least one of
the following conditions hold

1. f0 ∈ I

2. deg(M(qm)) ≥ 0.

3. deg(L(qm)) ≥ 0 and c̄ = 0.

Proof. [6, Corollarly 3.4]. Note that c = 0 implies that f0 ∈ I.

The statement is not always true for small characteristics, because for
small prime numbers the Frobenius can annihilate cohomology classes in
negative degrees. In those cases we additionally have to check if this kind of
annihilation occurs.

First let’s do an example on how to compute solid closure in a case where
we don’t need the Frobenius pullback, i.e. where q = 1.

Example 5.2.4. Let R = K[x, y, z]/(x4 + y4 + z4), i.e. X = ProjR is the
Fermat quartic over K. Let K be an algebraically closed field of characteristic
p > 0. We want to compute the tight closure of I = (x3, y3, z3).

The syzygy sheaf F(4) := Syz(x3, y3, z3)(4) has a destabilizing section
(x, y, z). The section is not zero anywhere on the curve, thus it directly
defines a subsheaf. From this we get a short exact sequence

0 −→ OX
(x,y,z)t−→ Syz(x3, y3, z3)(4) −→ OX(−1) −→ 0

which describes the Harder-Narasimhan filtration. Following [6, Remark 4.8]
the map on the right can be given by (h1, h2, h3) 7→ yh3−zh2

x3
. In the sense of

the previous Lemma we get L := OX(−4) and M := OX(−5).
The other important short exact sequence in this case is

0 −→ Syz(x3, y3, z3)(m) −→
3⊕
i=1

OX(m− 3)
(x3,y3,z3)−→ OX(m) −→ 0.

The connecting homomorphism for the long exact sequence in cohomology
maps an element f ∈ R of degree m to c ∈ H1(X, Syz(x3, y3, z3)(m)). If c = 0
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then f ∈ I and thus f ∈ I?. If m < 4 we have degM(m) < degL(m) < 0,
so then f ∈ I is the only way for f to be in the solid closure. If m > 4 we
have degM(m) ≥ 0 thus f ∈ I? because of Lemma 5.2.3.2.

The interesting case is thus m = 4, in which case we have to look at the
cohomology class c̄ ∈ H1(X,OX(−1)).

Concretely, since x3, y3 are parameters, we can identify the cohomology
modules as Čech cohomology modules using the open covering D(x3), D(y3).
The class c would be represented by the Čech-cocycle ( f

x3
, f
y3
, 0). Applying

cohomology to the Harder-Narasimhan quotient sequence this maps to the
cocycle − fz

x3y3
∈ H1(X,OX(−1)).

Following the Čech-cohomology construction − fz
x3y3

= 0 is true if and only

if f · z ∈ (x3, y3). Because x4 + y4 + z4 is the only relation f · z ∈ (x3, y3)
implies f ∈ (x3, y3, z3) = I. Thus also for m = 4 nothing new is added to
the solid closure. In total we have computed I? = I +R≥5.

Next we give an example of computing the tight closure if only a Frobenius
power exhibits a destabilizing global section.

Example 5.2.5. Let X = ProjK[x, y, z]/(x4+y4+z4) be the Fermat quartic
over an algebraically closed field K of characteristic 3. We want to compute
the solid closure of I = (x3, y5, z7).

The characteristic is relatively low, but the Frobenius map in negative
degree is injective on the cohomology of the structure sheaf as we will show
explicitly for degree−1, i.e. we look at H1(X,OX(−1)) −→ H1(X,OX(−3)).
With Čech cohomology we construct the basis

z

xy
,
z2

x2y
,
z2

xy2
,
z3

xy3
,
z3

x2y2
,
z3

x3y

of H1(X,OX(−1)). In order those are mapped to

z3

x3y3
,
−z2

x2y3
,
−z2

x3y2
,
z

x3y
,

2z

x2y2
,
z

xy3
.

For the second basis element for example we compute

z6

x6y3
=
−z2(x4 + y4)

x6y3
=
−z2

x2y3
.

For the second equality we use that in cohomology −z2y
x6

= 0. For the
other elements similar computations are used. We can see that the basis
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is mapped to part of a basis and hence the whole Frobenius map is injective
on H1(X,OX(−1)).

For higher Frobenius powers and for more negative twists the degrees of
the relevant sheaves become higher, so that the degree criterion of Mumford-
Hartshorne for ampleness [25, Proposition 7.5 and Corollary 7.7] ensures that
the Frobenius map is injective. It can be used similarly to the proof of [6,
Corollary 6.4].

Using our semistability algorithm we find a destabilizing section (2z13 +
2z9y4 + zy12, z5yx + 2zy5x, x) of F(22), the twist by 22 of the syzygy sheaf
F := Syz(x9, y15, z21) = F∗ Syz(x3, y5, z7). The section is not zero anywhere
on the curve. If it were we would need x = 0 which implies z = 4

√
−1y, which

means 2z13 + 2z9y4 + zy12 = 2z13 = 0, thus y = z = 0 and the origin is not
in the projective space. Thus the section generates a subsheaf, sitting in the
following exact sequence

0 −→ OX(−22) −→ F −→ OX(−23) −→ 0.

To decide whether an element f of degree m is in I∗ we look at f 3 which
has degree 3m. If 3m ≥ 23, then f ∈ I∗. Thus R≥8 ∈ I∗. If 3m < 22, then
f ∈ I∗ ⇔ f ∈ I. Thus I∗ = I +R≥8.

We can use the same destabilizing section to compute the tight closure
of I [3]. For that purpose we take again an element f of degree m. If m ≥ 23,
then f ∈ (I [3])∗. If m < 22, then f ∈ (I [3])∗ ⇔ f ∈ I [3]. For m = 22, we
have to decide whether c̄ = f ·x

x9y15
= f

x8y15
= 0 ∈ H1(X,OX(−1)). This is the

case exactly if f ∈ (x8, y15). Thus degree 22 elements are in (I [3])∗ exactly if
they are multiples of x8 or are in I [3] already (which also contains y15). This
means that (I [3])∗ = I [3] + x8 ·R≥14 +R≥23.

By taking powers of the relation we can in the same way compute the
tight closure for any I [3

e].
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Chapter 6

Implementation

You will find our implementations of the main algorithm and the neces-
sary subroutines together with an explanation on how to use them online at
https://github.com/JonathanSteinbuch/sheafstability.

6.1 Outline

Let’s take a look at the most important classes and their purpose in the
implementation.

template<typename Scalar>

The polynomials and matrices work with three different types of scalars. So
far those are the integers, the rationals and Fp for prime numbers p < 65535.
For fast performance and ease of implementation the scalar type is specified
using templates. This tells the compiler to automatically generate all the
structures and methods for all three scalar types.

The integers and rationals are implemented by mpz_class and mpq_class

respectively of the GNU multiprecision library [21]. The fields Fp are imple-
mented by the class numbermodulo.

class PolyRing

This class implements polynomial rings and more generally quotient rings of
polynomial rings with an ideal. For this it contains a pointer to the base ring,

83
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which is set to the ring itself if the instance implements a basic polynomial
ring.

The class contains a rich representation of the monomials of the ring which
includes a list of all monomials and a list of all elements of a monomial basis
(See Definition 6.3.2) up to some degree (which is automatically increased
when necessary). Also it includes a lookup table which contains for every
monomial its linear combination with elements of the monomial basis. In
addition many operations on monomials are implemented. These structures
allow fast arithmetic on polynomials and also give fast access to a list of
all elements of the monomial basis of a given degree which is important
for constructing the degree matrix. However, building the lists and lookup
tables takes considerable time, which for the large degrees occurring in the
Frobenius pullbacks can limit the performance.

The class also contains a simple version of Buchberger’s algorithm in case
the user doesn’t provide the quotient ideal in Gröbner basis form and the
Hilbert polynomial computation (Algorithm 6.3.9).

class Poly

An instance of this class represents a single polynomial. The data consists
of a pointer to the PolyRing of which the polynomial is an element of and
of a std::map<mBmonomial, Scalar> which represents a finite set of monomials
together with a map into the Scalar type. The monomials are stored just
by the position they occur in in the monomial order. This allows the mono-
mials in the polynomial to be automatically stored in their order which is
convenient for Gröbner basis operations.

The class implements many arithmetic operations on polynomials. The
arithmetic operations are broken down to operations on monomials which
are implemented in the PolyRing. Two other notable methods of the class
are a constructor which reads a polynomial from a string and a function
getMatrix which generates the matrix for multiplying the polynomial with
another polynomial of a given degree as laid out in Remark 6.2.1.

class DensePolyMatrix

This is a dense representation of a matrix of polynomials, dense being the
opposite of a sparse implementation and meaning that every entry is explic-
itly specified. The data is thus simply stored in a vector of vectors with each



6.1. OUTLINE 85

entry being a Poly. In addition we store the degrees coming in and out of
the matrix making it suitable to represent a map of (twisted) sheaves.

Notable member functions are methods constructing the symmetric and
exterior power matrices as in Lemma 4.5.4 and the power matrices for the
Frobenius pullback. Also of importance is the kernel method. To compute
the kernel in a given degree, the method generates the degree matrix, has
the kernel of it computed and retransforms the kernel into a matrix of poly-
nomials.

class SparsePolyMatrix

This is a sparse reimplementation of the DensePolyMatrix. It was born after
realizing that even the matrices of polynomials can sometimes become rather
large. It lacks some of the additional features of the dense implementation,
but the core is the same as above.

class SparseScalarMatrix

This class is the central linear algebra workhorse. It contains many meth-
ods for facilitating the analysis and echelonization of a sparse matrix. The
detailed workings of the class are explained in Section 6.4.

class ReaderAndCaller

This class reads the input file and determines which scalar type to work with
depending on the given characteristic and the necessity of fractions. In the
characteristic 0 case - if the user hasn’t expressly requested computations
over Q - the GNU multiprecision integer type will be used, unless the lead-
ing coefficients of the Gröbner basis can’t be chosen as 1 without fractions
occurring in the other coefficients.

In the end a derived class of class JobType will be instantiated depending
on the job given in the input file.

class JobType

This is the base class for the job handler classes. It’s sole virtual member
function is called doJob and is implemented by the derived classes depending
on the job they are a front for.
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Currently the derived classes are the following.

• class SemistabilityJob. This class encapsulates the main algorithm
in all steps, including calling the functions for checking smoothness,
computing degree and genus of the curve and the powers of the sheaves.

• class PowersJob. This computes just the matrices whose kernel is the
symmetric or exterior power or the Frobenius pullback.

• class SemistabilityJob. This computes just the kernel of a (power)
sheaf in a certain twist.

Of note is also the struct JobOptionsType which holds the options read
from the input file and is passed by the ReaderAndCaller class.

6.2 Main algorithm implementation details

We need to compute the global sections of (Symq∧sF) ⊗ O(k), for some
q, s ∈ N≥0, k ∈ Z over a curve X = ProjS, with S a graded integrally closed
algebra of finite type over K.

Remark 6.2.1. As laid out in Lemma 4.5.4 and Algorithm 4.5.6 we construct
a matrix Aq which sits in an exact sequence

0 −→ Symq F ⊗OX(k) −→
⊕
a∈I

OX(k − a · e) Aq−→
⊕

(b,j)∈J

OX(k − b · e− dj).

We want to compute the dimension of the vector space of global sections
of the kernel of Aq. You will find the dimension as an entry in the Betti
table of the module presented by Aq, for which there are implementations
in many computer algebra systems. For very simple cases we did this in
Macaulay2[22] and CoCoA[1]. This approach proved to be inefficient for
anything but the most simple examples, though. It turned out to be way
faster to only compute the correct degree case as follows.

We apply the global section functor to the exact sequence and get the
exact sequence

0 −→ Γ(X, Symq F ⊗OX(k)) −→
⊕
a∈I

Sk−a·e
Aq−→

⊕
(b,j)∈J

Sk−b·e−dj .
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For a fixed d ∈ Z the elements of Sd form a finite dimensional vector
space, with a basis given by the degree d monomials of R which are not
multiples of leading monomials of a Gröbner basis of the defining ideal of S
(fix any degree-respecting monomial order).

All we have to compute is thus the kernel of a matrix Bq(k) (computed
from Aq) over a field, a linear algebra problem.

Example 6.2.2. Look at the map OX(−4)3 ⊕ OX(−7) −→ OX over X =
Proj(C[x, y, z]/(x9+y9+z9)) from Example 4.6.5 which is given by the matrix
A =

(
z2y2 + x4 y4 z4 x7

)
.

In the first power the theorem tells us to look at the twist 6, thus we get a
map OX(2)3⊕OX(−1) −→ OX(6). The global sections of OX(2)3⊕OX(−1)
are given by a tuple of three degree 2 elements and one degree -1 element.
The degree 2 elements have a monomial basis z2, zy, zx, y2, yx, x2 with 6
generators. The only element in negative degrees is 0. On the other hand,
there are 28 monomials of degree 6. In the relevant twist 6 we get thus a
28x18-matrix B(6) with entries in C, see Table 6.1.

Consider Table 6.2 for the sizes of the resulting matrices as q grows. Note
that q = 73 is the power from Theorem 4.4.1.

Remark 6.2.3. The resulting matrices from Remark 6.2.1 have an enormous
size, prohibiting dense representations in computer memory. Fortunately
only few entries are nonzero. If A is an m × n matrix the matrix Aq has
only n nonzero entries in each row, while it has

(
q+n−1
n−1

)
columns. The matrix

Bq(k) is even more sparse assuming the polynomial entries of A are sparse in
the sense that they are made up of relatively few monomials compared to all
monomials in their degree. We can also see this phenomenon in the matrix
of Table 6.1. There every column only has as many nonzero entries as the
corresponding polynomial has nonzero coefficients.

To do any useful computations it is thus very important to store the
matrices in a sparse matrix format. This means that only the nonzero entries
and their positions are stored. This has not only the benefit of requiring
less memory, it also means that we only need to iterate over the nonzero-
entries in every reduction step. We will perform matrix factorization - i.e. the
process of factoring the matrix into triangle matrices and unitary matrices -
in order to compute the kernel. There is a lot of potential for optimization in
the factorization of sparse matrices because naive implementations tend to
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z2 zy zx y2 yx x2 z2 zy zx y2 yx x2 z2 zy zx y2 yx x2



z6 1
z5y 1
z5x 1
z4y2 1 1
z4yx 1
z4x2 1
z3y3 1
z3y2x 1
z3yx2

z3x3

z2y4 1 1
z2y3x 1
z2y2x2 1
z2yx3

z2x4 1
zy5 1
zy4x 1
zy3x2

zy2x3

zyx4 1
zx5 1
y6 1
y5x 1
y4x2 1
y3x3

y2x4 1
yx5 1
x6 1

Table 6.1: The matrix B(6) from Example 6.2.2. We have written the corre-
sponding monomial basis elements on the top and to the left. 0-entries have
been omitted.

introduce unnecessarily many additional nonzero entries making the matrix
less sparse in the process. It’s important to reduce the rows in a good order
and to choose good pivot elements.

There are extremely well optimized algorithms for sparse matrix factor-
ization - but only for floating point values. One floating-point-algorithm we
tried out is SuiteSparseQR[16]. However, it doesn’t seem practical (or maybe
even possible) to control the cumulative floating point error in a way that
let’s us with certainty distinguish a kernel of dimension 1 from a kernel of
dimension 0.

Thus for an implementation of the algorithm we need to be able to do
sparse exact value matrix triangularization. Unfortunately most exact value
matrix factorization implementations only work on dense matrices (for ex-
ample it is implemented in Normaliz[14]). We considered using the sparse
implementation in Bradford Hovinen’s LELA[31], but it has only an opti-
mized algorithm for matrices of the type occuring in Faugère’s F4-algorithm
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q Aq k Bq(k) dim kerBq(k) ∆t
1 1× 4 6 28× 18 0 < 1ms
2 4× 10 12 156× 99 0 < 1ms
3 10× 20 18 501× 343 0 2ms
4 20× 35 25 1401× 1153 0 8ms
5 35× 56 31 2848× 2433 0 30ms
6 56× 84 37 5190× 4551 0 98ms
7 84× 120 44 9474× 8763 0 404ms
8 120× 165 50 14889× 13891 0 1s
9 165× 220 56 22339× 20985 0 4s

10 220× 286 63 34219× 32865 2 11s
11 286× 364 69 47718× 45930 0 27s
12 364× 455 75 64845× 62551 2 69s
13 455× 560 82 90234× 88066 128 169s

...
16 816× 969 101 196743× 193608 452 1743s

...
73 67525× 70300 462 very large ? ?

Table 6.2: This table accompanying Example 6.2.2 lists the sizes of various
matrices Aq, the degree k considered, and the size of the matrix Bq(k). ∆t is
the time to compute the kernel with our implementation on our computer.
Since the actual computation time varies between computers and because
there may be future optimizations these runtime numbers are only meant to
illustrate the general trend.

and it proved difficult to use.
Because we didn’t find a suitable implementation for integer matrix tri-

angularization that suited our needs we implemented our own version of the
Gauss algorithm for sparse matrices in C++.

Remark 6.2.4. For some of our results we need to work over an algebraically
closed field. Of course we can’t actually represent complex numbers or any
other uncountable field in computer memory. However if all involved coef-
ficients in the input (which are the generators of the defining ideal I of the
base ring and the matrix A) are in Q any resulting kernel sections will also
just have coefficients in Q. Even more, if the leading coefficients of a Gröbner
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basis of I are units in Z and all entries of A have coefficients only in Z we
can do the whole kernel computation with only values in Z. Even though we
then have to be a bit careful in the Gauss algorithm this is still faster and
uses less memory than a representation in Q.

Of course it would be possible to work with Q adjoint with a finite num-
ber of additional elements of C, but we haven’t explicitly implemented this.
Introducing an additional variable to the base polynomial ring and the nec-
essary defining equations would be relatively easy but very costly.

Remark 6.2.5. The performance of the algorithm depends a lot on the
input. We list some of the characteristics and how they affect performance.

• Degree d and genus g of the curve X = Proj(S) are important in two
ways. Firstly, we have the symmetric power exponent q = (g−1+d)n+1
as of Theorem 4.4.1. The higher q is, the larger the matrix Aq becomes,
as Aq is an m ·

(
q+l−2
l−2

)
×
(
q+l−1
l−1

)
matrix, where m× l are the dimensions

of A.

Additionally d and g affect the size of the matrix Bq(k): The Hilbert
polynomial of X is Hilb(S)(t) = t · d + (1 − g). For large enough t
the values of Hilb(S)(t) are the dimension of the vector space of degree
t elements of S. Thus again larger d are very costly here, while g is
only in the constant coefficient of the Hilbert polynomial and so doesn’t
affect the size as much.

• The dimensions of the m× l matrix A affect the size of Aq directly as
seen in the previous point. But it also goes into the rank and degree
and thus the slope of F . Recall again Theorem 4.4.1 and look at
n = r(r−1)

gcd(r,degF) , which multiplies into q. At best this is r − 1 and at

worst r(r − 1). Thus r = l − m goes into the exponent q linearly at
best and quadratic in the worst case.

The twist is computed as k =
⌈
−qµ(F)
degX

⌉
− 1. Here the degree of F

enters, which is computed from the degrees of the entries of A. High
degree entries lead to a high twist. A higher twist means higher degree
of the monomials determining Bq(k), thus there are more of them and
thus Bq(k) has a larger size.

• The number of monomials used for the polynomials is also a strong
factor - the more dense the polynomials, the more space and time is
needed. For the entries of A this was explained in Remark 6.2.3.
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But for the Gröbner basis elements of a, where a is the defining ideal
of the curve, the same is true. If the result from a multiplication in the
matrix Aq is a leading monomial of an element f in the reduced Gröbner
basis, then it will be represented in Bq(k) in the rows corresponding to
all the other monomials of f . If there are more monomials with nonzero
coefficients then the matrix will be less sparse. Thus we can say that
the more “general” the curve is, i.e. the more nonzero coefficients there
are in the defining polynomials, the harder it is to compute with.

• The coefficients of the polynomials involved also play a minor role.
Because of the way the integer Gauss algorithm works, during the tri-
angularization the absolute values of the entries in Bq(k) will generally
increase a lot. Because of this fixed length integer data types don’t suf-
fice as data containers and we need to use multiprecision integer data
types, i.e. integer data types with an arbitrary length. If we start with
large values we will need even more digits to store the entries, which
also increases the time used to handle them.

Remark 6.2.6. For convenience of use, helpful future improvements to our
implementation might include the following.

• An included feature to check whether the input ring is normal and to
automatically work over the normalization if it isn’t. So far we only
check smoothness, and that the scheme is a curve at all, which are
relatively easy to check.

• The ability to embed any sheaf as a kernel sheaf automatically.

• Further performance improvements to be able to check more and more
difficult sheaves for semistability.

6.3 Hilbert polynomial and monomial bases

In our computations we need to compute the degree d and the genus g of a
curve. This can be done with the Hilbert polynomial.function To a projective
curve X = ProjS the Hilbert polynomial Hilb(X)(n) = HilbS(n) is of the
form d · n+ (1− g).

Gröbner bases come into play on the one hand for the computation of the
Hilbert polynomial and on the other hand in computing the monomial basis
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for writing the degree matrix. For the description of the degree matrix see
Remark 6.2.1.

Monomial bases

For computations we will need a graded monomial order, i.e. a total well-
ordering on the monomials that respects multiplication and for which mono-
mials of higher degree are always bigger in the order. For our purposes
we will choose the degree reverse-lexicographic order. In the degree reverse-
lexicographic order, degrevlex for short, we have xν > xµ for two monomials
with multivariate exponents ν = (ν1, . . . , νn) and µ = (µ1, . . . , µn) if one of
the following is true

1.
∑n

i=1 νi >
∑n

i=1 µi

2.
∑n

i=1 νi =
∑n

i=1 µi and νi < µi for the largest i ∈ {1, . . . , n} such that
νi 6= µi.

Thus for example in three variables x, y, z the ordering begins as follows:
1 < z < y < x < z2 < yz < xz < y2 < xy < x2 < z3 < . . .

Definition 6.3.1. Let I ⊆ R be an ideal in an affine ring R = K[x1, . . . , xn].
Fix a monomial order. A Gröbner basis for I is a family f1, . . . , fm of gener-
ators of I such that for every f ∈ I there is an i ∈ {1, . . . ,m} such that the
leading monomial of fi divides the leading monomial of f .

Every ideal admits a Gröbner basis for any monomial order, which can
for example be found using Buchberger’s algorithm [15].

Gröbner bases allow us to check whether an element is in the ideal or
not by using the division algorithm, beginning at the leading monomial and
reducing if the leading monomial is divisible by a leading monomial of the
Gröbner basis.

In particular they allow us to decide whether we need a given monomial
in a monomial basis of an affine ring just by checking the leading monomials
of the Gröbner basis of the defining ideal.

Definition 6.3.2. Let R = K[x1, . . . , xn]/(f1, . . . , fm) be an affine ring. A
monomial basis of R is a family of monomials of K[x1, . . . , xn] such that the
residue classes form a K-vector space basis of R.
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Proposition 6.3.3. Let R = K[x1, . . . , xn]/(f1, . . . , fm) be an affine ring
together with a monomial order on K[x1, . . . , xn], such that f1, . . . , fm form
a Gröbner Basis. Then the family X of all monomials that are not divisible
by a leading monomial LM(f1), . . .LM(fm) is a monomial basis of R.

Proof. Let P =
∑
aνx

ν be a nonzero linear combination of monomials, i.e.
a polynomial. P being mapped to 0 in R means that P ∈ (f1, . . . , fm).
P can only be an element in the ideal if the leading monomial is divisible
by a leading monomial LM(fi) of the Gröbner basis. This means that the
monomial family X maps to a linearly independent family in R. For any
polynomial the remainder after division by f1, . . . , fm is a linear combination
of monomials not divisible by the leading monomials, thus the monomial
family X even maps to a K-basis.

As usual we will often identify the elements of R with their representing
polynomials if no confusion is likely to arise. Consequently we will also talk
about a monomial basis and the vector space basis it represents as if they
were the same thing.

If R is graded, a monomial basis X is compatible with the grading R =⊕
d∈D Rd in the sense that Xd := X ∩ Rd is a vector space basis of Rd. If R

is standard graded all the graded components Rd are finite-dimensional.

Proposition 6.3.4. Let R = K[x1, . . . , xn]/(f1, . . . , fm) be a standard graded
affine ring with monomial basis X. Fix i ∈ N and an element f ∈ R of degree
d. To each monomial xν in Xi write the product f ·xν as a linear combination
of monomial basis elements f ·xν =

∑
xµ∈Xd+i aµ,νx

µ. Then the multiplication
map f · − : Ri −→ Rd+i is described by the matrix with entries aµ,ν.

Hilbert polynomial

Definition 6.3.5. Let S be a standard graded, finitely generated algebra
over a polynomial ring R. The Hilbert function is defined as ϕS : Z −→
N, d 7→ dimSd. The Hilbert polynomial is the unique polynomial Hilb(S) ∈
Q[n] such that for large d� 0 we have Hilb(S)(d) = ϕS(d).

The Hilbert polynomial has as degree the dimension of ProjS. Thus for
curves the Hilbert polynomial is linear.

For us the Hilbert polynomial is important in several ways. It can be
used to determine the size of the monomial basis in each degree - at least
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after a certain degree. Also we can use it to define a meaningful degree and
genus of a curve with it as follows.

Definition 6.3.6. If X = ProjS is a projective curve and S finitely gener-
ated over a polynomial ring, then Hilb(S) = dX + (1 − g), where d is the
degree of the curve and g is the (arithmetic) genus of the curve.

For a plane curve defined by a homogeneous polynomial f this definition
of degree is consistent with the degree of f .

The remainder of this section is devoted to the algorithm we use to de-
termine the Hilbert polynomial.

Lemma 6.3.7. Let S = K[x1, . . . , xn]/(f1, . . . , fm) be a standard graded
affine ring such that f1, . . . , fm are a Gröbner basis with respect to a fixed
monomial order. Then S ′ := K[x1, . . . , xn]/(LM(f1), . . . ,LM(fm)) has the
same Hilbert function and therefore the same Hilbert polynomial as S.

Proof. [18, Theorem 15.26].

For the following construction we write l(ν) :=
∑n

i=1 νi, where νi is the
i-th component of the tuple ν ∈ Nn.

Proposition 6.3.8. Let S = K[x1, . . . , xn]/(xν1 , . . . , xνm) be a standard
graded ring where xνj =

∏n
i=1 x

νji
i . The exponents of the multiples of a mono-

mial xνi form an integer cone Ci with base point νi and edges extending in
positive direction parallel to all axes. The ideal (xν1 , . . . , xνm) is the vector
space generated by the monomials with exponents in the union U :=

⋃m
i=1Ci.

Thus S can be identified with the vector space of all monomials with expo-
nents in the complement D := Nn \ U . The degree d component of S is then
the vector space generated by the monomials with exponents in D∩Ld, where
Ld := {ν ∈ Nn|l(ν) = d} is the hyperplane of degree d exponents.

Hence, the Hilbert function of S is given by P (d) = #(D ∩ Ld).
We have

#(Ci ∩ Ld) =

(
n− 1 + d− l(ν)

n− 1

)
.

For d ≥ l(νi) − (n − 1) this is a polynomial in d. The intersection of two
cones generated by exponents µ ∈ Nn and ν ∈ Nn is generated by the ex-
ponent (max(µ1, ν1), . . . ,max(µn, νn)). The set U can be constructed by a
linear combination of cones, by subtracting the intersections of the Ci and
resulting cones recursively. The complement D is the cone to the monomial
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1 subtracted by U , thus it can also be constructed as a linear combination of
cones. Thus at least for d ≥

(∑n
i=1 maxmj=1 νji

)
− (n − 1) the Hilbert func-

tion coincides with the linear combination of the corresponding polynomials.
This describes a method to compute the Hilbert polynomial for a monomial
algebra.

Algorithm 6.3.9. As before let S = K[x1, . . . , xn]/(xν1 , . . . , xνm) be a stan-
dard graded ring. Let M0 = {1}, M1 = {xν1 , . . . , xνm} and for i > 1 we
define Mi = {lcm(xµ, xν)|xµ, xν ∈Mi−1, µ 6= ν}. Let M =

⋃
i∈NMi. Because

all least common multiples have exponent at most
∑n

i=1 maxmj=1 νji this is a
finite set.

Compute a function f : M −→ Z as follows. Set f(1) = 1. Take any
xν ∈M from the monomials with minimal degree that have not yet assigned
a value. Set

f(xν) = −
∑

xµ∈M for which xµ|xν
f(xµ).

This is well-defined because all divisors have lower degree.
Then

Hilb(S)(d) =
∑
xν∈M

f(xν) ·
(
n− 1 + d− l(ν)

n− 1

)
.

Example 6.3.10. Let’s look at Q[w, z, y, x]/(−wz+ yx, w2y+ 2wy2 + zx2 +
x3, wy2 + z2x + zx2 + 2y3). First we have the full cone C0 generated by 1.
The monomials of degree d in this cone are counted by

#(C0 ∩ Ld) =

(
3 + d

3

)
= 1 +

11

6
d+ d2 +

1

6
d3.

The leading monomials are yx, x3, y3. Then for M1 this means we sub-
stract the respective cones C1, C2, C3 from C0, the monomial counts are given
by #(C1 ∩Ld) =

(
1+d
3

)
= −1

6
d+ 1

6
d3 for yx and #(C2 ∩Ld) = #(C3 ∩Ld) =(

d
3

)
= 1

3
d− 1

2
d2 + 1

6
d3 for x3 and y3 respectively.

Their first intersections are generated by y3x, yx3 and y3x3 which form
M2. Because y3x3 is a common multiple of all generators, y3x3 is already
the maximal element of M . Its contribution is cancelled out, because the
contribution of all other monomials adds up to 0. We are left with two
contributions of #(C1 ∩ C2 ∩ Ld) = #(C1 ∩ C3 ∩ Ld) =

(
d−1
3

)
= −1 + 11

6
d−

d2 + 1
6
d3 one for each of y3x and yx3.
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So M = {1, yx, x3, y3, y3x, yx3, y3x3} and f is given by

xν 1 yx x3 y3 y3x yx3 y3x3

f(xν) 1 −1 −1 −1 1 1 0
.

In total this leaves us with

Hilb(X)(d) =

(
3 + d

3

)
−
(

1 + d

3

)
− 2

(
d

3

)
+ 2

(
d− 1

3

)
= −1 + 5d

Because the intersection generated by y3x3 was canceled out, the biggest
relevant intersection generators y3x and yx3 have degree 4. Hence, the Hilbert
polynomial already agrees for d ≥ 4 − 3 = 1 with the Hilbert function and
not only for d ≥ 6− 3 = 3 as expected from the proposition.

6.4 Sparse linear algebra

We have seen that the central computational step of our algorithm is com-
puting the rank of a large sparse matrix. There are many ways to store the
information of a sparse matrix. Important to us are the following aspects.

As the primary data structure, we use a vector of rows. Here a vector is a
std::vector datatype, i.e. an array with length defined at runtime. Each row
is an ordered map, with the keys indicating columns and the values being
the entries of the matrix at the respective row and column. Specifically the
matrix is stored in the following datatype.

std::vector <boost:: container ::flat_map <unsigned int , Scalar >

>

The boost::container::flat_map datatype behaves outwardly in the same
way as the std::map, but is actually internally not implemented as a tree,
but as a vector. This has the advantage that there is much less overhead in
general, but in particular for iterating over the row. This comes at the cost
of having a worse complexity for deleting or inserting elements, i.e. when an
entry switches states between being zero or nonzero. Because we have very
few nonzero-entries in each row the flat map performs better, which we also
confirmed with run time comparisons. In the following we refer to making a
zero entry nonzero as filling the entry, so that it becomes filled or nonzero.
The converse action is then called emptying.
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In this data structure it is cumbersome to find all nonzero entries in a
column. In fact one would have to iterate over all rows and in each row
perform a binary search for an element with a key matching the column,
which would give us a complexity of O(n · logm), where n is the number
of rows and m is the typical number of nonzero entries in a column. For
this reason we add another data structure, which is a vector of the columns,
and for each column an ordered set of all rows with nonzero entries in that
column. In total this gives us the following.

std::vector <boost:: container ::flat_set <unsigned int > >

Note that we don’t save the value again, as we can find that relatively ef-
ficiently from the row data structure when we know in which rows to look.
However, we have to maintain the integrity of both data structures, whenever
we fill or empty an entry.

We conclude that the sparse matrix data structure in our implementation
has the following properties

1. The total memory usage is linear in the number of nonzero matrix
entries.

2. Iterating over all the nonzero entries of a row is linear in the number
of nonzero row entries.

3. Iterating over all the nonzero entries of a column is proportional to the
number of nonzero entries in the column times the logarithm of the
typical number of entries in the affected rows.

4. Filling or emptying an entry is linear in the number of all nonzero
entries in the affected row and the affected column.

Any sparse matrix manipulation can only be efficient as long as we keep
the matrix sparse. Because of this we take several measures to try to do
as little filling as possible during the Gaussian elimination. The key to this
is the choice of good pivot elements and good ordering for the rows and
columns.

The pivot element of an elimination step is the entry of the matrix that is
chosen to reduce all the entries of active rows in the same column to zero. If
we work from top to bottom the pivot element of the i-th elimination step is
the i-th diagonal element and all rows below it are active. Of course working
from top to bottom is seldom the best strategy.
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There are mainly two aspects that make a good pivot element. The first
aspect is that it makes the subsequent arithmetic as easy as possible, for
example because it divides many of the other entries in its column. The
second aspect is the change in the number of nonzero entries that occurs,
i.e. how much fill is produced in an elimination step with the respective
pivot element. Because we have seen above that the number of nonzero
entries is crucial to the performance we will focus on the second aspect. A
good common heuristic for the introduced number of nonzero entries is the
number of nonzero entries in the pivot row itself.

To the point of a good ordering it is useful to mention the symbolic defect.
It counts the rows or columns that we can determine to be able to be reduced
to zero simultaneously just by looking at the symbolic structure the matrix
has when not looking at the actual values of the entries but only at the
filled and empty status. The easiest case is of course if a row or column is
completely empty as that means it is a zero row respectively column and
can be disregarded entirely. In general a symbolic defect occurs if there is a
collection of n rows (respectively columns) with filled entries in less than n
columns (respectively rows).

The symbolic defect can be found using an algorithm that tries to fill
all entries on the diagonal by swapping rows and backtracks if that is not
directly possible. If it is not at all possible it marks a column as symbolically
defective and swaps in another column to continue.

The following example illustrates this algorithm.

Example 6.4.1. Consider the following matrix where ∗ stands for a filled
entry and 0 for an empty entry.

∗ 0 0 0 0 ∗
0 ∗ 0 0 ∗ 0
0 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0
0 0 ∗ 0 0 0
0 ∗ ∗ 0 0 0

 .

We try to fill the diagonal entries beginning from the top left. The first four
diagonal entries are already filled, so there is nothing to do for those. For
the fifth diagonal entry we try to find a filled entry in the fifth column. The
only one of these is in the second row which is already used, so we backtrack
to the second diagonal entry to see if we could have used another row there.
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For this purpose we make a backtracking depth first search and remember
the sequence of rows visited in that way. We start by filling the sequence
with (5, 2) for the rows we already looked at. Then we look for an element
in column 2 after row 2. We find that in row 6, so we add 6 to the sequence,
which now is (5, 2, 6). Because 6 is after 5 we can use a cyclic permutation
of the rows in the sequence to get the new matrix

∗ 0 0 0 0 ∗
0 ∗ ∗ 0 0 0
0 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0
0 ∗ 0 0 ∗ 0
0 0 ∗ 0 0 0

 .

This leaves the sixth diagonal entry to be filled. Again we have to start a
sequence (6, 1). However, the only other entry in column 1 is in row 4 which
is smaller than 6. So we add 4 to the sequence and have to continue looking
in column 4. Column 4 however has no further entries, so we backtrack again
and remove 4 from the sequence. There are no further entries in column 1,
so we have to backtrack again, remove the 1 from the sequence and see no
further entries in column 6, so we even remove the 6 from the sequence.
When we see that the sequence is empty we know that we have a symbolic
defect with column 6, so we would mark column 6 and if there were anymore
columns, we would swap in the next column.

Overall we have fully analyzed if the matrix has nonzero kernel (it does)
without introducing any fill, without even looking at the actual values. A
further advantage of the described algorithm is that even if we don’t find
sufficient symbolic defect to determine that the kernel is nonzero, we have
already ordered the rows such that the diagonals are filled, which is a useful
first step for the Gauss algorithm.

Algorithm 6.4.2. The following pseudocode describes the full algorithm.

1. Array lookaheadprogress[Number of Columns] = {0, . . . , 0}.

2. For every column c do:

(a) Add c to empty sequence.

(b) While sequence is nonempty do:



100 CHAPTER 6. IMPLEMENTATION

i. Look at the element e at the end of the sequence.

ii. If there exists a filled entry in column e with row d ≥ e then
add d to the sequence and permute all rows in the sequence
cyclically. Continue the outer loop with next column c+ 1.

iii. Else if there exists a filled entry in column e with row d >
lookaheadprogress[c] then if d is not yet in the sequence add
d to the sequence. On the other hand if d is already in the
sequence, then set lookaheadprogress[c] = d instead. After-
wards continue with the inner loop.

iv. If there does not exist such an entry then remove e from the
sequence and set lookaheadprogress of the previous element
in the sequence to e and continue with the inner loop.

(c) If the sequence is empty here it means we have not found a suitable
permutation sequence for this column, so we mark the column,
swap it with an unvisited column and increase the symbolic defect
counter.

We can modify the algorithm to preferentially choose rows with few filled
entries so that the element in the diagonal is already an acceptable pivot
element. We will do this but we will also still check at each elimination step
if there is a suitable row with fewer filled entries, because this can change
significantly during the elimination process.

The algorithm here follows the ANALYSE phase described in [17]. The other
two main steps are the factorization step, which is the application of the
Gauss algorithm to get a triagonal matrix and the solving step, which uses
a basis for all possible combinations of the free columns and fills in the
dependent values according to the triangular form.

The book [17], like most sparse matrix literature, describes sparse matrix
methods from the point of view of people working with floating point values.
But many of the methods are still applicable here. What is added on top
of that is the need to handle large integers, as after repeated multiplication
with the pivot elements some of the entries will become quite large. We try
to mitigate the growth of the entries by dividing out any common factors
that occur in rows as much as possible. The big integers as they occur are
stored in the containers provided by the gnu multiprecision library [21].
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6.5 Using the software library

Get the source code by cloning the git repository on a linux system with the
commands

git clone

https :// github.com/JonathanSteinbuch/sheafstability.git

cd sheafstability

To compile the program you need to have the GNU Multiprecision Library
(https://gmplib.org/) and the Boost Program Options (https://www.
boost.org/) installed.

To compile just run the command

make

in the main directory.
The basic usage is as follows. In the main directory run:

stability --input -file="input.txt" --output -file="output.txt"

There are several command line options which we will list later. In most
cases using the default should be fine.

6.5.1 Format of the input and output file

The first line of the input file has to contain the name of the routine, that
you want to use. There are the following accessible routines:

1. semistability,

2. powers,

3. kernel.

The semistability routine, is the implementation of the main algorithm.

Example 6.5.1. Instead of formally describing how the input and output file
are formed, it is easier to just give an example. The following input file tells
the program to decide whether the sheaf given by Syz(x4 + y2z2, y4, z4, x7)
over Q[x, y, z]/z5 + y5 + x5 is semistable.

semistability

characteristic: 0

variables: "x", "y", "z"

relations: z^5+y^5+x^5

matrix: {{x^4+y^2z^2,y^4,z^4,x^7}}

https://gmplib.org/
https://www.boost.org/
https://www.boost.org/
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The output file will contain the following:

1

{ExteriorPower => 1, SymmetricPower => 4, Twist => 25}

The 1 in the first line means that the sheaf is not semistable. The next line
describes where a destabilizing subsheaf has been found.

The other two routines give direct access to subroutines of the main al-
gorithm.

The routine named powers computes the defining matrix for the power
Symq(Exts(F)) of a kernel sheaf F .

Example 6.5.2. To use it provide an input file of the following form:

powers

characteristic: 0

variables: "x", "y", "z"

relations: z^5+x^5+y^5

matrix: {{x^3, y^3, z^2}}

spower: 2

exteriorpower: 1

In this case we compute the defining matrix for

Sym2(Ext1(Syz(x3, y3, z2)))

over the curve defined by Q[x, y, z]/z5 + y5 + x5.
The output will be

| -6 -6 -5 -6 -5 -4

----| --- -- -- --- -- ---

-3| 2x3 y3 z2 0 0 0

-3| 0 x3 0 2y3 z2 0

-2| 0 0 x3 0 y3 2z2

which is a representation of the matrix A2:2x3 y3 z2 0 0 0
0 x3 0 2y3 z2 0
0 0 x3 0 y3 2z2

 .

The numbers above and to the left are the twists of the summands in the
kernel sequence as in Example 4.5.5.
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Example 6.5.3. If you change the characteristic to positive, then the powers

routine computes the Frobenius pull-back instead. For example the following
produces the defining matrix for the Frobenius pull-back F∗F in character-
istic 3.

powers

characteristic: 3

variables: "x", "y", "z"

relations: z^5+x^5+y^5

matrix: {{x^3, y^3, z^2}}

spower: 3

exteriorpower: 1

The result is the following.

| -9 -9 -6

----| ----------- -- --

0| 2z5x4+2y5x4 y9 z6

It represents the matrix
(
x9 y9 z6

)
. Note that x9 = 2z5x4 + 2y5x4 because

of the relation and that x9 is not in the monomial basis that the program
chose, which is why a seemingly more complicated polynomial was output.

Also note that spower should be a power of the characteristic, otherwise
the output has nothing to do with Frobenius pull-backs. A value of spower: 9

would compute F2∗F .

With the kernel routine we can directly get global sections of the sheaf
Symq(Exts(F))(k) corresponding to a kernel sheaf F .

To use it provide an input file of the following form:

kernel

characteristic: 0

variables: "x", "y", "z"

relations: z^5+x^5+y^5

matrix: {{x^3, y^3, z^2}}

spower: 2

exteriorpower: 1

twist: 9

In this case we compute global sections of Sym2(Ext1(Syz(x3, y3, z2)))(9) over



104 CHAPTER 6. IMPLEMENTATION

Q[x, y, z]/z5 + y5 + x5. The output file will contain the matrix
−z2y

0
2yx3

−z2x
2y3x
z3yx

 .

The first line of the output file is 0 if there are no global sections. If you
specifiy the program option to compute the full kernel (with the option -f)
it will have the dimension of the space of global sections. By default it’s just
one if there is a global section.

The result for the full kernel will be
−z2y yx2 y3

0 2y3 −2x3

2yx3 2z3y 0
−z2x −x3 −y2x
2y3x 0 −2z3x
z3yx −zyx3 zy3x

 .

The columns are a generating set of minimal length for the global sections
in twist 9.

6.5.2 Notes on the polynomial format

The polynomials are output in a short form where an integer directly after a
variable means that that variable is taken to the power of the integer. So for
example -5z32y9x is the same as -5*z^32*y^9*x^1. If you prefer a longer form
there is a command line option (-p) for that. You can also enter polynomials
in short form in the input file if you want. The parser is relatively robust in
that regard.

You can input variables in many forms. The only restrictions are that
the first character has to be a letter from the alphabet and that a variable
descriptor can not be contained in full in another. So z_{0,1} is a totally fine
variable descriptor, for example.
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6.5.3 Command line options

There are several command line options to change the behavior of the pro-
gram or to change the output format.

verbosity The verbosity level from 0 to 3. The default is 1, 0 is silent unless
there is an error.

input-file Input file name.

output-file Output file name.

exterior-powers (-e) Set if you want to use exterior powers in the algo-
rithm, i.e. Theorem 4.4.2.

stop-unstable (-s) Stop immediately if a destabilizing section has been
found.

linear-progression (-l) Linear progression of powers instead of quadratic
increase of powers in the attempt to find destabilizing sections. Can
be used to make sure no lower powers with destabilizing sections are
missed.

pre-analyze (-a) Use a symbolical analysis step to capture symbolic rank
defects before the Gauß algorithm.

forceQ (-q) Force computations over Q (in characteristic 0). By default Z
is used where possible.

output-for-M2 (-m) Write output matrices in a format easily readable by
Macaulay2.

output-for-latex (-x) Write output matrices in a format easily usable in
LATEX[38].

compute-full-kernel (-f) Always compute the full kernels and not just
whether the kernel is nonzero.

long-form-polys (-p) Output polynomials in a less condensed format.
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Example 6.5.4. To compute the problem described in input.txt with high
verbosity, and output the polynomials in a longer format and stop as soon
as we find a destabilizing section we would execute the following command
on the command line.

stability --input -file="input.txt"

--output -file="output.txt" --verbosity =3 -p -s

6.5.4 Macaulay2 package

In addition to the usual way to access the program from the command line,
there is a Macaulay2 package that you can use for the same purpose. So far
this is mainly a proof of concept and the output is much less verbose. But
it should be easily expandable should the need arise.

Example 6.5.5. The following is a minimal working Macaulay2 code exam-
ple to use our library to decide semistability. To run it you need SheafSta-
bility.m2 and the sheafstability executable on the same path.

1 loadPackage "SheafStability";

2

3 R = QQ[x,y,z,MonomialOrder=>GRevLex]

4 I = ideal(z^5+x^5+y^5)

5 S = R/I

6 M = matrix {{x^3, y^3, z^2}}

7

8 x = computeSemistability(M)

In this case, since the corresponding kernel sheaf is semistable the variable
x just contains the value true.

If the result was that the sheaf is not semistable the variable x would
be a list with three entries. First the value false, then a hash table with
the keys ExteriorPower, SymmetricPower and Twist pointing to the location of
a destabilizing section and lastly a matrix containing an actual destabilizing
section.
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Mathematica, volume XI, pages 205–210. Academic Press, 1973.

[3] Holger Brenner. Tight closure and projective bundles. Journal of Alge-
bra, 265(1):45 – 78, 2003.

[4] Holger Brenner. Slopes of vector bundles on projective curves and appli-
cations to tight closure problems. Transactions of the American Math-
ematical Society, 356(1):371–392, 2004.

[5] Holger Brenner. Bounds for test exponents. Compositio Mathematica,
142, 01 2005.

[6] Holger Brenner. Computing the tight closure in dimension two. Math-
ematics of Computation, 74(251):1495–1518, 2005.

[7] Holger Brenner. Tight closure and plus closure for cones over elliptic
curves. Nagoya Math. J., 177:31–45, 2005.

[8] Holger Brenner. Continuous solutions to algebraic forcing equations.
arXiv:math/0608611v2, 2006.

[9] Holger Brenner and Paul Monsky. Tight closure does not commute with
localization. Annals of Mathematics, 171(1):571–588, 2010.

[10] Holger Brenner and Jonathan Steinbuch. Tight closure and continuous
closure. Journal of Algebra, 2019.

107

http://cocoa.dima.unige.it
http://cocoa.dima.unige.it


108 BIBLIOGRAPHY

[11] Holger Brenner and Jonathan Steinbuch. Deciding stability of sheaves
on curves. to be published, 2020.
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