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Abstract

Automatic three-dimensional (3D) building model reconstruction using remote sens-
ing data is crucial in applications which require large-scale and frequent building
model updates, such as disaster monitoring and urban management, to avoid huge
manual efforts and costs. Recent advances in the availability of very high-resolution
satellite data together with efficient data acquisition and large area coverage have
led to an upward trend in their applications for 3D building model reconstructions.

In this dissertation, a novel multistage hybrid automatic 3D building model
reconstruction approach is proposed which reconstructs building models in level of
details 2 (LOD2) based on digital surface model (DSM) data generated from the
very high-resolution stereo imagery of the WorldView-2 satellite. This approach
uses DSM data in combination with orthorectified panchromatic (PAN) and pan-
sharpened data of multispectral satellite imagery to overcome the drawbacks of DSM
data, such as blurred building boundaries, rough building shapes unwanted failures
in the roof geometries.

In the first stage, the rough building boundaries in the DSM-based building
masks are refined by classifying the geometrical features of the corresponding PAN
images. The refined boundaries are then simplified in the second stage through a pa-
rameterization procedure which represents the boundaries by a set of line segments.
The main orientations of buildings are then determined, and the line segments are
regularized accordingly. The regularized line segments are then connected to each
other based on a rule-based method to form polygonal building boundaries. In the
third stage, a novel technique is proposed to decompose the building polygons into
a number of rectangles under the assumption that buildings are usually composed
of rectangular structures. In the fourth stage, a roof model library is defined, which
includes flat, gable, half-hip, hip, pyramid and mansard roofs. These primitive roof
types are then assigned to the rectangles based on a deep learning-based classification
method. In the fifth stage, a novel approach is developed to reconstruct watertight
parameterized 3D building models based on the results of the previous stages and
normalized DSM (nDSM) of satellite imagery. In the final stage, a novel approach
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is proposed to optimize building parameters based on an exhaustive search, so that
the two-dimensional (2D) distance between the 3D building models and the build-
ing boundaries (obtained from building masks and PAN image) as well as the 3D
normal distance between the 3D building models and the 3D point clouds (obtained
from nDSM) are minimized. Different parts of the building blocks are then merged
through a newly proposed intersection and merging process.

All corresponding experiments were conducted on four areas of the city of Munich
including 208 buildings and the results were evaluated qualitatively and quantita-
tively. According to the results, the proposed approach could accurately reconstruct
3D models of buildings, even the complex ones with several inner yards and mul-
tiple orientations. Furthermore, the proposed approach provided a high level of
automation by the limited number of primitive roof model types required and by
performing automatic parameter initialization. In addition, the proposed boundary
refinement method improved the DSM-based building masks specified by 8% in area
accuracy. Furthermore, the ridge line directions and roof types were detected accu-
rately for most of the buildings. The combination of the first three stages improved
the accuracy of the building boundaries by 70% in comparison to using line seg-
ments extracted from building masks without refinement. Moreover, the proposed
optimization approach could achieve in most cases the best combinations of 2D and
3D geometrical parameters of roof models. Finally, the intersection and merging
process could successfully merge different parts of the complex building models.
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Zusammenfassung

Eine automatisierte dreidimensionale (3D) Gebäudemodell Rekonstruktion unter
Verwendung von Fernerkundungsdaten ist wichtig für Anwendungen, die umfangre-
iche und häufige Aktualisierungen von Gebäudemodellen erfordern, wie z.B. Katas-
trophenüberwachung und Stadtplanung, auch um großen manuellen Aufwand und
Kosten zu vermeiden. Die jüngsten Fortschritte bei der Verfügbarkeit geometrisch
sehr hochauflösender Satellitendaten in Verbindung mit deren effizienter Datener-
fassung und großflächigen Abdeckung, haben zu einer deutlichen Verstärkung der
Anwendungen für 3D-Gebäudemodell Rekonstruktionen geführt.

In dieser Dissertation wird ein neuartiger mehrstufiger hybrider automatischer
3D-Gebäudemodell Rekonstruktionsansatz vorgeschlagen, der Gebäudemodelle in
Detailstufe 2 (LOD2) auf der Grundlage von digitalen Oberflächenmodellen (DSM)
rekonstruiert, die aus sehr hochauflösenden (VHR) Stereobildern des WorldView-2
Satelliten generiert wurden. Dieser Ansatz verwendet DSM-Daten in Kombination
mit orthorektifizierten panchromatischen (PAN) und pangeschärften (PS) Daten
von multispektralen (MS) Satellitenbildern, um die Nachteile der DSM-Daten, wie
beispielsweise unscharfe Gebäudegrenzen, zu kompensieren.

In der ersten Stufe werden die groben Gebäudegrenzen in den DSM-basierten
Gebäudemasken verfeinert, indem die geometrischen Merkmale der entsprechen-
den PAN-Bilder klassifiziert werden. Die verfeinerten Grenzen werden dann in
der zweiten Stufe durch ein Parametrisierungsverfahren vereinfacht, welches die
Gebäudegrenzen durch einen Satz von Liniensegmenten repräsentiert. Anschließend
werden die Hauptausrichtungen des Gebäudes festgelegt und die Liniensegmente
entsprechend angeordnet. Die regularisierten Liniensegmente werden dann nach
einem regelbasierten Verfahren zu polygonalen Gebäuderändern miteinander ver-
bunden. In der dritten Stufe wird eine neuartige Technik vorgeschlagen, um die
Gebäudepolygone in eine Reihe von Rechtecke zu zerlegen, unter der Annahme,
dass Gebäude in der Regel aus rechteckigen Strukturen bestehen. In der vierten
Stufe wird eine Modellbibliothek von Dachformen definiert, welche Flach-, Giebel-,
Halbwalm-, Walm-, Pyramiden- und Mansarddächer umfasst. Diese Dachtypen wer-
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den dann den Rechtecken nach einer Deep Learning basierten Klassifikationsmeth-
ode zugeordnet. In der fünften Stufe wird ein neuartiger Ansatz zur Rekonstruk-
tion voll parametrisierter 3D-Gebäudemodelle entwickelt, der auf den Ergebnissen
der vorangegangenen Stufen und dem normalisiertem DSM (nDSM) aus Satelliten-
bildern basiert. Schließlich wird ein neuer Ansatz zur Optimierung der Gebäude-
parameter auf der Grundlage einer umfassenden Parameteroptimierung entwickelt.
Schließlich wird ein neuartiger Ansatz zur Optimierung der Gebäudeparameter auf
der Grundlage einer umfassenden Parameteroptimierung entwickelt. Hierbei wird
der zweidimensionale (2D) Abstand zwischen den 3D-Gebäudemodellen und den
Gebäudebegrenzungen (erhalten aus Gebäudemasken und PAN-Bild) sowie der 3D-
Abstand zwischen den 3D-Gebäudemodellen und den 3D-Punktwolken (erhalten aus
nDSM) minimiert.

Alle entsprechenden Experimente wurden auf vier Gebieten innerhalb der Stadt
München mit insgesamt 208 Gebäuden durchgeführt und die Ergebnisse qualitativ
und quantitativ ausgewertet. Die Ergebnisse zeigen, dass der vorgeschlagene Ansatz
3D-Modelle von Gebäuden recht genau rekonstruieren kann, und sogar komplexe
Gebäuden mit mehreren Innenhöfen und mehreren Orientierungen gut abbildet.
Darüber hinaus bietet der vorgeschlagene Ansatz einen hohen Automatisierungs-
grad durch die begrenzte Anzahl der erforderlichen Dachmodelltypen und durch
die Durchführung automatischer Parameterinitialisierungen und -optimierungen.
Darüber hinaus verbessert das vorgeschlagene Optimierungsverfahren die DSM
basierten Gebäudemasken um 8 % bezüglich der Flächengenauigkeit. Darüber hin-
aus wurden die Firstlinienrichtungen und Dachtypen für die meisten Gebäude kor-
rekt erfasst. Die Kombination der ersten drei Stufen verbesserte die Genauigkeit der
Gebäudebegrenzungen um 70 % im Vergleich zur Verwendung von Liniensegmenten,
die aus Gebäudemasken die ohne Verfeinerung extrahiert wurden. Schließlich kann
der vorgeschlagene Optimierungsansatz in den meisten Fällen eine sehr gute Kom-
bination von 2D- und 3D Geometrieparametern von Dachmodellen berechnen. Bei
komplexen Gebäudemodellen kann der vorgeschlagene Merging-Prozess die berech-
neten Gebäudeteile erfolgreich zusammenführen.
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1
Introduction

1.1 Motivation
Having access to accurate three-dimensional (3D) building models is becoming
highly demanded in various applications, such as urban planning, mobile commu-
nication network planning, mobile navigation systems, virtual tourism, cartogra-
phy and disaster monitoring. In urban planning, 3D building models can support
decision-making in urban development projects [1]. According to a report of the
United Nations (UN) organization [2], more than 68% of the world’s population will
live in urban areas by 2050, which highlights the growing needs for the development
of urban environments. In mobile communication network planning, 3D models can
help to generate the wave propagation models to guide the waves between trans-
mitters [3]. Navigation systems usually rely on two-dimensional (2D) maps in their
interfaces, which sometimes cause difficulties for the users when linking the maps to
the real environment. Thus, visualizing 3D building models in navigation systems
could assist users in previsualizing the situations [4]. In addition, 3D building mod-
els can be employed in disaster monitoring, as they provides a comprehensive view
of structures and activities leading to better and quicker responses [5].

The 3D building models have traditionally been obtained through topometric
surveys [6] or based on a geographical information system (GIS) and photogram-
metry approaches [7], which usually require huge manual effort and costs, and,
therefore, are not applicable to large-scale 3D building model reconstructions. In
addition, it is necessary to update urban models frequently which costs too much
using manual approaches. Altogether, the interest in moving from manual to auto-
matic 3D building model reconstructions has been growing over the last few years.
The availability of remote sensing data has increased recently due to efficient and
frequent data acquisitions and significant advances in the areas covered by aerial and
satellite images. The existing 3D building reconstruction approaches using remote
sensing data usually rely on optical imagery, laser data and radar data, together
with their products, such as 3D point clouds of stereo image matching [6].
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1. Introduction

These approaches detect the existing buildings in scenes and extract them from
the objects, such as cars, trees, roads and sidewalks, surrounding them. The ex-
tracted buildings are then reconstructed geometrically and their outlines are at-
tributed, leading to 3D building models [8]. Dense 3D point clouds, which can be
provided by airborne laser scanning techniques, such as light detection and ranging
(LiDAR) or satellite/aerial stereo image matching, allow easy discrimination of el-
evated objects (e.g. buildings) from their ground-level neighbors [9]. The dense 3D
point clouds are employed for building detection and extraction either directly or af-
ter being processed. Digital surface models (DSM), for example, which are derived
by applying interpolations to irregular dense 3D point clouds, have proved to be
more efficient than the direct use of dense 3D point clouds [10]. Symmetric neigh-
borhoods around 3D structured data points can be defined using the DSM of LiDAR
data and sharp linear features (e.g. building boundaries) can be extracted easily by
image-processing algorithms, such as morphological operators and gradient-based
edge detectors [10, 11, 12].

Although LiDAR provides accurate and direct 3D surface information, it cannot
represent the semantic information of the captured surfaces due to its sensor speci-
fications. In addition, the accuracy of the object boundaries extracted based on Li-
DAR data depends highly on the density of the point clouds. Dealing with these limi-
tations, a number of previous works proposed combining accurate height information
from LiDAR and accurate planimetric information from aerial images [13, 14, 15].
As an alternative to LiDAR data, highly overlapped aerial image sequences can be
utilized to generate dense 3D point clouds by applying stereo image-matching tech-
niques. It has been demonstrated that the qualities of the resulting point clouds
and the point clouds obtained based on LiDAR data are similar [16]. In addition,
it has been reported that the 3D point clouds derived from aerial imagery lead to
a reliable DSM, even though they suffer from a low degree of automation due to
occlusion, artifacts and errors during image-matching processes [17].

Despite producing dense and accurate 3D point clouds, the availability of LiDAR
data and aerial images is limited to a few specific locations in the world because
of restrictions in aerial data acquisition, authorization constraints and high acquisi-
tion costs. By contrast, satellite images provide a coverage of the whole globe with
a high acquisition frequency and fair acquisition costs. Furthermore, the rich se-
mantic information contents of satellite images can enhance building detection and
classification results [18].

The availability of satellite images with high spatial resolution has led recently
to an increasing interest in developing algorithms for 3D point cloud generation
by applying stereo image-matching techniques to the satellite images. Although
the 3D point clouds obtained from satellite images are generally less accurate than
those obtained from LiDAR data or aerial images, they are accurate enough for the
recognition and reconstruction of large buildings [19].

Extracting buildings and reconstructing their 3D models have been traditionally
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performed manually by human operators, which is an expensive and time-consuming
approach. Therefore, automatizing the whole process chain has been always a focus
of attention of many researchers over the past few decades [20]. Designing fully
automatic processing chains is a challenging issue due to the data types, scales being
used, the complexity of the buildings and the level of details required. Therefore,
semi-automatic approaches for 3D building model reconstruction are more feasible
and have been addressed by a number of previous research works [21, 22, 23, 24]. In
semi-automatic approaches, models are selected by operators and then computers
automatically fit the model to the image or 3D point clouds [21, 25]. The operators
can also intervene in the process by deleting errors and editing models. Although
this intervention improves the results, it increases the total elapsed time for 3D
building model reconstruction.

Many methods have been proposed by several recent research works to increase
the automation level and decrease the human interventions [26, 27, 28]. The existing
automatic 3D building model reconstruction approaches can be generally categorized
into model-driven, data-driven and hybrid approaches. Model-driven approaches
select the best fitting model to the 3D point clouds or DSM data from a building
library to represent the 3D model of buildings [26]. The differences between the
building model and 3D point clouds are calculated based on normal or vertical
distance. Nevertheless, data-driven approaches extract geometrical components (e.g.
lines, corners, planes) from 3D point clouds or DSM data provided and, subsequently,
consider some geometrical topology between these components to form 3D building
models [29]. Hybrid approaches integrate the two former approaches. In hybrid
approaches, a data-driven approach generally extracts the building roof features,
such as ridge/eave lines, and other prior knowledge for a subsequent model-driven
approach [30].

To the best of our knowledge, satellite images have been used by only a few
previous works for 3D building model reconstruction, despite their great advantages.
In other words, using satellite images for 3D building model reconstruction is an
active research topic which is still in its early stages. Additionally, there is still
considerable space for improving fully automatic approaches. In this dissertation, we
propose a hybrid automatic 3D building model reconstruction approach within the
level of details (LOD)1 and LOD2 (while LOD1 provides prismatic models generated
from the extrusion of building outlines in their 3rd dimensions, LOD2 includes roof
details, structures and textures). Consequently, we use DSM data obtained from
satellite imagery together with very high-resolution (VHR) panchromatic (PAN)
and multi-spectral (MS) optical satellite images.
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1.2 Research Challenges
We face a few challenges in reconstructing 3D building models based on satellite
imagery, including the problems caused by the image characteristics and the com-
plexities of scenes and building boundaries. The low pixel resolution in comparison
to aerial images (approx. 0.5 to 1 m PAN and 2 to 4 m MS images) and low signal to
noise ratio (SNR), and the wide baseline of the satellite images can particularly in-
fluence the accuracy of DSM data and, consequently, the accuracy of the automatic
building reconstruction approaches. The wide baseline, for instance, may lead to
accurate depth information through stereo matching but causes occlusion problems,
especially in very dense and complex urban areas.

Noise, artifacts, imperfections and mismatched areas in DSMs cause some gaps
particularly at the building boundaries [31, 32]. A number of previous works [33, 34]
have applied interpolation methods to DSM data in order to fill the gaps; however,
the results are still unsatisfactory due to the deficiencies of interpolation (e.g. de-
creasing sharpness of the building boundaries).

Furthermore, noise in DSM data makes discovering meaningful patterns from
neighboring pixels difficult. The geometric parameters (e.g. the slopes and nor-
mal vectors), for instance, of the neighboring pixels in the same roof plane can be
significantly different in some regions. In order to overcome these challenges, the
previous works [12, 32, 18, 35, 36] recommend combining DSM data with VHR
satellite images.

Urban scenes consist of a variety of objects, such as buildings, roads, sidewalks,
bridges, hedges, cars, and even rivers and lawns. Therefore, discriminating the
buildings from their surroundings to generate the building masks is a necessary and
preliminary step for 3D building model reconstruction. Two-dimensional ground
plans are typically used (if they are available for the areas) for this purpose or clas-
sification methods are applied to the scene image. The resulting masks derived from
classification methods usually suffer from imperfections, especially at the building
boundaries, because the objects neighboring the buildings, such as trees, disturb a
satisfactory detection of the building boundaries.

After recognizing the buildings, their corresponding parameterized boundaries
are determined as simplified building polygons, which are not always simple rectan-
gular shapes with one main orientation. Although it is conventionally assumed that
buildings have mutually perpendicular orientations, in reality, complex buildings
usually have more than one main orientation, which might be non-perpendicular.
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1.3 Research Contributions
The focus of this dissertation is to propose a fully automatic building extraction and
3D building model reconstruction approach using DSM data together with VHR
optical satellite images (orthorectifed PAN and pan-sharpened (PS) MS images) 1,
as shown in the first row of Figure 1.1. More specifically, a new building boundary
extraction method and 3D building model reconstruction method are proposed to
deal with the challenges mentioned previously:

• The building boundary extraction is performed on the building masks derived
from DSM data. We propose an approach based on VHR satellite images
(PAN images of the WorldView-2 satellite with 0.5 m resolution) to refine the
building masks, particularly at the building boundaries (the second row and
left side of Figure 1.1) to deal with the imperfections of the building masks. We
develop a heuristic approach for extracting parameterized building polygons
with multiple orientations from the refined building masks [37] (the third row
and left side of Figure 1.1).

• We propose a method based on deep learning for the classification of the roof
types into flat, half-hip, gable, hip, pyramid and mansard roof categories using
PS image data and footprints which are obtained from digital cadastral maps
as shown in roof type classification part in Figure 1.1. To generate training
and test patches, the cadastral footprint mask is used instead of the refined
building mask due to their great similarity, their availability in a large-scale
and being easy to use. The results of roof types classification are a later stage
used as preknowledge about the roof types and fused with height information
obtained from a DSM in a Bayesian framework to make the final decision about
the roof type (updated roof types in Figure 1.1). This knowledge combination
helps one to take advantage of both spectral and spatial information in the
classification of roof types [38].

• We propose a decomposition procedure for simplifying the reconstruction of
complex roof shapes which may contain different roof types. More precisely,
the buildings with complex shapes are decomposed into smaller blocks with
simpler rectangular shapes (decomposition and 2D rectangle models in Fig-
ure 1.1). The roof type is identified for each rectangle and a building model
is selected from a specified building model library (updated roof types in Fig-
ure 1.1). Overlaps between neighboring rectangles are considered to recon-
struct intersection parts of neighboring models (connecting roofs models) and,
consequently, have a continuous 3D model [39].

1To know about satellite sensor characteristic and the DSM based stereo satellite imagery
generation procedure in this dissertation please refer to Appendix A

5



1. Introduction

Figure 1.1: Workflow of the multistage hybrid 3D building model reconstruction.
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• The previous contributions provide preknowledge of roof parameters and lead
to the initialization of roof parameters. We introduce an approach for generat-
ing the 3D model of the buildings by performing an exhaustive search within
the building parameter space to find the best fitting 3D models to reach the
final 3D building model reconstruction. Searching the parameters is carried
out in two steps for 2D and 3D parameters in sequence [39]. While 2D pa-
rameters determine the building outlines, the 3D parameters define the planes
forming the 3D geometry of the buildings (fourth and fifth row of Figure 1.1).

1.4 Related Works
This section explains the three main steps of 3D building model reconstruction
approaches briefly, including building detection, outline extraction and model re-
construction, regarding the related previous works in the domain. The existing
methods are categorized into model- and data-driven methods for each step.

1.4.1 Building Detection
The preliminary steps in reconstructing 3D building models from remote sensing
data are detecting and discriminating building areas from other existing objects in
the image scenes, such as vegetation and roads.

1.4.1.1 Model-driven Approaches

In model-driven building detection approaches, a library consists of different building
model shapes is defined. The buildings are then detected and extracted by fitting
the building model from the library to the object in the scene of image or LiDAR
data. Extracted building shapes are limited to the pre-defined shapes in the library.

Zhou et al. [40] proposed a model-driven approach in which aerial images and
LiDAR data have been fused for building detection and extraction. In this approach,
a library including eleven 3D primitives is defined. These primitives are projected in
2D to define aspects and aspect graphs. In the aspect graph, nodes present the house
faces and arcs are described by the attributes which are formulated using coding
regulations. The object boundaries are firstly extracted from the aerial images
and then some descriptive features such as corners and lines are detected from the
boundaries. Then the aspects, aspect graphs, and coding regulations are created on
the basis of aerial image processing results and the results of LiDAR data processing.
Next, the aspects are co-registered with LiDAR data using a correlation operator.
By interpreting the aspects and aspect graphs, the houses are extracted and then
fitted using a planar equation to generate digital building models. In this method,
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data fusion is carried out in each process of house detection, which is called seamless
fusion. Fusing the aerial images and LiDAR data allows this method to combine
detailed information about the geometrical structure of buildings and the height
information for better detecting and discriminating buildings. Nevertheless, this
method fails to detect buildings when they are occluded by surrounding objects
(e.g., trees) or covered by less than three LiDAR footprint shots due to computing
three unknown fitting plane parameters.

Karantzalos et al. [41] developed a novel model-driven variational method to
enhance usual building extraction methods by considering shadows and occlusions
and consequently, narrowing the solution space by a novel grammar representation
and an energy formulation. They fused images and Digital Elevation Models
(DEM) to compute the grammar-based building priors. This method fails if the
existing buildings are not sufficiently described by the building models within the
used building library.

1.4.1.2 Data-driven Approaches

In data-driven building detection approaches, buildings are distinguished from other
objects by performing image filtering, segmentation and classification. Since these
approaches need no prior information of building structures, buildings with complex
shapes can be also detected and extracted.

Some data-driven methods have been proposed which apply a height threshold
to 3D point clouds to detect buildings as elevated objects. These methods extract
digital terrain models (DTM) and subtract them from a DSM to obtain the elevated
objects (e.g. buildings and trees). Weidner and Förstner [10] proposed a method
based on morphological opening to approximate the DTM. This method subtracts
the resulting DTM from a DSM to obtain a normalized DSM (nDSM) followed by a
sequential height thresholding. The resulting binary image is then analyzed regard-
ing the size of the connected components to remove the small segments, which are
presumably trees. However, using only the object size is not sufficient for separating
buildings from other objects. Some methods have been proposed which considered
the building roofs as planar surfaces, where their surface normal vectors are con-
stant or vary slowly. These methods compare the magnitude of the eigenvalues
obtained from covariance analysis of the 3D point clouds using a planarity criterion
to discriminate non-planar surfaces (e.g. trees, fences and poles) and planar surfaces
(e.g. ground and roof planes). They then perform connected component analyses
to separate the ground points from the roof plane points [42, 43].

Sun and Salvaggio [44] proposed a method to separate vegetation from roof
planes and terrain by applying a graph-cut segmentation method to the normal
vector calculated from the local neighborhood of the LiDAR data. The vegetation
areas are then discarded, and the roof planes are extracted using a novel hierarchical
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Euclidean clustering method.
A number of earlier works have used plane-based segmentation of 3D point clouds

to separate the roof plane class from the other classes [27, 45, 46, 47]. However, these
methods usually suffer from under-segmentation (e.g. considering a road connected
to a lawn in the same segment). Dealing with this problem, Gerke and Xiao [48]
proposed using images’ spectral (color) information in addition to the height infor-
mation of the 3D point clouds from LiDAR data. They further improved the seg-
mentation results by selecting optimum features and performing a pre-segmentation
process. Subsequently, the classification was performed using the segments obtained
from the previous step. In another work, Gerke and Xiao [49] used the combination
of height and spectral information further for segmentation-based region growing.
In order to distinguish buildings from other objects, they employed a supervised
classification, namely Random Trees (RTrees), and an unsupervised classification
approach embedded in a Markov random field (MRF) framework with graph-cut for
energy optimization.

Hermosilla et al. [50] proposed two approaches for automatic building extraction
and detection using high spatial resolution images and LiDAR data based on thresh-
olding and object-based classification. Building masks using the thresholding-based
approach were detected by intersecting an nDSM and vegetation masks obtained
from the normalized differenced vegetation index (NDVI). This process was fol-
lowed by morphological opening and closing operators to eliminate small objects
(i.e. noise). A region growing segmentation method was applied to the nDSM
data using the object-based classification approach. A decision-tree and a boosting
multi-classifier were then applied to the segmented areas to distinguish buildings
from other objects using four different features (spectral, texture, shape and height)
extracted from the multispectral image and nDSM data. The results showed that
the thresholding-based building detection performed better than the object-based
classification in different urban areas. Moreover, the former is less complex than the
object-based classification due to fewer thresholding parameters. Additionally, the
thresholding-based approach can detect buildings with a higher accuracy, especially
when its parameters are adjusted based on the type of urban landscape.

Lafarge and Mallet [27] classified four classes, namely, buildings, vegetation,
ground and clutter. Subsequently, suitable features, such as local non-planarity,
elevation, scatter and regular grouping, were extracted from laser-based 3D point
clouds or DSMs from multi-view stereo (MVS) imagery. An unsupervised clas-
sification was applied to the features mentioned previously based on a graph-cut
optimization in a MRF framework. The use of an energy model and its simplicity
allowed this approach to have promising results in large-scale urban areas. Addi-
tionally, this approach avoids local errors on the exterior border of classes (e.g. roof
planes, trees and ground) by using a planimetric arrangement procedure which can
arrange both geometric shapes (e.g. planes, cylinders, spheres and cones) and urban
components (e.g. ground, vegetation and roofs). Despite its advantages, this ap-
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proach does not perform well when the altimetric (height) accuracy and the density
of the 3D point clouds are low.

Rottensteiner et al. [51] proposed an approach in which they detected the initial
regions of the buildings by using a DTM and DSM generated from the LiDAR data
and NDVI computed from MS information. They then applied an unsupervised
classification based on the Dempster-Shafer theory [52, 53] to the initial building
regions in order to detect building areas. The Dempster-Shafer theory can handle
the union of classes and mixed pixel problem (i.e. different land covers have similar
spectral information) better compared to other classification methods. Thus, this
approach can achieve satisfactory results for the buildings with very inhomogeneous
shapes. However, the accuracy of the results depends greatly on the size of the
buildings and the resolution of LiDAR data.

Bittner and Reinartz [54] proposed a method which applies fully convolutional
neural networks (FCN) to the nDSM of VHR satellite imagery. This method can
extract complex buildings without any prior assumption about building sizes and
shapes. Nevertheless, it cannot detect low rise buildings and sharp boundaries per-
fectly. As an improvement, using spectral information, such as PAN and MS im-
ages, can help to overcome these deficiencies [18]. Krauss et al. [19] proposed an
approach in which they firstly discriminated the ground level and elevated objects
using the nDSM data of VHR satellite imagery. The buildings were then extracted
from the surrounding patterns and clutter based on advanced rule-based fuzzy spec-
tral classification on PS VHR satellite images (WorldView-2) followed by a height
thresholding.

In this dissertation, the data-driven approach proposed by Krauss et al. [19] is
used at the beginning to detect buildings and generate building masks for further
developments and processing. This approach is privileged due to its fast and fully
automatic procedure in generating building masks. It takes advantage of PS VHR
satellite imagery in the classification procedure and the height information from
the DSM data generated based on the stereo matching of the PAN bands of the
satellite images. Figure 1.2(b) shows an exemplary classification result of the pro-
posed method applied to the WorldView-2 satellite imagery acquired from an area
in Munich, Germany.
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Figure 1.2: (a) Exemplary image covering an area of 2500m × 2000m in central Munich ac-
quired by the Worldview-2 satellite, (b) classification of the image using the proposed approach by
Krauss et al. [19]

1.4.2 Building Outline Extraction
After detecting buildings, their 2D outlines are extracted to be used in 3D building
model reconstruction. Building outline extraction comprises three main steps: 1)
Detecting the points (pixels) on building boundaries, 2) reducing the detected points
to retrieve only the relevant edges for generating the building polygons, and 3)
regularizing the polylines to enforce parallelism and rectangularity which are typical
constraints in man-made structures.

Detecting buildings based on DSM data results in a set of connected compo-
nents. The pixels on the boundaries of their components can be traced to extract
building polygons. Since the process of converting point clouds to DSM data re-
quires an interpolation step, the height jumps on the building outlines are usually
smoothed, which affects the accuracy of building boundary detection. In order to
avoid the smoothing effect, depending on the data types (e.g. DSM and 3D LiDAR
point cloud), different methods have been suggested, such as extracting boundaries
directly from point clouds and fusing DSMs or point clouds with auxiliary data (e.g.
high spatial resolution images). In order to extract boundary pixels directly from
point clouds, the 3D points are projected onto a horizontal plane, and then a 2D
Delaunay triangulation is employed to find the correspondences between the neigh-
boring points. The triangle vertices which are not neighboring to any other triangle
are then considered as the building edge points [55]. As an alternative method for
triangulation, Matei et al.[56] and Verma et al. [42] used a ball-pivoting algorithm,
which grows a seed triangle using a ball with a fixed radius. It pivots the front edge
of the current active boundary until the geometry and topology of the whole ob-
ject is captured. The results are the triangles generating the mesh. This algorithm
can extract a complete boundary in a time-efficient manner; however, the generated
mesh surfaces could suffer from holes in the places where sample point densities
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are low. Similarly, the alpha-shape algorithm, which has been used by a number of
previous works [46, 57, 58], generates building roof outlines.

In order to extract building boundaries by fusing DSMs and high spatial res-
olution images, firstly, the rough building boundaries from DSMs are extracted.
Then the Hough transform [59], random sampling consensus (RANSAC [60]), ac-
tive box [32] or other model fitting methods are applied to the building edges on
the high-resolution images to extract line segments. Finally, the rough boundaries
from DSMs are enhanced by the line segments [37, 32]. The building boundaries
extracted usually contain numerous jagged edges. Therefore, as the next step, a
polygon simplification method is employed to reduce the number of edges and keep
the most relevant ones. The polygon simplification methods are categorized into
model- and data-driven approaches.

1.4.2.1 Model-driven Simplification Approaches

These approaches simplify polygons based on rectangular structures.
Gerke et al. [61] proposed a hierarchical method to fit rectilinear polygons to
building boundaries. This method computes the main orientation of each building
and fits a rectangle to the building outline based on its main orientation. After
that, it iteratively subtracts the fitted rectangle from the building mask and fits a
new rectangle to the remaining parts until the whole building area is covered by
the rectangles. Although this method performs well for rectangular buildings, it
fails for the non-rectangular ones. Dutter [62] proposed a similar method based on
the minimum bounding rectangle (MBR). As opposed to the previous method, this
method can fit polygons to the outlines of the buildings with T, L and Z shapes.
Arefi et al. [63] proposed a method based on a combined MBR (CMBR) (which
has been introduced mainly for the regularization of non-rectilinear polygons) and
RANSAC which can compute the outlines of complex buildings, such as the build-
ings with non-perpendicular edges. Kwak [15] proposed a recursive MBR (rMBR),
which is similar to the method proposed by the previous authors; however, it deals
with boundary points instead of building masks. In addition, the iterative rectangle
fitting can be stopped according the required level of details. All the methods
mentioned previously need predefined main orientations of buildings. They also
continue rectangle fitting until they cover the whole building area and remove small
rectangles with areas smaller than a threshold. Janja Avbelj et al. [64] proposed
an improvement to iterative MBR (iMBR) by introducing a cost function on the
basis of Euclidean distance to compute the number of iterations automatically.
Furthermore, resulting building polygons were refined by finding the rectilinear
building polygons in the sense of a least-squares (LS) method.

Brédif et al. [65] developed a method for extracting building boundaries directly
from DSMs without any building detection step. Rectangular building outlines were
extracted from DSM data using a marked point process of rectangles. The optimum
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configuration of the rectangles was then found based on reversible-jump Markov
chain Monte Carlo (RJMCMC) [66] coupled with a simulated annealing algorithm.
This optimization process minimizes an energy function which fits rectangle edges to
the height discontinuities of the DSM data and penalizes overlaps of different objects.
As a next step, the rectangle edges were elongated to intersect each other and form
line segments. A graph of the line segments was then generated. Finally, the line
segments supporting the rectangle edges were arranged using a graph-cut technique
to create the final building outlines. Since the resulting boundaries are jagged, this
method needs a post-processing step for the generalization and simplification of the
boundary lines. The advantage of this method is that it requires no preprocessing
step for building mask extraction.

Sirmacek et al. [32] proposed a method to extract building boundaries from DSM
data of high and low resolution satellite images using a novel active shape detection
approach. Their proposed method detects building junctions and endpoints from
building skeletons. The buildings are then divided into various pieces and a box-
fitting algorithm is run on each piece, starting from the building piece’s center point.
The active rectangular shape grows until an energy function, considering the distance
between the rectangle and a set of previously extracted canny edges, is minimized.
This algorithm can approximate building shapes even if the building edges are not
completed or closed; however, it is very slow and not very satisfactory for large and
complex buildings.

1.4.2.2 Data-driven Simplification Approaches

These approaches simplify polygons through reducing the vertices of the polygons’
line segments. The Douglas Peucker (DP) algorithm [67] is a well-known polygon
simplification method which can be employed for building outlines [58]. In order
to simplify the outline of a building, it starts from the furthest connection between
the building outline vertices. Among the other vertices, the vertex with a distance
greater than a threshold to this connection is taken. This step is repeated till a
complete simplification of the polygon is obtained. A problem with this method is
the presence of outliers in the final result. Furthermore, if the original points are
missing, this method cannot recover them since the vertices obtained are a subset of
the original points. This can affect the final results greatly, especially at the critical
points (e.g. corners).

Vosselman [68] used a sequential algorithm to approximate building boundaries.
In this algorithm, firstly, the connected components of all the points of the building
roof faces are determined. After that, a boundary line is defined based on the first
two points of the contour of each connected component. This line is then updated
using the succeeding points until the distance of the succeeding point to the line
exceeds a threshold. A new line is then initialized by the last point of the line
already extracted. The extraction of the new line is the same as the previous one
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and its direction is perpendicular to the previous line. The final line segment is
positioned between the outermost and average points. Kada and Wichmann [58]
extracted the boundaries of building segments using a method based on 2D alpha-
shapes. Since the boundaries extracted by the alpha-shapes method are very jagged,
they are generalized and simplified by the DP algorithm. A quadratic LS adjustment
is then applied to the remaining line segments and to the discarded points from the
DP algorithm. Dorninger and Pfeifer [46] simplified the resulting polygons from
alpha-shapes by considering the angular deviation between subsequent segments. If
the angular deviation is smaller than a threshold, the segments are assigned to the
same line segment. Afterwards, the mean angular deviation of the line segment is
calculated and compared to the angular deviation of its subsequent segment. This
process is terminated when the difference between the mean angular deviation and
the angular deviation of the subsequent segment is larger than a threshold.

Sampath and Shan [69] proposed a modified version of the Jarvis March algo-
rithm [70] based on the convex hull (CH) approach to trace the segment boundaries
of sets of points. The algorithm starts by selecting the left-most point as a boundary
point. The point which has the smallest angle with the previously selected bound-
ary point within a local neighborhood is then selected as the next boundary point.
This procedure iterates until the first point is visited again. The performance of
this approach depends on the neighborhood used in the tracing process. Similar to
the previous approach, Orthuber and Avbelj [71] used an iterative CH collapsing
procedure to create a polygonal boundary of roof segments. Each line segment of
the CH is refined based on a minimum distance measure. The collapsing stops when
the line segment is shorter than a directional-based threshold. This threshold is
defined based on the LiDAR point spacing in across-track and along-track sampling
directions.

Similar to the previous approaches, Zhou and Neumann [72] considered a grid on
point clouds. The LiDAR points which are close to the grid sides are then taken as
boundary points. Because the segments boundaries are generated independently, a
gap between neighboring planes can result in missing some of the planar segments.
To overcome this problem, Rottensteiner et al. [11] used a Voronoi diagram of the
planar segments to create boundary polygons. The advantage of this method [72] is
that after marking cells as background or object, the grid is treated as a monochrome
image and, therefore, a morphological operator can remove artifacts. Morgan and
Habib [73] employed a global approach, such as the Hough transform algorithm
which extracts straight lines through identification of the peaks in the Hough space.
The straight lines are then intersected to form the building polygon.

As another global approach, Sester and Niedhart [74] used the RANSAC algo-
rithm to extract building outlines from LiDAR data. Inspired by this work, Guercke
and Sester [75] later proposed a new method which employs the Hough analysis in-
stead of RANSAC for extracting line segments. Chen et al. [76] detected the initial
building outlines by the canny edge detector [77] on the raster form of LiDAR point
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clouds data. They then employed a 2D line-tracking technique with a length thresh-
old to filter the short lines. The remaining lines (rough edges) were refined through
the Hough transform algorithm which detects lines in the image space.

1.4.2.3 Building Outline Regularization

Man-made structures, such as buildings, typically follow certain principles and shape
regularities. Nevertheless, the simplified building polygons are usually irregular and
include short line segments with large direction variations. Therefore, a number of
building boundary regularization methods have been proposed by previous works
based on main orientations of building.

Vosselman [68] intersected the adjacent building faces obtained from LiDAR
data to determine the main building orientations. If the adjacent faces have no
intersection, the main orientation was extracted from building contours. Alharthy
and Bethel [78] estimated main orientations of building using a histogram of angles
computed from cross-correlation matching between building footprint images and a
rotating template for every two degrees, starting from 0 to 360. All line segments
are only allowed to be either parallel or orthogonal to the main orientations deter-
mined for building boundary regularization. Regarding line segment generalization,
firstly, a histogram of the boundary points is obtained in parallel and orthogonal
orientations to the main orientation of the building. The boundary points are then
clustered as belonging to the same lines if they are more than a threshold in the
limited space.

Sampath and Shan [69] used a threshold to classify all boundary lines as being
parallel or perpendicular to the main orientations of building, which are commonly
taken as the orientation of the longest line segments [79]. The boundary lines are
then aligned according to their class using a LS adjustment algorithm. Similarly,
Sester and Neidhart [74] improved the extracted line segments from the RANSAC
method by applying a LS adjustment on all connected points. An overall LS es-
timation is performed to have a closed polygon by imposing right angle and par-
allelism constraints. Since the parallelism constraint is introduced, if the angles
are adequately close, the non-rectangular building polygons can also be extracted.
Dorninger and Pfeirfer [46] regularized line segments by enforcing parallelism and
orthogonality to the main orientations of building.

Zhou and Neumann [72] used a statistical analysis on the tangent directions for
all boundary points in local neighborhoods and built direction histograms. The his-
togram peaks showed the principal directions of the buildings. The line segment and
neighboring segment are then aligned to the principal orientation. Similarly, Kada
and Wichmann [58] oriented the line segments using a histogram of orientations. A
histogram of discrete directions in modulo 45◦ was generated in which the number
of points composing each line segment was considered as weight values. The paral-
lelism and perpendicularity to the main orientation of building was then enforced
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to the lines whose angular deviations to one of these conditions (i.e. parallelism and
perpendicularity) were below a threshold.

1.4.3 3D Building Model Reconstruction
After detecting buildings and extracting their boundaries, their 3D models are cre-
ated using building model reconstruction approaches. The existing approaches can
be categorized based on different aspects, such as the geometric shape of building
models (e.g. generic or parametric models), data sources, their degree of automa-
tion (e.g. manual, semi-automatic or fully automatic) and their data processing
strategies (data-driven, model-driven or hybrid).

1.4.3.1 Model Reconstruction and Geometric Shapes

Regarding the geometric shape, building model reconstruction approaches are cate-
gorized into parametric and generic ones. The parametric approaches use a number
of predefined model primitives, including the rectangle, gable, hip, L-shape, I-shape
and T-shape, with a fixed set of variable parameters, such as orientation, position,
height, and length and width of rectangles. Since building shapes are usually irreg-
ular and complex, building model reconstructions using predefined model primitives
is challenging. In contrast to the parametric approaches, for the generic ones, model
primitives are not predetermined. In these approaches, modeling cues such as cor-
ners, edges and planes are extracted based on feature extraction algorithms, which
allow them to reconstruct the buildings with irregular shapes. However, since there
is no prior knowledge of the building shapes available, generic approaches perform
poorly when building parts are occluded by nearby objects (e.g. trees, cars), which
is a common problem in urban areas.

There are generally two groups of generic approaches that are based on prismatic
or polyhedral models [55]. The prismatic-based approaches represent each building
shape by a polygon and a height value for each polygon edge. These approaches
cannot represent the roof structures. The polyhedral-based approaches represent
roof structures as planar patches or curved surfaces [80]. They model internal ge-
ometric relations between roof components by intersecting the polygonal patches.
Both groups of generic approaches model only a single building at a time and do
not consider building blocks with internal geometric and topological relationships.
Constructive solid geometry (CSG) is an approach for dealing with buildings which
have complex shapes [25, 81]. It models complex buildings by integrating different
simple model primitives of the parametric approaches. Building boundaries can be
easily driven from the CSG models. Boundary representation (B-rep) is another
approach to present complex building models which are defined by nodes and edges
from intersecting planar faces [25, 81]. A set of topological relations is determined
to connect faces, edges and vertices.
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1.4.3.2 Model Reconstruction and Various Data Sources

The 3D building model reconstruction approaches extant use various data sources,
such as aerial images, VHR satellite images, point cloud acquired from LiDAR data
or driven from stereo image matching, and 2D ground plans. Some studies have
been conducted using a combination of these data sources to use their advantages.
Walls and shadows are usually utilised together with the direction of sun and camera
models to reconstruct 3D building models from a single image [82]. These approaches
depend greatly on selecting hypotheses based on line segments detected from a single
image and the use of shadow information, which are not reliable. Therefore, these
approaches usually fail to find reliable hypotheses in noisy datasets. Dealing with
these issues, stereo or multiple images are used to generate 3D point clouds or DSMs
through image-matching processes. Baillard et al. [83], for example, extracted 3D
building features (i.e. lines and planes) through image matching to reconstruct 3D
building models.

Building model reconstructions using the height values of DSMs generated by
stereo image matching is influenced by occlusion, illumination (shadow and reflec-
tion), surface material or texture, object geometry and anomalies of the surface
heights [33]. By contrast, LiDAR data provides high-density 3D point clouds that
avoid the limitations of stereo matching and are beneficial for 3D planar patch de-
tection; however, the discrete and irregular distribution of the points can cause the
low geometrical accuracy of the building models in break lines, such as large dis-
continuities, ridge lines and the building boundaries [84]. In addition, due to the
irregularity of its resulting 3D points, the information on the building edges is usu-
ally missing due to the irregularity of its resulting 3D points. In order to generate
more accurate building models using LiDAR point clouds or DSMs of stereo im-
agery, they are usually integrated with additional data sources [12]. Furthermore,
geometric assumptions on building shapes (e.g. parallelism, rectangularity, symme-
try) are usually considered for solving the geometrical problems of the extracted
building outlines caused by the limitations mentioned previously [74, 69]. Brenner
[85] proposed utilizing GIS datasets from cadastral maps (CM) as auxiliary data
in building reconstruction approaches. The ground plans not only help to detect
outer roof face edges accurately, but also reveal information about the structure of
a building’s roofs. Suveg and Vosselman [86] proposed a 3D building reconstruction
method that combines aerial images, 2D GIS datasets and domain knowledge. The
authors in [81, 87] integrated LiDAR data and a 2D ground plan to determine the
main orientations of building and improve the outlines of roof faces.

Although 2D ground plans reduce the search space in reconstruction processes,
they suffer from some deficiencies, such as being outdated, incomplete and mis-
aligned with other remotely sensed datasets. Dealing with these problems, it has
been proposed to integrate DSM or LiDAR data with aerial or satellite imagery
[11, 12, 31, 32, 37, 50, 76, 88, 89, 90].
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Rottensteiner et al. [11, 51] computed edges from aerial images and used them
to improve the geometric quality of the initial boundary polygons extracted from
LiDAR data. Cehn et al. [76] reconstructed 3D building models from the accurate
3D edges provided by the Split-Merge-Shape (SMS) method in [79]. First of all, they
extracted initial building edges from LiDAR data using a canny operator and a 2D
line-tracking method. They then employed a Hough transform to compute straight
edges within the image space. Finally, they obtained 3D edges in the object space
based on exterior orientation parameters, given the image coordinates and the height
information from 3D planes. Awrangjeb et al. [89] integrated LiDAR data and MS
imagery for automatic 3D roof extraction. They extracted lines (e.g. roof edges and
ridge lines) from the gray scale of VHR ortho-aerial imagery. The lines extracted
were then used as baselines to detect the nearby LiDAR points of neighboring planes.
Using the non-ground LiDAR points close to the baselines, a robust region seed was
selected for each plane and its nearby region was iteratively grown to extract the
complete roof plane. Finally, a rule-based procedure was applied to remove the
planes belonging to non-building objects. Habib et al. [88] integrated aerial imagery
and LiDAR data for reconstructing 3D building models. They adjusted initial model
primitives derived from LiDAR data by detecting edges from stereo aerial imagery.
Sirmacek et al. [32] proposed a novel active shape detection to extract building
boundaries from the DSM of satellite imagery. They also extracted ridge lines from
DSMs by calculating derivatives over DSMs. The Harris corner detection algorithm
was then applied to the PAN images of the roof (except the ridge lines) to extract
the roof polygons. Arefi et al. [12] used orthorectified PAN images to improve the
ridge lines derived from the DSM of satellite imagery. They extracted surface normal
and regional maxima from DSMs and edge information by applying the canny edge
detector on PAN images.

Inspired by the previous approaches, a new parametric CSG based approach
is proposed in this dissertation to reconstruct 3D building model from DSMs of
satellite imagery which has low quality. Additional data sets such as high spectral
and spatial resolution satellite imagery are used to overcome the deficiencies of the
DSM in 3D building modeling. This approach refines building masks based on high
spatial resolution MS satellite images (e.g. WorldView-2 images). Subsequently, it
employs a novel building boundary delineation method to extract building polygons
from the refined building masks [37]. In addition, a new decomposition method
is proposed to decompose complex building shapes into rectangular shapes using
the extracted building outlines of the previous step. After that, the roof types are
distinguished based on a deep learning classification method applied to PS images.
Furthermore, the ridge lines of the buildings are detected during the model fitting
process based on DSMs and using the neighborhood relations between models.
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1.4.3.3 Model Reconstruction and Different Automation Levels

Developing fully automatic approaches is in high demand for 3D building model
reconstruction. Although a number of fully automatic 3D building model recon-
struction approaches have been proposed recently [26, 91], these approaches do not
usually achieve promising results due to the data types, the scale being used, the
object complexities and the level of details required. They typically require pre-
and postprocessing steps. Therefore, various semi-automatic approaches have been
proposed which allow users to intervene manually in failure cases by, for example,
selecting building model types [21, 24].

1.4.3.4 Model Reconstruction and Data Processing Methods

The 3D building model reconstruction approaches can be categorized into model-
driven, data-driven and hybrid approaches. Model-driven approaches define a li-
brary of parametric models. The topological relations between model primitives are
fixed and their geometrical relations are evaluated through fitting the models into
selected point clouds. By contrast, data-driven approaches do not make any as-
sumption about building shapes, which make them more flexible for reconstructing
complex building models compared to the model-driven ones. They only consider a
number of constraints and rules on rectangularity and parallelism [29, 92]. A draw-
back of data-driven methods is that any incompleteness of point clouds arising from
shadow, occlusion or any other missing information, results in incorrect models. In
practice, hybrid 3D building model reconstruction approaches are normally used to
combine the flexibility of data-driven approaches and the robustness of model-driven
approaches [8, 30].

1.4.3.4.1 Model-driven Methods

Model-driven approaches use parameterized model libraries and determine
the best fitting roof models to point clouds. These approaches normally utilize
additional data, such as a footprint, to decompose the roofs into the basic ones
for the roofs with complex shapes. Furthermore, building footprints can help to
localize the region of interest on images and point clouds to reduce the search
space and focus on building regions. They also help the decomposition of complex
roofs by providing hypotheses. If the footprint is not accurate enough, the building
boundaries extracted, as described in Section 1.4.2, are employed [93].

In footprint decomposition, complex roofs are decomposed into simple rectangu-
lar structures, the so-called building primitives. Position, orientation and horizontal
extension of roof primitives are defined by the rectangle, and type, height and slope
of the building primitives need to be determined [81]. Suveg and Vosselman [86]
performed footprint decomposition through partitioning and selecting the best par-
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titioning based on the minimum description length (MDL) principal. Kada and
McKinley [94] proposed a method to decompose building footprints into small sets
of nonintersecting quadrilateral-shaped polygons, the so-called cells. Adequate sub-
set of lines which are long enough in an assumed buffer are found for their proposed
methodology and extended infinitely. Later, Henn et al. and Zheng et al. [95, 96]
used a similar footprint decomposition method. Vallet et al. [97] introduced a de-
composition method based on minimizing an energy function in the roof area with
height discontinuities using DSMs of aerial imagery. They also proposed a greedy
search to merge neighboring cells with a low gradient in their common edges. La-
farge et al. [98] decomposed the rectangles extracted [99] during the regularization
process by transforming neighboring rectangles into sets of connected quadrilateral
or triangles by incorporating neighboring rectangles. They then found the best
configuration of the neighboring rectangles by the simulated annealing technique.
The final quadrilaterals are more partitioned by detecting the height discontinuities
from their inner DSM. Arefi and Reinartz [12] decomposed footprints into rectan-
gles based on ridge lines detected from satellite nDSMs and canny edge points of
orthorectified PAN images. Zheng et al. [30] decomposed building footprints into
sub-footprints by detecting the step edges from canny points on the nDSM of LiDAR
data. They then decomposed the sub-footprints by the ridge lines identified using
watershed analysis and stream order algorithms from the nDSM of LiDAR data and
VHR aerial images.

Parametric models describe roof primitives in libraries. They are created
by using a few parameters, as shown in Figure 1.3. Suveg and Vosselman [86]
defined a set of basic building roof primitives, such as flat, symmetrical gable
and non-symmetrical gable roofs. They reconstructed the buildings with complex
roofs by integrating multiple primitives using CSG tree fitting. Lafarge et al. [26]
developed a rather large library to enhance its generalization ability and reconstruct
buildings with a wide range of roof shapes. Their library consisted of two parts:
The roof shapes (including monoplane, multiplane and covered roofs with specific
paramters) and the ending form of the roofs (including hipped and straight). They
also presented the roof orientation with respect to the 2D outlines [98]. In order
to reconstruct the buildings with complex roof shapes, they proposed a method
based on the structural concept which put the primitives in a way similar to the
LEGO kit. Poullis and You [100] defined nine roof primitives for a single building,
such as flat, gable, hip, pyramid, mansard and saltbox, by varying the scales of
width and length of building rectangles. They also introduced a flexible polygonal
primitive for reconstructing the buildings with complex roof shapes. Since this
method optimizes the model for the entire building as a single object, it reduces the
number of parameters and results in watertight roofs. Huang et al. [101] defined
a simple primitive library with a low number of parameters to have more efficient
reconstructions. Their library also contained planar shapes with a rectangular
footprint. Their library contained single-plane roofs (e.g. flat and shed roofs)
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Figure 1.3: Parametric gable model (coordinate origin (Xθ, Yθ), orientation (θ), slope of roof plane
(α), length (L), width (W ), heights of gutter/eave (Hgutter/eave) and ridge lines (Hridge))

and multiplane roofs, such as hip, pyramid, half hip, gable, asymmetric, mansard,
gambrel, Dutch gable and salt-box. They also employed a merging strategy to
reconstruct non-rectangular footprints. Henn et al. [95] proposed a hierarchical
structured roof model with prototypical roofs, as defined in City Geography
Markup Language (CityGML) LOD2. Hierarchical structured roof models start
from single and multiplanes. Flat and shed roofs are located in the single plane
category and gable, hip and pyramid roofs are located in the multiplane category.
The 2D parameters of the model, such as position and orientation, are computed
from footprints. They used the minimum number of points in each plane for the
initialization of the 3D parameters, such as heights and slope of the roof. A gable
roof, for instance, can be determined by two points with different heights. Simple
models from a defined library are selected for each cell obtained from footprint
decomposition for reconstructing complex roofs [94]. Later, Zheng et al. [96]
introduced a similar roof library which contained seven roof types in a hierarchical
manner. In this library, the roofs are categorized into single-plane roofs (including
flat roof) and multi-plane roofs such as gable, cross gable, intersecting, hip, half
hip and pyramid roofs. Zheng et al. [30] defined a library which contained flat
and shed roofs, cone and cylinder roofs and six commonly seen types of sloped
roofs, such as gable, cross-gable, intersecting, hip, half-hip and pyramid roofs.
Nguatem et al. [102] introduced a library of the gable, hip and mansard roofs.

Roof model selection is the process of fitting models into point clouds and se-
lecting the most appropriate model from a library, which minimizes a cost function.
Several methods have been proposed for model selection and estimation. Mass and
Vosselman [103] proposed a new method for gable roof reconstruction by computing
their parameters using the analysis of invariant moments of the 3D point clouds of
LiDAR data. The information on the roof type and shape parameters is computed
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by using the heights of the point clouds as weight functions in moment equations.
Haala et al. [81] estimated roof plane parameters by segmenting the DSM of aerial
images and analyzing the surface normals and ground plane orientations of the
segments. They determined the roof types according to the number of segments.
Zheng et al. [30] used a similar approach, subsequently, for roof type identification,
in which the root mean square error (RMSE) between the DSM and corresponding
points from the candidate roof model determines the quality of reconstruction. Su-
veg and Vosselman [86] proposed a method based on a combination of aerial images,
2D GIS databases and domain knowledge. They generated a number of hypothe-
ses by fitting models to images using an iterative LS method and CSG tree, where
the hypotheses were the nodes of the tree. The model parameters were estimated
through the fitting process and the model with the maximum mutual information
to the image was selected. Kada and McKinley [94] determined the roof type of
each resulting cell from the decomposition step by computing the percentage of
normal vector orientations from LiDAR points of each cell and comparing them to
the possible shapes of roof faces. Poullis and You [100] presented an extendable
parameterized geometric primitive for the automatic identification of building roof
types in the modeling process from airborne LiDAR data. The roof model parame-
ters were determined using a nonlinear bound-constraint minimization. During this
optimization, a Gaussian mixture model (GMM) was used to detect and exclude
outliers from the fitting plane, where the parameters of GMM were estimated us-
ing an expectation-maximization (EM) algorithm. Lafarge et al. [26] proposed a
stochastic method for reconstructing 3D building models from the DSM of satellite
imagery (PLEIADES satellite data simulations with resolutions of 0.7 m). They
used a Bayesian algorithm based on RJMCMC to decide the building model which
best fitted the DSM data. Huang et al. [101] utilized generative statistical mod-
els to reconstruct 3D building models from LiDAR data. The method finds the
optimum combination of parameters by a stochastic search. Nguatem et al. [102]
proposed a method to fit building models to 3D point clouds using sequential im-
portance sampling (SIS). The model fitting was performed within a Bayesian frame-
work and the solutions were found using a sequential Monte Carlo (SMC) approach.
Henn et al. [95] proposed a strategy for 3D building reconstruction from a small
number of LiDAR data points. This method estimates roof parameters by fitting
the roof models and estimating their parameters by M-estimator sample consensus
(MSAC). It determines the most probable roof model by a support vector machines
(SVM). Zheng and Weng [96] proposed a method based on LiDAR data and building
footprints. They computed some morphological and physical parameters from each
cell resulting from the building decomposition step. They then applied a decision
tree-based classifier to these statistical features to classify the building footprints
into seven roof types. According to the roof type, they calculated the roof model
parameters based on the statistical moments of the points within the cells.
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1.4.3.4.2 Data-driven Methods

Data-driven approaches extract roof segments from data and then delin-
eate building boundaries. They then determine the topologies of the adjacent
segments by detecting ridge lines, step edges and intersection lines. Next, they
generate roof topology graphs in which the nodes are segments and the edges
are labeled according to the topology determined between the segments. Finally,
they reconstruct the 3D roof models based on the topology graphs. Data-driven
approaches use subsequent regularization steps to ensure the simplicity, parallelity
and orthogonality of the final models. In contrast to the model-driven approaches,
the data-driven ones are highly flexible in reconstructing complex buildings and
rooftop superstructures given dense enough datasets. Nevertheless, the reconstruc-
tion quality depends on the algorithms being used for the roof plane segmentation.
Furthermore, these approaches are sensitive to occlusions.

Most of the efforts in data-driven roof model reconstruction have been focused
on the roof plane segmentation [27, 42, 87]. The point cloud segmentation meth-
ods, such as surface growing [58], triangulation irregular network (TIN) grow-
ing [103, 73, 71] and surface fitting techniques [104], turn roof surface points into
planar, cylindrical and spherical structures [105]. Surface growing methods start
from selected seed points and compare their properties to those of their adjacent
points, expanding the region of planar segments around the seed points to the sim-
ilar adjacent points. According to how the seed points, the adjacent points and the
similarity between them are selected and calculated, various segmentation methods
have been proposed in the literature [11, 43, 44, 87].

Vosselman and Dijkman [87] proposed a surface growing method to segment the
building point cloud into homogenous patches called roof planar segments. In this
method, 3D Hough transform is applied to the neighboring points of a random point.
A seed surface is then determined where the neighboring points of the random point
are on a plane (planar). The seed surface is extended by the adjacent points lying
at a predefined distance from the plane. The surface is grown iteratively until no
more points can be added to the seed surface. The parameters of the final plane
are calculated by fitting a plane to all the seed surface points using a LS technique.
Elberink and Vosselman [23] and Xiong et al. [28] used this method to obtain roof
planes from LiDAR data points. Rottensteiner et al. [11] suggested extracting roof
planes initially by means of region growing segmentation and considering the local
homogeneity of surface normal vectors of DSMs. Thereafter, co-planar roof segments
were merged based on the Fisher distribution (F-distribution) ratio for each pair of
neighboring planes. Verma et al. [42] proposed a method which fits the planar
patches to the roof points identified and merges them based on the normal of the
surface patches.

Dorninger and Pfeifer [46] proposed a new method that selects the seed points
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by applying a hierarchical clustering algorithm to the feature space defined by four
parameters of local regression planes. The points are added to a cluster if their
distances to the fitted plane are within a certain threshold. Sampath and Shan [43]
analyzed the eigenvalues of each building points in their Voronoi neighborhood to
calculate the normal vectors and separate LiDAR points into planar and non-planar
points. A fuzzy k-means clustering is then applied to the normal vector of the
planar points. Finally, parallel and co-planar segments are separated based on the
connectivity and distance conditions. Kada and Wichmann [58] proposed selecting
seed points randomly and with a low RMSE distance from a locally estimated
plane for them. The seed surface is then grown if the perpendicular distance of
the adjacent points to the plane and the angle differences between the segment’s
normal vector and the locally estimated normal of the point are below a certain
threshold. Sun and Salvaggio [44] proposed selecting seed points with the smallest
curvature values. The difference between the direction of normal vectors of the seed
points and their neighboring points are calculated to grow roof planar regions.

Triangulation irregular network (TIN) growing is a segmentation method which,
in contrast to the surface growing methods, allows the segments to grow into
continuous shapes. Mesh models are then combined with region growing algorithms
to extract planar patches. In contrast to the surface growing algorithms, TIN-based
region growing algorithms start from a triangle instead of a seed point, which
speeds up the region growing algorithm, since each triangle consist of several points
with the same label [71].

Surface fitting techniques, in which RANSAC and Hough transform are the
most well-known methods, are also used for segmentation. The RANSAC is an
iterative and non-deterministic algorithm which can fit the best planes to 3D point
clouds. It has been suggested by a number of previous works for detecting roof
planes [29, 85, 104, 106, 107, 108, 109, 110, 111]. The Hough transform approach is
usually applied to both raster and vector data for detecting 2D and 3D geometric
primitives (e.g. 2D and 3D lines, circles, ellipses, 2D and 3D planes). In terms of 3D
point clouds for building reconstructions, it can be employed for detecting ridges,
building boundaries and 3D roof planes. Overby et al. [112] and Sohn et al. [113]
utilized the 3D Hough transform to detect planes iteratively from building point
clouds. Furthermore, Rau and Lin [79] used 2D Hough transform for detecting
planes indirectly from the projection of 3D point clouds. This approach has been
extended by Rabbani and Van den Heuvel [105] for the extraction of other geometric
primitives (e.g. cylinders). Jibrini et al. [114] proposed an automatic 3D building
reconstruction process from high-resolution aerial stereo-pairs and 2D CMs. Their
approach is based on two main processes: Extracting roof planar hypotheses by
3D Hough transform on a fuzzy-based DSM and repositioning the cadastral 2D
segments in 3D using the planar hypotheses obtained from the previous step and
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image contrasts.

Once the planar roof point segments are available, roof boundaries can be
extracted from the boundary points of the segments. Polyhedral building models
can then be reconstructed by generalizing and adjusting the roof boundaries [20].
However, the resulting boundaries are usually irregular and consist of short line
segments with high orientation variability that cannot be used for modeling.
Regularization procedures are applied to the extracted boundaries to reduce these
irregularities (i.e. to minimize and to simplify the polygons with fewer vertices).
The previous research works mentioned are reviewed in Section 1.4.2.

After detecting the roof segment regions, the adjacency between them is deter-
mined for modeling. Verma et al. [42] considered two roof segments to be adjacent
if their edges are close enough. Sampath and Shan [43] suggested calculating the
minimum distance of all possible combinations of the points between two segments
and define it as the distance between the segments. Milde et al. [115] calculated the
perpendicular distance between the points of two segments and the segments’ inter-
section lines. Elberink [116] and Xiong et al. [28] determined an intersection line for
the adjacent segments by considering a threshold for the length of the intersection
line.

Ridge lines and step edges can be extracted regarding planar segments,
adjacency and topological relations. Intersection lines (ridge lines) indicate the
connection between two adjacent roof segments, while step edges correspond
to the positions of maximum height changes and height discontinuities between
neighboring segments. The step edge between two segments can be determined
by analyzing the height differences on an orthogonal profile to the boundary
of the segments [11]. Elberink [116] detected step edges by analyzing 2D and
3D relations between the adjacent segments which have no intersection line.
Sohn et al. [113] developed a step line extractor, the so-called compass line filter
(CLF), which tracks all boundary points with height discontinuities on the adjacent
clusters on the TIN. This process continues with thinning and computing the
directions of the step edge lines. Rottensteiner and Briese [117] computed the
intersection lines as the lines with the smallest RMSE of the edge pixels between
two adjacent segments. Arefi and Reinartz [12] combined the DSMs of satellite
imagery with the edge information from orthorectified PAN images to obtain
high quality ridge lines. They extracted ridge lines by RANSAC. The ridge lines
and the step edge lines are used in the next step to determine a roof topology graph.

Roof topologies have to be determined to identify the relationships between roof
planes, which can be represented as roof topology graph (RTG) [23, 42, 110, 115]
or adjacency matrix [43]. Verma et al. [42] determined roof topologies based on
the direction of the projected normal of the polygons on X-Y planes. Elberink [23]
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and Milde et al. [115] labeled the edges of graphs based on the geometry of roof
segments (e.g. same/opposite normal directions, convex/concave, tilted/horizontal).
Schwable et al. [118] discovered topologies by projecting roof points orthogonal to
the main orientation of the roof planes obtained based on the bin analysis of height
histograms and ground plans. Ridge lines in the 2D projections are detected to
construct the topology and generate the roof planes.

Using roof segments, boundaries, intersection lines, step edges and roof topology
graphs are necessary components for constructing polyhedron models. Mass and
Vosselman [103] proposed generating vertical wall planes from all outlines where
their heights were determined by intersecting them to the roof planes. This method
has been extended later by Vosselman [68] for the presence of step edges between
buildings. Rottensteiner et al. [11] combined roof polygon segments by checking
the consistency between pair-wise polygons. If the intersection line of two segments
changes the direction of one of the segments, a step edge is inserted between the end
points of common lines of the two segments. Dorninger and Pfeifer [46] proposed
adding a step edge in the case of no closed roof boundary. Zhou and Neumann [119]
proposed a novel method named 2.5D dual contouring, which estimates the vertices
of building polygons in grid cells overlaying the segmented LiDAR points in the x-y
plane. In this method, building polygon vertices are estimated by minimizing their
distances to the boundary lines, which separate different LiDAR segment points in
each grid cell. Sun and Salvaggio [44] proposed a similar method to [119] which can
model complex roof shapes including non-planar roof segments; however, it cannot
recognize the step edge within one height level of roof, which causes imperfections in
the modeling of superstructures. In order to remedy this deficiency, Orthuber and
Avbelj [71] added detailed segmentation to the dual contouring approach. Addition-
ally, they employed an adaptive 2D dual contouring approach to consider step edges
between segments within one roof height level. Lafarge and Mallet [27] segmented
3D point clouds by assigning labels to the points (e.g. roof, ground). They then used
a MRF algorithm for label propagation on a grid under some geometric constraints.
The propagation was restricted by 3D lines, which were extracted from the segments.
The final model was then reconstructed by mesh patches created by triangulation
of the grid cells containing the roof points. Taillandier and Deriche [120] proposed
an automatic building reconstruction method based on multiple aerial images. This
method considers planes as primitives and determines their arrangements using a
3D graph of the facets, where its nodes represent initial facets and the edges indicate
that the adjacent nods belong to at least a common hypothesis of a building. Maxi-
mal cliques of the graph provide all hypotheses of the buildings. The best hypothesis
is then selected using a Bayesian algorithm. Taillandier [111] introduced a 3D build-
ing reconstruction method for large and dense urban areas based on CM and aerial
images. They considered fixed slopes (45◦) for the corresponding planes to gutter
(eave) segments. This method was improved later by Durupt and Taillandier [121]
by extracting planes from DSMs using RANSAC and extracting principal directions
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based on CMs, which helped to extract the principal orientations. This method
builds a 3D graph considering all possible models, where the best model is then
selected by a Bayesian algorithm.

The methods based on RTGs or adjacency matrices model roof shapes through
matching the step edges and intersection lines of RTGs with a target graph which
consists of a set of very simple roof types. These methods model complex roof
shapes by putting the simple roof shapes through sub-graph matching processes
[42]. Milde et al. [115] utilized formal grammar, which is used to express valid roof
types on the roof primitive shapes selected based on sub-graph matching, to recon-
struct complex roofs as a combination of several primitive roof shapes. Elberink
and Vosselman [23] defined a larger number of model shapes in the target graph
library compared to the previous works. In this method, the incomplete segments
that do not fit an existing target roof topology are corrected by human operators.
Peara and Mass [8] suggested using cycle graphs to represent 3D corners better.
Xiong et al. [122] used the simplest target graphs in a predefined library to make
the complex building modeling more efficient. Furthermore, they introduced a graph
edit dictionary containing pairs of erroneous sub-graphs of the roof topology graph
and their corresponding corrected sub-graphs to correct the errors of the RTG au-
tomatically.

Roof boundaries, intersection lines and step edges derived from point clouds are
usually noisy, causing ambiguities at corner points and forming closed polygons.
Therefore, these features are rectified by enforcing orthogonality and parallelism to
dominant orientations [46] or by using 2D ground plans [87, 85, 116]. In addition,
if any three planes intersect at more than one point, this method regularizes the
3D model by merging them into a single point considering that they are closer
than a certain threshold. [46]. Rottensteiner [123] used geometric regularization
as a soft constraint in the intersection of vertices and walls for estimating building
parameters. Verma [42] enforced certain regularities, such as symmetries of the faces
which share a ridge segment parallel to the outline in parametric models, to improve
the appearance and accuracy of building models in the presence of noisy data.
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1.4.3.4.3 Hybrid Methods

Hybrid approaches follow “hypothesize and verify,” thereby combining data-
driven and model-driven approaches [55, 15, 81]. First of all, hypotheses are
formulated from primitives generated by data-driven approaches, and then these
hypotheses are verified by model-driven approaches. In this way, these approaches
combine the flexibility of the data-driven approaches and the robustness of the
model-driven ones [15]. Sirmacek et al. [32] reconstructed building models based on
DSMs of satellite imagery. They reconstructed complex roofs by detecting building
junctions and endpoints from building skeletons. They divided the buildings into
several pieces and applied a active box fitting algorithm to each piece to extract
building outlines. Next, they detected ridge lines based on derivatives of the DSM
data in different directions and then filtered the results. In the next step, they
identified the tower and other superstructures on the rooftops by employing a
height threshold. Finally, they classified the roof types based on building ridge lines
and outlines and they reconstructed the 3D building model together with the tower.
Lin et al. [109] proposed a new hierarchical method to decompose and reconstruct
low-rise buildings from 3D point clouds of ground-based LiDAR data. Their
method segments building point clouds into the walls, roofs and columns. It then
decomposes 3D building point clouds into the basic blocks by introducing planarity,
symmetry and convexity constraints and grouping the connected primitives. Arefi
and Reinartz [12] proposed a novel side projection method applied to the DSM of
WorldView-2 images for reconstructing building models. This method projects the
3D points on 2D planes in the direction of ridge lines. In order to extract ridge
lines, DSMs of satellite imagery are combined with the edge information from VHR
orthorectified PAN images and RANSAC line fitting is then employed. Subse-
quently, the buildings are modeled as hipped, gable or flat roofs. Wang et al. [110]
proposed a method based on the semantic decomposition of LiDAR point clouds
and MS aerial imagery. They used the graph adjacency between planar patches and
their normal direction to create attributed graphs. The latter are then decomposed
into sub-graphs where the antisymmetric planar patches exist. The sub-graphs
are then used to recognize the roof type primitives. After that, 2D corners are
extracted from aerial images corresponding to the primitives selected and the final
models are reconstructed using nonlinear LS under some constrains obtained from
LiDAR data and aerial images. Zheng et al. [30] proposed a method based on
LiDAR DSMs, which selects the roof types using the aspect value of the pixels
within the sub-footprints obtained from the building decomposition step. An
appropriate model is selected from the library and placed on the sub-footprints to
reconstruct 3D building models using regular sub-footprints. For a reconstruction
using irregular sub-footprints, they are decomposed by the ridge lines and then
extruded by the height values from LiDAR DSMs. This method can produce 3D
models of complex buildings at LOD2 for an entire city.
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1.4. Related Works

A comparison of existing methods for 3D building model reconstruction are sum-
marized in Tables B.1, B.2 and B.3.

1.4.4 Summary

In summary, most of the methods mentioned previously (especially the data-driven
ones) use LiDAR data or the DSM of aerial imagery, which provide denser and more
accurate information in comparison to the DSM of satellite imagery. Nevertheless,
we use the DSM of satellite imagery in this dissertation, which allows us to recon-
struct 3D building models in more different and larger areas compared to the LiDAR
or aerial images. In order to deal with the lower resolution and SNR of the DSM
of satellite imagery, we use it together with high spatial resolution PAN images in
building outline extraction and PS images (a fusion of PAN and MS images) in roof
type classification. Our building model reconstruction approach is a hybrid method
that brings the flexibility of the data-driven and the robustness of the model-driven
methods together. Furthermore, it allows the use of DSM data directly without any
refinement process. Our approach is similar to the ones proposed in [12, 26, 32] who
used the DSM of satellite imagery for building model reconstructions. However, it
differs from Lafarge et al. [26] regarding the building boundaries extraction, size of
the libraries used, roof type classification and 3D building reconstruction methods.
They extracted building boundaries using only the DSM of satellite imagery without
any high spatial image information. Furthermore, they used a larger library than
the one we propose and employed only DSM data for roof type classification, which
could increase the reconstruction error. They used RJMCMC algorithm jointly with
a simulated annealing optimization algorithm to select roof types and fitting roof
models to the 3D point clouds to avoid falling into a local minimum in parameters
continuous search space, which is comparable to our modified exhaustive search in
finding the global maximum in predefined parameters of discrete search space. In
addition, our work is different from Arefi and Reinartz [12] regarding the boundary
extraction and model reconstruction steps. They employed the CMBR technique for
boundary extraction, which could fail in the buildings with multiple orientations.
Moreover, they utilized a method based on ridge line extraction in the reconstruc-
tion step, which could fail in the roof areas with a low image contrast and poor DSM
data. Simacek et al. [32] improved the outline extraction of [12] to handle boundary
extraction of the buildings with multiple orientations. However, they used similar
features (e.g. ridge lines) as [12] for the reconstruction step, which has the same
drawbacks as the approach by [12]. The work of Dudan and Lafarge [124] is differ-
ent from our method regarding the level of details of the reconstructed models and
the model representation. They only reconstructed the mesh-based models of the
high-rise buildings with flat roof type (LOD1).
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1. Introduction

1.5 Thesis Overview
The objective of this research is to present fully automatic building extraction and
model reconstruction by integrating model-driven and data-driven strategies while
taking advantage of using high spatial resolution satellite images and DSMs. Firstly,
the DSM-based building mask is refined by classifying the geometrical features of
the VHR PAN satellite images. Chapter 2 describes our proposed methods for
refining the DSM-based mask and presents a new heuristic method for extracting
parameterized building outlines. Chapter 3 propose a new side-based method for
the decomposition of the building polygon into the basic rectangular shapes. In
Chapter 3 we further propose a new method for the selection of the relevant rectangle
among abundance rectangles obtained from the previous step. Chapter 4 introduces
a new method for the selection of the roof type based on the patch-wise deep learning-
based classification using PS images. Chapter 5 proposes a model-driven method to
reconstruct a 3D building model from the DSM of satellite imagery. In this chapter,
we develop a new method to detect the height discontinuities and decompose the
rectangles obtained from Chapter 3 based on these height discontinuities and also
roof types. Chapter 5 makes further final decisions about the roof types by fusing
the classification results obtained from Chapter 4 and the DSM in the Bayesian
formula. This chapter also presents a robust method to detect the ridge orientation
based on the local maximum of the DSM within the rectangles and the neighborhood
relation of the rectangles. After all the initialization mentioned above, a roof model is
selected and fitted to the DSM within a rectangle using Huber distance cost function
by an exhaustive search approach in a tight range for each roof model parameter.
The reconstructed rectangular building models are finally intersected and merged
to also reconstruct complex buildings and indicate them in a CSG representation.
Chapter 6 summarizes and concludes this dissertation and discusses directions for
future research.
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2
Building Boundary Extraction

Building boundary extraction is a key step for automatic 3D building model recon-
struction if the building footprint is not available. As we mentioned in Chapter 1,
the DSM data suffers from imperfections and causes difficulties in detecting and
extracting buildings. In this chapter, an improved framework is introduced, in
comparison to the existing approaches, focusing on the refinement of DSM-based
building masks and simplification of the building outlines extracted. We use the ad-
vantages of DSM data while remedying its imperfections by integrating DSM data
with high spatial resolution PAN images to improve the building masks, especially
at the building boundaries. The framework introduced concentrates on the DSM
derived from satellite data, where the DSM quality is low. Using the refined masks,
we further develop a novel automatic method for an optimized extraction and sim-
plification of building outlines. The main steps of our proposed method are shown
in Figure 2.1.

In this chapter, Section 2.1 describes the mask refinement step (the blue blocks
in Figure 2.1). Regarding the mask refinement, building boundaries are enhanced
by applying a classification method (Section 2.1.3) to the primitive geometrical fea-
tures of their corresponding high-resolution PAN images (Section 2.1.2). Section 2.2
then explains the newly developed data-driven procedure for parameterized build-
ing outline extraction and simplification (the green block in Figure 2.1). In order
to extract a building’s outline, the building boundary points are traced on its cor-
responding refined mask and a set of line segments is fitted to them (Section 2.2.1).
The line segments obtained are then regularized by finding the building’s main orien-
tations (Section 2.2.2) and assigning all the line segments to their appropriate main
orientations based on arc length differences between main orientations and line seg-
ments. Line segments are then aligned to their assigned main orientations based
on LS adjustment (Section 2.2.3). As the final step, the sequential line segments
are connected based on a set of rules (Section 2.2.4). The proposed methodology is
applied to the different datasets and the results will be discussed in Section 2.3 for
validation.
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2. Building Boundary Extraction
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Figure 2.1: Overview of our proposed building outlines extraction method.
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2.1. Building Mask Refinement

(a) (b)

Figure 2.2: (a) DSM-based building mask. (b) Building mask after refinement.

2.1 Building Mask Refinement

In this dissertation, the building masks are generated based on the DSM of satellite
imagery using the method explained in [19]. As illustrated in Figure 2.2. (a), this
DSM-based building mask presents rough building boundaries. Some patterns and
objects, such as shadows and trees, are incorrectly considered as building elements
due to their similar characteristics or heights. Therefore, a preprocessing step is
needed to eliminate these small noisy objects. Firstly, considering the minimum
possible building size in the images provided, the groups of building points from the
DSM-based masks which are smaller than a threshold are removed. The threshold
in our experiments is set to 300 pixels, because at the 0.5 m resolution of our
PAN images, we assume only buildings that cover areas larger than 75 m2. A
preprocessing step based on morphological filters is then performed to make the
building mask large enough to cover the probable missing building edges and some
surrounding areas, which will be used later as negative samples for the classification
phase.
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2. Building Boundary Extraction

2.1.1 Morphological Filtering of the DSM-based Mask
Mathematical morphology consists of a set of image processing operations that are
used to extract the image components useful in the representation and description
of the shape of the region, such as boundaries, skeletons and CHs. Pesaresi and
Benediktsson [125] used morphological filters to process remotely sensed data. The
basic mathematical operations are dilation and erosion. Dilation adds pixels to the
boundaries of objects in an image (Equation 2.1), while erosion removes pixels on
object boundaries (Equation 2.2). The number of pixels added or removed from
objects in an image depends on the size and shape of the structuring element. The
structuring element should be selected based on the knowledge about the size, shape
and orientation of objects which are to be filtered in an image.

The structuring element can be selected as a disk, a square, or a cross. The
dilation of BI by the structuring element SE is defined by:

BI ⊕ SE =
⋃

se∈SE
BIse, (2.1)

where the erosion of the binary image BI by the structuring element SE is
defined by:

BI 	 SE =
⋂

se∈SE
BI−se (2.2)

Opening and Closing are the most important morphological operators derived
from erosion and dilation. Opening preserves the foreground pixels of regions that
have a similar shape to the structuring element or that can contain the structuring
element completely, while removing all other regions of foreground pixels. In contrast
to Opening, Closing fills all the background pixels of a region that does not contain
the structuring element.

The opening of BI by SE is obtained by the erosion of BI by SE, followed by
dilation of the resulting image by SE,

BI ◦ SE = (BI 	 SE)⊕ SE (2.3)
The closing of BI by SE is obtained by the dilation of BI by SE, followed by
erosion of the resulting image by SE,

BI • SE = (BI ⊕ SE)	 SE (2.4)
Since building masks should be refined on the boundaries, DSM-based and

footprint-based masks are compared on the building outline. Pixels at the building
outline are then labeled as positive, whereas non-building samples are labeled as
negative (Figure 2.3). Consequently, we apply a morphological Opening followed by
a Closing to the mask with the structuring element for the Opening larger than that
of the Closing. This enlarges the mask enough to take both positive and negative
samples. We use a disc with a diameter of three pixels for Opening and a disc with
a diameter of two pixels for Closing.

34



2.1. Building Mask Refinement
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Figure 2.3: Illustration of building and non-building pixels as positive and negative pixel labels,
respectively

2.1.2 Primitive Feature Extraction

Each pixel within the masked area of PAN images is described by a vector of its im-
portant features using the scale invariant features transform (SIFT) method to clas-
sify image regions into building and non-building [126, 127]. The reason for using a
SIFT feature descriptor rather than other feature descriptors, such as pixel intensity
(intensity histogram (InHist)) and texture (Weber local descriptor (WLD)) [128], is
its capability to extract linear geometrical structures, such as line and corner, and
its robustness against the noise which exists in PAN satellite image [129]. Another
reason is that they are invariant to image scale, rotation and illumination changes.
In the experiment, SIFT feature descriptors are extracted in a dense manner for each
pixel of building and non-building. The SIFT generates 16 orientation histograms
on the 4× 4 neighborhood of the pixels of interest. Each histogram consists of eight
bins, corresponding to eight different directions. These histograms are concatenated
forming a feature vector with 128 elements.

2.1.3 Feature Classification

In this step, extracted features are classified to improve the building mask on the
building outline. Using SIFT feature descriptors and then classification of them for
the purpose of building mask refinement are developed in this research that have
not been represented in previous researches. To this end, 30 % of the building and
non-building candidate pixels in each image are randomly sampled as positive and
negative samples, respectively, to discriminate the area covered by buildings from
the rest of the image. We then train the SVM on the sample points. The SVM
classifier has been used in many applications, such as remotely sensed data classifi-
cation, during the past decade. It is very attractive to provide high accuracy in the
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2. Building Boundary Extraction

presence of heterogeneous classes for which only a few training samples are avail-
able. It also has a good performance using a high dimensional features space. Please
refer to appendix C for more mathematical details. In the experiments, the model
parameters of SVM classifier are selected empirically by varying the parameters and
validating the resulting model on a small set of the sample points. The parameters
leading to the best model are then considered for further experiments.

2.1.4 Mask Postprocessing
The SIFT descriptors are highly sensitive to building edges compared to the other
building features (e.g. patterns on rooftops). Since SIFT is computed for a window
of size 16x16 pixels, the pixels within an eight-pixel distance (i.e. half the SIFT
window size) of building edges still contain edge information. Thus, these pixels are
usually classified into the positive class forming building silhouettes with precisely
determined contours. However, the pixels within building areas which are too far
from building edges to contain building edge information are usually classified into
the negative class. This results in gaps within building boundaries. Figure 2.4. (b),
shows a sample classification result in which the positive class is depicted in bright
green and the negative class in dark green and red, where dark green refers to
the gaps within building boundaries. Therefore, after discriminating the regions
covered by buildings, we perform a morphological Closing (with a disc of three
pixels diameter) followed by a gap filling method (with a threshold of 400 pixels)
to fill in the small imperfections and gaps within the building boundaries, the dark
green areas in Figure 2.4. (b). The resulting refined masks will be used further in the
building outline extraction process. Figure 2.2. (b) and Figure 2.4. (b) demonstrate
building masks after refinement. Although there are still small gaps in the building
areas, since they do not usually lie on building edges, they will not influence the
results of the building outline extraction.

2.2 Building Outline Extraction and Simplifica-
tion

In this section, we model the refined building masks as polygons to extract pa-
rameterized building outlines. The refined masks approximate the true position
of the building boundaries, as our experimental results have shown (Section 2.1).
Therefore, tracing the boundary points of a building according to the refined mask
allows us to detect the building’s outline. Consequently, we use the modified Moore-
Neighbor tracing algorithm [130] which detects boundary points in a consecutive
manner. Moore-Neighbor tracing is an efficient algorithm to extract the contour of
any pattern no matter what its connectivity is. It starts scanning from the top-
left position and scans each pixel from left to right downwards. When a pixel of
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2.2. Building Outline Extraction and Simplification
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Figure 2.4: (a) Original PAN image and (b) its refined mask, bright and dark green areas, together
with the areas removed from the mask, red areas.

contour is found, the contour is traced by checking the eight neighbors, named
Moore-Neighbors, and the possibility of having another pixel of contour. The neigh-
bors are checked in a clockwise manner. Every time a pixel of the contour is found,
clockwise sequence tracing is started from the pixel that has been entered to the
currently detected pixel of the contour. This algorithm is repeated till the first pixel
of the contour is visited again. This stopping criterion is called the Jacob-Eliosof
criterion. After extracting the boundary points, a consecutive line-fitting procedure
based on the combination of RANSAC and LS adjustment is applied to each group
of the boundary points to extract line segments.

2.2.1 Line Segment Extraction
A complete overview of the process chain followed for this step is depicted in Fig-
ure 2.5, which starts with an initial group of three consecutive boundary points.
The RMSE distance of a next consecutive point is then measured from the last
point of the initial group. If the RMSE is less than a predefined threshold, the point
will be grouped with the previous point. Otherwise, it will be used for initiating a
new group and a line is fitted locally to all the points within the previous group.
The line is centered at the mean of the points and is extended in the directions of
the points’ principal eigenvector, with the scale determined by the corresponding
eigenvalue to the principal eigenvector. This process iterates until all the boundary
points are represented by line segments. The line segments shorter than five pixels
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Figure 2.5: Line segment extraction process.
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2.2. Building Outline Extraction and Simplification

are then removed, because at the 0.5 m resolution of our PAN images, a building
length cannot be smaller than five pixels. This method was initially developed by
Vosselman [68]. In our research, we improved this method and make it flexible for
any direction. The direction of the new group of points, for instance, does not have
to be perpendicular to the previous group and it can accept any direction. The
line segments need to be regularized due to the irregular shape of the structures
formed by the remaining line segments caused by the existing noise and artifacts.
Figure 2.6. (a) illustrates the extracted line segments for an example building.

2.2.2 Line Segment Regularization
We determine the main orientation of each building to refine the line segments ex-
tracted. A conventional assumption is that buildings have mutually perpendicular
orientations. However, complex buildings usually have more than one main orien-
tation, which might be non-perpendicular. In this dissertation, we develop a new
method that considers multiple main orientations for each building, regardless of
the perpendicularity of the orientations. We determine the building’s main orien-
tations based on the length of the line segments and their arc lengths. We select
the orientation of each building’s longest line segment as the building’s main ori-
entation. The other line segments which are either parallel or perpendicular to
this main orientation will be grouped together. We measure the arc lengths of the
longest line segment and the other line segments, based on a predefined threshold
(five pixels in our experiments), to check the parallelism and perpendicularity. With
this threshold, the angle distance would be smaller than 20◦, which is a good as-
sumption for parallelism. The longest of the remaining line segments in the next
iteration is selected to determine another main orientation of the building. This
process iterates until all line segments are grouped with a main orientation of the
building. Figure 2.6. (b) shows three main orientations of the building depicted by
magenta, green and blue colors. The assignment of the other line segments to these
three main orientations is demonstrated in Figure 2.6. (c).

In addition to the orientations of the line segments within each orientation class,
their locality is also important. In other words, the line segments within each class
should also lie in the same neighborhood. However, as illustrated in Figure 2.6. (c),
there are a number of line segments misclassified due to the presence of noise and
artifacts. The line segments l1, l2, l3 and l4 in Figure 2.6. (c), for example, should
be assigned to the magenta orientation class, whereas l5 should be assigned to the
blue orientation class. Dealing with this problem, we verify the main orientation
assigned to the line segments in each neighborhood and assign the misclassified line
segments to a correct orientation class. Figure 2.7 represents the main steps of this
procedure.

We start by splitting each building into several segments (CHs) by extracting
the points on the skeletons of the building masks. The points are then placed at
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Figure 2.6: (a) Extracted line segments for an example building. (b) Three main orientations of
the building depicted by magenta, green and blue colors. (c) Assignment of the line segments to
the building’s main orientations. (d) Splitting the building into several CHs. (e) Extracted line
segments after regularization and adjustment. (f) Outline of the building after intersecting and
connecting the line segments.
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Figure 2.7: Process chain of the line segment regularization, where CH denotes a convex hull and
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2. Building Boundary Extraction

a five-pixel distance from each other and the ten nearest neighboring line segments
are selected for each point and a CH is fitted (please refer to Figure 2.6. (d)), where
the number of nearest neighbors are determined empirically. The orientations of the
line segments in each CH are compared and the probability of every existing main
orientation class ci is computed as:

p(ci) =
∑
j lij∑

i

∑
j lij

, (2.5)

where lij indicates the length of the line segment j which belongs to the orientation
class ci. If the probabilities of the existing main orientation classes in a CH are close
enough, no change will be imposed. Otherwise, all the line segments will be grouped
into the main orientation class with the largest probability.

2.2.3 Line Segment Adjustment
A further goal is to adjust the line segments within each orientation class to align
them as either parallel or perpendicular to the main orientation of the class, based
on their arc lengths to the main orientation. Therefore, the line segment adjustment
problem can be seen as fitting a rectilinear to the points of the line segments in the
sense of LS method. This is a minimization problem which finds the best parameters
of the line segment by minimizing the distance between the observations (building
boundary pixels) and rectilinear building polygon. In addition, it can align the line
segments based on their class orientation at the same time. The relation between
observations and parameters are defined in the functional model. More than one
functional model is needed in the Cartesian coordinate system to minimize the
distance between the building boundary pixels and rectilinear building polygon.

2.2.3.1 Mathematical Model for Line Segment Adjustment

There are generally two functional models, called the Gauss–Markov (GM) and
Gauss–Helmert (GH) models, which are used utilizing the LS method to estimate
the unknown parameters to solve this adjustment problem of rectilinear polygon
fitting [64]. In this dissertation, the GH is used as the functional model for line
segment adjustment.

Least Squares (LS) Method The LS theory is a well-known general frame-
work used to determine unknown parameters based on observations provided. This
general concept allows the integration of different constraints to solve the complex
problem. This optimization technique is popular in mathematics and geodesy. The
functional or stochastic models should be defined for describing the problem in LS
adjustment. In the functional model, the observations L are described as the func-
tion of unknown parameters X.
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2.2. Building Outline Extraction and Simplification

L = F (X), (2.6)

This function is in a linear or nonlinear form that can be collected in a vector
F = [F1(.), F2(.), ...]T . If these functions are nonlinear, they should be linearized
regarding the approximate value X0 of unknown parameters. These functions are
linearized by taking the first order of the Taylor series expansion around approximate
values of unknown parameters. The Jacobian matrix A(J = ∂F /∂X) is determined
based on the first order partial derivative of observation equations, and evaluated
at X0. Observations in the stochastic model have accuracies which are introduced
into the system by the weight matrix W. The matrix W has a diagonal structure
if there are no correlations among the observations. If the number of observations
is more than the number of the unknown parameters, in the presence of observation
errors, it is not possible to have unique results. The aim of adjustment theory is
to find an optimal solution that satisfies the constraints through minimizing the
corrections (residuals v) to the observations [64, 131].

L + v = AX, (2.7)

LS method minimizes the quadratic form of vT Wv to find the x̂ and then finally
estimate unknown parameters X̂.

x̂ = (AT WA)−1AT W(1− F (X0)) (2.8)

X̂ = X0 + x̂, (2.9)

In the case of linearizion, the LS estimation is iterated and every iteration X0

is updated until the corrections to the unknown x̂ are minimal. Initial values
in the LS adjustment are selected in different ways depending on the problem.
In the case of the line segment extraction problem, singular-value decomposition
(SVD) is used for estimating initial values of line parameters to speed up adjustment.

Singular-value Decomposition is the factorization of A into the product of
three matrices A = U

∑∑∑
V T , where the columns of U(m ×m) and V (n × n) are

orthonormal and the matrix ∑∑∑ = diag(λ1, ..., λn)(m × n) is diagonal with positive
real entries λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0. Based on this property, the problem of ‖A‖2
= min, subject to ‖x‖2 = 1 has the solution X = vn and the value of minimum
is min‖X‖2=1‖AX‖2 = λn. Line parameters can be found very easily by using this
theorem.

As mentioned, the problem of fitting lines is minimizing the sum of the squares
of the distances to specified points. As Figure 2.8 shows, the straight line can be
represented by equations
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2. Building Boundary Extraction

b+ nil = 0 (2.10)
n2
x + n2

y = 1 (2.11)
where ni (i ∈ 1, ..., 6) is the unit normal vector of parallel or perpendicular lines of
each building block which constraint to Equation (2.11). The sign and components of
each normal vector are defined based on each direction. For example, in Figure 2.8,
n3=−n1, n6=−n2, n3&n5=[nx, ny]T , and n2&n4=[ny,−nx]T in which nx and ny
are the normal vector components of aforementioned unit normal vector ni of line
i. The l is observations vector of line points coordinates (x, y).

Equation 2.10 is true, if the coordinates (x, y) lie on the line. Otherwise, P =
(xp, yp) correspond to the coordinates of the points located at the distances ‖r‖ from
the line lp.

r = b+ nilp (2.12)
Therefore, the sum of squares of the distances from the line should be minimized

to obtain the line parameters, which is solved in a constrained LS problem.
1 xp1 yp1

1 xp2 yp2
... ... ...
1 xpm ypm


 b
nx
ny

 ≈


0
0
...
0

 (2.13)

Let A be the Jacobian matrix of linear equation of 2.13. Using the QR decomposi-
tion [132], where Q is an orthogonal matrix and A = QR, the linear equation can
be reduced to an upper triangular matrix R as RX ≈ 0 [133].r11 r12 r13

0 r22 r23
0 0 r33


 b
nx
ny

 ≈

0
0
0

 (2.14)

The normal vectors are normalized with the constraint subject to Equation 2.11.
Finally, the constrained LS problem(

r22 r23
0 r33

)(
nx
ny

)
≈
(

0
0

)
, ‖ni‖2 = 1 (2.15)

is solved based on SVD and the theorem mentioned above. Therefore evn will
be eigenvector in the last column of V corresponding to minimum singular value
(λn). After computing evn, b will be computed according to first row of Equa-
tion 2.14 [134]. After initialization of line parameters using SVD, the GH model
can improve parameters iteratively through updating observation and unknown
parameters.
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2.2. Building Outline Extraction and Simplification

The GH is known as a combined or conditional model with parameters. It
considers unknown parameters and observations as random variables, which are
collected in the set of condition equations in the form of F (L̂, X̂) = 0. It means that
it can estimate unknown parameters and observations jointly [131]. The functional
model for the line fitting based on Equation 2.12 can be expressed as the following
target functions:

F1 = a1x+ a2y + b, (2.16)
F2 = a2

1 + a2
2 − 1, (2.17)

where F1 is a line equation with the coefficients a1, a2, and b. Since a1 and a2
are the normal vector components of each line segment, F2 is a constraint equation
to normalize the normal vectors of the line segments. F2 is a nonlinear function;
therefore, we linearize it using Taylor’s series expansion so that it be used in the LS
adjustment procedure. The GH’s functional model can, thus, be written as:

F (L̂, X̂) = w + Bv + Ax̂, (2.18)

where A and B are matrices containing the derivatives of the target functions
(F1 and F2) regarding the unknown parameters (a1, a2, and b) and the observed
parameters (x and y), respectively. Furthermore, w is the vector of misclosure.

Figure 2.8 illustrates an example of fitting a model to a set of points using LS
adjustment. In this figure, n1, n2, n3, n4, n5, and n6 indicate the normal vectors
of the parallel and perpendicular lines, respectively, while bj are the line segment
intercepts. Assuming only one main orientation, the matrices A and B, and the
vector w are as follows:

A = ∂F (L,X0)
∂X0 =



1 0 0 0 0 0 xK1(l1) yK1(l1)
· · · · · · · · · · · · · · · · · · · · · · · ·
1 0 0 0 0 0 xKN1 (l1) yKN1 (l1)
0 1 0 0 0 0 yK1(l2) −xK1(l2)
· · · · · · · · · · · · · · · · · · · · · · · ·
0 1 0 0 0 0 yKN2 (l2) −xKN2 (l2)
... ... ... ... ... ... ... ...
0 0 0 0 0 1 yK1(l6) −xK1(l6)
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 1 yKN6 (l6) −xKN6 (l6)
0 0 0 0 0 0 (2a1)0 (2a2)0



, (2.19)

B = ∂F (L,X0)
∂L

=


a0

1 a0
2 0 · · · 0 0 0

... ... ... . . . ... ... ...
0 0 0 · · · 0 a0

1 a0
2

0 0 0 · · · 0 0 0

 , (2.20)
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Figure 2.8: Fitting a model to a set of points using LS adjustment.

w = F (L,X0) =


a0

1 ∗ xK1(l1) + a0
2 ∗ yK1(l1) + b0

l1...
−a0

2 ∗ xKT (l6) + a0
1 ∗ yKT (l6) + b0

l6

(a0
1)2 + (a0

2)2 − 1

 , (2.21)

where X0 indicates the initial unknown parameters, which are considered as a0
1,

a0
2 and b0, and computed based on SVD. Furthermore, L is the observation vector

which represents the point coordinates of the line segments. Moreover, xKg(lj) and
yKg(lj) are the x and y coordinates of the g-th point of the line segment lj (i.e.,
Kg(lj), g ∈ [1, Nj]).

In Equation (2.18), v indicates the residuals of the observations and x̂ is the
difference between the estimated values of the unknown vector and its initial values.
These two vectors are computed as:

v = L̂−L, (2.22)

x̂ = X̂ −X0. (2.23)

In order to solve the LS adjustment problem, we express the unknown parameters
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2.2. Building Outline Extraction and Simplification

by: (
k
x̂

)
= −

(
BW−1BT A

AT 0

)−1

.

(
w
0

)
(2.24)

and the residuals are calculated by:

v = W−1BTk, (2.25)

where k is correlation vector and W is a matrix determining the weight of the
line segment. Since we found out empirically that using various weightings does
not significantly influence the resulting building outlines, all the line segments in
our experiments are treated equally and, therefore, W is an identity matrix. In
Equation 2.19, the last two columns correspond to one main orientation. In the
case of having more than one main orientation, two extra columns are added to the
matrix A for each additional main orientation, which contains the coordinates of the
additional main orientation. Moreover, one additional row is added to the matrix
A as a normalization constraint. Furthermore, for each additional main orientation,
one zero row is inserted at the end of the matrix B and a normalization constraint is
inserted to the end of vector w. Changing the matrices mentioned above based on a
new main orientation and adjusting all the building outlines in a different orientation
at once discriminates the method developed in this dissertation from other similar
methods, such as [64, 135].

2.2.4 Line Segment Intersection and Connection
In the last step, we intersect and connect each line segment to its closest neighbor
according to the following rules:

1. Any two parallel line segments with a perpendicular distance larger than five
pixels are joined by inserting a connection line perpendicular to both line seg-
ments (please refer to Figure 2.9. (a)). If the endpoints of the line segments
are not aligned (e.g. l1 and l3 in Figure 2.9. (a)), one of the line segments is se-
lected randomly and its length is adjusted (e.g. either elongated or shortened)
to make its endpoint align to the endpoint of the other line segment. The
threshold of five pixels is selected according to the resolution of the specific
PAN image and the DSM data (about 0.5 m). In this resolution, five pixels
represent 2.5 m, which is negligible for urban buildings within the generaliza-
tion tolerance.

2. For the parallel line segments with perpendicular distance smaller than or
equal to five pixels, we insert a line with a minimum distance from the other
line segments and extend it to cover the extent of all the line segments (please
refer to Figure 2.9. (b)).
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Figure 2.9: Each sub-figure shows a condition and its corresponding constraint for connecting
the line segments and the result of the line segment connection. (a) Join parallel lines with a
perpendicular distance larger than five pixels. (b) Join parallel lines with a perpendicular distance
smaller than or equal to five pixels with the assumption, l2 > l1, l3. (c) Join intersecting lines.

3. In the case of intersecting line segments, we adjust their length until their
neighboring end points meet (please refer to Figure 2.9. (c)).

2.3 Experimental Results and Discussion

In this section, we evaluate the precision of the building outlines extracted using
our proposed method both qualitatively and quantitatively. Consequently, we
analyze 10 regions of a PAN image of Munich, acquired by the WorldView-2
satellite (Figure 2.10 and Table 2.1). The regions are selected so that they
contain a variety of building structures with different degrees of complexity (e.g.
multiple main orientations, buildings with inner yards, different roof types). We
perform all the steps developed in Sections 2.1 and 2.2 to extract a building’s outline.

Our proposed method relies on some parameters in its various steps. Table 2.2
shows the parameters present in each step and the values assigned to them in our
experiments. As described in the corresponding sections, most of these parameters
depend on the resolution of the PAN image being used. Therefore, they can be used
as they are for new images with the same resolution and they should be adapted
accordingly for new images with a different resolution.
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Figure 2.10: Orthorectified PAN images used in our experiments.
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Image Image size (pixels) GSD Roof Types
I1 745× 470 50 cm Flat
I2 400× 530 50 cm Flat
I3 350× 390 50 cm Flat
I4 400× 950 50 cm Pitched
I5 800× 450 50 cm Pitched and Flat
I6 500× 650 50 cm Pitched
I7 400× 590 50 cm Pitched
I8 950× 1300 50 cm Pitched
I9 1350× 750 50 cm Pitched and Flat
I10 820× 1070 20 cm Pitched and Flat

Table 2.1: Specifications of the images used in our experiments.

Steps Parameters Values

Mask preprocessing (Section 2.1.1)
Threshold for removing small masked areas 300 pixels

Morphological opening disc size 3 pixels

Morphological closing disc size 2 pixels

Feature Classification (Section 2.1.3) SVM parameters Empirically selected

Mask Postprocessing (Section 2.1.4)
Morphological closing disc size 3 pixels

Threshold for gap filling 400 pixels

Line Segment Extraction (Section 2.2.1)
Short line extraction threshold (RMSE) 1 pixels

Length threshold for deleting small line segments 5 pixels

Line Segment Regularization (Section 2.2.2)
Arc length distance for main orientation computation 5 pixels

Point distance of skeleton for building partitioning 5 points

Number of nearest neighboring line segments to a selected point on skeleton 10 lines

Line Seg. Intersec. and Connec. (Section 2.2.4) Distance between line segments 5 pixels

Table 2.2: Parameters Used in Our Approach

2.3.1 Mask Refinement

In order to conduct a qualitative evaluation of the mask refinement process, Fig-
ure 2.11 exemplifies the refinement applied to the masks for I1, I3, I4 and I5. In this
figure, the resulting refined building area is depicted in green (both light and dark
green), where the dark green depicts the gaps in the masks which have been filled
during the refinement process. The regions depicted by red have been removed by
the refinement process from the masks specified. According to the results, building
edges in the refined masks are finer and more precise than in the other masks.

In order to evaluate the refined building masks quantitatively, we compare them
pixel by pixel to the footprint-based mask as reference data which is generated
manually and compute the Quality measure,

Quality = TP

TP + FP + FN
. (2.26)
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Figure 2.11: Refined masks (bright and dark green areas) together with the areas removed from
the masks specified (red areas). (a) I1, (b) I5, (c) I2, (d) I4.
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Figure 2.12: The Quality measure of the given and refined masks of the images I1−I10 using SVM
classification. Regarding training, 30 % of the pixels within the building boundaries, indicated by
the masks, is sampled from images: (a) I1 and I2, (b) I1, I2 and I3, (c) I4, I6 and I8, (d) I1, I3,
I4 and I8.

This measure provides an overall quality degree of the masks by consider-
ing the building detection and boundary delineation. In Equation (2.26),
TP (True Positive) and FP (False Positive) are the number of pixels which
are correctly and incorrectly considered as building by the mask, respectively. In
addition, FN (False Negative) indicates the number of building pixels which are
missed by the mask.

Figure 2.12 shows the Quality of the specified and the refined masks. In this
figure, each column shows an experiment in which the training data is sampled from
specific images of our dataset. The SVM for each experiment is trained and tested
three times using three different pixel samplings (where the SVM parameters are
set empirically) to cross-validate the classification. We test all three SVM models
on every images of our dataset, resulting in three sets of refined masks for each
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2.3. Experimental Results and Discussion

experiment. The three sets of masks are then evaluated and the average Quality
value is considered for each image.

In Figure 2.12. (a), the training data is sampled from images I1 and I2 which
contain only flat roof buildings. As the results show, the refined masks outperform
only for the images containing flat roof buildings (e.g. I1, I2, I3), whereas the
refined masks are even worse than the other masks in the case of pitched roofs. In
Figure 2.12 (b), we train the SVM model on samples from I3 (which also contains
only flat roof buildings) in addition to I1 and I2 to demonstrate that adding more
similar knowledge does not help to compensate the SVM model’s bias. The results
indicate that there is practically no change in the classification performance (i.e.
mask quality) compared to the previous experiment. Figure 2.12. (c) illustrates the
model bias when it is trained on pitched roof buildings. As the figure illustrates,
while the refined masks outperform the original masks for the pitched roofs (e.g. I4,
I6, I7, I8, I9), they are worse for the flat roofs (e.g. I1, I2, I3).

Considering the results of these experiments, we conclude that SVM models
should be trained by various building roof types and surroundings to avoid model
biases. Figure 2.12. (d) shows the quality of the refined masks using an SVM model
trained on both flat and pitched roof buildings. The results indicate that the quality
of the refined mask for most of the images is significantly higher than that of the
other mask. Therefore, we will use the refined masks resulting from this experiment
for the building outline extraction task.

2.3.2 Building Outline Extraction
In this section, we extract outlines of the buildings through the line segment extrac-
tion, regularization, adjustment, intersection and connection steps using the refined
masks.

2.3.2.1 Qualitative Evaluation

Figure 2.13 and 2.14 show the final extracted building outlines depicted on our ten
sampled PAN images. As demonstrated by the results, the extracted outlines are
significantly close to the buildings’ original edges despite the complexity of their
structures, such as the existence of inner yards. We extract the line segments of the
buildings’ outer boundaries and those of their inner yards separately to delineate
the edges of buildings with inner yards. We then consider all the extracted line
segments together to determine the buildings’ main orientations and regularize the
line segments. Since the edges of inner yards are usually aligned with a building’s
outer edges, considering them together increases the robustness of the resulting
building outlines.

In addition to its superior results, there are cases where our approach fails to
extract building outlines correctly. Figure 2.15 exemplifies these cases. In Figure
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no shifting, numClust:8
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no shifting, numClust:24
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no shifting, numClust:14
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(d)
no shifting, numClust:16

(e)

Figure 2.13: Extracted outlines of the buildings within the images (a) I2, (b) I7, (c) I3, (d) I6 and
(e) I8 using our proposed approach.
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Figure 2.14: Extracted outlines of the buildings within the images (a) I4, (b) I1, (c) I5, (d) I9 and
(e) I10 using our proposed method. 55
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Figure 2.15: Failure case examples of the proposed approach.

2.15. (a), the building edges e1 and e2 were not correctly delineated, probably due to
the imperfection of the building skeleton computed, caused by the selected threshold
for the morphological process in the regularization step (see Section 2.2.2). This
affects the building decomposition (see Section 2.2.2) in which those edges were
grouped into the main orientation class of the e3 and e4. In Figure 2.15. (b) and (c),
the extracted building outlines were affected by the incompleteness of the building
masks caused by, for example, occlusion (e.g. trees), shadow and the height threshold
used for mask generation, but the representation is still not far away from reality.

2.3.2.2 Comparison to an Existing Line Simplification Method

Line simplification methods, such as DP [67] have been conventionally used to ex-
tract building outlines. However, due to their shortcoming in delineating fine details
on building, such as sequential corners, in this dissertation, we developed a new line
segment extraction method, described in Section 2.2.1. Figure 2.16 compares the
building outlines derived by our proposed method and the DP method with the
building footprints. The results for both methods are presented after regularization,
as explained in Section 2.2.2. As the figure shows, the building outlines obtained
based on our proposed method are usually closer to the footprint compared to the
results based on the DP method.

In Figure 2.16. (a), due to the small size of the building which limits the num-
ber of the available line segments together with its multiple main orientations, the
building outlines computed based on DP [67] cannot meet the building’s original
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(a) (b) (c)

Figure 2.16: Comparison of the building outlines based on our proposed line segment extraction
method (red) and the DP algorithm (green), after the regularization step. The yellow lines depict
the building footprints.

boundaries. However, our proposed method results in a more accurate building out-
line because it relies on every single line segment. In Figure 2.16. (b), the results of
both methods are quite similar and pretty close to the building boundaries. However,
a part of the building (the bottom part) remains undetected by both methods. This
is due to the incompleteness (caused, e.g., by occlusion, or shadow) of the building
mask. Figure 2.16. (c) shows that the DP method performs poorly in delineating
building corners composed by an intersection of sequences of small line segments,
whereas our proposed method can extract these details precisely.

2.3.2.3 Quantitative Evaluation

We compare the building outlines extracted to the reference data using a newly
introduced metric, namely polygons and line segment (PoLiS) [136], to obtain a
quantitative evaluation. The PoLiS metric has been proposed for measuring the
similarity of any two polygons [136]. It is a positive-definite and symmetric function
which satisfies the triangle inequality. The PoLiS distance changes linearly regarding
small translation, rotation and scale changes between the two polygons.

In our experiments, we compute the average distance between the polygon ver-
tices extracted and their closest vertices on the reference polygon to measure the
PoLiS distance between a building’s extracted outline (polygon) and its correspond-
ing reference polygon. The average distance between the reference polygon’s vertices
and their closest vertices on the polygon extracted is then computed. The PoLiS
distance between the two polygons is computed as the summation of the two average
distances. Let v1j ∈ V 1, j = 1, ..., J in each vertex of V 1 and v2 ∈ ∂V 2 be its
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Figure 2.17: Illustrations of the PoLiS distance of the extracted (blue) building polygons to the
reference (red) ones. (a) PoLis = 5.19, (b) PoLiS = 1.60.

closed point (not necessarily a vertex) on the polygon V 2. The average distance
between v1j and v2 is then a directed PoLiS distance ~dp(V 1,V 2) between polygons
V 1 and V 2 and is defined as

~dp(V 1,V 2) = 1
J

∑
v1j∈V 1

min
v2∈∂V 2

‖v1j − v2‖. (2.27)

Since the directed PoLiS distance ~dp is made symmetrically, PoLiS metric is
defined by summing and normalizing the directed distances as a relationship as
follows:

~dp(V 1,V 2) = 1
2J

∑
v1j∈V 1

min
v2∈∂V 2

‖v1j − v2‖+ 1
2K

∑
v2k∈V 2

min
v1∈∂V 1

‖v2k − v1‖. (2.28)

Figure 2.17 exemplifies the PoLiS distance measurement. The average PoLiS
distances of the extracted building outlines in our ten images are displayed in Fig-
ure 2.18. (a). In this figure, the red bars indicate the PoLiS distance when only the
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Figure 2.18: (a) PoLiS distance between the extracted and the reference building outlines when only
the DSM-based masks specified (the red bars), refined masks (the green bars), and regularization
and line segment adjustment (the blue bars) are used. (b) Degree of improvement to the building
outlines extracted using the DSM-based masks specified when the refinement step (the green bars),
and regularization and line segment adjustment steps (the blue bars) are employed.

specified masks are used, the green bars represent the PoLiS distance after mask
refinement, and the blue bars demonstrate the PoLiS distance when the refined
masks are used coupled with line segment regularization, adjustment, intersection
and connection steps. As demonstrated by the results, using the mask refinement
step reduces the PoLiS distance between the extracted outlines and the reference
data to a large degree. Moreover, applying the regularization, adjustment, intersec-
tion and connection steps further reduces the PoLiS distances significantly.

Figure 2.18. (b) indicates up to which degree the mask refinement (the green
bars), and the line segment regularization, adjustment, intersection and connection
steps (the blue bars) improve the building outlines obtained by using only the masks
specified. According to the results, our proposed additional modules can increase
the precision of the extracted building outlines up to 70 % for some images (e.g., I4
and I9). Refining the building mask improved the building outlines for I4 by about
35%, while the results’ precision increased up to about 70 % after the line segment
regularization, adjustment, intersection and connection steps. This shows that the
imperfections of the building outlines are caused by both the faults in the building
masks and the complexities of the building structures. However, the improvement
for I9 is already almost achieved by refining the building mask, which indicates that
the building complexities in I9 are less problematic than in I4.

Table 2.3 represents the PoLiS distance of the building outlines obtained based
on our line segment extraction method and the DP method for the buildings shown
in Figure 2.16. Results indicate that the higher accuracy of the outlines extracted
are based on the proposed method.
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Image Our method Douglas-Peucker (DP)
Figure 2.16. (a) 1.34 3.17
Figure 2.16. (b) 9.11 9.24
Figure 2.16. (c) 5.19 5.54

Table 2.3: Comparing the PoLiS distance of the building outlines extracted using our method and
DP

2.4 Summary and Conclusion
This chapter proposes a heuristic approach for extracting and simplifying build-
ing outlines. It detects buildings and generates their mask using DSM data. The
resulting masks are further refined based on high spatial resolution PAN images
to represent the building edges closer to the original ones. The refined masks are
then used in a new method composed of line segment extraction, regularization,
adjustment, intersection and connection steps to extract building outlines as poly-
gons. The main contribution of this chapter of the dissertation is extracting very
complex rectilinear polygons of buildings (with different orientations and including
inner yards). Experimental results show that the building outlines extracted are
close to the building’s original edges to a high degree. Moreover, our method can be
generalized to various types of buildings and is robust against complexities of build-
ing structures, such as the existence of inner yards and multiple main orientations.
The comparison with the state-of-the-art methods show clearly the advantages and
importance which are gained through our methodology.
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and Decomposition

In the last chapter, the building outlines were extracted for ten different areas of
satellite image. They were extracted from refined DSM-based building masks which
sometimes have inaccurate details because of the existing noise in the boundary
of the buildings in the DSM and its related mask. On the other hand, footprints
generated from high-resolution CM can be very detailed which is not desirable for
many applications. A high degree of detail requires large storage space and high
computational power, which cannot be provided in every application. Employing
generalization and decomposition algorithms on the building outlines have been
proposed in the literature to enhance the building outlines and, simultaneously, re-
duce the complexity of the 3D model of an urban area [137, 138, 139, 140]. The
main goal of the generalization algorithms is to remove unnecessary details while
preserving the general structure and visual impression of the spatial situations. Ad-
ditionally, the generalization of the building footprint reduces the artifacts which
appear in the decomposition process. Since the decomposition of a building polygon
into simple rectangular shapes is based on the line segments of the building outline,
many details on the building outline results in an over-decomposition (i.e. small
rectangular shapes which are not meaningful for 3D building modeling). Therefore,
generalization is an important step before footprint decomposition in our procedure.
The main work in the generalization and decomposition of a building footprint has
been carried out by Kada and Luo [138] using half-spaces, which was improved later
by [141] for preserving the main building shape and facade lines. Sester [142] pre-
sented some general rules for the simplification of building polygons. Inspired by
the last method, we generalize building footprints based on their rules with small
improvements, which are described in Section 3.1. The order of the steps within the
generalization and decomposition process are shown in Figure 3.1. In this diagram,
the building boundaries include building outlines which are the building outlines
extracted in Chapter 2 and the footprint which is from a small area of the CM. The
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Figure 3.1: Generalization and decomposition process
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building masks are binary images generated from the building outline extracted and
footprint. Extracted building outlines, footprints and their corresponding building
masks are used in all the generalization, decomposition and selection process, as
shown in Figure 3.1. After generalization, the building polygon is decomposed into
rectangular shapes using the line segments of the building outline (Section 3.2).
Subsequently, those among the rectangles generated that have maximum overlap
with the building mask and minimum overlap with each other are selected to cover
the whole building area (Section 3.3). Finally, the procedure is employed on the
building outline extracted and footprint of different areas (Section 3.4).

3.1 Building Boundary Generalization
As Figure 3.1 shows, the generalization process consists of the aggregation (only used
for the footprint), simplification and rectification steps. The generalization process
is a simplification of the building boundary to persevere with the minimum length
(or generalization threshold) of the building facade by discarding the line segments
of building outlines which are shorter than this minimum length. Simplification
brings the building polygon closer to a rectangular shape. The building polygons
become totally rectangular and approximately collinear lines become straight by
utilizing the rectification step.

Footprints of a city usually include adjacent buildings, while their distance is not
noticeable at the resolution given or even share common line segments (topological
adjacency). The adjacent buildings are aggregated by removing the common line
segment to generate a single building block which eases the simplification process
and reduces the amount of data significantly. In order to find the common line
segments, the common vertices of the rectilinear adjacent buildings’ polygons are
obtained by detecting the junction points as the ones which are repeated more than
three times in the coordinate vector of the building polygons (the yellow points on
Figure 3.2). The line segments of the building outlines related to the junction points
are then found (the blue lines in Figure 3.2). As can be seen in Figure 3.2, the line
segments detected refer not only to the common line segments, but also to the outer
part of the building outline.

Therefore, in the next step, common line segments are separated from the outer
line segments. The building outlines lie on the building edges, which have high
gradient magnitude and gradient direction changes on the image or on the building
mask, in contrast to the common line segments, as Figure 3.3 (a) shows. Therefore,
measuring the gradient on the detected line segments of the building outlines allows
us to discriminate outer parts of the building outline and common line segments. In
our experiments, the buffer is split into N bins with the size of 2× 2 pixels on each
side of the buffer. The method proposed in [122] is used to calculate the gradient.
This method considers a buffer around line segments of building outlines, where the
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3. Building Boundary Generalization and Decomposition

Figure 3.2: Illustration of common line segments and wrongly selected common line segments

(a) (b)

Figure 3.3: Buffer zone around each line which has been introduced as a common line; (a) buffer’s
bins around a common line; (b) illustration of building mask points inside the buffer’s bins

buffer is split into smaller bins, as shown in Figure 3.3 (b). Equation 3.1 shows how
to calculate the gradient G using the buffer. According to this equation, the gradient
is the sum of the rates between the number of points within the first Bin1 and the
second Bin2 sides of the buffer of each bin. In order to keep the ratio between 0
and 1, the minimum point count is always divided by the maximum point count for
every bin [122].

G = 1− 1/N
N∑
i=1

min(Bini1, Bini2)
max(Bini1, Bini2) (3.1)

When the gradient of the line segment of the building outline equals or is close
to 1, the line segment is classified as an outer part of the building outline.
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3.1. Building Boundary Generalization

Figure 3.4: Aggregated footprint

After removing the common lines, the order of the building polygon vertices is
arranged again in a clockwise direction. The final result after removing common
lines is shown in Figure 3.4.

Three rules should be considered, depending on the directions and lengths of the
predecessor (ln−1) and successor (ln+1) of a short line ln to perform a simplification
of the building outlines extracted or CM-based footprints. These rules are based on
three cases introduced in [142] and a modification is proposed in this dissertation
in which several sequential lines with small difference angles are replaced with a
single line as follows:

1. The predecessor and successor lines of the small line segment ln have the same
direction. The longer predecessor ln−1 is intersected with the next approxi-
mately orthogonal edge ln+2 (Figure 3.5. (a)). In the case of a longer successor
ln+1, it is intersected with the previous approximately orthogonal edge ln−2,
so that ln and ln−1 are eliminated.

2. The predecessor and successor of the small line segment ln have opposite di-
rections; this is called an extrusion or intrusion. An extrusion cut the shortest
edge of predecessor and successor. In Figure 3.5. (b), for instance, ln+1 is
shorter, therefore, ln+2 is intersected by ln−1, and ln and ln+1 are eliminated.

3. Two sequential lines ln and ln−1, which have small orientation differences, are
replaced by one line. The longer line is extended to the first point of the next
line (Figure 3.5. (c)).
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3. Building Boundary Generalization and Decomposition

Figure 3.5: Simplification rules. (a) Unidirected lines with small offset ln, (b) extrusion, (c)
approximately parallel lines and (d) corners

4. The predecessor and successor are intersected with each other for corners with
non-orthogonal small line segment ln (Figure 3.5. (d)).

This operation is iteratively employed to all edges, including those which are
generated through the process.

After the simplification of the building outlines, sequential line segments still
may have small deviations from rectangularity or collinearity. Rectification is em-
ployed on the line segments of the building polygon to remove these deviations. The
rectification is performed by determining main orientations and SVD-based line fit-
ting, which were explained in Chapter 2. Figures 3.6 and 3.7 show aggregation,
simplification and rectification of the extracted building outlines and footprint.
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3.1. Building Boundary Generalization

(a) (b)

Figure 3.6: (a) Outline simplification red: Before simplification green: After simplification (b)
rectified building outline green: before rectification blue: after rectification

(a) (b)

(c)

Figure 3.7: (a) Footprint (b) aggregated footprint (c) red: before simplification green: after sim-
plification
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3. Building Boundary Generalization and Decomposition

3.2 Line Segment-based Building Polygon De-
composition

Buildings in urban areas usually have rectangular shapes, in some cases, with more
than one main orientation, as mentioned in Section 2.2.2. Footprint decomposition
is an important prerequisite step for model-driven methods to reconstruct 3D build-
ing models [65, 94]. Decomposition of a building outline splits it into rectangular
shapes. Two different methods have been proposed for this purpose: Fitting rect-
angular shapes [65] and extending the line segments of the building outlines [94]. A
new decomposition method is proposed in this dissertation based on the idea that
each line segment of a building outline is a potential component for generating a
rectangle. Therefore, every line segment is used for splitting the 2D building outline
into rectangular shapes. A heuristic approach is then used to select the best rect-
angles by which not only the whole building mask is covered, but they also show a
minimum overlap with each other.

3.2.1 Creating Decomposition Rectangular Shapes
The decomposition is performed by creating a rectangle from each generalized line
segment of the building outline. Creating rectangles starts from the longest line
segment. Each line segment is moved in the direction of the pixels of the building
mask iteratively until it meets another parallel line segment of the building outline or
footprint (Figure 3.8). Consequently, a buffer is considered around the line segments.
If the moving line segment lies completely inside one of the buffers, it is considered
as meeting the corresponding line segment. A rectangle is generated using these two
parallel line segments. In Figure 3.9, for instance, after moving the line segment
several times (shown in blue), it lies in the buffer of another line segment of the
building outline (yellow rectangle in Figure 3.9). Sometimes, the buffers cannot
cover the two endpoints of the moving line segment but only one of them. In this
case, the segment which meets the line is accepted if its buffer overlaps more than
a certain threshold with the buffer of the moving line segment.

The rectangles generated usually overlap and some of them are not representa-
tive enough for the building modeling. In Figure 3.10. (b), for example, the blue
rectangles are not good candidates for building modeling because a part of them
is outside the building mask. Thus, a combination of the rectangles needs to be
selected in which the rectangles have a minimum overlap with each other, cover the
whole building footprint and represent the main parts of the building.
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3.2. Line Segment-based Building Polygon Decomposition

Figure 3.8: Direction of movement based on a footprint-based building mask

Figure 3.9: Rectangle creation using a moving line segment (red: building outline, blue: moving
line segment, yellow: buffer of line segment)

(a) (b)

Figure 3.10: Rectangle-based decomposition. (a) Rectangle extraction based on building polygon
line segments. (b) Illustration of rectangles (blue: redundant rectangles, red: relevant rectangles
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3. Building Boundary Generalization and Decomposition

3.3 A Heuristic Approach for Selecting a Combi-
nation of Rectangles

Since a rectangle is generated for each line segment, there are some redundant
rectangles which should be removed. These rectangles are either a subset of the
relevant rectangles or partially cover the area outside the building mask (blue rect-
angles in 3.10). Two overlap tests are employed to identify the relevant rectangles.
These tests are inspired by the work of Kada and Luo [138], in which the authors
decomposed a footprint into several cells based on extending and intersecting the
half-space planes. They further computed the overlap between the decomposed cells
and the original footprint and compared it with a threshold to see which cells are
meaningful and belong to the building. In this dissertation, instead of using the
decomposed cells, the relevant rectangles are selected by computing the overlap be-
tween rectangles and between every rectangle and the building mask. Thus, the
rectangles are sorted based on the length of their related line segments, beginning
with the rectangle with the longest line segment. The relevant rectangles are then
selected by computing the percentage of the overlap of every rectangle with the
building mask:

Overlap1 = Area(Maskrectangle ∩Maskbuilding)
Area(Rectangle) > 0.8. (3.2)

After selecting the first relevant rectangle based on Equation 3.2, the overlap
of the other candidate rectangles with the relevant rectangle is measured. The
rectangle with the largest overlap is selected as the relevant rectangle, which is then
considered as a reference rectangle to compute its overlap with the other remaining
candidate rectangles according to the following equation:

Overlap2 = Area(Rsearch ∩Rreference)
Area(Rsearch)

> 0.8, (3.3)

where Rsearch is the candidate rectangle and Rreference is the relevant rectangle. The
value of thresholds is changed based on the complexity of the area and dataset
(footprint-based CM or extracted building outline). It turns out, based on empir-
ical investigation, that the value of 0.8 is a good compromise. Figure 3.11 and
Figure 3.12. (a) show some results of the rectangle selection process.

After selecting the relevant rectangles, the redundant ones need to be removed
(Figure 3.12. (b)). These rectangles are found based on their overlap with the
building mask. More precisely, as soon as a set of rectangles cover the whole building
mask, the remaining ones are considered as redundant and are removed from the set
of the relevant rectangles (Figure 3.12. (c)).
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3.3. A Heuristic Approach for Selecting a Combination of Rectangles

Figure 3.11: Selected rectangles

(a) (b)

(c)

Figure 3.12: Rectangle selection. (a) Selected rectangles after first verification, (b) selected rect-
angles after second verification (red rectangles), (c) final result of selection after using (a) and (b)
verifications
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3. Building Boundary Generalization and Decomposition

(a) (b)

(c)

Figure 3.13: Illustration of building footprint generalization, decomposition and selection: (a) the
generalized footprint, (b) the decomposed footprint into rectangular shapes (c) and the relevant
rectangles selected

3.4 Experimental Results and Discussion
In this section, we evaluate the generalized building footprints and the extracted
building outlines obtained by the proposed method in this chapter, both qualitatively
and quantitatively. In addition to the extracted building polygon of the ten test areas
used in Chapter 2, the building footprints from the CM of a new test area is used
for experiments on generalization, decomposition and selection. Figure 3.13 (a)- (c)
visualizes the results of the proposed methods for building footprint generalization,
decomposition into rectangles and relevant rectangle selection in the new test area,
respectively. Results are visualized for the ten areas (Section 2.3) and are presented
in Figures 3.14- 3.16.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Figure 3.14: Illustration of generalized extracted building outlines, (a) I1, (b) I3, (c) I2, (d) I10,
(e) I8, (f) I6, (g) I7, (h) I4, (i) I9, (j) I5
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Figure 3.15: Illustration of decomposed building outlines into rectangular shapes, (a) I1, (b) I3,
(c) I2, (d) I10, (e) I8, (f) I6, (g) I7, (h) I4, (i) I9, (j) I5
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Figure 3.16: Illustration of the relevant rectangles selected, (a) I1, (b) I3, (c) I2, (d) I10, (e) I8,
(f) I6, (g) I7, (h) I4, (i) I9, (j) I5
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3. Building Boundary Generalization and Decomposition

3.4.1 Quality Evaluation of the Generalized Building Poly-
gon

In this section, the quality of generalization is evaluated quantitatively. After the
generalization process, the shape of the building outline changes and deviates from
the original one in reality (ground truth), because generalization can delete or add
some vertices to the building outline. Therefore, the generalized building outline is
not compared to a ground truth for an evaluation. Instead, it is compared to the
building outline before generalization.

The PoLiS metric is a criterion which is used in this section to measure the
difference between the original building outline and the generalized one, based on
averaging the minimum distances between the vertices of the polygons of the two
building outlines (details are explained in Section 2.3.2.3). Thus, PoLiS can detect
and consider the omitted outline parts after generalization and can, therefore, be
used as a primary control of correctness of the generalization.

In order to investigate the feasibility of the generalization on the proposed ex-
tracted building outlines in Chapter 2, they are compared with ground truth before
and after generalization using the PoLiS metric (Figure 3.17). As Figure 3.17 shows,
the PoLiS metric for areas I1, I5 and I10 is higher than the other areas. This is due
to incompleteness or absence of some parts of the building mask compared to the
ground truth. This difference is even more evident in the area I1 where the building
has several inner yards and height discontinuities and the grass and vegetation cover
the building’s roofs. In Figure 3.17, green and blue bars depict the PoLiS values
before and after the generalization step. The green bar has very small differences
compared to the blue bar in each area, as is shown. Due to the simplification of the
building outlines in Section 2.2, the proposed generalization step in this chapter can
slightly improve the extracted building outlines.

In addition to the PoliS metric, four different quality parameters are also used
and are then combined into a single quality parameter, the so-called total quality
(TQ). These quality parameters quantify the differences between the original and
generalized objects on the basis of their contours and the areas of their overlapping
part [139]. They are defined based on the two goals of the generalization process:
Reducing the number of building outline vertices and keeping the input building
shape similar to the output one. Therefore, the quality parameters are categorized
into two groups; the first group is called the building polygon vertices count (VN)
and the second group includes contour trueness (CT ), symmetric difference (SD)
and area difference (AD) which focus on different geometric aspects. The outcomes
of these quality parameters are limited between 0 and 1, where the larger value
indicates the better quality.

• Building outline vertices count (VN): This quality parameter shows the effect
of the generalization on the shape of the building. This criterion is the ratio
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Figure 3.17: Comparison of the PoLiS metric between building outlines and ground truth; green:
before generalization, blue: after generalization

between the number of building outline vertices before (NO) and after (NG)
generalization.

VN = 1− NG

NO

(3.4)

• Trueness of building polylines (CT ): This quality parameter compares the
overlapping parts of the building outlines before and after generalization to
show the shape deviation between the original and generalized building out-
lines. The geometry of the generalized building outline usually deviates from
that of the building polygon before generalization due to its collinearity, paral-
lelism and rectangularity being changed by the generalization process. Thus,
a small buffer is created around each line segment of the original building out-
lines as a tolerance region to compute the CT . The width of buffers should be
set smaller than the generalization threshold. The rate of boundary similarity
of the original (OR) and generalized (GE) is calculated by the Equation 3.5
which is based on the length of generalized outlines GE surrounded by the
buffer of original outlines [139].

CT = Buffer(OR) ∩ Perimeter(GE)
Perimeter(GE) (3.5)

• Symmetric difference (SD): This quality parameter is calculated based on the
changes in the area of the building outlines after generalization. It considers
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3. Building Boundary Generalization and Decomposition

extrusion and intrusion, where they represent the area removed and added
after generalization, respectively [139].

SD = 1− Rintrusion +Rextrusion

Area(OR) , (3.6)

where Rintrusion and Rextrusion are:

Rintrusion = Area(OR ∩GE)
Area(OR) , (3.7)

Rextrusion = Area(OR ∩GE)
Area(GE) . (3.8)

• Area differences (AD): This quality parameter shows the overall area change
of the building polygon after generalization as the following,

AD =


Area(GE)
Area(OR) if Area(GE) ≤ Area(OR)

2− Area(GE)
Area(OR) if Area(GE) > Area(OR)

The four quality parameters (QP ) mentioned previously are then combined to
form the (TQ) of the generalized building polygon. The final (TQ) is normalized
and represented as a percentage [139].

TQ =
√√√√ n∑
i=1

QP 2
i (3.9)

Table 3.1 and Table 3.2 show the PoLiS metric value, total quality and normal-
ized total quality of the footprint1 and extracted building outlines of the ten areas2,
respectively. Since the total quality is calculated for each building and there are
several buildings in one area, the average of (TQ) are calculated for each area. All
the measurements were performed with (+) and without (−) considering (VN) to
evaluate the quality of the generalization and observe its influence by reducing the
number of vertices. As both tables show, TQ is increased when VN is included. This
proves that the generalization step simplifies the footprint by decreasing the num-
ber of vertices, meanwhile, preserving the building area, which is consistent with
the aim of the generalization. In Table 3.1, the normalized total quality is more
than 80 %, which means the generalization process does not change the area of the
building polygons. On the other hand, considering the VN criteria can improve the

1In this chapter, the footprint consists of building polygons of a small area of the CM, which is
not considered as ground truth

2The final results of Chapter 2
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Footprint

TQ
- VN 1.64
+VN 1.75

Normalized TQ ((TQ-0)/2*100)
- VN 82.31
+ VN 87.56

PoLiS metric (m) 0.38

Table 3.1: Quality assessment of the generalized building footprint

quality of generalization more than 5%. The PoliS metric value (= 0.38m) between
the footprint before and after generalization is less than one pixel, which is accept-
able in the generalization threshold (5 pixels) and means the generalization does not
discard a large part of the building polygons.

As Table 3.2 shows, all the calculated normalized total qualities of the ten areas
are more than 80%, which verifies the changes of the extracted building outlines after
generalization. The highest normalized total quality value is related to the area I2
and the lowest one is related to I6, which is due to the complexities of building
outlines. As Figure 3.14 (f) shows, there is a curved building outline on the right
side of area I6. While the generalization process decreases the vertices of the curved
building polygon, it may not preserve its area and, subsequently, the normalized
total quality value is decreased. Nevertheless, the normalized total quality value
is more than 80% in the five-pixel generalization threshold, which is acceptable as
the building polygon does not lose its general shape. As Table 3.2 shows, all the
PoLiS values of the ten areas are lower than the generalization threshold. The lowest
and highest PoLiS values are related to I4 and I5 respectively. The reason may be
perceived by looking at Figure 3.14 (j), where I4 has only one large building with
inner yards and it was adequately simplified in Chapter 2. Even though the area of
I5 has less complexity in comparison to I8 − I10, its PoLiS metric value is slightly
different, which is negligible and below the generalization threshold. This difference
may be due to a few missing parts of the building mask and a noisy boundary;
the generalization step can improve the building outline slightly by eliminating the
outline vertices.

In some areas, the mask refinement did not achieve reasonable results due
to misleading classification results or less quality image contrast, which leads to
missing some of the building boundaries. Thus, the generalization step could not
show its efficiency and its values have been slightly changed compared to the PoLiS
metric values.
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I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

TQ
- VN 1.71 1.71 1.68 1.72 1.7 1.68 1.72 1.72 1.71 1.72
+VN 1.72 1.75 1.71 1.73 1.72 1.7 1.73 1.74 1.72 1.73

Normalized TQ ((TQ-0)/2*100)
- VN 85.56 85.74 84.16 86.22 85.03 83.94 86.25 86 85.45 85.87
+ VN 86.24 87.47 85.33 86.27 85.96 84.79 86.51 86.8 85.98 86.45

PoLiS metric (m) 0.2611 0.2819 0.3357 0.0539 0.4094 0.3677 0.1435 0.1702 0.223 0.2319

Table 3.2: Quality assessment of extracted building outline for ten areas (I1 to I10)

3.5 Summary and Conclusion
This chapter proposes improved approaches for the simplification of the building out-
lines. The first step of the simplification is the generalization of the building outlines
to reduce their vertices, while preserving the main shape of the building. Since the
buildings in urban areas are usually rectangular, the second step in the simplification
is the decomposition of each building into the basic rectangular shapes. State-of-
the-art methods decompose footprints into several cells with different shapes by
extending and intersecting the building edges. The resulting cells are merged based
on some criteria, such as the homogeneity of their normal vectors. The previous
methods are not efficient for model-driven approaches in which satellite images and
DSMs of satellite images are used for modeling, because the normal vector of the
plane computed using the DSM is noisy and, therefore, unreliable. To cope with this
problem, a decomposition method is proposed in this chapter based on the idea that
each line segment of the building outline represents a rectangle. This simplification
step can ease the building modeling because each rectangle is a part of the building
model. Finally, a heuristic approach is proposed to select a combination of the rele-
vant rectangles among all rectangles created for each building block. Experimental
results show that the proposed methods perform well for the generalization and de-
composition of building footprints and building outlines in different areas and even
for complex building polygons including inner yards and different main orientations.

80



4
Roof Type Classification

In the previous chapter, complex building polygons are decomposed into basic rect-
angular shapes. In this chapter, the roof type of each rectangular shape is recognized
in order to reconstruct the 3D model of the buildings. Since the roof model is the
most important component of a building, accurate recognition of roof types provides
helpful information for the process to reconstruct its LoD2. In this dissertation, roof
type recognition is considered as a supervised classification problem, where differ-
ent roof type categories are introduced in Section 4.1 according to their visibility
of geometrical structures in the image and DSM. Additionally, due to the focus of
the experiments, only existing roof types in the Munich city area are considered.
In Section 4.2, the training and test set is generated based on new semi-automatic
methods for roof type classification. A new image-based method is proposed as a
classifier based on deep learning algorithms which use the geometrical information
of the building roofs in satellite images (Section 4.3). A conventional DSM-based
roof type classification is also performed using main curvatures to discriminate flat
and non-flat roofs simply to realize the capability of a DSM for recognizing the roof
type classes (Section 4.4). We show that this classification can be used as a comple-
mentary classification when the image-based classification fails due to low instances
of the training data. The results of the classification methods are evaluated and
discussed in Section 4.5.
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4. Roof Type Classification

(a) (b) (c) (d) (e) (f)

Figure 4.1: Roof model library (a) flat, (b) gable, (c) half-hip, (d) hip, (e), pyramid, and (f)
mansard roof models

4.1 Building Roof Library Definition
Defining a roof type library is necessary in model-based 3D building reconstruction.
The types of the roofs existing in urbn areas depend on various factors, such as
climate and social influences. The roofs in industrial areas for example, usually
have flat structures, whereas the buildings in downtown areas in Europe usually
have multiplane roof styles, such as gambrel roofs. Our experiments are focused
on buildings in the city of Munich. Thus, we define our roof model library based
on the most common roof types in this area. In addition, the resolution of the
DSM is an important criterion when selecting roof types for the library. Since a 3D
parametric roof model is reconstructed from the DSM of satellite imagery, the roof
types selected should be visible in the satellite images and DSM.
All kind of roof types can be distinguished from the 3D point clouds of LiDAR data
or the DSM of aerial imagery [28], whereas distinguishing roof types from the DSM of
satellite imagery could be limited. Therefore, it is necessary to consider the potential
of the data in representing roof features before creating a library (illustrated in
Figure 4.1). The longitudinal and latitudinal 2D profiles of all possible building roof
types in Munich (presented in Figures 4.2, 4.3, and 4.4) are analyzed to evaluate
the potential of the satellite’s DSM.

The figure illustrates the height changes of buildings in a cross-section of the
DSM as orange profiles, the height changes of building in a longitudinal section
of the DSM as red profiles, and the height changes of the building which best fit
to the DSM profile and reality as blue profiles. The satellite’s DSM allows us to
discriminate building boundaries from rooftops, as can be seen in all the profiles.
According to the longitudinal and latitudinal profiles, flat roof can be distinguished
simply from a non-flat roof, which is added to the library. The simplest non-flat
roof is a shed roof with only one sloped plane. The latitudinal profile of this roof
type is different from that of flat roofs, however, this difference is not visible in
the images, therefore, the shed roof type is not considered as an individual model
in the library. Instead, it is taken as a flat roof with its sides of different heights.
The gable, half-hip and hip roof profiles differ in the degrees of height changes
at the end of the ridge line in the longitudinal profile while the heights change
very similarly in their latitudinal profiles. These roof models are also added to the
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Roof models 
Pan-sharpened 

image 
DSM 

Longitudinal 

profile 

Latitudinal 

profile 

Flat roof  

Shed roof 

Gable roof 

Half-hip roof 

Hip roof 

Pyramid roof 

Mansard roof 

Figure 4.2: Illustration of different roof models with their PS image patch, DSM, latitudinal profile
and longitudinal profile (Basic roof types)
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Roof models 
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Figure 4.3: Illustration of different roof models with their PS image patch, DSM, latitudinal profile
and longitudinal profile (Combinatorial roof types)
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Figure 4.4: Illustration of different roof models with their PS image patch, DSM, longitudinal and
latitudinal profiles profile (Less frequent roof types)

library. Pyramid and mansard roof models are different from the other roof types,
and their differences are visible in the image, and in the latitudinal and longitudinal
profiles of the DSM; therefore, they are also added to the library.

There are other roof types in Munich whose differences are visible in the images,
as Figures 4.2, 4.3 and 4.4 show. However, these roof types are created by either
adding some planes to the basic roof types or combining two basic roof types which
have already been added to the library. Gambrel roofs, for example, are created
by adding two sloped planes onto the gable roofs, and jerkinhead roofs are a hip
variant of gambrel roofs. These added planes cannot make any difference in the
longitudinal and latitudinal profiles of a building in the DSM. The bonnet roof and
Dutch gable roof are combinations of the gable and mansard roofs. The Dutch
roof’s longitudinal and latitudinal profiles are very similar to those of hip roofs.
The mansard-hip and mansard-gable roofs are categorized as hip and pyramid roof
models, respectively, which have similar longitudinal and latitudinal profiles. Since
the frequency of the roof types in Munich is important in generating the library,
other roof types which are less frequent, such as bonnet and elliptic roofs, have
not been added to the library. They are categorized to the basic roof types with
similar profiles. The saltbox and dissymmetric gable roofs, which have a similar
longitudinal and latitudinal profile to the profiles of gable roofs, are categorized as
a gable roof model. Finally, six types of roofs: Flat, gable, half-hip, hip, pyramid
and mansard roofs, generate the roof model library.
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Flat roof Gable roof Half-hip 
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Figure 4.5: Illustration of 3D profile, 2D longitudinal profile and 2D latitudinal profile of the
satellite’s DSM and LiDAR’s DSM data for the various roof types

The longitudinal and latitudinal profiles of the different roof types are illustrated
in Figure 4.5 to compare the quality of the satellite’s DSM and the DSM of LiDAR
data. In this figure, data was sampled every two pixels for projection. As Figure 4.5
shows, the regularity of the roof types in both datasets is comparable, as roof types
in LiDAR data are more distinguishable than the ones in DSM, therefore, a model-
driven method for the reconstruction of roof model is more reliable than the data-
driven method on the satellite’s DSM. This profile-based verification is performed
for all types of roofs defined in the roof model library created, including the six roof
types: Flat, gable, half-hip, hip, pyramid and mansard roof models.
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4.2 Dataset Generation Based on Roof Model Li-
brary

A training and test image patch dataset was generated to classify roof types and
validate their results. The datasets are composed of six classes representing the six
roof types in the library, as shown in Section 4.1. Each patch contains the whole
or part of only one roof. Additionally, the roofs are masked using building masks
extracted from the footprint of CM to reduce the impact of their surrounding objects
(e.g. trees and asphalt). Since CM-based footprints are available and the refined
building masks from Chapter 2 are very close to them, they are used for generating
both training and test patches.

The geometrical structures of the roof type are important points for roof type
classification; therefore, one roof type should lie completely on each patch.
In this dissertation, a new semi-automatic method based on building mask skeleton
is proposed for generating roof image patch datasets. Figure 4.6 shows the steps of
generating the training and test patches using a building mask skeleton. Firstly, the
skeleton of the building mask which is extracted from cadastral building footprints is
computed by a morphological operator to extract the patches. The junction points of
the skeleton are then projected on PS satellite images. Three channels of PS images
are used to generate the patches. A square box with a fixed size crops the image
around each junction point of the skeleton. The size of the square box is selected so
that contains only the buildings selected. Based on the experimental investigations,
a fixed size of 56 × 56 × 3 pixels is considered proper. The library of the roof
patches is shown in Figure 4.7 based on the roof model library in Figure 4.1. After
generating the patches, each is manually labeled according to its roof type. The
main difference between this approach and previous image patch dataset generation
approaches [143, 144] is that the main orientation of each roof is also considered
inside the patch. Therefore, the quality of roof patches cannot be degraded by
rotation and resizing. Satellite data exhibit great challenges even for visual analysis
tasks. Firstly, the quality of some satellite images is degraded due to blurring
which occurs during the capturing process. Secondly, roofs are covered by various
kinds of facilities, such as air conditioners, chimneys and other roof build-ups. In
addition, some roofs in satellite imagery are occluded by shadow and trees. These
imperfections are significant obstacles for a reliable visual and computerized analysis
task. Furthermore, the number of instances of some roof classes is extremely low in
comparison to other classes (such as mansard and pyramid roofs). Augmentation
methods are used to increase the training patches of these roof types to deal with
the small numbers of samples for two roofs, pyramid and mansard roofs, and in
order to balance the number of samples for all roof type categories.

Converting to HSV color space, flipping the image to the right side and rotation
of 45◦ are among several different augmentation methods in previous deep learning-
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Figure 4.6: (a) PS image of a building roof, (b) building mask and overlapping skeleton points,
(c) projected skeleton points on the PS image of a building roof, (d) extracting the patches for
one skeleton point in a size of 56× 56 pixels, (e) resize roof patch to the proper size of pretrained
convolutional neural networks (CNNs) (224× 224 pixels)

Figure 4.7: The library of roof patches including six roof types
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Roof type Data Augmentation Training # Test #
Flat no 980 1158
Gable no 1122 1760
Half hip no 790 970
Hip no 979 183
Pyramid yes/no 1149/207 32
Mansard yes/no 1112/40 27

Table 4.1: The distribution of the training and test sets used in the experiment

based researches used in this dissertation. These augmentation methods can also
increase the robustness of the results against rotation and color changes. The dis-
tribution of the training and test patches before and after augmentation are shown
in Table 4.1.

4.3 Image-based Roof Type Classification
According to Section 4.1, roof type classification depends on the resolution and
quality of the DSM. The flat roofs can be discriminated simply from non-flat ones,
as Figures 4.2, 4.3, 4.4 and 4.5 show, however, when reconstructing LoD2, catego-
rizing all building roofs into two types is not enough and close to reality. Therefore,
the library defined in the Section 4.1 is used for image-based classification. The
geometry features play an important role in the image-based roof type classification.
Most recent methods for object recognition and classification of the remote sensing
images normally use engineered feature descriptors (e.g. HOG and SIFT). However,
it has been shown in a number of recent works that deep learning has performed
more effectively in satellite image classification and object detection [18, 145]. The
convolutional neural networks (CNNs) can automatically learn structured and
representative features through layer-to-layer hierarchical propagation schemes as
high-level features learn from lower-level ones. The resulting features are invariant
to rotation, occlusion, scale and translation. These invariant features are beneficial
for the wide variety of object detection and classification tasks, which reduces the
need for designing complicated engineered features [146, 147]. Inspired by these
previous works, in this dissertation, we evaluate two common strategies based
on pretrained CNN models for classifying the roofs into the six roof types of our
defined library.

A CNN is a feedforward neural network which is composed of convolution (conv),
nonlinearity (ReLu), pooling (subsampling), fully connected (FC) and classification
layers. The conv layers are the main parts of the CNN architecture. The layers
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consist of a set of learnable filters which are convolved across the width and height
of input images with a predefined stride and produce 2D feature maps. A conv layer
is formed by stacking the feature maps of all filters along the depth of the input
volume. Since the real-world data is usually nonlinear and conv layers are linear
operators (i.e. element-wise matrix multiplication and addition), it is required to
introduce nonlinearity to the model, which is performed by the ReLu function.
The Relu function keeps non-negative values in the feature maps and replaces the
negative value by zero. Another important part of CNN is pooling, which can be seen
as a nonlinear downsampling. Among several functions for implementing pooling
(e.g. average pooling, L2-Norm pooling, max-pooling), max-pooling is the most
commonly used one. The pooling layer reduces the spatial size of the representation
while keeping its most important information. Subsequently, it reduces the number
of parameters in the network to control overfitting and reducing the computation
time. The conv and max-pooling layers are followed by FC layers. Neurons in an
FC layer are fully connected to all feature maps in the previous layer. The last FC
layer holds the output as the class scores. The loss layer is the last layer of a CNN
architecture which penalizes the deviation between the predicted and true labels
during the network training phase [148, 149]. Loss functions are usually selected
based on the task specified. Cross-entropy loss, for example, is the most widely
used loss function in object recognition tasks.

In detail, CNN is trained by minimizing a negative log likelihood regarding the
weights and biases over the whole training set using a stochastic gradient descent
(SGD). Mathematically, the following cost function is minimized:

min
Θ
L(softmax(Θlac(Patchi(I)m×m,Θl−1), yi)), (4.1)

where Θl are the parameters of the last layer, Θl−1 are the parameters of the previous
layer, ac(.) is an activation function and yi represents the correct label of the patches
specified (Patchi) [54]. In the classification layer, softmax is the most commonly
used method to assign output probability to each object class in order to predict a
single class out of several possible classes. The softmax function is defined as the
following:

softmax(z) = exp(z)
‖z‖1

, (4.2)

and the loss function is computed by

L(Θ = (W,b), D) = −
|D|∑
i=0

logP (Y = y(i)|x(i),W,b)), (4.3)

where D is the data set, W and b are the weights and biases, respectively, pa-
rameterizing the network. In this equation, logP (Y = y(i)|x(i),W,b)) denotes the
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probability of the ith image to be classified correctly as label y. For each layer of
the network, the weights are updated at each iteration t as follows:

Vt+1 = νVt − ηtτ∇L(Wt) ,Wt+1 = Wt + Vt+1 (4.4)

where Vt+1 is the velocity which is updated by a linear combination of the negative
gradient ∇L(Wt) and the velocity from the previous iteration Vt. Wt+1 is the
updated weights according to the updated velocity and previous weight Wt.The
learning rate τ weights the negative gradient and η is the scheduling rate which
reduces the learning rate at the end of specific iterations. The momentum ν is the
coefficient of velocity from the previous iteration [150].

The training process starts with the initialized weights for each conv layer, which
are sampled from a normal distribution with a zero mean and small standard de-
viation. Due to the large number of parameters in each layer (often in the range
of millions), the training process requires a large amount of labeled data to update
the parameters iteratively; otherwise, it gets stuck in an undesirable local minimum
resulting in an over- or underfitting. Therefore, when the training dataset is not
large enough, an existing pretrained network on large datasets, such as ImageNet
(1.2 M labeled images), is fine-tuned by continuous training (i.e. by running back-
propagation) on the new small available dataset. Fine-tuning starts by transferring
the weights from the pretrained network to the new network. This process called
“transfer learning.” This is motivated by the observation that the earlier layers of
different CNN models learn almost the same basic features, such as edge, color
or gradient, for different visual recognition tasks, while the upper layers have more
specific features related to the classes and properties of the original datasets. There-
fore, the upper layers can be fine-tuned and matched to a different but correlated
problem. It has been shown in previous works that the pretrained models for CNN
networks, such as Alexnet [151], VGGNet [152], GoogleNet [153] and ResNet [154],
that have been trained on large datasets, such as ImageNet, are very applicable for
other visual recognition tasks without any requirement for training their first few
layers.

A common practice for fine-tuning is to replace the last FC layer of the pretrained
CNN with a new FC layer that has as many neurons as the number of classes desired
in the new task. The fine-tuning of the new network starts with weight initialization
of the last FC layer. All the other layers are then fine-tuned. The important hyper-
parameter which is changed for fine-tuning pretrained CNN is the “learning rate.”
Since the pretrained weights are expected to be much better than the randomly
initialized weights, the learning rate is usually chosen ten times smaller than the
one used for training the network from scratch to avoid distorting them a lot and
quickly.

Fine-tuning is very useful for classification tasks in remote sensing, where the
acquisition of large sets of training data needs a huge effort and cost [145]. Deep
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CNNs, such as VGGNet, have shown effective performance in the classification of
remote sensing images [155, 156] and using deeper networks, such as ResNet, can
increase the accuracy of the classification even more [157, 158]. Therefore, we used
the pretrained models of these networks in our experiment. We add a new FC layer
with six neurons to the two pretrained models for the classification of roofs into six
categories. The networks are then fine-tuned in our dataset.

4.3.1 Pretrained VGGNet
The VGG network architecture was introduced by Simonyan and Zisserman in
2014 [152] and achieved a very good performance on the ImageNet ILSVRC-2014
submission for localization and classification. The VGG shows that the depth of the
network plays an important role and gives better results. Among many pretrained
models, VGGNet adopts the simplest kernel and pooling windows. Only 3× 3 con-
volutions (the convolution stride is set to 1) are stacked on top of each other in
increasing depth. Reducing volume size is handled by 2×2 max pooling throughout
the whole network. This stack of conv layers is followed by three FC layers: The
first two have 4096 nodes for each and the third has 1000 nodes (one for each class
of ImageNet dataset).

The VGG 16 (with 13 conv and 3 FC layers) and VGG 19 (with 16 conv and
3 FC layers) are two very deep versions of VGGNet with 16 and 19 weight layers,
respectively [152]. The width of the conv layers (the number of nodes) is rather
small, starting from 64 in the first layer and then increasing by a factor of 2 after
each max-pooling layer until it reaches 512 [152]. The network structure of VGG 16
and VGG 19 are shown in Figure 4.8.

4.3.2 Pretrained ResNet
Deep networks increase the classification performance due to having enriched fea-
tures which are obtained by the number of stacked layers (depths). He et al. [154]
showed that stacking deeper layers in plain networks, such as VGG 16/19, leads to a
degrading problem resulting in a deduction in their classification performance. This
degradation is an optimization problem as deeper models are harder to optimize.
He et al. [154] proposed a solution based on a deep residual learning framework. It
uses the stacked network layers to fit residual mapping F (β) = H(β)− β instead of
the mapping H(β) directly, where β is an identity function. If the identity mapping
is optimal, the solvers may drive the weights of the multiple nonlinear layers toward
zero to approach identity mapping. Figure 4.9 shows the difference between the
plain net and the residual net with two stacked conv layers.

Using the residual learning formulation, extremely deep nets are easy to optimize
and can benefit the accuracy obtained from their depth.
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Figure 4.8: The network structure of the VGG 16 and VGG 19
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Figure 4.9: (a) Plain net and (b) Residual net

The architecture of the ResNet, as shown in Figure 4.10, consists of the stacked
residual blocks with two 3× 3 conv layers. The downsampling is performed directly
by convolutional layers that have a stride of 2 [154]. Moreover, the ResNet model
has an additional conv layer at the beginning and a global average pooling layer
at the end after the last conv layer. It has an FC layer with 1000 neurons and a
softmax [154]. Regarding the deeper ResNet 50/101/152, the stacked residual blocks
have three conv layers in the bottleneck architectures, which lead to more efficient
models (Figure 4.10) [154].

In practice, batch normalization is used after every conv layer to train ResNet.
The weights are initialized by Xavier initialization and all residual nets are trained
from scratch. “The SGD is used with a mini-batch size of 256. The learning rate
starts from 0.1 and decreases by one order of magnitude when the validation error
plateaus and the models are trained for up to 60 × 104 iterations. A weight decay
of 0.0001 and a momentum of 0.9 are used. Dropout is not used for training” [154].

In this dissertation, two different applications of pretrained CNN models, namely,
fine-tuning and feature extraction, are used; they are explained in the following
sections.

4.3.3 Fine-tuning Pretrained VGGNets 16/19 and ResNets
(50/101/152) for Roof Type Classification

The last fully connected layer (FC8 for VGGNet and FC1000 for ResNet), which is
related to the classification of ImageNet with 1000 categories, is replaced with new
FC layers reflecting the roof type classification for fine-tuning pretrained VGGNets
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hyper-parameters VGGNet ResNet
Mini-batch size 10 8
Test iteration (number of validation /mini-batch
size)

130 155

Test Interval 1000 1000
Learning rate (τ) 0.001 0.001
Maximum iteration 100000 100000
Scheduling rate (η) 0.1 0.1
Momentum (ν) 0.9 0.9
Weight decay 0.0005 0.0001

Table 4.2: The model hyper-parameters of VGGNet-16 and 19 and of ResNet 50/101/152

16/19 and ResNets. This layer has six classes corresponding to six roof types.
The first few layers represent low-level features, such as curves and edges that are
important for roof type classification. Therefore, their weights are kept intact for our
experiments. The subsequent layers, however, represent dataset-specific features.
Thus, their pretrained weights are updated through a back propagation to become
fine-tuned for our dataset.

As mentioned above, the same structures of the networks for training from
scratch are used in fine-tuning, except the last layer. For our experiments, only
the hyper-parameters of the models, such as learning rate, mini-batch size and test
iteration, are adjusted; these can be seen in Table 4.2.

4.3.4 Pretrained CNN-based Features

In addition to the fine-tuning approach, a pretrained CNN can be treated as a
fixed feature extractor. In this approach, the classification layer of the network is
removed, and the rest of the CNN is treated as a feature extractor for the new
dataset. A classifier, such as SVM or softmax, is then applied to the extracted
features to classify images. These features are known as deep convolutional
activation features (DeCAFs) [159].

The last FC layers of the pretrained VGG 16/19 and ResNet are removed for
roof type classification in this dissertation. The rest of the networks are then used
for extracting features from the training and test image patches. The features ex-
tracted are obtained from FC6 and FC7 of VGG 16/19 and from FC1000 of ResNet
(50/101/152), and have 4096 and 1000 dimensions, respectively. An SVM classifier
using a radial basis function (RBF) kernel is then applied to these features to classify
the roof types.
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(a) (b)

(c)

Figure 4.11: Example of a drawback of image-based classification, (a) PS image, (b) image-based
classification, (red: flat roof, green: gable roof, and blue: half-hip roof), c) DSM-based roof type
classification, (gray: flat roof, white: non-flat roof)

4.4 A Conventional DSM-based Roof Type Clas-
sification

Although using pretrained CNNs is a powerful method for roof type classification, it
requires a large dataset with a high variety of patches in texture, color, rotation and
roof structure for fine-tuning. Consequently, there are some misclassifications of the
roof types which lack enough training samples. In Figure 4.11, the flat roof type is
classified as a sloped roof (green represents a gable roof and blue represents a half-hip
roof), while a flat roof is classified correctly in a conventional DSM-based classifi-
cation method. Since this kind of misclassification is not large, the result of DSM-
based classification can be used as complementary information for classification of
roof types when the image-based classification fails. According to Figures 4.3- 4.5,
the flat roof structure can be restored simply from DSM. Therefore, a preliminary
classification of the DSM can discriminate the flat and non-flat (sloped) roofs. In
literature, the classification of roof types from DSM is usually performed by extract-
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ing important features, such as gradient [160], surface normals [94], and Gaussian
and mean curvatures [161]. A conventional method for DSM-based roof type clas-
sification is using the features of the surface, such as mean curvature and Gaussian
curvature. This method was used, firstly, for surface-based segmentation of range
and intensity images [162]. It was subsequently used for extracting linear features,
such as ridge lines and eave lines, of the DSM of LiDAR data [163].Reference [161]
used the features and the classification way proposed in the research mentioned pre-
viously to classify roof types into the flat and non-flat roofs from the DSM of LiDAR
data. In this dissertation, mean curvature and Gaussian curvature are calculated
by the method employed in [162, 164].

Curvature is a useful feature in surface classification. It represents how a tangent
vector changes along a curve on the surface. The maximum and minimum curva-
tures, the so-called principal curvatures, allow us to compute various features that
provide some information about the local shape of the surface. The most impor-
tant curvature-based features are mean curvature (H) and Gaussian curvature (K),
which represent the shape of the curve and surface, respectively,

H = k1 + k2

2 , K = k1k2, (4.5)

where k1 and k2 are minimum and maximum curvatures, respectively. These two
features are scalar and invariant to rotation, translation and the changes in param-
eterization. There are eight basic types of surface that can be specified using the
sign of the mean and Gaussian curvatures, as shown in Table 4.3. Among different
ways to calculate mean and Gaussian curvatures, in this dissertation, a quadratic
surface z is fitted to the points in each local region of the surface and the curvatures
of the fitted surface are computed analytically [164].

z = q(x, y) = a11x
2 + a22y

2 + a12xy + a10x+ a01y + a00 (4.6)

The coefficients a11, a22, and a12 of the quadratic surface are estimated by a LS-
based surface fitting. Let p be a point on the smooth surface S and np be the unit
normal to S at p. Suppose q(x, y) is a local parameterization of S in a neighborhood
of p. Then using qx(p), qy(p), and np as a local coordinate system, the principal
curvature and subsequently mean and Gaussian curvatures are calculated based on
a Hessian matrix, which is made with entries of second derivatives of Equation 4.6.

(
qxx(p) qxy(p)
qyx(p) qyy(p)

)
=
(

2a11 a12
a12 2a22

)
(4.7)
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K > 0 K = 0 K < 0

H < 0
Peak Ridge Saddle Ridge
T = 1 T = 2 T = 3

H = 0
(none) Flat Minimal Surface
T = 4 T = 5 T = 6

H > 0
Pit Valley Saddle Valley
T = 7 T = 8 T = 9

Table 4.3: Surface type determined based on the surface curvature sign

The eigenvalues of the Hessian matrix of the quadratic surface, λ1 and λ2 (λ1 <
λ2), are the minimum and maximum principal curvatures, respectively. Thus, mean
and Gaussian curvatures are calculated using Equation 4.5. Based on the sign of
mean and Gaussian curvatures, the type of surface in each DSM point is determined
using signum function of Equations 4.8 and Equation 4.9 [162].

sgnε(x) =


+1 x > ε

0 |x| ≤ 0 ,

−1 x < ε

(4.8)

T (i, j) = 1 + 3(1 + sgnεH(H(i, j))) + (1− sgnεK(K(i, j)), (4.9)

where εH and εK are thresholds which are selected as 0.005 and 0.003, respectively,
for 5× 5 pixel windows in our experiments.
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4.5 Experimental Results and Discussion

The classification results of the CNN-based approaches are presented and discussed
in this section. In addition, they are compared to two conventional image-based
methods, SVM and random forests (RF), using engineered feature vectors, and a
conventional DSM-based classification method.

4.5.1 Experiment Setup

The datasets for image-based classification are generated from PS images of
WorldView-2 satellite to take advantage of the spatial resolution of PAN images
together with the spectral resolution of MS images. The PS images are generated by
fusion of the PAN images, with a spatial resolution of 50 cm, and the orthorectified
MS images, with a spatial resolution of 2 m and eight channels. Thus, the resulting
PS image has a spatial resolution of 50 cm and a spectral resolution of eight
channels. Since the pretrained CNN models perform with three-channel images,
the red, green and blue channels (the 5th, 3th, and 2nd channels) of the PS image
are selected to form RGB images. A number of datasets were generated from the
DSM for DSM-based classification. Additionally, a building mask is obtained from
a building CM-based footprint and is projected on images and DSM to separate
buildings from other objects. The training and test datasets were selected from
different areas of Munich and, therefore, they are totally independent from each
other.

Fixed-size patches of 224 × 224 × 3 pixels are required for fine-tuning and
extracting features of the pretrained VGGNet 16/19 layers and ResNet model
architectures. Since the size of the training and test image patches are 56× 56× 3
pixels, they are resized to the required input size of the networks, as Figures 4.6 (d)
and (e) show. The CNN models were pretrained on the ImageNet ILSVRC
benchmark [165] dataset with 1.2 million images with 1000 different categories.
Therefore, training and test image patches for roof type classification should have
the same properties as the ImageNet dataset. Thus, all of the training and test
data are subtracted from the mean image computed from the ILSVRC challenge
dataset.

The RF and SVM classifiers are applied to the RGB feature vector as conven-
tional image-based methods. For these methods, there is no need to resize the image
patches.
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4.5.1.1 Training the Fine-tuning Approaches

In order to fine-tune the CNN models, 20 % of each class of the training data is
randomly selected to be used as validation data. The pretrained CNN models are
then fine-tuned based on the rest of the training data. Figure 4.12 shows training
loss, validation loss, and top-1 and top-5 validation accuracy. Top-1 accuracy is the
percentage of the time that the classifier gives a correct class for the class with the
highest probability and top-5 accuracy is the percentage of the time that classifier
gives a correct class which is among the five classes with the highest probabilities.
As we can see in Figure 4.12, top-1 accuracy is close to top-5, which is almost equal
to 1. This means that, most of the time, the classes are predicted correctly in top-
5. As Figures 4.12 (a) and (b) show, the trend of training and validation losses
are similar for VGGNet-16 and VGGNet-19. By comparing training and validation
losses, we can see that the pretrained models on the ImageNet can transfer learning
to the new dataset by fine-tuning without many iterations. There is a big shift
between the validation and training losses in all learning curves because validation
loss oscillates around 0.2 when the training loss is low and close to zero. This is
the over-fitting problem which might be due to the random selection of validation
sets from the training set and using a low number of training dataset in fine-tuning
these very deep networks. To overcome this problem, we should select validation sets
from different areas without overlap and increase the number of training sets, which
needs a great effort without having any available ground truth. Although the over-
fitting problem limits the generalization of the models for test areas, we will show
in Section 4.5.2 that these fine-tuned models are still usable to obtain promising
results for roof type classification. Figure 4.12 (e) demonstrates that the deeper
network (ResNet-152) gives more robust answers than the shallower networks and
its validation loss fluctuates in the last iterations when its training loss is reduced to
zero. Whereas, the validation losses of VGGNet 16/19 have periodical trends and
their training losses have small and large fluctuations after converging to zero. The
reason behind the fluctuation difference between ResNet and VGGNet models could
be their methods for decreasing the learning rate. While VGGNet uses the “step”
function to decrease the learning rate in each 5000 iterations, ResNet employs the
“multi-step” function.

4.5.1.2 Training SVM on the DeCAFs

In this approach, the DeCAFs are extracted from FC6 and FC7 of the pretrained
VGG 16/19, and FC1000 of ResNet 50/101/152 for all training and test patches.
The feature vectors for VGGNet and ResNet have 4096 and 1000 dimensions, re-
spectively, for each patch. The SVM classifier with a RBF kernel is then applied
to the feature vectors to classify the roofs. In the training process, 5 − fold cross-
validation is employed on a grid search, which is initialized by the parameters,
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C = 0.1, 1, 10, 100, 1000 and γ = 1e−2, 1e−3, 1e−4, 1e−5 to determine the best C
and γ. This search processes results in the optimum combination of RBF parameters
of C = 10 and γ = 0.001.

4.5.1.3 Training SVM and RF on the RGB Features

In these conventional approaches, the RGB feature vector for each patch is generated
by vectorizing each channel and concatenating them. The final feature vector has
9408 dimensions. Based on our experiments, the optimum parameters for the SVM
model on the RGB features were C = 10 and γ = 0.0001. Before applying the
SVM on the RGB features, the RGB features are normalized based on mean and
standard deviation values of each feature vector. The RF estimator fits a number
of decision tree classifiers on various sub-samples of the dataset and averaging is
used to improve the predictive accuracy and control over-fitting [166]. The sub-
sample size is always the same as the original input sample size, but the samples are
drawn with replacements [166]. The main parameter to adjust in RF is the number
of estimators, which is the number of trees in the forest. In order to adjust the
number of estimators of the RF in the training process, a grid search is initialized
by the parameters, nestimators : [33, 50, 80, 101, 200, 301, 500, 600, 750 and 1000] and
a 5 − fold cross validation is then applied to it to obtain the one with the highest
accuracy. In our experiments, 1000 estimators were selected.

4.5.2 Discussion of Results
In this section, the fine-tuned models and the trained SVM model are applied to
the test dataset. In order to quantitatively evaluate the classification performance
of the models, their results are compared to the ground truth [167] using standard
measures, such as accuracy, completeness, correctness and F1−score (Quality):

Acc. = TP

TP + TN + FN + FP
, Compl. = TP

TP + FN
,

Corr. = TP

TP + FP
, F1−score = 2× TP

2× TP + FN + FP

(4.10)

In Equation 4.10, TP (True Positive) is the number of patches which belongs to
the same class in the both test data and ground truth, FP (False Positive) is the
number of patches from different classes which are classified wrongly as current test
class, FN (False Negative) is the number of patches which are classified wrongly
to the incorrect classes, and TN (True Negative) is the number of patches which
do not belong to the same class in the test data and ground truth. Completeness
(Compl.) measure represents the number of patches which are labeled as belonging
to a roof type and indeed belong to that roof type. Compl. cannot represent how
many patches from one roof type are not labeled correctly. Correctness (Corr.)
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(a) (b)

(c) (d)

(e)

Figure 4.12: Fine-tuning curve including training loss, validation loss, and top-1 and top-5 accuracy
(a) VGGNet-16, (b) VGGNet-19, (c) ResNet-50, (d) ResNet-101 and (e) ResNet-152
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4. Roof Type Classification

represents the number of patches of one roof type which are labeled correctly. It
cannot show how many patches from other roof type classes are labeled incorrectly
as belonging to that roof type. To consider the effectiveness of these measures, they
are combined into two measures, namely, F1−score and Accuracy (Acc.). Tables 4.4
and 4.5 show the results based on three measures of Comp., Corr. and F1−score for
each class of the test dataset and for all classes.

Table 4.4 shows the performance of fine-tuned-based classification. According
to this table, fine-tuned VGGNet-16 has its highest performance for the flat and
gable roofs. It performed moderately for the half-hip, hip and pyramid roofs, and
almost failed in the classification of the mansard roofs. Fine-tuned VGGNet-19
and ResNet 50/101/152 performed well for flat, gable and half-hip roofs. They
have a lower classification performance for hip and pyramid roofs and almost failed
for mansard roofs. The differences between the performances of the fine-tuned
models for different roof types are derived from the number of patches which are
used from each class for training. As shown in Table 4.1, flat and gable roofs have
the highest number of patches in comparison to other roof types, which allows
them to transfer more information about their features to the fine-tuned model.
According to Table 4.4, the fine-tuned VGGNet-16 and VGGNet-19 performed
similarly considering different evaluation measures. In addition, comparing the
performance of the fine-tuned ResNets for all classes shows that ResNet-50 and
ResNet-101 perform similarly, whereas ResNet-152 (with the Compl. of 89.06%,
the Corr. of 89% and the F1−score of 88.99%) outperforms the other ResNets for all
roof type classes. Altogether, ResNets outperform VGGNets by 6% in Compl., 3%
in Corr. and 5% in F1−score.

Table 4.5 represents the classification results based on the application of SVM
to different DeCAFs. According to the results, similar to the fine-tuned-based ap-
proaches, SVM performs well for the flat and gable roofs, moderately for the half-hip
and hip, and poorly for pyramid and mansard roofs. As has been already mentioned,
this is due to the different number of samples used for training. The classification
performance of SVM using two different FC layers of the VGGNets, namely FC6
and FC7, are shown and compared in Table 4.5. These layers form a higher level
of abstraction and contain richer semantic information than the earlier layers in
the networks. According to the results for VGGNet 16/19, since FC6 is located at
a lower level than FC7 and, therefore, presents features with a lower level of ab-
straction, SVM could better adapt to our classification problem using FC6 features.
Consequently, the results are slightly better than using FC7. By comparing the per-
formances of SVM with VGGNet-16 and VGGNet-19 features, it can be concluded
that using a deeper network, such as VGGNet-19 with three more convolutional
layers than VGGNet-16, can improve the classification performance to some de-
gree (about 2%). However, VGGNet-16 performs better for the pyramid roof class.
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Fine-tuned VGGNet-16
Images TP FN FP TN Compl. Corr. F1−score.
flat 971 187 82 2890 84% 92% 88%
gable 1580 180 242 2128 90% 87% 88%
half-hip 743 227 108 3052 77% 87% 81%
hip 128 55 90 3857 70% 59% 64%
pyramid 22 10 39 4059 69% 36% 47%
mansard 6 21 119 3984 22% 5% 8%

All classes 3450 680 680 19970 83.54% 86.23% 84.63%

Fine-tuned VGGNet-19
Images TP FN FP TN Compl. Corr. F1−score.
flat 944 214 97 2875 82% 91% 86%
gable 1561 199 226 2144 89% 87% 88%
half-hip 781 189 151 3009 81% 84% 82%
hip 125 58 82 3865 68% 60% 64%
pyramid 21 11 25 4073 66% 46% 54%
mansard 6 21 111 3992 22% 5% 8%

All classes 3438 692 692 19958 83.24% 85.40% 84.18%

Fine-tuned ResNet-50
Images TP FN FP TN Compl. Corr. F1−score.
flat 1062 96 139 1770 92% 88% 90%
gable 1594 166 214 609 91% 88% 90%
half-hip 775 195 93 2216 80% 89% 84%
hip 122 61 62 3799 67% 66% 66%
pyramid 21 11 23 4053 66% 48% 55%
mansard 4 23 21 4073 15% 16% 15%

All classes 3578 552 552 16520 86.63% 86.75% 86.60%

Fine-tuned ResNet-101
Images TP FN FP TN Compl. Corr. F1−score.
flat 1061 97 143 2829 92% 88% 90%
gable 1587 173 191 2179 90% 89% 90%
half-hip 769 201 109 3051 79% 88% 83%
hip 122 61 56 3891 67% 69% 68%
pyramid 19 13 26 4072 59% 42% 49%
mansard 7 20 40 4063 26% 15% 19%

All classes 3565 565 565 20085 86.32% 86.78% 86.47%

Fine-tuned ResNet-152
Images TP FN FP TN Compl. Corr. F1−score.
flat 1066 92 76 1830 92% 93% 93%
gable 1646 114 190 534 94% 90% 92%
half-hip 817 153 100 2234 84% 89% 87%
hip 126 57 53 3768 69% 70% 70%
pyramid 18 14 13 4067 56% 58% 57%
mansard 5 22 20 4078 19% 20% 19%

All classes 3678 452 452 16520 89.06% 89.00% 88.99%

Table 4.4: The results of fine-tuned CNN models
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VGGNet-16 features + SVM
Images FC TP FN FP TN Compl. Corr. F1−score.

flat
FC7 979 179 175 2797 85% 85% 85%
FC6 1002 156 175 2797 87% 85% 86%

gable
FC7 1241 519 307 2063 71% 80% 75%
FC6 1290 470 323 2047 73% 80% 76%

half-hip
FC7 645 323 419 2743 67% 61% 63%
FC6 643 325 403 2759 66% 61% 64%

hip
FC7 81 102 188 3759 44% 30% 36%
FC6 74 109 139 3808 40% 35% 37%

pyramid
FC7 2 32 40 4056 6% 5% 5%
FC6 8 26 36 4060 24% 18% 21%

mansard
FC7 2 25 51 4052 7% 4% 5%
FC6 3 25 35 4068 7% 5% 6%

All classes
FC7 2950 1180 1180 19470 71.43% 73.56% 72.26%
FC6 3019 1111 1111 19539 73.10% 74.08% 73.49%

VGGNet-19 features + SVM
Images FC TP FN FP TN Compl. Corr. F1−score.

flat
FC7 967 191 153 2819 84% 86% 74%
FC6 987 171 169 2803 85% 85% 85%

gable
FC7 1333 427 344 2026 76% 79% 85%
FC6 1347 413 316 2054 76% 81% 79%

half-hip
FC7 613 355 398 2764 63% 61% 62%
FC6 657 311 373 2789 68% 64% 66%

hip
FC7 78 105 162 3785 43% 33% 37%
FC6 82 101 117 3830 45% 41% 43%

pyramid
FC7 1 33 33 4063 3% 3% 3%
FC6 1 33 34 4062 3% 3% 2%

mansard
FC7 2 25 46 4057 7% 4% 5%
FC6 3 24 44 4059 7% 6% 8%

All classes
FC7 2994 1180 1180 19514 72.49% 73.78% 73.07%
FC6 3077 1053 1053 19597 74.50% 75.30% 74.85%

ResNet 50/101/152 features + SVM
Images FC1000 TP FN FP TN Compl. Corr. F1−score.

flat

resnet50 994 164 183 2789 86% 84% 85%
resnet101 1000 158 273 2699 86% 79% 82%
resnet152 1004 154 183 2789 87% 85% 86%

gable

resnet50 1325 435 313 2057 75% 81% 78%
resnet101 1273 487 259 2111 72% 83% 73%
resnet152 1342 418 316 2054 76% 81% 79%

half-hip

resnet50 621 347 406 2756 64% 60% 62%
resnet101 653 315 386 2776 67% 63% 65%
resnet152 682 286 394 2768 70% 63% 67%

hip

resnet50 80 103 156 3791 44% 34% 38%
resnet101 93 90 115 3832 51% 45% 48%
resnet152 77 106 87 3860 42% 47% 44%

pyramid

resnet50 8 26 27 4069 24% 23% 23%
resnet101 15 19 38 4058 44% 28% 34%
resnet152 11 23 16 4080 32% 41% 36%

mansard

resnet50 0 27 17 4086 0% 0% 0%
resnet101 3 24 22 4081 11% 12% 12%
resnet152 1 26 17 4086 4% 6% 4%

All classes

resnet50 3028 1102 1102 19548 73.32% 74.01% 73.58%
resnet101 3037 1093 1093 19557 73.54% 74.46% 73.74%
resnet152 3117 1013 1013 19637 75.47% 75.52% 75.41%

Table 4.5: Results of SVM on the DeCAFs
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RGB features+RBF-SVM classifier
Images TP FN FP TN Compl. Corr. F1−score.
flat 743 415 417 2555 64% 64% 64%
gable 1058 702 500 1870 60% 68% 64%
half-hip 474 494 458 2704 49% 51% 50%
hip 62 121 241 3706 34% 20% 26%
pyramid 0 34 146 3950 0% 0% 0%
mansard 1 26 30 4073 4% 3% 3%

All classes 2338 1792 1792 18858 56.61% 59.75% 58%
RGB features+RF classifier

Images TP FN FP TN Compl. Corr. F1−score.
flat 840 318 194 2778 73% 81% 77%
gable 1345 415 573 1797 76% 70% 73%
half-hip 431 537 306 2856 45% 58% 51%
hip 53 130 209 3738 29% 20% 24%
pyramid 1 33 123 3973 3% 0% 1%
mansard 5 22 50 4053 19% 9% 12%

All classes 2675 1455 1455 19195 64.77% 67.33% 65.65%

Table 4.6: Conventional classification approaches

Among ResNet models, the deepest one (ResNet-152), with the Compl. of 75.47%,
the Corr. of 75.52% and the F1−score of 75.41%, performs slightly better than the
others. However, the SVM classification using ResNet features for the pyramid and
mansard roofs performs poorly in comparison to the SVM on VGGNet features, and
SVM on the ResNets features performs slightly better for pyramid roofs. ResNet-
152 features, for example, classified the pyramid roofs with the Compl. of 32%, the
Corr. of 41% and the F1−score of 36%, whereas SVM on FC6 features of VGGNet-16
resulted in a classification with the Compl. 24%, the Corr. of 18% and the F1−score
of 21%. ResNet models generally outperform the VGGNet models, according to Ta-
bles 4.4 and 4.5, for the approach based on fine-tuning and the approach using the
DeCAFs. In addition, the ResNet models are less sensitive to the small number of
training samples, such as for the mansard roofs, compared to the VGGNet models.
Moreover, it can be concluded that the approach based on fine-tuning has a better
performance than the ones based on DeCAFs when the number of training samples
is limited. Altogether, according to the results, the fine-tuned ResNet-152 with the
Compl. of 89.06% and the Corr. of 89% and with the F1−score of 88.99% on the test
data outperformed all the other fine-tuned models and the DeCAFs.

Table 4.6 shows the performances of conventional classifiers, such as RF and
SVM, on the RGB features. As the results show, their performance is dependent
on the number of training samples. Thus, they performed well for the flat and
gable roofs, performed moderately for the half-hip roofs and almost failed in the
classification of the other roof types. In comparison to the DeCAFs, SVM is more
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Roof type classification methods Compl. Corr. F1−score Acc.

SVM with RGB features 56.61% 59.75% 58% 56.61%
RF with RGB features 64.77% 67.33% 65.65% 64.77%

SVM with VGGNet-19 (FC6) features 74.50% 75.30% 74.85% 74.50%
SVM with ResNet-152 features 75.47% 75.52% 75.41% 75.47%

fine-tuned VGGNet-16 83.54% 86.23% 84.63% 83.54%
fine-tuned ResNet-152 89.06% 89.00% 88.99% 89.06%

Table 4.7: Comparison of Compl., Corr., F1−score, and Acc. for the best results of DeCAFs, the
best results of fine-tuned CNN models and conventional models, such as RF and SVM, with RGB
features

TP FN FP Compl. Corr. F1−score. Total Acc.
DSM Image DSM Image DSM Image DSM Image DSM Image DSM Image DSM Image

flat 638 1066 520 92 135 76 55.09% 92.06% 82.54% 93.35% 49.34% 86.39%
84.14% 95.93%Non-flat 2837 2896 135 76 520 92 95.46% 97.44% 84.51% 96.92% 81.24% 94.52%

Table 4.8: Classification of flat and non-flat roofs based on the DSM and image-based method
(ResNet-152)

sensitive to the training sample number using RGB features. According to Table 4.6,
the RF classifier on the RGB features performs about 7% better than SVM classifier
on the RGB features for all classes.

Table 4.7 compares the performances of the CNN-based and conventional
approaches for CNN-based approaches; the result of each model which has the best
performance in Tables 4.4 and 4.5 is used for comparison. The approach based
on fine-tuning generally performed better than the approach based on DeCAFs.
Moreover, using ResNet-152 features for the SVM classifier resulted in a higher
performance in comparison to the VGGNet features. Table 4.7 also shows that deep
learning-based approaches perform better than the conventional methods, such as
SVM and RF, on RGB features.

As discussed in Section 4.4, extracted mean and Gaussian curvature features
from DSM can be used to classify the flat and non-flat roofs. The DSM patches
were generated in the same way as the test patches for the image-based classification
to compare the results of DSM-based classification with image-based classification.
The mean and Gaussian curvature images were then provided for each patch. The
patches were classified into flat and non-flat roofs based on the sign of mean and
Gaussian curvatures using Equation 4.9. The results of the DSM-based classification
are then compared with those of image-based classification for the flat and non-flat
classes as presented in Table 4.8. The results of the fine-tuned ResNet-152 are
reported for the image-based classification. As shown in Table 4.8, ResNet-152
outperforms the DSM-based classification for just discriminating flat from non-flat
roofs.
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4.6 Summary and Conclusion
In this chapter, the potential of the DSM of satellite imagery to define a roof building
library is evaluated. A simple roof type classification for two categories (flat and
non-flat) is employed based on surface curvatures of the DSM. Although this method
can obtain the accuracy of 84 % which is better than some of the methods presented
in Table 4.7, it is limited to two types of roof. Image-based classification used two
pretrained VGGNet and ResNet to classify the roof types other than non-flat roofs,
such as gable, half-hip, hip, pyramid and mansard roofs. Two types of pretrained
CNNs, which are RBF-SVM with VGGNet and ResNet features of fully connected
layers and the fine-tuning ResNet 50/101/152, are evaluated. ResNet-152 with an
accuracy of 89.06 % obtains the best result among the different models. Figure 4.13
shows the final results of the classification with fine-tuned ResNet-152, which is
finally used for the 3D reconstruction in the next chapter.
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4. Roof Type Classification

Figure 4.13: Illustration of classified roof types (green: gable, blue: half-hip, red: flat, yellow: hip,
light blue: mansard, pink: pyramid roofs, (left) the results of four different areas, (right) their
related ground truths
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5

3D Building Model Reconstruction

In this dissertation, the concept of 3D building reconstruction from satellite data is
to create a watertight parameterized 3D model of a building so that the geometrical
parameters, such as the slope and volume of the model, can be estimated. The
proposed reconstruction method is based on some data-driven steps which have
been presented in the previous chapters. The data-driven steps for reconstructing
3D building models from the DSM of satellite imagery are as follows: Extracting
the parameterized building outlines (Chapter 2), decomposing them into rectangular
shapes (Chapter 3) and selecting the roof type for each part of the building block
(Chapter 4). After all these data-driven steps, the buildings are then reconstructed
by assembling simple rectangular structures, which is shown in this Chapter.

In this chapter, a hybrid 3D building model reconstruction is detailed where the
model is defined as a geometrical shape with some parameters which are initialized
by the preknowledge obtained from data-driven steps (Section 5.1). Using the
building mask and the nDSM, this initialization is then improved in (Section 5.2 and
Section 5.3). The improvement of the initial parameters consists of the improvement
of rectangles by shifting and orienting them to coincide with the building mask
boundary and decomposing rectangles by detecting height discontinuities and roof
types. Moreover, the roof type classification results obtained from the previous
chapter are improved by combining them in each rectangle based on a predefined
set of combination rules and then by fusing them with the nDSM in a Bayesian
framework. In the end, a modified parameter optimization based on the brute-force
search is used separately in 2D and 3D to find the final model as the best fitting
model to the nDSM among all possible models (Section 5.4). Figure 5.1 depicts
the workflow of the proposed multistage hybrid method for 3D building model
reconstruction.

111



5. 3D Building Model Reconstruction

(a)

Figure 5.1: Workflow of the proposed method.
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5.1. Geometrical Structure of the Roof Model

(a)

Figure 5.2: Geometrical parameters of the roof models

5.1 Geometrical Structure of the Roof Model
In Chapter 3, building blocks were decomposed into a number of simple rectangles.
In Chapter 4, a library of the primitives, including flat, gable, half-hip, hip, pyramid
and mansard roofs, that are visible in DSMs and satellite images was then defined,
which is necessary for model-driven methods.

The primitive library for the proposed hybrid method is categorized into two
groups: Single- and multiplane roofs, as can be seen in Figure 5.3. In this disser-
tation, the planar roofs and rectangular footprints are used due to not only their
simplicity and small number of parameters, but also their basic forms, which can
cover most building shapes in urban areas. The geometrical parameters of the prim-
itives in the library are defined as:

ψ ∈ Ψ; Ψ = {P , C,S}, (5.1)

where the parameter Ψ contains the position parameters P = {xo, yo, orientation},
the contour parameters C = {length, width}, and the shape parameters S including
ridge/eave (gutter) height and the longitudinal and latitudinal hip distances, which
are Zridge, Zeave, hipl1, hipl2, hipw1 and hipw2, respectively. Figure 5.2 illustrates the
geometrical parameters of a roof model. The roof components, such as vertices, edges
and facets, and their relationships are determined from the geometrical parameters
of the primitives [101].
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Group H 

Hip roof: 

Gable roof: 

Mansard roof: 

Half-hip roof: 

Pyramid  roof: 

Group F 

Flat roof: 

Shed roof: 

(a)

Figure 5.3: Groups of single and multiplane roof models

5.2 Enhancement of 2D Roof Model Rectangles

In Chapters 3 and 4, building roofs were decomposed and classified into several
rectangles. Some of the rectangles have errors from the decomposition and selection
steps which need to be improved. The improvement consists of two parts: 2D
enhancement in the rectangle parameters and detection of the height discontinuities
in two main orientations of each rectangle.

5.2.1 Enhancement of the Rectangle Parameters

The rectangle sides obtained from the extraction, decomposition and selection steps
do not always fit the boundaries of building masks perfectly, as they suffer from
rotation and shift errors, as shown in Figures 5.5 (a) and (c). To correct the rotation
error, each rectangle is converted into a binary image and dilated with a disk-shaped
structure element of two-pixel size to overlap the boundary of the building mask.
A Hough transform is then used to find co-linear points and the orientation of
their corresponding line (θ1). The difference between θ1 and the orientation of the
rectangle side (θ2) gives the degree which the rectangle should be rotated to fit the
building mask:
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Figure 5.4: The computational domain of four-quadrant inverse tangent of elements of X and Y

∆θ = θ1 − θ2 = atan2( ∆Y1

∆X1
)− atan2( ∆Y2

∆X2
) (5.2)

In this equation, ∆X and ∆Y are the differences between the coordinates of the
Hough line and the rectangle side, and atan2() is the four-quadrant inverse tangent
which returns values in [−π, π], as shown in Figure 5.4. The corrected rectangle of
Figure 5.5 (a) is illustrated in Figure 5.5 (b).

Several lines orthogonal to the width and length of the rectangle are considered,
so-called profile lines, to calculate the shifts between rectangle sides and boundaries
of the building mask. Figure 5.6 shows the building mask, the corresponding
rectangles and the profile lines. As the figure illustrates, the extent of the profile
lines which cover a small area outside the boundary intersect with the boundary of
the building mask. The distance between the intersection points and the rectangle
sides is then used to measure the shift error. In the next step, each side of the
rectangle is shifted to fit into the boundaries of the building mask. Figure 5.7 shows
the parameters of the profile lines. In this figure,

• ds stands for the distance between two successive profiles,

• rs corresponds to the sampling resolution of the building mask on the profile,
and

• lext corresponds to half of the rectangle’s length and width for orthogonal
profile lines.

Figure 5.8 illustrates a rectangle (magenta lines) after the shift correction (blue
lines).
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(a) (b)

(c) (d)

Figure 5.5: (a) The decomposed rectangles, (b) the decomposed rectangles after imposing the
rotation, (c) the decomposed rectangles, and (d) the decomposed rectangle after imposing the
shift

Figure 5.6: Profiles acquisition; red lines are the measuring slices perpendicular to the width and
green lines are the measuring slices perpendicular to the length of the rectangle. Blue points are
intersection points of the profile and building mask
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Figure 5.7: The profiles acquisition of the rectangle and their parameters: ds, rs, and lext. Plus
shape points stand for pixels and blue lines show the line profiles.

Figure 5.8: The correction of the rectangle after imposing the shift: Blue rectangle
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(a) (b)

Figure 5.9: Decomposition of a rectangle after imposing the rules of roof type combination: The
pyramid roof is shown in magenta (a) before decomposition and (b) after decomposition

5.2.2 Decomposition of the Rectangles based on the Roof
Types

The rectangles can be improved by decomposing them using some rules defined based
on roof types combinations. The roof types are obtained from the classification in
Chapter 4. Since the roof types are classified based on a patch-based deep learning
method, there are different roof types within the rectangles. In the case of having
more than one roof type, the combination of roof types in one rectangle is verified.
Combination of gable with half-hip and hip roof is meaningful, which results in
half-hip or hip roofs. A rectangle is decomposed where the flat roof neighbors one
of the sloped roofs. Pyramid and mansard roofs are also decomposed where they
neighbor other sloped or flat roof types. In Figure 5.9, for instance, a pyramid roof
is separated from other roof types by decomposing rectangles where a pyramid is
changed to another roof type.

5.2.3 Detection of the Height Discontinuities
The rectangles can be improved by detecting height discontinuities. The height
discontinuity points are detected by grouping the pixels on the profiles of the middle
lines. Since the basic shape of the model is rectangular, the height discontinuities
are measured on two profile lines which are parallel (for flat and sloped roofs) and
perpendicular (for only flat roofs) to the longest line of the rectangle. Each pixel
on these two lines has different height values (Z) obtained from the nDSM. The
gradient (G) is then computed as the profile derivative based on the predefined
resolution rs (here rs is selected as one pixel):

∆Z
∆x (i) = Z(i+ rs)− Z(i)

rs
= G(i)

rs
. (5.3)
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Pixels with gradients (height differences) less than a threshold (threshold selected
to be one meter) are then clustered in one group. Each group should contain more
than four pixels, otherwise it is not considered in computing height discontinuities.
If the difference between the height averages of two sequential groups is more than
a threshold (threshold selected to be 2.5 meter), there is a height discontinuity
point between them. The number of groups with the property mentioned previously
presents the number of jumps. The points with large gradients where the groups are
separated are detected as the height discontinuity points. The points detected on the
rectangle sides are then excluded. Finally, the rectangles are split at the positions
of the discontinuity points. Figure 5.10 shows the result of height discontinuity
detection for a building.

5.3 Selection and Initialization of Roof Model Pa-
rameters

After improving the rectangles, the model fitting algorithm requires some initializa-
tion. The main orientation of the roof model is detected during the initialization
procedure and the classification results from Chapter 4 are improved based on the
height information from the nDSM. The other initial roof model parameters, such
as length, width, rectangle center, height of the eave, height of the ridge and hip
distances, are then calculated.

5.3.1 Detection of Building Roof Model Orientation
In order to determine the main orientation of the rectangles, which can be parallel to
the length or width of the rectangle, three profiles are computed, one in the middle
of the rectangles and two with an offset from the middle for each orientation.

The maximum Z values of the three profiles for each orientation are then com-
puted. The maximum value of each orientation is replaced by the mean of Z values
of the neighboring pixels within a window size of widthrectangle/4 to reduce the
noise effect of the DSM. After that, a threshold is defined according to the mini-
mum value of these maximum values. The number of points (NPoints) which have
Z values higher than this min value is then determined for each orientation. The
orientation of the line with the maximum NPoints is selected as the main orientation
of the building. This line is also used to detect the building ridge lines in the sloped
roofs.
The height points of neighboring rectangles can affect the determination of the main
orientation of each rectangle for complex buildings with several parts and orienta-
tions, where the rectangles overlap each other. Dealing with this issue, the height
values of half of the overlapping pixels related to neighboring rectangles are lowered
to the height of the rectangle’s border. The main orientation of the building is then
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Height discontinuities detection: (a) Longitudinal profile line (blue) and latitudinal
profile line (red) drawn on the nDSM; (b) decomposition of the blue rectangle in (a) based on
height discontinuity points (two magenta points in (a)); (c) the 3D point clouds projected in the
2D plane passing the longitudinal profile (red points); and (d) the height differences between the
3D point clouds along the longitudinal profile ∆Z; three groups of points in magenta, blue and
green. The height discontinuity points are shown in red dot squares. (e) The 3D point clouds
drawn in the 2D plane passing the latitudinal profile (red points). (f) The height differences (the
gradients) between the 3D point clouds along the latitudinal profile ∆Z; two groups of points in
magenta and blue. The height discontinuity points are shown in red dot squares.
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Figure 5.11: Roof model orientation detection

computed according to what has been explained above. Figure 5.11 shows the result
of roof model orientation detection for a U − shape building.

5.3.2 Improvement of Roof Type Classification Results
Before fitting a 3D model to each rectangle, its corresponding roof type should be
determined, since different roof types might have been assigned to each rectangle
through the classification step. Only one roof type is selected for each rectangle
from all roof types that have been assigned to it based on a set of rules to improve
the roof type classification results. To improve the classification results within each
rectangle, firstly, a rectangle is divided into three parts. A roof type is then assigned
to each part based on the majority of pixels in each class related to each part of
the rectangle. Next, a set of rules based on the combination of these roof types is
determined as follows:

• {half-hip,gable,half-hip} −→ {hip},

• {half-hip,half-hip,hip} −→ {hip},

• {hip,half-hip,half-hip} −→ {hip},

• {hip,half-hip,hip} −→ {hip},

• {gable,half-hip,half-hip} −→ {half-hip},

• {gable,gable,half-hip} −→{half-hip},

• {half-hip,gable,gable} −→ {half-hip},

• {half-hip,half-hip,gable} −→ {half-hip},

• {gable,gable,gable}−→{gable},
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5. 3D Building Model Reconstruction

Flat Gable Half-hip Hip Pyramid Mansard
Flat 0.97 0.027 0.006 0 0 0
Gable 0.028 0.908 0.0028 0.066 0 0
Half-hip 0 0.094 0.81 0.0915 0 0.0045
Hip 0.006 0.056 0.087 0.85 0 0
Pyramid 0 0.144 0.36 0.12 0.38 0
Mansard 0.51 0 0.215 0.275 0 0

Table 5.1: The confusion matrix of the classification for all four areas (Chapter 4)

Probability

R
es
ul
ts

of
cl
as
sifi

ca
tio

n flat gable half-hip hip pyramid mansard
flat 0.75 0.166 0.083 0 0 0
gable 0.083 0.67 0.083 0.16 0 0
half-hip 0 0.133 0.417 0.417 0.033 0
hip 0.05 0.116 0.417 0.417 0 0
pyramid 0 0.166 0.166 0.166 0.5 0
Mansard 0.25 0 0.166 0.166 0 0.417

Table 5.2: prior probabilities of roof models

• {half-hip,half-hip,half-hip}−→{half-hip},

• {hip,hip,hip} −→ {hip},

• {gable,hip,gable} −→ {hip}, and {gable},

• {gable,half-hip,gable}−→{gable},

Algorithm 1 in Appendix D shows how the roof types classification results are
updated according to these predefined rules.

After using the rules mentioned, each rectangle has one type of roof. A deep
learning method was only applied on the patches of images without using the nDSM
to classify the roof types in Chapter 4. The size of each patch is fixed and cannot
cover a whole rectangle, especially in the case of long rectangles. Therefore, one
rectangle can have either more than one roof type or only one incorrect roof type.
A rectangle, for instance, is classified as a half-hip roof in the Figure 5.12, while it is
a hip roof in reality. To solve this problem and to modify the classification results,
the height information from the nDSM is used to make a final decision on the roof
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5.3. Selection and Initialization of Roof Model Parameters

(a) (b)

Figure 5.12: Roof type refinement: (a) The result of the classification before refinement, (b) roof
types after refinement; blue and yellow colors stand for half-hip and hip roofs, respectively

type. Consequently, the roof models with different prior probabilities obtained from
deep learning-based classification are fitted to the nDSM of each rectangle to achieve
data information about roof models. The final roof types are classified using prior
probabilities and the data information of roof models in a Bayesian formula.

Table 5.1 shows the confusion matrix of the classification for all four areas
which are used in this dissertation. Each row of the table stands for the true
positive and false negative ratios of one roof type. The true positive ratio is the
percentage of the patches which are classified correctly for one roof type and the
false negative ratio is the percentage of the misclassified patches of that roof type.
Considering the false negative of a roof type gives the opportunity for refinement of
the classification results. If some patches of the flat roof, for instance, are classified
as gable and half-hip roofs (false negative), the prior probabilities are computed for
them. According to Table 5.1, prior probabilities of each class which is determined
by the user should sum to one (Table 5.2). In this table, the roof which is chosen
from the classification takes the highest probability among the other roof types. In
the first row, for instance, the flat roof takes the highest probability, but the gable
and half-hip roofs (as false negative roof types) also take a portion in the final
decision of roof type selection. Table 5.1 only conducts the user to give probabilities
to each type of roof and is useful to create Table 5.2. Since this table is obtained
from the classification on the small areas, it is not perfectly reliable to present
the prior information about the roof types and to use for fusing with the nDSM.
The probability of the flat roofs, for instance, is 97%, which is very high, and it
cannot allow nDSM information to participate in the final decision about roof type.
Therefore, the handcrafted probability is calculated for each roof type as a prior
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5. 3D Building Model Reconstruction

probability (Table 5.2) according to the statistical information obtained from the
roof type classification results (Table 5.1). The prior probability of each roof type
is the proportion of six, which is the number of roof types. The summation of each
row is equal to one. In the first row of Table 5.2, for instance, the probabilities
of the flat, gable and half-hip roofs are determined as 4.5

6 = 0.75, 1
6 = 0.166 and

0.5
6 = 0.083, respectively.

Based on this predefined probability, a Bayesian formulation is used to select the
best roof type. The Bayesian approach is known to be robust and useful for parame-
ter estimation problems. A set of modelsM = {M1,M2, ...,Mm} for presenting data
D is given. Each model is presented by the prior probability P (Mi) according to the
probabilities shown in Table 5.2. P (D|Mi) is the likelihood which is the probability
of the observing data D knowing the model Mi. Bayes’ rule states:

P (Mi|D) = P (D|Mi)P (Mi)
P (D) ∝ P (D|Mi)P (Mi) (5.4)

where P (Mi|D) is the posterior probability for each roof type. P (D) is the normal-
izing constant which does not depend on the modelM , therefore, it is not considered
in calculating P (Mi|D) and an unnormalized density is preferred [120]. The best
model M̂i with high posterior probability is then chosen from the entire set of pos-
sible solutions M .

M̂i = arg max
Mi∈M

(P (Mi|D)) = arg max
Mi∈M

P (D|Mi).P (Mi) (5.5)

Let us consider Di as the partial data of rectangle i. P (D|Mi) is also shown as
likelihood L(Di|Mi) which is given by:

L(Di|Mi) ∝ exp(−
√√√√ 1
N

∑
j

ρ(od2
j)) (5.6)

where N is the number of inner nDSM pixels of the rectangle and ρ(od2
j) is the

Huber loss [168], which is computed by:

ρ(od2
j) =


1
2od

2
j for |odj| < T

T (|odj| − 1
2T ), otherwise

(5.7)

In this equation, od2
j is the shortest orthogonal distance (Euclidean distance) from

point pj to the surface of the 3D model defined by configuration Mi, and T is the
threshold of this error, which is computed by fitting a plane to the part of the nDSM
of the building and calculating the percentage of the points which have the closest
distance to the surface of the 3D model. This threshold is equal to 1 m for sloped
and flat roofs. Among the model set of M , the model with the maximum P (Mi|D)
is selected for further processing.
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(a) (b)

Figure 5.13: (a) Buffer of the roof eave height estimation. (b) Buffer of the roof ridge line height
estimation

5.3.3 Initialization of Roof Model Parameters

As explained in Section 5.1, the number of roof model parameters for initialization
depends on the roof model type. The most complex roof type in the library is the
mansard roof, which has eleven parameters. The number of parameters is variable
from a flat roof with four parameters to a mansard roof with eleven parameters.
These parameters are either equal to zero or changed during the optimization, de-
pending on the roof type. This section shows how the roof parameters are initialized.
The position of the rectangle center (xo and yo) is calculated by averaging the four
vertices of the rectangle. The length and width of rectangles are replaced by each
other regarding orientation of the roof model. The orientation of the building which
is similar to the orientation of the ridge line is calculated according to Equation 5.2.

The ridge line and eave heights are computed based on averaging the pixels
within two buffers, each with a different width (Figure 5.13) around the main
middle line (gray color) and rectangle border (light blue color). In the following,
the principal of the roof height estimation, which is inspired by [169], is explained
in detail.

Estimating the height of the roof eave: To estimate the height of the eave,
an area close to the eave of the roof is selected by defining a buffer. The buffer
width is equal to one-fifth of the rectangle width. The pixels of the nDSM within
the buffer are then selected and are ranked by increasing heights. The average of
ranked pixels in the range of [0.3 × Neave, 0.7 × Neave] estimates the height of the
eave where Neave is the number of buffer pixels. Since the height of the boundary
is changed gradually and there is no sharp building boundary in the nDSM with a
specific height, selecting this range is safe enough to avoid the height of the ground
and the height of the ridge line in the sloped roofs.
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5. 3D Building Model Reconstruction

Estimating the height of the roof ridge line: The heights of ridge lines
are estimated similar to the eave heights. Thus, an area close to the main middle
line of the rectangle is selected by defining a buffer. The buffer width is equal to
one-fourth of the rectangle width. The pixels of nDSM which belong to the buffer
are then selected and ranked by increasing heights. The average of ranked pixels
in the range of [0.85 × Nridge, 0.95 × Nridge] estimates the height of the ridge line,
where Nridge is the number of pixels within the buffer. This range is admissible
focusing on the highest pixels while avoiding the noisy pixels on the ridge lines and
the pixels from the eave.

The initialization of latitudinal and longitudinal hip distances, such as hipw1,
hipw2, hipl1, and hipl2, in Figure 5.2 is calculated based on the following geometrical
rules:

• The longitudinal hip distance for a pyramid roof is equal to half of the mini-
mum length of the rectangle,

• the longitudinal hip distance for a half-hip, hip and mansard roof are equal to
the quarter of minimum length of the rectangle,

• the latitudinal hip distance for a pyramid roof, half-hip and hip is equal to
half the width of the rectangle, and

• the latitudinal hip distance for a mansard roof is equal to quarter of the width
of the rectangle.

These rules hold for Munich as most of the roofs are sloped ones.

5.4 3D Building Model Reconstruction
In this section, the complete parametric roof model is reconstructed. Firstly, the
initial parameter obtained from the previous section is computed precisely by an
optimization method to discover the best fitting model to the nDSM. In the end,
the vertices of each rectangle intersect with each other according to some predefined
rules.

5.4.1 Optimization
The optimization is performed on the primary model obtained from the initial pa-
rameters. The goal is improving the primary model to have the best fit to the height
data and boundary of the building. There are two categories of initial parameters in
2D, such as P = {xo, yo, orientation} and C = {length, width}, and in 3D, such as
Zeave, Zridge, hipw1, hipw2, hipl1 and hipl2. The optimization is performed for each
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Parameters Ranges Unit Step size
xo [-3, 3] pixel 1
yo [-3, 3] pixel 1
Zridge [-2.4, 2.4] meter 0.2
Zeave [-2.4, 2.4] meter 0.2
length [-5, 5] pixel 1
width [-5, 5] pixel 1
Orientation [−∆θ, +∆θ] degree 1
hipl1 [-1, 0.35]× initial(hipl1) pixel 0.16
hipl2 [-1, 0.35]× initial(hipl1) pixel 0.16
hipd1 width/2 pixel 0
hipd2 width/2 pixel 0

Table 5.3: Predefined parameters and their corresponding ranges, units and step sizes

category independently. Several models are generated by changing the parameters
in the predefined ranges. Ten models can be generated, for example, for changing
the orientation in −10,−8, ..., 8, 10 degrees.
The 2D and 3D optimization is based on a brute-force algorithm which discovers the
best combination among all combination of the parameters. The range of refinement
of the model parameters is limited, since the initialization is acceptable in most of
the buildings. On the other hand, using the nDSM for model fitting results in defin-
ing the range of parameters in discrete numbers. Searching the optimum parameters
in the discrete ranges using the complex cost function might be stopped by being
trapping in local minima. Searching for the best among all possible combinations
motivated us to use the brute-force search algorithm to find the global optimum of
parameters.

Table 5.3 represents the range of each parameter and their corresponding step
sizes. These ranges are obtained based on empirical trials and the quality of initial
parameters. The same ranges of parameters have been defined for all four areas. The
parameters of longitudinal hip distances hipl1&2 and hipd1&2 are changed depending
on the parameters of length and width, while the other parameters are changed
independently, as shown in Table 5.3.

ranges of parameters [htbp]
The 2D optimization improves the 2D parameters so that they have the best

fit to the boundary of the building. The 2D improvement in Section 5.2 was for
building rectangles in case their sides and orientation were far from the boundary of
the building mask. However, the interaction between the rectangles in one building
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Figure 5.14: Overlapping (red dots) and neighboring (green dots) parts of rectangles in one building
block

block has not been considered. Therefore, 2D optimization with a tight range
of the 2D parameters is performed to find a combination among all those of 2D
parameters so that its model not only has a minimum distance to the boundary,
but is also oriented in relation to neighboring models. The best 2D models are
then used as the input of the 3D optimization. A brute-force search is used to
select the best 3D model among all the models which are generated by changing
the 3D parameters in their related ranges. The ridge and eave heights of neighbor-
ing models for one block of a building then affect the selection of the final 3D model.

The metric of 2D optimization is the PoLiS distance [136] between the boundary
of the building (obtained from the RANSAC fitting line to the boundary of building
mask and canny edges of the PAN image) and model vertices. The metric of 3D
optimization is the normal distance between the 3D points and the roof model
surface, which is calculated by the Equations 5.6 and 5.7.

5.4.1.1 Finding the Interaction of the Rectangles in One Building Block

The neighboring and overlapping rectangles are found to verify the interaction be-
tween models (rectangles) of a building block. In order to distinguish the two types
of overlaps, the overlapping rectangles share a significant area which can be repre-
sented by an intersection roof model type, such as L − shape or T − shape. The
neighboring rectangles, however, share a small area which is not significant and can-
not present a connecting roof model type. Figure 5.14 shows the overlapping and
neighboring rectangles. To find the overlap of two overlapping rectangles:
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Figure 5.15: The parameters of the rectangle to find the overlapping sides which is shown in gray

1. find the middle lines of two rectangles and their intersection. In Figure 5.15,
two rectangles a and b, where the middle lines are la, l′a, lb and l′b, are presented.
The intersection between the middle lines are notated by O,

2. find the left and right sides of the rectangles parallel and perpendicular to la,
l′a, lb and l′b which are notated with Slra, Slla, Swra and Swla for the rectangle
a and notated by Slrb, Sllb, Swrb and Swlb for the rectangle b,

3. find the overlap of the rectangles by intersecting their building mask
(maskoverlap)

4. if Ola,lb and maskoverlap(Ola,lb) exist, then accept rectangles have overlap,

5. find the overlapping side of rectangles, if the overlap exists. Exemplarily, for
rectangle a and middle lines la, if distance(Swla, Ola,lb)< distance(Swra, Ola,lb)
, then the overlapping side is located on the left side of thr rectangle notated,

6. verify the fifth item for rectangle b and other middle lines to find the overlap-
ping part.

Figure 5.15 shows the example of finding overlapping parts of two rectangles accord-
ing to the items mentioned above.

In order to discover the neighboring rectangles, the fourth item is rejected as
two rectangles have only a small overlap (shown in green dots in Figure 5.14)
and intersection of the ridge lines is outside the overlapping part. Those sides of
rectangles which overlap are detected to find the overlapping side.
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5.4.1.2 2D Optimization

Generating all possible models for one rectangle through exhaustive search and
selection of the best one among them are represented by the algorithms 2 and 3 in
Appendix D, respectively.

Let the vector of parameters be Ψ1×11 = {xo, yo, zeave
, zridge, length, width, orientation, hipl1, hipl2, hipd1, hipd2}, and the goal of 2D
optimization step is finding the best combination of the parameters {xo, yo, length,
width, orientation}. Algorithm 2 illustrates optimization through exhaustive search
in which all possible 2D building models are generated by changing the initial 2D
parameters of Ψ1×11 ({xo, yo, length, width, orientation}) within the predefined
ranges as shown in Table 5.3. The parameter combinations are then derived and
their model costs are calculated based on the PoLiS distance between the model
vertices and the reference building boundaries. The best 2D building model with
the minimum cost is then selected by Algorithm 3 for each rectangle. For the
building blocks composing of more than one rectangle, the rectangles are ordered
based on their lengths. After selecting the best model of the first rectangle, the
best model for the second rectangle is selected by investigating its neighborhood
relations with the other rectangles based on the method explained in Section 5.4.1.1.
If the second rectangle, for example, is adjacent to the first rectangle, the differences
between the orientation of the first rectangle and the orientations of all possible
models for the second rectangle are calculated. If these differences are within the
angle threshold of [0, 90, 180, 270, 360] ± (thrθ = 15), the 2D model with minimum
cost and the minimum orientation difference is selected as the best 2D model for
the second rectangle; otherwise, the model with the minimum cost value is selected
as the final model for the second rectangle. This method is used for selecting the
best models for all rectangles in the building block.

5.4.1.3 3D Optimization

The result of 2D optimization is used as input for 3D optimization. In the vec-
tor Ψ3D, 3D parameters are variable and are optimized in combination with 2D
parameters. The 3D parameters consist of {zeave, zridge line, hipl1}.

The initial value of the longitudinal and latitudinal hip distances are as follows:

• The initial value for the hip roof is hipl2 = hipl1 = length/3, hipl2 = 0 and
hipl1 = length/3 for half hip roofs, and hipl2 = hipl1 = 0 for the gable roof.

• hipd1 and hipd2 are equal to the half the rectangle width for gable, half-hip
and hip roofs.

• The initial value of longitudinal hip distance for mansard roofs is hipl2 =
hipl1 = length/3 and hipd2 = hipd1 = width/3 for latitudinal hip distance.
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(a) (b)

Figure 5.16: Buffer of the hip side determination, (a) projected on the DSM, (b) projected on the
image

• The initial value for a pyramid roof is hipl2 = hipl1 = length/2 and
hipd2 = hipd1 = width/2.

The other important parameter for fitting the 3D model to the nDSM is the
determination of the hip part in the half-hip roof. Since the roof type classification
only determines the roof types without considering their geometrical structures, the
hip part of half-hip roof is an unknown parameter. This parameter is determined
based on the comparison of the height computed in the small buffer at the end of
the ridge line (shown by the red points in Figure 5.16). Therefore, the side with
smaller height value is selected as a hipside.

hipside(rectangle, nDSM) =

[0, 1], if Z2 ≥ Z1;
[1, 0], if Z1 ≥ Z2.

The pseudocodes of finding the best 3D parameters are shown in the Algorithm 4
and Algorithm 5 in Appendix D, respectively. Algorithm 4 shows the optimization
algorithm based on an exhaustive search which is used for generating all possible
3D building models by changing the initial value of the 3D parameters (Ψ3D =
{zeave, zridge, hipl1}) in ranges defined in Table 5.3. The cost values of each 3D
model are calculated based on the RMSE of orthogonal Huber distances between
the 3D point clouds obtained from nDSM and the 3D models. Algorithm 5 selects
the best 3D models among all possible 3D building models generated by the previous
algorithm.

Similar to the 2D optimization, in a building block containing multiple rectan-
gles, the relationships between the neighboring rectangles affect the model selection.
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By contrast, in the selection of the best 3D building model, the height differences
between ridge and eave lines of the neighboring rectangles are considered instead
of orientation. The best 3D model of the first rectangle is initially selected based
on the minimum cost value. If the second model, for example, is neighbor to the
first model, the differences between the ridge/eave height values of all possible 3D
models of the second rectangle and best 3D model of the first rectangle are cal-
culated. If these differences are in a height threshold (thrh = 1 m) and in a cost
threshold (thrcost = 1.5 m), the model with the minimum cost value and minimum
height differences is selected as the final model for the second rectangle; otherwise,
the model with the minimum cost value is selected. This method is performed for
all rectangles in a building block.

5.4.2 Intersection and Reconstruction
As Figure 5.2 shows, the optimum parameters of the model are used to compute the
vertices of the 3D model. The models for the parts created are intersected with each
other to reconstruct the 3D building model for one building block including several
parts. Different connecting roof types, such as L−shape, T−shape and Plus−shape,
can be further created. Depending on the type of interaction between the models
(the degree of overlap), the roof type of neighboring models, and the minimum
cost value, the connecting roof type is chosen among the connecting roof types
mentioned previously. Neighboring models which have significant overlap create
different connecting roof models. Figure 5.17 shows the different models and their
related connecting roof models. The intersection points of two basic mansard models
which overlap each other are computed to create several connecting roof models,
as Figure 5.18 shows. For example, {a5,6,9,1,5, a5,11,20,6,5, a20,17,9,6,20, a20,11,12,18,20} are
important intersection points for generating an L−shape. Mansard roof models, as a
complete roof type including eleven parameters, are extensible to other roof models
defined in the library with fewer parameters. After creating different connecting
roof models, the one with the least cost value (Equation 5.7) is selected. If the cost
values are close, L− shape is selected which is simpler by fewer intersection points.
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Figure 5.17: Connecting roof types

5.5 Result and Discussion
In this section, we provide qualitative and quantitative evaluations of the result-
ing 3D building models of four different areas in Munich city using our proposed
approach together with the evaluations of the data-driven steps, including outline
extraction and decomposition, height discontinuity detection, roof type classification
and ridge line orientation identification.

5.5.1 Qualitative Evaluation
Visualizations of 3D building models and their proximities to the building structures
in reality are major criteria for evaluating 3D model reconstruction approaches in
technical applications. Figures 5.19, 5.21, 5.23 and 5.25 show the results of the data-
driven steps of our proposed approach, where the results of the outline extraction
and decomposition, height discontinuity detection, roof type classification and ridge
line orientation identification are illustrated in the sub-figures (a)–(d), respectively.
In addition, Figures 5.20, 5.22, 5.24 and 5.26 represent the reconstructed 3D building
models. As shown in these figures, the proposed algorithm can reconstruct the high-
rise buildings (more than 3 m height) and the buildings with average area larger than
75 m2 (300 pixels with a resolution of 0.5 m). The low-rise and small structures, such
as garages, were discarded due to the thresholds used in the building detection step.
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Figure 5.18: Possible connecting of roof types by different combinations of the roof vertices and
intersection points (green points) of the two mansard roofs

134
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A total number of 208 buildings, including single, compound and complex buildings
with inner yards, multiple orientation or multiple roof types were reconstructed.
According to the results, the 3D building model reconstructions were satisfactory,
except for a few buildings.

Figures 5.27 and 5.28 illustrate examples of the reconstructed building models.
More precisely, the height discontinuities were detected correctly in B0, B3 and B8.
Moreover, the 2D quadrilateral footprints demonstrate the successful intersection of
neighboring rectangles to fit the building shapes. Moreover, B7 shows the strength
of our approach in reconstructing buildings with multiple roof types, such as the
half-hip and pyramid roofs in this example. Further examples of buildings with
multiple roof types can be seen in B5 and B8 with flat-slopped and hip-mansard
roofs, respectively. In addition, B4 shows that our proposed approach can intersect
both perpendicular and parallel rectangles. In addition to its strengths, our
proposed approach suffers from a few drawbacks, which we investigate and discuss
in the following section.

5.5.1.1 Challenges and Difficulties

There are some buildings in which the height discontinuities are under- or over-
detected due to the poor quality of the DSM data. The over-detection of height
discontinuities could cause the rectangles to be over-split, as depicted by a green
ellipse in Figure 5.29. In order to overcome this drawback, one can fuse the nDSM
data and the image information.

Another failure case was that a number of building footprints were poorly posi-
tioned (exemplified in Figure 5.30), which could be due to the limited performance
of the 2D optimization algorithm, the existence of objects, such as trees and cars,
neighboring the buildings, or the jagged building outlines caused by the orthorecti-
fication of the PAN images.

Our approach assumes rectilinear forms as the basic building shapes similar to the
typical forms of the building footprints in urban areas. However, there are buildings
with nonrectilinear shapes, such as the one depicted by a green ellipse in Figure 5.30.
These buildings can be detected by calculating the rectangularity degrees of 2D
footprints as the ratio between the inner area of the rectangle and the area of the
MBR and minimum bounding circle [30]. If this ratio is close to one for MBR, the
rectangle model is considered, and if it is close to one for the minimum bounding
circle, the circular model is considered for further 2D optimizations. Moreover, some
remarkable roof types, such as conical, shell, semi-ellipsoid, elliptic and spherical,
which have been not predefined in the library are reconstructed based on existing
roof types in the library. In Figure 5.31, for example, the semi-ellipsoid-shaped
roof was reconstructed by some flat roof shapes at different height levels, since the
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5. 3D Building Model Reconstruction

(a) (b)

(c) (d)

Figure 5.19: Illustration of the data-driven steps of 3D building model reconstruction for the first
area (Area-1): (a) Decomposed 2D building outline into rectilinear shape, (b) detected height
discontinuities (green lines), (c) classified roof types (red: flat, green: gable, blue: half-hip, yellow:
hip, magenta: pyramid, cyan: mansard) and (d) extracted ridge lines (blue lines).
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(a)

(b)

Figure 5.20: Illustration of 3D building reconstruction for Area-1: (a) 3D building models on the
PAN image, (b) 3D building models
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(a) (b)

(c) (d)

Figure 5.21: Illustration of the data-driven steps of 3D building model reconstruction for the
second area (Area-2): (a) Decomposed 2D building outline into rectilinear shape, (b) detected
height discontinuities (green lines), (c) classified roof types (red: flat, green: gable, blue: half-hip,
yellow: hip, magenta: pyramid, cyan: mansard), (d) extracted ridge lines (blue lines).
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(a)

(b)

Figure 5.22: Illustration of 3D building reconstruction for Area-2: (a) 3D building models on the
PAN image, (b) 3D building models
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(a) (b)

(c) (d)

Figure 5.23: Illustration of the data-driven steps of 3D building model reconstruction for the third
area (Area-3): (a) Decomposed 2D building outline into rectilinear shape, (b) detected height
discontinuities (green lines), (c) classified roof types (red: flat, green: gable, blue: half-hip, yellow:
hip, magenta: pyramid, cyan: mansard), and (d) extracted ridge lines (blue lines)
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(a)

(b)

Figure 5.24: Illustration of 3D building reconstruction for Area-3: (a) 3D building models on the
PAN image, (b) 3D building models
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(a) (b)

(c) (d)

Figure 5.25: Illustration of the data-driven steps of 3D building model reconstruction for the
fourth area (Area-4): (a) Decomposed 2D building outline into rectilinear shape, (b) detected
height discontinuities (green lines), (c) classified roof types (red: flat, green: gable, blue: half-hip,
yellow: hip, magenta: pyramid, cyan: mansard), (d) extracted ridge lines (blue lines).
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(a)

(b)

Figure 5.26: Illustration of 3D building reconstruction for Area-4: (a) 3D building models on the
PAN image, (b) 3D building models
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B0

B1

B2

B3

B4

B5

B6

Figure 5.27: Different examples of 3D building models. PAN image (1st column), LiDAR data
(2nd column), rectangles (3rd column) and 3D building model (4th column)
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B7

B8

B9

Figure 5.28: Different examples of 3D building models. PAN image (1st column), LiDAR data
(2nd column), rectangles (3rd column) and 3D building model (4th column)

145



5. 3D Building Model Reconstruction

Figure 5.29: Over-detection of height discontinuities highlighted with green ellipses; Up: the error
locations on the nDSM, bottom: the error locations on the 3D model

Figure 5.30: Inaccurate building footprint positions (red ellipse). Circular footprint (green circle)
and conical roof shape (orange circle); left side: the error locations on the nDSM, right side: the
error locations on the 3D model
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5.5. Result and Discussion

Figure 5.31: Semi-ellipsoid roof types; left side: the error locations on the nDSM, right side: the
error locations on the 3D model

Figure 5.32: Deficiencies of intersection and merging; left side: the error locations on the nDSM,
right side: the error locations on the right side

heights change gradually. Furthermore, the cylindrical tower with a conical roof in
Figure 5.30 (orange circle) was reconstructed as a cubic structure with a hip roof.
These limitations could be overcome by including structures with curved shapes in
the building model libraries.

Our proposed approach fails to intersect and merge the neighboring rectangles
when their overlap is not large enough, for example, the area which is depicted by
an orange circle in Figure 5.29. Moreover, the intersection can suffer deficiencies if
the intersection rule is not defined for different roof types. The intersection of the
pyramid and half-hip roofs, for example, failed in forming a T − shape structure
in Figure 5.32. These types of failures could be remedied by defining appropriate
intersection rules. In addition, the poor quality of DSM data can cause intersection
failures, such as that depicted by an orange ellipsoid in Figure 5.33, where the
L− shape structure could not be reconstructed.

After fitting 3D models to each rectangle, the models are assembled to create the
full model of each building block. There are some cases where the assembling process
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5. 3D Building Model Reconstruction

Figure 5.33: Deficiencies of intersection and merging; left side: the error locations on the nDSM,
right side: the error locations on the right side

introduces artifacts to the final model. In Figure 5.29, for example, assembling the
sequence of rectangles depicted by a green ellipsoid resulted in artifacts, as the
ridge lines could not be aligned appropriately. This misalignment could be due to
the lack of 2D alignment rule for aligning the neighboring rectangles during the
reconstruction process and missing the initial ridge lines by splitting the rectangles.
These artifacts can be reduced by applying some postprocessing to the final building
models.

According to the results, some parts of buildings could be missed due to infor-
mation loss during different steps of the reconstruction procedure, such as building
detection or building decomposition into rectangles. In Figure 5.34, for example, a
rectangle is missing, which was probably removed in the decomposition and selec-
tion steps, in the area depicted by a gray ellipsoid. Another failure case because of
decomposition is shown in Figure 5.31, where the building is divided into too many
rectangles, while the building seems to be covered only by one rectangle.

5.5.1.2 Comparing Height Maps and Profiles to LiDAR Data

In this section, we qualitatively evaluate the reconstructed 3D building models by
comparing the height map (nDSM) of the building models (Figure 5.35) to the
nDSM of LiDAR and satellite data. Consequently, a profile line is computed for an
area on the model-nDSM, LiDAR-nDSM and satellite-nDSM data, as illustrated in
Figure 5.36. As the height profiles in Figure 5.36 demonstrate, the model-nDSM is
closer to the LiDAR-nDSM compared to the satellite-nDSM. Moreover, there are
shifts of about 1 m between the model- and LiDAR-nDSMs in some profile peaks,
which are acceptable as they are within the standard deviation (σ) of the elevation
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Figure 5.34: Missing the building part; left side: the error locations on the nDSM, right side: the
error locations on the right side

errors of the satellite-nDSM. In Figure 5.36 (a), the LiDAR-nDSM profile shows
the asymmetric roofs, while the building roofs are symmetric in reality. Thus, the
LiDAR-nDSM is not perfectly accurate as reference data.

Considering the LiDAR-nDSM as the reference data, we compute the height
difference between the model-nDSM and the LiDAR-nDSM of the areas studied and
represent them as error maps and histograms in Figure 5.37. The buildings depicted
in black were not considered for the 3D model reconstruction as they are located on
image borders. According to the error maps and histograms in Figure 5.37, most
of the errors alternate between −2 and 2 meters, which represents 2σ of the mean
value (µ) with a 95% confidence interval, as the error histograms show. The areas
with relatively large errors usually belong to the complex buildings, such as the
ones in the third and fourth rows of Figure 5.37. Moreover, the areas with an error
larger than 3 meters are depicted in dark blue, which usually belongs to non-building
areas that were reconstructed as part of buildings. This occurs when reliable 2D
footprints are not available or an inappropriate roof type is assigned to the buildings
during roof type classification. Additionally, the building areas which could not be
reconstructed by the 3D modeling approach are depicted in dark red. These missing
parts belong to the buildings with undefined roof shapes or the structures on the
rooftops. In Figure 5.37, the error histograms follow normal distribution, where
their means and standard deviations are depicted in the figures. The long tails of
the distribution could be due to the existence of outliers around the building outlines
and fitting inappropriate models to the buildings.

5.5.2 Quantitative Evaluation
The quality of the reconstructed 3D models depends on the performances of the
data-driven steps. Therefore, in this section, we compare the results of each data-
driven step with the ground truth data. Furthermore, we evaluate the quality of
the resulting 3D building models by comparing them to nDSM-based LiDAR data
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(a) (b)

(c) (d)

Figure 5.35: The model-nDSM for four areas of Munich
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(a)

(b)

(c)

(d)

Figure 5.36: The comparison of the three profiles of the model-nDSM, the LiDAR-nDSM and the
satellite-nDSM for four case studies of Munich.
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Figure 5.37: The errors maps (left) and the histograms of errors with the corresponding theoretical
normal for four areas of Munich (right)
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Figure 5.38: Comparing the performance of three roof type classification strategies, including roof
model fitting to nDSM data of the buildings, applying a deep learning method to MS images and
the fusion of the two other strategies. The results are the average of the four areas in Munich.

as ground truth.

5.5.2.1 Roof Type Classification

Figure 5.38 compares the precision of the assigned roof types to the building models
based on three different roof type classification strategies, including roof model fit-
ting to nDSM data of the buildings, applying a deep learning method to PS images
and the fusion of the strategies mentioned previously. As the figure shows, roof
model fitting to nDSM data obtained the poorest classification results. In addition,
the two other strategies performed comparatively. According to the results, the
fusion-based strategy outperformed using only the deep learning method for the hip
and half-hip roofs, which indicates the added value by the nDSM data.

5.5.2.2 Ridge Orientation Detection

In this section, the performance of our proposed approach in ridge line orientation
detection is evaluated. The ridge line detection depends on the roof types, for exam-
ple, the orientation of the middle lines of the sloped roofs (e.g. gable, half-hip, hip,
mansard) which could be parallel (PA) or perpendicular (PP) to the roof’s longest
line were detected. Moreover, ridge points (PO) were detected for the pyramid
roofs with no orientation, and no ridge (WR) line was detected for the flat roofs.
Therefore, the orientation of the flat and pyramid roofs were calculated based on
the orientations of their virtual rectangle’s middle lines (PA or PP). The quality of
these orientations is evaluated based on the final roof model orientations. As shown
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Figure 5.39: Evaluation of the ridge line orientation detection averaged over the four areas of
Munich, where PA and PP denote the middle line parallel and perpendicular to the roof’s longest
lines, relatively, PO denotes the ridge points for pyramid roofs and WR indicates the orientations
of the flat roof buildings which have no ridge lines.

in Figure 5.39, the proposed method detected the PA and WR orientations better
than the PP and PO ones. It is worth mentioning that the evaluation of PO and
PP could be affected by the possible errors introduced by the manual annotation of
the ground truth for the flat and pyramid roofs.

5.5.2.3 3D Building Models

In order to evaluate the resulting 3D building models quantitatively, we consider
their nDSMs and compare them to the LiDAR-nDSM as the reference data. We
conducted statistical analysis of the height differences (∆H) between model-nDSM,
satellite-nDSM and LiDAR-nDSM for the evaluation, where the equations used are
represented in Table 5.4. According to the table, the estimated mean error (µ̂)
indicates the mean height difference of all images which could be considered as a
systematic error. Furthermore, the estimated standard deviation (σ̂) demonstrates
the smoothness of the model-nDSM. In addition, we computed the RMSE to measure
the closeness of the model-nDSM to the reference one [170]. We assumed in our
analysis that the errors follow the normal distribution; however, there are outliers
(e.g. at the building boundaries) which need to be discarded for more reliable
evaluations. Consequently, we eliminated the errors out of [µ−3σ,µ+3σ] through an
iterative procedure which calculate µ and σ in each iteration until no outlier remains
in the data [171]. In addition to the statistical measures mentioned previously, we
computed the normalized median absolute deviation (NMAD), which is proportional
to the median of absolute difference between the errors and median error (please
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Checkpoints before removing the outliers (N)

Checkpoints after removing the outliers (N∗)

Error ∆h = hmodel/satellite − hLiDAR

Mean Error after removing outliers µ̂ = 1
N∗
∑n
i=1 ∆hi

Standard Deviation after removing outliers σ̂ =
√

1
(N∗−1)

∑N∗
i=1(∆hi − µ̂)2

Root Mean Square Error ˆRMSE =
√

1
N∗
∑N∗
i=1 ∆hi2

Normalized Median Absolute Error NMAD = 1.4826.medianj(|∆hj −median(∆h)|)

Table 5.4: Equations of accuracy measures

Satellite N N∗ µ̂(m) σ̂(m) ˆRMSE(m) NMAD(m)
Area 1

W
or
dV

ie
w
-2 367683 339870 0.022 0.9471 0.9473 0.7570

Area 2 171908 152100 0.0492 1.0031 1.0043 0.8768
Area 3 780152 703631 0.5847 1.5856 1.69 1.2173
Area 4 276954 251056 -0.0175 1.5244 1.5245 1.1830

Table 5.5: Accuracy measures (in meter) based on the differences between model-DSM and refer-
ence LiDAR-DSM

see Table 5.4) and is known to be robust in the presence of outliers and the errors
with non-normal distribution [172]. The results of the statistical analysis for the
model-nDSM and satellite-nDSM are presented in Tables 5.5 and 5.6, respectively.
According to the tables, the quality of the model-nDSM of Area-1 is higher than
the other areas and its quality is similar to the that of its corresponding satellite-
nDSM. This could be due to the accurate building outlines obtained from the 2D
CM providing appropriate initialization for the 2D optimization step.

The ˆRMSE and NMAD of the model-nDSM of Area-3 and Area-4 are more
than the other areas. In addition, these quality measures of model-nDSM are more
than the satellite-nDSM ones, which might be due to the complexity of the buildings
shapes (especially B9 in Figure 5.28). The maximum differences between quality
measures (NMADs and ˆRMSEs) of the model-nDSM and the satellite-nDSM do
not exceed one meter, which are acceptable in the accuracies of satellite-nDSM,
LiDAR-nDSM and model fitting.

The ridge lines and eave heights are compared with reference data obtained
from the Department of Urban Planning and Building (DUPB) of Munich to eval-
uate the 3D building models. Tables 5.7 and 5.8 show this evaluation by |∆Hridge|
and |∆Heave|. In these tables, “Building Numbers” are shown as a-b, in which “a”
corresponds to the building block number and “b” corresponds to the building num-
ber. The number of each building block has been plotted in Figures 5.40 and 5.41.
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Satellite N N∗ µ̂(m) σ̂(m) ˆRMSE(m) NMAD(m)
Area 1

W
or
dV

ie
w
-2 367683 339241 0.0209 0.9444 0.9446 0.7419

Area 2 171908 156938 0.1751 0.8828 0.9 0.8263
Area 3 780238 727246 0.5776 1.3078 1.4297 1.0424
Area 4 276954 243819 0.3307 0.9507 1.0066 0.6146

Table 5.6: Accuracy measures (in meter) based on the differences between satellite-nDSM and
reference LiDAR-nDSM

Figure 5.40: The building blocks and their numbers for Area-2
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Figure 5.41: The building blocks and their numbers for Area-4
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Building Number
Ridge line

|∆Hridge|(m)
Eave heights

|∆Heave| (m)Model
(m)

Reference (m) Model
(m)

Reference (m)

1 17 14.0312 15 0.97 11.285 11 0.285
2 18 17.4579 19 1.5421 13.3837 15 1.6163
3 19 14.424 15 0.576 12.5237 11 1.524
4 20 14.22 15 0.78 10.86 11 0.14
5 21 14.0771 15.5 1.423 12.2066 11.9 0.31
6 22 15.2811 15.6 0.319 11.8707 11.5 0.3707
7 23 20.7604 19.97 0.79 17.3528 16.5 0.8528
8 24 15.8697 16.2 0.33 11.0331 12.3 1.267
9 25 16.2102 17.4 1.19 13.582 13.6 0.018
10 26 16.3967 16.8 0.403 10.5358 12.5 1.96
11 27 14.6644 15 0.3356 10.4881 10.9 0.412
12 28 16.27 16.8 0.53 10.4106 12.5 2.09
13 29 13.9435 14.7 0.7565 10.4634 10.7 0.2366
14 30 15.6579 16.8 1.1421 10.5092 12.5 1.99

µ 0.7919 0.9337
σ 0.4102 0.7742

RMSE 0.8851 1.1952
NMAD 0.5479 0.8205

Table 5.7: The difference between ridge/eave lines of the building model and DUPB-based reference
data for Area-2

The existence of complex buildings with poor quality nDSM in Area-4 caused poorer
extraction of ridge and eave lines compared to the another area.

5.6 Summary and Conclusion
In this chapter, our proposed novel multistage hybrid 3D building model recon-
struction approach, which performs based on the nDSM of the WorldView-2 satel-
lite, has been explained. The data-driven part of the proposed approach consists of
some data-driven steps, such as 1) mask refinement, 2) building outline extraction,
3) building outline decomposition and 4) roof type classification. Moreover, auxil-
iary data, such as orthorectified PAN images and PS satellite images, were used to
overcome the poor quality of the DSM. In the model-driven part, firstly, a library
of six roof types, including flat, gable, half-hip, hip, pyramid and mansard roofs,
was designed. Next, the geometrical relations were defined based on the eleven pa-
rameters for each roof type in the library. From these parameters, the number of
2D ones which parameterize the rectangles derived from the decomposition step is
fixed, whereas the number of 3D ones varies according to the roof types. These
parameters were initialized using the preknowledge obtained from the data-driven
part. The preknowledge was further improved by detecting the height discontinu-
ities, classifying the roof types using nDSM data, and defining a set of constraints
based on roof shapes and geometrical structures. The combination of 2D and 3D
parameters generates the initial 3D model. A discrete search space was defined
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Building Number
Ridge line

|∆Hridge| (m)
Eave heights

|∆Heave| (m)Model (m) Reference (m) Model (m) Reference (m)
1 4-1 13.6193 13.6 0.0193 5.41 5.3 0.11
2 4-2 16.41 17.8 1.39 10.0689 8.25 1.8189
3 12-1 - - - 20.777 21.3 0.523
4 12-2 - - - 26.777 26.7 0.077
5 12-3 - - - 25.4316 26.7 1.2684
6 12-4 - - - 22.9066 24 1.0934
7 12-5 - - - 26.2303 26.7 0.4697
8 13-1 - - - 20.8302 20.5 0.3302
9 13-2 - - - 15.7442 15.9 0.156
10 16-1 20.7855 20.7 0.1302 12.9192 14 1.081
11 16-2 20.1455 21.7 1.5545 13.5116 15.2 1.6884
12 16-3 20.9384 20.7 0.2384 14.7994 14 0.7994
13 16-5 20.6747 22 1.3253 13.1306 13.5 0.3694
14 16-6 16.7505 21 4.2495 15.1597 14.5 0.6597
15 16-7 20.6842 21 0.3158 13.7642 14.5 0.7358
16 16-8 17.4533 20.7 3.2467 11.6737 13.6 1.9263
17 16-9 18.7044 20.7 1.9956 11.6737 13.6 1.9263
18 16-10 21.2904 20.7 0.5904 13.5565 13.6 0.0435
19 16-11 16.6668 20.4 3.7332 15.9165 13.2 2.7165
20 16-12 16.5861 20.4 3.814 14.7764 18.1 3.3236
21 16-13 16.5864 20.4 3.8136 15.8916 13.2 2.6916
22 16-14 19.5136 21.4 1.8864 13.4226 14.4 0.9774
23 16-16 17.2514 21.8 4.549 15.3826 15.1 0.2826
24 16-17 17.46 21.4 3.94 15.17 14.4 0.77
25 16-18 16.5864 21.4 4.8136 14.7764 14.4 0.3764
26 16-21 21.6229 22 0.3771 13.8356 13.5 0.3356
27 16-24 18.0491 20.7 2.651 14.4457 14 0.4457
28 16-25 17.4533 20.1 2.6467 13.2158 13.2 0.016
29 16-26 17.4533 20.7 3.2467 15.0637 13.6 1.4637
30 16-28 17.1301 21 3.8699 15.2008 14.5 0.7008
31 17 18.1492 17 1.1492 11.6674 11 0.6674
32 18 14.6804 14.3 0.3804 8.4767 8.1 0.3767
33 19 13.33 14.5 1.17 7.4581 8 0.542
34 20 15.6958 17.3 1.6042 9.5981 8.6 0.9981
35 21 13.2968 14.4 1.1032 7.8932 8.25 0.357

µ 2.1359 0.9176
σ 1.5368 0.8202

RMSE 2.6152 1.223
NMAD 2.039 0.4999

Table 5.8: The difference between ridge/eave lines of the building model and DUPB-based reference
data for Area-4
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based on a domain in which the initial parameters alter in the specified range to
generate different models to search for more reliable 3D models. The cost func-
tion was defined based on the minimum distances of the approximated 3D building
model into the 3D point clouds and the reference building outline. Subsequently, all
possible 3D building models were searched for each single building, and the one with
a minimum cost value was selected as the final building model. The neighborhood
relationships, such as orientation and ridge/eave heights, for a building block con-
sisting of several buildings, in addition to the cost value mentioned previously, were
also considered in the final decision of which 3D model to choose. After selecting
3D building models for all parts of the building block, the intersection and merging
processes were carried out to reconstruct the 3D building block model. Finally, the
results were evaluated quantitatively and qualitatively. Approximately 208 buildings
in four areas of Munich have been reconstructed. The height profiles showed strong
improvement in the ridge and eave lines in comparison to the LiDAR DSM and satel-
lite DSM. Most of the roof types and ridge line orientations were detected correctly.
The quantitative evaluations showed that ridge/eave heights were detected at the
level of the uncertainty of the 3D point clouds (approx. 1 m); however, better results
were obtained for the eave heights. More precise evaluation could not be performed
due to the non-availability of sufficient reference data from the DUPB. Furthermore,
the results represented that a small number of buildings were failed because their
roof types had not been defined in the library and their reconstruction was carried
out based on the existing roof types. In addition, the intersection of the neighboring
rectangles in some building blocks, due to having very complex shapes, could not
perform well according to the predefined rules. The orthorectification of the PAN
images resulted in jagged building boundaries, especially for the area far from the
nadir point and for the high-rise buildings. This drawback resulted in inaccurate
reference building outlines for the 2D optimization step, which, in turn, reduced
the accuracy of the 3D building models. Despite all these limitations, most of the
buildings were reconstructed successfully and their generalization was satisfactory.
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6
Summary, Conclusions, and

Future Work

In this chapter, we summarize this dissertation and conclude the points discussed,
followed by potential future work.

6.1 Summary
In this dissertation, a novel automatic 3D building model reconstruction approach
was proposed which reconstructs building models in LoD2 based on the DSM data
generated from the VHR stereo imagery of the WorldView-2 satellite. In order
to overcome the drawbacks of the DSM data (e.g. blurred building outlines), a
multistage hybrid method was proposed in which the DSM data is used together with
its corresponding orthorectified PAN and PS data of multispectral (MS) WorldView-
2 imagery.

In order to deal with the blurred building boundaries in the DSM-based building
masks specified, gradient features were extracted from the corresponding PAN im-
ages using the SIFT method. Based on the extracted features, the image pixels were
then classified as a building or non-building by means of an SVM classifier. Exper-
imental results showed that this classification refined the building boundaries to a
large degree. In the next step, a new heuristic data-driven approach based on the
RANSAC method was proposed to extract parameterized building boundaries from
the refined building masks through fitting lines to the building boundary points.
The resulting building boundaries were irregular due to the presence of noise and
artifacts; therefore, the line segments needed to be regularized. Since the regular-
ization process requires the definition of the main orientations of the buildings, a
novel orientation extraction method was proposed which can extract even multiple
main orientations for the buildings with complex structures. Using the buildings’
main orientations, the line segments were regularized by a LS adjustment method
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which aligned them either parallel or perpendicular to the main orientations. Af-
ter the regularization, the line segments were connected and intersected to their
closest neighbors based on some predefined rules to create building polygons. Ex-
perimental results demonstrated that the building polygons extracted were similar
to the original building shapes and the proposed approaches worked well for complex
building outlines as well. The shape of the resulting building polygons was usually
complex and, thus, needed to be simplified. Consequently, a rule-based generaliza-
tion was applied to the building polygons which discarded short line segments. A
new building decomposition approach was then proposed to decompose the gener-
alized building polygons into a number of basic rectangular shapes. The rectangles
generated overlapped for some complex buildings so that they were not represen-
tative enough for 3D building model reconstruction. Therefore, a novel heuristic
approach was proposed to select the combination of relevant rectangles which cover
the whole building footprint with minimum overlaps and represent the main parts of
the building. Experimental results indicated that the proposed generalization and
decomposition approaches performed well, even in the case of complex buildings
with multiple orientations.

In the next step, an approach based on deep learning was employed to clas-
sify building roofs into six different categories, including flat, gable, half-hip, hip,
pyramid and mansard roofs. The library of these roof types was generated through
analyzing the height profiles of the decomposed building outlines in the DSM data.
Training and test image patch datasets were generated from PS images with high
spectral and spatial resolution in which the geometrical structure of different roofs
is visible and recognizable to classify the roof types and to evaluate the results.
The PS images were tiled into smaller patches for the classification. Therefore, a
semi-automatic method was proposed based on a building mask skeleton and mor-
phological operator. The image patches were then labeled manually and used for
fine-tuning a pretrained CNN model, which was later used for the classification of
the roofs. The classification results showed that this approach outperformed the
conventional classification methods, such as SVMs. The results were then used as
preknowledge in the next steps and updated later by fitting their models to the DSM
data.

In the subsequent step, a new approach was proposed for creating watertight
parameterized 3D building models (LoD2) by utilizing the nDSM of satellite imagery
and the results of the previous steps (e.g. geometrical parameters of the roofs).
More precisely, the decomposed building rectangles were improved by computing
height discontinuities from the nDSM data. In addition, the roof type classifications
were updated for each rectangle according to a set of roof combination rules and the
nDSM data. For this purpose, the most probable roof types were fitted to the nDSM
of the rectangles and their similarities to the 3D building points were calculated.
The similarities together with the prior probabilities were then served as inputs to
a Bayesian formula to determine the final roof type for each rectangle.
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For the next step, which is the model-driven part of the pipeline, the geometrical
relationships between 11 parameters of the roofs in the roof library were predefined
and initialized by the results of the previous steps. The roof model parameters
were categorized into the 2D and 3D ones. While 2D parameters derived from the
building rectangles were fixed, the 3D parameters varied according to the roof types.
By concatenating all parameters, initial 3D building models were generated which
were optimized through an exhaustive search for the parameter values in defined
discrete search spaces. In this process, the models’ 2D parameters were evaluated
by comparing the model to the building boundaries (obtained from building masks
and PAN image) using the PoLiS metric. The 3D model parameters were evaluated
by comparing the model to the 3D point clouds by means of the Euclidean Huber
distance. After that, regarding the building blocks, the interactions between the
rectangles were considered based on their overlaps, which led to reliable building
roof models. Finally, the reconstructed models for all its rectangles were assembled
through an intersection and merging process to reconstruct watertight models of
each building block.

In order to evaluate the proposed approach, the 3D building models of four
different areas in Munich were reconstructed and the results were evaluated quali-
tatively and quantitatively. According to the results, the model reconstructions of
most of the buildings were successful; however, the reconstructed models failed in
representing the original building models in a few cases, which could be due to the
poor quality of the DSM data, decomposition errors, limitations of the roof model
library, the presence of jagged building outlines in the PAN images, or limitations
of the rules in the intersection and merging processes.

6.2 Conclusions
This dissertation proves that the DSM of VHR satellite imagery combined with
the spatial and spectral information from spectral datasets, such as PAN and PS,
can be used for large-scale 3D building model reconstructions. In addition, the
proposed multistage approach with different sets of rules can handle noisy 3D point
clouds and avoid many possible imperfections. It is worth mentioning that the
incomplete set of rules may not reliably and precisely reconstruct all possible 3D
building models. Furthermore, the proposed approach can achieve a high level of
automation by reducing the number of primitive roof model types required and
performing automatic parameter initializations. Only a few threshold parameters
are needed to be manually initialized according to the resolution of the data as well
as some knowledge about the region of interests and empirical investigations.

Various parts of the proposed approach have been evaluated qualitatively and
quantitatively. According to the results, the proposed mask refinement method im-
proved the DSM-based building mask specified by about 8% in area accuracy. Since
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this method is based on supervised classification, a diverse set of training features
should be considered by selecting them from the buildings with various roof types
and orientations. In addition, applying the building outline extraction together with
line segment regularization, adjustment, intersection and connection to the refined
building masks could increase the precision of the outlines by about 70% compared to
the building mask before refinement. These outlines outperform the ones extracted
by the DP method (especially for the buildings with fine details). Moreover, the pro-
posed approach can consider multiple orientation for complex buildings, which allows
one to achieve better building extractions than the MBR-based approaches, such as
iMBR and CMBR. Additionally, the proposed generalization method allows one to
discard irrelevant vertices while preserving the building shapes. In addition, the
decomposition method introduced has been shown to decompose building outlines
into rectangles better than the state-of-the-art methods, as its resulting rectangles
are large enough and informative. Moreover, using the information from the pre-
vious steps, such as multiple main orientations, in the presence of over-segmented
building outlines can help one to avoid an over-splitting of the building polygons.
The proposed method also considers the overlap of rectangles, which can facilitate
the 3D building model reconstruction.

The method based on deep learning in the roof type classification step could
outperform the conventional approaches by about 33%. In addition, the method
used for generating training datasets based on the skeleton points of the building
masks can result in overlapping patches. This could cause misclassifications, as
each patch could contain multiple roof types while it is assigned only to one label.
Furthermore, defining the library with six roof types speeded up the classification
and reconstruction processes to a large degree, although other roof types, such as
shell, canonical, ellipsoid and elliptic, could exist in the scenes, especially in older
cities such as Munich. The roof types assigned were updated by fitting their model
to the DSM data, which resulted in small improvements in half-hip and hip roofs.
Furthermore, the results showed that the orientations of most of the ridge lines were
defined correctly.

The proposed 3D building model reconstruction generally allows the reconstruc-
tion on buildings higher than 3 m and larger than 75 m2 (300 pixels in the images
with 0.5 m resolution). The evaluation of areas with 208 buildings demonstrated
that the reconstruction of most of the buildings were satisfactory. Comparing the
results to the reference LiDAR data indicated that the RMSE and NMAD were
smaller than 2 m, which is acceptable according to the 3σ rule. Moreover, there
were a few buildings for which the reconstructed models suffered from some defi-
ciencies. The buildings that were partially lost in the detection step, for example,
could not be recovered and fully reconstructed throughout the processing chain. In
addition, the occasional poor performance of the mask refinement caused artifacts
in the building outlines.
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6.3 Future Work
The DSM-based building masks in this dissertation were refined by applying SVM
to the SIFT features. Future studies could consider extracting image features by
deep learning methods (e.g. CNNs) instead of the engineered feature extraction
techniques. Furthermore, future studies involving roof type classification may in-
put DSM data together with PS images and building rectangles to a CNN model to
avoid the roof type updating step. In addition to dealing with the limited number of
samples for training the CNN-based roof classifier, one could utilize a shallower net-
work or generate synthetic training samples using a generative adversarial network
(GAN).

Additionally, the roof type classification might be improved by applying a B-
Spline surface approximation to the 3D point clouds within the decomposed building
polygons. The resulting B-Spline knots, e.g., ridge lines endpoints, might be served
as input to the CNN together with the PAN images. B-Spline can also be used to
model very complex roof shapes which are not rectilinear, in particular, for historical
buildings with curve shapes. Moreover, the ridge lines and their orientations can
also be extracted by CNNs, which avoids the limitations of the symmetry constraint
used in this dissertation.

An iterative robust estimation method could be applied to increase the robust-
ness of model fitting in the presence of noisy DSM. A 3D GAN could also be used
in 3D building reconstruction based on deep learning to reconstruct a 3D building
model from DSM data and PS images. This network is based on 3D voxel space,
which can subsequently be converted to vector data by fitting planes to the 3D
voxelized models and extracting lines and corners from the voxels to reconstruct
LoD2 models. In addition, a GAN could be designed to work with vector data and
generating parameterized 3D building models.

A future preprocessing step to optimize the spaceborne DSM based on high level
DSM (e.g. from LiDAR data) using a GAN- or segmentation-based method could
reduce artifacts and increase the sharpness and shapes of the DSMs before starting
the whole workflow of building reconstruction.
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A
Datasets

In this appendix, we describe datasets which have been used for our experiments.

A.1 DSM from Stereo Satellite Imagery
Digital Surface Models exhibit the height values of aboveground objects such as
building and trees, while DTM refers to the height values of the ground surface
without any man-made and natural elevated objects [170]. The nDSM exhibits the
heights of objects above the ground, which can be simply described as subtraction
of the DTM from DSM.

In this dissertation, the DTM is generated from DSM based on an advanced
morphological method. In this method, instead of the standard method which uses
dilation and erosion morphological operators, low rank median and high rank median
filters are applied, respectively. The DTM is the by-product of the building mask
generation procedure, which is explained in Chapter 1 [19].

In this dissertation, the DSM is generated by the photogrammetric technique
from stereo satellite imagery based on the matching process between two or more
stereo images. The DSM generation from stereo satellite imagery is not the focus of
this thesis, therefore, only a brief introduction to satellite sensor, which is used in
this dissertation and DSM generation procedure, is represented. A lot of different
methods have been developed for DSM generation in the last decades [173, 174]
and, in the last few years, new methods and algorithms coming from the computer
vision side [175] have obtained very interesting results for DSM generation from
spaceborne stereo data [33].

Stereo spaceborne image acquisition: There are two possibilities to obtain
spaceborne stereo data: Along track stereo images are acquired at the same time
and the same orbit either using more than one sensor looking at the earth or
rotating the sensors in the along track direction; across track stereo images, which
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are obtained from either two or more adjacent orbits or the same orbit just using a
charged-couple device (CCD) line combination, by looking at the same area from
two or more orbits positions [176]. Most of the stereo satellite data are obtained by
along track stereoscopy, since image-matching density and, therefore, the quality of
the DSM is reduced by the radiometric changes and shadow properties during two
acquisition dates from two orbits. For this reason, the new generation of the VHR
satellite data is used with along track stereoscopy technology. Worldview-2 is one
of these VHR satellite sensors and its data is used in this dissertation. It is the
Digital Globe’s third satellite which was launched on October 8th, 2009 [170, 177].
It delivers 0.5 meter ground sample distance (GSD) PAN images and 2-meter
resolution 8-band MS images (red, green, blue, near-infrared 1, coastal, yellow,
red, edge and near infrared 2). Using along track stereoscopy technology, the
Worldview-2 sensor can acquire two stereo pairs in a large area on the same day
and same orbit with an overlap in the test area, leading to four views with stereo
angles between 12◦ and 24◦ [32, 170].

DSM generation method: The total DSM generation correction includes im-
provement of the rational polynomial coefficients (RPC) of the stereo scene blocks,
dense stereo matching, spatial intersection and outlier removal, and interpolation.
Stereo image matching is the core of the DSM generation. Reconstructing the de-
tails of the small structure and sharp object boundaries from VHR stereo images
requires the use of dense stereo image matching that is not based on the correla-
tion of image window. In this dissertation, stereo satellite DSM are computed by
semi-global matching (SGM) method, which performs pixel-wise matching. The
SGM-based DSM generation consists of three main steps: Matching cost compu-
tation, cost aggregation and disparity map computation. Dense stereo matching is
performed using SGM on the stereo pair with known epipolar geometry. In order to
generate an epipolar stereo pair, firstly, the tie points coordinates with sub-pixel ac-
curacy are approximated by the pyramid-based local LS matching. These tie points
are used to align the columns of the stereo pair. A quasi-epipolar stereo pair with
epipoles corresponding to the aligned columns is then generated. The matching
procedure of the SGM is based on the minimization of the global energy function
for all disparities, which are the local shifts between the stereo pairs. This energy
function is defined as:

E(Dm) =
∑
p

Cm(p,Dmp) +
∑
q∈Np


0, ‖Dmp −Dmq‖ = 0
p1, ‖Dmp −Dmq‖ = 1
p2, ‖Dmp −Dmq‖ > 1

 (A.1)

This equation includes two terms of the pixel-wise matching cost and regular-
ization. Cm is the matching cost term between the image pixels for each pixel
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location p and possible disparity Dmp. Both mutual information as well as the cen-
sus cost function are used. The regularization term of E penalizes disparity changes
in the neighborhood Np at each position p. The penalty p1 is added for all disparity
changes equal to one pixel. A fixed cost p2 is added at larger discontinuities (dispar-
ity change > 1 pixel). This term (i.e regularization term) favors similar disparities
for neighboring pixels but also allows large jumps at discontinuities.
The SGM performs a semi-global optimization by aggregating costs from 16 direc-
tions to reconstruct a near optimal image Dm. Occluded and mismatched regions
are removed using a bidirectional consistency check and remaining small regions are
deleted as outlines. For more details about outlier detection and SGM procedure,
please refer to [33, 175, 178].

It is necessary to establish an RPC correction for DSM generation before dense
stereo matching by SGM. The RPC is the transformation between object space and
image space in order to georeference the image. These coeficients are originally ob-
tained from the orbit and altitude information from the sensor. The original RPC
image has a low absolute accuracy, which is lower than the ground resolution of
approximately 2.5 m. The sub-pixel ground control points (GCPs) are required
to refine RPCs. Such very accurate GCPs are derived from DGPS ground survey
or high-resolution orthoimages and DEMs. These highly accurate GCPs are not
available for the large-scale and near real-time application, such as disaster mon-
itoring. Therefore, the image-based GCPs’ extraction and correction method are
used [179, 180]. For VHR satellite image, such as WorldView-2, RPCs are refined
by incorporating some prior constraints into the adjustment model [170].
The 3D point cloud is generated from an SGM disparity map by the spatial inter-
section. They are then aligned with the shuttle radar topography mission (SRTM)
DSM using a 3D affine transformation. Subsequently, the aligned point cloud and
georeferenced image are used in the image resection for the final estimation of the
affine RPC correction parameters [179]. The 3D points cloud is then generated using
the RPC correction parameters and spatial intersection of the complete disparity
map. The irregular point cloud is converted to the regularly spaced grid by the
interpolation to facilitate further application. Orthoimages with the defined datum
and projection are created by the orthorectification of the near nadir image with the
DSM generated and the affine-corrected RPCs. The complete process is described
in [33].

Although the SGM method is robust in illumination changes and accurate on
the boundaries of an object, some holes, due mainly to occlusion, texture loss and
a low contrast region, might still occur. These holes can be filled by either SRTM
data or spectral data using interpolation methods [181, 36]. Remaining holes which
cannot be filled by DSM and SRTM DSM are filled using B-spline interpolation,
which results in the gradual height changes in the building boundaries.

All of the processes of the DSM generation have been carried out using DLR in-
house XDibias software modules. Figures A.1 illustrate datasets for Area-3 (DSM,
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(a) (b)

(c) (d)

Figure A.1: Datasets (a) DSM of satellite imagery, (b) PAN image, (c) MS image, (D) PS image

PAN, MS and PS images) which are applied in this dissertation.

170



A.2. DSM based LiDAR Data

Figure A.2: LiDAR based DSM

A.2 DSM based LiDAR Data
The LiDAR data is captured by airborne LiDAR which detects the terrain surface
from the aircraft. The data is provided by the “State Office for Digitization, Broad-
band and Surveying” of Munich. The resolution of the data is 5 points/m2. The
DSM of LiDAR data is used for the evaluation of the 3D building reconstruction
results. In order to generate the DSM, the first pulse of LiDAR data including the
ground and objects aboveground, such as trees and buildings, which covers 9.9km2

area of Munich is rasterized at a resolution of 0.5 m after coordinate system trans-
formation. After that, B-Spline interpolation is used to generate the DSM. The
resolution of the DSM is 0.5, which is the same as the resolution of the stereo satel-
lite data based DSM. Figure A.2 shows the DSM generated from 3D point clouds of
LiDAR data, for example, of Area-3.
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B
Tables of State-of-the-Art

In this appendix, Tables B.1, B.2, and B.3 show the summary of different building
modeling approaches according to the strategy of data processing, data sources,
representation, level of details, scale and automation level. Different methods based
on data processing strategy which use satellite imagery are shown in green and for
LiDAR data in blue. In these tables, the satellite-based research works are shown
by green and the outstanding research works which used LiDAR data are shown by
blue.
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Authors Representation Level of details Data sources The Scale Level of automation
(Mass and Vosselman,
1999)

CSG LOD2 LiDAR data 48 buildings Automatic

(Suveg and Vosselman,
2004)

CSG LOD2 Aerial im-
ages/GIS maps

61 buildings Automatic

(Poullis and You ,2009) CSG LOD2 3D point cloud
of LiDAR data

Large scale Semi-automatic
(manual editing for
complex building)

(Lafarge et al., 2010) CSG LOD2 DSM from
satellite images

Three dense
urban areas
of Amiens
(on the 500
quadrilateral
object)

Automatic with con-
straints

(Hammoudi and Dor-
naika, 2011)

B-rep LOD2 Aerial images A few buildings
in 0.173 km2

Automatic for poly-
hedral model

(Huang et al., 2013) CSG LOD2 nDSM from Li-
DAR data

96 buildings Automatic with
constraints and pre-
defined probability
matrix

(Nguatem et.al., 2013) B-rep LOD2 3D point cloud
from LiDAR
or multi-view
aerial im-
ages/cadastral
maps

Middle scale
(152 quadrilat-
eral footprint)

Automatic

(Henn and et al., 2013) CSG LOD2 Sparse Li-
DAR data/2D
ground plan

A part of
Cologne with
1050 buildings

Automatic with con-
straints

(Zheng and Weng, 2015) CSG LOD2 LiDAR
DSM/GIS
maps

Two city blocks
(Indianapolis in
the US) with
268 buildings

Automatic

Table B.1: A summary of model-driven based building modeling approaches according to data
sources, representation, level of details, scale and level of automation
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(Brenner, 2000) B-rep LOD2 LiDAR DSM/ground plan
6465 buildings for

Automaticfour cities

(Ameri and Fritch,2000) B-rep LOD2
DSM from matching of aerial

14 buildings Automaticimages/aerial image
(Vosselman and Dijkman,

B-rep LOD2 Dense LiDAR data /2D ground plan 106 buildings Automatic2001)

(Jibrini, 2002) B-rep LOD2
Very high-resolution aerial A few complex

Automaticstereo pair/cadastral map building
(Rottensteiner and
Briese, B.rep LOD2 LIDAR DSM/aerial images 14 very complex blocks of buildings Automatic
2003)
(Flamanc et al., 2003) B-rep LOD2 Aerial images/ cadastral map 5000 buildings Semi-automatic
(Verma et al., 2006) B-rep LOD2 LiDAR data 248 buildings Automatic
(Durupt and Taillandier,

B-rep LOD2 DSM from multi-view stereo images 620 buildings of Amiens city Automatic2006)
(Tarsha-Kurdi et al.,

CSG LOD2 LiDAR DSM 62 buildings Automatic2007)
(Dorninger and Pfeifer,

B-rep LOD2 Dense LiDAR data Large scale Automatic2008)

(Milde et al., 2008) B-rep LOD2 LiDAR data 13 buildings
Automatic and
semi-automatic

(Oude Elberink and

CSG LOD2 Very dense LiDAR data

four areas from two

Semi-automatic
Vosselman, 2009) cities in the

Netherlands contain
728 buildings

(Sampath and Shan
B-rep LOD2 Dense LiDAR data 15 complex buildings Automatic,2010)

(Zhou and Neumann,
Mesh LOD2 LiDAR data 1879 Automatic2010)

(Rau and Lin, 2011) Mesh LOD2 LiDAR data/2D ground plans 1573 building Automatic
(Kada and Wichmann,

CSD LOD2 LiDAR data A few complex buildings Semi-automatic2012)
(Lafarge and Mallet,

Mesh LOD2 LiDAR data Large scale Automatic2012)
(Sohn et al., 2012) CSG LOD2 LiDAR data 21 buildings Automatic
(Sun and Salvaggio,

B_rep LOD1 LiDAR data A few buildings Automatic2013)

(Peara and Mass, 2014) CSG LOD2
LiDAR data/digital aerial 107 buildings from

Automaticimages three areas of ISPRS
benchmark

(Xiong, et al., 2014) CSG LOD2 Very dense LiDAR data 4500 buildings of Enschede city Automatic
(Orthuber and Avbelj,

Mesh LOD2 Dense LiDAR 29 buildings Automatic2015)
(Duan and Lafarge, 2016) Mesh LOD1 Satellite images Large scale Automatic

Table B.2: A summary of data-driven based building modeling approaches according to data
sources, representation, level of details, scale and level of automation
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(Haala and Bren-
ner, 1999)

CSG LOD2 LiDAR DSM/2D ground
plan

A small area Automatic

(Kada and
McKinley, 2009)

B-rep LOD2 LiDAR/2D ground plan East Berlin with
244,000 buildings and
Cologne with 280,000
buildings

Semi-
automatic

(Sirmacek and et
al., 2012)

B-rep LOD2 DSM of satellite im-
agery/orthorectified
panchromatic image

A few buildings of an
area of Munich

Automatic

(Lin et al., 2013) CSG LOD2 Ground-based LiDAR
data

53 buildings Semi-
automatic

(Arefi and
Reinartz, 2013)

B-rep LOD DSM of satellite im-
agery/orthorectified
panchromatic image

Seven buildings of an
area of Munich

Automatic

(Kwak and et al.,
2013)

B-rep LOD1 LiDAR data/aerial im-
age

32 buildings Automatic

(Wang et al.,
2015)

CSG LOD2 LiDAR point
cloud/multispectral
aerial imagery.

107 buildings for
three areas from
ISPRS benchmark

Automatic

(Zheng et al.,
2017)

B-rep LOD2 LiDAR DSM/GIS map 519 buildings Automatic

Table B.3: A summary of hybrid-based building modeling approaches according to data sources,
representation, level of details, scale and level of automation
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C
Support Vector Machine (SVM)

In this appendix, we explain the SVM classifier that was used in Chapter 2 section
2.1.3.

The SVM is an automatic or semi-automatic classification task in which the
training data and test data should be split. Each instance in the training data con-
tains a class label and several features. The goal of the SVM is to produce a model
(based on the training data) which predicts the class label of the test. It seeks to
find the optimum hyperplane between two classes that has maximum distance from
the support vector points. The SVM classifier is a binary classification in which
the class label can only take two values (-1, +1). There are more than two classes
in the real world. Therefore, the SVM classifier is extended to reduce a multiclass
problem into multiple binary classification problems. In our application, we used the
LIBSVM classifier developed by Chang et al. [182]. The LIBSVM classifier uses the
one-versus-all method for multi-class classification. It builds a binary-class problem
for each label, so that instances associated with that label are in one class and the
rest are in another class. The classifier with the highest output function assigns the
class.
In the next session, we explain the mathematical concepts of the binary SVM clas-
sifier.

C.1 Binary SVM Classifier
Suppose we have a set of training data points D = {(~xi, yi)}, where xi ∈ Rd , i =
1, ..., N which are labeled based on the class label yi ∈ {−1,+1}. The binary
SVM classifier should find a linear discriminative hyperplane in the vector space.
A hyperplane is defined by a normal vector ~w named weight vector and is per-
pendicular to the hyperplane. An intercept term b is specified so that one can
choose among all the hyperplanes that are perpendicular to the normal vector. To
find the efficient hyperplane, a kernel function is used to map the support vector
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points into the high-dimensional feature space. Each point on the hyperplane sat-
isfies ωTφ(~xi) = −b. φ(~xi) is a transform that is related to a kernel function by
the equation k(~xi, ~xj) = φ(~xi).φ(~xj). Kernel function can be selected as linear:
k(~xi, ~xj) = ~xi

T ~xj, polynomial: k(~xi, ~xj) = (γ ~xiT ~xj + r)d, γ > 0, Radial Basis Func-
tion (RBF): k(~xi, ~xj) = exp(−γ‖~xi − ~xj‖2), or sigmoid: k(~xi, ~xj) = tanh(γ ~xiT ~xj+r)
in which r, γ and d are kernel parameters. In our experiment, we use the RBF ker-
nel function et al. [182]. Consequently, the decision function is defined as following
relationship, which is recognized as primal function of classification.

f(~xi) = sign(ωTφ(~xi) + b), (C.1)

where sign determines the positive and negative label of ~xi. The SVMs select b
and ~w as the computed hyperplane maximizes the geometrical margin between the
classes. The geometric margin is equal to 2

||ω|| if it is defined by two parallel lines
(Equation (C.2)) and a unit normal vector ω/|ω|.

ωTφ(~xi)− b = 1,
ωTφ(~xi)− b = −1.

(C.2)

In order to maximize the geometric margin, the weight vector ‖ω‖ should be min-
imized. Since using ‖ω‖ makes the optimization problem infeasible, minimization
of the quadratic form of 1

2 ||ω||
2 is suggested.

argmin
ω,b

1
2 ||ω||

2, (C.3)

subject to:
yi(ωTφ(~xi)− b) ≥ 1, (C.4)

The method of Lagrange multipliers is applied to solve this constrained problem.
Therefore, the Lagrangian dual is defined:

max
α≥0

(min
ω,b
{1

2 ||ω||
2 −

∑
i

αi[yi(ωTφ(xi)− b)− 1]}) (C.5)

where ω and b are the primal variables and αi is dual variables. Equation C.5 is
convex and when α is fixed, the derivatives regarding ω, b vanishes and the following
constraints are derived.

ω =
∑
i

αiyiφ(xi), (C.6)

∑
i

αiyi = 0. (C.7)

By substituting Equation C.6 into Equation C.5, the dual problem can be written
as:
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max
α≥0
{
∑
i

αi −
1
2
∑
i

∑
j

αiαjyiyjφ(xi, xj)}, (C.8)

where φ(xi, xj) is a kernel function.

C.2 Soft-margin
In the real world, data are not linearly separable into the classes because of outliers
and noisy measurements. Therefore, some points – outliers or noisy examples – are
inside or on the wrong side of the margin. To handle this case without changing
the family of decision functions, soft-margin is introduced to find a hyperplane that
discriminates classes by paying a cost for each misclassified example, which depends
on how far it is from meeting the margin requirement. In soft-margin, the slack
variable ξi is introduced as a non-zero variable, which allows ~xi to not meet the
margin requirement at a cost proportional to the value of ξi. The optimization
problem of the soft-margin method is then a trade-off between a large margin and
less cost to pay that is formalized as the following relationship.

min
ω,ξ,b
{1

2 ||ω||
2 + C

∑
i

ξi}, (C.9)

subject to:
yi(ωTφ(xi)− b) ≥ 1− ξi, (C.10)

where C is a regularization term, which provides a way to control over-fitting: If C is
large, the method is converted to hard-margin in which misclassification affect on the
classifier performance, whereas the small value of C allows to admit misclassification
in the training data. The dual form of the soft margin problem is:

min
αi
{
∑
i

αi −
1
2
∑
i

∑
j

αiαjyiyjφ(xi)Tφ(xj)}, 0 ≤ αi ≤ C and
∑
i

αiyi = 0. (C.11)

Instead of φ(xi)Tφ(xj), a different kernel function can be used, as mentioned in
section C.1. In the case of using an RBF kernel, parameters of C and γ are selected
by the k-fold cross-validation method [183].
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D
Algorithms

In this appendix, the pseudocodes of Chapter 5 are presented by the following algo-
rithms.

D.1 Improvement of Roof Type Classification Re-
sults

Algorithm 1 shows the rules for improvement of the roof type classification results
(Section 5.3.2).

D.2 2D Optimization
Using Algorithm 2, all possible 2D models for one rectangle are generated by the
exhaustive search and then the best one is selected by Algorithm 3 (Section 5.4.1.2).

D.3 3D Optimization
After finding the best 2D building models, the Algorithm 4 searches all combina-
tions of 3D parameters, which results in different 3D building models and then the
best 3D building model is selected among all the possible models by Algorithm 5
(Section 5.4.1.3).
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D. Algorithms

Data: Iclass : the classified images based on the roof types
Result: frt : final roof type
Initialization :
numlabels : the number of roof types labels for each rectangle;
LBL |numlabels

i=1 : the classification results for each rectangle;
IndLBLi

: the pixel indices related to each label for each rectangle;
Llibj

|n=6
j=1 : roof types labels in the pre-defined library. j ∈[1(flat), 2(gable),

3(half-hip), 4(hip), 5(pyramid), 6(mansard)].;
for p← 1 to n do

IndLBLp ← find(Iclass == Llibp);
end
[ indexclass]← max(length(IndLBLi

|numlabels
i=1 ));

if LBLi |i=1 then
frt ← LBLi;
else if LBLi |i>=2 then

frt ← set LBLi according to the predefined rules (Section 5.3.2);
end
else

frt ← indexclass
end

end
Algorithm 1: Determination of the roof type for each rectangle according to
the classification results

182



D.3. 3D Optimization

Data: Initial 2D parameters:
Ψ2D = {xo, yo, [ ], [ ], length, width, orientation, [ ], [ ], [ ], [ ]},
nDSM, rectangle, building mask

Result: All possible models M(Ψ2D) and their corresponding cost values
Cost(Ψ2D)

Initialization :
Ψrange: tolerance range of each parameter ψ ∈ Ψ2D
PRNrange×11 : The tolerance ranges matrix of parameters (Nrange is a length
of Ψrange) ;
Index = [1, 2, 5, 6, 7] : indices of Ψ2D;
cont← true, ms(Ψ2D), M(Ψ2D) and MT (Ψrange) are empty;
n← 1, NPerm ← 1;
Perm = 1i=1:maxPL, maxPL← 11;
while (cont) do

for j ← 1 to length(Index) do
ms1×11(Index(j))← PRNrange×11(Perm(Index(j)), Index(j))

MTNP erm×11(Ψrange)← ms;
MNP erm×11(Ψ2D) = Ψ2D +MTNP erm×11(Ψrange)
CostNP erm×11(Ψ2D) = PoLiS(MNP erm×11(Ψ2D))
Perm(Index(1))← Perm(Index(1)) + 1;
NPerm ← NPerm + 1;
if Perm(Index(1)) > length(PR(:, Index(1))) then

n← 2;
carry ← true;
while (carry) do

if n > length(Index) then
carry ← false;
cont← false;

else
Perm(Index(n))← Perm(Index(n)) + 1;
if Perm(Index(n)) > length(PR(:, Index(n))) then

n← n+ 1;
if n > length(Index) then

break
else

carry ← false;
Perm(Index(1) : Index(n)− 1)← 1;

Algorithm 2: Generating all the possible 2D roof models (rectangles) according
to permutations of the 2D roof model parameters in their related ranges
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D. Algorithms

Data: u : the rectangle index, (u, j) : an index of MNP erm×11(Ψ2D) or
CostNP erm×11(Ψ2D) for rectangle u, Cost(u,j)NP erm×11(Ψ2D),
M

(u,j)
NP erm×11(Ψ2D), IndRect : indices of the overlapping and

neighboring rectangles
Result: Mbest(Ψ2D) and Costbest(Ψ2D) : the best 2D model
Initialization :
numrect: the number of rectangle
thrθ: angle threshold between neighboring rectangles.
for u← 1 to numrect do

if u == 1 then
[i1, i2]← min(Cost1NP erm×11(Ψ2D));
Mu

best(Ψ2D)←M
(1,i2)
1×11 (Ψ2D);

Costubest(Ψ2D)← i1;
else if u > 1 then

if IndRect(u, u+ 1) then
indPerm ← find(|Mu+1

NP erm×11(Ψ2D(7))−Mu
best(Ψ2D(7))| < thrθ);

if indPerm 6= empty then
Mu+1

best (Ψ2D)←M
(u+1,indP erm)
1×11 (Ψ2D);

Costu+1
best (Ψ2D)← Cost

(u+1indP erm)
1×11 (Ψ2D);

else
[i1, i2]← min(Costu+1

NP erm×11(Ψ2D));
Mu+1

best (Ψ2D)←M
(u+1,i2)
1×11 (Ψ2D);

Costu+1
best (Ψ2D)← i1;

end
end

end
end

end
Algorithm 3: Selection of the best 2D model among all possible models
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D.3. 3D Optimization

Data: Initial 3D parameters:
Ψ3D = {[ ], [ ], zeave, zridge line, [ ], [ ], [ ], hipl1, hipl2, hipd1, hipd2},
Mbest(Ψ2D), frt nDSM, rectangle, building mask.

Result: All possible models M(Ψ3D) and their corresponding cost values
Cost(Ψ3D)

Initialization :
Ψrange : tolerance range of each parameter ψ ∈ Ψ3D;
PRNrange×11: the tolerance ranges matrix of parameters (Nrange is the length
of Ψrange);
if frt == [2, 3, 4, 5, 6] then

Index← [3, 4, 8];
else if frt == [1] & zeave 6= zridge line then

Index← [3, 4]
end
else if frt == [1] then
Index← [3]

end
end
cont← true, M(Ψ3D) and MT (Ψrange) are empty;
ms(Ψ3D), n← 1, Nperm ← 1;
Perm = 1i=1:maxPL, maxPL← 11;
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D. Algorithms

while (cont) do
for j ← 1 to length(Index) do

ms1×11(Index(j))← PRNrange×11(Perm(Index(j)), Index(j))
end
MTNP erm×11(Ψrange)← ms;
MNperm×11(Ψ3D+2D) = Ψ3D +MTNP erm×11(Ψrange)+Mbest(Ψ2D)
CostNP erm×11(Ψ3D+2D) = ρ(od(nDSM,MNperm×11(Ψ3D+2D)))
Perm(Index(1))← Perm(Index(1)) + 1;
NPerm ← NPerm + 1;
if Perm(Index(1)) > length(PR(:, Index(1))) then

n← 2;
carry ← true;
if Perm(Index(1)) > length(PR(:, Index(1))) then

n← 2;
carry ← true;
while (carry) do

if n > length(Index) then
carry ← false;
cont← false;

else
Perm(Index(n))← Perm(Index(n)) + 1;
if Perm(Index(n)) > length(PR(:, Index(n))) then

n← n+ 1;
if n > length(Index) then

break
end

else
carry ← false;
Perm(Index(1) : Index(n)− 1)← 1;

end
end

end
end

end
end

Algorithm 4: Generating all possible 3D roof models according to the permu-
tation of roof model parameters in their related ranges
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D.3. 3D Optimization

Data: u : the rectangle index, (u, j) : an index of MNP erm×11(Ψ2D+3D) or
CostNP erm×11(Ψ2D+3D) for rectangle u, Cost(u,j)NP erm×11(Ψ2D+3D),
M

(u,j)
NP erm×11(Ψ2D+3D), IndRect : indices of the overlapping and

neighboring rectangles
Result: Mbest(Ψ2D+3D) and Costbest(Ψ2D+3D) : the best 2D+3D model

Initialization :
numrect: the number of rectangle
thrh: angle threshold between neighboring rectangles.
thrc: cost value threshold
for u← 1 to numrect do

if u == 1 then
[i1, i2]← min(Cost1NP erm×11(Ψ2D+3D));
Mu

best(Ψ2D+3D)←M
(1,i2)
1×11 (Ψ2D+3D);

Costubest(Ψ2D+3D)← i1;
else if u > 1 then

if IndRect(u, u+ 1) then
ind1perm ←
find(|Mu+1

NP erm×11(Ψ2D+3D(3))−Mu
best(Ψ2D+3D(3))| < thrh);

ind2perm ←
find(|Mu+1

NP erm×11(Ψ2D+3D(4))−Mu
best(Ψ2D+3D(4))| < thrh);

ind3perm ← find(Costu+1
NP erm×11(Ψ2D+3D) < cthr);

if ind1perm ∧ ind2perm ∧ ind3perm 6= empty then
[i1, i2]← min(Cost(u+1,ind3P erm)

size(ind3P erm)×11(Ψ2D+3D))
Mu+1

best (Ψ2D+3D)←M
(u+1,ind3P erm(i2))
1×11 (Ψ2D+3D);

Costu+1
best (Ψ2D+3D)← Cost

u+1ind3P erm(i2)
1×11 (Ψ2D+3D);

else
[i1, i2]← min(Costu+1

NP erm×11(Ψ2D+3D));
Mu+1

best (Ψ2D+3D)←M
(u+1,i2)
1×11 (Ψ2D+3D);

Costu+1
best (Ψ2D+3D)← i1;

end
end

end
end

end
Algorithm 5: Selection of the best 3D model among all possible models
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Acronyms

AD. . . . . . . . . . . . .Area Difference
B-rep . . . . . . . . . . Boundary representation
CCD . . . . . . . . . . . Charged-Couple Device
CH. . . . . . . . . . . . .Convex Hull
CityGML . . . . . . City Geography Markup Language
CM . . . . . . . . . . . . Cadastral Map
CNNs . . . . . . . . . . Convolutional Neural Networks
CMBR . . . . . . . . . Combined Minimum Bounding Rectangle
Compl . . . . . . . . . Completeness
Conv . . . . . . . . . . . Convolution
Corr . . . . . . . . . . . Correctness
CSG . . . . . . . . . . . Constructive Solid Geometry
CT. . . . . . . . . . . . .Contour Trueness
DeCAF . . . . . . . . Deep Convolutional Activation Feature
DEM. . . . . . . . . . .Digital Elevation Model
CLF . . . . . . . . . . . Compass Line Filter
DoG . . . . . . . . . . . Difference of Gaussians
DP. . . . . . . . . . . . .Douglas-Peucker
DTM. . . . . . . . . . .Digital Terrain Model
DSM . . . . . . . . . . . Digital Surface Model
EM . . . . . . . . . . . . Expectation Maximization
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FN . . . . . . . . . . . . . False Negative
FP . . . . . . . . . . . . . False Positive
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GCPs . . . . . . . . . . Ground Control Points
GH. . . . . . . . . . . . .Gauss Helmert
GIS . . . . . . . . . . . . Geographical Information System
GMM . . . . . . . . . . Gaussian Mixture Model
GM . . . . . . . . . . . . Gauss Markov
GSD . . . . . . . . . . . Ground Sample Distance
IEEE. . . . . . . . . . .Institute of Electrical and Electronics Engineers
iMBR . . . . . . . . . . iterative MBR
InHist . . . . . . . . . . Intensity Histogram
LOD . . . . . . . . . . . Level of Details
LiDAR . . . . . . . . . Light Detection and Ranging
LS . . . . . . . . . . . . . Least-Squares
MAP. . . . . . . . . . .Maximum A Posterior
MBR. . . . . . . . . . .Minimum Bounding Rectangle
MDL. . . . . . . . . . .Minimum Description Length
ML. . . . . . . . . . . . .Machine Learning
MRF. . . . . . . . . . .Markov Random Field
MS. . . . . . . . . . . . .Multi-Spectral
MSAC . . . . . . . . . M-Estimator Sample Consensus
MVS . . . . . . . . . . . Multi-View Stereo
nDSM. . . . . . . . . .normalized Digital Surface Model
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PoLiS . . . . . . . . . . Polygons and Line Segment
PO. . . . . . . . . . . . .Point
PP . . . . . . . . . . . . . Perpendicular
PS . . . . . . . . . . . . . Pan-Sharpened
RF . . . . . . . . . . . . . Random Forest
RANSAC . . . . . . Random Sampling Consensus
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RTrees . . . . . . . . . Random Trees
SD . . . . . . . . . . . . . Symmetric Difference
SGM . . . . . . . . . . . Semi-Global Matching
SGD . . . . . . . . . . . Stochastic Gradient Descent
SIFT . . . . . . . . . . . Scale-Invariant Feature Transform
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SMC . . . . . . . . . . . Sequential Monte Carlo
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