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Abstract

We give a model of restricted Loo-algebra in a nice preadditive symmet-
ric monoidal co-category C as an algebra over the monad £ associated to
an adjunction between € and the co-category of cocommutative bialgebras
in €, where the left adjoint lifts the free associative algebra.

If € is additive, we construct a canonical forgetful functor from £-
algebras in € to spectral Lie algebras in € and show that this functor is
an equivalence if C is a Q-linear stable co-category.

For every field K we construct a canonical forgetful functor from £-
algebras in connective K-modules to the co-category underlying a model
structure on simplicial restricted Lie algebras over K.
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1 Introduction

1.0.1 Motivation and basic ideas

Over a field of positive char. Lie algebras often loose their behaviour
which they have over a field of char. zero. To remedy the situation one
studies restricted Lie algebras, which are Lie algebras equipped with a
frobenius operation.

Restricted Lie algebras in positive char. behave much like usual Lie
algebras do in char. zero: By the theorem of Milnor-Moore [20] 5.18 and
6.11. every restricted Lie algebra arises as the primitive elements of its
restricted enveloping Hopf algebra, which is finite dimensional if and only
if the restricted Lie algebra is.

Luckily when turning to positive char. constructions in Lie theory do
not only give a Lie algebra but a restricted Lie algebra. For example every
associative algebra over a field of positive char. defines a restricted Lie
algebra with the commutator as its Lie bracket or every algebraic group
over a field of positive char. gives rise to a restricted Lie algebra structure
on its tangent space.



One would like that this picture carries over to homotopy theory:
When studying homotopy theory over a field of positive char., one would
like to have a restricted version of Le-algebra which behaves much like
Le-algebras in char. zero.

In this work we will introduce a model of restricted Le-algebras that
is available in every nice preadditive symmetric monoidal co-category C
like the oo-category of spectra or K-module spectra over some field K
and so leads to notions of spectral restricted Lie algebras and restricted
Loo-algebras over K.

We expect that results in char. zero concerning L.-algebras generalize
to fields K of positive char. using our model of restricted Le-algebras.

For example we expect that every formal stack over a nice algebraic
derived stack X over a field of positive char. admits a tangent restricted
Loo-algebra in the co-category of quasi-coherent sheaves on X generalizing
a result of Hennion [12].

There is a notion of Lie algebra in the co-category of spectra as algebra
over Ching’s spectral Lie operad, i.e. the Koszul-dual operad of the shifted
cocommutative cooperad in spectra, whose homology is the classical Lie
operad.

To define a restricted version of spectral Lie algebras one could develop
a theory of divided power Lie algebras in the co-category of spectra, which
seem to be a reasonable model of restricted spectral Lie algebras due to
a theorem of Fresse ([6] theorem 1.2.5.), according to which restricted Lie
algebras over a field K are divided power Lie algebras in the category of
K-vector spaces.

Another more naive model of restricted Le-algebra is that of a homo-
topy type of simplicial restricted Lie algebras over K, which form a model
category and so have an underlying oco-category.

We take a different approach to define restricted Le-algebras moti-
vated by the theorem of Milnor-Moore [20] 5.18 and 6.11.:

For every field K denote Liex the category of restricted Lie algebras
over K which are nothing than usual Lie algebras if K has char. zero.

By the theorem of Milnor-Moore [21] there is an embedding

U : Liex c Hopfgk

of the category Liex of restricted Lie algebras over K into the category
Hopfy of Hopf algebras over K, where U sends a restricted Lie algebra to
its enveloping Hopf algebra.

This way we can think of every restricted Lie algebra as a Hopf algebra,
where the free restricted Lie algebra £(X) on a K-vector space X gets the
tensoralgebra T(X) =z U(L (X)) on X.

On the other hand every Hopf algebra Y over K gives rise to a re-
stricted Lie algebra structure on its primitive elements P(Y), which is
characterized by the following universal property:

The functor U is left adjoint to the functor P : Hopfy — Liek that
sends a Hopf algebra to its primitive elements with its natural restricted
Lie algebra structure. So by adjointness the functor T = U o £ : Modk —
Liex c Hopfyk that sends a K-vector space to its tensoralgebra is left
adjoint to the functor P : Hopfix — Modk that sends a Hopf algebra to its
primitive elements.

The theorem of Barr-Beck implies that the forgetful functor Liex —
Modk is a monadic functor, i.e. that Liek is the category of algebras over
the monad associated to the free restricted Lie algebra-forgetful adjunc-
tion.



As U is fully faithful, the unit id — P o U is an isomorphism and so
gives rise to an isomorphism £ = PolUo L zPoT.

Thus the free restricted Lie algebra-forgetful adjunction and the ad-
junction T : Modk = Hopfyx : P induce the same monad £ = PoT
on the category of K-vector spaces, whose category of algebras is Liek.
So we get a description of the category of restricted Lie algebras as
the category of algebras over the monad associated to the adjunction
T : Modk 2 Hopfy : P.

We turn this description of the category of restricted Lie algebras
into a definition and show that this definition makes sense in every nice
preadditive symmetric monoidal co-category C.

More precisely, we show that the free associative algebra functor € —
Alg(C) admits an essentially unique lift T : ¢ — Bialg(C) to the oo-
category Bialg(C) of cocommutative bialgebras in € and prove that T
admits a right adjoint P : Bialg(€) — € (proposition 3.22 and remark
2.25).

Motivated by the theorem of Milnor-Moore we define restricted Leo-
algebras in € as algebras over the monad £ on € associated to the ad-
junction T : € 2 Bialg(C) : P and write Lie(C) for the oo-category of
L-algebras in € (definition 2.26).

By remark 2.27 the functor P : Bialg(C) — € lifts to a functor P :
Bialg(€) — Lie(C) right adjoint to a functor U : Lie(C) — Bialg(C).

Inspired by the theorem of Milnor-Moore we think of U as associating
the enveloping bialgebra and of P as associating the primitive elements.

By remark 2.27 the oco-category Lie(C) over C admits the following
universal property: Every lift Bialg(€) — D of P : Bialg(C) — € along a

monadic functor D — € factors as Bialg(C) 2 Lie(€) —» D for a unique
functor Lie(€C) - D over C.

This may be interpreted by saying that the structure of a restricted
Loo-algebra is the finest structure the primitive elements can be endowed
with.

Stated in a more axiomatically way (remark 2.28) and using that the
free associative algebra functor € - Alg(€) uniquely lifts to cocommuta-
tive bialgebras in € the oo-category Lie(C) is uniquely determined by its
following relations to € and Bialg(C) :

e We have a monadic forgetful functor Lie(C) — € with left adjoint L.

e We have a left adjoint enveloping bialgebra functor U : Lie(C) —
Bialg(€) such that the composition Uo £ : € - Lie(€) — Bialg(€)
lifts the free associative algebra functor € — Alg(C) and a weak
version of the Milnor-Moore theorem holds:

U restricts to a fully faithful functor £(€) — Bialg(C) on free re-
stricted Loo-algebras.

1.0.2 Historical background and related work

There has been a long tradition to define homotopy-coherent versions of
Lie algebras, which are called Le-algebras. Certainly differentially graded
Lie algebras over a field of char. zero are the most well known structure
representing Le.-algebras over this field and play a central role in rational
homotopy theory, deformation theory and derived geometry:

By Quillen (Quillen69) connected dgLie-algebras model simply con-
nected rational homotopy types.



Expected long time by Quillen, Deligne, Drinfeld, Kapranov and others
and proven by Lurie ([17]) and Pridham ([23]) Le-algebras over a field
of char. 0 are equivalent to formal moduli problems, where Pridham also
treats some extensions to positive char.

Besides the local behaviour Le-algebras also describe the global be-
haviour of a derived stack when they arise as the tangent Lie algebra: Hen-
nion constructed an adjunction between formal stacks over a nice derived
algebraic stack over a field of char. zero and L -algebras in quasi-coherent
sheaves over the derived algebraic stack ([12]).

A more modern model of Le-algebras that exists over every Ee-ring
spectrum is an algebra over the spectral Lie operad.

Discovered by Ching [4] this operad structure on the Goodwillie deriva-
tives of the identity of the co-category of spectra has the Lie operad as its
homology and is Koszul-dual to the shifted non-counital cocommutative
cooperad in spectra.

Using the spectral Lie operad classical Lie theory lifts to stable homo-
topy theory and has deep connections to Goodwillie calculus by work of
Camarena [1], Heuts, [13], Kjaer [15], Knudsen [16].

A further model of Le-algebras in positive char., which is still work
in progress, are the Partition Lie algebras of Brantner and Mathew which
are closely connected to the Partition complex and classify formal moduli
problems over arbitrary fields.

1.0.3 Main results

We give the definition of restricted Loo-algebras in a nice preadditive sym-
metric monoidal co-category € like the oo-category of spectra or module
spectra over a Ee-ring spectrum (definition 2.26).

To define restricted Loo-algebras in € we need to lift the free associative
algebra functor € —» Alg(C) to cocommutative bialgebras in C.

We prove that there is an essentially unique such lift of the free functor
€ — Alg(C€) to cocommutative bialgebras in € (proposition 3.22).

If € is additionally additive, we construct a canonical forgetful functor
Lie(€) — Algy,;.(C)

from the oo-category of restricted Loo-algebras in € to the co-category of
algebras over the spectral Lie operad, i.e. the Koszul-dual operad of the
shifted cocommutative cooperad in spectra (theorem 4.2).

We show that this forgetful functor Lie(C) — Alg;;.(C) is an equiv-
alence if € is additionally a Q-linear stable oco-category, i.e. a stable oco-
category left tensored over H(Q)-module spectra (theorem 4.5).

Given a field K we construct a canonical forgetful functor
Lie(Modjik)) = (sLiei*) oo

from the co-category of restricted Leo-algebras in connective H(K)-module
spectra to the co-category underlying a right induced model structure on
the category sLieg" of simplicial restricted Lie algebras over K (proposi-
tion 4.34).

By the theorem of Milnor-Moore this forgetful functor restricts to an
equivalence on the full subcategory of restricted Loo-algebras, whose un-

derlying connective H(K)-module spectrum is a K-vector space.



1.0.4 Overview and guideline how to read this work

The reader only interested in the definition of restricted Loo-algebras and
their relation to spectral Lie algebras and simplicial restricted Lie algebras
should focus on sections 2.3,4.1 and 4.3.

In section 2.3 we define restricted Loo-algebras in a nice preadditive
symmetric monoidal co-category C and study their basic properties.

For example we show that the co-category of restricted Leo-algebras
in € is presentable if C is presentable (remark 2.30).

Moreover we define a more general version of restricted Lo.-JH-algebras
depending on a unital Hopf operad H in € that specializes to the notion
of restricted Loo-algebra if we choose H to be the Hopf operad, whose
algebras are associative algebras.

Sections 2.1 and 2.2 provide notions needed to define restricted Loo-
algebras. In sections 2.1 we study bialgebras and Hopf algebras, in section
2.2 we study Hopf operads.

To define restricted Loo-algebras we need to show that the free as-
sociative algebra functor € - Alg(C) canonically lifts to cocommutative
bialgebras in € (proposition 3.22).

Proving this is the main goal of section 3.3, where we use techniques
about cocartesian operads of section 3.1 and 6.1.

In section 4.1 we construct a forgetful functor
Lie(€) — Algy,;.(C)

from the oo-category of restricted Le-algebras in a nice stable symmetric
monoidal oco-category C to the oo-category of algebras over the spectral
Lie operad, which we define as the Koszul-dual operad of the shifted
cocommutative cooperad in spectra (theorem 4.2).

Moreover we show that this forgetful functor Lie(€C) — Alg;,;.(C) is an
equivalence if € is additionally a Q-linear stable co-category, i.e. a stable
oo-category left tensored over H(Q)-module spectra (theorem 4.5).

To put these constructions and proofs on a formal fundament we de-
velop a theory of operads and cooperads in a nice symmetric monoidal
oo-category given in section 2.2 and a theory of Koszul-duality for operads
and their algebras given in section 4.2.

In section 4.3 we construct a forgetful functor
Lie(ModiO(K)) — (sLieg") oo

from the co-category of restricted Leo-algebras in connective H(K)-module
spectra for some field K to the oco-category underlying a right induced
model structure on the category sLieg® of simplicial restricted Lie algebras
over K (proposition. 4.34).

To show this, we use that restricted Lie algebras over K are algebras
over an algebraic theory in the category of sets (remark 4.37).

This implies the existence of a right induced model structure on the
category sLier® which has the nice properties we need.

Section 4.4 studies the properties of algebraic theories needed to prove

proposition 4.34.

In section 5 we show that every Hopf operad H in a symmetric monoidal
oo-category D endows its co-category of algebras with a symmetric monoidal
structure such that the forgetful functor Alg, (D) — D gets symmetric
monoidal (proposition 5.77).



This is used on the one hand in the definition of restricted Loo-JH-
algebras and on the other hand to link algebras over the spectral Lie
operad in a nice stable symmetric monoidal co-category € with the sym-
metric monoidal co-category of coaugmented cocommutative coalgebras
in € via Koszul-duality.

This relationship between spectral Lie algebras and coaugmented co-
commutative coalgebras is the main ingredient to construct a forgetful
functor from restricted Loo.-algebras in € to spectral Lie algebras in C.

1.1 Notation and Terminologie
Fix your preferred model of co-categories.

By category we always mean oco-category, by 2-category we mean
(00,2)-category and by operad we mean oco-operad.

We describe co-operads and (oo, 2)-categories purely in terms of oo-
categories, where we take Lurie’s definitions found in [18] 2.1.1.10. and
4.2.1.28. but interprete them homotopy-invariant (see for example the
notion of (locally) cocartesian fibration in the next subsection).

Given a category € denote Ho(C) its homotopy category.

Denote Cate the category of small categories and 8 the full subcate-
gory of Cate spanned by the small spaces.
8 and Cate admit all small limits and small colmits.

Given two small categories C, D denote Fun(€, D) the category of func-
tors € — D being the internal hom of Ho(Catc).

Given a small category € and objects X,Y € € we write C(X,Y) for
the space of morphisms X — Y in € that can be defined as C(X,Y) :=
{(X,Y)} xexe Fun(A*, @).

Moreover we have a natural equivalence

Cate (B x €, D) ~ Catoo (B, Fun(€, D))

for B,C,D € Catoo.

Given a small category € denote P(C€) := Fun(C°?,8) the category of
presheaves on C.

Given a category containing a morphism ¢: X - Y, we call X a sub-
object of Y if 1 : X = Y is a monomorphism, i.e. for every Z € € induces a
fully faithful map €(Z,X) - €(Z,Y).

If ¢ is clear from the context, we also write X c Y to indicate that X
is a subobject of Y via ¢.

We often use this notion in the cases of a morphism of small categories
and small operads, where we also use the term subcategory and suboperad.

Remark that monomorphisms are stable under pullback and thus are
preserved by pullback preserving functors.

Given a full subcategory X c Cate denote Cateo®(K) the subcategory
of Cate, with objects the small categories that admit colimits indexed by
categories that belong to X and morphisms the functors that preserve
these colimits.

For X = Cate we write Catss® for CatSe(X).



(locally) (co)cartesian morphisms and fibrations

Let ¢ : € > D be a functor. We call a morphism f : X - Y in C ¢-
cocartesian if the commutative square

e(Y,2) ——— C(X,Z)

l l

D(¢(Y), 6(Z)) —— D(6(X), 6(2))

is a pullback square of spaces.
By the pasting law for pullbacks the following statements follow im-
mediately from the definition:

1. Let f: X > Y and g: Y - Z be morphisms of C.
Assume that f is ¢-cocartesian.
Then g is ¢-cocartesian if and only if g of is ¢-cocartesian.

2. Let 1 : D' — D be a functor and ¢’ : @' — D’ the pullback of ¢ : € - D
along .
Let f : X — Y be a morphism of €', whose image in € is ¢-cocartesian.
Then f: X - Y is ¢'-cocartesian.

3. Let ¢ : D — € be a functor and f : X - Y a morphism of € such that
¢(f) is p-cocartesian.
Then f is ¢-cocartesian if and only if f is ¢ o ¢p-cocartesian.

We call a morphism f: X - Y in € locally ¢-cocartesian if one of the
following equivalent conditions holds:

1. f: X —» Y is ¢’-cocartesian, where ¢’ denotes the pullback A’ xp @ —
Al of ¢ along ¢(f).

2. f:X - Y is a final object of the category {¢(f)} x»p, ) Cx/-

3. For every Z € C lying over the object ¢(Y) composition with f: X —
Y

{id} xp(sv),0v)) (Y, Z) = {d(F)} x(sx),0(v)) E(X,Z)
is an equivalence.
The following statements follow immediately from the definition:
Every ¢-cocartesian morphism is locally ¢-cocartesian.

Let ¢ : D" - D be a functor and ¢ : ¢’ - D’ the pullback of ¢: € - D
along 9. Let f : X - Y be a morphism of €'.

Then f: X - Y is locally ¢'-cocartesian if and only if the image of f in
€ is locally ¢-cocartesian.

We call a functor ¢ : @ — A' a cocartesian fibration if for every object
X of € lying over 0 there is a ¢-cocartesian morphism X — Y in € such
that Y lies over 1.

We call a functor ¢ : € — D a locally cocartesian fibration if the pull-
back A! xp € > Al along every morphism of D is a cocartesian fibration.

We call a functor ¢ : € — D a cocartesian fibration if it is a lo-
cally cocartesian fibration and every locally ¢-cocartesian morphism is
¢-cocartesian.



We call a functor € — D a left fibration if it is a cocartesian fibration
and all its fibers over objects of D are spaces.

Dually, we define (locally) cartesian morphisms, (locally) cartesian
fibrations and right fibrations.

Denote

e Catl and Cat® the wide subcategories of Cate, with morphisms the
left adjoint respectively right adjoint functors
e Op_, the category of small operads

£ and R the full subcategories of Fun(A', Cate, ) spanned by the left
respectively right fibrations

Cocart, Cart and Bicart the subcategories of

Fun(A', Cat..) with objects the cocartesian fibrations, cartesian fi-
brations respectively bicartesian fibrations and morphisms the squares
of small categories, whose top functor preserves cocartesian, carte-
sian, respectively both cocartesian and cartesian morphisms

e U the full subcategory of R spanned by the representable right fi-
brations.

Remark 1.1. The evaluation at the target functor Fun(A', Cate,) —
Catwo s a cartesian fibration as Cate admits pullbacks.

As left, right, cocartesian, cartesian and bicartesian fibrations and
their morphisms (over a fized category) are stable under pullback, the
restrictions L — Cate, R - Catoo, Cocart - Cate, Cart - Cateo and
Bicart — Catwo of the evaluation at the target functor are cartesian
fibrations.

Given a small category C we usually denote the corresponding fibers
by Le,Re, Cat‘;g/cg”, Cati:;é respectively Catz’;%ﬁ.

By proposition 6.9 the restriction U - Cato of the evaluation at the
target functor Fun(A', Cate ) = Cate to U is a cocartesian fibration
and classifies the identity of Cate.

Let X — S be a cocartesian fibration classifying a functor ¢ : S - Cateo.
We call the cocartesian fibration X™ — S classifying the functor S 2,

_yop
Cateo L Cato the fiberwise dual of X — S.

Given a cocartesian fibration of operads C® — O% the cocartesian fi-

bration (%)™ — O® is a cocartesian fibration of operads classifying the
—)opP
0®-monoid O® - Cate, o7, Cateo.

The underlying functor of (€®)™" — 0% is the fiberwise dual €*V —» O
of € - 0.

Let C® — 0% be a cocartesian fibration of operads, i.e. a O®-monoidal
category and K c Cate a full subcategory.

We say that C® — O% is compatible with colimits indexed by cat-
egories that belong to X if for every X € O the fiber Cx admits col-
imits indexed by categories that belong to X and for every operation
h € Mulp (X1, ..., Xn;Y) the induced functor Cx, x...x Cx, — Cy preserves
colimits indexed by categories that belong to X in each component.

We call C® - 0% a



e accessible O®-monoidal category if for every X € O the category Cx
is accessible and for every operation X1, ..., X, = Y of O the induced
functor Cx, x ... x Cx, — Cy is accessible.

e presentable O®-monoidal category if €® — 0% is an accessible O®-
monoidal category and for every X € O the category Cx is pre-
sentable.

e presentably O®-monoidal category if for every X e O the category
Cx is presentable and for every operation Xi,...,X, — Y of O the
induced functor Cx, x...x Cx, — Cy preserves small colimits in each
variable.
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1.3 Some elementary notions
1.3.1 Lax and oplax monoidal functors
Some remarks about lax and oplax O®-monoidal functors.
Let 9% be an operad and €®,D® be O®-monoidal categories.

We set
Fun§ (€, D) = Algeo (D)

and
F\ung,oplaX(e’ D) - Pwung,lem(ercv7 DI‘CV)Op'

We say that a lax O®-monoidal functor H: (€®)™" — (D®)*V repre-
sents an oplax O®-monoidal functor F : €% — D® or say that H corresponds
to an oplax O®-monoidal functor F : €® - D® and write F**¥ for H and
H™ for F.

For every X € O we have forgetful functors
(-)x : Fun$'**(€, D) - Fun(€x, Dx)
and
(-)x : Fun&°P*(€, D) = Fund '™ (€*, D*V)°" - Fun(C, DP)P =

Fun((?x, 'Dx),

10



So given an oplax O®-monoidal functor F : €® — D® corresponding to a
lax O®-monoidal functor F**V : (€®)™¥ - (D®)™" we have Fx = (F¥¥)°P.

We have a full subcategory inclusion Fun$(€,D) c Fun®°?**(¢,D)

that fits into a commutative square

Fun? (€, D) — 5 Fun (€™, D'")°P

| l

Fung,oplax(e7 D) m:v Fung,lax(erev7 .Drev)op,

where the top horizontal functor takes the fiberwise dual over O%.

1.3.2 Monoidal adjunctions

Let 9% be an operad, €%, D® be O®-monoidal categories, F : €% - D® an
oplax O®-monoidal functor corresponding to a lax O®-monoidal functor
F™: (C®)™ - (D®)™ and G : D® — €® a lax O®-monoidal functor.

We say that F : €® — D® is O®-monoidally left adjoint to G : D® — @®
or G:D® - €% is O®-monoidally right adjoint to F : €% — D% if the lax
0®-monoidal functors

Frev . (€®)rev N (,D®)rev c ,J)(greV)®7 G: .D® N e@ c ﬂ;(e)®
correspond to equivalent lax O®-monoidal functors
(e®)rcv X0 D@ N o@ X Fin, SX.

Remark 1.2. Let F : C® - D® be an oplaz O®-monoidal functor cor-
responding to a lax O®-monoidal functor F**¥ : (C®)™ — (D®)*V and

G :D® - C® a lax O®-monoidal functor corresponding to an oplaz O%-
monoidal functor G*¥ : (D®)"™ — (C®)V.

The oplax O®-monoidal functor F : C® — D® s O®-monoidally left
adjoint to G : D® — C® if and only if GV : (D®)*V - (C®)™ is O®-
monoidally left adjoint to F*¥ : (C®)™ — (D®)™".

Remark 1.3.

e O®-monoidal left respectively right adjoints are unique if they exist.

e An oplax O®-monoidal functor F : €% — D® admits a lax O®-monoidal
right adjoint G : D® — C® if and only if for all X € O the induced
functor Fx : Cx — Dx admits a right adjoint.

Dually a laz O®-monoidal functor G : D® - C® admits an oplax O%-
monoidal left adjoint F : €% — D® if and only if for all X € O the
induced functor Gx : Dx — Cx admits a left adjoint.

Let O® be an operad and €%, D® be O®-monoidal categories.

Denote
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° Fung’lax’R(D,C) c Fun%’lax(D,C) the full subcategory spanned by
the lax O®-monoidal functors G : D® — €% such that for all X € O
the induced functor Gx : Dx — Cx admits a left adjoint,

e Fun® "™l (e D) c Fun® (€, D) the full subcategory spanned
by the oplax ©®-monoidal functors F : €® — D® such that for all
X € O the induced functor Fx : Cx — Dx admits a right adjoint.

° Monlgx(Catw) c Opm/og) the full subcategory spanned by the O®-
monoidal categories,

e Monf*(Cate)® ¢ Mong*(Cate) the wide subcategory with mor-
phisms the lax O®-monoidal functors G : D® — €% such that for all
X € O the induced functor Gx : Dx — Cx admits a left adjoint.

There is a canonical equivalence
Fung,lax,R(D’ e) ~ 1_—‘\111,l§,c)plax,L(e7 D)op7
under which left and right adjoints correspond (prop. 6.35).
There is a canonical equivalence
(Mong*(Cate )™)°P = Mong™ (Cate )™

(prop. 6.40), under which a lax O®-monoidal functor G : D® — €® cor-
responds to the lax O®-monoidal functor F**¥ : (C®)™¥ — (D®)™" repre-
senting the oplax O®-monoidal left adjoint F : €® - D® of G.

1.3.3 Preadditive, additive and stable categories

We call a category C

e preadditive if € admits a zero object, finite coproducts and finite
products and for every objects A1, ..., Ay for some n > 2 the canonical
morphism

n n
[TA -~ TTA
i=1 i=1
is an equivalence.

e additive if € is preadditive and for every X € € the morphism

X xX M X xX
is an equivalence, where pr; : X x X — X denotes the projection to
the first factor and p: X x X ~ X[ X - X denotes the codiagonal.

e stable if C admits a zero object, finite colimits and finite limits and
the suspension ¥ : € - C is an equivalence.

For every category D with finite products the category Cmon(D) =~
Calg(D>) is preadditive.

Moreover the forgetful functor Cmon(D) — D is an equivalence if and
only if D is preadditive.

12



Proof. The category Cmon(D) ~ Calg(D*) is preadditive as by [18] propo-
sition 3.2.4.7. the symmetric monoidal category Cmon(D) ~ Calg(D*)
endowed with the objectwise symmetric monoidal structure, which in this
case is the cartesian structure, is cocartesian.

If D is preadditive, the identity of D uniquely lifts to an equiva-
lence DY — D* of symmetric monoidal categories according to [18] corol-
lary 2.4.1.8. Especially the forgetful functor Cmon(D) ~ Calg(D*) =~
Calg(DH) — D is an equivalence by [18] proposition 2.4.1.7. and propo-
sition 2.4.3.9.

O

For every preadditive category C and category D with finite products
the forgetful functor

Fun"' (€, Cmon(D)) - Fun'' (€, D)
is an equivalence with inverse the canonical functor
€ :Fun" (€, D) » Fun" (Cmon(€), Cmon(D)) ~ Fun" (€, Cmon(D)),

where we use that the forgetful functor Cmon(€) — € is an equivalence
(see also [9] corollary 2.4. and 2.5.).

If € is additive, ¢ induces a functor Fun'(C, D) - Fun'(€, Cgrp(D))
inverse to the forgetful functor Fun' (€, Cgrp(D)) — Fun'(€, D), where
Cegrp(D) c Cmon(D) denotes the full subcategory spanned by the group
objects, which is an additive category.

By [18] corollary 1.4.2.23. for every stable category € and category D
with finite limits the forgetful functor

Fun'**(€,Sp(D)) - Fun'*(€, D)
is an equivalence with inverse the canonical functor
Fun'(€,D) - Fun'™(Sp(€),Sp(D)) = Fun'* (€, Sp(D)),

where we use that the forgetful functor Sp(€) — € is an equivalence by
[18] proposition 1.4.2.21.

If € is preadditive, the category Fun'(C,8) ~ Fun™(€,Cmon(8)) is
preadditive being closed under finite products in the preadditive category
Fun(€, Cmon(8)).

If € is additive, the category Fun (€, 8) ~ Fun" (€, Cgrp(8)) is additive
being closed under finite products in the additive category Fun(€, Cgrp(8)).

If @ is stable, the category Fun'®*(€,8) = Fun'**(€,Sp) is stable be-
ing closed under finite limits and finite colimits in the stable category
Fun(C, Sp).

Remark 1.4. IfD is presentable, by prop. 4.1. [9] the category Cmon(D)
is an accessible localization of the presentable category Fun(Fin., D) and
so itself presentable. Especially the forgetful functor Cmon(D) — D admits
a left adjoint.

If C,D are presentable, the equivalence

Fun"' (€, Cmon(D)) - Fun'' (€, D)
restricts to an equivalence

Fun"(Cmon(D), €) = Fun™ (€, Cmon(D)) - Fun™ (€, D) ~ Fun"(D, €).
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Thus the full subcategory Prgr%dd c Pr¥ of preadditive presentable cat-
egories is a localization.

Moreover by [9] theorem 4.6. this localization is symmetric monoidal,
when PrY¥ is endowed with its canonical closed symmetric monoidal struc-
ture.

This way the cartesian structures on the categories 8 and Cate yield
closed symmetric monoidal structures on the categories Cmon(8) respec-
tively Cmon(Cates) such that the free functors 8 — Cmon(8),Cate —
Cmon(Cate) are symmetric monotidal.

Moreover the opposite category involution (=)°F on Cate induces a
symmetric monoidal autoequivalence of the cartesian structure on Cateo
and so a symmetric monoidal autoequivalence of the closed symmetric
monoidal structure on Cmon(Cate ) that takes a symmetric monoidal cat-
egory to its fiberwise dual.

Remark 1.5. Every additive category C admits a canonical finite products
preserving embedding C c D into a stable category D.

The embedding C c D factors as embeddings C c €& ¢ D with an additive
category & such that the embedding C c & preserves small limits and the
embedding & ¢ D admits a right adjoint.

The category & is closed in D under retracts. If C is idempotent com-
plete, C is closed in € under retracts so that C is closed in D under retracts.

If @ is a O®-monoidal category for an operad O%, the embeddings C c &
and € ¢ D are O®-monoidal.

Proof. The forgetful functor
Fun' (€, Cmon(8)) — Fun'' (€, 8)
is an equivalence with inverse the canonical functor
¢ : Fun"'(€,8) - Fun" (Cmon(€), Cmon(8)) = Fun" (€, Cmon(8)).

As C is additive, every object of € ~ Cmon(C) belongs to the full
subcategory Cgrp(€) c Cmon(€) spanned by the group objects.
Thus the equivalence ¢ induces an equivalence

Fun'' (€, 8) ~ Fun" (€, Cgrp(8))

invserse to the forgetful functor Fun"(C, Cgrp(8)) — Fun' (G, 8).

Replacing € by the additive category C°P we get a canonical equiva-
lence Fun™(€°P,8) ~ Fun™(€°P, Cgrp(8)).

The left adjoint stabilization functor Cgrp(8) — Sp is fully faithful
with essential image the connective spectra and so induces a left adjoint
embedding Fun™(€°P, Cgrp(8)) c Fun™(€°P, Sp).

The Yoneda-embedding € ¢ Fun(C°?,8) induces an embedding € c
Fun'(@°P,8) that preserves small limits.

So we get an embedding 8 : € c Fun™(€°P,8) ~ Fun™ (€°?, Cgrp(8)) c
Fun'(C°P, Sp).

With Sp also the category Fun(€°?, Sp) is stable as (co)limits in functor-
categories are formed levelwise.

As the full subcategory Fun(€°P, Sp) = Fun" (C°?, Sp) c Fun(C°?, Sp)
is closed under small colimits and limits, the category Fun'(C°P,Sp) is
stable, too.
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As Cgrp(8) is closed under retracts in Sp, Fun' (€°P, Cgrp(8)) is closed
under retracts in Fun''(€°P, Sp).

If € is idempotent complete, C is closed under retracts in Fun(C°?,8)
and so in Fun'(C°P, 8).

The full subcategory Fun''(€°P,8) c Fun(€°P,8) is an accessible lo-
calization and so yields for every presentable category B a localization
Fun"(€°P,8) ® B c Fun(C°?,8) ® B, where ® denotes tensorproduct of the
closed symmetric monoidal structure on Pr".

There is a canonical equivalence

Fun(C°",B) ~ Fun(€’”,8) ® B
that restricts to an equivalence
Fun'' (€°", B) ~ Fun' (€°",8) ® B

of presentable categories.
Via this equivalence the embedding @ : € c Fun'(C°P, Sp) factors as

€ c Fun" (€, 8) ~ Fun" (€, 8) ® § - Fun" (", 8) ® Cgrp(8) —
Fun' (€°?,8) ® Sp

and so as
@ c Fun"(€°",8) ~ Fun" (€°",8) ® § - Fun" (€°",8) ® Sp.

If € is a O®-monoidal category, the Yoneda-embedding € c Fun(C°?,8)
gets O®-monoidal, where Fun(C°?,8) carries the O®-monoidal structure
given by Day-convolution.

Moreover the accessible localization Fun™(€°P,8) c Fun(C°P,8) is a
O®-monoidal localization so that the ©®-monoidal Yoneda-embedding € c
Fun(€°?,8) induces a O®-monoidal embedding € ¢ Fun''(€°P, §).

Finally the symmetric monoidal infinite suspension functor § — Sp
yields a O®-monoidal functor

Fun" (€°?,8) ~ Fun" (€°?,8) ® § - Fun'' (€°",8) ® Sp.

Moreover we will heavily use the following remark:

Remark 1.6. Let K c Cateo be a full subcategory and C® — 0% a 0%-
monoidal category compatible with colimits indexed by categories that be-
long to K. Assume that for every X € O the fiber Cx admits small colimits.

There are O®-monoidal embeddings C® c D® c £® such that for every
X € O the fiber Ex admits large colimits, Dx is the smallest full subcategory
of Ex that contains Cx and is closed under small colimits, the embedding
Cx ¢ Dx admits a left adjoint and preserves colimits indexed by categories
that belong to X and the embedding Cx c Ex preserves small limits.

Corollary 1.7. Let C® — 0% be a preadditive, additive respectively stable
0%-monoidal category such that for every X € O the fiber Cx admits small
colimits.

There are O®-monoidal embeddings C® c D® c E® such that for every
X € O the fibers Dx, Ex are preadditive, additive respectively stable, Ex ad-
mits large colimits, Dx is the smallest full subcategory of Ex that contains
Cx and is closed under small colimits, the embedding Cx c Dx admits a
left adjoint and the embedding Cx c Ex preserves small limits.
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Proof. Let €® - 0% be a O®-monoidal category. There is a O®-monoidal
Yoneda-embedding C® c P(€)®.

Given a full subcategory K c Cate, denote Py (€)® ¢ P(€)® the full
suboperad spanned by the functors €37 — Sthat preserve K-indexed limits
for some X € O and Py (C)® c Px(C)® the full suboperad such that for
every X € O the full subcategory Px(C)x is the smallest full subcategory
of f/ﬁx((‘f)x that contains Cx and is closed under small colimits.

If K is empty, we drop X from the notation. If K = Cate, we have
Py (C)® = C®. If 0% is the trivial operad, we write Py (€) for Px(€)®.

The ©O®-monoidal Yoneda-embedding €® ¢ P(€)® induces a O®-monoidal
embedding €® c Py (C)®.

By remark 6.3 the embedding Px(€)® c P(€)® induces on the fiber
over every object of O alocalization. Especially the embedding Pear (€)® ¢
@gg(@)® induces on the fiber over every object of O a localization and so
restricts to an embedding C® = TPCatw(C)g’ c ng<(€)® that induces on the
fiber over every object of O a localization.

Assume that the O®-monoidal category €® is compatible with colimits
indexed by categories that belong to XK. Then by prop. 6.5 the full subcat-
egory Py (€)® c P(€)® is a localization relative to O® and so compatible
with large colimits. Thus Py (C)® is a O®-monoidal category compatible
with small colimits.

For X = Fin the category of small finite sets and O% the trivial operad

we have ?x(e) = F\lnH(C°p7g), which is preadditive respectively additive
if C is. In this case also Px(C) is preadditive respectively additive being
closed under finite coproducts.
Another choice of K leads to the full subcategory Py (€) = Fun'**(€°P,8) c
Fun(€°?,8) spanned by the finite limits preserving functors, which is sta-
ble if C is. In this case also Px(C) is stable being closed under finite
colimits and arbitrary shifts.

O
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2 Restricted Lie algebras

The next two subsections provide the notions needed to define restricted
Le-algebras in a nice preadditive symmetric monoidal category C.

In section 2.1 we define bialgebras and Hopf algebras in C.

We show that cocommutative bialgebras in € can be described by
monoids in the category of cocommutative coalgebras in € or by cocom-
mutative coalgebras in the symmetric monoidal category of associative
algebras in C (prop. 2.4).

In section 2.2.1 we endow the category C* of symmetric sequences in
€ with a monoidal structure encoding the composition product and define
operads as associative algebras in the composition product.

We show that the left action of €¥ on itself restricts to a left action
on C and we define algebras over an operad O as left modules over O.

To define cooperads, i.e. operads in C°P, we cannot expect that C°P is
a nice symmetric monoidal category.

Thus we develop a more general composition product on C* that en-
dows €% with the structure of a representable planar operad instead of a
monoidal category and we define operads as associative algebras in this
planar operad structure on €% and cooperads as operads in C°P.

2.1 Bialgebras and Hopf algebras

We start with developing the basic theory of algebras, coalgebras, bialge-
bras and Hopf algebras.

We use the terminology of [18] and refer to this source for more details.

Given a map of operads 9'® - 9® and a ©®-monoidal category €® — 0%
denote
Algor0(C)

the category of O'®-algebras relative to O® and
Coalgy o (€) := Algyro (€)™
the category of O'®-coalgebras relative to O%.

o If 0"® - 0% is the identity, we write Alg,y(€) for Algy, o (€) and
Coalg;(C) for Coalgy:/o(C).

o If 0% = Comm®, we write Algy,(€) for Algyo(€) and Coalg, (€)
for Coalgg/o(€).

e For 0% = Ass® respectively O® = Comm® we write Alg(C) respec-

tively Calg(C) for Alg,y(€) and Coalg(C) respectively Cocoalg(C)
for Coalg,(C).

The next remark follows from [18] corollary 3.2.2.5. and will be heavily
used:

Remark 2.1. Let O"® - 0% be a map of operads and C® - 0% a O®-
monoidal category.

If for every X € O the fiber Cx admits small limits, then the category
Algof/o((?) admits small limits that are preserved by the forgetful functor
Algyr/o(€) = Cx for every Y € O lying over some X € O.
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So dually if for every X € O the fiber Cx admits small colimits, the cate-
gory CoalgO,/O(C) admits small colimits that are preserved by the forgetful
functor Coalgo,/o(e) — Cx for every Y € O' lying over some X € O.

For later reference we define non-unital and augmented algebras respec-
tively non-counital and coaugmented coalgebras over a unital operad O%:

Denote Surj c Fin, the wide subcategory with morphisms the surjec-
tive maps. The subcategory inclusion Surj c Fin. exhibits Surj as an
operad.

Given a unital operad 9% we set 02, := Surj xgi,, O%.

Denote

Alg,o (€)™ = Algy, /0(€), Coalg/o(e)ncu := Coalgg,  /0(€)

the category of non-unital O®-algebras in € respectively non-counital O®-
coalgebras in C.
We have a forgetful functor Alg,o(C) - Alg,o (€)™ = Algy, /0 (€).

Remark 2.2. Let C® — 0% be a preadditive O®-monoidal category.
1. Adding the tensorunit defines an embedding Alg,, (€)™ c Algo (€)1

2. This embedding is an equivalence if C® — 0% is a idempotent com-
plete additive O®-monoidal category.

3. If for every X € O the category Cx admits fibers, the embedding
Alg;o (€)™ c Alg) (€)1 admits a right adjoint that takes the fiber
of the augmentation.

4. 1If for every X € O the category Cx admits small limits, the embedding
Alg;o (€)™ c Alg,o(C)/1 preserves small limits.

Proof. By [18] prop. 5.4.4.8. the forgetful functor Alg,,(€) — Alg,o(C)™
admits a left adjoint F with the following properties:

For every non-unital O®-algebra X in € the unit X — F(X) and the
unique morphism 1 - F(X) in Alg,, (€) yield an equivalence X &1 ~ F(X)
in Fune (0, C).

As the O®-monoidal category €® is compatible with the initial object,
the category Alg,o(C)™ admits a zero object that lies over the zero object
of Fune (0O, €). So the functor J : Alg,, (€)™ — Alg,(C) lifts to a functor
J: Alg)p (€)™ — Alg)o (€)1 that factors through the full subcategory
Alg,o(€))y c Alg,o(€)/1 spanned by the augmented O®-algebras, whose
augmentation admits a fiber in Fune (0, C).

Especially we obtain a commutative square

nu 3:
Alg)o (€)™ ——— Alg;o(C)
Fune (0, 0C) N Fune (0, C)/q,
where the functor — @ 1 is the right adjoint of the forgetful functor
Fune (0, €)1 = Fune (0, €).
The functor J: Alg,, (€)™ — Alg;y(C)}q is left adjoint to the functor

r: Alg/o(e);n - Alg/o(e)nu
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that takes the fiber of the augmentation in Alg, (€)™".
Given a non-unital O®-algebra X in € the unit

X = T(F(X)) = 0 xz(0) F(X) = 0 x(0p1) (XD 1)

is the canonical equivalence so that F is fully faithful.
This shows 1. and 3., where 4. follows from remark 2.1.

2: By remark 1.5 there is a O®-monoidal embedding €® c D?® into
a stable O®-monoidal category D® such that for every X € O the fiber
Cx c Dx is closed under finite products and retracts.

So we get a commutative square

nu F
Algo (€)™ —T— Alg (€)1

| l

nu §
Algo (D)™ —— Alg;o (D)1,

where the vertical functors are fully faithful.

As D? is a stable O®-monoidal category, by [18] proposition 5.4.4.10.
the functor J : Alg;o (D)™ — Alg,o(D)/1 is an equivalence.

As for every X € O the fiber Cx c Dx is closed under retracts, A ¢
Alg,o (D)™ belongs to Alg,,(C)™ if its image F(A) ~ A @ 1 belongs to
Alg,o(€)/s using that A is a retract of A @1 in the category Fune (0, D).

O

As next we endow the categories of algebras and coalgebras in a sym-
metric monoidal category with symmetric monoidal structures to be able
to define algebras in the category of coalgebras and coalgebras in the
category of algebras.

By 1.4 the category Cmon(Cate ) admits a closed symmetric monoidal
structure, whose internal hom of two symmetric monoidal categories D, C
we denote by Fun®(D, €)®.

As the notation suggests, the underlying category of Fun®(D,C)® is
Fun®(D, €).

Moreover the opposite category involution (-)°" on Cate induces a
symmetric monoidal autoequivalence (—)™" of Cmon(Cateo).

By [18] proposition 2.2.4.9. the subcategory inclusion Cmon(Cate) C
Op,, from symmetric monoidal categories to operads admits a left adjoint
Env(-)®, which assigns to an operad its enveloping symmetric monoidal
category.

So for every operad O® we have a unit map of operads O® — Env(0)%.

Using the cotensoring of Cate3in, over Cate. composition with the
unit defines an equivalence

Fun®(Env(0), @) ~ Alg,(C)

of categories and not only spaces.
We set

Algy(€)? := Fun®(Env(0),€)®, Coalgy(€)® := (Algy (€™)®)™
and have a canonical symmetric monoidal equivalence

Coalg, (€)® = (Fun®(Env(0), € )®)* ~ Fun®(Env(0)*",€)®. (1)
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Remark 2.3. One can show (prop. 6.82) that composition with the unit
0% - Env(0)® defines an equivalence

Fun®(Env(0),@)® ~ Alg,(€)®,

where Alg, (€)® denotes the internal hom of the closed symmetric monoidal
structure on Op,, given by the Boardman-Vogt tensorproduct.

As next we show in proposition 2.4 that for every symmetric monoidal
category € and operads 0%, 0’® we have a canonical equivalence
Coalg (Alg (€))® = Algy (Coalgg (€))®

of symmetric monoidal categories and thus especially an underlying equiv-
alence Coalg,(Algy/(€C)) = Alg,(Coalg,(C)).

Having this we define the category of (O, ")-bialgebras in € as the
category

Bialgy o/ (€) = Coalgy (Algy:(C)) = Algy, (Coalgy (€)).

Especially we write Bialg(C) := Cocoalg(Alg(C)) ~ Alg(Cocoalg(C)).
Note that we use the convention that Bialg(C) denotes the category

of cocommutative bialgebras and not the category of bialgebras.

We use this convention as the bialgebras arising in Lie theory are
cocommutative so that we will mainly deal with cocommutative bialgebras
in the following chapters.

Proposition 2.4.

Let O®,0'® be operads and C® a symmetric monoidal category.
There is a canonical equivalence

Coalg, (Alg, (©))® = Alg, (Coalg,, (C))®.

Proof. The asserted equivalence is the composition of the following canon-
ical equivalences:

Coalgy, (Algy(€))® =~ Fun®(Env(0')™", Alg, (€))% =
Fun®(Env(0')™", Fun®(Env(0), €))® ~
Fun®(Env(0')™" @ Env(0), €)% ~
Fun®(Env(0) ® Env(0')™",C)® ~
Fun® (Env(0), Fun® (Env(0')"", €))% =,
Fun®(Env(0), Coalg,, (C))® = Alg, (Coalgy (€))®.

As next we define Hopf algebras.
Let D be a category with finite products and X a monoid in D.

Denote pry,pry : X x X - X the projections and p: X x X - X the
multiplication of X.
We call X a group object in D if the canonical morphisms

X x X P XX« X P, o x

20



are equivalences and write Grp(D) ¢ Mon(D) for the full subcategory
spanned by the group objects.

By [18] proposition 3.2.4.7. the symmetric monoidal category Calg(C)®
is cocartesian and so dually the symmetric monoidal category Cocoalg(C)®
is cartesian.

We refer to group objects in Cocoalg(C) as Hopf algebras in € and set

Hopf(€) := Grp(Cocoalg(€)) c Mon(Cocoalg(C)) ~ Bialg(C).

Remark 2.5.

1. Let C,D be categories that admit finite products and ¢ : € - D a
finite products preserving and conservative functor.

A monoid X of C is a group object of C if and only if the image ¢(X)
is a group object of D.

As the functor D — Ho(D) preserves finite products and is conser-
vative, a monoid of D is a group object if and only if its image in
Ho(D) is a group object.

Hence (as it holds for 1-categories) a monoid X of D is a group
object if and only if it admits an inverse, i.e. if there is a morphism
i: X - X in D such that we have commutative squares

XxX — 2 XX XxX—%  oxxX
X * X X * X

in D.

2. Let C,D be symmetric monoidal categories and ¢ : C - D a symmet-
ric monoidal and conservative functor.
A bialgebra X of C is a Hopf algebra of C if and only if the image
¢(X) is a Hopf algebra in D.
Especially a bialgebra of D is a Hopf algebra if and only if its image
in Ho(D) is a Hopf algebra.
Hence a bialgebra X of D is a Hopf algebra if and only if it admits an
antipode, i.e. if there is a morphism i: X - X in Cocoalg(Ho(D))
such that we have commutative squares

X®X$X®X X®X$>X®X
X 1 X X 1 X

in D.

Observation 2.6. Let D be a category that admits finite products and
small sifted colimits that commute with each other.

Then the full subcategory Grp(D) c Mon(D) is closed under small
sifted colimits:
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Proof. Let J be a small sifted category. By assumption the diagonal func-
tor D — Fun(d,D) admits a left adjoint colim : Fun(d,D) — D that
preserves finite products as J is sifted.

So colim : Fun(d, D) - D induces a functor

Fun(g, Mon(D)) ~ Mon(Fun(d, D)) - Mon(D)
right adjoint to the diagonal functor that restricts to a functor
Fun(J, Grp(D)) ~ Grp(Fun(d, D)) - Grp(D)

right adjoint to the diagonal functor.
O

Let D be a symmetric monoidal category compatible with small sifted
colimits.

Then the category Cocoalg(D) admits finite products being a cartesian
symmetric monoidal category and small sifted colimits that commute with
each other.

So the full subcategory Hopf (D) c Bialg(D) is closed under small sifted
colimits.
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2.2 Internal operads and cooperads

2.2.1 The composition product on symmetric sequences

Denote X ~ [,,,o B(X4) the groupoid of finite sets and bijections.

The cocartesian symmetric monoidal structure on Set restricts to a
symmetric monoidal structure on ¥ that exhibits ¥ as the free symmetric
monoidal category on the contractible category.

This follows for example from the canonical equivalence ¥ ~ Env(Triv),
where Triv® — Fin. denotes the trivial operad and prop. 6.82.

Let € be a symmetric monoidal category compatible with small colim-
its.

The category €7 := Fun(%,€) = [I,.0 Fun(B(Zx),C) admits a sym-
metric monoidal structure compatible with small colimits given by Day-
convolution (prop. 6.4).

We have a fully faithful symmetric monoidal functor € — €% left ad-
joint to evaluation at 0 that considers an object of C as a symmetric
sequence concentrated in degree zero.

We define the composition product on € as the monoidal structure
on CF corresponding to composition under the canonical equivalence

U }?ung/,COC(eE7 GE) ~ I_?un@),coc(SE7 GZ) ~ Flll’l®(27 GE) ~ GE

of prop. 6.21 and 6.23 that evaluates at the symmetric sequence triv in €
concentrated in degree 1 with value the tensorunit of C.

So triv becomes the tensorunit of the composition product on €.

For every X e €% we have a canonical equivalence X = Hiso Xk ®s,
triv®®, where we embed € into CF.
So the composition product of X,Y € ¥ is given by

XoY = (U7H(Y)oWw ™ (X)) (triv) = U (Y)(X) = U (Y)(] [ X®s, triv®)

k>0

> [ [ Xk ®x, T (Y) (triv) ®F = LI Xk ®5, YK,

k>0 k>0

Thus for every n € N we have a canonical equivalence

(XOY)nzH( U Xk®(® Ynj))zk.

k>0 nyI]...[Ing=n 1<j<k

Given a symmetric monoidal category € that admits small colimits
(but is not neccessarily compatible with small colimits), there is at least
a representable operad (€%)® — Ass® over Ass® with underlying cate-
gory C¥ that agrees with the composition product in the case that € is
compatible with small colimits (constr. 5.80).

A symmetric monoidal functor ¢ : B — € between symmetric monoidal
categories that admit small colimits gives rise to a map (B¥)® — (C¥)®
of representable operads over Ass® that is an embedding of operads over
Ass® if the functor B — € is fully faithful (constr. 5.80).

Moreover if ¢ preserves small colimits, the lax monoidal functor (32 )® -
(€*)® is monoidal by remark 5.81.

Set ¥s1 1= [1,5; B(Zw) and €¥2! = Fun(Xs1, C) = [1,,; Fun(B(Z.), €).

23



We have an embedding €¥*! c CF left adjoint to restriction along the
canonical embedding 31 c X that plugs in the initial object in degree
zero. If the symmetric monoidal structure on € is compatible with the
initial object, the composition product on €% restricts to €=,

Moreover for every Oi,...,0, € C¥ for some n > 1 and X € @ the
composition O o...0 O, o X belongs to C.

So the representable operad LM® x50 (€%)® - LM® over LM® re-
stricts to a representable operad over LM® with fiber over a € LM the
category CF and with fiber over m € LM the category C.

Given a symmetric monoidal category C that admits small limits we
can form the representable planar operad ((C°P)*)® — Ass® that endows
(€°P)¥ ~ (€¥)°P with the composition product.

We say that ((€°P)¥)® — Ass® endows C” with the cocomposition
product, which we denote by x*.

2.2.2 Internal operads and Hopf operads
Let € be a symmetric monoidal category compatible with the initial object
that admits small colimits.

We call associative algebras in € with respect to the composition
product operads in C.
We call an operad O in € non-unital if Oy is initial in C.

We write Op(€) = Alg(€*) and Op™™(C€) := %21 x,=Op(€) ~ Alg(C>>1).
Given an operad O € Op(C) we set Alg,(€) := LMode(C).

Dually given a symmetric monoidal category C compatible with the
final object that admits small limits, we refer to (non-unital) operads in
C°P as (non-counital) cooperads in € and write CoOp(C€) := Op(C°P)°P
and CoOp"“(€) := Op™™(€°P)°P.

Given a cooperad Q € CoOp(€) we set Coalg,(C) := Alg, (C°P)°P.

If € is additionally preadditive, by lemma 2.19 we have a canonical
equivalence
CoOp™™*(€) ~ Coalg(C™=").

In this case given a non-counital cooperad Q € CoOp™®*(€) ~ Coalg(C>>!) c
Coalg(C¥) we set

Coalgh™ ™! (€) = coLModo (€),

where we form comodules in € with respect to the left action of €= on @
induced by the composition product.
If € has small limits, we have a forgetful functor

Coalgh™*™ (@) - Coalg, (€)
over C (lemma 2.19).

Remark 2.7.

1. The categories Op(€),Op™(C) admit an initial object lying over
triv e @=21;
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C embeds symmetric monoidally into a symmetric monoidal category
€’ compatible with small colimits such that the initial object is pre-
served. So (62)8’ embeds lax monoidally into the monoidal category
(€™)®, whose tensorunit triv belongs to C=.

2. If € admits a zero object, the initial object of Op™(C) lying over
triv e @21 4s the zero object of the full subcategory {ida }xe,, Op™(€) c
Op™(C) spanned by the non-unital operads O, whose unit 1 - 01 is
an equivalence (lemma 2.18).

3. If € admits a final object, Op(C),0p™"(€) admit a final object ly-
ing over the constant symmetric sequence (concentrated in positive
degrees) with value the final object of C.

We refer to (non-unital) operads in Cocoalg(€) as (non-unital) Hopf
operads in € and set

OPy10pe(€) = Op(Cocoalg(C)), Opg,,e(€) := Op™ (Cocoalg(C))
= 0p™(€) xop(e) OPpop (€)-

The symmetric monoidal functor Cocoalg(€C) — € yields a forgetful
functor Opy,,;(€) = Op(Cocoalg(€)) — Op(C) that sends a Hopf operad
to its underlying operad.

If the symmetric monoidal structure on € is compatible with small
colimits, there is a unique left adjoint symmetric monoidal functor § — €
that lifts to a functor 8§ - Cocoalg(C) and so gives rise to a functor
Op(S) - OpHopf(e)'

Simlarly if the symmetric monoidal structure on € is compatible with
finite coproducts, there is a unique left adjoint symmetric monoidal func-
tor from finite sets to € that lifts to Cocoalg(€) and so gives rise to a
functor from operads in finite sets to Hopf operads in C.

By remark 2.7 3. the categories Opy,,¢(€), Opps,(C) admit a final
object as Cocoalg(C) admits a final object lying over the tensorunit of C.

We define Comm to be the final Hopf operad in € and Comm™" to be
the final non-unital Hopf operad in C.

So Comm, Comm™ lie over the constant symmetric sequence in €
(concentrated in positive degrees) with value the tensorunit of C.

Dually if € admits small limits, we define Cocomm and Cocomm™"
to be Comm and Comm™", where we replace C by C°P.

By remark 2.7 2. the non-unital operad Comm™" and the non-counital
cooperad Cocomm™" admit a canonical augmentation respectively coaug-
mentation if the symmetric monoidal structure on € is compatible with
the zero object.

Every Hopf operad H in € endows its category of algebras Alg, (C)
with a symmetric monoidal structure such that the forgetful functor
Alg,(€) — € is symmetric monoidal (proposition 5.77).

We define the category of bialgebras over H as
Bialg,(C) := Cocoalg(Alg,.(C))
and have a canonical equivalence

Bialg,(C) ~ Alg,(Cocoalg(C))
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over Alg,(€) x Cocoalg(C) by remark 2.9.

We call a Hopf operad H{ on € unital if the tensorunit of the category
Alg4.(C) is an initial object.

If the symmetric monoidal structure on € is compatible with small
colimits so that the forgetful functor Alg, (C) — C admits a left adjoint,
Ho ~ H o @ is the initial object of Alg,(C).

So a Hopf operad H on € is unital if Hy is canonically the tensorunit
of €. The final Hopf operad Comm is unital.

For later reference we add the following remark:

Remark 2.8. Let C be a symmetric monoidal category compatible with
small colimits.

1. The category Alg,(C) admits small colimits and the forgetful functor
Alg,(€) — C preserves small sifted colimits.

2. The category Bialg,(C) admits small colimits, which are preserved
by the forgetful functor Bialg, (C) — Alg,(C).

3. If C is presentable, Alg,(C) and Bialg, (C) are presentable.

Proof. If the symmetric monoidal structure on C is compatible with small
colimits, the composition product on €% defines a monoidal category com-
patible with small sifted colimits.

So Alg, (€) admits small sifted colimits and the forgetful functor
Alg,.(€) — € is monadic and preserves small sifted colimits.

This guarantees that with € also Alg,(C) admits finite coproducts
using that finite coproducts of free H-algebras exist and every H-algebra
is the geometric realization of a diagram with values in free H-algebras.

2. follows from remark 2.1.

Assume that € is presentable. Then by proposition 6.84 the category
Alg,(C) is accessible being the category of algebras over an accessible
monad.

By proposition 5.77 the forgetful functor Bialg, (C) — Alg,(C) is
symmetric monoidal so that Alg,,(€) is an accessible symmetric monoidal
category.

Thus by proposition 6.83 the category Bialg, (C) is accessible.

O

Remark 2.9. Let C be a symmetric monoidal category that admits small
colimits and H a Hopf operad on C.

There is a canonical equivalence
Bialgy(€) = Cocoalg(Alg,(€)) ~ Alg, (Cocoalg(€))
over Algy(€) x Cocoalg(C).

Proof. We can assume that the symmetric monoidal structure on C is
compatible with small colimits.

Otherwise we embed € into the category of presheaves €' := P(€) en-
dowed with Day-convolution and get an equivalence

Bialg,(€") = Cocoalg(Alg,(€")) = Alg,,(Cocoalg(€'))
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over Cocoalg(€"), whose pullback to Cocoalg(€) is the desired equivalence.

Denote ' the underlying operad in € of the Hopf operad K.

Both forgetful functors Cocoalg(Cocoalg(€)) — Cocoalg(C) are equiv-
alent and are equivalences so that J{ canonically lifts to a Hopf operad in
Cocoalg(€) with underlying operad 3 in Cocoalg(C).

So by functoriality the forgetful functor Alg,.(Cocoalg(C)) - Alg,.(C)
is symmetric monoidal and so yields a functor

Cocoalg(Alg, (Cocoalg(€))) — Bialg, (€) = Cocoalg(Alg4(C)).

As the forgetful functor Alg, (Cocoalg(€)) - Cocoalg(€) is symmetric
monoidal, with Cocoalg(€) also Alg,(Cocoalg(C)) is a cartesian symmet-
ric monoidal category. Hence the forgetful functor

Cocoalg(Alg,(Cocoalg(€))) — Algy (Cocoalg(C))

is an equivalence.
So we get a canonical functor

X : Algy(Cocoalg(€)) ~ Cocoalg(Alg, (Cocoalg(C))) — Bialg, (C)

over Alg,(€) x Cocoalg(C).
By the theorem of Barr-Beck the monadic functor Alg, (C) — C in-
duces a monadic functor Bialg, (€) = Cocoalg(Alg,(€)) — Cocoalg(C).
So x is a functor between monadic functors over Cocoalg(€) and thus
an equivalence as for every X € Cocoalg(€) with image X' € C the object
J o X in Cocoalg(C) lies canonically over the object 3’ o X" in €.
O

2.2.3 Trivial coalgebras and primitive elements

Let € be a symmetric monoidal category such that € admits small limits
and a zero object that is preserved by the tensorproduct in each compo-
nent.

In this subsection we construct an adjunction

triv : € - Coalgcyeommnen (€) + Prim,

where triv sends an object X of € to the non-counital cocommutative
coalgebra structure on X with zero comultiplication and Prim takes the
primitive elements.

Let € be a symmetric monoidal category such that € admits small
colimits and the symmetric monoidal structure on € is compatible with
the initial object.

In this case by remark 2.7 1. the category Op(C) admits an initial
object lying over triv e @1,

Let O € Op(€) uiv be an augmented operad and Q € CoOp(€)yiv a
coaugmented cooperad.

The augmentation of O gives rise to a forgetful functor

trive : € ~ Alg, ;. (€) - Alg,(C)
and dually the coaugmentation of Q gives rise to a forgetful functor

trivg : € ~ Coalg,;, (€) — Coalgy(C).
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By the next remark 2.10 3. the forgetful functor trive : € - Alg,(C)
admits a left adjoint that factors as

Bar(é (=) colim

Alg,(C) Fun(A°P,€) — €

such that for every X € Alg,(€) and n € N the object Bar§(X), is the
object Oo...0o00X representing the functor Mules (0, ...,0,X;-)c: € > 8.

We apply remark 2.10 3. in the following way:

The symmetric monoidal category € is a (not neccessarily symmetric
monoidal) localization of a symmetric monoidal category €’ compatible
with small colimits such that the initial object and the tensorunit of ¢’
belong to € c €". So by functoriality of the composition product the rep-
resentable planar operad €% is a (not neccessarily monoidal) localization
of the monoidal category € such that the tensorunit triv of €= belongs
to €¥ c =,

We take M® to encode the canonical left action of €' on itself and
N® to encode the canonical left action of €= on itself.

Let € be a symmetric monoidal category such that € admits small
limits and a zero object and the symmetric monoidal structure on C is
compatible with the zero object.

Dually the forgetful functor trive : € — Coalg,(€C) admits a right

lim

adjoint that factors as Coalg,(€) — Fun(A,€C) — C.

For Q the non-counital cocommutative cooperad, we call the corre-
sponding adjunction

triv : € = Coalgcgcommnen (€) : Prim

the trivial cocommutative coalgebra-primitive elements adjunction.

Remark 2.10. Let C be a monoidal category and D a left module over C.
Let A - B be a morphism in Alg(C).

1. Assume first that the monoidal structure on C is compatible with
small colimits and the left module D is compatible with small colim-
its.

By [18] example 4.7.8.7. the identity of LModa (D) factors as

arp (-) colim

LModa (D) = Fun(A°", LModa (D)) <™ LMod (D)

such that for every X € LModa(D) and n € N the left A-module
Bara (X)a 45 free on A®" ® X.

By example 5.49 the forgetful functor LModg (D) — LModa (D) ad-
mits a left adjoint B®a — : LModa (D) —» LModg (D).

Denote Bary (B, -) the composition

arp (<)
_

LModa (D) = Fun(A®, LModa (D)) 2227 Fun(A°?, LModsg (D)).

So for every X €e LModa (D) andn € N the left B-module Bara (B, X)n
is free on A®" @ X and B®a - : LModa (D) - LModg (D) factors as

BarJA) (B,-) colim

LModa (D) —=—— Fun(A°?,LModg (D)) —— LModg (D).
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In other words the composition

Bar% (B,-) colim

LModa (D) —=—— Fun(A°?, LModg (D)) —— LModg (D)

1s left adjoint to the forgetful functor LModg (D) - LModa (D).

. Let now € and D be arbitrary.

We have a LM®-monoidal Yoneda-embedding D c D’ := P(D), where
P(D) is a left module compatible with small colimits over € := P(€)
endowed with Day-convolution that is compatible with small colimits.

The functor Bary (B,-) : LModa (D') — Fun(A°", LModg(D’)) of
1. restricts to a functor

Bary (B, -) : LModa (D) —» Fun(A°?, LModg (D)).

So for every X € LModa (D) andn € N the left B-module Bary (B, X),
in D is free on A" @ X € D.

If LModg(D) admits geometric realizations, the composition

Bar"g (B,-) colim

LModa (D) —=— Fun(A°?, LModg (D)) —— LModg (D)

is left adjoint to the forgetful functor LModg (D) - LModa (D).

Proof. By 1. for every Y € LModg (D) and M € LModa (D) we have
a canonical equivalence

LModa (D)(M,Y) ~ LModa(D")(M,Y) =~

LModg (D')(colim(Bar} (B, M)),Y) =
lim(LModg (D) (Bar} (B,M),Y)) =~ lim(LModg (D) (Bary (B, M), Y))
~ LModg (D) (colim(Bary (B, M)),Y).
O

. Let M® - LM® be a LM®-monoidal category that exhibits D as a
left module over C and N® c M® a full suboperad over LM®.

Set B® := Ass® xp e N® and € = {m} xq e N®.
Assume that the full subcategory inclusion & c D admits a left adjoint

L.

In this case for every Ai,...,A, € B for somen eN and X € € the ob-
ject L(A1®...9 An®X) € & represents the functor Muly (A1, ..., An, X;-) :
& —38.

Assume that the tensorunit 1 of C belongs to B.
Let A € Alg(B);1 c Alg(€)/q.

We define Barg (=) : LModa (&) — Fun(A°P, &) to be the composition

Fun(A°P,L
R

Bar}\)(]l,f) ° ) °
LModa (€) c LModa (D) —=—5 Fun(A°?, D) Fun(A", ).
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So for every X e LModa (&) and n € N the object Bar§ (X)y, is the
object L(A®" ® X) € & representing the functor Mulx (A, ..., A, X; )
& —-8.

Assume that D (and so also &) admits geometric realizations.

The composition

Bari(—) colim

Fun(A°?, &) — &

LModa (&)
1s left adjoint to the forgetful functor &~ LMody(€) - LModa(€).
This follows from the fact that by 2. the composition

arD = colim
LModa (D) 22257, pun(a® py <m, p L ¢
1s left adjoint to the functor € c D ~ LMody (D) - LModa (D) that is
equivalent to the functor & ~ LMod4 (&) - LModa (&) c LModa (D).

2.2.4 Shifting operads

In this subsection we construct a shift functor on the category of operads
and non-counital cooperads in a stable symmetric monoidal category €
that admits small colimits.

We use this shift functor in the definition of the spectral Lie operad,
which we define to be the Koszul-dual operad of the shifted non-counital
cocommutative cooperad in spectra.

Let C be a stable symmetric monoidal category compatible with small
colimits.

With € also € is stable. In the following denote [-] the shift functor
of €%,

Let X,Y € C® such that X is concentrated in degree 1.

For every n,m € Z we have a canonical equivalence

X[n]oY[m] =~ L(LL(X[H])I(@EI( (Y[m])®k ~X;[n]®Y[m] ~ (X1®Y)[n+m].

Especially we have a canonical equivalence
triv[n] o triv[m] =~ triv[n + m].

So triv[n] is inverse to triv[-n] in the composition product on €.

Via the canonical equivalence Fung/’COC(eZ, @¥) ~ C¥ that evaluates at
triv the object triv[n] corresponds to a symmetric monoidal autoequiva-
lence oy of C® under C.

Thus by the universal property of endomorphism objects we obtain a
canonical monoidal autoequivalence £ of Fun?}coc((i‘z, @¥) ~ €% given by
conjugation with ay,.

By remark 2.11 for every Y € €¥ and r € & we have a natural equiva-
lence £(Y)r ~ Y:[(1-r)n].

If C is an arbitrary stable symmetric monoidal category that admits
small colimits, ¢ embeds symmetric monoidally and exact into a stable
symmetric monoidal category € compatible with small colimits (remark
1.6).
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Thus the representable operad (€¥)® embeds into the monoidal cate-
gory (€7)°.

Hence the monoidal autoequivalence € of €' restricts to a monoidal
autoequivalence £ of @F that restricts to the equivalence (-)[n] on €.
Especially € restricts to a monoidal autoequivalence of €=t

Given a symmetric sequence Y in C, we write Y(n) for £(Y).
€ gives rise to autoequivalences of Alg(€¥) and LMod(@).

So for every operad O in € we obtain a pullback square

LModg(n)(€) —————— LModo (€)

| |

@ (*)En] e

and for every cooperad Q in € we obtain a pullback square

coLMod gy (€) —————— coLModo(€)

|

C C.

Moreover if € is compatible with small colimits so that the composition
product on € defines a monoidal category, £ gives rise to autoequivalences
of

Coalg(€”), Coalg(€™2'), coLMod(C).

So if € is additionally preadditive, for every non-counital cooperad
Q € CoOp™ ™ (@) =~ Coalg(C™¥!) we obtain a pullback square

Coalgg‘?;f)(’““ ) ———— Coalggd’c""ﬂ(e)
e (=)[-n] e

Remark 2.11. For every Y € €% and r € & we have a natural equivalence

EY)r 2~ Y [(1-1)n].

Proof. The object Y € €% uniquely lifts to a symmetric monoidal small
colimits preserving endofunctor Y of €* under €.
We have

E(Y) = (amn o Y o) (triv) = a—n (Y (triv[n])) = a-n (Y (triv))[n]
= a-a(Y)[n] = (Y o (triv[-n]))[n] =
(LI Yx ®s, triv[-n]®)[n] = [ | Yk ®x, triv®*[(1 - k)n]

keN keN

and thus £(Y): 2 Y, ®x, (X x1)[(1 -1)n] =Y, [(1-r)n].
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2.2.5 Truncating operads

In this subsection we define truncation of operads, which we use to con-
struct a cofiltration of the primitive elements (prop. 4.8).

For every n > 1 denote X5} ¢ 351 the full subcategory spanned by the
sets with less or equal than n elements.

Let € be a symmetric monoidal category that admits small colimits and
a zero object, which is preserved by the tensorproduct in each component.

The embedding ¢ : £5% ¢ ¥y induces a localization ¢* : @21 2 U
t«, where the left adjoint is restriction and the fully faithful right adjoint
extends over degree n by the zero object.

Denote Op(C)zy c Op(€)™ the full subcategory spanned by the non-
unital operads in €, whose underlying symmetric sequence vanishes over
degree n, i.e. belongs to CEST c @1,

By lemma 2.16 the localization ¢* : €¥>1 2 euE L+ is compatible with
the composition product on €*>! and so yields a localization

(-)=n - OP(C)™ = Alg(€™2") = Op(€)2: = Alg(C™5H).

This leads to the following remark:

Remark 2.12. Let C be a symmetric monoidal category that admits small
colimits and a zero object, which is preserved by the tensorproduct in each
component.

The embedding Op(C)zn c Op(C)™ admits a left adjoint
(=)n : Op(€)™ - Op(C)2y
that fits into a commutative square

Op(€)"™ —— Op(€)zn

|

<n

¥ — @I,
where the bottom functor is restriction.

If C is stable and admits totalizations, the functor (=)<« : Op(C)™ —
Op(@)zh admits a left adjoint fy.

In this case the composition fno(—)<n : Op(C)™ — Op(C)2y — Op(C)™
is left adjoint to the functor m := (=)< : Op(€)™ — Op(€)Zy c Op(C)™.

Remark 2.13. Let C be a symmetric monoidal category compatible with
the initial object that admits small colimits.

For every n > 1 denote sy € Y51 the full subcategory spanned by the
sets with at least n elements.

The embedding k : Xsn € X51 induces a colocalization Kk : C¥n o ¥zl
k", where the right adjoint is restriction and the fully faithful left adjoint
extends under degree n by the initial object.

The embedding ki : C=>" c @1 is =1 linear by lemma 2.17.
So for every non-unital operad O in C we get a colocalization

RModo (C72") 2 RModo (€72') : 73y.
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Using truncation of operads one is able to filter algebras over an operad
by the following remark:

Remark 2.14. Let C be a stable symmetric monoidal category compatible
with small colimits.
For every n > 1 we have an adjunction

fa: Op(C)2n 2 Op(€)™ : (~)<n-

For every augmented non-unital operad O in € the counit x : fu(Ocn) = O
gives rise to an adjunction

(En)r = 0 0g, (o) = Algg (0., (€) 2 Algo (€) : €5

So for every O-algebra A in C we have a counit Oof (o A = (Ex)1(En(A)) -
A.

We have a morphism 0 : fn(O<wn) = fos1(O<ns1) of operads in C compat-
tble with the counits adjoint to the morphism Oy = (fa+1(Ognt1))<n that
arises from the unit Ocs1 = (fotr1(O<ns1))<n+1 by applying the functor

(_)sn
Op(€)sn+1 € Op(€) —— Op(C)<n.

So the adjunction (Ex)r: Alge (o_,)(C) 2 Algy(€) : &5 factors as

(Env1)100r: Algg (o) (€) 2 Algg (0., (€) 2 Algo(€): 07 0 Epsy.

We have a map Bn : (En)i(E5(A)) = (Ens1)1(Efs1(A)) of O-algebras
in C compatible with the counits adjoint to the morphism

EL(A) > EL((Ens)1(Ernii(A)))

that arises by applying the functor 0 : Algfml(ognﬂ)(e) - Algfn(oSn)(C)
to the unit €;+1(A) - €;+1((€ﬂ+1)!(€:+1(A)))'
By [13] remark 4.23. the morphisms B, promote to a filtered diagram

(E)1(ET(A)) = oo = (E(ER(A)) 2 (Enen)i(Efir(A)) > . > A

of O-algebras in C, whose colimit is A.

This follows from the fact that the compatible maps €y : fu(Ocn) — O
running over all n > 1 exhibit O as the colimit.

For later reference we add the following remark:

Remark 2.15. Let C be a stable symmetric monoidal category and O a
non-unital operad in C such that the unit triv - O induces an equivalence
1~0;. By lemma 2.18 the operad O is automatically augmented.

Let X be a right O-module in C¥*', whose underlying symmetric se-
quence in C is concentrated in degree n for some n > 1.

Then the right O-module structure on X is trivial.

Lemma 2.16. Let C be a symmetric monoidal category compatible with
the zero object that admits small colimits.

For every n > 1 the localization 1* : €¥*1 2 e 1y, s compatible with
the composition product on €¥=1.
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Proof. By remark 1.6 € embeds symmetric monoidally into a symmet-
ric monoidal category €’ compatible with small colimits such that the
embedding C c €’ preserves the zero object and admits a left adjoint L.
So we get a lax monoidal embedding C¥*! c €"¥>! and an embedding
e c eFE
Thus Xjo0...0Xy is the image of the corresponding composition product
in €1 under the functor L, : €¥*1 - €¥>! induced by L.

A morphism of €%>! is a local equivalence if and only if it induces an
equivalence in degrees <n and similar for €’

So the embedding C¥*! c €21 and its left adjoint L, : €'F>t - @¥=1
preserve local equivalences.

Hence we can reduce to the case that the symmetric monoidal structure
on € is compatible with small colimits.

Let f: X = Y be a morphism in €*2! with f; : X; - Y; an equivalence
for every j <n and Z e @¥>1,

We want to see that (foZ)s and (Zof)s are both equivalences for every
s<n.

But we have

(fOZ)S = U( LI fk@( ® an))zk = L[ ( U fk@( ® an))zk

k>0 np I]...[Ingk=s 1<j<k s>k>0 np [I...[Ing=s 1<j<k

and

(Zof)s=T1C JI Zc®( @ fu))s..

k>0 nj [I...1Ing=s 1<j<k

O

Lemma 2.17. Let C be a symmetric monoidal category compatible with
the initial object that admits small colimits and let n € N.

Let X1, ..., Xy be objects of €¥> for some k > 2.
If Xi € @¥= for some 1 <i<k, then X o...0 Xy belongs to C¥2».

Proof. By remark 1.6 C embeds symmetric monoidally into a symmet-
ric monoidal category €’ compatible with small colimits such that the
embedding C c €’ preserves the initial object and admits a left adjoint L.

So we get a lax monoidal embedding C¥*! c €"*>! and an embedding
E%2n c @/Fan

Thus Xjo0...0X is the image of the corresponding composition product
in @>! under the functor L, : @1 - €¥*1 induced by L.

As a left adjoint the functor L preserves the initial object so that the
functor L. restricts to a functor €*» — @¥2n,

Consequently we can reduce to the case that the symmetric monoidal
structure on € is compatible with small colimits.

Let X € €™" Y € @¥>1_ For every s > 0 we have

XoY)s=[IC I Xk®(®kYnJ~))Ek=

k>0 np [I...[Ink=s 1<j<

O I Xke(Q Yo))s,

s>k>0 nq [I...[Ink=s 1<j<k
so that X oY e @¥=n,

Let X € @¥21 Y € @¥2n_ For every s > 0 we have

XoY)e=IC I Xc®(Q Yoz, =

k>0 njp []...Ing=s 1<j<k
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O I Xke(Q Yo))s,

k>1 np[I...[Ing=s 1<j<k

so that X oY e @¥=n,

The rest of this section is devoted to the proofs of lemma 2.18 and
lemma 2.19.

We start with constructing a canonical augmentation for every non-
unital operad O, whose unit 1 - O, is an equivalence.

Lemma 2.18. Let C be a symmetric monoidal category compatible with
the zero object.

The initial object of the category Op™ (@) that lies over triv e €¥!
is the zero object of the full subcategory {id1} xe,, Op™(€) c Op™*(C)
spanned by the non-unital operads O, whose unit 1 — O1 1s an equivalence.

Proof. Set Y52 1= 1,55 B(Xa) and €722 := Fun(Xs2, €) = 1,0 Fun(B(Zy), ©).
Denote €2>1 c @21 the full subcategory spanned by the symmetric

triv/ triv/
sequences O concentrated in positive degrees under triv such that the

induced morphism 1 ~ trivy - O3 in € is an equivalence.

We have a canonical equivalence Cii}/ ~ Gy x @¥>2 that restricts to

. b . . s
an equivalence Gt;‘t = ©¥>2 under which triv corresponds to the initial

object, which is the final object as € admits a zero object.
Consequently it is enough to see that the forgetful functor {idi} xe, /

Op™(C) — @tzji/, reflects the final object.

To see this we may reduce to the case that the symmetric monoidal
structure on € is compatible with small colimits as € embeds symmetric
monoidally into a symmetric monoidal category compatible with small
colimits such that the embedding preserves the zero object (remark 1.6).

For X,Y ¢ @>21 we have a natural equivalence (XoY): ~X; ® Yi.
So the monoidal structure on 6221 induced by the composition prod-

b
uct on C~2! restricts to a monoidal btructure on C’t;j/
Thus we have a canonical equivalence

v e Alg(C¥21) ~

trlv/

Alg(€Z21)) ~ =2

triv/

r .
trlv/ CZ>1 Alg(etrli/) e

€y ez OP™(€) = fida) xe,, O™ (€)

>1
over C = /-

O

Lemma 2.19. Let C be a preadditive symmetric monoidal category com-
patible with small colimits that admits small limits.

The identity of €% lifts to an oplaz monoidal functor from the compo-
sition product on C% to the cocomposition product on €%,

This oplax monoidal functor restricts to a monoidal equivalence on
e¥=1,
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Thus the identity of C* yields a forgetful functor Coalg(C¥) - CoOp(€)
over CF that restricts to an equivalence

Coalg(€™21) ~ CoOp""(C)
and yields for every Q € Coalg(@z) a forgetful functor
Coalgh™ ™ (€) - Coalg, (€)
over C.

Proof. By remark 1.6 C°° embeds symmetric monoidally into a pread-
ditive symmetric monoidal category compatible with small colimits such
that the embedding preserves small limits.

Turning to opposite categories € embeds symmetric monoidally into a
preadditive symmetric monoidal category €’ compatible with small limits
such that the embedding € c €’ preserves small colimits.

The embedding € c € yields an oplax monoidal embedding €% c €'F
on cocomposition products.

The identity of €% lifts to an oplax monoidal functor from the compo-
sition product to the cocomposition product if and only if the embedding
¢ : @ c @ lifts to an oplax monoidal functor between monoidal cate-
gories from the composition product on €¥ to the cocomposition product
on C'%.

Moreover if this is shown, the oplax monoidal identity of €* restricts
to a monoidal equivalence on €' if and only if the oplax monoidal em-
bedding ¢ : €% ¢ C'F restricts to a monoidal embedding €¥>! c €=t

In this case we get a forgetful functor

Coalg(€™) —~ Alg((€™)™)°” = Op(€°”)°” = CoOp(€)
over €% and a forgetful functor
LcoModg (€) — Algg (€°P)°P =~ Coalg, (€)

over €. Moreover in this case the forgetful functor Coalg(C*) — CoOp(€)
restricts to an equivalence

Coalg(GEzl) ~ Alg((eop)Ezl )Op _ Opnu(eop)op _ Coopncu(e)
over G2t

For X,Y € € the structure morphism (X ® Y) - ¢(X) ® ¢«(Y) in €™
of the embedding ¢ induces in degree n € N the canonical morphism

a: LI( H X®( ®kYnj))gk — H( H X ®( ® Ynj))Ek

keN njp I]...[Ink=n 1<j< keN nj []...[Ing=n 1<j<k

ninnj=g,i=j ninnj=2!,i=j
in €’ induced by the norm map.
In the following we will show that « is an equivalence if Yy is an initial
object of C.
We will show that both canonical morphisms

o:( I Xk®(®kYnj))zk—>( I Xeo(® Ya))™,

ny [I... Ing=n 1<j< ny [I...Ing=n 1<j<k
ninnj=z,i$j ninnjzz,i*j
( O X (@Y™= [l Xe®(® Yo))™
ny II...[Inkg=n 1<j<k nyIl...[Ing=n 1<j<k
niﬁanZ,iij nimnj:z,#j
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in € are equivalences for every k,n ¢ N and X,Y € €% such that Yo is an
initial object of C.

We remark that for every k,n € N the set of all k-tuples (n1,...,nx) of
finite, non-empty sets that are pairwise disjoint and satisfy ny []... [Ink =
n is finite.

This guarantees that for every k,n € N the canonical morphism

H Xe(®Yy)-> [ Xko(® Ya)
ny [I...Ink=n 1<j<k ni [I...[Ink=n 1<j<k
ninnj=§a,i¢j nirmj=g,i¢j

is an equivalence using that €’ is preadditive and Yy is an initial object
of C.
To prove that ¢ is an equivalence, it is enough to check that the canon-

ical Xk-action on I ®1<j<k Ynj in €’ and thus also the canonical
ny [I...[Ing=n

n;Nnj =,i#j

Yk-action on I Xk ® (®1<jek Yu;) in € is free:
ny [I...I[Ing=n

njNnj =@,i#j

The preadditivity of C implies that the canonical natural transforma-
tion of functors €' — Fun(B(Zk),€’) from the free to the cofree functor
is an equivalence. Moreover by adjointness the free functor followed by
the coinvariants and the cofree functor followed by the invariants are both
canonically equivalent to the identity.

Denote W the set of k-tuples (n1, ..., nk) of finite sets with ny [T... [ nk =
nand njnnj=@ifi+j.

Denote W' ¢ W the subset of such k-tuples (ni,...,nx) with ni, ..., nx
not empty.

The set W carries a canonical Yy-action such that the canonical em-
bedding W c nxk gets Yx-equivariant, where >*¥ carries the permutation
action.

This Yx-action on W restricts to a free Yy-action on W' in the category
of sets as this Yx-action on W’ doesn’t have fixpoints.

As Set is closed in Cate under finite coproducts, this Yx-action on W’
is free in Cateo, toO.

xk
The functor ¢ ~—— €% - @ is Yk-equivariant and thus also the

compositions W — 2K X ek » @ and W — £*k X ek - @ are,
where ¥, @¥ carry the permutation actions and @ the trivial action.

Via this Yx-equivariant functors we consider W, W' as Yy-objects of
Cato e and have a Yyx-equivariant morphism W’ — W in Catee.

Being a right fibration that preserves small colimits, the forgetful func-
tor Cateje = Cate preserves and reflects free Yy-objects so that the Xi-
action on W' in Cateye is free.

We will complete the proof by constructing a canonical functor W :
Cato,je — € that sends a functor H : § — € to colim(H) and preserves
small colimits and so free ¥x-objects.

U sends the Xy-equivariant morphism W' - W in Catee to a Sk-
equivariant equivalence

I ®ve: 1 ®va
ny [I... Ung=n 1<j<k nj [I... Ing=n 1<j<k
njNn; =g, i+j,n; *J n;Nn; =g, i*j

To construct ¥ we make the following definition:
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Denote Cato,/e — Cateo the cartesian fibration that classifies the func-
tor Fun(—, €) : Catl - Cate.

The restriction of Cat.je — Cate to the wide subcategory of carte-
sian morphisms classifies the functor Cate(—,C) ~ Fun(-,C)~ : Cat —
Cate and is thus canonically equivalent over Cate to the right fibration
Cateje — Cateo.

Pulling back the full subcategory inclusion * — Cate that hits the
contractible category along the cartesian fibration Cate/e = Cateo we get

a full subcategory inclusion € c Cat/c.

This full subcategory inclusion € c Cat,/e admits a left adjoint ¥ that
sends a functor H:J — € to colim(H).

Being an object of Catee(H, colim(H)) ~ Fun(d, C)(H, (colim(H)))
the unit H — colim(H) in Cat.,/¢ corresponds to the unit H - §(colim(H)),
where § : € > Fun(J, C) denotes the diagonal functor.

So for every Z € € the canonical map

Catoje(colim(H), Z) - Cateoje (H, Z)
is canonically equivalent to the equivalence
C(colim(H),Z) - Fun(d, €)(d(colim(H)),d(Z)) — Fun(d,C)(H,s(Z)).

We finally observe that the subcategory inclusion Cat. e c Cateye
preserves small colimits:

As the forgetful functor v : Cate,je — Cate is a cartesian fibration and
by definition every morphism of Cat./e is y-cartesian, this follows from
the following facts:

The forgetful functor Cat.,/e — Cates preserves small colimits and the
functor Fun(-, €) : Catel — Cate classified by « preserves small limits.

O
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2.3 Restricted L.-algebras

In this section we give the central definition of restricted Le.-algebras and
study their basic properties.

To define restricted Leo-algebras we use the following universal prop-
erty of theorem 2.20 that follows from proposition 3.22.

Theorem 2.20. Let C be a symmetric monoidal category with initial
tensorunit and D a preadditive category.

Then the pullback
Funt (D, @) Xpun(p,e) Fun(D, Cocoalg (€)) — Fun™(D, €)

of the forgetful functor Fun(D,Cocoalg(€)) - Fun(D,C) to Funl(D, )
is an equivalence.

We apply theorem 2.20 especially to the following situation:

Let J be a unital Hopf operad on €. Then composition with the for-
getful functor

Bialg,(C) = Cocoalg (Alg,(C)) — Alg,(C)
defines an equivalence

Fun™ (D, Algy (€))Xpun(p, algy (¢ Fun(D, Bialgs (€)) - Funl (D, Alg,(€)).

Given a commutative algebra A in a symmetric monoidal category €
the category C,4 admits an induced symmetric monoidal structure such
that we have a canonical equivalence Calg(C/a) ~ Calg(C)/a.

We define G?A as the pullback in Op,, of the cocartesian fibration of

operads ((?‘8’)Al - ()} along A : Fin, — C°.

Dually given a cocommutative coalgebra A in C the category Ca; ad-
mits an induced symmetric monoidal structure such that we have a canon-
ical equivalence Cocoalg(Ca/) ~ Cocoalg(C) -

In the following we apply this to the canonical cocommutative coalge-
bra structure on the tensorunit of C.

In this section let € be a preadditive symmetric monoidal category
that admits small colimits and limits, where the colimits are preserved
by the tensor product in each component, and H a unital Hopf operad in
C, where unital means that the tensorunit of the category Alg,(C) is an
initial object.

By remark 2.8 1. the category Alg,(C) admits small colimits and the
monadic forgetful functor Alg,(C) — C preserves small sifted colimits.

By remark 2.1 the category Bialg, (C) = Cocoalg(Alg,(C)) admits
small colimits, which are preserved by the forgetful functor Bialg, (C) —
Algy(C).

Using theorem 2.20 we make the following definitions:

Definition 2.21.

o The left adjoint 1 ® — : € — Cq; of the forgetful functor C;; — C
uniquely lifts to a functor

E: € — Cocoalg(€y/) ~ Cocoalg(C)y,.
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We call E the co-square zero extension.
e The free functor H : C — Alg,(C) uniquely lifts to a functor
T : C — Bialg,(C),

which we call tensoralgebra.

Given an object X of C the cocommutative coalgebra structure on the
free H-algebra H(X) looks the following way:

The unit of H(X) gives rise to morphisms
H(X) 2 H(X)®1 - H(X) ® H(X), H(X) 21 H(X) > H(X)®H(X)

in Alg,:(C) that induce a morphism a : H(X) [I H(X) - H(X) ® H(X) in

Alg,(€).
The diagonal X - X @ X and the unique morphism X — 0 in € yield
the morphims

A:H(X) > H(X@X) = H(X) []HX) = H(X) @ H(X)

and € : H(X) - H(0) ~ 1¢ that are the comultiplication and counit of the
cocommutative coalgebra H(X).

If € is additive and ¥ is the Hopf operad, whose algebras are associa-
tive algebras, by prop. 2.32 the tensoralgebra T : € — Bialg(€) induces a
functor € — Hopf(C).

Observation 2.22. The tensoralgebra T factors as
E F .
€ — Cocoalg(C)y; — Bialg,(€),
where F is left adjoint to the forgetful functor Bialgs (€) — Cocoalg(C)y,.

Proof. The category Alg,.(€) admits small colimits. The composition

-Uagcy L

(Z) : 61/ g Alg%(e)%(ﬂ)/ Alg%(e)ﬂ/ ~ Alg%(e)

is left adjoint to the forgetful functor Alg,(€) — Cq,.
The adjunction H : € 2 Alg,(C) factors as

po(-@1):C=Cyy = Algy(C),

where the right adjoints are symmetric monoidal functors so that the left
adjoints are oplax symmetric monoidal functors.

So the adjunction ¢ : Cy; 2 Algy(€) gives rise to an adjunction
J : Cocoalg(C)y, = Cocoalg(Cy,) 2 Bialgy(€) = Cocoalg(Algs(€)).
The composition C E Cocoalg(€)y kR Bialg,(C) lifts the free functor

300 225 ¢y, S Alg,(C) and is thus equivalent to T.
0
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)ncu

By remark 2.2 adding the tensorunit defines a localization Cocoalg(C
c Cocoalg(€)y; with left adjoint the functor I' that takes the cofiber
of the coaugmentation. If C is additive, this localization is an equivalence.
Denote
Bialg, (€)™ c Bialg,(€)

the full subcategory spanned by the bialgebras, whose underlying coaug-
mented cocommutative coalgebra belongs to Cocoalg(€)"™" c Cocoalg(€)y;,.
So if € is additive, we have Bialg, (€)™ = Bialg,(€).

Remark 2.23.

1. The full subcategory Bialg, (€)™ c Bialg,(C) is closed under small
sifted colimits.

2. If @ is presentable, the categories Bialg, (C), Bialg, (€)™ are pre-

sentable and the embedding Bialg, (€)™ c Bialg, (C) admits a left
and right adjoint.

Proof. The categories Alg,(€) and so Bialg, (€) = Cocoalg(Alg,(C))
admit small colimits and the forgetful functor Bialg, (C) — Alg,(C) pre-
serves those by remark 2.8.

The forgetful functor Bialg, (€) — Cocoalg(€)y, preserves small sifted
colimits as the forgetful functor Alg, (€) — €4, does by remark 2.8.

By remark 2.1 the categories Cocoalg(€)"™", Cocoalg(€)y, admit small
colimits and by remark 2.2 the localization Cocoalg(€)"™" c Cocoalg(€)y,
preserves small colimits.

This shows 1.

If € is presentable, the categories Cocoalg(€)™", Cocoalg(€C) and so
also Cocoalg(C)y, are presentable by proposition 6.83 and remark 2.1.

By remark 2.8 the category Bialg,,(C) is presentable.

By observation 2.22 the forgetful functor Bialg, (C) — Cocoalg(€),
admits a left adjoint.

Hence Bialg, ()™ is presentable being the pullback in Pr® of the
right adjoint functor Bialg, (C) — Cocoalg(€)y, along the right adjoint
functor Cocoalg(€)"“" c Cocoalg(€)y, and so the forgetful functor

Bialg, (€)™ — Cocoalg(€)™" admits a left adjoint.

As the forgetful functor Bialgs (C) — Cocoalg(€)y; preserves small
sifted colimits, by 1. the forgetful functor Bialg, (€)™ - Cocoalg(C)™"
preserves small sifted colimits, too.

So by the theorem of Barr-Beck both forgetful functors Bialg, (C) —
Cocoalg(C)y/, Bialg,(€)™* - Cocoalg(€)"™" are monadic.

So we have a commutative square

Bialg, (€)™ ———————— Bialg,(€)

| |

Cocoalg(€)"" ———————— Cocoalg(C)y,,

where both vertical functors are monadic, by 1. the top functor preserves
small sifted colimits and by remark 2.2 the bottom functor preserves small
colimits. Thus also the top functor preserves small colimits, which com-

pletes 2.
O
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Remark 2.24.

e For every X € € the unit E(X) - I'(E(X)) ® 1 in Cocoalg(€)y, lies
over the identity of X & 1.
Thus the functor E : € - Cocoalg(C)y, induces a functor

triv : € - Cocoalg(€)"*" c Cocoalg(€)1,

that is the unique section of the forgetful functor Cocoalg(€C)"" — C
by corollary 3.24.

We call triv the trivial cocommutative coalgebra functor.

e For every X € € the unit H(X) - T'(H(X)) @1 in Cocoalg(C)y, lies
over the canonical equivalence ®isoH; ®x; X® (@113 s, X e1
in C.

Thus the tensoralgebra T : C — Bialgy (€) factors as C — Bialg, (€)™ c
Bialg,(C).

By 2.2.8 the functor triv : € — Cocoalg(C)™" admits a right adjoint
Prim.
This has the following consequence:

Remark 2.25. The functor T : € - Bialg, ()™ is left adjoint to the

composition P : Bialg, (€)™ — Cocoalg(€)"" RN

Proof. Denote I the left adjoint of the embedding Cocoalg(€)™" c
Cocoalg(C)y,.
By observation 2.22 the tensoralgebra T : € — Bialg, (€)™ c Bialg, (€)
factors as € Cocoalg(€)y, SR Bialgy(€), where J is left adjoint to the
forgetful functor Bialg, (C) - Cocoalg(C),.

For X € @,Y € Bialg, (€)™ we have a canonical equivalence
Bialg, (€)' (T(X),Y) = Cocoalg(€) (E(X), Y) =

Cocoalg (€)™ " (triv(X),['(Y)) ~ €(X, Prim(T'(Y))).

Now we are ready to give the central definition of this section:

Definition 2.26.

We define the restricted Loo-monad £ associated to H as the monad
associated to the adjunction T :C =2 Biablg}c(e)red : P and call L-algebras
restricted Loo-JH-algebras.

We set Liesc(C) := Alg . (C).

We are especially interested in the case that H is the Hopf operad,
whose algebras are associative algebras in C.

For this choice of H we write Lie(€) for Liesc(C) and call restricted
Loo-H-algebras restricted Loo-algebras.

If C is additive, by prop. 2.32 the tensoralgebra T : C — Bialg(C)
induces a functor € - Hopf(C) so that £ is the monad associated to the
adjunction T : € 2 Hopf(C) : P.

42



More generally H is the Hopf operad, whose algebras are Eyx-algebras
for some k >0 or k = oo.

By theorem 5.62 the functor P : Bialg,(C)™? - € lifts to a functor
P : Bialgy (€)™ - Liesc(€)

that satisfies the following universal property:

Remark 2.27. (Universal property of Liesc(C))

Every lift Bialg, (€)™ - D of P : Bialg, ()™ - € along a monadic
functor D — C factors as

Bialgy (€)™ 5 Liesc(€) > D

for a unique functor Liesc(C) - D owver C.

This may be interpreted by saying that the structure of a monadic
restricted Loo-J(-algebra is the finest structure the primitive elements can
be endowed with.

By remark 2.23 the category Bialg, (€)™

tions.
Thus by the proof of [18] lemma 4.7.4.13. the functor P : Bialg, (€)™* —
Liesc(C) admits a left adjoint

admits geometric realiza-

U : Lieg(€) — Bialgy (€)™,

which we call the enveloping bialgebra functor. By adjointness we have a
canonical equivalence UWo £ ~ T.

If € is additive and H is the Hopf operad, whose algebras are associa-
tive algebras, by prop. 2.32 the enveloping bialgebra U : Lie(C) — Bialg(C)
induces a functor Lie(€) — Hopf(C).

Remark 2.28.
The enveloping bialgebra functor U : Liesc(€) — Bialgg (€)™ is unique
with the following properties:

e U admits a right adjoint P.

o UoL :C — Liey(€) — Bialgy (€)™ lifts the free functor H : C —
Alg, (C).

o A weak version of the Milnor-Moore theorem holds:

The restriction L(C) c Liegc(C) N Bialg, (€)™ to free restricted
Loo-algebras is fully faithful.

Proof. By the uniqueness of lifts Wo £ : € — Lieg(€) — Bialg, (€)™ lifts
the free functor H : € — Alg,(€) if and only if Uo £ is the tensoralgebra,
which by adjointness is equivalent to the condition that P lifts the functor
P.

The restriction £(€) c Liesc(C) 5 Bialg, (€)™ is fully faithful if
and only if the natural transformation « : £ — P o T adjoint to the unit
id - P o T is an equivalence, which by theorem 5.62 is equivalent to the
condition that P : Bialg, (€)™ - Lies(C) satifies the universal property
of 2.27:
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For every X,Y € C the map
Lies(€)(£(X), £(Y)) — Bialgs (€)™ (T(X), T(Y))
induced by U is equivalent to the map
Lieg(€)(L(X),L(Y)) ~C(X,L(Y)) —»

(X, P(T(Y))) = Bialgy (€)™ (T(X), T(Y))
induced by the morphism £(Y) — P(T(Y)) underlying the morphism
a(Y): £(Y) - P(T(Y)). .

The following example given by the theorem of Milnor-Moore is the
motivating example for the definition of restricted Loo-algebras:

Example 2.29. Let K be a field.

e Denote Liek the category of restricted Lie algebras over K which are
nothing than usual Lie algebras if K has char. zero.

We have adjunctions £ : Modk 2 Liex and U : Liexk 2 Hopfy :
P between K-vector spaces and restricted Lie algebras over K and
restricted Lie algebras over K and Hopf algebras over K, where £
denotes the free restricted Lie algebra, U the restricted enveloping
Hopf algebra and P the primitive elements with its natural structure
of a restricted Lie algebra.

Composing both adjunctions we get the adjunction T : Modk =
Hopfy : P, where T denotes the tensoralgebra and P the primitive
elements.

By remark 4.37 the forgetful functor Liexk - Modk is a monadic
functor.

By the theorem of Milnor-Moore [20] 5.18 and 6.11. the functor U
is fully faithful. Thus the unit id > P oU is an isomorphism and so
gives Tise to an isomorphism L2 PolUo L =PoT.

So the functor P : Hopfy — Liex exhibits Liex as the category of
restricted Loo-algebras in Modxk.

e By taking simplical objects we get the following example:

Denote sModxk the category of simplicial K-vector spaces, sLiex the
category of simplicial restricted Lie algebras over K and sHopfy =~
Hopf(sModxk) the category of simplicial Hopf algebras over K.

As the functor P : Hopfy — Liek exhibits Liex as the category of re-
stricted Leo-algebras in Modk, the induced functor sP : sHopfy —
sLiek exhibits sLiex as the category of restricted Le-algebras in
SMOdK.

o From 1. we also get the following example:
Assume that K has char. zero.

Denote Chk the symmetric monoidal category of chain complexes
over K and dgliek the category of dg-Lie algebras over K.

The adjunction
T : Chk =2 Hopf(Chk) : P
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factors as the free Lie algebra adjunction L : Chk 2 dgliek followed
by the adjunction

U : dgLiex = Hopf(Chx) : P,

where U takes the enveloping bialgebra and P the primitive elements.

As dgliek is the category of algebras over the Lie operad, the for-
getful functor dgliex — Chk is monadic.

The functor P : Hopf(Chk) — dgLiek exhibits dgliex as the cate-
gory of restricted Lo-algebras in Chk_as the unit id - P oUW of the
adjunction U : dgLiex 2 Hopf(Chxk) : P is an isomorphism:

We have a symmetric monoidal functor x : Chk — Modk, A ~
@iz Ai that preserves small colimits and finite limits (as it preserves
kernels). Moreover x is conservative as it preserves kernels and
cokernels and a chain complexr A vanishes if @iz Ai does.

X yields functors dgliek — Liex and Hopf(Chk) — Hopfy.
Preserving small colimits x yields a commutative square

dgLiex ——~ Hopf(Chx)

| l

Liex - % Hopf.

As x preserves finite limits, this square induces a commutative square

Hopf(Chyx) ———— dgLiex

| |

Hopfy —— Liex.

So the functor x : Chk — Modk sends the unit of the adjunction
U : dgLiek 2 Hopf(Chk) : P to the unit of the adjunction U : Liex 2
Hopfy : P, which is an isomorphism by the theorem of Milnor Moore
[20] 5.18 and 6.11.

Remark 2.30. If C is presentable, the category Liesc(C) is presentable
and the forgetful functor Liesc(C) — C is accessible.

Proof. If € is presentable, by remark 2.23 the category Bialg, (€)™ is

presentable.
So the right adjoint functor P : Bialg, (€)™ - € is accessible and the
restricted Le-monad £ ~ P o T is an accessible monad.
Thus by proposition 6.84 3. the category Liesc(C) = Alg,(C) is pre-
sentable and the forgetful functor Liesc(C) — C is accessible.
O

Remark 2.31.
If C is presentable, we have a forgetful functor

Alg,. () — Liegc(C)

right adjoint to the composition Liesc(C) LA Bialg, (€)™ — Alg,(@).
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Proof. If C is presentable, by remark 2.23 the category Bialg, (€)™ is

presentable and the forgetful functor Bialg, (C)*® - Alg,(C) preserves
small colimits and thus admits a right adjoint R by the adjoint functor
theorem.

We have a commutative diagram

Alg, (€) — Bialg,, (€)™ —X— Alg, (€)

b

C.

The composition Lies(C) X Bialg, (€)™ » Alg, (@) is left adjoint
to the functor P o R : Alg, (€) — Bialg, (€)™ - Lies(C).
O

If C is additive, the enveloping bialgebra functor U : Lie(C) — Bialg(C)
induces a functor Lie(€) — Hopf(€) c Bialg(€) by the next proposition
2.32:

Proposition 2.32. If C is additive, the enveloping bialgebra functor
U : Lie(€) — Bialg(€) ~ Mon(Cocoalg(C))
induces a functor Lie(€) — Hopf(€) = Grp(Cocoalg(€)) c Mon(Cocoalg(€)).

Proof. The full subcategory Hopf(C) c Bialg(C) is closed under small
sifted colimits.

Hence the full subcategory of Lie(€) spanned by those restricted Loo-
algebras, whose enveloping bialgebra is a Hopf algebra, is closed under
small sifted colimits.

As Lie(C) is generated under small sifted colimits by the free restricted
Loeo-algebras, is is enough to see that for every X € €C the enveloping bial-
gebra U(L (X)) ~ T(X) is a Hopf algebra.

We show the following more general result without assuming that C is
additive:
Let X € €. Denote pry, pr, : X x X - X the projections and p: X x X =
XIIX — X the codiagonal.
(pry,p)

If the canonical morphism « : X x X —— X x X is an equivalence,
i.e. X €€~ Cmon(C) is a group object, then T(X) € Bialg(€) is a Hopf
algebra.

For this by remark 2.5 it is enough to check that T(X) admits an
antipode.

1 .
Denote i: X X x0— X xX 25 X xX =2 X the inverse of X.
The morphism j := T(i) : T(X) - T(X) is an antipode for A := T(X)
as the commutative squares

XxX— 2 xXxX  XxX—"% i xXxX
X 0 X X 0 X
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in € give rise to commutative diagrams

AoA— 2% L AgA AA— % LAgA
AsA— 2 LALA AsA— P LALA
A 1 A A 1 A

in €, where * denotes the coproduct in Alg(C).
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2.4 Functoriality of restricted L.-algebras

In this subsection we discuss the functoriality of the category Lie(C) of
restricted Leo-algebras in a preadditive presentably symmetric monoidal
category C.

We show that a right adjoint lax symmetric monoidal functor G : D —
C gives rise to a commutative square

Lie(D) ——— Lie(C)

| |

D (¢

of right adjoints.

Moreover if G is fully faithful, symmetric monoidal and preserves fil-
tered colimits, the induced functor Lie(D) — Lie(C) is fully faithful, too.

Let G : D - C be a right adjoint lax symmetric monoidal functor
between preadditive presentably symmetric monoidal categories.

G gives rise to a lax symmetric monoidal functor Alg(G) : Alg(D) —
Alg(C) that admits a left adjoint by the adjoint functor theorem.

The left adjoint Alg(€C) — Alg(D) lifts canonically to an oplax sym-
metric monoidal functor and so yields a functor Bialg(C) — Bialg(D)
between presentable categories that fits into a commutative square

Bialg(€) ——— Bialg(D) (2)

| l

Alg(C) ———  — Alg(D).

The functor Bialg(€) — Bialg(D) admits a right adjoint G’ by the
adjoint functor theorem.
We have a commutative square

Alg(D) — 29 Ajg(0)

| |

D g e

of right adjoints corresponding to a commutative square

j T )
Alg(€) ———— — Alg(D)

of left adjoints.
By theorem 2.20 this square yields a commutative square

e D (4)

[ I

Bialg(€) ———  Bialg(D)
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of left adjoints corresponding to a commutative square

Bialg(D) —— S Bialg(€)
5 |
D S e

of right adjoints.
By theorem 5.62 this square gives rise to a commutative square

Lie(D) —— Lie(€) (5)
D C.

If G preserves filtered colimits, G preserves arbitrary coproducts.
So square 3 yields a commutative square

D G e
Alg(D) — 22D Alg(e).

If G is symmetric monoidal, the functor Alg(D) — Alg(C) is symmetric
monoidal so that square 2 yields a commutative square

Bialg(D) —— Bialg(C)
Alg(D) ——— Alg(C).

Hence square 4 yields a commutative square

G

D c

I I
Bialg(D) —— <~ Bialg(€).

So we obtain a commutative square

D = e

I I
Bialg(D) — % Bialg(C)

lﬂ’ P

D = e.

Thus the monad £ on € restricts to corresponding monad £ on D.
Hence square 5 is a pullback square so that the functor Lie(D) —
Lie(C) is fully faithful if G : D — € is.

In the following we discuss some examples for G: D — C.
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Example 2.33.

By [9] theorem 4.6. we have symmetric monoidal localizations on the
category Pr™ of presentable categories and left adjoint functors with
local objects the stable, additive or preadditive presentable categories.
The corresponding localization functors send a presentable category
C to spectra objects in C, abelian group objects in C respectively com-
mutative monoids in C.

So given a presentably symmetric monoidal category C we obtain
symmetric monoidal functors Cmon(C) — Cgrp(€) — Sp(C) with laz
symmetric monoidal right adjoints Sp(€) — Cgrp(€C) — Cmon(C).
So we get forgetful functors

Lie(Sp(€)) — Lie(Cgrp(€)) — Lie(Cmon(C)).
Especially we get forgetful functors

Lie(Sp) — Lie(Cgrp(8)) — Lie(Cmon(8)).

Let C be a preadditive presentably symmetric monoidal category and
A — B a map of commutative algebras in C.

The laz symmetric monoidal forgetful functor LModg(C) — LModa (C)
yields a forgetful functor Lie(LModg(C)) — Lie(LModa (C)).

The full subcategory inclusion 8§ c Cate admits a left adjoint that
inverts all morphisms of a category and admits a right adjoint that
takes the mazximal subspace of a category.

Thus the full subcategory inclusion 8§ c Cate gives rise to a symmet-
ric monoidal embedding Cmon(8) ¢ Cmon(Cate) left adjoint to a
lax symmetric monoidal functor Cmon(Cate ) - Cmon(8) and right
adjoint to an oplax symmetric monoidal functor Cmon(Cate) —
Cmon(8).

So we get a localization Lie(Cmon(8)) c Lie(Cmon(Cate)) and a
right adjoint functor Lie(Cmon(Cate )) — Lie(Cmon(8)).
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3 Lifting the tensoralgebra

Given a nice preadditive symmetric monoidal category € we constructed
a monad £ on €, whose algebras we called restricted Lo-algebras (def.
2.26).

The monad £ was the monad associated to an adjunction T : C =2
Bialg(€) : P, where the left adjoint T lifts the free associative algebra
functor C — Alg(C) (def. 2.21).

In this chapter we prove the dual of the universal property that uniquely
lifts the free associative algebra functor € — Alg(C) to Bialg(€) (theorem
2.20 respectively prop. 3.22). For the case of symmetric monoidal cate-
gories proposition 3.22 makes the following statement:

Let D be a symmetric monoidal category with finite products and a
final tensorunit and € a preadditive category.
Then the forgetful functor

Fun'' (€, Calg(D)) - Fun"' (€, D)

from finite products preserving functors € — Calg(D) to finite products
preserving functors € — D is an equivalence. More generally we prove
a similar statement, where we replace symmetric monoidal categories by
O®-monoidal categories for any unital operad O%.

We deduce proposition 3.22 from a universal property of the cocarte-
sian structure (theorem 2.4.3.18. [18]) and a universal property of the
cartesian structure (theorem 3.21).

The universal property of the cocartesian structure (theorem 2.4.3.18.
[18]) provides a canonical equivalence

Fun®'™*(€, D) = Fun(€, Calg(D))

over Fun(C, D) between lax symmetric monoidal functors ¢ — D and
functors € — Calg(D), where € carries the cocartesian or equivalently
cartesian structure.

The universal property of the cartesian structure (theorem 3.21) states
the following:

Let € be a cartesian symmetric monoidal category and D a symmetric
monoidal category with a final tensorunit.

Then the forgetful functor

Fun®'**(€, D) - Fun" (€, D)

from lax symmetric monoidal finite products preserving functors ¢ - D
to finite products preserving functors € — D is an equivalence.

Also here we prove a similar statement for O®-monoidal categories for
any unital operad O®.

The strategy to prove theorem 3.21 is as follows:

The Yoneda-embedding D — P(D) preserves finite products and is sym-
metric monoidal if P(D) carries the Day-convolution symmetric monoidal
structure. Consequently we may replace D by P(D) in the statement of
theorem 3.21.

By prop. 6.28 the functor-category Fun(C, P(D)) admits a symmetric
monoidal structure given by Day-convolution characterized by the follow-
ing universal property:
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For every symmetric monoidal category B we have a canonical equiv-
alence
Fun®'"> (B, Fun(C, P(D))) ~ Fun®"*(B x €, P(D))
over Fun(B,Fun(C,P(D))) ~ Fun(B x €, P(D)).

Especially for B the contractible category we obtain a canonical equiv-

alence
Calg(Fun(€,P(D))) = Fun®'"*(€,P(D))
over Fun(C, P(D)).

We show that the category Fun''(@,P(D)) is a cocartesian symmetric
monoidal category and the embedding Fun™ (€, P(D)) c Fun(€, P(D)) is
a lax symmetric monoidal embedding (corollary 3.19).

Thus the canonical equivalence Calg(Fun(C, P(D))) =~ Fun®'**(C, P(D))
restricts to an equivalence

Calg(Fun" (€, P(D))) =~ Fun®"**' (€, P(D))

over Fun (€, P(D)).

Finally as Fun™ (€, P(D)) is a cocartesian symmetric monoidal cate-
gory, the forgetful functor Calg(Fun™(€,P(D))) - Fun'(C, P(D)) is an
equivalence by [18] proposition 2.4.3.9.

To prove that the category Fun™ (@, P(D)) is a cocartesian symmetric
monoidal category, we use a theory of cocartesian operads (def. 3.1)
generalizing the notion of cocartesian symmetric monoidal category.

We show that Fun™(€,P(D)) admits the structure of a cocartesian
operad such that the embedding Fun™(C,P(D)) c Fun(C,P(D)) is an
embedding of operads (corollary 3.19).

By remark 3.20 the full subcategory Fun™ (€, P(D)) c Fun(€, P(D)) is
a localization so that also by remark 3.20 the cocartesian operad structure
on Fun™(@,P(D)) exhibits Fun'(C,P(D)) as a cocartesian symmetric
monoidal category.

3.1 Cocartesian operads

In the following section we extend the property of being cocartesian from
the class of operads to the class of operads over O® for every unital operad
0% and study the basic properties of cocartesian operads over O%.

We refer to [19] for the notions of operad and relative (co)limits.

Let ¢: O® — Fin, be a unital operad with zero object 0 € O%.

Let X € O® be an object lying over (n) € Fin, for some n > 2 corre-
sponding to n objects Xi,...,X, € O so that we have n inert morphisms
X - X for 1 <1i < n that exhibit X as the ¢-product of the objects
X1,y Xn € 0.

For every 1 < i< n we have an active morphism o : X; - X of O%
corresponding to the n morphisms S3;; : Xi — X; of O® for 1 <j < n with
Bii the identity and S;; the zero morphism.

Definition 3.1. (cocartesian operad)
Let O® be a unital operad.

A unital operad v : €% - 0% over O%® is called cocartesian or is said
to exhibit C® as a cocartesian operad over O if the following condition is
satisfied:
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Let A be an object of C® lying over (n) € Fin. for some n > 2 corre-
sponding to n objects A1, ..., A, € C.

Then the active morphisms o> : Aj > A of C® for 1 <i<n exhibit A
as the y-coproduct of the objects A; for 1 <i < n, i.e. for all Z € C® the
commutative square of spaces

C®(A,Z) —— >[I, C®(A,Z) (6)

l |

0% (y(A),7(2)) — TTiL 0% (v(Ai),7(2))

induced by the morphisms o : A; > A of C® is a pullback square.

If 0% = Fin,, we call a cocartesian operad over O% o cocartesian operad.

Remark 3.2.

e Let C® » O%® be a map of unital operads and A an object of C® lying
over (n) € Fin. for some n > 2 corresponding to n objects A1, ..., Ay €
C.

The active morphisms oi* : A; > A of €® for 1 <i<n ezhibit A as
the y-coproduct of the objects A; for 1 <i<n if and only if for all
7 € C the induced commutative square of spaces

Mule(A1, A2, ..., An;Z) —————— > 1L, C(Ay, Z)

l |

Mulo (7(A1),7(A2), -, 7(An);7(Z)) —— TTiL O(v(Ai),7(2))
(7

is a pullback square or equivalently for every active morphism h :
Y(A) = y(Z) of O® the canonical map

{} XMty (v (A1), v (An)iv(2)) Mule(Ar, ..., An; Z) —

[T{h oo™} xo( (a2 C(ALZ)

i=1

induced by square 7 is an equivalence.

e The pullback of every cocartesian operad C® over O% along any map
O'® - 0% of unital operads is a cocartesian operad over O'®.

o Let B:C% - D® ~:D® — % be maps of unital operads.

Assume that v : D® — €2 exhibits D® as a cocartesian operad over
E®.

Then B : C® — D® exhibits C® as a cocartesian operad over D® if
and only if yo B:C® — £® exhibits C® as a cocartesian operad over

e®.
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o Let ¢:C® - D® be a map of cocartesian operads over O%.

Then ¢ is an equivalence if and only if the underlying functor € - D
of ¢ is an equivalence.

This follows from the fact that a map of operads is an equivalence if
and only if it induces equivalences on all multi-mapping spaces and
an essentially surjective functor on the underlying category.

e Denote Eg the reduced operad with no n-ary operations for n > 1.

Then every unital operad C® - Eq over Eq is cocartesian.

By construction [18] 2.4.3.1. we have for every category € a cocartesian
operad CH with underlying category € such that for all unital operads O®
the forgetful functor Alg,(€) — Fun(0O,€) is an equivalence ([18] propo-
sition 2.4.3.9.).

Proposition 3.3.
Let y: C® - O® be a map of unital operads.
The following conditions are equivalent:

1. v exhibits C® as a cocartesian operad over O%.

2. The canonical commutative square of operads

e® — el

.y

O® s OH
is a pullback square.

3. The map of operads C® — 0% is the pullback of a map of cocartesian
operads AH - BU along some map of operads ¢: O° — B,

4. For every unital operad O'® — 0% over O® the canonical functor
Alg o0 (€) = Fung (0, €) is an equivalence.

Proof. The commutative square of operads

e® — el

||

O® 3 OU

is a pullback square if and only if it induces a pullback square on the un-
derlying categories and it induces a pullback square on all multi-mapping
spaces.

The first condition is satisfied as the maps of operads €® — CU and
0® > OU 1ift the identity.

Consequently condition 2. is equivalent to the following condition:

For all n > 2 and Aj,Ags,...,A, € C corresponding to A € an) ~ G
lying over the objects X1, Xa,..., Xy € O corresponding to X € O‘?n) ~ (O
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and Z € C lying over some object Y € O the commutative square

Mulge (A1, Az, ..., An; Z) —— Mulen (A1, Az, ..., An; Z) =—— [T, C(A4, Z)

| | l

Mulge (X1, X2, ..., Xn; Y) —— Mulop (X1, X2, oy Xn; YY) — [T, O(X5,Y)
induced by the active morphism «; : A; > A of C® and «; : X5 - X of 0%
for 1 <i<n is a pullback square.

But by remark 3.2 this condition is equivalent to 1.

2. trivially implies 3.

Assume that 3. holds and let o : O'® - O® be a unital operad over O%.
Then the forgetful functor Algy o (€) - Fung (0, C) is equivalent to the
canonical functor

Algo'/o(e) = Algo'/o(o xp A) = Algorp (A) > Funp (0", A) =
Fung (0,0 xg A) ~ Fung (0, €).

The forgetful functor Algy,s (A) - Fung (0',A) is equivalent to the
canonical functor {poa}x a1z, () Algy (A) = {poa} xpun(or,3)Fun(0’,A)
and is thus an equivalence as O'® is unital. So 3. implies 4.

We complete the proof by showing that 4. implies 2.

Let O"® - O® be a unital operad over O%.

The canonical map of unital operads 8 : €% — O® x,u CH over O®
induces a commutative square

Algol/o(e) — Algo,/o(o X© e)

| |

Fune (0, €) ——— Fune (0, @)

By what we have proved so far, the right vertical functor of the square
is an equivalence.

If we assume that 4. holds, also the left vertical functor of the square
is an equivalence so that the top horizontal functor of the square is an
equivalence. So by Yoneda 3 is an equivalence.

O

Remark 3.4.
Let O'® - O® be a map of unital operads and C — O a category over O.

Denote 1 : 0'® - OU the unique map of operads lifting the functor ©' - ©.
The forgetful functor

Algr/o (0% xou €)= Algy, o (€) - Fune (0, €)
is equivalent to the canonical functor
{1} xalg,, (0) Algo/ (€) = {¥} xpun(or,0) Fun(0’, €)

and is thus an equivalence by [18] prop. 2.4.8.9. as O'® is unital.
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So if Oplt ¢ Op,, denotes the full subcategory spanned by the unital
operads, the forgetful functor (Opy') 0e — Catejo admits a fully faithful
right adjoint.

A unital operad over O% is a local object of (Opi'),0e if and only if
the canonical map of unital operads O'® — 0% xyn O'H over 0% is an
equivalence.

Hence by proposition 3.3 2. the local objects are exactly the cocartesian
operads over 0%,

3.2 Cocartesian O®-monoidal categories

As next we focus on (locally) cocartesian fibrations €® — O% of unital
operads that exhibit €® as a cocartesian operad over O%.

We use the theory of cocartesian O®-monoidal categories, especially
def. 3.13, to prove theorem 3.21.

To express that a cocartesian fibration €® — O® of unital operads
exhibits C® as a cocartesian operad over 9%, we will also say that C® - O®
exhibits €% as a cocartesian O®-monoidal category or simply that C® is a
cocartesian O®-monoidal category.

Construction 3.5.

Let C® — 0% be a locally cocartesian fibration of unital operads.

Let n > 2 and X1,Xa,..., Xy € O be objects corresponding to X € O?w ~
o,

Let h: X - Y be an active morphism of O% with Y € 0.

For all i € {1,..,n} set h' := hoaf : X; > X - Y and denote pr, :
[Tjz: Cx; — Cx, the i-th projection.

We have a canonical natural transformation (ozix)*Opri — id of functors
[Ti~: Cx; — ITj=; Cx, that is on the i-th component the identity of pr; and on
the j-th component for j e {1,..,n}\ {i} the unique natural transformation
1x; — pr; of functors [1iL; Cx, — Cx; starting at the constant functor with
value the initial object ]lxj of ij.

The canonical natural transformation hl — ®y o (aix)* of functors
Cx, = Cy gives rise to a natural transformation

G i1 o pr; — @10 (aX) 0 pr; - @1
of functors [Ti_; Cx; — Cy that exhibits the canonical morphism
G(A) T B (AD) = ©n(Ixy s Iy Aty Ixg, ey I, ) =
®n(A1,A2,...;An_1,An)

in Cy as natural in A € Cx ~ Hj“:1 ij.

Remark 3.6.

Let 0% be a unital operad and~ : €& — 0% a locally cocartesian fibration
of operads.

1. The operad C® is unital if and only if for all X € O the tensorunit
1x of C® — 0% at X is an initial object of the fiber Cx.
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This follows from the fact that for every n € N and every Y € C?n) ~

C*™ corresponding to the objects Y1,Y2,..., Yn € C and lying over the

object X € Ofn) ~ O™ corresponding to the objects X1,Xa,...,X, € O

we have a canonical equivalence
[Tex;(1x;, Y3) = {a} x0s(y(0).x) C°(*,Y) = €%(+,Y),
j=1
where * € Gf%) denotes the unique object and o : y(*) - X the unique

morphism of O%.

. v exhibits C® as a cocartesian operad over O% if and only if C® is
unital and the following condition holds:

Let n > 2 and A1,As2,...,An € C be n objects of C corresponding to
Ace G?n) ~ C*" lying over the objects X1,Xa,...,Xn € O corresponding
to X € O?n) ~ X",

Let h : X - Y be an active morphism of O% with Y € O. For all
ie{l,.,n} seth’:=hoaf:X; > X =Y.

Then the morphisms
CI(A) : h;(Al) - ®h(]lx1 PRXXE) ]lXi—l ) Ai7 ]lXi+1 PRXXR) ]an) -

®h(A1,A2, ...,Anfl,An)

in Cy forie {1,..,n} induced by the unique morphisms 1x; — A;
for j #1 and the identity of A; exhibit ®,(A1,A2,...,An-1,An) as a
coproduct of the objects hi(A1),hZ(Az),...,hI(A,) in Cy.

This follows from remark 3.2 and the fact that for every object Z € Cy
the canonical map

{h} XMulg (X1,X2,.,Xn;Y) MUIG(A17A27 ooy An; Z) -

Ii({hi} Xox;,v) C(Ai,Z))

induced by square 7 is equivalent to the map
Cy (®n(A1, Az, ooy An1, An), Z) = T Cy (0 (A1), 2)
ic1

induced by the morphisms (i(A) for 1<i<n.

Remark 3.7.

Let v : C® - 0% be a map of unital operads that exhibits C® as a

cocartesian operad over O%.

Then v is a cocartesian fibration if and only if v is a locally cocartesian

fibration.

This follows from the fact that given two locally ~y-cocartesian and

active morphisms X - Y and Y - Z ~ ®z(Y1,..., Ym) = ®g(®q (X |
icp™(1),...8q, (Xi | icp (m))) with Z € C with images f : X' - Y’
and g:Y' - 7' in O and images ¢ : (n) - (m) and (m) - (1) in Fin,
the canonical morphism

®gof (X1, ., Xn) = @ (®, (Xi [i€ 9 (1)), ..., 85, (Xi [ i€ 0 ' (m)))
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in Cyz is equivalent to the canonical equivalence

gxi ~ U;Zl(uiewl(j)xi)‘

Let O% be a unital operad and €® - O® a 9®-monoidal category.

We call C® a cartesian O®-monoidal category if the fiberwise dual of
C® - 0% relative to 0% is a cocartesian O®-monoidal category.

Denote
Cat?o, Catl c Cateo

the subcategories with objects the categories that admit finite coproducts

respectively finite products and morphisms the functors that preserve fi-
nite coproducts respectively finite products.

The opposite category involution on Cate restricts to an equivalence
Cat> ~ Catll.

The categories CatZ ~ Cat admit finite products which are preserved
by the subcategory inclusions CatZ, Catl c Catoo.

Consequently the subcategory inclusion CatZ c Cato, induces for every
operad O® a subcategory inclusion Mong (CatZ) ¢ Mong (Cate) on O®-
monoids.

Observation 3.8.

1. Let C® be a symmetric monoidal category.

Then C® is a cocartesian symmetric monoidal category if and only
if @ - Fin, classifies a commutative monoid of CatZ,.

If C® is cocartesian, the tensorunit 1 of C® is an initial object of
C and for all A,B € C the canonical maps A ~ A®1 - A®B and
B~1®B > A®B in C exhibit A ® B as the coproduct of A and B
in C.

Thus the canonical map (A,B) > (A® B,A ® B) in C x C ezhibits
the functor ® : Cx C — C as the left adjoint of the diagonal functor
C — CxC so that the functor ® : €xC — C preserves finite coproducts.

Hence C® - Fin, classifies a commutative monoid of CatZ.

Conversely if €% — Fin. classifies a commutative monoid of Catl,
then the tensorunit 1 of C® is an initial object of C, the category C
admits finite coproducts and the functor ® : Cx € — C preserves finite
coproducts.

Thus for all A,B € C we have a canonical equivalence

AeB~(A[J1)e(1][B)~(Ae®1)[J(1eB)~A]]B

so that the canonical maps A~A®1 > A®B and B~19B >~ A®B
in C exhibit A ® B as the coproduct of A and B in C.

2. By 1. the finite products preserving subcategory inclusion
Cati c Cateo
gives rise to a fully faithful functor Cmon(Cats) — Cmon(Cate,)

with essential image the cocartesian symmetric monoidal categories.
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The forgetful functor Op,, — Cateo restricts to an equivalence on the
full subcategory spanned by the cocartesian operads with inverse the
functor that sends a category C to its cocartesian operad CU.

By [18] remark 2.4.3.4. for every category C that admits finite co-
products the cocartesian operad C- is a symmetric monoidal cate-
gory.

Hence the forgetful functor Op,, — Cate restricts to an equivalence
Cmon(CatZ) ~ CatZ so that the category Catl, ~ Cmon(Catk,) is
preadditive being a category of commutative monoids.

Thus also the equivalent category Catll ~ CatZ is preadditive.

The next proposition 3.9 generalizes remark 3.8 1. from symmetric
monoidal categories to O®-monoidal categories for a unital operad O®.

Proposition 3.9.

Let 0% be a unital operad and v : C® - 0% a cocartesian fibration of
operads.

The following conditions are equivalent:

e ~ classifies a O®-monoid of CatZ,.

o v :C® 5 0% exhibits C® as a cocartesian O®-monoidal category and
the underlying cocartesian fibration C — O classifies a functor O —
Catozo.

Composing with the opposite category involution Caty ~ Catl we get
the dual statement:
The following conditions are equivalent:

e v classifies a OF-monoid of Catl.

e v:C® - 0% exhibits C® as a cartesian O®-monoidal category and the
underlying cocartesian fibration € — O classifies a functor O — Cat.

Remark 3.10.
Assume that 0% is a reduced operad different from Eo.

If C® - O® exhibits C® as a cocartesian O®-monoidal category, then C
admits finite coproducts.

Hence a cocartesian fibration of operads C® — 0% exhibits C® as a
cocartesian respectively cartesian O®-monoidal category if and only if it
classifies a O®-monoid of CatZ respectively CatL.

Proof. Let n > 2 and Xy, Xa,...,Xn € O be objects corresponding to X €
Of’m ~©@*™ and let h: X — Y be an active morphism of O® with Y € .

For all i € {1,..,n} set h' := hoa{ : X; > X - Y and denote pr; :
[T}~ Cx; — Cx, the i-th projection.

We have a natural transformation ¢ : hi opr; — ®y, of functors H;Ll ij —
Cy that exhibits the canonical morphism

C,(A) : hi(Al) — ®}](1X17"'7]]‘Xi—17Ai7]]‘Xi+17"'7]]‘Xn) —

®n (A1, Az, .o, Anct, An)

in Cy as natural in A € Cx ~ H?:l ij.
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The natural transformations (; : hi*opri — ®y, of functors 1'[;;1 ij - Cy
for i € {1,..,n} yield a natural transformation ¢ : [T, h} o pr; - ® of
functors H;‘:l ij — Cy, where the coproduct is taken in the category of
functors ]'[}“:1 ij — Cy.

By remark 3.6 1. and 2. the map of operads 7 : C€® — 0% exhibits C®
as a cocartesian O®-monoidal category if and only if ¢ : [T, h' o pr; = ®;
is an equivalence for all active morphisms h: X - Y of 0% with X € Of’n)
for some n>2 and Y € O and for all X € O the tensorunit 1x of €% — %
at X is an initial object of the fiber Cx.

Consequently it is enough to check that for all active morphisms h :
X =Y of O® with X € O‘fn) for some n > 2 and Y € O the natural trans-
formation ¢ : [, k! o pr; = ®n is an equivalence if and only if the func-
tor ®n : [I;.; Cx; — Cy preserves finite coproducts provided that we as-
sume thgt the underlying cocartesian fibration € — O classifies a functor
O — Catz.

For all j € {1,..,n} the natural transformation o (a;"). : b} ~ ) opr;o
(@)« = I, bl o pr; o (%)« = ®p o (@)« of functors Cx; - Cy is the
canonical equivalence.

Assume that the underlying cocartesian fibration € — O classifies a
functor O — Cat>,.

Then the functors hl, : Cx; — Cy and thus also the functor i, hi opr; :
H;Ll Cx; — Cy preserve finite coproducts.

As CatZ is preadditive, the functor
(Fun™ ((a5%)«, €y))is : Funt([] €x,, Cy) - [ Fun(Cx,, €y)
j=1 j=1
is an equivalence.

If the functor ®y : [jz; Cx; — Cy preserves finite coproducts, the
natural transformation ¢ : [;L, hl o pr; = ®n is a morphism of

FunU(H Cx;, Cy) =~ H FunU(GXj ,Cyv)

j=1 j=1

that corresponds to the equivalence (¢ o (ozjx)*)?:l so that ¢ is an equiva-
lence.

Conversely if ¢ : [I'; h} opr; - ®y is an equivalence, the functor
®p : I'[_?:1 ij — Cy preserves finite coproducts.

O

Remark 3.11.
Let € — D be a cocartesian fibration.

The induced map CH — DU of cocartesian operads is a cocartesian
fibration if and only if @ > D classifies a functor D — Cats,.

Proof. By remark 3.8 2. the category CatZ is preadditive so that (CatZ)*
is a cocartesian symmetric monoidal category.

Hence the forgetful functor Mong; (Cat2,) - Fun(D, CatZ) is an equiv-
alence.
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So if the cocartesian fibration € — D classifies a functor D — CatZ,
there is a unique cocartesian fibration of operads 3 : €% — DU lifting the
cocartesian fibration @ - D and classifying a DY-monoid of Cat.

So by proposition 3.9 8 exhibits C® as a cocartesian DH-monoidal
category so that the operad €® is cocartesian.
Thus by the uniqueness of the cocartesian structure the induced map

eH - DU of cocartesian operads is equivalent to CH ~ €® 5 pu and is
thus a cocartesian fibration.

Conversely assume that the map CI — DU of cocartesian operads is a
cocartesian fibration.

Then the map € — DU of cocartesian operads exhibits H as a co-
cartesian DH-monoidal category.

So for every X € D the tensorunit 1x € Cx is an initial object of Cx.

As DU is a cocartesian operad, for every X ¢ D there is a multimor-
phism h: (X, X) - X of D corresponding to (idx,idx).

So for all A,B € Cx the morphisms A ~ ®,(A,1x) - ®u(A,B),

B~ ®,(1x,B) - ®n(A,B) in Cx exhibit ®,(A,B) as coproduct of A
and B.

So the fibers €x admit finite coproducts and every morphism X - Y
in O induces a finite coproducts preserving functor Cx — Cy.

O

Observation 3.12.

Let 0%,C®,D® be unital operads and v : € - D® a map of locally
cocartesian fibrations of operads over O%.

1. The map of operads v : C® - D% exhibits C® as a cocartesian operad
over D® if and only if the following condition holds:

Let n > 2 and let A1,A2,..., A, be objects of C corresponding to A €
@‘?n) ~ " lying over the objects B1,Ba,...,Bn of D corresponding
to B € Df’n) ~ D** and lying over the objects X1,Xa,...,Xn of O
corresponding to X € Of’n) ~ X7,

Let Z be an object of C lying over some object W € D and lying over
some object Y € O and let h: X =Y of O® be an active morphism.
Forallie{l,..n} seth':==hoof:X; > X >Y.

Then the commutative square

Cy(®n(A1, Az, ..., An), Z) —— [T, Cy (hi(Ai),Z)  (8)

| l

DY(®}1(B17B27-'-7BH)7W) E— Hinzl DY(hL(Bl)vw)

induced by the morphisms (i(A) in Cy and G(B) in Dy for i e
{1,..,n} is a pullback square, in other words the morphisms (i(A) in
Cy forie{1,..,n} exhibit ®n(A1,Az2,...,An-1,Arn) as a yy-coproduct
of the objects hi(A1),...,h2(A,).

This follows from remark 3.2 and the fact that the fiber of the commu-
tative square 7 over h € Mulpe (X1, ...,Xn;Y) is equivalent to square
8.
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2. Especially if C® — 0%, D® —» 0% are unital cartesian O®-monoidal
categories, v : C® - D® exhibits C® as a cocartesian operad over D®
if and only if the following condition (*) holds:

Let n > 2 and let A1, Aq,...,An be objects of C corresponding to A €
G‘?n) ~ C" lying over the objects B1,Ba,...,Bn of D corresponding
to B € DZ@“) ~ D" and lying over the objects X1,Xa,..., X, of O
corresponding to X € O?n) ~ ("7,

Let Z be an object of C lying over some object W € D and lying over
some object Y € O and let h: X =Y of O% be an active morphism.

Forallie {1,..,n} we seth':=hooj :X; > X > Y.

For everyie {1,..,n} we have a morphism &" : hi,(A;) — T, hi. (Aj)
in Cy that is the identity on the i-th component and the zero mor-
phism on every other component.

Then the commutative square

Cy (T, W (Ay), Z) —— T, Gy (W (A)),Z) 9)

l |

Dy (T} 1k (Bj), W) —— TT1L; Dy (b (Bj), W)

induced by the morphisms & in Cy and &2 in Dy forie {1,..,n}
is a pullback square, in other words the morphisms fiA : hi*(Ai) -
| Y b, (A;) in Cy for i e {1,.,n} exhibit | Y b, (A)) as a yy-
coproduct of the objects hi(A1),...,h2(Ay).

Definition 3.13.

Let O® be a unital operad and © - O,D — O locally cocartesian fi-
brations, whose fibers admit a zero object and finite products which are
preserved by the induced functors on the fibers.

Let B: C — D be a map of locally cocartesian fibrations over O that
induces on the fiber over every X € O a finite products preserving functor.

We say that B : C - D exhibits C as cocartesian over D if condition
(*) from remark 3.12 2. holds.

Remark 3.14.

Let O® be a unital operad and C — O,D - O cocartesian fibrations,
whose fibers admit a zero object and finite products which are preserved by
the induced functors on the fibers.

Let B :C — D be a map of cocartesian fibrations over O that induces
on the fiber over every X € O a finite products preserving functor.

As the forgetful functor Mong(Catl) — Fun(O,Catll) is an equiva-
lence, the map B : C - D of cocartesian fibrations over O classifying a
natural transformation of functors O — Catl uniquely extends to a O®-
monoidal functor v : C® - D® between cartesian O®-monoidal categories
according to proposition 3.9.
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By definition the map B : € - D of cocartesian fibrations over O ex-
hibits C as cocartesian over D if and only if the O®-monoidal functor
v:C® » D® exhibits C® as a cocartesian operad over D®.

Observation 3.15.

Let O® be a unital operad, € - O, D — O locally cocartesian fibrations,
whose fibers admit a zero object and finite products which are preserved by
the induced functors on the fibers.

Let B : C — D be a map of locally cocartesian fibrations over O such
that for all X € O the induced functor Bx : Cx — Dx on the fiber over X
preserves finite products and is a cartesian fibration.

Then B : C — D exhibits C as cocartesian over D if and only if the
following condition holds:

Let n > 2 and let A1,As,...;, A, be objects of C corresponding to A «
sz@m ~ " lying over the objects B1,Ba,...,Bn of D corresponding to B €
D?n) ~ D™ and lying over the objects X1,Xa, ..., X, of O corresponding to
XeOf, =0

Let Z be an object of C lying over some object W € D and lying over
some object Y € O and let h: X —Y of 0% be an active morphism.
Forallie{l,..,n} seth':=hoaf:X; > X > Y.

For every i€ {1,..,n} we have a morphism A inl (As) =TT, hi (Ay)
in Cy that is the identity on the i-th component and the zero morphism
on every other component.

Let ¢+ TTj-, bl (B;j) -» W be a morphism in Dy.

For allie{1,..,n} we set ¢; :=po & :hi(Bi) > [T, i, (B;) - W.

Then the canonical functor

0+ (€)p up oy ([T (4,07 (2)) =

1) () ([TH (A (6" (0" 2))

l—{(eY)hi(Bj)(h{e(Aj):¢;(Z))
i
induced by the functor
By*\n =
(€)1 () i sy *ﬂ(ey)himj)

and the morphism bl (A;) - (‘ij)*(l'[?:1 b, (A;)) in (Cy), (8,y correspond-
* J
ing to EJA is an equivalence.

This follows from the fact that square 9 induces on the fiber over
¢ € Dy ([Tj=, b (B;), W) the functor o.

63



3.3 A universal property of the cartesian struc-
ture

In this section we use the results about cocartesian operads of the previous
section to prove a universal property of the cartesian structure (theorem
3.21).

We start with fixing some notation:

Denote

e CatZ c Cate, the subcategory with objects the small categories that
admit finite products and with morphisms the functors that preserve
finite products.

e Catl, c Cate the subcategory with objects the small categories that
admit a final object and with morphisms the functors that preserve
the final object.

The categories Catll and Cat?, admit small limits which are preserved
by the subcategory inclusions to Catoo.

Moreover Catgo is preadditive by observation 3.8 and Cats, admits a
zero object.

Denote

° (Catglo x Catl,) Xcato, R — CatZ x Cat?, the pullback of the bicartesian
fibration
R c Fun(A', Cate.) - Fun({1}, Cate)

along the functor

—)op id
0 : Catll x Cat’, c Cate x Cateo O, Catoo % Catoo — Catoo

and

e = cC (Catg x Catl, ) Xcat., R the full subcategory spanned by the triples
(€,D,F) consisting of small categories C € Catl,, D € Catl, and a
right fibration F — C°P x D classifying a functor € x D — § adjoint
to a functor € — P(D) that preserves finite products.

The full subcategory R ¢ Fun(A*', Cate,) is closed under finite products
so that R admits finite products which are preserved by the functor R c
Fun(A', Cate.) - Fun({1}, Cate).

The functor 6 : Catll x Cat’, - Cate. preserves finite products as the
functor x : Cateo x Cates — Cateo preserves finite products being the right
adjoint of the diagonal functor Cate, — Cate x Cateo.

Thus the pullback (Catl; x Catl,) xcat.. R admits finite products which
are preserved by the projections.

Remark 3.16.

1. The full subcategory = is closed under finite products in
(Catll x Catk,) xcaro, R.

2. The category E c (Catll x Catl,) xcar., R admits a zero object.
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Proof. 1.: The final object of (Catgo x Cat%,) Xcat.. R belongs to Z:

The identity of the contractible category classifies the unique finite
products preserving functor * — 8 starting at the contractible category.

The full subcategory = is closed under twofold products in (Catgo X
Cat;) X Catoo R:

Given small categories C, €’ € Catll and D, D’ € Cat’, and right fibra-
tions F — C%P x D, F" — C"P x D’ classifying functors

CxDP 58, xDP 8

adjoint to functors ¥ : € — P(D) respectively ¢ : €' - P(D’) the right
fibration

FxF - (CP xD)x (P xD) = (€xC)Px(DxD)
classifies the functor (€ x ) x (D x D")°? — § adjoint to the functor

Cx € L% p(D) x P(D') - P(D x D).

So it is enough to see that the canonical functor P(D) x P(D') —

P(D x D) preserves finite products:

As the canonical functor P(D) x P(D’) - P(D x D’) is natural in
the small categories D, D’ and limits in presheaf categories are formed
levelwise, this follows from the fact that the product functor x : §x8 - 8

preserves finite products being the right adjoint of the diagonal functor
8§ —>8x8.

2.: For arbitrary categories € € Catll, D ¢ Cat’, and every right fibra-
tion F — C°? x D we have a canonical equivalence

(Catll x Catl,) xcaro. R((*, %,id,), (€, D, F)) =~
(Catg(*, €) x Catl (*,D)) Xcate, (+,copxm) R(ids, F) =
8(#,Fugrn) = Frgorn

of spaces, where *¢, *p denote the final objects of € respectively D.

O

By remark 3.16 we get a symmetric monoidal functor

=X c ((Catgo x Catl, ) Xcato, R)™ — (Catg x Catl,)™.

Let O% be a unital operad, €® — 0% a cartesian O®-monoidal category
classifying a map of operads ¢ : O® - (Catl)* and D® —» 0% a 0%®-
monoidal category classifying a map of operads ¢: 9% — (Cati,)*.

By prop. 6.1 the symmetric monoidal functor

((Catll x Catl) xcar, R) — (Cathl x Catl)”
is a cocartesian fibration.

Denote
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e Fun(@,P(D))® := P(C™ xo D)® the pullback of the cocartesian fi-
bration

((Catll x Catk,) xcar, R)* — (Catlh x Catl)”
® (qub) 11 * X
of operads along the map of operads O® —— (Cat,, x Cat,)™.
e Fun(C,P(D))® c Fun(C,P(D))® the pullback of the symmetric

monoidal functor
E” ¢ ((Catll x Catl,) xcar., R)* — (Catl x Catl, )
along the map of operads 0% .9, (Catll x Catl,)*.
For every X € O we have a canonical equivalence
Fun(C, P(D))% = Fun(Cx, P(Dx))
that restricts to an equivalence Fun" (€, D)% ~ Fun'(Cx, P(Dx)).
The next proposition 3.17 tells us that the functor
=c (Catt,no x Catl, ) Xcato, R — Cat x Cat’,
exhibits = as cocartesian over Catgo x Cat’,.
Thus by remark 3.14 the symmetric monoidal functor
2" c ((Cathh x Catl,) xcar, R)* — (Catly x Catl)”

exhibits 2° as a cocartesian operad over (CatlL)* xgin, (Catl,)” so that
the map of operads
Fun" (€, P(D))® - 0%

exhibits Fun™ (€, P(D))® as a cocartesian operad over 0%,

Proposition 3.17. The functor
—_ 11 * 11 *
= c (Cate, x Catl,) xcat., R = Cato, x Caty,
exhibits = as cocartesian over Catl x CatZ,.

Proof. Let n > 2 and Cq,Ca,...,Ch, € ¢ Catll, Dy, Dy, ..., Dy, D € Catl, be
categories and F; — C7P xD; for 1 <i<nand § - €°PxD be right fibrations
that belong to =.

For 1 <i<n denote

€= (61.60): (G, D) > (fgeyﬁ%) . Q(ej,ﬂj)

j=1

the morphism in Catll x Cat’, and

=

1%7 Sﬁ) = II(CJ7I%733)
j=1

n
j=1 j=

J

Il
[u

Y : (G, Di, Fi) - ([16s,
j=1

the morphism in = that are the identity on the i-th component and the
zero morphism on every other component.
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The morphism

O+ (65, Di, F) - ([ 16, [1Ds,

n n
j=1 j=1 j=1

%) = H(GJ'?‘DJW:TJ')

n
=1

-

in = lies over the morphism
& =(&,&): (€, Di) > ([T6,TTDy) = [1(€;, Dy)
j=1  j=1 j=1
in Catll x Cat’, and thus corresponds to a morphism

w5 - 6 ([197) = ((6)° xé)*(ﬁ?j)

j=1
in the fiber E(e; p,) = Reoryp, -
w; induces on the fiber over a pair (X,Y) € C7* x D; the map of spaces
(@i)xy : (Fi)x,y = q(fi)w}(xn_i,(s?(w)j
i
that is the identity on the i-th component and the unique morphism to

the contractible space (Fj)+¢,«s On every other component.
Thus

(@w)x, v (Fi)x,y = _l_{(?i)(gil(x»j,(gg(y»j = (F)x,y
i

is equivalent to the identity.
By remark 3.12 we have to show that for all morphisms h = (f,g) :
(TTj21 G5, TTiL1 Dy) = (€,D) in Catll x Cat?, the canonical map

0+ Eqm, ey, o ([193,0°(9)) = [T Ee;, 00 (& ([TF9). & (07(9)))
j=1 j=1

i=1
- H E(ci,D;(gjiv (ho gl)*(g))
ic1
induced by the functor
(&)t B, e, o = [ Eenn
i=1

and the morphism w; : Fi — £ ([Tj2; F5) in Ece;,p;) = Reorwn, is an equiv-
alence.

As w; is an equivalence, it remains to see that x is an equivalence.
X is equivalent to the canonical map

X Ramp epersary, o, ([T 55, (FF x 2)7(9))
j=1

f{megv@i(«&)“’ x g?)*qj&z), (&) % &) ((F x£)"(9))

induced by the functor

1\0 2\*\n n
(&) x &) )iz = R, eyersmz, ;= HfRe‘;Px'Di‘
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For every 1 < i < n the right fibrations F; - €;® x D; respectively
G — C°? x D classify functors Fj : C; x D{¥ — 8 respectively G : € x DP - §
that are adjoint to finite products preserving functors H; : C; — P(D;)
respectively M : C — P(D).

Denote o : (TTjL; €;)°" x [TjL; D;j = [T, (Cj* x D;) the canonical functor
that permutes the factors.

The right fibration [T}~ Fj — [Tj%, (€] x Dy) = (ITjLy €;)P x [TjL, D is
classified by the functor

n n n I—[]»j, F. n %
[T€ % (1) = [1(€ x ") ==— T8 =
j=

j=1 j=1 j=1

that is adjoint to the finite products preserving functor

n

™ l_[j=1 Hj ™ o n
l'Ij:1 G —— Hj:l fp(jjj) - J)(szl ﬂj)-

The functor g : [T;-; Dj - D induces a functor g* : P(D) - P([T;; Dj)
that preserves small limits.
A . .
X' is equivalent to the canonical map

fP((ljej)"P x ljmjxx o @Fj) 00,Go (f% xg)) >

Ijj’(@?p x D) (x o (QFJ) 000 ((6)°P x€2),Go (fP x g) o ((£1)°P x £2))

induced by the functor (((&)°P x &2)*)iL; : P((IT51 €5)°P x [Tjz1 Dy) —
[Tiz; P(C® x D;) and so equivalent to the composition

Fun(jlj ej,?(jljﬂj))(ao (QHj),g* oMoty
[TFun(e, P D)) e ([TH) o6l oM ofoch) &
[T Fun(C, P(D))(€)" 0o ([TH)) o€l (€)" 05" oMofog),
Wherzlqp is induced by the functor .
(Fun(&lvﬂ’(jlj ) :Fun(jli ej,?(j]i D;)) > an(ei’?(jﬁl D))
and ¢ by the functor
QFun(@i, (€)Y QFun(@i,T(in D)) - iljFun(Gi,'P(Qi)),

The functor (Fun(¢;, P(ITj2; Dj)))ity restricts to the functor
(Fan" (&, P(TT3Ly D))k -
FUHH(H €j7 ?(H D.l)) - H Funn(ei7 :P(H Dj))v
j=1 j=1 i=1 j=1
which is an equivalence.

As both functors « o ([Tj-; H;) and g* o Mo f preserve finite products,
the map

v Fun([] €&, 2T D) (e ([[H)." o Mof) »
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[TFun(e, P(TTD)) (a0 ([TH) o€l g* o Mofogl)

i=1 j=1 j=1

induced by the functor (Fun(é;, P(ITj21 Dj)))ity is equivalent to the map

o P ([T €. ([ D) (o ([T Hy).g" o Mo )
j=1 j=1 j=1

nFun“(ei,:P(q D;))(ao (QHJ» o&l,g oMofogl)
i= j= j=

induced by the equivalence (Fun!l(¢!, P(IT521 Dy)))ite

mn“dﬂlw(ljﬂj)) - QMW&,?(I"TD»)

j=1 j=1
Thus v is an equivalence.

To see that ¢ is an equivalence, it is enough to check that for all
1 <i<n the canonical map

¢ Fun(e, P[] D) (ao ([JH) 0 & g" o Mofog) —
j=1 j=1

Fun(€:, P(D))((€2)* oao ([[Hy) 0 &1, (63)" og” o Mof o))
j=1

is an equivalence.

For 1 <i < n denote i : P(Di) — [Ij-; P(D;j) the morphism in Catc,
that is the identity on the i-th component and the zero morphism on every
other component.

Denote pr; : [[j2; Dj = D;i the i-th projection and pr{ : P(D;) —
P(ITi~; D;) the induced functor.

We have canonical equivalences (1'[?:1 Hj) o & ~goH;and aog =~ pr;
that give rise to an equivalence a o ([T;; Hj) o & ~aogoH; ~prf o Hi.

Set ¢:= &2 : Dy - [Tj-; Dj. By lemma 3.18 ¢ is fully faithful and right
adjoint to the projection pr; : [T;_; D; — D;.

Denote 1 : id — ¢ o pr; the unit and € : pr; o ¢ — id the counit of this
adjunction.

The counit € : pr; ot — id is an equivalence as ¢ is fully faithful.

The adjunction pr; : [Tj.; Dj 2 D; : ¢ gives rise to an adjunction

pr; : P(D;) 2 P([]D;) :0*,
j=1

whose unit is €* : id - (pr; 0¢)* ~ " o pr{ and counit is n* : pr{ o " ~
(topr)* —id.

Hence pr{ : P(D;) - P([1iL; D;) is fully faithful, i.e. the adjunction
pr{ : P(Di) 2 P(TT5L; Dj) : ¢* is a colocalization.

The colocalization pri : P(Di) 2 P([TjL; Dj) : ¢* gives rise to a colo-
calization

Fun(G;,pr;) : Fun(Ci, P(Ds)) = Fun(@i,?(n D;)) : Fun(€;, )

j=1

= Fun(C;, (67)").
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The equivalence a o (TTj-; Hj) o &' ~ pr} o H; guarantees that

ao (T2 Hy) o &' belongs to the essential image of the fully faithful
functor Fun(C;, pr}) : Fun(C;, P(D;)) — Fun(C;, P(TTiL; D;)) so that ¢ is
an equivalence.

O

To prove proposition 3.17 we used the following lemma:

Lemma 3.18. Let n €N and D1,..., D, be small categories that admit a
final object *1, %2, ... respectively *.
Denote pr; : TTjLy Dj — Di the i-th projection for 1 <i<n and

i-1 n n
L:‘Di:(H*j)x'Dix(H *J)%HDJ
j=1 j=iHl j=1
the fully faithful functor, which is the identity of Di on the i-th compo-
nent and the constant functor with image the final object on every other
component.

The functor v is right adjoint to pr;.

Proof. Set D := [Ij-; Dj and denote § : Dj - Fun(D,D;) the diagonal
functor.

Denote 7 :idp — ¢ o pr; the morphism in Fun(D, [T}, D;) =~

[T;-; Fun(D, D;j) corresponding to the n natural transformations q; :
pr; — prjocopr; of functors D — D; for 1 < j <n with a; : pr; - prjoropr; =
pr; the identity and «; : pr; - prjocopr; =~ 0(*;) for j # i the unique
morphism.

So the composition pr; on: pr; — pr; ot o pr; = pr; is equivalent to the
identity.

To complete the proof it is enough to show that nocopr; :¢opr; -
Lo pr;otopr; is an equivalence.

The morphism 70 ¢ o pr; of Fun(D,[TiL; D;) = [Tjz; Fun(D, D;) corre-
sponds to the n natural transformations
B; : prj o L © pr; — Prj o Lo PI; © L © PI;

of functors D — D; for 1 <j<n with §; : pryocopr; - pr;otopr,otopr; =
pr;ocopr; the identity and S : pr;ocopr; = d(#;) — prjotopr;oropr; = §(*;)
for j #1i the identity.

Thus notopr;:Lopr; - ¢topr;otopr; is an equivalence.

O

Corollary 3.19. Let O% be a unital operad, C® a O®-monoidal category
and D® a O®-monoidal category compatible with small colimits.
The map of operads

Funn(@7 P(D))® - O

exhibits Fun™ (C, P(D))® as a cocartesian operad over 0.
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Proof. The operad Fun™ (€, P(D))® over O is the pullback of the sym-

metric monoidal functor
= c ((Catg X Cat;) X Catoo R)X — (Catl;lo X Cat;)x
along the map of operads ©® — (Catl, x Cat,)*.
By proposition 3.17 the functor
—_ 11 * 11 *
= c (Cate x Caty,) xcat, R — Cate, x Caty,

exhibits = as cocartesian over Catl x Cat’, so that by remark 3.14 the
symmetric monoidal functor

= c ((Catg x Catl,) Xcato, R)* — (Catg x Cats, )"

exhibits Z* as a cocartesian operad over (Catg,)x Xin, (Cats,)™.
So the pullback
Funn((f7 P(D))® - O

exhibits Fun™ (@, P(D))® as a cocartesian operad over 0%,

Remark 3.20.
For every small categories C, D the full subcategory Fun™ (@, 8) c Fun(€,8)
and thus also the full subcategory

Fun(D°?, Fun" (€,8)) ~ Fun" (€, P(D)) c Fun(C, P(D)) =~

Fun(D°", Fun(¢,8))

s a localization.

Thus by corollary 6.5/ the map of operads Fun™ (€, P(D))® - 0% is a
locally cocartesian fibration.

As the map of operads Fun' (€, P(D))® - 0% ezhibits Fun" (€,P(D))®
as a cocartesian operad over O%, by remark 3.7 the locally cocartesian
fibration Fun™ (€, P(D))® - O® is a cocartesian fibration.

Given a category B and categories © — B, D — B over B denote

Funi (€, D) c Fung (€, D)

the full subcategory spanned by the functors over B that induce on the
fiber over every object X of B a functor that preserves finite products.

Given an operad O® and O®-monoidal categories €%, D® denote
Fung™'(€, D) c Fung'™ (€, D)

the full subcategory spanned by the lax O®-monoidal functors that in-
duce on the fiber over every object X of O a functor that preserves finite
products.

Now we are ready to prove the desired universal property of the carte-
sian structure.
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Theorem 3.21. Let O® be a unital operad.

Let C® be a cartesian O®-monoidal category such that C — O classifies
a functor O - Catll and D® a O®-monoidal category.
Assume that the tensorunit of D® is a final object of Fune (0, D).

The forgetful functor
Fun®'**" (€, D) - Fung (€, D)
is an equivalence.

Proof. Consider the following commutative square:

Fun®'**(€, D) ———— Fun®'>*(€,P(D))

Fune(€,D) ———— Funp (G, P(D))

As the square is a pullback square, it is enough to show that the right
vertical functor

Fun®'**(€, P(D)) — Fun(C, P(D))
in the diagram gets an equivalence after pulling back to the full subcate-
gory
Fung (€,P(D)) c Fune (€, P(D)).
We have a pullback square

Fung (€, (D)) ————— Fun"™(€, (D))

Fung (€, P(D)) ————— Funp (C, P(D))

that is equivalent to the pullback square

Algo (Fun" (€, P(D))) ———————— Alg)o (Fun(€, P(D)))

Fung (0, Fun" (€, P(D))) —————— Fune (O, Fun(€,P(D)))

by prop. 6.28.
Consequently we have to see that the forgetful functor

Alg,o (Fun'' (€, P(D))) - Fune (0, Fun' (€, P(D)))
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is an equivalence.

This follows from proposition 3.3 4. as Fun™ (€, P(D))® is a cocarte-
sian operad over O® by proposition 3.17 using that the O®-monoidal
Yoneda-embedding D® — P(D)® preserves final objects and tensorunits.

O

As next we deduce prop. 3.22 from a universal property of the co-
cartesian structure (theorem 2.4.3.18. [18]) and the universal property of
the cartesian structure of theorem 3.21.

Proposition 3.22.
Let O%® be a unital operad, C® - 0% a O®-monoidal category, whose
tensorunit is a final object of Funey (0, C), and D a preadditive category.

The functor
Fung (0 x D, €) Xpun(p,Fun (0,e)) Fun(D, Alg,(€)) - Fung (0 x D, €)
is an equivalence.

Remark 3.23. If for all X € O the fiber Cx admits finite products, the
categories Fung (0, €), Alg,o(C) admit finite products which are formed
levelwise.

So the canonical equivalence

Fun(D, Fune (0, €)) ~ Fune (0 x D, €)
restricts to an equivalence
Fun" (D, Fune (0, €)) = Fung (O x D, C).
Thus the forgetful functor
Fun'' (D, Alg, (€)) = Fun" (D, Funo (0, €))% pun(p.Fune (0.e)) Fun(D, Alg,o (€))

- Fun" (D, Fune (0, ©))

is an equivalence.
Hence by remark 1.3.3 the functor Alg,q(C) - Fune (0, C) induces an
equivalence
Cmon(Alg,(€)) - Cmon(Fune (0, €)).

Proof. As D is preadditive, we have a canonical equivalence DI ~ D* so
that the O®-monoidal category a : 0% xgim, DH — O is cartesian.
So by theorem 3.21 the forgetful functor

F‘ung(o x D7 e) XFung (OxD,€) Algoxp/o(e) - Fung((‘) X D, C)

is an equivalence.
Denote 8 the constant functor D — Alg,(O) with value the identity
of O®. By [18] theorem 2.4.3.18. we have a canonical equivalence

AlngD/O(G) = {a} XAlgoyp (0) Algo,p(€) =
18} XFun (D,Alge (0)) Fun(D, Algy(€)) = Fun(leAlg/o(G))
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that fits into a commutative square

Algoxp/o (@) ————  — Fun(D, Alg (©))

| l

Funp (0 x D,€) ———  Fun(D, Fune (0, €)).

O

The following corollary 3.24 generalizes an important statement in
deformation theory ([18] theorem 7.3.4.7.) from stable to preadditive O®-
monoidal categories:

Corollary 3.24. Let O%® be a unital operad and C® - 0% a preadditive
0% -monoidal category.

The forgetful functor Alg,,(C)™ — Fune (0, €) induces an equivalence

Cmon(Alg,,(€)™) - Cmon(Fune (0, €)) ~ Fune (0, €).

Thus for every preadditive category D and every finite products pre-
serving functor D — Fune (0, €) the category Funpun, (0,¢)(D, Alg,o (€)™)
is contractible.

Proof. We have a pullback square

Cmon(Algo (€)™) —— Cmon(Alg,o(P(€))™)

| |

Cmon(Fune (0, €)) —— Cmon(Fune (0, P(C))).

Consequently we may replace €® by P(€)® in the statement we want
to prove and so may assume that €® is compatible with finite coproducts.

Denote C'® := P¥(€)® c P(€)® the full subcategory of P(€)® spanned
by the presheaves on Cx for some X € O that preserve finite products.

As €% is compatible with finite coproducts, P*(€)® c P(€)® is an
accessible ©®-monoidal localization.

For every X € O we have a canonical equivalence P¥(€)x ~ P=(Cx) =
Fun"((€x)°P, Cmon(8)) so that P¥(€)® is a preadditive presentably O®-
monoidal category.

We have a pullback square

Cmon(Alg,, (€)™) —— Cmon(Alg,,(€")™")

| |

Cmon(Fune (0, €)) —— Cmon(Fune (0, €")).

Consequently we may replace €® by C'® in the statement we want to
prove and so can assume that C® is a preadditive presentably O®-monoidal
category, especially that for every X € O the fiber Cx admits finite limits.

By 2.1 we have a colocalization

Alg/o(e)nu p=4 Alg/o(e)/l
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and commutative squares

Algo (€)™ ——— Alg)o(€)/a

l |

Fune (0, @) i) Fune (0, €)1

and
Alg/o(e)/l —_— Alg/o (e

| |

Fune (0, €) 2 —2 Fune (0, €).

Let D be a preadditive category.
By Yoneda applied to the homotopy category of the category of small
preadditive categories it is enough to show that the functor

Fun' (D, Cmon(Alg,,(€)™)) - Fun" (D, Cmon(Fune (O, €)))

induces a bijection on equivalence classes.

We have a commutative square

Fun™(D, Cmon(Alg,, (€)™)) —— Fun™ (D, Cmon(Fune (0, €)))

r r

Fun" (D, Alg o (€)™) —————— Fun" (D, Fune (0, €)).

The functor 1 ® —: Fune (0, €) - Fung (0, €),4 is right adjoint to the
forgetful functor Fune (0, C);; - Fune (0, C).

So by proposition 3.22 the functor 1 & — : Fung (0, €) - Fune (0, €) /4
lifts to a functor Fune(0,€) — Alg;y (€)1 = Alg)o(C/a)-

The composition Fune (0, €) — Alg,o(C)/n —~ Alg,o(€)™ is a section
of the forgetful functor Alg, (€)™ — Fune (0, C).

As the forgetful functor Alg,, (€)™ — Fune (0, €) admits a section, 1
admits a section and is thus essentially surjective.

Let ¢,¢" : D — Alg,(C)™ be functors such that both compositions
D — Alg)p(€)™ — Funp(0,€) are equivalent to some finite products
preserving functor H.

Both compositions

D — Alg/o(@)nu c Alg/o(@)/l - Fune (0, €)1
are equivalent to the finite products preserving functor
D Fune (0, €) 225 Fune (0, €) 1.

Thus by proposition 3.22 both functors D — Alg,, (€)™ ¢ Alg,¢(C)/a
are equivalent so that ¢, ¢’ are equivalent.

O
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4 Comparison results

In section 2.3 we defined restricted Leo-algebras in a nice preadditive sym-
metric monoidal category C (def. 2.26).

If C is stable, we have a notion of Lie algebra in C as algebra over
the spectral Lie operad, which we define as the Koszul dual operad of the
non-counital cocommutative cooperad in spectra.

Moreover given a field K we have the notion of restricted Lie algebra
over K which is nothing than a Lie algebra over K if K has char. zero.

In this section we relate restricted Lo.-algebras in a nice stable sym-
metric monoidal category C to Lie algebras in C over the spectral Lie
operad and to simplicial restricted Lie algebras over a field K :

We construct a forgetful functor

Lie(€) ~ Algy,,(€)

from the oo-category of restricted Loo-algebras in € to the co-category of
algebras over the spectral Lie operad (theorem 4.2) and we construct a
forgetful functor
Lie(Modjik)) = (sLiei®) oo

from the co-category of restricted Leo-algebras in connective H(K)-module
spectra to the co-category underlying a right induced model structure on
the category sLiex® of simplicial restricted Lie algebras over K (prop.
4.34).

Moreover we show that the forgetful functor Lie(€) — Alg;;.(C) is an
equivalence if € is a Q-linear stable co-category, i.e. a stable oco-category
left tensored over H(Q)-module spectra (theorem 4.5).

Besides this we will see that the spectral tangent Lie algebra refines
to a restricted Leo-algebra (example 4.3).

4.1 Comparison to spectral Lie algebras

Given a nice stable symmetric monoidal category € we defined restricted
Leo-algebras by their relation to cocommutative bialgebras (def. 2.26)
expressed by the enveloping bialgebra-primitive elements adjunction

U : Lie(€) = Bialg(C) : P.

Mimicing the classical Koszul duality between the Lie operad and the
cocommutative cooperad we construct an adjunction

Alg; ;. (€) 2 Cocoalg(C)Pe) (10)

between spectral Lie algebras in € and conilpotent divided power coalge-
bras in €, where the left adjoint takes the homology and the right adjoint
takes the tangent Lie algebra.

To relate both notions of Lie algebras we show (theorem 4.2) that
adjunction 10 gives rise to an adjunction

i Algp ;. (€) 2 Bialg(€) : 3, (11)

Prim

where the right adjoint lifts the functor Bialg(C) - Cocoalg(€)y; —— €
(constructed in 2.2.3).
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Then by the universal property of Lie(C) (remark 2.27) the right ad-
joint P : Bialg(C) — Alg;;.(C) of adjunction 11 factors as

Bialg(C) 5> Lie(€) - Algy,. (€)
for a unique functor Lie(€C) — Alg;,.(C) over C.

To construct adjunction 10, we use Koszul-duality for operads and
their algebras which we treat in the next section.

We start with constructing adjunction 10.

We define the spectral Lie operad Lie := (Cocomm™™")¥(-1) as the
negative shift of the Koszul-dual of the non-counital cocommutative co-
operad Cocomm"“".

By [5] the spectral operad Lie has its homology the classical Lie operad.

By 2.2.4 the operadic shift gives rise to an equivalence Alg;;.(€) =~
Algy0¢1y(€) with underlying functor the shift functor.
By prop. 4.21 we have an adjunction

Algyie(1)(€) = LModpic(1)(C) 2 Cocoalg(C)*P ™! = coLModcocommnen (€).

So we get an adjunction 6 : Alg;, (€) = Cocoalg(€) ™! where the
left adjoint lifts the functor Alg;.(€) IoLies, @ %, @ and the right adjoint

lifts the functor Cocoalg(€)P-con! trive Sede by prop. 4.21.
Composing this adjunction

Cocomm

Algy;.(C) = COCOalg(@)dp,coml

with the left adjoint forgetful functor Cocoalg(€)™ ™" = Cocoalg(€)q,
of lemma 2.19 we get an adjunction

H: AlgLie(e) = Cocoalg(e)l/ el

trivor,jo—
—_

where the left adjoint lifts the functor Alg; ;. (C) € > € and the
Prim

right adjoint lifts the functor Cocoalg(€)y; —— C 2 C, where the functor

Prim is constructed in 2.2.3.
We call H the Lie-homology and -~ the tangent Lie algebra functor.

By remark 4.19 we have a canonical equivalence
. C
6 o triviie = (Cocomm™™ o4y —) 0

that leads to a canonical equivalence H o trivyie ~ S o X, where S denotes
2, Cocoalg(@)Peemil Cocoalg(C)q,.

ocomm™®

c
the composition €
We call S the symmetric functor.

As next we observe how the tangent Lie algebra functor gives rise to
a lift of the primitive elements to Lie algebras:

For this we use the following fact (remark 4.17):

Let C be a stable category and D a category that admits geometric
realizations, finite products and totalizations and ¢ : D — € a conser-
vative functor that preserves geometric realizations, finite products and
totalizations.

Then the Bar-Cobar adjunction Bar : Mon(D) 2 D, : Cobar for the
cartesian structure on D is an equivalence.
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Observation 4.1. Let C be a stable symmetric monoidal category com-
patible with small colimits that admits totalizations.

Let D be a category that admits geometric realizations, finite products
and totalizations and ¢ : D — C a conservative functor that preserves
geometric realizations, finite products and totalizations.

There is a correspondence between functors

1 : Cocoalg(€)y; - D

Prim

lifting the functor Cocoalg(€)yy —— € £e and functors
¥ : Bialg(C) - D

Prim

lifting the functor P : Bialg(€) - Cocoalg(€)yy —— C:
1 gives rise to a functor

Bialg(€) ~ Mon(Cocoalg(C)4,) M Mon(D) Bar

Prim

lifting the functor P : Bialg(€) - Cocoalg(€)yy —— C.
Conversely ¥ yields a functor

Cocoalg(€)y, Lobar, Mon(Cocoalg(C)y,) ~ Bialg(C) R

Prim

lifting the functor Cocoalg(€)y, —2 € 2 ¢,
The functors 1 — BaroMon(v) and ¥ — WoCobar are inverse to each
other.

Proof. The composition

Mon(Cobar) Mon(¥)
e

Bialg(C) ~ Mon(Cocoalg(C)4,) Mon(Bialg(C)) ——

Bar

Mon(D) — D
is equivalent to the functor

Cobar Bar

Bialg(C) — D <% Mon(D) =25 D

and so equivalent to V.
The composition

Cocoalg(€)y, Lobar, Mon(Cocoalg(€)y/) Mon), Mon(D) B p

is equivalent to the functor

Cobar Bar

Cocoalg(€)y Y, p Sobar, Mon(D) — D

and so equivalent to ).

O

Applying observation 4.1 to the adjunction Alg; ;. (€) =2 Cocoalg(€)y,
we get the following theorem:
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Theorem 4.2. Let C be an additive symmetric monoidal category com-
patible with small colimits such that C admits small limits.

There is a forgetful functor
Lie(€) — Algy,;.(€)
over C.

Proof. First assume that C is stable.
The right adjoint v of the adjunction Algy; (C) 2 Cocoalg(€)y, lifts

the functor Cocoalg(C)y, P e 2 e and so by remark 4.17 factors as

Cocoalg(€)y, Lobar, Bialg(€) x, Alg;..(€)
for a lift P : Bialg(C) — Alg,.(C) of the primitives P : Bialg(C) — C.
Lifting the primitives the functor 3 : Bialg(€) — Alg; ;.(C) factors as

Bialg(€) 2 Lie(C) — Algy,.(€)

for a unique functor Lie(C) — Alg;;.(C) over C due to the universal prop-
erty of Lie(€) (remark 2.27).

If € is additive, by remark 1.5 there is a symmetric monoidal embed-
ding € c D into a stable symmetric monoidal category D such that € is
closed in D under finite products and retracts.

Moreover the symmetric monoidal embedding € ¢ D factors as sym-
metric monoidal embeddings € ¢ €& ¢ D with an additive symmetric
monoidal category € such that the embedding € c £ preserves small limits
and the embedding & c D admits a right adjoint R.

The functor R induces a functor R : Alg; ;. (D) — Algp,.(€).

The composition

Bialg(€) < Bialg(D) 2 Alg, (D) 2> Alg,,.(€)

lifts the functor ” N
Bialg(€) c Bialg(D) — D — E&.
As € is closed in D under small colimits, the functor € c D 5 Bialg(D)

is equivalent to the functor & 5 Bialg(&) c Bialg(D), where T denote the
corresponding tensoralgebra functors.

Thus the functor Bialg(€) c Bialg(D) Loleis right adjoint to the
functor T: & - Bialg(€) and so equivalent to the primitives for €.
As € is closed in € under small limits, the composition

Bialg(£) c Bialg(D) 2 Alg,,, (D) > Alg, (€)
lifting the primitives Bialg(&) — & induces a functor B’ : Bialg(C) —

Alg; ;. (@) that lifts the primitives Bialg(C) — C.
Lifting the primitives the functor 3’ : Bialg(C) — Alg;,.(C) factors as

Bialg(€) > Lie(€) — Alg;,.(€)
for a unique functor Lie(€) — Alg;,.(€) over € due to the universal prop-

erty of Lie(€) (remark 2.27).
O
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Example 4.3. Let C be a stable symmetric monoidal category compatible
with small colimits such that C admits small limits.

By prop. 4.2 there is a forgetful functor Lie(C) — Alg;;.(C) over C.

The tangent Lie algebra functor v : Cocoalg(€)y; — Algy; (€) lifts to
Lie(C) along this forgetful functor Lie(C) — Alg;.(C).

Proof. The right adjoint 7 of the adjunction Algy;. (€) 2 Cocoalg(€)y,

Prim

lifts the functor Cocoalg(C)y, —— € £, ¢ and so due to remark 4.17
factors as
Cobar . RY
Cocoalg(€)y) —— Bialg(€C) — Alg.(€)

for a lift P : Bialg(C) — Alg,.(C) of the primitives P : Bialg(C) — C.

By the universal property of Lie(C) (remark 2.27) the functor ‘B :
Bialg(€) — Alg;;.(€) factors as Bialg(C) R Lie(€) — Alg;;.(C) for a
unique functor Lie(€) — Alg;;.(€) over C.

obar

The functor Cocoalg(C)y, obar, Bialg(€) LA Lie(@) lifts the functor
71 Cocoalg(€)s) — Algyye(€):
O

As next we describe the left adjoint 4 of the primitive elements

Bialg(€) — Alg;.(€) more explicitely and show that &l satisfies a
version of the Poincare-Birkhoff-Witt theorem if € is a Q-linear stable
category (remark 4.4).

We defined the primitives Bialg(€) — Alg;,.(€) as the composition

Mon(7) Bar

Bialg(€) ~ Mon(Cocoalg(€)y;) ——— Mon(Alg;.(€)) — Alg;.(C).

By lemma 4.18 the left adjoint 3 : Alg;.(€) - Cocoalg(€)y; of ~
preserves finite products and so yields a functor

Cobar Mon(H)
—

U+ Algr;(€) —— Mon(Alg;;.(€)) Bialg(€)

that is left adjoint to the primitives Bialg(C) — Alg;.(C).

Remark 4.4. IfC is a Q-linear stable category, the functor il : Alg; ;. (€) —
Bialg(C) satisfies a version of the Poincare-Birkhoff- Witt theorem:

The functor Alg;;.(C) Y Bialg(€) — Cocoalg(€)4; factors canonically

as Alg;,.(C) - ¢C 5, Cocoalg(C)q,, where S denotes the symmetric functor

defined as the composition Cocomm™™ o — : € — Cocoalg(€)P%m
Cocoalg(€)y,.

Proof. If € is a Q-linear stable category, by [7] proposition 1.7.2. loops
of Lie algebras are trivial, i.e. the functor Alg;,.(C) 2 Alg; ;. (@) factors

trivyie

canonically as Alg;,.(C) = € 2, @ ke, Algy;.(C).

By construction the functor Alg;;.(C) Y Bialg(C) — Cocoalg(€)y,
factors as o ”
Algy;o (€) — Algy,; (€) — Cocoalg(€)y,

trivyje

and so as Alg,.(C) — € L o ML, Alg,.(©) EiN Cocoalg(€)y,.
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Using the canonical equivalence H o trivpie ~ S o X of functors € —
Cocoalg(€)y/ we find that the functor Algy ;. (C) £ Bialg(€) — Cocoalg(€)y,

is equivalent to Alg; ;. (€) - C 5 Cocoalg(€)y,.
O

As next we show that the functor 4 : Alg; ;. (€) - Hopf(€) c Bialg(C)
is fully faithful if C is a Q-linear stable category (theorem 4.5).

This was before shown in [8] theorem 4.2.4. for dg-categories but
with some gaps in the proof. We give a different and complete proof,
which arose from a discussion with Gijs Heuts, to whom we are especially
grateful.

Theorem 4.5 implies that the forgetful functor Lie(€) - Alg; ;. (€) is an
equivalence. To prove this, we need to check that for every X e Alg;,.(C)
the unit X — P(HU(X)) is an equivalence.

For every Y € C the canonical equivalence

Y = triv ococommnen (Cocomm™™ oY)

in € is adjoint to a morphism triv(Y) — Cocomm™*oY in Cocoalg(€)P®c™!

that lies over a morphism triv(Y) — S(Y) in Cocoalg(€)4, adjoint to a
morphism Y — Prim(S(Y)) in C.

By the version of the Poincare-Birkhoff-Witt theorem of remark 4.4 the
unit X - P(U(X)) in Alg;;.(C) lies over the morphism X — Prim(S(X))
in C.

Consequently we need to see that for every Y € € the canonical mor-
phism Y — Prim(S(Y)) is an equivalence, which we prove in proposition
4.7.

Theorem 4.5. Let C be a stable presentably Q-linear symmetric monoidal
category.

The functor U : Alg; ;. (C) — Bialg(C) is fully faithful.
So the forgetful functor Lie(C) — Algy;.(C) is an equivalence.

Proof. Let X € Alg;,;.(€) with underlying object X' € C.
We want to see that the unit X — P(L(X)) is an equivalence or equiv-
alently that its image o : X’ — Prim(4(X)) in € is an equivalence.

By the Poincare-Birkhoff-Witt theorem of remark 4.4 the morphism
« is equivalent to the canonical morphism X’ — Prim(S(X’)) in € that is
an equivalence by proposition 4.7.

O

The rest of this chapter is devoted to the proof of proposition 4.7.

We deduce proposition 4.7 from proposition 4.8 and lemma 4.12.

Proposition 4.8 provides a cofiltration of the primitive elements which
allows us to show that for every Y € € the canonical morphism Y —
Prim(S(Y)) has a vanishing cofiber using the calculations of lemma 4.12.

The idea to prove that Alg;;.(€) embeds fully faithful into Bialg(C)
via 4l by constructing a cofiltration of the primitive elements is from [§]
prop. A. 8.2.3. used in theorem 4.2.4.

To prove proposition 4.7 we make the following definition:
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Let Q be a non-counital cooperad in €, whose counit induces an equiv-
alence Q; ~ 1 with Koszul-dual operad Q.

For every n € N the canonical map of operads Q" - 7,(Q") makes
72(QY) to a right module over Q" in €21,

Denote Ny, the right Q-comodule in €¥2! Koszul-dual to 7,(Q").

We especially use this for Q = Cocomm™" and Q" = Lie(1) and € the
stable symmetric monoidal category of spectra.

The canonical map of operads Q" — 7,(Q") considered as a map of
right modules over Q¥ in €¥>! is Koszul-dual to a map triv — Ny of right
comodules over Q in €72! that induces an equivalence 1 = (Ny);.

The canonical map of operads 7,(Q") - 7,-1(Q") under Q" considered
as a map of right modules over Q¥ in €¥*! is Koszul-dual to a map Ny —
Nn-1 of right comodules over Q in @t

Remark 4.6.

The fiber in RModgv (C¥21) of the canonical map 7a(Q") — mu-1(Q")
is the trivial right Q"-module on the symmetric sequence concentrated in
degree n with value Q) by remark 2.15.

Thus the fiber in coRMon(Czﬁ) of the map Ny, — Ny_1 is the cofree
right Q-comodule on the symmetric sequence concentrated in degree n
with value Q) (see the end of the proof of prop. 4.22 for the statement
that (co)free right (co)modules correspond to trivial ones under Koszul-
duality).

Proposition 4.7. Let C be a stable presentably Q-linear symmetric monoidal
category.

For every X € C the canonical morphism X — Prim(S(X)) in C is an
equivalence.
Proof. By proposition 4.8 applied to the cooperad Cocomm™" the canon-
ical morphism X — Prim(S(X)) factors as a : X - limjgnNp 0 X =
Prim(S(X)), where the compositon an : X S limienNp 0 X > Ny 0o X
is the canonical morphism X =~ trivo X — N, o X induced by the morphism
triv > Ny, that induces an equivalence 1 ~ (Ny);.

The cofiber of « is the limit of the induced diagram

.. > cofib(an) — cofib(an-1) = ... = cofib(aq).

Consequently « is an equivalence if for every n > 1 the induced mor-
phism cofib(ay) — cofib(am-1) is the zero morphism.
The morphism «,, is the canonical morphism

X (Ny)i X = [[(No)i ©5, X&

k>1

so that the cofiber of ay is given by [Tyse(Nu )ik ®x, X®X.
The canonical morphism cofib(axn) — cofib(an-1) is the morphism

[Nk @5, X > [T (Nac1)x @5, X

k>2 k>2

induced by the morphisms (Nn)x = (Nn-1)x for k > 2.
So the result follows from lemma 4.12.
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Proposition 4.8. Let C be a Q-linear stable presentably symmetric monoidal
category, Q a non-counital cooperad in C, whose counit induces an equiva-
lence Q1 ~ 1 with Koszul-dual operad Q. Let A be a Q-coalgebra in C and
XeC.

There is a canonical equivalence

triv «2 A ~ llirnNn %A

<n

in C and so especially a canonical equivalence
triv +“ (Qo X) =~ 11i<rnNn 07 (QoX) = lliznj\fn oX.
in C.

Proposition 4.8 follows immediately from lemma 4.9 2. and lemma
4.11, which we will prove in the following;:

Lemma 4.9. Let C be a stable symmetric monoidal category compatible
with small colimits that admits small limits and let n € N.

1. Let O be a non-unital operad in C, whose unit induces an equivalence
1~ Oy with Koszul-dual cooperad 0.

The canonical map of cooperads Tm(0V) — OV makes T(0") to a
right comodule over OV in C¥>! that gives rise to a right O-module
My in @21 via Koszul-duality.

For every O-algebra A in C there is a canonical equivalence
trivog A ~ colimi<n M, 09 A

in C.

2. Let Q be a non-counital cooperad in C, whose counit induces an equiv-
alence Q1 ~ 1 with Koszul-dual operad QY. Let A be a Q-coalgebra in
C.

There is a canonical equivalence
.0 . 0
triv* - A~limN, »~ A
1<n

in C.

Proof. 1: By remark 2.14 there is a canonical equivalence
colimi<, O of, (o.,) A—- A

in Algy(C).
Applying the left adjoint functor trivoe —: Alg,(€) — € to this equiv-
alence we get a canonical equivalence

colimicntrivog (O of (o ) A) = trivog A
in €. There is a canonical equivalence
trivog (O of, (o) A) 2 trivog (o) A = (triv o (o) O) 0o A

in €. By remark 4.10 the right O-module triv of (¢_,) O is Koszul-dual to
the right O¥-comodule 7,(0"). This completes 1.
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2: By the dual of remark 1.6 we have symmetric monoidal embeddings
C c € c @" such that C',C” are stable symmetric monoidal categories
compatible with small respectively large limits, the embedding C c €’
admits a right adjoint R, the embedding €’ c C” preserves small limits
and the embedding € c C” preserves small colimits.

The symmetric monoidal embeddings € c € c €” yield embeddings
Op(€)™ c Op(€")™ and CoOp(C)"* c CoOp(C")"".

As the embedding € c " preserves small colimits, the Koszul-duality
equivalence Op(€”)}i;, = CoOp(C”)gy, restricts to the Koszul-duality
equivalence Op(€)jg,;, = CoOp(C)iry, and the Koszul-duality equivalence

(=) ogv triv : RModgv (€"*1) = coRModo (€"%1) : (=) # triv

restricts to the corresponding equivalence for C.

Thus the object M, of € gets the similarly defined object in C”.

By the dual version of 1. applied to €” and the images of Q and A in
C" there is a canonical equivalence

. .Q . Q
0 :triv +or A ~ limNy, *er A
1<n

in @”, where we use the cocomposition product and limit in €” as indi-
cated.

As € is closed under small limits in € and the embedding €= c €%
is monoidal, the equivalence 0 is an equivalence

0 : triv *8, A~ llimNn *8, A
<n

in €', where we take the cocomposition product and limit of €.

Applying the right adjoint functor R : €' - € we get a canonical
equivalence

triv g A = R(triv xgr A) = 111£n R(Ny *or A) = 11131 Nu %o A

in €, where the cocomposition product and limit is formed in € (see remark
2.10 for the definition of relative tensorproducts in representable planar
operads).

O

Remark 4.10. Let C be a stable symmetric monoidal category compatible
with small colimits and let n € N.

Let O be a non-unital operad in C, whose unit induces an equivalence
1 ~ Oy with Koszul dual cooperad 0.

The canonical map of cooperads T,(0Y) — OV makes T (0") to a right
comodule over OV in C¥>1,

The right O-module triv of, (o.,y O in €™! is Koszul-dual to the right
0" -comodule T, (0").

Proof. Denote 1 : fn(O<n) = O the canonical map of operads.
By remark 4.20 we have a commutative square of categories

RModg (€¥2!) ———— coRMod v (C¥21)

lw* l(wv)*

RMody, (0., (€™*') —— coRMod., (ov)(€*!)

lﬂ)* l(#’v)*

RModp (€¥21) ———— coRMod v (C¥21).
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The diagonal of this square sends the augmentation O — triv to both
objects we want to identify.
O

Lemma 4.11. Let C be a Q-linear stable presentably symmetric monoidal
category, Q a mon-counital cooperad in C, whose counit induces an equiv-
alence Q1 ~1 and A a Q-coalgebra in C.

For every n e N the canonical morphism
) Q
Npo" A= N, A
in C is an equivalence.

Proof. We show this by induction on n > 1.

The category €% is stable and for every X e C¥ the functor (=)o X :
e¥ - ¥ is exact.

Hence the category coRModg(€*) is stable and the forgetful functor
coRModq (€¥) — €% is exact. So the functors (=) o? A : coRModq(C¥) —
€%, (=) *? A : coRModg(C¥) —» CF are exact.

By remark 4.6 the fiber F in the stable category coRModg (€¥>!) and
thus in coRMon(CE) of the morphism Ny+1 — Ny, is the cofree right
Q-comodule on a symmetric sequence in € concentrated in some degree.

We have a commutative square

Fo? A——Np10?A——Nyo2 A

L]

Fr2A——Npp #2A — Ny #2A

in G, where both horizontal morphisms are fiber sequences.
So by induction we are reduced to show that the canonical morphism

Fo?ATFx+2A

is an equivalence.

For n = 1 the object N1 is Q considered as a right comodule over
itself, i.e. the cofree right Q-comodule on the symmetric sequence in €
concentrated in degree 1 with value the tensorunit of C.

Consequently we need to see that the canonical morphism

a:Zo%A 572 A

in € is an equivalence if Z is the cofree right Q-comodule on a symmetric
sequence X in € concentrated in some degree k > 1.

As Z is the cofree right Q-comodule on X, by lemma 2.19 the morphism
« is the canonical morphism

XoA~Zo%A5Z+"AxXxA

in C.

As X is concentrated in degree k > 1, the last morphism is the norm
map (Xix ® A®%)p, - (Xi ® A®*)¥< in € that is an equivalence as € is a
Q-linear category.

O

85



Lemma 4.12. For every d >1 and n > 1 the rational homology of (Nn)a
is concentrated in degree 1 —n.

Especially for every d > 1 the canonical map of spectra (Nn)a —
(Nu_1)a is the zero map in Sp™d (as it induces the zero map on ratio-
nal homology).

Proof. We will show the following:

1. For every d > 1 the rational homology of Ny is concentrated in de-
grees > 1 -n.

2. For every d > 1 the rational homology of Nj is concentrated in de-
grees <1-n.

1: By remark 4.6 the fiber F of the canonical map N, — N,_1 in
coRModcocommncu(SpE) is the cofree right Cocomm™“"-comodule on the
symmetric sequence concentrated in degree n with value Lie(1), ~ Lie,[1-
n]. So we have that

Fq = (Liea[1-n]®(Cocomm™™)®*M)g ~ ] Lien[1-1]®Zax (s, x...x54,) 1
di+...+dp=d

has homology concentrated in degree 1 —n.

Using the fiber sequence Fqg - (Nn)a & (Nu-1)a statement 1. follows
by induction on n > 1, where the case n = 1 follows from N; ~ Cocomm™"
and that 1 is connective.

2: Denote 7sn (Lie(1)) the fiber of the canonical map Lie(1) - 7 (Lie(1))
of operads considered as a map of right Lie(1)-modules in Sp=.

Applying the exact functor (=) opie(1) triv : RModLie(l)(SpE) - Sp”
we get a fiber sequence W — triv — N, and so for every d > 1 a fiber
sequence Wq — 0 — (Ny)a so that we have Wg ~ Q((Nn)a)-

Hence 2. is equivalent to the condition that for every d > 1 the rational
homology of Wq = (7on(Lie(1)) opie(1) triv)a is concentrated in degrees
< -n.

By remark 4.13 Wy is the colimit of a filtered diagram 7, (Lie(1)) ~
Do — ... > Di — .... such that the cofiber Cy of the morphism Dy_; — Dy
is equivalent to the k-th shift of

COhme(gi“ﬁ”)ndcg (T>n(Lie(1))1, ® Q) Ton (Lie(l))fl_1(i) ® (g? Lie(l)fz_l(i) ®...
iely

ielq

(=0%) Lie(l)ﬁ:l(i) e ® trivfﬁh(i))’

iely i€l

where (Fink+?) c (Fin5*?) denotes the full subcategory spanned by

ndeg
f, f f

the sequences of maps of finite sets f : J BN | P = .51 of length

k + 2 such that no map in the sequence is a bijection.

So Cy is equivalent to the k-th shift of

colimfe(ginsn);deg(LieIl [1- 11 []® @ Lieg1(;)[1- | '@ ] e..

iely

. -1,. .
® @ Liep1)[1-[fi () ]© & trivis ),

iely i€l

where (?inﬁ”)i} deg C (Fink*?) denotes the full subcategory spanned by

f f f
the sequences of maps of finite sets f : J 2 T = 5 T of length
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k + 2 such that all maps in the sequence are surjections, no map in the
sequence is a bijection and the cardinality | I; | of I; is larger than n.
For every f € (fﬂn]g”)/ and 1 < j <k the object ®;er; Lieg1;)[1- |
J

ndeg
f7(i) |] has homology concentrated in negative degrees such that

Lier, [1-| 11 [] ® @) Lieg1 ) [1- | ') ] ...

iely

® @ Lieg1(;)[1- | i@ le ® trives )
el i€l
has homology concentrated in degrees < —n — k.

Thus the cofiber Cyx has homology concentrated in degrees < —n.

So by induction on k the homology of Dy is concentrated in degrees
< —n, where the case k = 1 follows from the fact that Do ~ 7n(Lie(1)) has
homology concentrated in degrees < —n.

Thus (75n(Lie(1)) orie(1) triv)gq = colimys1 Dy has homology concen-
trated in degrees < —n.

O

Remark 4.13. Let C be a stable symmetric monoidal category compatible
with small colimits.
For every n € N and finite set J denote Finj the groupoid with objects

fu-2
_—

sequences of maps of finite sets f :J SN Tn-1 N 11 of length n
and the evident isomorphisms.

Given symmetric sequences O1,...,On for some n > 2 the composition
product (01 0 ...0On)a at degree d > 0 is canonically equivalent to the

colimit

colimfezinz ((01)1, ® @ (02)p1(y ® . ® @ (On)e-1 (i)

iely ieln_1
(see [3] def. 2.12. for a more detailed treatment).

Let O be an operad in C with Q¢ the zero object and unit L - O1 an
equivalence.

Given a left O-module X and right O-module Y in CT>' the object
XopY in C is the geometric realization of the simplicial Bar-construction
B(X,0,Y): A°? - C that sendsn to Xo O™ o Y.

For every n € N denote B(X,0,Y)" the colimit over the restriction
Ay c A°P — @, where Ay © A s the full subcategory spanned by the
objects [r] with r < n.

We have induced maps o™ : B(X,0,Y)" - B(X,0,Y)™" that form
a filtered diagram X oY =~ B(X,0,Y)? » ... > B(X,0,Y)" - ..., whose
colimit is the geometric realization of B(X,0,Y), i.e. Xop Y.

Denote Ly, — B(X,0,Y)n ~ X0 O™ oY the n-th latching object of
B(X,0,Y) defined as the colimit of the restriction of the functor

B(X,0,Y
(AP)jn) = AP 22X, 6 4o the full subcategory spanned by the
surjective maps [n] - [k] in A with k # n.
By [18] remark 1.2.4.5. there is a canonical equivalence

Xo0™ oY = B(X,0,Y)n = Ly ® cofib(a™ )[-n]

and so a canonical equivalence (X 0 O°® 0Y)q = (Ln)a @ cofib(a5™*)[-n].
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Under the equivalence (X o O™ oY)q =

COhmeg-anrz(Xh ®®Xf 15) ® - ®®Of 1) ® ® Yf 1 ())

iely iel, iely 41

the summand (Ln)a corresponds to the summand

colimfs(%ngm) (X1, @®Xf 1) ® - ®®Of 1) ® ® Y1 iy)

iely, ielpy

where (?lnn+2)deg c (Fin4*?) denotes the full subcategory spanned by the

n fn f
sequences of maps of finite sets f:J N Lns1 = ... = 1) of length n + 2

such that at least one of the maps is a bijection and the shifted cofiber
cofib(ay™)[-n] corresponds to the summand

Colimfe(rj—msw)ndeg (X, ® ®Xf 1) ® ... ® X Of 1) ® &R Y- -1 G ))

iel, ielni1

where (Fin*?) c (Fin5*?) denotes the full subcategory spanned by the

ndeg

sequences of maps of finite sets f :J LN Th+1 LN n, 11 of length n + 2

such that no map in the sequence is a bijection.

Remark 4.14. Let C be a bicomplete preadditive symmetric monoidal
category compatible with small colimits.

We expect that the category CF carries another monoidal structure o'
different from the composition product with Xo'Y = [T, 4 (X ® Y®) 5k for
X,Y € €%, But we are unable to construct this monoidal structure here.

This monoidal structure restricts to @=>' and gives rise to a left action
of C% on itself that restricts to a left action of G on C.

The identity of C¥ lifts to a lax monoidal functor a from this monoidal
structure on CF to the monoidal structure on CF given by composition
product, whose structure map

XoY = [[(Xk® YY), - Xo' Y= [[(Xi® Y™k

kelN keN

is the norm map.

Similar as in the proof of lemma 2.19 the lax monoidal functor a re-
stricts to a monoidal functor on CF>1 .

Hence via this monoidal structure the composition product on C¥=' acts
on C by X o' Y = [T, (X ® Y®) 5k for X e C¥ Y eC.

Given a non-unital operad O in C a left O-module in C with respect to
this action is a O-algebra with divided powers and given a mon-counital
cooperad Q in C a left Q-comodule in C is a conilpotent Q-coalgebra.

Applying Koszul-duality to this modified left actions of C¥2* on C we
get an adjunction '

AlgPd (€) 2 Cocoalg(€)*™

and by composing with the forgetful functor an adjunction

AlgP! (€) 2 Cocoalg(C)*™" 2 Cocoalg(C), (12)

Prim

where the right adjoint lifts the functor Cocoalg(C),y —— € e,
The right adjoint of adjunction 12 yields a functor

Bar

Bialg(€) = Mon(Cocoalg(C)) 4 Mon(AlgPe (€)) =2 Alghs (@).
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As the forgetful functor Algii(@) — C does not commute with geomet-
ric realizations, it does mot follow that the functor Bar is an equivalence
that forgets to the shift functor of C.

We conjecture the following:

Conjecture 4.15. For every X € Bialg(C) the canonical morphism X(6(X)) —
Bar(0(X)) is an equivalence.
If conjecture 4.15 holds, the functor Baro@ : Bialg(C) — Algi?e(e) lifts

Prim

the primitives Bialg(C) — Cocoalg(C)y; —— €.
So by the universal property of Lie(C) (remark 2.27) the functor Barof
factors as

Bialg(C) B> Lie(€) — AlgPL (€)
for a unique functor Lie(C) — Algi?e(e) over C.

This makes it possible to ask the following question:

Question 4.16. Is the forgetful functor Lie(C) — Alg‘ﬁ?e(e) an equiva-

lence if C is the category of K-module spectra for some field K%

This question is motivated by [6] theorem 1.2.5. of Fresse, according to
which restricted Lie algebras over a field K are divided power Lie algebras
in the category of K-vector spaces.

Remark 4.17. Let C be a stable category and D a category that admits
geometric realizations, finite products and totalizations.

Let ¢ : D — C be a conservative functor that preserves geometric real-
izations, finite products and totalizations.

The adjunction Bar : Mon(D) = D, : Cobar is an equivalence.

Proof. As ¢ : D — C preserves geometric realizations, finite products and
totalizations, the functor ¢ sends the unit and counit of the adjunction
Bar : Mon(D) 2 D : Cobar to the unit respectively counit of the adjunc-
tion Bar : Mon(€) = €, : Cobar.

As ¢ is conservative, it is enough to see that the adjunction Bar :
Mon(C€) 2 C. : Cobar is an equivalence.

As C is stable, the forgetful functor Mon(€) ~ Alg(C*) =~ Alg(c¢d) » ¢
is an equivalence.

The functor Bar : Mon(€) ~ € - €, ~ € is equivalent to the func-
tor ¥ : C ~ C as for every A € C ~ Cmon(C) the relative tensorproduct
Bar(A) = 0 ®a 0 is the coproduct of A — 0 with itself in the category
Calg(Moda (€*)) =~ Cmon(C)a; = Cy.

O

Lemma 4.18. The functor H : Algy; (€) — Cocoalg(C)y, preserves finite
products.

Proof. In the following we consider N, Z as categories by viewing them as
posets.

Denote «y : Fun(Z, Cocoalg(€)s;) = [1z Cocoalg(€)4; the functor that
sends a filtered object A to its associated graded object (Ai/Ai_1)icz.

7 restricts to a functor §: Fun(N, Cocoalg(C),) — [Ty Cocoalg(C)y,.
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The functor H : Algy;,(€) — Cocoalg(€)y; admits a functorial filtra-
tion:
By [16] 3.1. the functor H factors as

colim

Alg;..(C) LN Fun(N, Cocoalg(€)y;) —— Cocoalg(C)y,

and the composition
Alg;.(€) , Fun(N, Cocoalg(€)y,) LA [ 1 Cocoalg(€)s, 5 Cocoalg(€)y,
N

factors as the forgetful functor Algp;.(€) — € followed by the shifted
symmetric functor So X : € — Cocoalg(€)y;,.

The functor colim : Fun(N, Cocoalg(€)y;) — Cocoalg(C),, is symmet-
ric monoidal when Fun(N, Cocoalg(€)y,) carries the Day-convolution sym-
metric monoidal structure.

Consequently it is enough to see that the functor H' : Alg; .. (C) —
Fun(N, Cocoalg(€)y/) is symmetric monoidal when Algy; (C) carries the
cartesian structure and Fun(N, Cocoalg(€)y,) the Day-convolution.

The functor v and so its restriction 8 and the functor

® : [Ty Cocoalg(€)y; — Cocoalg(€)y; are symmetric monoidal with
respect to Day-convolution.

As @ o (3 is conservative, the assertion follows from the fact that the
forgetful functor Alg;;.(€) — €, shift functor and symmetric functor S :
€ — Cocoalg(C)y, preserve finite products:

As the object-wise symmetric monoidal structure on Calg(C) is co-
cartesian and € is preadditive, the free commutative algebra functor € —
Calg(C) is symmetric monoidal when € carries the cartesian structure and
Calg(€) the object-wise symmetric monoidal structure.

Thus the free commutative algebra functor € — Calg(C) lifts to a
symmetric monoidal functor € - Cobialg(C), where € carries the cartesian
structure and Cobialg(C) the object-wise symmetric monoidal structure.

So the composition S : € - Cobialg(€) - Cocoalg(C)y; preserves finite
products.

O
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4.2 Derived Koszul duality

In this section we prove the statements about Koszul-duality we used in
the last section.

We start with constructing a Bar-Cobar adjunction between augmented
associative algebras and coaugmented coassociative coalgebras in a monoidal
category that admits geometric realizations and totalizations (prop. 4.23).

Then we extend this Bar-Cobar adjunction to a Bar-Cobar adjunction
between modules and comodules (prop. 4.23).

Finally we apply these Bar-Cobar adjunctions to the composition prod-
uct on some nice preadditive symmetric monoidal category to obtain
Koszul-duality adjunctions between augmented operads and coaugmented
cooperads and their algebras and coalgebras (4.21).

We show that these Koszul-duality adjunctions are equivalences under
reasonable conditions (prop. 4.22).

The results about Koszul-duality are extensions of results of [18] 5.2.
and are inspired by [8].

We start with presenting the results we will prove:
Given a monoidal category € that admits geometric realizations we
have a functor

Bar: Alg(C);; — Coalg(€)y/, A= 1®a 1= colimpenor A®",
where the comultiplication of 1 ®4 1 is given by the morphism

1@0A1~10A AL~ (1®2A1)®(1®al)~1®a1Q®a1
induced by the augmentation of A € Alg(€)/;.

Let C,€ be monoidal categories and D a (€, &)-bimodule such that
C, D, & admit geometric realizations.

Given A € Alg(C),1,B € Alg(€)/y the functor
triva,g : D ~ 1BMody (D) - aBModg (D)
that forgets along the maps of algebras A — 1,B — 1 admits a left adjoint
18A-®51: ABModg (D) - D, X = 184 X®51 = colimpeacr (A®"@X0B®™)

by remark 2.10.
This left adjoint 1 ®a — ®p 1 lifts to a functor

ABMOd]}(@) g Bar(A)COBMOdBar(B)(D)»
Given X € sBModg (D) the biaction
19AX®l~10AA®AX®B®s1 - (19A1)Q (1A X®p1l)®(1®pl) =~

1eA10AX®p1lepl
is induced by the augmentations of A, B.

More precisely there is a commutative square

BMod(D) ———— coBMod(D) (13)

| |

Alg(€)/q x Alg(€)/n — Coalg(€)y; x Coalg(&)q,
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that induces on the fiber over every A € Alg(C)/y,B € Alg(€)/1 a functor
ABMOdB(D) - Bar(A)COBMOdBar(B)(D)
lifting the functor 1 ® s — ®g 1 : ABModg (D) — D.

Dually let €, & be monoidal categories and D a (€, £)-bimodule such
that G, D, & admit totalizations.

Then by replacing C,D,& by C°P,D°P E°P and turning to opposite
categories we obtain a functor

Cobar : Coalg(€)q, - Alg(C)/1,A » 1" 1:= lim A®"

neA°P

and a commutative square

coBMod (D) ——— BMod(D)

| |

Coalg(€)y/ x Coalg(€)g) — Alg(€)/y x Alg(&)/a

that induces on the fiber over every A € Coalg(€)y;, B € Coalg(€)y, a
functor
acoBModg (D) = cobar(a)BModcobar(s) (D)

lifting the functor
18" -®" 1: scoBModp(D) = D, X - lim (A®" ® X ®B®").

If €, D, & admit realizations and totalizations, we have adjunctions
Bar : Alg(€)/q 2 Coalg(C)4, : Cobar, BMod(D) 2 coBMod(D)

and square 13 is a map of adjunctions, where the left vertical functor is a
cartesian fibration and the right vertical functor is a cocartesian fibration.

So given A € Alg(€)/1,B € Alg(€);1 and morphisms Bar(A) - A',
Bar(B) - B’ in Coalg(C)4, respectively Coalg(€)q; square 13 induces
an adjunction
ABMOdB(D) =2 AICOBMOdBr(D).

Remark 4.19. If the (C,&)-bimodule structure on D is compatible with
geometric realizations, for every Y € D the canonical morphism

1®atriva,p(Y)®p1 = colimpeacr (A ©Y®B®") - Bar(A)®Y®Bar(B) ~

colimpeaor (A®™) ® Y ® colimyenor (B®")

is an equivalence.

So in this case the functor ABModg(D) - pgar(aycoBModga(s)(D)
exhibits the category par(a)coBModgar(s) (D) as the category of coalgebras
over the comonad associated to the adjunction 1®A-®s1l: ABModg (D) 2
D :triva B.

Remark 4.20. Let C, & be monoidal categories and D a (€, E)-bimodule
such that C, D, E admit geometric realizations.
Square 13 is a map of cocartesian fibrations:

Given morphisms A — A’ in Alg(€);1 and B — B’ in Alg(&)x and
X € ABModg(D) the induced morphism 1 ® (A’ ©a X ®5 B') ®p/ 1 —
1®a X®p 1 lies over the canonical equivalence in D.
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Given a symmetric monoidal category € compatible with small colimits
the category C¥ is a monoidal category endowed with the composition
product and so endows G with a bimodule structure over itself that
restricts to a bimodule structure on € over C=, where CF acts trivially
on € from the right. This bimodule structure on € over C* restricts to a
bimodule structure on € over G¥>1.

If € admits totalizations, we can form the Bar-Cobar adjunctions for
€21,

If € has small colimits (but the symmetric monoidal structure on € is
not neccessarily compatible with small colimits), the composition product
on €¥2! does not define a monoidal category but a representable planar
operad.

Thus we cannot form the Bar-Cobar adjunctions for €=*! directly.

But by embedding € symmetric monoidally into a preadditive sym-
metric monoidal category compatible with small colimits that admits to-
talizations we can construct the Bar-Cobar adjunctions for €' in this
more general case by the following proposition 4.21:

Proposition 4.21. Let € be a preadditive symmetric monoidal category
that admits small colimits and small limits.

1. There is an adjunction
(-)¥ = Bar: Op(C)}i1iy = Alg(C™*!) iy 2 Coalg(C™>! )iy,
= CoOp(€)trivy : (-)” := Cobar.

2. We have an adjunction RMod(€¥*') 2 coRMod(€”2') and a map
of adjunctions

RMod(€*>!) —— coRMod(€>21)

| |

Op(€)}tziy —> CoOpP(€)isy)-
Given an augmented non-unital operad O in € and a morphism 0¥ —
Q of coaugmented cooperads in C this square induces an adjunction
RModo (€”2') 2 coRModq (€™21),

where the left adjoint lifts the functor (=) oo triv : RMode (€*2!) —
C left adjoint to the trivial right O-module functor and dually the
right adjoint lifts the functor (=) *< triv : coRModg(€¥21) — @ right
adjoint to the trivial right Q-comodule functor.

3. If the symmetric monoidal structure on C is compatible with small
colimits, there is an adjunction LMod(€) 2 coLMod(€) and a map

of adjunctions

LMod(€) —— coLMod(€)

| |

Op(€)jeriv — CoOP(C)isy/-
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Given an augmented non-unital operad O in € and a morphism 0¥ —
Q of coaugmented cooperads in C this square induces an adjunction

Alg, (€) = LModo (€) = Coalgh?(€) = coLModq (€),

where the left adjoint lifts the functor triv oo (=) : Alg,(C) —» €
left adjoint to the trivial O-algebra functor and the right adjoint lifts
the functor triv o? (=) : Coalggd(e) — C right adjoint to the trivial
divided power Q-coalgebra functor.

Proof. If the symmetric monoidal structure on C is compatible with small
colimits, the compositon product on C* defines a monoidal structure.
In this case the statements 1.,2.,3. follow from prop. 4.23.

Otherwise there are symmetric monoidal embeddings € c €’ c €” with
preadditive symmetric monoidal categories €', C” compatible with small
colimits such that the embedding € c € admits a left adjoint L, the
embedding €’ c¢ C” preserves small colimits and the embedding € c €”
preserves small limits.

The embeddings € c €', €’ c €” induce embeddings

Opnu(e) c Opnu(e/) c ()pnu(ell)7 COOpncu(e) c COOpncu(el) c COOpncu(eII)7

RModo (€”2') ¢ RMode (€*2") c RMode (€"*2"),
coRModg (€”2') ¢ coRModo (€21) c coRModq (€"*2").

The induced right adjoint embedding C¥** ¢ €'®*! is monoidal with
respect to cocomposition product. Thus the embeddings

CoOp(€)ise, c CoOp(C )i/, coRModa (€¥*') c coRModg (€'72)

admit left adjoints L' respectively L” that forget to the functor L=>!.

As the symmetric monoidal structure on €” is compatible with small
colimits, we have the adjunctions of 1. and 2. for C”.

The right adjoints

(=) : CoOp(C")ixivs — Op(@")‘/?riv, X > triv # >~ triv
(=) % triv : coRModg (€"*!) - RMode (€"*>")
restrict to functors (-)” : CoOp(€)giy, = OP(C) iy
(=) #7 triv : coRModg (€72') - RMod (€*=")

as Cis closed in " under small limits.
The left adjoints

(=) Op(€" )k — CoOP(E )i,
(=) oo triv : RMode (€"721) - coRModg (€"721)
restrict to functors ()" : Op(€")}iy;, = CoOp(€'){y, and
(=) oo triv : RModo (€**) - coRModo(€™!) as €' is closed in €”

under small colimits.
Thus the composition

nu /ynu (_)V /yncu L’ ncu
Op(e)/triv c Op(e )/triv D COOp(e )triv/ - COOp(G)triv/
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is left adjoint to the functor (-)* : CoOp(C)yiy, = Op(C)jy;, and the
composition

(=)o@triv
_

RMode (€21 ¢ RMode (€72") coRModo (€21 1,

coRModg (€721)

is left adjoint to the functor (=) “triv : coRModq (€*2!) - RMode (€*21).
O

Proposition 4.22. Let C be a stable symmetric monoidal category com-
patible with small colimits that admits small limits.

1. For every non-unital operad O in C, whose unit 1 — O1 is an equiv-
alence, the unit O — (V)Y of the Koszul-duality adjunction

(=)": OP(€)iriv & CoOP(C)FSy, : (=)

is an equivalence and for every non-counital cooperad Q in C, whose
counit Q1 — 1 is an equivalence, the counit (Q")" — Q is an equiva-
lence.

2. For every non-unital operad O in C, whose unit 1 - O1 is an equiv-
alence, the Koszul-duality adjunction

(-) oo triv: RModo (€™2') 2 coRModgv (€72 : (-) " triv
is an equivalence.

Proof. The unit of the adjunction of 1. applied to an operad O is equiva-
lent to the unit of the adjunction of 2. applied to O considered as module
over itself.

So 1. follows from 2. and the following statement, where we use that
the counit O — 1 is an equivalence if the unit 1 — O; is an equivalence
(which follows from the proof of lemma 2.18):

For every non-counital cooperad Q in €, whose counit Q; — 1 is an
equivalence, the Koszul-duality adjunction

(=) ogv triv : RModgv (€72') 2 coRModo (€21 : (=) «“ triv. (14)

induced by forgetting along the counit (Q")Y — Q is an equivalence.

So we need to see that the unit and counit of the adjunction of 2. and
of the adjunction 14 are equivalences.

We will show that the unit 1 of the adjunction of 2. is an equivalence.
The case of the counit of adjunction 2. is dual and the other cases are
similar.

We will show that for every k > 1 the following statement () holds:

For every n > 1 and every right O-module X that vanishes under degree
n, i.e. that belongs to RMode(€¥2"), the morphim

(15 )i : Xie = ((X og triv) #° triv)y,

is an equivalence.

By lemma 2.16 the object X og triv and so (X og triv) «9 triv belongs
to @>n . Hence 7 is an equivalence if n > k.

Consequently it remains to show () for n < k, which we do by de-
scending induction on n.
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By remark 2.13 there is an X' ¢ RModg(€¥>"*!) and a morphism
X' - X in RMode(C>>") that induces an equivalence in degree larger
than n.

The cofiber X" in the stable category RMode(€*>!) of the morphism
X’ - X is the trivial right ©O-module concentrated in degree n with value
Xy (remark 2.15), where we use that the unit 1 - O; is an equivalence.

We have a commutative square

X’ X X"

lnx/ lnx l?]xu

(X' 0o triv) #°” triv —— (X og triv) ° triv — (X" og triv) +° triv

in RMode (€*21), where bottom and top morphisms are cofiber sequences.

So by our induction hypothesis we are reduced to show that nx is an
equivalence if X carries the trivial right O-module structure.

By proposition 4.21 the left adjoint of adjunction 2. lifts the functor
(=) oo triv : RMode (€72') — € left adjoint to the trivial right O-module
functor.

So by adjointness the right adjoint

(=) *ev triv : coRModgv (€721) - RMode (€72")

of adjunction 2. sends cofree right ©¥-comodules in €¥*! to trivial right
O-modules in C>1,

On the other hand by remark 4.20 the left adjoint of adjunction 2.
sends trivial right O-modules in €*>! to cofree right OV-comodules in €>>!
as the composition product on €¥>! preserves small sifted colimits in each
component.

The dual statement about the counit of adjunction 2. follows from
the fact that the composition product on €¥=! also preserves small sifted
limits in each component as it is equivalent via the norm map to the
cocomposition product on €Z*! by lemma 2.19.

O

The rest of this section is devoted to the proof of prop. 4.23, in which
we construct the Bar-Cobar-adjunction for associative algebras and bi-
modules.

We start with preparing the proof of proposition 4.23.

Let C,D, £ be categories.

We call a right fibration € — D x € left representable if for every X € D
the right fibration {X} x5 C — & is representable, equivalently the category
{X} xp € admits a final object.

In other words a right fibration ¢ — D x & is left representable if it
classifies a functor D°P x P — § adjoint to a functor D°P — P(&) that
factors through €.

We call a right fibration € - D x & right representable if the right
fibration C - D x & ~ € x D is left representable.

So a left and right representable right fibration € — D x & classifies
functors F°P : DP —» & c P(&) and G : E°° > D c P(D) such that
F:D — &° is left adjoint to G: E°P - D.
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Given categories €, D, &, €', D’ &’ and left representable right fibrations
C->DxE C - D x& we call a commutative square

C— ¢ (15)

|

Dx&—— D' x&

a map of left representable right fibrations if for every X € D the induced
functor {X} xp € — {X} xq € preserves final objects.

The left representable right fibration € — D x &€ classifies a functor
DP x £°P — § adjoint to a functor D°P — & c P(€) and similar for € —
D' x &

Square 15 classifies a natural transformation from the functor D°P x
€°P? - § to the functor D°P x £°P — D'P x £’°P - § adjoint to a natural
transformation from the functor D°® — € c P(€) to the functor D°F —
DP - &' c P(&") - P(&) adjoint to a natural transformation o from the
functor D°P — & c P(&) - P(&’) to the functor D°® — D — &' c P(&').

The functor D — & c P(&) - P(E) factors as D°P - & - &' < P(&")
so that « induces a natural transformation 8 from the functor D°? — & —
&' to the functor D°P — D'P - &'

Square 15 is a map of left representable right fibrations if and only if
(B is an equivalence.
Similarly we define maps of right representable right fibrations.

If C - Dx&,C" — D'xE’ are left and right representable right fibrations,
square 15 is a map of left and right representable right fibrations if and
only if 8°P is an equivalence and defines a map of adjunctions from the
adjunction D 2 €°® to the adjunction D’ =2 &P,

For every category € the twisted arrow-category Tw(C) — € x C°P
is a left and right representable right fibration classifying the identity
adjunction of C.

Given an operad O® and O®-monoidal categories C®, D®, £® we call a
O0® monoidal functor €® — D® xye E® a left (right) representable right
fibration of ©®-monoidal categories if it induces on the fiber over every
X € O a left representable right fibration.

The functor Tw(-) : Cate — Cato that sends a category to its twisted
arrow-category preserves finite products and so yields for every O®-monoidal
category €® — 0® a 9®-monoidal functor Tw(€)® — C® x (C®)™*.

To define Koszul-duality we study for O® = Ass® BM® under which
conditions a left (right) representable right fibration C® — D® xe £® of
O®-monoidal categories induces a left (right) representable right fibration
Alg/o(e) - Alg/o(D) x Alg/o(E).

We first remark that Alg,o(C) — Alg;o (D) x Alg)o(€) is a right fibra-
tion:

Given a O® monoidal functor A® — B® that induces on the fiber over
every X € O a right fibration, the induced functor Alg,q(A) — Alg,o(B)
is a right fibration:
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If the commutative square

(.A®)Al - (B®)A1

|

(A% —— (%)

of O® monoidal categories yields on every X € O a pullback square, it is a
pullback square of O®-monoidal categories and so gives rise to a pullback
square

Fun(A', Algo(A) —— Fun(A', Alg,(B))

Fun({1}, Alg/o(A)) — Fun({1}, Alg,, (B)).

Let C®,D®, £® be BM®-monoidal categories and €® — D® xpye €€ a

BM®-monoidal functor.

Let A € Alg(Ca)/s,B € Alg(Cs)/s with images A" € Alg(Da)1,B" €
Alg(Db)/1 and 1 € Alg(&,)/l, 1e Alg(&,)/l.

For every Y € &m ~ 1BMody(&w) corresponding to Y e 1BMody (Em)

the pullback BM® x¢e C® along Y is a BM®-monoidal category and we
have a canonical equivalence

ABModg ({Y} xep Cm) = {Y} %, BMody (6) ABModp (Cm) =

{Y} Xem ABModB(Gm).

The forgetful functor {Y} xg, Cm = {Y} x¢,, aABModg(Cn) factors as
the forgetful functor

{Y} X&m Gm ind ABMOdB({Y} X&m @m) =~ {Y} X&m ABMOdB(Gm)

and thus preserves final objects if {Y} x¢,, Cnm admits a final object.

Consequently if the functor Cn — Dm x Em is a right representable
right fibration, the induced functor ABModg(Cm) = a/BModp/ (D) x Em
is and the forgetful functor Cn ~ 1BMod1(Cm) - ABModg(Cn) is a map
of such.

Let A € Alg(Cq)/g. As the functor
{1} X a1g(egry Alg(Tw(Ca)) — Alg(Ca)

is a right fibration, there is a unique map A’ —» 1 in Alg(Tw(C,)) lying
over the map A — 1 in Alg(€,) and lying over the identity of 1 in Alg(Cg¥).

Similarly for B € Alg(Cq )1 there is a unique map B" — 1 in Alg(Tw(Cs))
lying over the map B — 1 in Alg(Cy) and lying over the identity of 1 in
Alg(CP).

Thus the induced functor o-BModg/(Tw(Cm)) = aBModg(Cm) x CiF
is a right representable right fibration classifying a functor 6 : Cn —
ABModg(Cnm) and the forgetful functor Tw(Cw) ~ 1BMods (Tw(Cw)) —
A BModp/ (Tw(Cm)) is a map of such classifying an equivalence between
0 and the forgetful functor triva s : Cm » ABModg(Cm).
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If Cm, Ca, Cp admit geometric realizations, by lemma 4.29 and remark
2.10 the functor

ABModp/ (Tw(€p)) = aABModg(Cr ) x CP

is a left and right representable right fibration classifying an adjunction
1®s-®81: ABModg(Cm) 2 Cu : triva, where the left adjoint sends
X € ABModg(Cm) to 1®a X®B 1 ~ colimpeaor (A‘g>n X® B®“) by remark
2.10.

As next we need some facts about bimodules:

Let €, & be monoidal categories and D a (€, €)-bimodule classified by
a BM®-monoidal category M® — BM®. Let A € Alg(C) and B ¢ Alg(€).

We have the category ABModg (D) of (A, B)-bimodules in D.
We write BModa (D) for ABModa (D).

If M® - BM® is compatible with geometric realizations, we have a
BM®-monoidal category aBModp(M)® - BM® compatible with geomet-
ric realizations that exhibits s BModg (D) as bitensored over the monoidal
categories BModa (€), BModg(€), where the actions and monoidal struc-
tures are given by the relative tensorproduct.

Moreover we have a BM®-monoidal functor ,BModg (M)® - M® with
underlying functor ABModg(D) — D and underlying monoidal functors
BModa (€)® - €%, BModgp(&)® — £°.

A BM®-monoidal functor F : M® - M'® that induces on the fiber over
every object of BM a functor that preserves geometric realizations gives
rise to a commutative square

ABMOdB(M)® —_— F(A)BMOdF(B) (M/)®

| |

M® M’@

of BM®-monoidal categories with underlying commutative squares the
evident ones.

If M® - BM® is not compatible with geometric realizations, we embed
M® into the BM®-monoidal category M'® := P(M)® compatible with ge-
ometric realizations via the BM®-monoidal Yoneda-embedding and write
ABModg(M)® ¢ ABModg(M')® for the full suboperad spanned by the
objects of ABModg(D),BModa(C),BModg(¢).

So ABModg(M)® is an operad over BM®.

This definition extends the former one: If M® - BM® is compatible
with geometric realizations, the BM®-monoidal Yoneda-embedding M® c
M'® yields an embedding s BModg(M)® c ABModp(M')® of operads over
BM®, where we use the former definition of ABModg (J\/[)® :

If M® - BM?® is compatible with geometric realizations, the BM®-
monoidal Yoneda-embedding factors as BM®-monoidal embeddings M® c
M"® c M'®, where M”® - BM® is a BM®-monoidal localization of M'® =
P(M)® (and so a BM®-monoidal category compatible with small colimits)
and the embedding M® c M”® induces on the fiber over every object of
BM a functor that preserves geometric realizations.

The BM®-monoidal localization M"® ¢ M'® yields a BM®-monoidal
localization A BModg(M")® c s\BModg (M')®.
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The BM®-monoidal embedding M® c M"® yields a BM®-monoidal
embedding ABModg(M)® c ABModg (M")%.

Let € be a monoidal category and A € Alg(C).

By cor. 3.4.1.7. [18] there is a canonical equivalence Alg(BModa (C)) ~
Alg(€)a, compatible with the forgetful functors to Alg(€).

Now we are ready to state the main proposition concerning Koszul-
duality:

Proposition 4.23. Let C, & be monoidal categories and D a (C, £)-bimodule.

Assume that the tensorunit of € and € is a final object and that C, D, E
admit geometric realizations.

The functors
BMod(Tw(D)) - BMod(D) x BMod (D),

Alg(Tw(€)) - Alg(€) x Alg(€°F), Alg(Tw(E)) — Alg(E) x Alg(£)
are left representable right fibrations and both forgetful functors

BMod(Tw(D)) — Alg(Tw(€)), BMod(Tw(D)) - Alg(Tw(E))

are maps of such.

As the tensorunit of C is a final object, the canonical monoidal functor
{1} xeop Tw(C) = €y — € is an equivalence and thus induces an equivalence

{1} xa1g(cory Alg(Tw(€)) ~ Alg({1L} xeor Tw(€)) - Alg(C).

Thus every A € Alg(C) uniquely lifts to an object A" of Alg(Tw(C))
lying over the initial algebra 1 € Alg(C°P).

Similarly every B € Alg(&) uniquely lifts to an object B' of Alg(Tw(&))
lying over the initial algebra 1 € Alg(E°P).

There is a canonical map
ABModg (D) xgmod(p)y BMod(Tw(D)) —— aBModg/(Tw(D))
| |
ABModg (D) x BMod(D?) —————— ABModg (D) x DP
of left representable right fibrations.
Remark 4.24. The left representable right fibrations
BMod(Tw(D)) - BMod(D) x BMod (D),

Alg(Tw(€)) > Alg(€) x Alg(€™), Alg(Tw(€)) - Alg(€) x Alg(E™")

classify functors
BMod(D)® - BMod(D?), Alg(C)°® — Alg(€C°?), Alg(&)°® — Alg(E®)
and the forgetful functor

BMod(Tw(D)) — Alg(Tw(C€)) x Alg(Tw(¢&))
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classifies a commutative square

BMod(D)°® —— BMod(D°P)

| |

Alg(€)° x Alg(€)°P — Alg(CP) x Alg(€)°P.

So turning to opposite categories we obtain a commutative square
BMod(D) —— CoBMod(D)
Alg(@) x Alg(&) —— Coalg(C) x Coalg(&)
that induces on the fiber over every A € Alg(C), B e Alg(&) a functor

0 : ABMOdB(D) - Bar(A)COBMOdBar(B)(D)~

The map
ABModg (D) xpmod(p) BMod(Tw(D)) —— a-BModg/ (Tw(D))
ABModg (D) x BMod(D°?) ——— ABModg (D) x DP

of left representable right fibrations classifies an equivalence between the

functor
ABModg (D) - BMod(D) - CoBMod(D) — D

being equivalent to the functor
0
ABMOdB(D) — Bar(A)COBMOdBar(B)(D) - D

and the functor 1®x — ®p 1: ABModg(D) - D.

Proof. Denote M® — BM® the BM®-monoidal category classifying the
(€, &€)-bimodule D.

By lemma 4.25 the BM®-monoidal Yoneda-embedding M® ¢ M'® :=
P(M)® gives rise to a left representable right fibration

X = (M) xpreyrer TW(M')® = M xpye (MP)™Y
of BM®-monoidal categories.
By lemma 4.25 1. it is enough to see that the right fibrations
BMod(Xp) - BMod(D") x BMod(D°?), Alg(Xe) — Alg(€") x Alg(C°P),
Alg(Xe) - Alg(€") x Alg(e™)

are left representable and both forgetful functors
BMOd(er) - Alg(:X:e), BMOd(er) nd Alg(x,g)

are maps of such.
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By lemma 4.25 2. the BM®-monoidal co-Yoneda-embedding M® c
N® = (P(M*V)®)™ yields an embedding X$; — X% of left representable
right fibrations of BM®-monoidal categories.

As N® is compatible with totalizations, by lemma 4.25 3. the BM®-
monoidal category X% — BM® is compatible with geometric realizations
and the BM®-monoidal functor X& — N'® xgye (N®)™ induces on the
fiber over every object of BM a functor that preserves geometric realiza-
tions.

Moreover the BM®-monoidal category P(M™V)® = (N®)**Y — BM®
yields on the fiber over every object of BM a category that admits to-
talizations and the BM®-monoidal Yoneda-embedding M™" — P(M*")
preserves fiberwise totalizations.

As the tensorunit of C, € is a final object, the tensorunit of €', & also
is. So the canonical functors {1} xcor Xe = €3 = €', {1} xgor Xg = &)y — &
are equivalences.

Thus the assertion follows from proposition 4.26.

O

Lemma 4.25. Let O® be an operad, C® — 0% o O®-monoidal category
that induces on the fiber over every X € O a category that admits geometric
realizations and C® — D® a O®-monoidal functor that induces on the fiber
over every X € O a functor that preserves geometric realizations.

The O®-monoidal Yoneda-embedding C® c C'® := P(C)® gives rise to a
right fibration X§ := (C®)™V x(eeyrev Tw(€')® - C'® xpe (C®)™V of 0®-
monoidal categories.

1. The right fibration Alg,(Tw(C)) — Alg,o(C€) x Alg,s(C™) is left
representable if the right fibration Alg,o(Xe) — Alg)o (C')xAlg)q (C™)
is left representable.

Given a map of operads O'® - 0% the induced functor Alg)o(Tw(€)) —
Alg o (Tw(O" x0 €)) is a map of left representable right fibrations if
the functor Alg,q(Xe) = Algo(Xorxye) is.

2. The O®-monoidal functor X& — €'®xye (C®)™" is a left representable
right fibration of O®-monoidal categories and the O®-monoidal func-
tor X& — X% is a map of left representable right fibrations of O®-
monoidal categories.

3. If C® — 0% is compatible with totalizations, the O®-monoidal cat-
egory X8 — O is compatible with geometric realizations and the
O®-monoidal functor X& - C"® xge (C®)"" induces on the fiber over
every X € O a functor that preserves geometric realizations.

Proof. 1: The O®-monoidal Yoneda-embedding €% c €'® := P(C)® yields
a O®-monoidal equivalence

Tw(€)® = (€% xgo (€%)™) x(erex g (er@yrer) TW(E)®

over C® xge (C®)™V.
So we have a O®-monoidal equivalence Tw(C)® ~ €® xee X3 over
C® xge (€)Y that gives rise to an equivalence

Alg o (Tw(C)) = Alg)o(C) xa1g,, () Alg/o(Xe)
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over Algo(€) x Alg,o(C*Y).

So for every Y € Alg,,(€) we obtain a canonical equivalence

{Y} xa1g,0 (e) Algo (Tw(€)) = {Y} xaig,, ey Algjo(Xe).

2: Every category B is a localization of a category B’ that admits
small colimits.

We show that the right fibration Xg := B xg0p Tw(B') — B’ x B°P is
left representable and for every functor A — B preserving geometric real-
izations between categories that admit geometric realizations the induced
functor X4 — X is a map of left representable right fibrations:

The full subcategory inclusion B c B’ admits a left adjoint L so that
the opposite embedding B°P c B’°P is a left adjoint functor.

So with the right fibration {Z} xg Tw(B") ~ (B"?),;, - B"P for Z ¢ B’
also its pullback {Z}x5: X5 — B along the left adjoint functor B°P c B"P
is representable.

Thus the left representable right fibration Xg — B’ x B°P classifies a
functor B°P x B — § adjoint to the functor L°P : B°P — B°P c P(B°P).

As the functor F : A — B preserves geometric realizations, the canoni-
cal natural transformation Lg o F' — F o L4 is an equivalence so that the
functor X4 — X is a map of left representable right fibrations.

3: If B admits totalizations, the right fibration o : X5 — B’ x B°P
admits geometric realizations that are preserved by «:

a classifies the functor 38 : B™P x B c B°P x B’ SNy

As the Yoneda-embedding B c B’ preserves small limits and the map-
ping space functor B'(—,-) : B'P x B’ - § preserves small limits in each
component, 5 preserves small sifted limits and so especially totalizations.

Thus by cor. 5.2.2.37. [18] the category Xz admits geometric real-
izations that are preserved and detected by « provided that B admits
totalizations.

Thus if the O®-monoidal category €® is compatible with totalizations,
the O®-monoidal category X& is compatible with geometric realizations.

O

The main ingredient in proposition 4.23 is the next proposition:

Proposition 4.26. Let C®, D® % be BM®-monoidal categories and C® —
D®,C% - £® be BM®-monoidal functors.

Let C'® c @®,D'® c D®, & c €% be full BM®-monoidal subcategories
such that the BM®-monoidal functors @® — D®,C® - £® restrict to func-
tors C' - D', € - &'

Assume that the following conditions hold:

1. C® D® are compatible with geometric realizations and the BM®-
monoidal functor C® — D® induces on the fiber over every object
of BM a functor that preserves geometric realizations.

2. €4,86,Em admit totalizations and &L, &y, Ew are closed under total-
izations.

3. The functors C® - D® xpye €2, C® — D'® xpye €' are left repre-
sentable right fibrations of BM®-monoidal categories and the embed-
ding C"® c C® is a map of such.
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4. The canonical functors {1} x¢r € — Dy, {1} xer Cp — Dy, are equiv-
alences.

e The functors
BMod(€;,) -~ BMod(Dy,) x BMod(€y,),
Alg(€y) — Alg(Dq) x Alg(€y),
Alg(€y) — Alg(Dy) x Alg(Ep)
are left representable right fibrations and the forgetful functors
BMod(Cr,) — Alg(€;), BMod(€y,) — Alg(€y) are maps of such.

e The monoidal equivalence {1} Xer Ch = DL of 4. induces an equiva-
lence
{1} xarg(er,) Alg(€q) = Alg({1} x¢, ;) - Alg(Dy)

and stmilar for b e BM.

Thus every A € Alg(Dy,), B e Alg(Dy) lift to objects A’ € Alg(Cy)
respectively B' € Alg(€y) lying over the initial algebras of Alg(&L)
respectively Alg(€y).

There is a canonical map

ABMOdB(@(.n) XBMod(’D'm) BMOd(e:“) E— AIBMOdBI(e;‘)

| |

ABModg(Dy,) x BMod(€,) ———— aABModgp(Dy,) x Ex,
of left representable right fibrations.

Proof. Let A € Alg(D}), B e Alg(Dy).
The monoidal equivalence {1} x A G, — DI induces an equivalence

{1} X Alg(€l) Alg(@ﬁ) ~ Alg({1} Xer 6;) - Alg(D;)
and similar for b € BM.

Thus A € Alg(Dy), B e Alg(Dy) lift to objects A’ € Alg(€y) respec-
tively B’ € Alg(@y) lying over the initial algebras of Alg(€;) respectively
Alg(€).

Condition 1. guarantees that there is a BM®-monoidal functor
ArBModg (€)® - ABModg (D).

Denote A, B the initial algebras of BModa (D,) respectively BModg (D)
lying over A € D, respectively B € Dy so that the forgetful functor
a: sBModg(aBModg(Dwm)) > aABModg(Dw) is an equivalence.

We remark that o is equivalent to the functor induced by the lax
BM®-monoidal forgetful functor ,BModp(Dw)® — DE.

Moreover under the equivalence a every X € aBModg(Dw) corre-
sponds to a BM®-monoidal functor X : BM® — ABModB(D)®7 whose
pullbacks to Ass® are the monoidal functors A : Ass® — BModA(Du)®
respectively B : Ass® - BModg(Ds)®.
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By lemma 4.28 condition 4. implies that the forgetful functors
{A} X Alg(BMod (D7, )) Alg(BModar(€7)) = {A} xa15(nr ) Alg(€q),
{B} *atg(BModg (n1)) Alg(BModp (Cy)) = {B} xale(nr ) Alg(Cs),
7 : sBModg (aBModg(Di)) XBMod( s BModp (%, y) BMod(arBModg (Cy,))

- ABModg (D) XBmod(ny, ) BMod(€y,)

over 3 BModg(aBModg(Dy,)) x BMod(€r,) ~ ABModg (D, ) x BMod(&r,)
are equivalences.

Consequently it is enough to see that the categories
{A} X Alg(BMod, (1)) Alg(BModas (7)),

{B} X Alg(BModg (D})) Alg(BModg (€}))
admit a final object, the right fibration

ABModj (aBModg (D)) XBMod( s BModg (07, )) BMod(asBModg/ (€1,)) —

BModg (A BModg (D)) x BMod(€l,)

is left representable and for every X € ABModg(Dy,) both forgetful func-
tors

{X} XBMod(, BModg (D1, ) BMod(a/BModg/ (€1,)) —
{A} XAlg(BMod, (1)) Alg(BModar (€7)),

{X} XBMod(, BModg (1, ) BMod(asBModg/ (€1,)) —
{B} Xa1g(BModg (v)) Alg(BModp (Cy))

preserve final objects.

Using 2. and 3., by proposition 4.29 the BM®-monoidal functor
A’ BModg/ (€)® - ABModg (D)®
is a left representable right fibration of BM®-monoidal categories.
So the categories
{X} % BModg (D) A/BModp/(Cm), {A} XBMods (D) BModar(€a),

{B} xBModg (D, ) BModg/(€Cs)

admit a final object.

The pullback
BM® X grjoa (mye a/BModg: (€)®

along X is a BM®-monoidal category, whose ﬁbfzr over a € BM is the
pullback Ass® xpyod, (p,)e BModar(€a)® along A and whose fiber over
b e BM is the pullback Ass® XBModg (D)@ BModp (Cs)® along B.

Consequently the final objects of the categories
{X} %, BModp (D) A’BModp/(Cu), {A} XBMods (Dq) BModas(Ca),

{B} XBIMOdB('Db) BMOdBI(eb)
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lift to final objects of the categories
BMOd({X} XABModB(Dm) A/BModB/((ﬂ’m)) =~

{X} XBMod(sBModg (Dm)) BMOd(A’BMOdB’(Gm))»
Alg{A}xBMod, (D) BModar(Ca)) = {A}x Alg(BMod, (Do) Alg(BModas (€Ca))
Alg{B}xBModg (D, ) BModp (Cs)) = {B}xatgBMody (1)) Alg(BModp/ (Cs))
that belong to the full subcategories

{X} XBMod(, BModg (D1, ) BMod(asBModg/ (€,)),

{A} X Alg(BMod, (1)) Alg(BModar (Cy)),
{B} X a1g(BModg (v,)) Alg(BModp/ (Cy)) :

This follows from proposition 4.29 2. using condition 2. and 3.

Especially the final object of
{X} XBMod(s BMody (D7, )) BMod(arBModg/ (€,)),
lies over the final objects of

{A} X Alg(BMod, (77, )) Alg(BModas(€C))

and -
{B} Xalg(BModg (7)) Alg(BMods/ (Cp)).

Composing the inverse of the equivalence
7 : sBModg (aBModg(Di)) XBMod(s BModp (%, y) BMod(a/BModg (Cy,))

- ABMOdB(Dfn) XBMod(D%,) BMOd(G:n)
with the forgetful functor

ABMOdB(ABMOdB(D:’n)) XBMod(5 BModg (D], )) BMOd(A'BMOdB’(e;)) -

ABModg (aBModg (D)) %, BModp (1, ) a-BModg (Cy,)

we get the desired map of left representable right fibrations.
O

As next we prove three lemmata used in the proof of proposition 4.26:

Lemma 4.27. Let C,& be monoidal categories, D a (€, E)-bimodule and
A e Alg(C),Be Alg(&).

We have a pullback square

BMod(,BModg(D)) —— BMod(D) (16)

Alg(BModa (€)) x Alg(BModg(€)) — Alg(C) x Alg(€&)

that induces on the fiber over every X € Alg(BModa(C)),Y € Alg(BModg(€&))
the forgetful functor

[0 XBMOdy(ABMOdB(D)) nd xBMOdy(D),

which is an equivalence.
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Proof. As square 16 is a map of cartesian fibrations, it is enough to see
that « is an equivalence.

We first reduce to the case that the (C, €)-bimodule D is compatible
with geometric realizations:

The BM®-monoidal Yoneda-embedding D — D’ := P(D) yields a for-
getful functor xBMody (ABModg(D’)) - xBMody(D’) over D', whose
pullback to D is a.

So we can assume that the (€, €)-bimodule D is compatible with geo-
metric realizations.

In this case we have a BM®-monoidal category s BModg(D)® compat-
ible with geometric realizations.

Thus the categories xBMody (D), ABModg (D), xBMody (aBModg (D))
admit geometric realizations that are preserved by the forgetful functors

xBMody (D) - D, aABModg(D) - D, xBMody (aBModg(D)) - ABModg(D).
Consequently the functors
xBMody (D) - D, xBMody (aBModg(D)) - ABModg(D) - D
are monadic with left adjoints
D - xBMody (D), Z»X®ZQY

D - xBMody (ABModg (D)), Z—X®s (A®Z®A) @2 Y

that are canonically equivalent, i.e. equivalent compatible with the units:
Both units

Z~1®7Z81 > XQZQY, Z~10Z01 > A®Z®A »> X®4 (A®Z®A)®AY

are equivalent as the morphism AQZ®A — X®A (ARZ®A)®AY ~ X®Z®Y
arises by tensoring the identity of Z with the morphisms A - X, A > Y.

Thus we have a commutative triangle

xBMody (ABModg (D)) —>——— xBMody (D)

T~

between monadic functors over D that induces an equivalence on monads.
So « is an equivalence.

O

Lemma 4.28.

1. Let C®,D® E® be monoidal categories and C® — D® x 5.0 E® a right
fibration of monoidal categories.

Assume that the canonical monoidal functor {1} xge C® - D® is an
equivalence.

Let X € Alg(C) lying over Y € Alg(D) and 1 € Alg(€).
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Then the commutative square
Alg(BModx (€)) —— Alg(BMody (D)) x Alg(€) (17)
Alg(C) —————— Alg(D) x Alg(€&)
is a pullback square.
2. Let C®, D% E® be BM®-monoidal categories and C® - D® xpgye E2
a right fibration of BM®-monoidal categories.
Assume that the canonical monoidal functors
{]]-} xgq Ca — Da, {]]-} XEp Co = Dy
are equivalences.

Let X € Alg(Cq), X' € Alg(Cyp) lying over Y € Alg(D,) respectively
Y’ € Alg(Ds) and 1 € Alg(€,) respectively 1 € Alg(Ey).

Then the commutative square
BMod(xBModx/(Cm)) —— BMod(yBMody (D)) (18)
BMod(Cn) ——— > BMod(Dw)

is a pullback square.

Proof. 1: Square 17 is equivalent to the square

Alg(€)x) —— Alg(D)y, x Alg(€)

l l

Alg(€) ——— Alg(D) x Alg(€).

As both vertical functors in this square are left fibrations, this square is
a pullback square if and only if for every B € Alg(€) lying over B’ € Alg(D)
and B” € Alg(€) the induced map

a: Alg(C)(X,B) - Alg(D)(Y,B') x Alg(€)(1,B")

is an equivalence.
Using that the functor Alg(€) — Alg(D) x Alg(€) is a right fibra-
tion, « is an equivalence if and only if X is an initial object of the fiber

{(Y, 1)} x(alg(pyxatg(e)) Alg(C)

The monoidal functor {1}x¢C€ — D and thus also the functor Alg({1}x¢
C) = {1} xaige) Alg(C) - Alg(D) are equivalences so that the fiber
{(Y, 1)} x(a1g(p)xate(e)) Alg(€) is contractible.

2: Set

WS x = (Alg(Ca)x/ x Alg(Co)xr/) X (Alg(ea)xAla(cy)) BMod(Cu),
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WY,y = (Alg(Da)y; x Alg(De)yr/) X(alg(Da)xalg(Dy)) BMod(Dim).
By lemma 4.27 square 18 is equivalent to the square

c D
W ———— WPy,

l |

BMod(Cwn) —— BMod(Dw),
whose composition with the pullback square

W3 yr —— Alg(Da)y, x Alg(Dse)yr,

l |

BMod(Dw) — Alg(Da) x Alg(Dy)
is the composition of pullback squares

WS xr — > Alg(Ca)x; x Alg(Co)xry — Alg(Da)y; x Alg(Ds)yry

| l |

BMod(Cn) —— Alg(Cq) x Alg(Cp) ——— Alg(Dy) x Alg(Dy),

where the right hand square is a pullback square by 1.
O

Lemma 4.29. Let €® D% E® be BM®-monoidal categories and C® —
D%, C% - €% be BM®-monoidal functors. Assume that E4,E&m admit to-
talizations.

Let X, X" € Alg(Ca) lying over Y,Y' € Alg(Da) and 1 € Alg(€.).
Assume that the functor C - DxE is a left representable right fibration
classifying a functor D°PxE°P — § adjoint to a functor ¢ : D°P - & c P(&).
1. The functor
~: xBModx/(Cm) = yBMody’(Dm) x Em

is a left representable right fibration.

2. v classifies a functor yBMody/(Dw)°F xEXF — 8 adjoint to a functor
0 :y BMody/(Dwm)°? = E&m ¢ P(Em) that sends an object
A ey BMody/(Dw) to the totalization of a cosimplicial object R of
Em that takes values in the essential image of ¢.

Proof. We want to see that 6 factors through En,.

Denote V : yBMody’(Dm) = D the forgetful functor and F : Dy, —
yBMody(Dy) the free functor.

The forgetful functor V : yBMody/(Dm) — Dm is monadic so that
every object A of yBMody/(Dw) is the geometric realization of a V-split
simplicial object W such that for every n € N there is a Z € Dy, and an
equivalence Wy, ~ F(Z).

As & is closed in P(Ewm) under totalizations, it is enough to check the
following;:
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1. 6°P sends the geometric realization of W to a geometric realization

2. 6°? sends free (Y,Y’)-bimodules to representable right fibrations.

1. is equivalent to the condition that for every B € £, the composition
op
a iy BMody:(Dy) L P(Em)? Y8, 8°P sends the geometric realization

of W to a geometric realization.

The functor «°P is classified by the right fibration 8 : xBModx:({B} xe,,
Gm) ~ {B} X&m (XBMder(em)) - YBMOdyr(Dm).
We have a commutative square

XBMde'({B} XEm em)\/’*> {B} & Cm

yBMody/ (Dg) ———5 Dy
The right fibration {B} x¢,, Cn — D reflects split simplicial objects.
So every simplicial object of xBModx/({B} x¢, Cm) lying over W is
V'-split and so admits a geometric realization that is preserved by 8. By
cor. 5.2.2.37. [18] this implies 1.

2. follows from the fact that the free functor Cn —»x BModx/(Cn) is a
map of left representable right fibrations, i.e. for every A € Dy, the functor
{A} xp,, Cu = {F(A)} X(yBMody/ (D)) (xBModxs(Cw))

preserves final objects.

Denote Me - A, Mp - A Mg ~ &, x A' - A! the bicartesian
fibrations classifying the free/forgetful adjunctions

Co 2x BModx/(Cm), D 2y BMody (D), Em =~ BMods (En).

So we have maps Me = Mp,Me = Mg ~ En x A' of bicartesian
fibrations over Al.

The induced map Me — Mop x En of bicartesian fibrations over Al
induces on the fiber over 0 and 1 the right fibrations Cn = Dm X Em
respectively xBModx/(Cm) —v BMody/(Dm) x Em and is thus a right
fibration.

Let a be the cocartesian section of My — Al corresponding to A € Dy,.

Thus the pullback (A" x Em) X(atyxem) Me = A x En along a x &y is
a map of bicartesian fibrations over A’ classifying an adjunction

{A} xp,, Cu 2 {F(A)} X(yBMody/ (D)) (xBModxs(Cw))

relative to En.

This adjunction relative to £, induces on the fiber over every Z € &y
an adjunction {(A,Z)} x(p,xen) Cm 2 {(F(A),2)} X(yBMody/(Dm)xEm)
(xBModx/(Cm)) between spaces and is thus an equivalence.

So 6 factors through &, and we have a canonical equivalence §oF° ~ ¢
of functors Dy’ — En.
Hence we obtain a canonical equivalence

Q(A) ~ Q(Colionp (W)) ~ ligﬂ(eop OWOP)

and for every n € N an equivalence (60 o W), ~0(F(Z)) ~ ¢(Z).
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Let € be a nice stable symmetric monoidal category.

When defining restricted Loo-algebras by their relation to bialgebras
(def. 2.26) we used the definiton of cocommutative coalgebras as the
full subcategory Cocoalg(€) c Fungin, (Fin., (€®)")°? spanned by the
functors over JFin, preserving inert morphisms.

This definition provides a symmetric monoidal structure on Cocoalg(C)
such that the forgetful functor Cocoalg(C) — € is symmetric monoidal and
so induces a forgetful functor from bialgebras to associative algebras in C.

On the other hand we used the Koszul-duality (4.2) between spectral
Lie algebras in € and conilpotent cocommutative coalgebras in € with di-
vided powers that composed with the forgetful functor Cocoalg®®<°™!(@) -
Coalg o commnen (€) leads to an adjunction Algy ;. (€) 2 Coalgaycommnen (€).

Consequently to apply Koszul-duality to the theory of restricted Leo-
algebras we need to identify the categories Cocoalg(€)y; = Cocoalg(C)"™"
and Coalgc,commnen (€)-

In the following we show the equivalent dual statement that there is a
canonical equivalence

Alg o mmnu (€) ~ Calg(€)™
over C.

Proposition 4.30. Let C be a symmetric monoidal category that admits
small colimits.

1. There is a canonical equivalence

AlgComm(e) = Ca‘lg(e)

over C.

2. If C is a preadditive symmetric monoidal category that admits small
colimits, there is a canonical equivalence

AlgComm““(e) = Calgnu(e)
over C.

Proof. 1:

We may assume that the symmetric monoidal structure on € is com-
patible with small colimits.

Otherwise we embed € symmetric monoidally into P(€) endowed with
Day-convolution and the canonical equivalence

LModcomm (P(€)) ~ Calg(P(C))
over P(C) restricts to an equivalence
LModcomm (€) ~ Calg(C)

over C.

The Hopf operad Comm in € gives rise to a Hopf monad on € so
that the monadic forgetful functor Algq,,...(€) — € lifts to a symmetric
monoidal functor Algg, .. (€)% — C®.

Denote S the free functor Comm o (=) : € - LModcomm(€C) X ~
Comm o X = [1,,0(X®")sn.
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For every X,Y € C we have a natural equivalence

S(XLIY)= I_L((X LY)®)sn = (LTX")sn) ® (LT (Y*)5n)

n>0 n>0
~5(X) ® S(Y)
in C.
For Y the initial object @ of € this equivalence
S(X) =S(X]]@) = S(X)®S(2) ~S(X) ® 1 ~S(X) (19)
is the identity.

As next we show that the symmetric monoidal structure on LModcomm (€)
is cocartesian.

We start by showing that the tensorunit 1 of LModcomm (C) is initial.

We have to see that the unique morphism « : S(@) — 1 is an equiva-
lence.

The morphism « factors as S(@) — S(1) % 1, where the counit y is
induced by the multiplication of 1.

So it is enough to see that for every n € N the multiplication morphisms

1®" - 1 in € are equivalences.

The canonical equivalence Cocoalg(Cocoalg(C)) ~ Cocoalg(C) yields a
symmetric monoidal functor LModcomm (Cocoalg(€)) - LModcomm (€).

Thus the tensorunit of LModcomm (€) lifts to the tensorunit of
LModcomm (Cocoalg(€)) that lies over the tensorunit of Cocoalg(C).

So the multiplication morphisms 1®" — 1 in € lift to endomorphisms
of the tensorunit of Cocoalg(C). But the tensorunit of Cocoalg(C) is a
final object.

Denote 8: X[IY — S(X) ® S(Y) the morphism in € that is the mor-
phism
X=2X@1=X®S(g)—>S(X)®S(Y)

on the first summand and the morphism
Y=210Y=>S5(g)®Y - S(X)®S(Y)
on the second summand.

By lemma 4.31 and remark 4.32 it is enough to see that for every
X,Y € € the composition

a:8(XITY) 22 5(s(x) ©5(Y)) & 8(X) ®5(Y)

adjoint to 8 is an equivalence, where u: S(S(X) ® S(Y)) = S(X) ® S(Y)
denotes the multiplication of S(X) ® S(Y) that factors as

S(S(X) ®S(Y)) = S(S(X)) ®S(S(Y)) = S(X) ® S(Y).
We show that « is the canonical equivalence S(X[Y) ~ S(X)®S(Y):

By 19 the morphism g factors as XY — S(X[[Y) = S(X) ® S(Y)
so that the morphism S(8) : S(XIIY) — S(S(X) ® S(Y)) factors as
S(XLIY) = S(S(XLIY)) ~S(S(X)®S(Y)) and so as

S(XTTY) = S(X) ®S(Y) - S(S(X) ® S(Y)).
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So the morphism « factors as S(XI]Y) ~
S(X) @ S(Y) —~ 5(5(X) @ S(Y)) = 5(5(X)) ® S(S(Y)) - S(X) ® S(Y).

So by the triangular identities « is the canonical equivalence S(X[Y) =~

S(X) ® S(Y).

Thus the symmetric monoidal structure on LModcomm (€) is cocarte-
sian so that the forgetful functor Calg(LModcomm(€)) = LModcomm (€C)
is an equivalence.

Hence the symmetric monoidal functor LModcomm(€C) — € lifts to a
forgetful functor LModcomm (€) ~ Calg(LModcomm (€)) — Calg(C).

The forgetful functor Calg(C) — € is monadic with left adjoint Sym.

Thus the forgetful functor LModcomm (€) — Calg(€) is an equivalence
if and only if for every X € € the morphism p : Sym(X) — S(X) adjoint to
the unit X - S(X) is an equivalence.

The object Sym(X) is naturally equivalent in € to I],.o(X®")sna such
that for every commutative algebra A in € the counit [I,,o(A®)sn =
Sym(A) - A as morphism in € is induced by the multiplication of A.

So we get a natural equivalence Sym(X) ~ S(X) in € and we will show
that p is homotopic to this equivalence:

The morphism p factors as Sym(X) — Sym(S(X)) & S(X), where
u:Sym(S(X)) — S(X) denotes the counit.

So p factors as Sym(X) = S(X) - S(S(X)) & S(X), where 4 :
S(S(X)) = S(X) is the counit induced by the multiplication of S(X).
By the triangular identities p is the canonical equivalence Sym(X) =~

S(X).

2: We may assume that the symmetric monoidal structure on C is
compatible with small colimits.

Otherwise denote €’ := P=(@) c P(€) the full subcategory spanned by
the functors €°P — § that preserve finite products.

The category ifﬁz(@) is preadditive.

By the Yoneda-lemma the Yoneda-embedding € — €' := P¥(@) pre-
serves finite coproducts.

The full subcategory P~ (€) c P(€) is a localization compatible with
the Day-convolution symmetric monoidal structure on P(€).

Especially the induced symmetric monoidal structure on ’352(6) is com-
patible with small colimits.

The Yoneda-embedding € — P*(€) is a symmetric monoidal functor
and so yields an equivalence

LModcomm=: (€) = € xer LModcommes (€)

over C.
So we get an equivalence.

LModcommm (€) = € xer LModcommnu (€') = € xer Calg™ (€") = Calg™ (€)

over C.
So we can assume that € is compatible with small colimits.

By [18] prop. 5.4.4.8. the forgetful functor Calg(€) — Calg™"(€) ad-
mits a left adjoint F such that for every X € Calg™ (C€) the unit X - F(X)
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and the unique morphism 1 — F(X) in Calg(€C) induce an equivalence
X®1 - F(X) in C.

The forgetful functor Calg™(€) — € admits a left adjoint Sym’ such
that we have a natural equivalence Sym’(X) = 1,51 (X®")sn in € for X € €.

Especially we have Sym’(0) ~ 0 so that the category Calg™ (€) admits
a zero object 0 that is sent by F to the initial object 1 of Calg(C) lying
over the tensorunit of €.

So F gives rise to a functor F’ : Calg™ (€) ~ Calg™ (€);0 - Calg(C) 4.

By definition Comm™" is the final non-counital Hopf operad in € and
Comm the final Hopf operad in C.

So there is a unique morphism Comm™" — Comm of Hopf operads in
C that yields a forgetful functor LModcomm (€) = LModcommm (€).

u

Denote S the free functor

Commo (=) : € » LModcomm (€), X = Comm o X = H(X®")gn

n>0
and S’ the free functor

Comm™ o (=) : € - LModcommn (€), X = Comm™ o X ~ [ [(X®")xa.

nx1

Especially we have S(0) ~ 1 and S’(0) ~ 0.
Thus the category LModcommnu (€) admits a zero object 0 and the cate-

gory LModcomm (€) admits an inital object 1 lying over the tensorunit of
C.

Hence there is a unique morphism 0 - 1 in LModcommnu(€) that
yields a functor

I : LModcommmi (€)1 = LModcommn (€) o = LModcommn (€)

that takes the augmentation ideal.

By proposition 2.19 we have a canonical equivalence
Calg(€) ~ LModcomm (€)

over € that gives rise to an equivalence Calg(C),y ~ LModcomm (€)1
The composition

Calg™ () ©> Calg(€)2 ~ LModcomm (€)z

LMOdComm““ (e)/l L LMOdComm"‘-‘ (e)
is a functor over C.
The forgetful functor Calg™ (€) — € is monadic with left adjoint Sym’.

Thus the forgetful functor Calg™ (€) — LModcommnru (€) is an equiv-
alence if and only if for every X € € the morphism p : S'(X) —» Sym'(X)
adjoint to the unit X - Sym’(X) is an equivalence.

For every non-unital commutative algebra A in € the counit
151 (A®)sn ~ Sym’(A) — A as morphism in € is induced by the
multiplication of A.

So we get a natural equivalence S'(X) ~ Sym'(X) in € and we will
show that p is homotopic to this equivalence:
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The morphism p factors as §'(X) - 8'(Sym’(X)) & Sym’(X), where
u denotes the counit induced by the multiplication of Sym'(X).

So p factors as §'(X) = Sym’(X) — Sym’(Sym’(X)) & Sym’(X),
where y' is the counit induced by the multiplication of Sym’(X).
By the triangular identities p is the canonical equivalence S'(X) =~
Sym'(X).
O

To prove proposition 4.30 we used the following lemma:

Lemma 4.31. Let C be a symmetric monoidal category that admits finite
coproducts.

Let G:D — C be a symmetric monoidal and monadic functor with left
adjoint F such that the tensorunit of D is an initial object.

For every A,B € D we have canonical morphisms A ~ A®1 - AQ®
B, Bx1®B—>A®B inD.

The symmetric monoidal structure on D is cocartesian if for every
A,B €D that belong to the essential image of F the canonical morphisms
A~A®1—->A®B, B~x1®@B—>A®B inD exhibit A®B as a coproduct
of A and B in D.

Remark 4.32. For every X,Y € C the canonical morphisms
F(X)->F(X)oF(Y), F(Y) > F(X)® F(Y)

in D define a morphism a: F(X[]Y) ~F(X)[IF(Y) - F(X) @ F(Y) in
D.

Moreover we have a canonical morphism
8:X]Y - G(F(X)) ® G(E(Y)) = G(F(X) ® F(Y))
in C that is the morphism
X2Xel2X®G(F(2)) - GFX))® GF(Y))
on the first summand and the morphism
Y~21Y ~G(F(2))eY - G(F(X)) ® G(F(Y))

on the second summand.
The morphism a: F(X[]Y) - F(X) ® F(Y) is adjoint to S: XY —
G(F(X)®F(Y)).

Proof. We write A =] A |, B ~| B | for some G-split simplicial objects
A,B: A° - D taking values in the essential image of F.

Let Fun(A°P, D) be endowed with the levelwise symmetric monoidal
structure. The tensorunit of Fun(A°P, D) is an initial object as the ten-
sorunit of D is.

The canonical morphisms A~A®1 - A®B, B~1®B > A®B in
Fun(A°P, D) exhibit A ® B as a coproduct of A and B in Fun(A°?, D) as
they do after evaluation at every n € A.

The functor ® : D x D - D sends the G x G-split simplicial object
(A,B) to the G-split simplicial object A ® B: A°® — D.

Denote 6 : D — Fun(A°?, D) the diagonal functor.
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So the morphism A ® B — §(A ® B) in Fun(A°?, D) exhibits A ® B as
the geometric realization of the simplicial object A ® B.

Hence for every Z € D the canonical map D(A ® B,Z) - D(A,Z) x
D(B,Z) factors as

D(A®B,7Z) ~ Fun(A%, D) (A ® B,6(Z)) ~

Fun(A°, D)(A,5(Z)) x Fun(A%, D)(B,5(Z)) ~ D(A, Z) x D(B, 7).
O
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4.3 Comparison to simplicial restricted Lie alge-
bras

Given a field K denote Modilo(K) the category of connective H(K)-module
spectra.
By theorem 4.2 there is a forgetful functor

Lie(Modj(y) = Algp;. (Modii) ).
In this section we factor this forgetful functor as

Lie(Modik)) = (sLieii>)eo — Algy ;. (Modix) ),

res

where (sLiei® ) o denotes the oco-category underlying a right induced model
structure on the category sLieg® of simplicial restricted Lie algebras over
K.

To achieve this factorization we construct for every commutative ring

R (and not only a field) the forgetful functor
Lle(MOdH(R)) - AlgLie(MOdH(R))

of theorem 4.2 in a more elementary way (proposition 4.34).

Let € be a nice symmetric monoidal model category and ¢ : D — C a
category over C that admits a model structure with fibrations and weak
equivalences the underlying ones of C.

Assume that Ho(@) is preadditive and the functor ¢ : D — € is derived
monadic and derived accesible, i.e. ¢ : D — € induces a monadic and
accesible functor De — Coo on underlying co-categories.

We describe what is needed to produce a functor Lie(Ceo ) = Do com-
patible with the forgetful functors to Co (proposition 4.33).

We apply construction 4.33 to the following situations:

1. € is the category Chg or ChZ’ of (connective) chain complexes over
some commutative ring R endowed with the projective model struc-
ture and D is the category Alg;,.(Chgr) respectively Alg;;.,(ChZ?)
of Lie'-algebras for some cofibrant replacement Lie’ of the Lie operad
(in the semi-model category of operads in Chg respectively Chz?).

2. @ is the category sModk of simplicial K-vector spaces for some field
K with a model structure right induced from sSet that exists by [2]

res

theorem 5.1. and D is the category sLiex” of simplicial restricted
Lie algebras over K.

To treat the first case we note that there are canonical equivalences
Algy;(Modpr)) = Algy;er (Chr)eo,

Algy ;. (Modiigy) = Algy ;o (ChR oo

over Mody(r) = (Chr)e respectively Modflo(R) ~ (ChE)eo (remark 4.35)
so that the forgetful functors Algy,.,(Chr) = Chg, Algy . (ChZ’) - Chg’
are derived monadic and derived accessible.

For the second case we use that restricted Lie algebras over K are alge-
bras over some Lawvere theory (remark 4.37) and for every Lawere theory
T the category sAlgy(Set) of simplicial T-algebras admits a right induced
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model structure from sSet ([2] theorem 5.1.) such that the forgetful func-
tor Algy(sSet) ~ sAlgy(Set) — sSet induces a sifted colimits preserving
monadic functor on underlying oo-categories (proposition 4.38).

As the category Modgk of K-vector spaces is the category of algebras in
Sets over some Lawvere theory, the category sModk admits a right induced
model structure from sSet such that the forgetful functor sModk — sSet
induces a sifted colimits preserving monadic functor on underlying oco-
categories.

So the model structure on sLiex® is right induced from the model
structure on sModk and the forgetful functor sLieg® — sModk induces a
sifted colimits preserving monadic functor on underlying co-categories.

In the next subsection we collect the results about Lawvere theories
needed in this chapter.

We start with explaining the general procedure how to construct func-
tors starting at the category of restricted Loo-algebras (proposition 4.33)
and then apply this procedure to the cases 1. and 2. (proposition 4.34).

For the proof of proposition 4.33 we fix the following notation:

Given a category with weak equivalences (€, W) denote Co its under-
lying oo-category, i.e. the oco-categorical localization with respect to W.
Especially we use this notation in the case that (€, W) has the structure
of a model category or that (C,W) is the category of cofibrant objects
M* in a model category M with weak equivalences between cofibrant
objects.

For every symmetric monoidal model category M the symmetric monoidal
structure on M restricts to a symmetric monoidal structure on Mt com-
patible with weak equivalences.

So (M) = Mo gets a symmetric monoidal structure and the lo-
calization functor Mf - (M), ~ M., gets symmetric and so yields
functors Alg(M®") - Alg(Me) and Bialg(M®*") - Bialg(M).

If we consider Alg(M®°"), Bialg(M®°!) as categories with weak equiva-
lences, whose weak equivalences are the underlying ones of M, we get in-
duced functors Alg(M "), - Alg(Mo ) and Bialg(M°f)., — Bialg(Me ).

Given a model category M, a category C with weak equivalences and
a functor ¢ : M — C that preserves weak equivalences between cofibrant
objects denote L(¢) : Mo — Coo the functor induced by the functor M 2

Mt e M 2, C of categories with weak equivalences, where Q denotes a
functorial cofibrant replacement for M.

Proposition 4.33. Let C be a combinatorial symmetric monoidal model
category such that Ho(C) is preadditive, D a category over C that admits
a model structure with fibrations and weak equivalences the underlying
ones of € and v : Alg(€) - D a functor over C that admits a left adjoint
¥ :D - Alg(@).

Assume that:

e C is left proper, the cofibrations of C are generated by cofibrations
between cofibrant objects and C satisfies the monoid axiom.

e D — C is derived monadic and derived accessible, i.e. the functor
Do = Coo om underlying oo-categories is monadic and accessible.
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Then every lift ® : D — Bialg(C) of ¢ gives rise to a functor Lie(Co ) —
Do over Coo.

Proof. By the first condition the category Alg(C) admits a right induced
model structure from € such that the forgetful functor Alg(€) — € pre-
serves cofibrant objects ([18] proposition 4.1.4.3. and its proof).

The canonical symmetric monoidal functor €°°f — (€°°"). ~ G gives
rise to a functor Alg(€)®* c Alg(C*°f) — Alg(Co) that induces an equiv-
alence Alg(C)eo = (Alg(€)*") e — Alg(€u) by [18] theorem 4.1.4.4.

Moreover the canonical symmetric monoidal functor € — (€°°f), ~
Co. gives rise to a functor Bialg(C®°!). — Bialg(Co).

The adjunction 9 : D — Alg(C) : v is a Quillen adjunction and thus
yields an adjunction L(9) : Deo - Alg(C)eo ~ Alg(Cs ) : v, where the right
adjoint is a functor over Ce. So by adjointness L(v) is compatible with
the free functors.

Denote F the left adjoint of the monadic functor Do, — Coo.

A lift ¥ : D — Bialg(€) of the left Quillen functor 1) preserves weak
equivalences between cofibrant objects and sends cofibrant objects of D
to objects of Bialg(@COf), Hence ¥ gives rise to a lift

U Doy E Bialg(€°) e — Bialg(Coo)

of L(v).

As L(¢) is compatible with the free functors, the composition Ce 5

Do z, Bialg(Co) is the tensoralgebra by the uniqueness of lifts (propo-
sition 3.22).

As @ is a combinatorial symmetric monoidal model category, the un-
derlying co-category Co is a presentably symmetric monoidal co-category.

Lifting I.(¢)) the functor ¥’ : Do, — Bialg(Cs ) preserves small colimits
and so admits a right adjoint 9 : Bialg(Ce) - Do that by adjointness
lifts the primitives P : Bialg(Cw) — Coo and so by the universal property
of Lie(Coo ) (remark 2.27) factors as

Bialg(Coo) - Lie(Coo) = Do

for a unique functor Lie(Coo) = Doo 0over Coo.

Now we apply proposition 4.33 to the cases 1. and 2.:
Proposition 4.34.
1. For every commutative ring R there are forgetful functors
Lie(Modg(gr)) = Algp;.(Modyr)),
Lie(MOdIZ{O(R)) - AlgLie(MOd?IO(R))
over Modyr) respectively Modio(R).

Moreover these forgetful functors coincide with the forgetful functor
of theorem 4.2.
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2. In the special case of a field K the forgetful functor of 1.
Lie(MOdEO(K)) - AlgLic(MOdzHO(K))
lifts to a forgetful functor
Lie(Modj(k)) = (sLiei>)eo

over Modsy (k) = (sModx )co.

Proof. 1. The categories Chr and CthO endowed with the projective model

structure form combinatorial symmetric monoidal model categories.
Both model structures are left proper, satisfy the monoid axiom and

their cofibrations are generated by cofibrations between cofibrant objects.

Denote Lie’ a cofibrant replacement of the Lie operad in Chgr respec-
tively ChZ’. By [14] there are model structures on Alg;,.(Chr) and
Algy ., (ChEY) right induced from Chg respectively Chg’.

We have a map of operads Lie’ - Lie - Ass in Chg respectively Chz’
that yields a forgetful functor Alg(Chr) — Alg;;.»(Chr) that is an exam-
ples for .

We have an enveloping bialgebra functor U : Alg; ;. (Chr) — Bialg(Chg)
that lifts the enveloping algebra functor U’ : Alg;;.(Chr) — Alg(Chr) that
is left adjoint to the forgetful functor Alg(Chgr) — Alg;,.(Chgr).

The composition

Algy./(Chr) - Algy . (Chr) —> Bialg(Chg)

of the free functor Alg;;..(Chr) - Alg;;.(Chgr) and U is an example for
.

So 1. follows from 4.33 and remark 4.35.

Moreover the composition

Algys, (Modsz(r) ) = Algpier (Chr)oe — Algp;(Chr)eo — Bialg(Chi")ee

- Bialg(MOdH(R) )

is the derived enveloping bialgebra functor of theorem 4.2.

2: The category sModk admits a model structure right induced from
sSet ([2] theorem 5.1.) that is symmetric monoidal as the model structure
on sSet is symmetric monoidal and the free functor sSet — sModk is
symmetric monoidal. Moreover sModk is left proper and satisfies the
monoid axiom.

We have an enveloping algebra functor U’ : sLiei® 2 sAlg(Modk) left
adjoint to the forgetful functor sAlg(Modk) 2 sLieg® that lifts to the
enveloping bialgebra functor U : sLieg® — sBialg(Modk ).

So the assumptions of 4.33 are satisfied and we can apply 4.33 to get
a forgetful functor Lie(Modio(K)) — (sLie®) oo -

Denote Lie a cofibrant replacement of the Lie operad in sModx.

The forgetful functor Lie® — Alg; ;. (Modk) gives rise to a forgetful
functor

sLieg” — sAlg;;.(Modk) ~ Alg ;. (sModk) — Alg; ;.- (sModk )
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that induces a functor
(sLieie®)oo — Algy ;e (sModi )eo = Algy ;. (Modiyx))

on underlying co-categories.
We want to see that the composition

Lie(Modjik)) = (sLiei®)eo — Algy ;. (Modiiiic))

is the forgetful functor of 1.
The primitives sBialg(Modk) — sAlg;;.(Modk) factor as

sBialg(Modk ) — sLiex” — sAlg;;,(Modk)

so that the enveloping bialgebra functor sAlg; ;. (Modk) — sBialg(Modk )
factors as the free functor sAlg;;.(Modk) — sLiex® followed by the re-
stricted enveloping bialgebra functor sLieg® — sBialg(Modk).

Thus the composition

Alg; ;s (sModk) — Algy ;. (sModk) ~ sAlg; ;.(Modk ) — sBialg(Modxk )
factors as
Alg; . (sModk) — Alg; ;. (sModk) ~ sAlg; ;. (Modk ) — sLieg” —
sBialg(Modx).
So the functor
o : Algp . (sModk ) e — Bialg(sModf" ) e — Blalg(ModH(K))

res

factors as the functor Algy ;s (sModk )e — (sLieg
tor

« followed by the func-
B : (sLie™) oo — Bialg(sMod%" ) e — Bialg(ModiD(K)).

Thus the right adjoint Blalg(ModH(K)) — Alg ;. (sModk ) of « fac-

tors as the right adjoint Blalg(ModH(K)) — (sLieg®)e of B followed by
the forgetful functor (sLiex®)e — Algy ;o (SModk )eo-
So the statement follows from the universal property of Lle(ModH(K))
(remark 2.27).
O

Remark 4.35. Let R be a commutative ring.

Denote Lie' a cofibrant replacement of the Lie operad in Chr respec-
tively CthO or sModg.

There are canonical equivalences
Algy ;. (Modpr)) = Algper (Chr) e,
Alnge(MOdH(R)) Alnge (Ch )°°a
Alnge(MOdH(R)) ~ Algy ;e (SModr ) e

over Modyr) =~ (Chr)eo respectively ModH(R) ~ (ChE)eo and ModH(R)
(sModR )eo-
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Proof. The canonical functor Chg — (Chr)e = Mody(g) is lax symmetric
monoidal and sends the operad Lie’ to the R-homology of the spectral Lie
operad, which is the image of the spectral Lie operad under the symmetric
monoidal functor H(R) A —: Sp - Mody(g)-

Thus the canonical functor Chg - (Chr)eo = Mody(r) yields a func-
tor Algp;. (Chr) — Alg; . (Modgr)y) and so a functor Alg;. (Chr)e —
Algy ;. (Modgry) over (Chr)eo = Modp(g)-

The forgetful functor Algy ;. (Chr) — Chg is derived monadic by [14].

As the left adjoint of the functor Algy;.s(Chgr)e = (ChRr)oo = Modp(r)
is sent to the left adjoint of the functor Algy; (Modgr)) - Mody(g), the
functor Alg ;. (Chr)e — Algy;.(Mody(ry) is an equivalence.

The other cases are similar.

O
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4.4 Derived monadicity of algebras over a theory

This subsection is devoted to the proofs of proposition 4.38 and lemma
4.39 that show general facts about Lawvere theories.

In the following we present some basic facts about Lawvere theories
used in the previous section:

Denote Fin the category of finite sets.

A Lawvere theory is a pair (T, ¢) consisting of a small category T that
admits finite products and an essentially surjective functor ¢ : Fin°® - T
preserving finite products corresponding to an object of T.

A map of Lawvere theories T — T’ is a finite products preserving
functor T — T' under Fin°P.

Given a Lawvere theory T and a category C that admits finite products
we call Alg;(€) := Fun'(T, @) the category of T-algebras in C.

Every adjunction F : Set 2 D : G gives rise to a Lawvere theory
T :=F(Fin)°P.
We say that G: D — Set is algebraic if the functor

D c Fun'" (D, Set) — Fun"' (T, Set) = Alg, (Set)

over Set given by the composition of the Yoneda-embedding with the
restriction to T is an equivalence.

Let € — Set, D — Set be right adjoint functors with associated theories
T,T.

A right adjoint functor D — € over Set gives rise to a map of theories
T — T’ as the opposite of its left adjoint functor C°® — D°P under Set°?
restricts to a finite products preserving functor T — T’ under Fin°P.

We have a commutative square

D5 Algp(Set)

| |

5 Algy(Set).

Remark 4.36.

The full subcategory Algy(Set) c Fun(T,Set) is an accessible localiza-
tion and is closed under small sifted colimits.

Thus Algy(Set) is presentable and the forgetful functor Algy(Set) —
Set preserves small sifted colimits. So by the theorem of Barr-Beck the
forgetful functor Algy(Set) — Set is monadic.

So every algebraic functor D — Set is monadic and preserves sifted
colimits.

By lemma 4.39 a functor D — Set is algebraic if and only if it is
monadic and preserves filtered colimits. Especially a monadic functor D —
Set preserves filtered colimits if and only if it preserves sifted colimits.

So given an algebraic functor D — Set a monadic functor € - D
preserves sifted colimits if and only if the composition € — D — Set is
algebraic.

Moreover we use lemma 4.39 to see that the category of restricted Lie
algebras over a field K is algebraic:
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Remark 4.37. For every field K the category of restricted Lie algebras
over K is algebraic.

Proof. Every K-vector space is the filtered colimit of free finitely generated
K-vector spaces. Thus by lemma 4.39 it is enough to check that the
category of restricted Lie algebras over K is monadic over Modk and the
associated monad preserves filtered colimits.

This follows from a theorem of Fresse ([6] theorem 1.2.5.), according
to which restricted Lie algebras over K are divided power Lie algebras in
MOdK.

O

Given a Lawvere theory T the category Algy(sSet) ~ sAlgy(Set) admits
a model stucture right induced from sSet by [2] theorem 5.1.
By the next proposition 4.38 the forgetful functor

Algy(sSet) ~ sAlgy(Set) — sSet

induces a monadic and sifted colimits preserving functor Algy(sSet)eo — 8
on underlying co-categories.

Proposition 4.38. Let T be a Lawvere theory.
There is a canonical equivalence Algy(sSet)oe ~ Algr(8) over 8.

Especially the functor sAlgy(Set)o — 8 is monadic and preserves sifted
colimits.

Proof. By [2] theorem 5.1. the category Algy(sSet) admits a right induced
model structure from sSet.

By [2] theorem 6.4. the projective model structure on Fun(T,sSet)
admits a left Bousfield localization Fun(T,sSet)!*® with local objects the
homotopy T-algebras so that the full subcategory inclusion Algy(sSet) c
Fun(T,sSet)™® is a right Quillen equivalence.

So we obtain a fully faithful functor Algy(sSet)e ~ Fun(T,sSet)w c
Fun(T,sSet)o with essential image the homotopy T-algebras.

By [19] prop. A.3.4.13. we have a canonical equivalence Fun(T, sSet)oo ~
Fun(T,8) that restricts to an equivalence Algy(sSet)oo ~ Algy(8).

By [9] proposition B.4. the forgetful functor Alg(8) — 8 is monadic
and preserves sifted colimits.

O

Lemma 4.39. Let C — Set be an algebraic functor and D — C a monadic
functor that preserves filtered colimits.

Assume that C is the only full subcategory of C that contains the es-
sential image of the free functor F : Set — C and is closed under filtered
colimits.

The functor D — C — Set is algebraic.

Especially the functor D — C preserves sifted colimits.

Proof. Let € — Set,D — € — Set be the right adjoint functors with asso-
ciated theories T, T’.

The adjunction F: € 2 D : G gives rise to a map of theories ¢: T — T’
that is the restriction of the functor F°P : €°F — DP.

¢ yields an adjunction ¢. : Algy(Set) 2 Algr/(Set) : ¢*, where the
right adjoint is monadic.
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We have a commutative square

D—— % 4 Algp(Set)

| |

C —;> Algy(Set),

where the bottom functor is an equivalence as € — Set is algebraic and
where both vertical functors are monadic.

Consequently it is enough to see that the natural transformation
a:p.o00—>PoF

adjoint to the natural transformation § -~ 6o GoF = ¢* o ® o F is an
isomorphism.

The functor D — € — Set preserves filtered colimits so that its left
adjoint preserves compact objects. So TP c D consists of compact objects
of D.

Thus for every X € T' the composition D(X,-) : D 2, Algy. (Set) =%
Set preserves filtered colimits so that the functor ® : D — Algp (Set)
preserves filtered colimits.

Consequently by assumption on € it is enough to see that «(Y) :
d+(0(Y)) - ®(F(Y)) is an isomorphism for every Y € C that is the image
of a finite set under the free functor F : Set — C.

Let H € Algy(Set) and X € Fin. Then the induced map
Algy (Set) (2(F(F(X))), H) — Algy (Set) (4 (0(F(X))), H)
coincides with the map
Algy/ (Set)(2(F(F(X))), H) = Algy (Set)(T'(F(F(X)), -), H) =

= H(F(F(X))) = H(o(F(X))) = Algy (Set)(T(F(X),-), 6" (H))
= Algy(Set)(0(F(X)), ¢" (H)) = Algy (Set) (¢« (0(F(X))), H).
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In the following we give another more elementary proof for the fact
that the enveloping bialgebra functor

U: Lie(Chy')ew = Algy;.(Modiy(x)) — Bialg(Modsyx) )
is fully faithful when K is a field of char. zero (theorem 4.46).

As the functor Algye(ModiIO(K)) — ModZHO(K) is monadic, this im-
plies that the functor P : Bialg(Modf{O(K)) - AlgLie(ModeO(K)) exhibits
AlgLie(ModZHO(K)) as the category of restricted Leo-algebras in Modflo(K).

We deduce theorem 4.46 from the theorem of Poincare-Birkhoff-Witt
and the fact that for every X € Mod%O(K) the canonical morphism E(X) —

S(X) in Cocoalg(ModeO(K))]l/ is adjoint to an equivalence X — P'(S(X))
(corollary 4.44).

Before we prove corollary 4.44, we remind of the classical situation:
Let K be a field of char. 0 and Y a chain complex of K-vector spaces.

The symmetric algebra S(Y) := @izO(Ygﬁ)Ei is conilpotent and is the
cofree conilpotent coaugmented cocommutative coalgebra on Y:
Denote I' the functor that takes the cokernel of the coaugmentation.

The canonical map I'(S(Y)) = @11 (Y®)s, - Y that is the identity
on the first factor and the zero map on every other factor induces for
every conilpotent coaugmented cocommutative coalgebra Z in Chk an
isomorphism

Cocoalg(Chk)1/(Z,S(Y)) - Chx(I'(Z),T'(S(Y))) - Chx(I'(Z),Y).

Especially for Y the co-square-zero extension E(X) on some X € Chk
the natural map

Cocoalg(Chk )1/ (E(X), S(Y)) > Chx (X, T(S(Y))) - Chi(X,Y)

is an isomorphism.
So we obtain an isomorphism

Chk (X,Y) = Cocoalg(Chk )1/ (E(X),S(Y)) = Chx (X, P'(S(Y)))

representing an isomorphism Y — P’(S(Y)) adjoint to the canonical mor-
phism E(Y) - S(Y) in Cocoalg(Chk)q;,.

We deduce corollary 4.44 from proposition 4.43, which we prove after
some preparations:

Recall that a t-structure on a stable category € is a pair of full sub-
categories Cx0,C<o such that the following conditons hold, where we set
Csn = Cxo[n] and €y, := C<o[n] for every ne Z:

e For X €@y and Y € Cc—1 we have C(X,Y) =0.

e We have full subcategory inclusions €1 c Cxp and C<_1 c Cgp.

e For every X € C there is a fiber sequence Y - X — Z with Y € Cxo
and Z € Cc_1.

We set €Y := Cco N Csxo.
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Recall that for every n € Z the full subcategory C<, c € is a localiza-
tion and the full subcategory Cs, c C is a colocalization ([18] proposition
1.2.1.5.)

Moreover the localization C<o c € restricts to a localization C° c Cso
and the colocalization € c € restricts to a colocalization €% c C<o ([18]
remark 1.2.1.8.).

Let € be a stable presentably symmetric monoidal category.

By prop. 3.22 the free commutative algebra functor € — Calg(C)
uniquely lifts to a left adjoint functor

€ — Cobialg(€) = Cocoalg(Calg(C))
that preserves finite products as Cobialg(€) is preadditive.

Denote S the composition € — Cobialg(€) - Cocoalg(C)y; and T :
Cocoalg(€)y/ — € the functor that takes the cokernel of the coaugmenta-
tion.

For every Y € € we have canonical morphisms

S(Y) =@(Y*)s, » Y, L(S(Y)) = @(Y*)s - Y
i0 i>1
in € that are the identity on the first factor and the zero morphism on
every other factor.

Let (Cs0,C<0) be a t-structure on € such that the symmetric monoidal
structure on C restricts to Csg.

As Csg is closed under small colimits in €, with Y also S(Y) =~ @®0(Y®)s,
and T'(S(Y)) = @51 (Y®)sx, belong to Cso.

As next some remarks about the structure of the (co)free (co)commutative
(co)algebra:

Let C be a symmetric monoidal category such that € admits small
colimits. Denote V : Calg(C) — € the forgetful functor.

Let A € Calg(C) and f:X - V(A) a morphism in C.

For every n € N the morphism f: X — A gives rise to a ¥X,-equivariant
morphism X®* — A®" and the multiplication A®® — A of A is X,-
equivariant (construction 4.40).

For every Z e C the functor - ® Z : ¢ - € sends the X,-equivariant
morphism X® - A®" - A to a ¥,-equivariant morphism X®"®Z - A®Z
corresponding to a morphism (X®" ® Z)s, -~ A®Z in €.

In the following we will explain that f : X — V(A) exhibits A as the free
commutative algebra on X in C if for every Z € € the family of morphisms
(X®"®7Z)s, - A®Z in € indexed by n € N exhibits A®Z as the coproduct
of the objects (X*" ® Z)s, .

First we need to explain how we make the morphisms X®" - A®" A®"
A ¥, -equivariant.

Construction 4.40. Given an operad O denote 02, c O the subcate-
gory spanned by the active morphisms.
We have a canonical equivalence Env(0) ~ 0%,,.

Denote Fin c Set the full subcategory spanned by the finite sets and
3 ¢ Fin the mazimal groupoid in Fin.
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The functor Fin - Fin, = Comm® that adjoins a base point induces
an equivalence Fin ~ Comm®,, ~ Env(Comm), under which ¥ corresponds

to Triv®,, ~ Env(Triv) so that ¥ is the intersection Triv® n Fin c Fin..

The symmetric monoidal category Env(Comm)® is cocartesian so that
we have a canonical equivalence Env(Comm)® ~ FinH of symmetric monoidal
categories, under which Env(Triv)® ¢ Env(Comm)® corresponds to a
symmetric monoidal subcategory X of FinH.

The operad Triv® is the tensorunit of the closed symmetric monoidal
structure on Op,, and so by proposition 6.82 Env(Triv)® ~ £® is the
tensorunit of the closed symmetric monoidal structure on Cmon(Cateo).

Especially for every symmetric monoidal category C we have canonical
equivalences

Fun®(Jin, €) ~ Calg(€), Fun®(%,C) ~ Algp,, (C) = C,
where the last equivalence evaluates at the set with one element.

_ So every X € C uniquely extends to a symmetric monoidal functor
X : X - €. For every n € N the restriction Xjg(x,) : B(Xa) ¢ ¥ - C
endows X®® with a Yp-action.

Every A € Calg(C) uniquely extends to a symmetric monoidal functor
A : Fin - €. The unique natural transformation from the subcategory
inclusion ¥ c Fin to the constant functor with value (1) gives rise to a
natural transformation ¢ : A = A‘g — 0(A) of functors ¥ — C, where
0:C— Fun(X, C) denotes the diagonal functor.

So for every n € N the restriction ¢jp(s,) makes the morphism ¢(n) :
A®® > A X, -equivariant, where ¢(n) : A®™ — A is the multiplication of

A.

By construction 4.40 the morphism f : X — A in € uniquely extends
to a symmetric monoidal natural transformation X — A of symmetric

monoidal functors ¥ — €. So we get a natural transformation X-A2%
d(A) of functors ¥ — € corresponding to a functor 3 : 3" — @ that extends
X and sends the final object of % to A.

By the following remark 4.41 for every Z € C the following conditions
are equivalent:

e The family of morphisms (X®*"®Z)s, - A®Z in € indexed by n e N
exhibits A ® Z as the coproduct of the objects (X*" ® Z)x, .

-87
e The composition 3~ LA € =25 € is a colimit diagram.

Remark 4.41. Let H: ¥ — C be a functor, Y € C and ¥ : H - §(Y) a
natural transformation.

For every n € N denote 0y : € - Fun(B(2.),C) the diagonal functor.
The morphism Yp(s,) : Hn = H(s,) = 0a(Y) is adjoint to a morphism
¢n:(Hn)s, > Y in C.

The following conditions are equivalent:

1. v :H - §(Y) exhibits Y as the colimit of H.

2. The family of morphisms ¢n : (Ha)s, = Y in C indexed by n € N
exhibits Y as the coproduct of the objects (Hy)sx,,.
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Proof. We have a canonical equivalence [, B(Zn) ~ X that yields an
equivalence Fun(X, C) ~ [1, Fun(B(Z,), €).

The diagonal functors ¢ : € - Fun(X, €) factors as

e - [T e 22 1T Fun(B(S), €) = Fun(3, €).

neN neN

So we get a canonical equivalence

Cry = Cxpun(s,e) Fun(Z, €)ny = Cxp | Fun(B(zn).e) | | Fun(B(Zn), €, =~

neN

CX(Mpen © HN(@XFun(B(zn>,€>FUH(B(En), C,/) = Cx (M ) [ [ Clttn)s, /=
ne

neN
(IT© s, nens-

neN

O

As next we will give an alternative description of the functor 8: 3" —

c.

Construction 4.42. By lemma 6.53 the full subcategory € c Env(C) ~
G2, is a localization, where a morphism X - Y of €&, with Y € € is a local
equivalence if and only if it is cocartesian with respect to the cocartesian
fibration C® — Fin,.

Moreover the localization € c Env(€) is compatible with the symmetric
monoidal structure.

Denote L : Env(@) =~ €%, — @ the localization functor.

So L lifts to a symmetric monoidal localization functor Env(C)® — €%
that restricts to the identity on C® and is thus adjoint to the identity of
c®.

So given an operad OF every O®-algebra of € is adjoint to the sym-
metric monoidal functor Env(0)® — Env(C)® - C®, whose underlying

. L
functor is 0%, - €%, = C.

We will apply this to O® = Triv® and 9® = Comm®.

The morphism f : X - V(A) uniquely extends to a morphism X —
Ainive of Triv-algebras in € that restricts to a natural transformation
Xz = A of functors ¥ — C®. over JFin that is sent by L to the natural
transformation X — A of functors ¥ — C.

The unique natural transformation from the subcategory inclusion 3 c
Fin to the constant functor with value (1) gives rise to a natural transfor-
mation Ajs — §(A) of functors & — €2, that is sent by L to the natural
transformation A ~ Ay > 6(A) of functors ¥ — €.

So we obtain a natural transformation X5, - Az - §(A) of functors
¥ - C%, corresponding to a functor 0 : £° — €2, that extends Xz and
sends the final object of ¥” to A that is sent by L to the functor B: X" — C.

By [18] proposition 3.1.1.15. and proposition 3.1.1.16. the following
conditions are equivalent:

> B=Lof
—_—

e The composition X e %% @ is a colimit diagram.

e The functor 0 : ¥ — €%, is an operadic colimit diagram of €® —
JFin,.
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By [18] proposition 3.1.3.2. the morphism f: X — V(A) exhibits A as
the free commutative algebra on X in € if 6 : ¥* — €2, is an operadic
colimit diagram of C® — Fin., where we refer to [18] definition 3.1.2. for

the definition of operadic colimit.

So we have seen that f: X — V(A) exhibits A as the free commutative
algebra on X in € if for every Z € @ the family of morphisms (X®*®Z)s, —
A ®7Z in C indexed by n € N exhibits A ® Z as the coproduct of the objects
(X% ®7Z)s,.

In the following we will use the dual statement:

Let € be a symmetric monoidal category such that € admits small
limits. Denote V : Cocoalg(€) — € the forgetful functor.

Let A € Cocoalg(€) and f: V(A) - X a morphism in C.

For every n € N the morphism f: A — X gives rise to a X,-equivariant
morphism A®" — X®" and the comultiplication A — A®" of A is X,-
equivariant (construction 4.40 applied to C°P).

For every Z € C the functor — ® Z : ¢ - € sends the X,-equivariant
morphism A - A®" - X®" to a ¥,-equivariant morphism A®Z — X®"®7
corresponding to a morphism A ® Z — (X®" ® Z)™" in C.

So f: V(A) — X exhibits A as the cofree cocommutative coalgebra on
X in € if for every Z € € the family of morphisms A®Z — (X®"®Z)>" in €
indexed by n € N exhibits A®Z as the product of the objects (X®* ®Z)>».

Recall that for all n € N and X € €”® there is norm map Xy, — X>»
(example 6.1.6.22. [18]).

Now we are ready to prove proposition 4.43:

Proposition 4.43. Let C be a stable presentably symmetric monoidal
category compactly generated by the tensorunit 1 of € and (Cs0,C<0) a t-
structure on C such that the symmetric monoidal structure on C restricts
to 820.

1. Assume that for all Y,Z € C and i2 0 the norm map (Y® ®Z)s, -
(Y®'®Z)% is an equivalence and that m,(Y) = m(C(X™(1),Y)) =0
if Y € Cxo and n < 0.

Then for every Y € Cs1 the canonical morphism S(Y) - Y in C
ezhibits S(Y) as the cofree coaugmented cocommutative coalgebra on
Y in the category Cs := Ujez Csj, i.e. for every Z € Cocoalg(Cs )y, the
canonical map

Cocoalg(€s)1/(Z,5(Y)) = C=(I'(2),I'(S(Y))) = C:(I'(Z),Y)
is an equivalence.

2. Suppose that the symmetric monoidal structure on € restricts to €°
and that C° is closed under countable coproducts in C.

Denote E : Czo — Cocoalg(Cx0)1, the co-square-zero extension.
Then for every Y € C° and X € Cso the canonical map

Cocoalg(€C20)1/(E(X),5(Y)) = C20(X,I'(S(Y))) » C0(X,Y)

is an equivalence.
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Combining 1. and 2. we get:

3. Assume that for all Y,Z € € and 12> 0 the norm map (Y®' ® Z)s, —
(Y®'®Z7)% is an equivalence and that m,(Y) = m(C(X™(1),Y)) =0
if Y € Cxo and n < 0.

Suppose that the symmetric monoidal structure on C restricts to C°
and that C° is closed under countable coproducts in C.

Moreover assume that Cso is the only full subcategory of Cso that
contains Cs1 and C° and is closed under finite products and retracts.

Then for every X,Y € Cxo the canonical map
Cocoalg(€s0)a/ (B(X), S(Y)) ~ C20(X, I(S(Y))) ~ Ca0(X, Y)

is an equivalence.

So we obtain an equivalence
€(X,Y) = Cocoalg(Cs0)1/(E(X),S(Y)) ~ C0(X, P'(S(Y)))
representing an equivalence Y — P'(S(Y)) adjoint to the canonical
morphism E(Y) - S(Y) in C.
Proof. We start by showing how 3. follows from 1. and 2.:

The functor S : Cyo - Cocoalg(Cs0)q; preserves finite products as S
factors as the composition €9 — Cobialg(€s0) - Cocoalg(Cz0)q, of finite
products preserving functors.

Hence the full subcategory of Cso spanned by the objects Y such that
the canonical map

¢ Cocoalg(€2)/(Z,S(Y)) — € (I(2), T(S(Y))) = €x(I'(Z), Y)

is an equivalence for all Z € Cocoalg(Cs )y, is closed under finite products
and retracts.

So by assumption it is enough to show that ¢ is an equivalence if
Z € Cocoalg(Cs)1; and Y € €7 U Cs1.

As next we prove 1.:

First we remark that it is enough to show that for every Y e Cy;
the canonical morphism S(Y) — Y in € exhibits S(Y) as the cofree co-
commutative coalgebra on Y in the category C. (instead of the cofree
coaugmented cocommutative coalgebra) i.e. for every Z € Cocoalg(Cs)
the canonical map

Cocoalg(€s)(Z,S(Y)) —» €-(Z,S(Y)) - C=(Z,Y)

is an equivalence:
For every Z € Cocoalg(C:)4/ the canonical map

@ : Cocoalg(Cz)1/(Z,S(Y)) = C(T'(Z),T(S(Y))) = C=(I'(Z),Y)
factors as
Cocoalg(€:)1/(Z,8(Y)) = {0} Xcocoala(es)(1,5(v)) Cocoalg(C:)(Z,S(Y))

= {0} xe,(1,5v)) €:(Z,5(Y)) = {0} xe,a,v) C(Z,Y) ~ €:(I'(Z),Y),
where o : 1 - S(Y) is adjoint to the zero morphism 0:1 - Y in C.
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To show that the canonical morphism S(Y) — Y in € exhibits S(Y) as
the cofree cocommutative coalgebra on Y in the category Cs, it is enough
to check the following condition:

For every Z € €> and i > 0 the morphism S(Y) — Y and the X;-
equivariant comultiplication S(Y) - S(Y)®' give rise to Yi-equivariant
morphisms S(Y)®Z - S(Y)*' ®Z » Y® ®Z in € that induce a morphism

a:S(Y)®Z - [[(Y® ©2)™.

i>0
Then « is an equivalence.
Set Ai = (Y®)x, ® Z~ (Y® ®Z)5, ~ (Y® © Z)™i.
Then « is equivalent to the canonical morphism £ : ;59 Ai = [Tis0 Ai.
By assumption it is enough to see that for every k € Z the morphism
vim([TA) = @ me(Ai) - [Tme(A) = m([TA)
i0 i>0 i0 i>0
is an isomorphism. '
If Z € Cy; for some j € Z, the object A; ~ (Y® ® Z)s, belongs to Csisj.

Hence by assumption for every k € Z and every i > k —j we have
mk(Aj) = 0 so that v is an isomorphism.

As next we prove 2.:

For every Y € Cso the unit S(Y) = Bino(Y)g, - I'(S(Y)) @1 =
@i51(Y®)s, ® 1 is the identity. So S(Y) belongs to Cocoalg(Cs0)"™™" c
Cocoalg(Cx0)1,-

So for every X,Y € Cyo we have a commutative diagram

Cocoalg(Cz0)s, (E(X), S(Y)) —— Cao(X, T(S(Y))) — Cs0(X, Y)

Cocoalg(C0)" " (T(E(X)),T(S(Y))) —— C20(X,T(S(Y))) —— €x0(X,Y),

where the vertical maps are equivalences.

For every Y € ¥ the free commutative algebra S(Y) = @0(Y®)s,
and T'(S(Y)) = @1 (Y®)s, belong to €7 :

By assumption for every i > 0 and Y € €° the object Y® belongs to
eo.

As Csp is closed in € under small colimits, (Y®)* ~ (Y®)s, belongs
to Cso.

Hence (Y®)¥ - Y®' is a limit diagram in Cso and thus a limit diagram
in €%. So by assumption @;0(Y®)s,, D1 (Y®)s, belong to C°.

The symmetric monoidal full subcategory inclusion €% c €y admits a
left adjoint 7o : Cso — C°.

So the localization 7o : €z 2 C¥ lifts to a localization Cocoalg(Cx0)"" =2
Cocoalg(€%)™",

So for every X € G5 and Y € ¥ we have a commutative diagram

Cocoalg(€7)"" (F(E(m0(X))), T(S(Y))) —— €7 (m0(X), [(S(Y))) —— €7 (w0(X), Y)
Cocoalg(€:0)™* (D(E(X)), I(S(Y))) ——— Coo(X, I(S(Y))) —— Es0(X, Y).
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Consequently it is enough to see that the top horizontal map
Cocoalg(€”)"*(I'(E(m0(X))), [(S(Y))) ~ €7 (mo(X), [(S(Y)))
- €7(m(X),Y)

is an equivalence.
The restriction

% cCp > Cocoalg(Cz0)1/ 5 Cocoalg(Cx0)"™
factors as the unique section
€% - Cocoalg(C”)™" c Cocoalg(€Cxo)""

by the uniqueness of the co-square-zero extension.

We have shown that for every Y € €° the free commutative algebra
S(Y) belongs to €°.

So the restriction of the free commutative algebra CY% c Cyo — Calg(C0)
factors as the free commutative algebra

€7 - Calg(€”) c Calg(Cso).
Thus by the uniqueness of lifts the restriction
C¥ c Cxo 5 Cocoalg(Cz0)1/ I Cocoalg (€)™

factors as €7 S Cocoalg(€®)q, LN Cocoalg(C®

)ncu )ncu

c Cocoalg(Cso

So using that €7 is a l-category we only have to see that every mor-
phism Z —» Y in €% uniquely lifts to a map 1 of non-counital coalgebras
7 - @1 (Y®)s, in €7, where Z is endowed with 0-comultiplication.

1 is the composition Z - Y — @;1(Y®)s,, where the second map
is the canonical map to the first summand that is a map of non-counital
coalgebras when Y is endowed with 0-comultiplication.

O

We apply proposition 4.43 to the stable presentably symmetric monoidal
category Modg k) underlying the projective model structure on the cat-
egory Chk of chain complexes over some field K of char. 0.

We endow Mody (k) with its natural t-structure so that ModE(K) is
the category of K-vector spaces.

Corollary 4.44. Let K be a field of char. 0.

The canonical morphism E(Y) - S(Y) in Cocoalg(Mod%o(K))]l/ is ad-
joint to an equivalence Y — P'(S(Y)) in ModIZ{O(K)‘

Proof. We check that Mody k) satisfies the assumptions of proposition
4.43:

The category Modp (k) is compactly generated by its tensorunit and
the symmetric monoidal structure on Modg (k) restricts to Modlz{O(K).

For every Y € ModEO(K) and n < 0 we have m,(Y) = 0.

The full subcategory Modg(K) is closed under small filtered colimits
in Modg k) and is thus closed under arbitrary small coproducts.
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An object of Mody k) belongs to Mod%(K) if and only if its a small
coproduct of tensorunits of Mody k).
So the symmetric monoidal structure on Modg k) restricts to ModE(K).

Every chain complex over K is equivalent to its homology considered as
a chain complex with zero differentials and is thus a direct sum of a chain
complex concentrated in degree zero and a chain complex that vanishes
in degree zero.
Especially every object of ModiO(K) is the direct sum of an object in
ModE(K) and an object in Modf{I(K)A
O

As next some remarks about the theorem of Poincare-Birkhoff-Witt
which we use in the proof of theorem 4.46:

Let K be a field of char. zero, Y € Chz and X € Lie(Ch%?) lying over
X' e Chg.

We have a symmetrization map 7 : S(Y) - T(Y) in Cocoalg(Ch)s,
and a canonical morphism T(X') - U(X) in Bialg(Chi{)4, that factors as
T(X') = UL (X)) - U(X).

By the theorem of Poincare-Birkhoff-Witt the composition S(X') 2
T(X') - U(X) is an isomorphism.

The functors
T: Chy — Bialg(Chy)), S:Ch — Cobialg(Chg’

factor canonically as Chg’ LR Cocoalg(Chi)q, 5 Bialg(Ch?) respectively

Chz® &5 Cocoalg(Chi?)s) — Cobialg(Chz?), where the morphisms F,F’
denote the free functors.
The canonical morphisms

EY)=Yol->@Y®=T(Y),E(Y)=Ya&l->@Y)s =S(Y)

i20 i20
lift to morphisms in Cocoalg(Ch’)4, that are the units E(Y) —» F(E(Y)) =
T(Y) and E(Y) - F(E(Y)) 2 S(Y).

The units E(Y) - F(E(Y)) 2 T(Y) and E(Y) - F'(E(Y)) = S(Y)
are sent to morphisms in Cocoalg(ModiO(K))l/ that are the units of the

corresponding adjunctions for Modilo(K) instead of Chz?.
So the commutative triangle

~

S(Y) T(Y)

N

E(Y)

in Chi is a commutative triangle in Cocoalg(Ch)s, and is thus sent
to a commutative triangle in Cocoalg(ModIZ{O(K))l/, where the diagonal
morphisms are the units.

Remark 4.45. Let K be a field of char. zero.
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The enveloping algebra functor W' : Lie(Chz) — Alg(ChZY) is a left
Quillen functor and thus preserves weak equivalences between cofibrant
objects.

The theorem of Poincare-Birkhoff-Witt implies that U : Lie(Chi)) —
Alg(Ch2Y) preserves all weak equivalences:

The combinatorial model structure on Ch3’ lifts to a right induced
model structure on Calg(Chi) (/24] lemma 5.1.).

So the free-forgetful adjunction S : ChZ) = Calg(ChZ’) is a Quillen
adjunction so that S preserves weak equivalences.

By the theorem of Poincare-Birkhoff- Witt the functors U : Lie(ChZ) —

Bialg(Chz®) —» ChZ and Lie(Chz®) —» Ch® 3 Calg(Chz®) - ChZ° are
isomorphic.

Now we are ready for the proof of theorem 4.46:

Theorem 4.46. Let K be a field of char. 0.

The enveloping bialgebra functor
U: Lie(Chg ) e — Bialg(Modjik)
18 fully faithful.
Proof. The functors
T : Modsj ik — Bialg(Modi)), S:Modsk, — Cobialg(Modii))
factor canonically as

Mod%o(K) E Cocoalg(Chf(O)n/ LR Biaulg(ModeO(K))7

Modio(K) LR Cocoalg(ChiO)l/ LN Cobialg(ModIz{O(K)),
where the morphisms F, F’ denote the left adjoints of the forgetful functors
V: Bialg(ModIZ{O(K)) - Cocoalg(Chy’)y respectively Cobialg(Modio(K)) -
Cocoalg(Ch)y,.
So the unit id - P o T factors as id > P’ o E > P oVoFoE~PoT.
Moreover we note that for every Y ¢ Mod%O(K) the units

E(Y) = F(E(Y)) 2 T(Y), E(Y) - F(E(Y)) =~ S(Y)

lie over the canonical morphisms Y&1T — @50 Y® and Y& — @50 (Y5,
in ModZHO(K).
We have a symmetrization map «: S(Y) - T(Y) in Cocoalg(ModeO(K))n/
such that the composition E(Y) — S(Y) - T(Y) is equivalent to E(Y) —
T(Y) in Cocoalg(ModﬁO(K))i/.

Let X € Lie(ChZ?)oo with underlying object X’ € ModeO(K).

We want to see that the unit X - P(U(X)) is an equivalence or equiv-
alently that its image o : X' - P(U(X)) in ModﬁO(K) is an equivalence.

The counit £(X’) — X yields a morphism 8 : T(X") ~ U(L(X")) —
U(X) in Bialg(Ch?) that is adjoint to « so that a factors as

X' = P(T(X')) 25 P(U(X)).
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Thus o factors as
X' = P (B(X)) > P (F(B(X))) = P (T(X')) L2 7 (u(X))
and so as
X' = P (B(X)) = P/ (F (B(X))) = P'(S(X)) L2 #(T(x")) L 7' (u(x)).

By the theorem of Poincare-Birkhoff-Witt the composition S(X') =
T(X") LA U(X) is an equivalence in Cocoalg(Modf{O(K))n/.
By corollary 4.44 the morphism X' — P'(E(X")) - ?'(F'(E(X))) =~
P'(S(X")) is an equivalence, too.
O
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5 About the equivalence between mon-
ads and monadic functors

Let X be a category. The composition of endofunctors of X defines a
monoidal structure on the category of endofunctors of X, whose associative
algebras we call monads on X.

Every functor g : Y — X with left adjoint f : X — Y gives rise to a
monad T =gof on X.

On the other hand given a monad T on X we can form the category
of T-algebras LMod(X), which comes equipped with a right adjoint for-
getful functor LModr(X) — X, whose associated monad is T.

Moreover the functor g: Y — X gives rise to a canonical functor Y —
LModr(X) over X that sometimes happens to be an equivalence, in which
case we call g a monadic functor.

This way we can turn right adjoint functors to monads and vice versa
and obtain a correspondence between monads and monadic functors.

In nature monads often are equipped with extra structure:

Every associative algebra A in a monoidal category X gives rise to a
monad A® —: X - X on X.

If A is a cocommutative bialgebra in a symmetric monoidal category
X its associated monad A ® — : X — X is naturally a Hopf monad, i.e. a
monad, whose underlying endofunctor on X is oplax symmetric monoidal
and whose unit and multiplication are symmetric monoidal natural trans-
formations.

Another source for Hopf monads are Hopf operads: Given a Hopf
operad O in X, i.e. an operad in cocommutative coalgebras in X, its
associated monad O o —: X — X is naturally a Hopf monad.

Given a commutative algebra A in a symmetric monoidal category X
its associated monad A ® — : X — X is naturally a lax symmetric monoidal
monad, i.e. a monad, whose underlying endofunctor on X is lax symmet-
ric monoidal and whose unit and multiplication are symmetric monoidal
natural transformations.

This extra structure on a monad is reflected in its category of algebras:

The category of algebras over a Hopf monad is a symmetric monoidal
category such that the forgetful functor from algebras in X to X is sym-
metric monoidal.

The category of algebras over a lax symmetric monoidal monad is a
symmetric monoidal category such that the free functor from X to algebras
in X is symmetric monoidal provided that the tensorproduct on X and the
endofunctor of the monad commute with geometric realizations.

To treat these examples systematically we develop a theory of monads
and monadic functors in an arbitrary 2-category € and show that there is
a similar correspondence between right adjoint morphisms g: Y — X in €
and monads on X:

We define monads on X to be associative algebras in the monoidal
category [X, X] of endomorphisms.

We say that a morphism g:Y — X in € is left adjoint to a morphism
f:X —> Y of Cif the pair (f,g) satisfies the triangular identities in €.

We call a right adjoint morphism g : Y — X in € monadic if for ev-
ery object Z of € the induced functor [Z,Y] — [Z,X] on categories of
morphisms is monadic in the usual sense.
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Every right adjoint morphisms g: Y — X of € gives rise to a monad
T=~gof on X (prop. 5.31).

To associate a right adjoint morphism Y — X to a monad T on X that
abstracts the category of algebras is more problematic.

Mimicing the essential properties of the category of algebras the mor-
phism Y — X is monadic and has T as its associated monad. This implies
the uniqueness of such a morphism, which we call the Eilenberg-Moore
object of T.

In general there is no reason that the monad T admits an Eilenberg-
Moore object but we show that in many 2-categories every monad admits
an Eilenberg-Moore object.

For example every Hopf monad, which we can identify with a monad
in the 2-category of symmetric monoidal categories and oplax symmetric
monoidal functors, admits an Eilenberg-Moore object which is preserved
by the 2-functor that sends a symmetric monoidal category to its under-
lying category.

This way the structure of a Hopf monad on a given monad T corre-
sponds to the structure of a symmetric monoidal category on the category
of T-algebras such that the forgetful functor is a symmetric monoidal func-
tor. This generalizes theorems about Hopf monads like theorem 7.1. of
[22] from 1-categories to co-categories.

Other interesting examples of 2-categories with Eilenberg-Moore ob-
jects are the following ones:

e the 2-category of operads

e the 2-category of O®-monoidal categories and oplax O®-monoidal
functors for some operad 0%

e the 2-category of O®-monoidal categories compatible with geomet-
ric realizations and lax O®-monoidal functors preserving geometric
realizations

e the 2-category of left modules over a monoidal category V and oplax
V-linear functors

e the 2-category of left modules over V compatible with geometric re-
alizations and lax V-linear functors preserving geometric realizations

e the 2-category of double categories

Given a Ey1-monoidal category D for some natural k every associative
algebra A in the monoidal category of Ex-coalgebras in D gives rise to an
oplax Ex-monoidal monad T := A® —: D - D and every Ey.i-algebra B
in D gives rise to a lax Ex-monoidal monad T :=B® —: D - D.

The second example implies that the category LModa (D) ~ LModr (D)
is a Ex-monoidal category such that the forgetful functor LModa (D) — D
is Ex-monoidal.

The third example implies that the category LModg (D) ~ LMod (D)
is a Ex-monoidal category such that the free functor D — LModg (D) is Ex-
monoidal if the Eyx,1-monoidal category D is compatible with geometric
realizations.

We show in example 5.36 that for every small category S the 2-category
of small categories over S admits Eilenberg-Moore objects.

From this we deduce that for every categorical pattern 8 the category
of P-fibered objects admits Eilenberg-Moore objects (prop. 5.47), which
includes all the mentioned examples and lots of generalizations of them.
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So to reflect structure on a monad T on its category of algebras we view
T as a monad in an appropriate 2-category € equipped with a forgetful
functor ¢ to the 2-category of small categories and show that C admits
Eilenberg-Moore objects that are preserved by ¢.

Given a 2-category € that admits Eilenberg-Moore objects for every
monad we form the category €,x of morphism with target X and its full
subcategory Cf{x of right adjoint morphisms with target X and construct
a localization

ek = Alg(Fun(X, X))

with local objects the monadic morphisms with target X (theorem 5.62).
The left adjoint sends a morphism g : Y — X with left adjoint f : X - Y
to its associated monad gof and the right adjoint sends a monad on X to
its Eilenberg-Moore object.
Thus the localization restricts to an equivalence

(€/x)™™" = Alg([X, X])™,

where (€/x)™" c €/x denotes the full subcategory spanned by the monadic
morphims with target X.
For € = Cato. this result is expected by Lurie in [18] remark 4.7.4.8.

Moreover we prove the following global version (theorem 5.73):
We form the full subcategories Fun(A*, €)™°" ¢ Fun(A*, @)® c Fun(A*, @)
of monadic morphisms respectively right adjoint morphisms and show that
the full subcategory

Fun(A', €)™ c Fun(A', Q)"

is a localization relative to C.
Moreover we show that the full subcategory Fun(A', €)™ c Fun(A!, )R}
is a localization of 2-categories if € is cotensored over Cateo.

We use the results over Hopf monads to show that the category of
algebras over a Hopf operad in a symmetric monoidal category that admits
small colimits carries a canonical symmetric monoidal structure such that
the forgetful functor is symmetric monoidal (prop. 5.77).

After reducing to the case that the symmetric monoidal category is
compatible with small colimits, we deduce this from the fact that the
associated monad of a Hopf operad is naturally a Hopf monad (prop.
5.76).
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5.1 Parametrized categories of sections

5.1.1 Parametrized categories of sections

In the first section we study parametrized versions of categories of sections,
from which we define parametrized versions of categories of algebras and
left modules. Those will serve us as a tool to make constructions involving
categories of algebras and modules natural or functorial.

A functor ¢ : T - S between small categories gives rise to an adjunc-
tion 9, : Cateoyr @ Cateoyg : 9" = T xs —.

Being a right adjoint functor T xg—: Cates /s — Cateo 1 preserves finite
products and so endows Cate;r With a canonical left module structure

over Catoo/g.
e

Txg— Cx—

Let ¢ : € — T be a functor. The functor ¢ : Cateo/s = Catoo 4
Cxg— "

Cateo 7 is equivalent to the composition Cates /g =55 Cateoye L Cateo.

Hence ¢ admits a right adjoint if and only if the functor C xg — :

Catoojs = Catooje does. In this case we call the functor v : € — S flat or say

that v exhibits C as flat over S and write Fun/TS(G7 -) : Catooyr — Catoo s
for the right adjoint of &.
If ¢ : T — S is the identity, we write Mapg (€, D) for Fun/TS(G7 D).

Observation 5.1. It follows immediately from the definition that flat
functors are closed under composition.

Moreover the opposite functor and the pullback of a flat functor € — S
along any functor a:S" — S are flat as we have commutative diagrams

Catoo/sop  — Catoo/@op Catm/sl R Catoo/@,
~lop NJ(()p la* la;
Catm/s Em— Catoo/@ Catw/s Catm/e

with o : €' := S" x5 € — € the projection, where ax, o, preserve and reflect
small colimits.

By [18] B.3.11. every cocartesian and thus also every cartesian fibra-
tion is flat.

Denote Cati{/ST c Catooy7 the full subcategory spanned by the cate-
gories over T that are flat over S.

The left action functor Cates ;g x Cateoj7 = Cato 1 yields a functor

op on on Catoo jp(~,-)

(Cateoys)”” x (Cateo 7)™ x Cateoyp = (Catooy1)°" x Catogjp ———— 8
adjoint to a functor (Cateo;7)°" x Cate;r — Fun((Cateo/g)°”,8) that re-

stricts to a functor F‘unfrs(—, -): (Catﬂ/S

OO/T)OP X Catm/T — Catm/s.

So we get a canonical equivalence
Cateo s (B, Fun/® (€, D)) = Catee jp (B xs €, D)

natural in small categories C,D over T with € flat over S and a small
category B over S.
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Remark 5.2.
Let T - S,S - R,B - S,€ - T,D - T be functors between small
categories such that C - T — S is flat.

1. We have a canonical equivalence
Funs (B, Fun/y (€, D)) = Funt (B xs €, D)
represented by the natural equivalence
Cateo (K, Fung (B, Fun/s (€,D))) = Cate s (K x B, Fun/’ (€, D)) =

Cateo;r((Kx B) x5 €, D) =~ Cateoyr (K x (B x5 C), D) =
Catoo(K,FunT(B Xg G,@))

for a small category K.

Generalizing 1. we have a canonical equivalence
FunéR(ﬂ,Fun/Ts(G,D)) ~ Fun/TR(ﬂ xg C,D)
over R represented by the natural equivalence
Fung (K, Fun/* (B, Fun/s (€, D))) = Funs (K xg B, Fun/? (€, D)) =
Funt (K xg B x5 €, D) ~ FunR(K,FunéR(B xg €,D))

for a small category K over R.

2. We have a canonical equivalence
Fun/S (€, D) = Funls,, (€°P, D°P)
over S°P represented by the canonical equivalence
Cateo jsor (B, Fun/? (€, D)°P) = Catee s (B, Fun/y (€, D)) =
Catoo (B x5 €, D) = Cates yrop (B xgor €, DP) ~
Catoojgon (B, Fun/sy, (€°7, D).
3. Let S’ - S be a functor. Set T' := 8" xg T.

There is a canonical equivalence
S’ xs Fun/S (€, D) = Fun/S (S x5 €, 8" xs D)
of categories over S’ represented by the canonical equivalence
Fung/ (K, $'xsFun/s (€, D)) = Funs (K, Fun/s (€, D)) ~ Funt (CxsK, D)
~ Funys (€ xs K, T’ x1 D) = Funy ((S" xs €) xg K, 8" xs D)
~ Funsr(K,Fun/TS,,(S' xs €, 8" x5 D))

natural in a small category K over S'.

Especially for every object s of S we have a canonical equivalence

Fun/TS((f,D)s ~ Funr, (Cs, Ds).
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4. We have a canonical equivalence
Fun{fs(ev D) ~S *Mapg (€,T) MapS(ev D)
over S represented by the canonical equivalence
Funs (K, Fun/S (€, D)) ~ Funt (K xs €, D) ~

{6+ (K xs )} Xpun(kxge,1) Fun(K xs €, D) =~
{¢+ (K x5 €)} Xpung (kxge,T) Fung (K xs €, D)
{#+(K xs €)} Xpung (k. Mapg (e, 1)) Funs (K, Mapg (€, D))
= Funs (K, S xptapg (e,m) Maps (€, D))
natural in a small category K over S.

5. Let €T, T - S be functors and C - E,D — & functors over T.

We have a canonical equivalence

S Fun/s (€, D) = Fun’’ (€, D)

XF‘un{I‘S(G,E)
over S given by the composition

S x Funf(@, D) =S XMapg(e,e) Mapg (€, D) =~ Funés((?,D)

Fun/Ts((?,S)

of canonical equivalences over S.

More generally given a functor B — Funlfs(e,ﬁ) over S we have a
canonical equivalence

B x Fun/® (€, D) = Funl, . (B xs €,B xs D)

Fun/s (€,€)
over B given by the composition

B x Fun[FS(G,D) ~ B x (B xs Fun[FS(G,D)) ~

Fun/S (e,€) (BxgFunl$ (€,€))

B Fun;)_.(Bxs€, BxsD) = Funl, , (Bxs€, BxsD)

X p
Fung”XST(Bxse,Bxse)
of canonical equivalences over B.

6. Given functors € - T/ T - T,T - S,D - T we have a canonical
equivalence
Fun/y' (€, D) = Fun/5 (€, T’ x1 D)

over S represented by the canonical equivalence
Funs(K,FunZFS((‘,’,D)) ~ Funt (K x5 €,D) ~
Funp (K xg €, T xp D) = Funs(K,Fun{FS,(G,T' xp D))

natural in a small category K over S.

Remark 5.3. Let R,S, T be categories and T - S,;R - S and X - TxsR
be functors. Let B be a category over T and D a category over R.
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1. Assume that the functors B - S and D - R are flat.
There is a canonical equivalence

Mapg (D, FunRX (RxsB,X)) =~ FunRX r(RxsB, Mapg, r(TxsD, X))

of categories over R represented by the following canonical equiv-
alence natural in a small category K over R, where we set Z :=
Fun%RXST(R xs B,X) and W := Mapg, v(T xs D, X)

Fung (K, Mapg (D, Z)) ~ Fung (K xg D,Z) =~
Fungxgt((K xgr D) xr (R xg B),X) ~
Funrxm((K xg (R xs B)) xr D,X) =~ Funrxg1((K xs B) xg D, X) ~
FunRXST((K Xg 3) X(TXsR) (T XS 'D)7X) =~ FunRxST(K Xg B W) =~
Fungxs1(K xr (R xs B), W) ~ Fung (K, FunRX r(Rxg B, W)).

2. Assume that the functors B - S and D — S are flat.
There is a canonical equivalence

Fun (B, FunTX r(TxsD,X)) = Fun 5(D, FunRX (R xs B,X))

over S.
We have a canonical equivalence natural in a small category L over

S:
Funs(L, FunT (B, FunTX r(TxgD,X))) =

FunT(Lxsii,FunTXSR(szD,X)) ~ Funtyer ((LxsB)x1(TxsD),X)
Funrxgr ((L xs B) xg D, X)

Changing the roles of R and T and D and B we get a canonical
equivalence natural in a small category L over S :

Funs(L,Funf(D,FunRXST(RxSB X))) = Fungx1((LxsD)xsB,X).
So we get a canonical equivalence
Funs(L,Fun (B, FunTx r(TxsD,X))) = Funtxgr ((LxsB)xsD, X)

Fungxs1((LxgD)xsB,X) = Funs(L,Fun{;{S(D,FunRx r(RxsB,X)))

natural in a small category L over S that represents a canonical equiv-
alence

FunT (B, FunTx r(TxgD,X)) = Fun 5(D, FunRX (R xs B,X))

over S.
3. SetY = Fun/l,_p (T xs R,X).
For B - T and D — R the identities the canonical equivalence

Fun (T, FunszR(T xs R, X)) ~ Fun (R, FunRXST(R xg T, X))
over S of 2. is adjoint to the functor
R xs Funf (T, Y) = Funfy, (R xs T,R xs Y) > Funfy;_; (R xs T,X)
over R induced by the functor
Rxs Y = Fun/!_p (T xs R, X) xr (T xs R) > X

over T xs R.
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Remark 5.4. Let T - S and ¢ : C - T be functors such that the compo-
sition € - T = S is flat and let ¢ : D — & a functor over T.

If the functor ¢ : D — € is a subcategory inclusion respectively is fully
fasthful, the induced functor Fun/TS((?7 D) > FunZFS(C, &) also is.

Cxg— %
Proof. Being right adjoint to the functor Cateo /s _=5 Catoo e &, Catoo
the functor Fu]néS (€,-) : Cateyr — Cateoys preserves pullbacks and so
monomorphisms. The forgetful functor Cate;s — Cate preserves and
reflects pullbacks and so monomorphisms, where the monorphisms in Cateo
are the subcategory inclusions.

If p: D — & is fully faithful, ¢ is a subcategory inclusion so that the
induced functor FunZFS (€,D) —» Fun/TS (G, &) is a subcategory inclusion.

Let a: A' - Fun/TS(C, &) be a morphism of Fun/TS(C'7 &), whose source
and target belong to Fun{FS(G7 D) c Fun{FS(C7 &) and that lies over a mor-
phism f:s -t of S.

a corresponds to a functor F : A' xg @ - A' xg & over A' xg T such
that the induced functors F; : G — & over Ts and Fo : C; — &; over Ty
factor through Ds respectively Dy.

As D is a full subcategory of &, the functor F: A xg € > A’ xg & over
A' xg T induces a functor Al xg € »> Al xgD over Al xgT corresponding
to a morphism A' — Funfrs(e, D) of Fun/TS(C'7 D) that is sent to a.

O

Remark 5.5.
Let a: T —>S,8:C—-T,v:D - T be functors such that the composi-
tion @ - T - S is flat and & c Fun(A',S) a full subcategory.

[18] Theorem B.4.2. implies the following:

Assume that a: T — S is a cartesian fibration relative to E.
Denote &' c F‘un(Al7 T) the full subcategory spanned by the a-cartesian
morphisms lying over morphism of €.

If B: € - T is a cartesian fibration relative to & and v : D - T
is a cocartesian fibration relative to &', then 1 : Fun/TS(C,D) - S s a
cocartesian fibration relative to €.

In this case a morphism of Fun{fs(e,D) lying over a morphism of € is
-cocartesian if and only if the corresponding functor A xg € - Al xg D
over A xg T sends 8-cartesian morphisms lying over morphisms of & to
y-cocartesian morphisms.

For S=A' and & = Fun(A', A') we get the following:

The cartesian fibration « : T — A' classifies a functor G : Ty — To.
The cartesian fibration 8 : € — T relative to &' classifies a commutative
square of categories corresponding to a functor C; — G*(Co) over Ty
and the cocartesian fibration v : D — T relative to &' classifies a functor
G* (Do) — Dy over Ti.

The cocartesian fibration 1 : F‘un/TAl (€,D) - A! classifies the functor

Funt, (€, Do) — Funr, (G*(€p), G"(Do)) - Funr, (€1, D).

For a the projection K x S — S we get the following corollary:
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Corollary 5.6. Let C —> K xS be a map of cartesian fibrations relative to
& such that C = S is flat and D — K xS a map of cocartesian fibrations
relative to €.

The functor ) : Funé(sxs(e,ﬂ) — S is a cocartesian fibration relative to E.

In this case a morphism of Fun/TS(G, D) lying over a morphism of & is
-cocartesian if and only if the corresponding functor A' xg @ - A xg D
over A xg T sends morphisms that are cartesian with respect to € — S to
morphisms that are cocartesian with respect to D — S.

Especially for K contractible:

Let € — S be a flat functor and cartesian fibration relative to € and
D - S a cocartesian fibration relative to €.

The functor v : Mapg(€, D) — S is a cocartesian fibration relative to €.

By the canonical equivalence
FunZFS(G,ﬂ) = S Xpapg (e, ) Mapg(C, D)

over S we get the following corollary:

Corollary 5.7. Let C — S be a flat functor and cartesian fibration relative
to &, B:C — T a functor over S that sends morphisms that are cartesian
with respect to C — S and lie over morphisms of & to morphisms that are
cocartesian with respect to T — S and v : D — T a map of cocartesian
fibrations relative to €.

Then 1) : FunZFS(C, D) - S is a cocartesian fibration relative to €.

In this case a morphism of Fun{fs(e,D) lying over a morphism of € is
-cocartesian if and only if the corresponding functor A xg € - Al xg D
over A' xg T sends morphisms that are cartesian with respect to @ — S to
morphisms that are cocartesian with respect to D — S.

For S=A' and & = Fun(A', A') we get the following:

The cocartesian fibration T — A! classifies a functor F : T — T;.

The functor 8 : € — T classifies a functor €1 — F.(Co) over T1 and the
map 7 : D — T of cocartesian fibrations over A' classifies a commutative
square of categories corresponding to a functor F.(Dg) — D over T;.

The cocartesian fibration 1 : FunéAl (€,D) - A' classifies the functor

Funr, (Co, Do) - Funt, (F«(Co),F«(Do)) - Funr, (C1,D1).

5.1.2 Parametrized categories of algebras

Based on parametrized categories of sections we define parametrized cat-
egories of algebras in the evident way:

Let S be a category, O'® — 0% and C® — 9% maps of S-families of
operads such that the functor O'® - S is flat.

We define Algés,/o(e) c Fungs® O'®,€®) to be the full subcategory
spanned by the functors O® — €® over O2 that preserve inert morphisms

for some s € S.
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So for every s € S the equivalence Funés® 0'® C®), ~ FunO;@(O;@, e®)
restricts to an equivalence Alg{os,/o(e)s = Algy, /o, (Cs).
More generally given a functor S" — S the canonical equivalence

S’ xg Fungs®(0'®, %) = Fun/;;so®(8’ xg 0"® 8" x5 C%)

over S’ of remark 5.2 4. restricts to an equivalence

’

S' x5 Algly, o (€) = Algly, o6/, (S x5 €)

over S'.
For every section S — O'® of the functor ©® — S lying over some
section o : S — 9% of the functor O® — S we have a forgetful functor

Algly, o (€) © Funlyy, (0", €%) - Funlj, (S,€%) = S xgo €7

over S, which induces on the fiber over every s € S the forgetful functor
Algoy/o,(€:) = {al(s)} xgp €2

Given a map of operads O'® — 0% we write Alg{js}/o (€) for Algéio,/sw(e)
and Alg/5(@) for AlngS/ASS(G),

Remark 5.8. Given maps 0'® - 0%, 0® 0% and €® > 0% of S-families
of operads we have a canonical equivalence

Algly, 5(€) = Algly (0 x5 €)

over S that is the restriction of the canonical equivalence
Fun’> (0", €%) = Funjy, (0%, 0% x5 €°)

over S of remark 5.2 4.

Remark 5.9.
Let 0'® - Sx 0%, €% - S x O® be S-families of operads over O for
some operad O% and & c Fun(A',S) a full subcategory.

If 0'® - S x O%® is a map of cocartesian fibrations relative to & and
C® - Sx 0% a map of cartesian fibrations relative to &, the functor
Alg{DS',/SXo(G) — S is a cartesian fibration relative to E.

If 0'® - S x 0% is a map of cocartesian fibrations over S classifying a
functora: S — Op,, ne and C® - SxO® a map of cartesian fibrations over
S classifying a functor §:S°P — Opw/@®, by 5.23 the cartesian fibration

Alggs,/Sxo(G) — S classifies the functor

Alg(_y,0(-)

a®P.B
P g’ (Opoo/o®)op X Opoo/0® ——— Cateo.

S

If C® - Sx 0% is a O®-monoidal category over S such that for all X € O
the functor Cx — S is a cartesian fibration relative to €.

Then by corollary 6.43 the functor C® — S x O% is a map of cartesian
fibrations relative to € so that the functor Alg{as,/sm(e) — S is a cartesian
fibration relative to €.
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5.1.3 O®-monoidal categories of sections

For every functor € — T over S such that € — S is flat we have an
adjunction € xg - : Cateo /g @ Catoo Funés((f, -).

Being a right adjoint functor Funés(e, —) : Cateoy7 — Catoo g preserves
finite products and thus monoid objects.

Let O® be an operad and D - T x O® a O®-monoidal category over T
classifying a O®-monoid ¢ of Catoo -

Theorem 5.23 implies that the image of ¢ under the finite products
preserving functor Fun/TS((?, —) : Cateoyp — Catoo g is classified by the 0®-
monoidal category

Funfrs(&@)@ = Funés:g;(e x 0% D)
over S.
This motivates the following definition:

Given functors ¢ — T and T — S over a category R such that the
functor @ — S is flat, a R-family of operads O® — R x Fin, and a functor
D® — TxgO® over R such that for every object r of R the induced functor
D - T, x O2 on the fiber over r exhibits D€ as a T,-family of operads
over 0% we set

Fun{rs((f7 D)® := Fun/sxRo®((3 xg 0%, D®).

TxgO®
If the functor T — S is the identity, we write Mapg (€, D)® for Fun/s (€, D)®.

Given a functor S’ - S and a map of R-families of operads 0'® - O®
we have a canonical equivalence

(S'%RO"®) X (8 00) Fun/S (€, D)® = Funls (S'xs€, (S'xrO")x(5x50)D)®

S'xgT

by remark 5.2 4. and so canonical equivalences
S xs Funfrs((?,i))® ~ Funéé;sT(S' x5 €,8" xs D)®,
0"® xpe Fun/? (€, D)® = Fun/’ (€,0" xo D)®.
So especially for every r € R and X € O, we have canonical equivalences
FuanS(QD)? ~ Fun/TS;(er, D),
(Funf® (€, D)? )x = Funf” (€, (Dr)x).

Remark 5.10. Theorem B.4.2. [18] implies the following:

Let T be a category and P a categorical pattern on some category B.
If D - B x T is a T-family of P-fibered objects, the functor

Fun{FBxCB(T xB,D)—>B

is P-fibered.

Especially given an operad O® and a T-family D® - T x 0% of operads
over O% the functor

®
Funy (T, D)® := Fun{roxo®(T x 0%, D®) > 0%

is a map of operads that is a (locally) cocartesian fibration if D® — T x
0% is a T-family of representable O®-operads respectively O®-monoidal
categories.
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Remark 5.11. Given a map O'® - 0% of R-families of operads such that
the functor O'® - R is flat, remark 5.3 provides a canonical equivalence

FunZFS(C, Fun/TTXRO‘g, T xg 0, D)) ~

S Sxp O®
Funf} (S xr 0%, Funfs ™00 (€ xg 0%, D)) =
Funf] e (S xr 0%, Funf? (€,D)%)
over S.
This equivalence restricts to an equivalence

Fun’ (€, Algh, o1 imr0(D)) = Alghs o6, o (Funf (€,D))

over S.
Proof. To see this, we can reduce to the case that R and S are contractible

according to remark 5.4.
In this case we have to show that the canonical equivalence

Funy (€, Fun/t (T x 0’®,D%)) ~ Funye (0'®, Funt (€, D)®)

TxO®

restricts to an equivalence
T
Funy (€, Alghs o 70 (D)) = Alggs/o (Funp (€, D)).

By remark 5.5 a functor O’® — Funrt(C,D)® over O% belongs to
Alggs /o (Funt(€, D)) and a functor € — F‘unéTxO@(T x 9'® D®) over T
factors through Alg/TTX o /TxO(D) if and only if their corresponding functor
Cx0O'® » D® over T x O® sends a morphism (f,g) of € x O'® with f an
equivalence of € and g an inert morphism of ©’® to an inert morphism of
D2,
O

Moreover by remark 5.3 we have the following compatibility:

Denote ¢ the evaluation functor

T xs Fun/S(T, D)® = T xg Fun/S R (T xg 02, D®) =

TxrO®

x ®
Fun’Z 200 (T xr 0, D®) X (5, 00) (T xr 0°) > D®

over T xg O%.
The composition
S S S
T xs xFuné (T,Alg{DT,/O(D)) ~T xg Alg{,),/o(Funé (T,D)) ~

Algg,/o(w)

Alglyy o (T xs Fun/S (T, D))

is equivalent to the evaluation functor over T.

Algly (D)
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5.1.4 Parametrized categories of modules

In this subsection we specialize from parametrized categories of O®-algebras
and O®-monoidal categories of sections to parametrized categories of left
modules and LM®-monoidal categories of sections by taking O® := LM®.

We remark that all results given here work for right modules in a
similar way:

Let T be a category and M® — T x LM® a T-family of operads over
LM®. Set C® := Ass® xp e M® and B := {m} xp e M®.

We write LMod/™ (B) for Alggv[/LM(M).

For every functor T — T we have a canonical equivalence

T xp LMod/™ (B) ~ LMod’™ (T’ xt B).
We have forgetful functors

LMod'™(B) = Algly 1 (M) — Alghl (M) = Alg/ (€),

LMod/'"(B) ¢ Fun/’, (T x LM, M) - Fun/._ /(T x {m},M) =~ B
over T.

Given a section A of Alg/T(€) - T we set LMod‘/AT(B) =T X a1/ (e)
LMod/T(B).

If C® = T'xgD?® for a S-family of operads D® — Sx Ass® over Ass® and
a functor T — S and A is a section of Alg/S(D) - S, we write LModl/AT (B)

for LMonT, (B) =S % 1455(m) LMod/™(B), where A’ denotes the functor
TxsA:T - Alg/T(€) = T xs Alg/5(D) over T.

Remark 5.12. Let € c Fun(A', T) be a full subcategory.
If the functor M® - T x LM® is a map of cartesian fibrations relative
to &, by 5.9 the functors

LMod’"(B) - T, Alg/"(€) > T
are cartesian fibrations relative to € and the functor
& : LMod/" (B) - Alg/"(€)
is a map of cartesian fibrations relative to €.

Moreover if & = Fun(A',T) the forgetful functor ® : LMod/T(B) -
Alg/T(G) is a cartesian fibration, whose cartesian morphisms are those
that get cartesian morphisms of B — T':

This follows from the fact that ® induces on the fiber over every t € T
the cartesian fibration ®; : LMod(B¢) — Alg(C:) whose cartesian mor-
phisms are those that get equivalences in By so that for every morphism
s =t of S the induced functor LMod(By) — LMod(Bs) sends ®-cartesian
morphisms to ®s-cartesian morphisms.

By corollary 6.43 the functor M® — T x LM® is a map of cartesian
fibrations relative to & if the functor M® — TxLM® is a map of cocartesian
fibrations over LM® and the functors B — T,C — T are cartesian fibrations
relative to €.

Let S be a category and ¢ : B - T a map of cartesian fibrations over
S. Let M® be a LM®-monoidal category over T that exhibits the functor
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B - T as a left module over the pullback of a monoidal category D® —
Ass® x S over S along the functor T — S.

The forgetful functor ® : LMod/T(ﬁ) - Alg/s(D) xs B is a map of
cartesian fibrations over Alg/s(ﬂ), whose cartesian morphisms are those
that get cartesian morphisms of B — S (lemma 5.183).

So for every section A of Alg/S(D) — S the functor LMonT(B) -
S is a cartesian fibration, whose cartesian morphisms are those that get
cartesian morphisms of B - T.

Lemma 5.13. Let S be a category and ¢ : D — T a map of cartesian
fibrations over S.

Let M® be a LM®-monoidal category over T that exhibits the functor
D - T as a left module over the pullback of a monoidal category C® —
Ass® x S over S along the functor T — S.

The forgetful functor LMod/T(D) - Alg/s((?) xs D is a map of cartesian
fibrations over Alg/®(@).

A morphism of LMod/T(D) is cartesian with respect to the cartesian
fibration LMod/™ (D) — Alg/®(C) if and only if its image in D is cartesian
with respect to the cartesian fibration D — S.

Proof. Assume first that S is contractible and ¢ : D — T is a cartesian
fibration.

In this case remark 5.12 implies that the canonical functor

W : LMod/™ (D) — Alg(€) x T is a cartesian fibration, where a mor-
phism is WU-cartesian if and only if its image in D is (p-cartesian.

Therefore the composition ® : LMod/T (D) — Alg(C) x T — Alg(®) is
a cartesian fibration, where a morphism is ®-cartesian if and only if it is
W-cartesian and its image in T is an equivalence, i.e. if and only if its
image in D is an equivalence.

Now let ¢ : D — T be an arbitrary functor but S still be contractible.

In this case we embed the functor D — T into a cartesian fibration:

The subcategory inclusion Catij;fr c Cateoyr admits a left adjoint € :

Catooyr — Cati‘j}% with the following properties:
1. For every functor X — T the cartesian fibration &(X) — T is equiva-
lent over T to the functor X xpuu(f1y,my Fun(A', T) - Fun(A', T) -
Fun({0},T).

2. The unit X — &(X) =~ X xpun(q1y,m) Fun(A', T) is the pullback of the
fully faithful diagonal embedding T — Fun(A®,T) over Fun({1},T)
along X — T and is thus itself fully faithful.

3. For every category K and every functor € - T the map (K x C) —
K x E(C) of cartesian fibrations over T adjoint to the functor Kx € —
K x €(C) over T is an equivalence.

This follows from the following considerations:

Taking the opposite category Cateo /1 =~ Catoo rop restricts to an equiv-
alence Cat$l)r = Catiffss.

So it is enough to see that the subcategory inclusion Catif/c%” c Cateor
admits a left adjoint €& with properties 1., 2., 3., where we have to change

{1} with {0}.
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We have a colocalization ¢ : Cate 2 Op,, : v that induces an equiva-

lence ¢ : Catooyr 2 Opm/L(T) : v that restricts to an equivalence Catiff%“ ~

Opc07art .
oo /i(T)

But the subcategory inclusion Opz‘j/“f‘(r;) c Opoo/L(T> admits a left ad-
joint given by the enveloping ¢(T)-monoidal category that induces on
underlying categories the properties 1., 2., 3., when we change {1} with
{0}.

The Catoo-left module structure on Cate/r induced by the symmetric
monoidal functor —x T : Caty, - (Cate 1) restricts to a Cateo-left module

structure on Catf,ff;tT as the functor —x T : Cate — Cateo /7 factors through

cart

the subcategory Catl)r c Cateo/r.

So the subcategory inclusion Catiﬂ}} c Catoo 7 is a Cateo-linear func-

tor and so by 3. the adjunction € : Cateoyr 2 Catff,;fr is a Cateo-linear
adjunction.

Thus we get an induced adjunction LMode(Catoo 1) 2 LMode(Catfj;ff)
over the adjunction € : Cate;r 2 Catlljy so that the unit D — (D) lifts
to a C-linear functor over T.

So the fully faithful unit D — £(D) induces a full subcategory inclusion

LMod/T (D) ¢ LMod/™ (&(D)) over T such that the functor LMod/™ (D)
- Alg(@) is the restriction of the functor v : LMod/T (&(D)) — Alg(C).

As the lemma holds for the case that ¢ : D — T is a cartesian fibration
and S is contractible, the functor ¢ : LMod/™ (&(D)) — Alg(C) is a carte-
sian fibration, where a morphism is ¢-cartesian if and only if its image in
&(D) is an equivalence.

Consequently every 1-cartesian morphism has with its target also its
source in LMod/T(D) = D Xg(D) (LMod/T (&(D)) so that the cartesian
fibration ¢ restricts to a cartesian fibration LMod/™ (D) — Alg(€) with
the same cartesian morphisms.

Now let S be arbitrary.

Let X - Y be a map of cartesian fibrations over S over a cartesian
fibration Z — S.

Then the functor X — Y is a map of cartesian fibrations over Z if and
only if the following two conditions are satisfied:

1. For every object s of S the induced functor Xs — Y5 on the fiber over
s is a map of cartesian fibrations over Zs.

2. For every morphism s’ — s of S the induced functors Xs — Xy and
Ys = Y on the fiber send X — Zs-cartesian morphisms to Xy — Zg
-cartesian morphisms respectively Ys — Zs-cartesian morphisms to
Yy — Zg-cartesian morphisms.

Moreover the functor X — Y is a map of cartesian fibrations over Z
that reflects cartesian morphisms over Z if and only if 1. and 2. holds
and for every object s of S the induced functor Xs — Y5 on the fiber over
s reflects cartesian morphisms over Zs.

By remark 5.12 the functor ¢(M®, €®) : LMod/T (D) - Alg/®(C)xsD is
a map of cartesian fibrations over S over the cartesian fibration Alg’® (©) ~
S.

For every object s of S the induced functor ¢(M®, €®), : LMod/ s (D) =~
LMod/(D)s - Alg(Cs) xDs on the fiber over s is equivalent to the functor
H(ME, %) : LMod/™s(D,) — Alg(€s) x Ds.

As the lemma holds for the case that S is contractible, the functor
H(ME,€2) : LMod/™s (D) — Alg(Cs) x Dy is a map of cartesian fibrations

151



over Alg(@,), where a morphism of LMod/™*(D;) is cartesian with respect
to the cartesian fibration LMod/™(D,) — Alg(Gs) if and only if its image
in Ds is an equivalence.

This implies condition 1. and 2., where we use for condition 2. that
the canonical functor LMod/ T(D) - D is a map of cartesian fibrations
over S.

O

Construction 5.14. Let T - S be a functor and M® - LM® xT a LM®-
monoidal category over T that exhibits a functor D — T as a left module
over the pullback of a monoidal category C® — Ass® x S over S along the
functor T — S.

Assume that the functor D — T is a map of cartesian fibrations over
S classifying a natural transformation H — G of functors S°® — Cateo.
By lemma 5.18 the forgetful functor

LMod/™ (D) - D xg Alg/5(€)
is a map of cartesian fibrations over Alg/s(e) and so classifies a functor
Alg’S(€)°P - Fun(A', Cate)
over Catoo adjoint to a functor
(M, €) : Alg/®(©)°P - H* (Fun(A', Cato.))

over S°P.

Denote X : S — G* (Fun(A', Cate)) the functor over S°® correspond-
ing to the natural transformation H - G of functors S°® - Cateo.

We have a canonical equivalence

1
H (Run(AY, Cote) = 5% X, pyios G (Fun(A?, Cate))

= G*(Fun(A", Cat,x,));)S:p
over S°P represented by the canonical equivalence
Fungor (K, H* (Fun(A', Cate.))) = Funcar., (H« (K), Fun(A', Cateo)) =
Fun(K, Catoo)/H*(K) ~ (Fun(K, Catw)/g*(K))/H*(K) ~
Funcat (G*(K), FUH(AI, Catw))/H*(K) ~

o * 1 Al
F\unsop (K’S P XG*(Fun(Al,Catw)){l} G (Fun(A ,Catoo)) )
natural in a category K over S°P.

So we obtain a functor
(M, €) : Alg/®(€)°P - H* (Fun(A', Cato,)) ~ G*(Fun(A, Catw))ﬁf"

over S°® that sends an object A € Alg(Cs) for some s €S to LModa (Ds) —
Ds.

Remark 5.15.
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1. Let ¢:S" - S be a functor. Set T’ :=S" xs T.

The pullback of the map LMod/™ (D) — D xs Alg/S(C) of cartesian
fibrations over Alg/S(Q) along the functor

Alg/sl(S' xs @) = S xg Alg/5(€) — Alg/3(C) is canonically equivalent
to the map LMod/™ (T’ xp D) — (T’ x1 D) xg Alg/> (S x5 €) of
cartesian fibrations over Alg/S,(S’ xg C).

So the functor ¢(T' x1 M,S" x5 @) :
Alg’® (S x5 €)°P — * (H* (Fun(A', Cato, )))

over S'°P is equivalent to the pullback of the functor ¢(M,C) over
S°P along the functor p°P : S°P — S°P,

2. Let $:C"® - C® be a monoidal functor over S and M'® the pullback
of M® along T xs f: T xg €® - T xg C%.

The functor LMod/T (D) — D xg Alg/S(€") over Alg/5(€") is the
pullback of the map

LMod/" (D) - D xg Alg/5(€)

of cartesian fibrations over Alg/S(C) along the functor Alg/S(B) :
Alg/5(e") - Alg/5(€@).

Thus ¢(M', C") is the composition

Alg/S(B)°P
—_—

Alg/S(€')*P Alg’3 (@) 220, g (Fun(A’, Catw))

of functors over S°P.

3. Let T - S — S be a factorization of the functor T — S.
The functor LMod/T(D) — D xg Alg’S (S xs €) ~ D xg Alg/3(C)
over Alg/S,(S' xs C) = S xg Alg/5(Q) considered as a functor over
Alg/5(@) is equivalent to the functor LMod/™ (D) - D xg Alg/®(€).

4. Let v:S — R be a cartesian fibration.

Denote H' : R°? — Cato the functor classified by the composition
D —-S —R.

Denote p: T xg Fun/SR(S, €)® - T xs C® the pullback of the monoidal
counit S Xg Fun/SR(S, €)® - €® over S along the functor T — S and
p*(M®) the pullback of the T xg C®-left module structure on D — T
along p.

By 2. the functor
0: (S xr Funf* (S, Alg/5(€)))°P = Alg’®(S xg Funl (S, €))°"

$(p* (W) SxpFunli(s,€)
i H*(Fun(A', Cato))

over S°® factors as

(S xr Funf™(S, Alg/*(€)))°P = Alg’® (S xr Funf(S, €))*

S AlgS(©)°" 22N, g (Fun(A!, Catws ),
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in other words 0 is adjoint to the functor

/ROP

Funfly (5%, AlglS (e)°r) T E )

Fun/by (S°°, H* (Fun(A’, Cato.)))
over R°P.
So by lemma 5.16 the composition

Fun/, (S, Alg/® (€)°P) = Funf™ (S, Alg/® (€))° = Alg/™ (Funf* (S, €))°”

$(p* (W0, Funl(s,0))
’ S H'* (Fun(A', Cate))

is equivalent to the composition

/ROP

Funf” (57, Alg/S(e)r) i G100

Fun/3," (87, H" (Fun(A', Catw.))) € H' (Fun(A', Catw. ).

Lemma 5.16. Let Y — R be a functor andy:S - R and D — S cartesian
fibrations .

Denote H: S°P — Cato the functor classified by D — S and H' : R —
Cateo the functor classified by the composition D - S - R.

Let o : X > Dxg (SxrY) D xrY be a map of cartesian fibrations
over Sxr Y that gives rise to a map of cartesian fibrations ¢’ over Y via
forgetting along the canonical functor Sxg Y - Y.

¢ classifies a functor Hy(SP xgor Y°P) — Fun(A®', Cate,) over Cate
adjoint to a functor a: S° xgop Y°P - H*(Fun(A', Cateo)) over S°P and

¢’ classifies a functor H,(Y°P) — Fun(A', Catw) adjoint to a functor
B:Y - H*(Fun(A', Cat)) over R°P.

Then B factors as the functor
Y - Funky, (S, H* (Fun(A', Cat..)))
over R°P adjoint to a followed by the canonical subcategory inclusion
Fun/R" (S°P, H* (Fun(A', Cato))) c H” (Fun(A', Cato. )
over R°P, which is represented by the subcategory inclusion
Funges (K, Funfy, (S°F, H* (Fun(A', Cat.)))) =

Funsop(SOp XRop ]E(7 H*(Fun(Al, Catoo))) =~
Funcat,, (H« (S°" xgop K), Fun(Al, Cates)) = (Catgj;ngKop)/DXS(SXRKOP)
~ (Catf,fféxRKop)/DxRKop c Cati;%OP/DxRKOP =
Func,:. (H, (K), Fun(A', Cate)) = Funges (K, H” (Fun(A', Cat.. )))

natural in a small category K over R°P.
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Remark 5.17. If R is contractible, the canonical subcategory inclusion
Funger (S, H* (Fun(A', Cate,))) ¢ H” (Fun(A', Cate,)) =

{@} XFun({1},Catoo) Fun(Al, Catoo) ~ Catoo/@

is the composition
Fungor (S, H* (Fun(A', Cate ))) = Funcae.. (H«(S°?), Fun(A', Cate, ))
~ (Cati}é)m c (Catm/s)/g ~ Catc,o/@,

Proof. The assertion of the lemma follows tautologically from the defini-
tion of the canonical subcategory inclusion

Fun/ty (S°7, H*(Fun(A', Cate.))) © H (Fun(A', Cato, )

over R°P.
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5.1.5 LM®-monoidal categories of sections

Let D - T, T — S be functors such that the composition D - T - S is
flat.

Let M® — T x LM® be a T-family of operads over LM®.

Set C® := Ass® xp e M® and B = {m} xq e ME.

We set o
Fun/TS(D,B)® = Fun/TSXXII“&/I@ (D x LM®, M%)

and o
Fun/? (D, €)® := Fun/%2 (D x Ass®, €%).

TxAss®

We have canonical equivalences

Ass® xq e Funf(D,B)@’ ~ FuanS(D, ©)®

over S x Ass® and
{m} xpre Fun/S (D, B)® ~ Fun’? (D, B)
over S and for every functor S' — S a canonical equivalence
S’ xs Funf (D, B)® = Funly), (8" xs D, S’ x5 B)®
over 8" x LM®.

Remark 5.18.

Let M® — T x LM® be a LM®-monoidal category over T classifying a
LM®-monoid ¢ of Catoo -

Theorem 5.23 implies that the image of ¢ under the finite products pre-
serving functor FunTS(G, —) i Cateoyr — Cateoys is classified by the LM®-
monoidal category

Fun/S (T, B)® = Fun/S M (T x LM®, M®) > LM®
over S.
Remark 5.10 specializes to the following:

Given a T-family M® - T x LM® of operads over LM® the functor

Funy (T, B)® = Fun/"M° (T x LM®, M®) > LM®
is a map of operads that is a (locally) cocartesian fibration if M® —
T x LM® is a T-family of representable LM®-operads respectively LM®-
monoidal categories.

Remark 5.19. 1. By remark 5.11 we have a canonical equivalence
S S
Fun/? (D, LMod™ (B)) = Fun/’ (D, Alg]y 1 o (M)

AlglS /LM®(Fun/TS(D, B)) = LMod’® (Fun/$ (D, B))

over Funff(@, B), whose pullback along the canonical functor Ass® —
LM® is the canonical equivalence

Funs (D, Alg’" (€)) = Alg/S (Fun/$ (D, €))
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over S and such that we have a commutative square

Fun/$ (D, LMod/™ (B)) —— LMod/® (Fun/S (D, B)) (20)

l l

Fun/? (D, Alg/™(€)) —=—— Alg/®(Fun’s (D, ©))
of categories over S.

Let A be a section of Alg/T(C) — T and A’ the section of

Alg/S(FunZFS(D, C)) — S corresponding to the composition D — T A
Alg/"(€) of functors over T.

Square 20 induces an equivalence

Fun/S (D, LMod/ (B)) = LMod/S (Fun/s (D, B)).

. Especially we are interested in the following situation:

Let T — S be a functor, A® — Ass® xS a monoidal category over S
and M® - LM® x T a LM®-monoidal category over T that exhibits
a category B — T over T as a left module over the category T xs A
over T.

We have a canonical diagonal monoidal functor
6 : A% = Mapg(S,4)® - Mapg(D,A)® =~ Fun/y (D, T xg A)®
over S that induces a functor
Alg’®(6) : Alg/3(A) - Alg/® (Mapg (D, A)) =~ Alg/® (Fun/S (D, TxsA))
~ Fun/s (D, T xs Alg/(A))
over S that is equivalent over S to the diagonal functor
Alg/S(A) - Mapg(D, Alg/® (A)) = Fun/y (D, T xs Alg/®(A))

over S.

Pulling back the LM®-monoidal category Funfrs(‘D7 B)® over S along
§ we obtain a LM®-monoidal category 6*(Funfrs(D, B)®) over S that
exhibits Fun[FS(D,‘B) as a left module over A.

Square 20 specializes to the commutative square
Fun/$ (D, LMod/* (B)) ———— LMod/S (Fun/S (D, B)) (21)
Mapg (D, Alg/®(A)) ——————— Alg/® (Mapg(D,.A))

of categories over S.
Pulling back square 21 along the functor Alg/S(5) : Alg/®(A) —
Mapg (D, Alg/5(A)) over S we obtain a canonical equivalence

Alg’3(6)* (Fun/S (D, LMod’" (B))) = LMod/® (6" (Fun’S (D, B)))

over Alg/S(A) xs FuanS(D, B).
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3. We have a canonical equivalence

Alg’5(8)* (Fun/y (D, LMod’" (B))) =

Alg/S(A S
Fun/2'%, 0 | (D xs Alg’®(A), LMod'" (B))

over Alg/S (A) represented by the following canonical equivalence nat-
ural in every functor a: K — Alg/S (A):
Fun,y, s 4 (K, Alg’® (8)" (Funf? (D, LMod'" (B)))) =
Funy, . ag/s () (Alg’® (8) (K), Fun/ (D, LMod/" (B))) =
{60 0} Xpn (K Mapg (D, ALs/5 (4))) Fums (K, Funf (D, LMod/" (B))) =
{010 D} Xpung (Dxak.Ale/S (4y) FunT (D xs K, LMod/™(B)) =
Funy,_ s ) (D xs K, LMod/™ (B)) =

Alg/S
Fun s ) (K, Fun, C0 (D xs Alg/®(4), LMod/" (B))),

where p: D xg K - K denotes the canonical functor.

So we get a canonical equivalence

. /s
U : LMod/® (6" (Fun/? (D, B))) = Fun/T‘ilfAlgs)(A)(stAlg/S (A),LMod’™ (B))

over Alg/® (A) such that we have a commutative square

* /8
LMod/(6* (Fun/y (D, B))) —— Fun/Tilelgls)(A)(ﬂ xg Alg/S(A), LMod/T (B))

l |

/S
Alg/®(A) xs Fun’? (D, B) —— Fun/Tf:m(g;? (D xs Alg/S(A), B x5 Alg/5(A))
(22)

of categories over S with horizontal functors equivalences.

The pullback of ¥ along a section A of Alg/S (A) = S is a canonical
equivalence

LMod/S (5" (Fun/S (D, B))) = Fun’? (D, LMod/" (B))

over S.

Let R,S, T be categories and T - R,a: X > SxT,8:Y - SxT be
functors.

If the composition Y - SxT — SxR is a flat functor, there is a functor
Fun ¥ (Y, X) - S x R.

If a: X - SxT is a map of cartesian fibrations over Sand f:Y - SxT
a map of cocartesian fibrations over S, the functor Fun/ssxer(Y, X) > SxR
is a map of cartesian fibrations over S.

We complete this subsection by showing the following classification
result (theorem 5.23):
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If a: X - Sx T classifies a functor F: S - Cateo/p and f: Y - SxT
R

classifies a functor G: S — Cati{ /T

c Catoor, the map

SxR
FunéxT (Y,X) - SxR
of cartesian fibrations over S classifies the functor

/R
G°P.F Funf."(-,-)
SOP g) (Cati{ﬁr)op X Catoo/T T—> Catoo/R.

To prove theorem 5.23 we show the following proposition:
There is a canonical equivalence
Cocart = Mapc,,_ (U, Cato, x Cateo)
of cartesian fibrations over Cato that restricts to an equivalence
L ~Mapc,,. (U, Cate x 8)

of cartesian fibrations over Cato, (proposition 5.20).

Proposition 5.20. There is a canonical equivalence
Cocart ~ Mapc,,_ (U, Cato x Catoo)

of cartesian fibrations over Cate that induces on the fiber over every small
category € the canonical equivalence catg‘;;g“ ~ Fun(C, Cate ).

Consequently this equivalence restricts to an equivalence
L ~Mape,, (U, Cateo x 8)
of cartesian fibrations over Cateo.
Proof. By Yoneda it is enough to show that for every (large) category S
over Cato, there is a bijection between equivalence classes of functors
S —» Mapc,. (U, Cates x Cates) over Cato, and equivalence classes of

functors S — Cocart over Cato such that for every functor ¢: T — S over
Cate the square

Funcat., (S, Mapc,,_ (U, Cates x Cates)) — Funcar,, (S, Cocart)

| |

Funcat,, (T, Mapc,,_ (U, Cateo x Cates)) — Funcat,, (T, Cocart)

commutes on equivalence classes.
We have a canonical equivalence

Cateocat.. (= Mapc,,_, (U, CateoxCateo)) = Catoo jcat., (—XCate, U, Catoo xCatoo )
~ Catoo (— Xcato, U, Catoo)
of functors (Cateo /cat., )’ 3.

Consequently it is enough to see that for every functor ¢ : S - Cateo
there is a bijection between equivalence classes of functors S xcar,, U —
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Cato and equivalence classes of functors S — Cocart over Cats such that
for every functor ¢ : T — S over Cate the square

Fun(S xcat.. U, Cateo) — Funcat.. (S, Cocart)

| |

Fun(T xcat., U, Cateo ) — Funcat., (T, Cocart)

commutes on equivalence classes.
Being a right fibration the forgetful functor Cate;s — Cateo induces

an equivalence (Catm/s)/sXCat = Catoo /sxcy 1U-

u

The fully faithful map

Func,e.. (S, Cocart)® ¢ Funca.. (S, Fun(A', Cate )™ =

N

cocart = et ~ ~ ~
((Catss /SXCath) c ((Catw/S)/SXCatmu) = (Catoo fgxcy, 1)
has essential image the space (C’Za\tzs/cgi;tw )" ~ Fun(S xcar, U, Catos )™ :
A functor Y — S xcar,, U is a cocartesian fibration if and only if it is
a map of cocartesian fibrations over S classifying a natural transforma-
tion S — Fun(A', Cates) of functors S — Cate, with target ¢ that factors
through the subcategory Cocart c Fun(A', Cato.).

So we get an equivalence Funce. (S, Cocart)™ ~ Fun(Sxcat., U, Cates )™ that
restricts to an equivalence Funcat., (S, Cocart)™ ~ Fun(S xcat., U, Cate )™

Given a functor ¢ : T — S over Cate and a cocartesian fibration X —
S Xcat,, U classifying a functor S xca,, U = Cates the composition T xcat,
U — S xcat,, U — Cate is classified by the pullback of the cocartesian
fibration X — S xcar, U along the functor T xcar,, U = S Xcar,, U.
Therefore if o denotes the natural transformation of functors S — Cate
with target ¢ corresponding to the functor S xcst., U — Catoeo then cvo ¢
is the natural transformation of functors T — Cat. with target ¢ o ¢
corresponding to the composition T xcar,, U = S xcar,, U - Cateo.

So the functor T — Cocart over Cate corresponding to the composition

T xcat,, U = S Xcat,, U = Cate is the composition T LA S — Cocart of
¢ : T - S and the functor S - Cocart over Cate corresponding to the
functor S xcat,, U — Catoo.

2. follows from the fact that a cocartesian fibration is a left fibration
if and only if all its fibers are spaces.

O

Remark 5.21. Let T be a small category.
There is a canonical equivalence

Mapec,,_ (U, Cateo x T)” = Cato/r
of right fibrations over Cato Tepresented by the following equivalence

Funcar.. (K, Mapg,, _ (U, Cateo x T)%) = Funge ™" (K xcae, U, K x T)~

= Fun(K, Cate ) (¢, 6(T)) = Funcat,, (K, Cateo/T)

natural in ¢ : K - Catoo.
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So given a cocartesian fibration X — S classifying a functor H: S —
Cates we have a canonical equivalence

Mapg(X,S x T)™ = S Xcato, Catoo/r

of right fibrations over S.
Thus the right fibration Mapc,, (U, Cate x T)% — Cateo classifies the
functor Cateo (—,T) : Catel — 8.

Enlarging the universe we have a canonical equivalence
Mapg— (U, Cateo x T)® = Catoo/r

of right fibrations over Cateo, where T is not mecessarily small and so
especially a canonical equivalence

L5~ 1\/IEJL13(:Mc><> (?,L7 Cateo X S): ~ Cateo X Cates Catw/s

of right fibrations over Cateo.

Thus the right fibration L% — Cate classifies the functor Fun(-,8) :
Cat® - 8.

By [10] corollary A.31. the cartesian fibration L — Cates classifies the
functor Fun(-,8) : Cat® - S.

So especially the cartesian fibration Mapc,,_ (U, Cateox8) — Cateo clas-
sifies the functor Fun(-,8) : Cat®? — §.

Remark 5.22. By proposition 6.9 we have a canonical fully faithful map
U c R of cocartesian fibrations over Cate and by proposition 5.20 we have
a canonical equivalence L ~ Mapc,, (U, Cate x 8) over Cato,, whose pull-
back along the involution (-)°F : Cates — Cate is a canonical equivalence

R = Mapc,, (U™, Cateo x 8)
over Cateo. So we obtain a canonical fully faithful map
x : U ¢ Mape,, (U™, Cateo x 8)

of cocartesian fibrations over Catoo.
Let € = S be a cocartesian fibration classifying a functor ¢ : S — Cateo.
Pulling back x along ¢ : S - Cates we get a fully faithful map € c
PIS(&) = Mapg(E™Y,S x 8) of cocartesian fibrations over S adjoint to
a functor a : Y xg & — 8 such that for every s € S the composition
(85)°P x & — &V x5 & 55 8 is the mapping space functor of &s.

We call o the mapping space functor of € — S relative to S.

Theorem 5.23. Let R,S, T be categories, T - R a functor, a: X - SxT
a map of cartesian fibrations over S and B:Y — SxT a map of cocartesian
fibrations over S corresponding to functors F : 8 — Cateor respectively
G :S — Catoo/r.

Assume that the composition X - SxT - Sx R is a flat functor so

that F induces a functor S°° — Cati{%.

The map .
Fun (X, Y) > SxR
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of cocartesian fibrations over S classifies the functor

(F°P,G) Fun/{* (-,-)
—_—

S (Cat/ )P x Cato 1

Catw/R.

Dually, assume that the composition Y - SxT — SxR is a flat functor

so that G induces a functor S — Cati{/RT.

The map .
Fun R (Y, X) > SxR

of cartesian fibrations over S classifies the functor

F=m

57 L0, (Cat ™ )P x Cateejr s Cateo .

Proof. We prove the second statement, the first is dual to the second by
the following consideration:
By the second part the map

FunlSER (X, )™ = FunlS) 057 (X7, Y7)  $° xR

of cartesian fibrations over S°P classifies the functor

op OPx(-)°P ©
s 529, (ca £2/15)°P x Catoom OO, (ca 2! fron)? x Catao ron

Funffty (--)
ToP Catoo/Rop
. . (F°P fi/R \op Funt (-,
being equivalent to the functor S LA (Cat )P x Cateoyp - 5

—)°opP
Catoo/R L) Catm/Rop
Hence the map FunSSXXTR(X Y) — SxR of cocartesian ﬁbrations over S

(
classifies the functor § &, (C tﬂ/R )P % Catoo/T —r 5 Catoo/R

We will divide the proof into the following reduction steps:
1. The right fibration FunSXT(Y X)® — S classifies the functor

op (G°P,F) Catoo (==

S (Catm/T)op x Catoo /T S.

2. T is contractible: the right fibration Mapg(Y,X)™ — S classifies the
(G°P,F) Cateo (—,-)
_— _— S,

3. X - S is equivalent over S to Mapg(X"™",S x 8) for some bicarte-
sian fibration X’ - S, where X"*® denotes the fiberwise dual of the
cocartesian fibration X’ — S.

functor S°P Cat? x Cateo

1: We reduce the statement to 1:
Denote ¥ the functor S°° — Cate g classified by the map

Fun/ (Y, X) > Sx R

of cartesian fibrations over S.
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We want to find an equivalence ¥ =~ Fun/TR(—, -) o (G°?,F) of functors
S — Catm/R.

Such an equivalence is represented by an equivalence of functors S°° —
Cateo /g € Fun((Catoo /g )°",8) adjoint to an equivalence

Cateo/r (B, ¥(s)) = Cate/r (B, Fun/f (G(s), F(s)))

= Catoo /(B xr G(s),F(s))
natural in B € Cateo/g and s € S.
In other words we want to see that both functors

i o Catoo /g (——)
o (Cateo/r ) x S I, (Cateo/r ) x Cateo/r emi Catoo,

idx(G°P | F
5

—xR-—)xid
’, (Cates )P % (Catoo ) P x Catoo jp B,

B+ (Cateo/r )P xS

op Catoo /7 (=5-)
(Cateo 1) x Cateoyp ———— Cateo
are equivalent.
Denote Ur — RxCato /g the map of cocartesian fibrations over Catoo /g
classifying the identity of Cateo/g.

If 1. is shown, the right fibration

/Catoo/RXS

FunCatoo/R xSxR

(Ur x S, Cater x Funl ¥ (Y, X)) - Cateojr x S

classifies the functor o and the right fibration

/Catoeo /RxS

FunCatw/RxSXT((uR % 8) X (Caten g x8xR) (Cateo/r x Y), Catoo /g X X)*

— Catoo/R xS

classifies the functor j.
We have a canonical equivalence

/Catw/RxS

F\unCatm/R xSxR

(Ur x S, Catoo /g x FunéS;rR(Y, X)) =

/Catoo /g xS
Catoo g XSxR

/Catw/R xSxR
Catoo g xSxT

Fun (Ur x S,Fun (Cateo/r x Y, Catooyg x X)) =

/Cateo /g xS
Funcatw/g;SXT((uR xS) X (Catoo /g xSXR) (Catw/R xY), Cateo /g x X)

over Catoo/g X S.

2: As next we reduce to 2:
We have a pullback square

Catoo/r (=, =) 0 (G, F) ————— Catee (=, ) o (G*7, F)

J |

* = Cateoyp(—, ) o (G, T) S N Cateo(—,—) o (G°?,T)

of functors S°P — 8.
The induced map ¢ on mapping spaces is classified by the canonical
functor
ﬂ :S~S XCatw/T (Catm/T)/T - S X Cateo Catoo/T

over S that is adjoint to G : S — Cater.

163



Thus under the canonical equivalence
S XCateo Catooyr = Mapg(Y,S x T)~

over S the functor 8 corresponds to the section v of Mapg(Y,SxT)” - S
corresponding to the map Y — S x T of cocartesian fibrations over S
classifying the functor G : S — Cate,p.

Hence ¢ is classified by v :S - Mapg(Y,S x T)~.

Consequently if the right fibration Mapg(Y,X)™ — S classifies the

GOP,F Catoo(=,— .
functor S°P G0, Cat?? x Catwo Lot ), 8 and the canonical map

Mapg(Y,X)™ — Mapg(Y,S x T) of right fibrations over S classifies the
natural transformation induced by the unique natural transformation F —
T to the constant functor S° — Cate;r with image T, the right fibration

FunéiT(YvX): = S Xapg (v,8xT)= Mapg (Y, X)" - S

(GoP Catm/T(_ﬂ_)

L&D, (Catouyr)°P x Catogyr 8.

classifies the functor S°P
Thus it is enough to verify 2.
3: To do so, we are free to enlarge X in the following way:

Let Z - S be a cartesian fibration equipped with a fully faithful map
X — Z of cartesian fibrations over S classifying a component-wise fully
faithful natural transformation F — H of functors S°® — Cate.

If the right fibration Mapg(Y,Z)™ — S classifies the functor

op (Gop 1H
_—

Catoo (—,—
) Cat?? x Catoo Lot 0,

S 8,

op
the right fibration Mapg(Y,X)™ — S classifies the functor S°P 670,

Catoo (—,—) s.

This follows from the fact that the fully faithful map X — Z of cartesian
fibrations over S yields a fully faithful map Mapg(Y,X)™ ¢ Mapg(Y,Z)"
of right fibrations over S, whose essential image coincides with the essen-
tial image of the fully faithful map of right fibrations over S that classi-
fies the component-wise fully faithful natural transformation Cates (-, —) o
(G°P,F) — Catoo (—,—) © (G°P,H) of functors S°® — 8.

Cat? x Cateo

By remark 5.22 we have a fully faithful map
X ¢ Mapgop (X)), S x 8)

of cocartesian fibrations over S°?, where Mapgop ((X°P)™",S°? x 8§) — S°P
is a bicartesian fibration. Taking the opposite we get a fully faithful map

X ¢ Z := Mapgop ((X?)V, S x §)°P
of cartesian fibrations over S, where Z — S is a bicartesian fibration.
Consequently we can reduce to the case that X — S is a bicartesian
op
fibration classifying the functor F : S°P — Cat® and a functor H : S =,

(Cat})°P ~ Catl,.

Write U¥ — Catl, RV - Catl for the pullbacks of the cocartesian
fibrations U — Cate, R — Cate, along the subcategory inclusion Catk c
Catoo-
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The embedding U c R of cocartesian fibrations over Cats gives rise to
an embedding U* ¢ RY of cocartesian fibrations over Catl.

Moreover the cartesian fibration R" — Catlgo restricts to a cartesian
fibration UY — Caty with the same cartesian morphisms.

Thus the embedding U ¢ R of cocartesian fibrations over Catl, is
also an embedding of cartesian fibrations over Cats and so by pulling
back along H: S — CatZ gives rise to an embedding

X =S Xcate, U2 S Xyt utcs X Catl, R" ~ S xcare, R
of cartesian fibrations over S.
By prop. 5.20 we have a canonical equivalence
L = L:=Mapc,_ (U, Cate x 8)
of cartesian fibrations over Cato and so a canonical equivalence
R = Mapc,, (U™, Cateo x 8)
of cartesian fibrations over Cato, and a canonical equivalence
S Xcate, R = Mapg (X", S x 8)

of cartesian fibrations over S.

So we get an embedding X ¢ Mapg(X™,S x 8) of cartesian fibrations
over S.

By [10] corollary A.31. the cartesian fibration £ — Cate. classifies the
functor Fun(-,8) : Catd — § so that the cartesian fibration S XCatoo R =~
Mapg(X™,S x 8) — S classifies the functor Fun((-)*",8) o H*” : §°° —
Catl — 8.

Consequently it is enough to see that the right fibration
Mapg (Y, Mapg(X™",Sx 8))" - S

classifies the functor

Fun(-,-)*

GOP HOP
op (GTHHT), Cat? x Catoe ——— 8.

idxFun((-)°P,8)
e

S Catl x Catl?

We have a canonical equivalence
Mapg (Y, Mapg (X", S x 8)) ~ Mapg (Y xs X™",S x 8§)
of cartesian fibrations over S that yields an equivalence
Mapg (Y, Mapg (X™", S x 8))™ ~ Mapg (Y xs X™,S x 8)™ ~ S x5 Catoss

of right fibrations over S.
Thus the right fibration Mapg (Y, Mapg(X™",S x 8))” — S classifies
the functor

Fun(-,8)%

@oP HOP
op (G, Cat® x Cat® 5 Cat? — 8

op idx(=)P
o ——————>

S Cat? x Cat

being equivalent to the functor

Fun(-,-)

(GOP HOP
op Cat? x Catoe ———— 8.

idxFun((-)°P,8)
_ 5

S ), Cat®P x Cat®?

Moreover if X =S x T for some category T, the equivalent right fibra-
tions
Mapg(Y,SxT)* =S, S Xcato, Catoo/r = S

classify the same functor.
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Remark 5.24.
e Let O® be an operad, D® — T x O® a O®-monoidal category over
T classified by a O®-monoid ¢ of Catooyr, T — R a functor and F :
SP — Cati{/rfF c Cateyr a functor classified by a map X - Sx T of
cartesian fibrations over S.

op Funl."(-,-)
The composition S x Cateo Lkt (Cati{;}r -

Catoo g is adjoint to a functor

U : Catoojp — Fun(S, Catoo/r) (Catig/cgrt)/ng ¢ Catoo /sxR-

As for every s € S the functor Funer(F(s),—) : Cateoy7 = Catoo/r
preserves finite products, the functor W : Cate;r — Cateo/sxr also
does and so sends ¢ to a OP-monoid ¢’ of Cateo /sxR-

By theorem 5.23 ¢' is classified by the O®-monoidal category

Fun/S5 (X, D)® o= Fun/S0% (X x 09,8 x D®) - S x R x 0°

over S x R.

e Now we specialize to the situation O® = LM® :

Let M® - T x LM® be a LM®-monoidal category over T classifying
a LM®-monoid ¢ of Cateor that exhibits a category B over T as a
left module over a monoidal category C over R with respect to the
canonical left module structure on Cate v over Cateo/g-

Then ¢' is classified by the LM®-monoidal category

Fun/S (X, M)® = Fun/SUEME (X 0 TM® S« M®) — S x R x LM®

over Sx R that exhibits the category Fun/SS;XTR'(X, SxB) over SxR as
a left module over the monoidal category

Mapg, g (X, e)®:= Mapg, gy asee (X X Ass®, S x C®)

Fu /SXR(X,TXRG)® - Fun/SxRxAss®

nSXT SxTxAss® (XXASS®7 SX(TXRG®)) - SXRXASS@

over S x R.

By prop. 6.55 the functor Cateo /7 — Fu1(1((CatiZ<fﬁ”r)°p7 Cateo/g) is lax
Catoojr-linear and thus also the functor ¥ : Cateo/p — Catoo/sxr 18
lax Cateo /g -linear and so sends ¢ to a canonical left module structure

on
B’ = Funfo i (X,S x B) > Sx R

over the monoidal category SxC® - SxRxAss® over SxR that is clas-
sified by the pullback of the LM®-monoidal category FunésfoR(X,JV[)®
over S x R along the monoidal diagonal functor

§:Sx €%~ Mapg, (S xR, €)® = Mapg, gxawe (S x R x Ass®, S x €®)

- MaprR(X7 e)® = MaprRxAss®(X x ASS®7 S x e®)

over S x R.

Moreover the induced functor Alg/S (8) over S is canonically equiva-
lent over S to the diagonal functor

§": SxAlg/™(€) ~ Mapg, i (SxR, SxAlg/™(€)) - Mapg, (X, SxAlg’™(€))
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over S x R.

So by remark 5.19 2. we have a canonical equivalence
LMod/>®(6*(B')) = 6" (FunlS (X, S x LMod’" (B)))

over S x Alg/®(@).
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5.2 Endomorphism objects
5.2.1 Basic notions of enriched category theory

We use Lurie’s model of enriched categories with some slight modifica-
tions:

Let M® — LM® be an operad over LM®. Set D := {m} x; e M® and
C® = Ass® xp e M5,
Let X, Y be objects of D and A an object of € and let v € Muly (A, X;Y).

e If (A,«a) represents the presheaf Muly (-, X;Y) : CP — §, i.e. if
evaluation at « induces an equivalence

C(B,A) » S(Mulm (A, X;Y), Muly (B, X;Y)) - Muln (B, X;Y),

we say that a € Muly (A, X;Y) exhibits A as the morphism object
of X and Y and write [X, Y] for A.

o If X =Y, we say that a € Muly (A, X; X) exhibits A as the endomor-
phism object of X and write [X, X] for A.

For every n € N we set Ass, := Mulass(a, ..., a;a).
——

n
Denote o € Mulpm(a, m;m) the unique object. For every a € Ass, for
some n € N denote o’ the image of a, the identity of m and o under the
operadic composition

Mulpm (@, m;m)x(Mulpm(a, ..., a; @) xMulpv (m;m) ) - Mulpv(a, ..., a,m;m).

We say that M® — LM® exhibits D as pseudo-enriched in € if the
functor €® — Ass® is a locally cocartesian fibration and the following
condition holds:

For every objects A1, ..., Ay € € for some n € N and X,Y €D and every
a € Assy the canonical map

¢ Muly(®a (A1, ..; A), X;Y) =

{U} ><MulLM(a,m;m) MulM(®a (Alv (X3} An)’ X; Y) -
{05,} XMulp,pm(a,...,a,m;m) MU-IM(Ala LX) Arn XyY)

is an equivalence.

We say that an operad M® — LM® over LM® exhibits D as enriched
in C if it exhibits D as pseudo-enriched in € and for every objects X,Y € D
there exists a morphism object [X,Y] € C.

Let M®, N® be operads over LM® with C% := Ass®xp e M® ~ Ass®xq e
N® that exhibit the categories {m} xpye M®, {m} xp e N® as enriched
in C.

We call a map of operads M® — N® over LM®, whose pullback to Ass®
is the identity, a C-enriched functor.

Convention 5.25. We make the following convention for the next sec-
tions except the appendix.

Let M® — LM® be an operad over LM®. Set D = {m} xy o M® and
C® := Ass® xp 0 M®. Let X be an object of D.

When we say that X admits an endomorphism object or that an ob-
ject Y € C is the endomorphism object of X or that a morphism o €
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Muly (Y, X; X) ezhibits Y as the endomorphism object of X, we implicitely
assume that for every objects Ai,...,An € C for some n € N and every
« € Assy the canonical map

¢: Mulm(®a(A1,...,An),X;X) o~

{U} xMulLM(u,m;m) MUIM(®Q(A13 ceey An)7 X7 X) -
{CM,} ><MulLM(a,...,cu,m;m) MUIM (A1, (X3} An: X; X)

is an equivalence.

In many applications we use the following parametrized notion of en-
richment:

Let M® — LM® x S be a locally cocartesian S-family of operads over
LM®. Set D := {m} x;,ye M® and C® := Ass® x e M®.

We call M® — LM® x S a locally cocartesian S-family of categories
pseudo-enriched respectively enriched in € if for all s € S the induced
functor €€ — Ass® is a locally cocartesian fibration (equivalently if the
functor €® — Ass® x S is a locally cocartesian fibration) and M® exhibits
D, as pseudo-enriched respectively enriched in Cs.

Let M® N® be locally cocartesian S-families of categories enriched in C.

We call a map M® — N® of locally cocartesian S-families of oper-
ads over LM®, whose pullback to Ass® is the identity, a map of locally
cocartesian S-families of C-enriched categories.

Example 5.26. Let M® - LM® be a LM®-monoidal category that exhibits
a category D as a left module over a monoidal category C.

The functor Fun(A', D) —» Fun({1},D) is a left module over D x €q
in Catig’f%rt (remark 6.69) and thus can be promoted to a cocartesian D-
family of categories pseudo-enriched in Cy.

Given a morphism f : K - 1 in €C and g : Y - X in D we have
feg: KoY ->le@X=~X.

Given a functor H:S — D this left module structure gives rise to a left
module structure on Funy (S, Fun(A', D)) ~ Fun(S, D) /i over Fun(S, C/5) =~
Fun(S, €)1, which is the canonical action.

Let M® be a cocartesian S-family of categories enriched in € := {a}x e
M®. Set D = {m} xp 0 M®.
By remark 5.22 we have a multi-mapping space functor

Mulpe(—,—;=) : €V xg D"V xg D - §

relative to S that is adjoint to a functor 8: D™ xg D — Mapg(C™",8 x S)
over S.

As M® - LM® x S is a cocartesian S-family of categories enriched in €, 8
induces a functor D™ xg D — € c Mapg(C™",8 x S) over S adjoint to a
functor 6 : D - Mapg (D™, C) over S.

6 sends an object X of D lying over some s € S to the functor [—, X]», :
DP — Cs that sends an object Y of Ds to the morphism object [Y,X]p,
of Y and X.

In proposition 6.55 we construct a map M® — Mapg (D", €)® of S-
families of operads over LM®, whose underlying functor over S is # and
whose pullback to Ass® is the diagonal map & : €® = Mapg(S,€)® —
Mapg (D™, C)® of S-families of operads over Ass®.
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For S contractible this guarantees the following;:

Let X be an object of D and 8 € Muly(B,X;X) an operation that
exhibits B = [X, X] as the endomorphism object of X.

Being a map of operads over LM® the functor 6 sends the endomor-
phism [X, X]-left module structure on X to a 6([X, X])-left module struc-
ture on [-,X] : D°? - € corresponding to a lift D°” - LModx x](C) of
[-,X]:D? > ¢C.

So for every object Y of D the morphism object [Y, X] is a left module

in € over the endomorphism object [X, X] and for every morphism Y — Z
in D the induced morphism [Z,X] - [Y,X] is [X, X]-linear.

Let M® — LM® ,N® — LM® be operads over LM® that exhibit cate-
gories D respectively € as pseudo-enriched in € := {a}x;,;e M® respectively
B = {a} xpye N® and let F: M® - N® a map of operads over LM®.

Let X,Y be objects of D that admit a morphism object [Y,X] € € and
whose images F(X),F(Y) € € admit a morphism object [F(Y),F(X)] € B.

The map F : M® — N® of operads over LM® sends the canonical
[X, X]-left module structure on [Y,X] in € to a left module structure on
F([Y,X]) over F([X,X]) in B.

The canonical morphisms
F([Y,X]) - [F(Y),F(X)],  F([X,X]) > [F(X),F(X)]

in B organize to a morphism of LM®-algebras, where [F(Y),F(X)] carries
the canonical [F(X),F(X)]-left module structure in B.

Especially for € = Cate and F a Cate-enriched functor we see that the
canonical functors

[Y,X] - [F(Y),F(X)],  [X,X]~[F(X),F(X)]
are part of a LM®-monoidal functor.

This guarantees the following:

Remark 5.27. Let T € Alg([X,X]) be a monad on X and ¢: Y - X a
left module over T in [Y,X].

Then the morphism F(¢) : F(Y) —» F(X) n & is a left module over the
monad F(T) € Alg([F(X),F(X)]).

If T is the endomorphism object of ¢, the monad F(T) is the endo-
morphism object of F(¢) by proposition 5.31.

Let M® be an operad over LM® that exhibits a category D as enriched
in C:= {a} xp e M®.

Let B® — Ass® be a locally cocartesian fibration of operads and F :
B® - €® a map of locally cocartesian fibrations of operads over Ass®,
whose underlying functor B — € admits a right adjoint G : € - B.

Then by proposition 6.61 combined with lemma 6.64 one can pullback
M® along F : B® - €% to obtain an operad F*(M)® over LM® that
exhibits D as enriched in B.
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F*(M)® is determined by the condition that for every operad Q® over
LM®, where we set A® := Ass® x; e Q%, the commutative square

Algg v (F(M)) —— Alggrm(M) (23)

l |

AlgA/Ass (%) E— Algﬂ/Ass(e)'

is a pullback square.

The morphism object of two objects X,Y € D with respect to F*(M)®
is given by G([X,Y]) € B, where [X,Y] € € denotes the morphism object
of X and Y with respect to M®.

Now we specialize to the case €% = Cat, :

We call a category enriched in Catg, a 2-category and a Cat,-enriched
functor a 2-functor.

We call a (locally) cocartesian S-family of categories enriched in Catl,
a (locally) cocartesian S-family of 2-categories and a map of (locally)
cocartesian S-families of Cat,-enriched categories a map of (locally) co-
cartesian S-families of 2-categories.

We denote the pullback of a 2-category € along the opposite category
involution (-)°P : Cate — Cates by Cop so that in Cop the 2-morphisms
are reversed.

Given a category S the opposite category involution lifts to a canonical
equivalence

(Catoo/s)op ~ Catoo/sop

of 2-categories as the opposite category involutions Cates/gor = Cateo/s
and Cate, = Cato, induce for every operad Q® over LM®, where we set
B = Ass® x e QF, a pullback square

Algg, i (Catoosor ) —— Algga(Catoos)

| l

Algg,a(Cateo) — Algg ass(Cateo).

We have a notion of adjunction in any 2-category C:

Let f: X -> Y and g: Y — X be morphisms of C.

We say that f is left adjoint to g or g is right adjoint to f or that (f,g)
is an adjoint pair if there are 2-morphisms 1 :idx — gof and e : fog — idy
such that the triangular identities (eof)o(fon) = idf and (goe)o(nog) = idg
hold.

5.2.2 Endomorphism objects

Let M® — LM® be an operad over LM®. Set C® := Ass® x; e M® and
D = {m} xpye M®. Let X be an object of D.

Denote ¢ : A - LM® the morphism of LM® corresponding to the
unique object of Mulpm(a, m;m).
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Using ¢ we form the category Fung e (Al,M®) and have canonical
functors

Funpye (A, M®) > M2, ) ~Cx D, Funpye (A", M®) > ME ~D

(a,m)
evaluating at 0 respectively 1.
We set C[X] := {(X,X)} xpxp Funpye (A, M®) and have a forgetful

functor €[X] - Funpye (A, M®) - C that is a right fibration classifying
the functor Muly (-, X;X) : €°° — § according to lemma 6.70.

So an object of C[X] corresponding to a pair (A, a) consisting of an
object A of € and an object a of Muly (A, X; X) is a final object of C[X]
if and only if for all objects B of € evaluation at « induces an equivalence

i.e. if and only if a exhibits A as the endomorphism object of X.

@ gives rise to a forgetful functor
LMod (D) c Funyye (LM®, M®) » D xp.p Funpye (A", M®)

over D, where the functor D — D x D is the diagonal functor, that induces
a forgetful functor

{X} xp LMod(D) c {X} xp Fung,\e (LM®,M®) - C[X]
= {(X,X)} xpxp Funp e (A17M®).

By proposition 6.50 and convention 5.25 if €[X] admits a final object,
the final object lifts to a final object of {X} x5 LMod(D).

As the forgetful functor {X} xp LMod(D) — €[X] is conservative, in
this case an object of {X} x» LMod(D) is a final object if and only if its
image in C[X] is.

So by abuse of notation we identify the final object of {X} x5 LMod(D)
with the final object of C[X] if both exist.

Endomorphism objects are functorial in the following way:

Let F: M® - M'® be a map of operads over LM®.

Set C® 1= Ass® xp e M®, €"® 1= Ass®x e M'®, D := {m} x e M®, D’ =
{m} xpae M®.

Let X be an object of D such that X and F(X) admit endomorphism
objects [X, X] respectively [F(X),F(X)].

The map F : M® - M'® of operads over LM® gives rise to a commu-
tative square

{X} XD LMOd(D) E— {F(X)} Xpr LMOd(D/)

| |

Alg(€) Alg(€).

The endomorphism objects [X, X] of X and [F(X),F(X)] of F(X) are
by definition the final objects of the categories {X} x5 LMod(D) respec-
tively {F(X)} xps LMod(D").

Consequently F sends the endomorphism left module structure on X
over [X,X] to a left module structure on F(X) over F([X,X]) that is
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the pullback of the endomorphism left module structure on F(X) over
[F(X),F(X)] along a canonical morphism F([X,X]) — [F(X),F(X)] in
Alg(€".

5.2.3 Endomorphism objects in families

More coherently we study endomorphism objects relative to S:

Let M® — S x LM® be a S-family of operads over LM®. Set €% :=
Ass® xp e M® and D := {m} x e M®. Let X be a section of D — S.

Denote ¢ : A' - LM® the morphism of LM® corresponding to the
unique object of Mulpm(a, m;m).

Using ¢ we form the category FunéstM® (SxA', M®) and have canon-
ical functors

Funf’ o (Sx AN M®) > ME, ) = € xs D, Funpye (A", M®) - Mg ~ D
over S evaluating at O respectively 1.

We set G[X]/S =S XDxgD Fun/ss;LM@(S X AIJ\/[@) and have a forgetful
functor

C[X])® - Funl) | o (Sx A, M®) > ¢

over S that induces on the fiber over s € S the right fibration

C[X(5)] = {(X(s), X(5))} xD.xp, Funy e (A, ME) = Funpye (AT, MS) - €

classifying the functor Muly, (-, X(s); X(s)) : CP — 8 according to lemma
6.70 and on sections the right fibration

Funs (S, €)[X] = {(X7X)}XFuns(S,D)xFunS(S,D)FunLM®(AlvFunS(S7M)®) -

Fung e (A", Fung (S, M)®) - Funs(S, €)

classifying the functor Mulpung (s, (=, X; X) : Funs (S, €)°® - § according
to remark 5.3 2. and lemma 6.70.

o gives rise to a forgetful functor
LMod’®(D) ¢ Funly | 1o (SXLM® M®) - Dx(pgmyFunly | o (SxA', M®)

over D, where the functor D — D xg D is the diagonal functor over S, that
induces a forgetful functor

S xp LMod’®(D) ¢ S xp Funly | o (S x LM® M)

- €[X]"® = S x(pxgmy Funll | o (Sx A1, M®)

over S that induces on the fiber over s € S the forgetful functor
{X(s)} x, LMod(Ds)  {X(s)} xp, Funy yo (LM?, M) — Cs[X(s)] =

{(X(5),X(5))} ¥0.x, Fungye (A", M)

and on sections the forgetful functor
{X} Xpung(s,p) LMod (Fung (S, D)) c
{X} XFung (s,) Funpye (LM®, Fung (S, M)®) — Funs(S, €)[X]
= {(X,X)} X (Fung (8.D)xFuns (5.0)) Funpye (A", Fung (S, M)%).
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Observation 5.28.

Assume that M® - SxLM® is a locally cocartesian S-family of operads
over LM® and X is a locally cocartesian section of ¢ : D — S such that
for alls € S the image X(s) € Ds admits an endomorphism object, in other
words the category (C[X]/®)s ~ C[X(s)] admits a final object.

Then by proposition 6.50 for every s € S the final object of Cs[X(s)]
lifts to a final object of the category (S xp LMod/S(D))s = {X(s)} xo,
LMod(Ds).

By remark 5.5 the functor LMod/S(D) - Alg/s(Cf) over S is a map of
locally cocartesian fibrations over S.

So by lemma 5.33 the category
Funs (S, S x LMod’®(D)) = {X} X pung(s,m) Funs(S, LMod’® (D)) =

{X} XFung ($,D) LMod(Funs(S, D))

admits a final object Y such that for every object s € S the image Y (s) is
the final object of the category {X(s)} x», LMod(Ds).

The functor S xp LMod/S (D) - Alg/S(€) over S sends Y to an object
[X,X]/® of the category Alg(Funs(S,@)) ~ Funs(S, Alg/®(C)).

So Y exhibits [X,X]/S as the endomorphism object of X with respect
to Funs(S,M)® - LM®.

Observation 5.29.

Let f : s - t be a morphism of S such that the induced map f. :
M2 - M® of operads over LM® preserves the endomorphism object of
X(s), in other words such that the functor (S xp LMod/>(D))s » (S xo
LMod/S(D)): induced by f preserves the final object.

Then the functorY : S — SxpLMod/3(D) overS sends f to a locally co-
cartesian morphism of the locally cocartesian fibration S xo LMod/S(D) -
S and thus the composition

[X,X]/9:S 5 S xp LMod/*(D) — Alg/*(€)

sends f to a locally cocartesian morphism of the locally cocartesian fibration
Alg’S (@) - S.

Observation 5.28 and 5.29 imply the following:

Let ¢ : T — S be a category over S and X : T — D a functor over
S that sends every morphism of T to a locally ¢-cocartesian morphism
corresponding to a cocartesian section of the pullback T xg D — T.

Assume that for every object t € T the image X(t) € Dy () admits an
endomorphism object.

Then the category

(X} %pung (1,0)LMod(Funs (T, D)) = Funr (T, T (1) LMod' " (Txs D)) =

Funr (T, T x5 LMod’® (D))

admits a final object Y such that for every object t € T the image Y (t)
is the final object of the category {X(t)}x»,,, LMod(Dg()) and that lies

over an object [X, X]/T of the category Alg(Funs (T, €)) ~ Fung(T, Alg/>(€)).
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In other words Y exhibits [X,X]/T as the endomorphism object of X
with respect to T xg D® - LM® x T.

Let f : s > t be a morphism of T such that the induced map f. :
D‘i(s) - Dg(t) of operads over LM® preserves the endomorphism object of
X(s), in other words such that the functor (T xp LMod/S’(D))s = (T xp
LMod/®(D)); induced by f preserves the final object.

Then the functor Y : T — T xq LMod/S(D) over T sends f to a locally
cocartesian morphism of T xp LMod/®(D) — T so that the composition
[X,X]/T T 5T XD LMod/S(D) - T xg Alg/s((?) sends f to a locally
cocartesian morphism of the locally cocartesian fibration T xg Alg/s(e) -
T.

Denote D ¢ D the wide subcategory with morphisms those of D that
are cocartesian with respect to the locally cocartesian fibration D — S ao
that D¥ — S is a left fibration. Let € c S be a subcategory.

Denote DY ¢ Dpng ¢ D™ the full subcategories spanned by the ob-
jects of D that admit an endomorphism object respectively that admit an
endomorphism object that is preserved by the functors on the fibers of
the locally cocartesian fibration D — S induced by morphisms of €.

The left fibration D — S restricts to a left fibration DEY — S relative
to €.

For T = Dgng — S and X the canonical inclusion Dgnq ¢ D the endo-
morphism object of X is a functor End : Dgnyq — Alg/s((‘f) over S.

univ

For T = D¥Y - S and X the canonical inclusion Dgpg © D the endo-
morphism object of X is a map End : DY - Alg/ 5(€@) of locally cocarte-
sian fibrations relative to €.

Remark 5.30.

1. By lemma 6.15 we have a canonical equivalence over Alg/s((?) be-
tween the map S xp LMod/S(D) — Alg/®(C) of locally cocartesian
fibrations over S and the map

1
Alg’*(€)x xyss =8 X p1g05 ey Alg’* (€)% — Alg/®(€)(”

of cocartesian fibrations over S that induces on the fiber over s € S
the canonical equivalence

{X(s)} xp, LMod(Ds) ~ Alg(€s)/1x(s),x(s)]

over Alg(Cs).
Pulling back this equivalence over Alg/s(e) along a section of
Alg/S(€) - S we obtain a canonical equivalence

S ] Al
S % Alg/5 (€)s 2y LMOQ' (D) 2 8 x (41,5 ) 101 g ates (ey 1) Alg’ (€)
over S.

2. Let ¥ : T - S be a category over S and X : T —» Dgpa,Y : T —
Alg/(@) functors over S.

Applying 1. to the pullback TxsD® — LM®xT we obtain a canonical
equivalence

S S Al
TX(Alg/S(G)st)LMOd/ (D) = TX(Alg/S(e){o}stlg/S(e){l})Alg/ (©)
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over T that induces on the fiber over t € T the canonical equivalence

{X(t)} o, LMody (1) (Ds) = Alg(Cs) (Y (t), [X(t), X(t)]).

Especially we obtain a canonical equivalence

(Alg/s(e) XS DEnd) X(Alg/S(G)XS’D) LMOd/S(D) ~

1
(A1g/5(€) x5 Dbna) X (a1g/s (e)(0) g ate/s (ey (1)) Alg’* (€)%
over Alg/S(€) xs Dna.

5.2.4 Monads as endomorphism objects

Now we use the theory of endomorphism objects to associate a monad to
a given right adjoint morphism in a 2-category.

Let € be a small 2-category and g : Y — X a morphism of € that admits
a left adjoint.

Let T € Alg([X,X]) be a monad equipped with a left actionon g:Y —
X with respect to the canonical [X, X]-left module structure on [Y,X].

We say that the left action map p: Tog — g in [Y,X] exhibits T as
the monad associated to g if p exhibits T as the endomorphism object of
g with respect to the canonical [X, X]-left module structure on [Y,X].

The next proposition tells us that every right adjoint morphism in a
2-category admits an associated monad.

Proposition 5.31. Let C be a 2-category.

Let X, Y be objects of C and g: Y — X a morphism of C that admits a
left adjoint f: X =Y in C.

Denote 1 : idx — gof the unit and € : f o g — idy the counit of this
adjunction.

1. For every morphism h: X - X of C the map
Y, X](hog,goe)

a: [X,X](h,gof) - [Y,X](hog,gofog) !
is an equivalence.

[Y,X](hog, g)

So goe:gofog — g exhibits gof as the endomorphism object of
g: Y — X with respect to the canonical [X,X]-left module structure
on [Y,X].

2. Let T:X — X be a morphism of C and ¢ : T og — g a morphism in
[Y,X].
Denote 1 the composition T Ten gof ol gof in [X,X] and v
the composition

Y, X](hog,»)
ey

[X,X](h, T) > [Y,X](hog, Tog) - [Y,X](hog,g).

The morphism 1 is an equivalence if and only if for every morphism
h:X - X of € the map v is an equivalence.

So ¢:Tog— g exhibits T as the endomorphism object of g: Y - X
with respect to the canonical [X, X]-left module structure on [Y,X]
if and only if ¢ is an equivalence.
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Proof. Statement 1. and 2. follow from the following lemma 5.32.

Lemma 5.32. Let C be a 2-category.

Let X, Y be objects of C and g: Y — X a morphism of C that admits a
left adjoint f: X -Y in C.

Denote n : idx — gof the unit and € : f og — idy the counit of this
adjunction.

1. For every morphism h : X — X of C the following two maps are
inverse to each other:

a: [X,X] (h,gof) — [Y,X] (hog,gofog) [Y, X](hog, g)
B:[Y,X](hog, g) — [X,X](hogof, gof) o000, 1% X](h, gof).

2. Let T: X — X be a morphism of C and ¢ : T og — g a morphism in
[Y,X].

Denote 1 the composition T BN S gof LR gof in [X,X].

[Y,X](hog,goe)

Then ¢ factors as Togﬁgofog—gﬁg.
Consequently for every morphism h: X — X of C the map

[Y,X](hog,¢)
7:[X,X](h,T) > [Y,X](hog,Tog) ——— [Y,X](hog,g)
factors as

X, X](h,¥)
e

[X,X](h,T) < [X,X](h, g of) S [Y,X](hog,g).

Thus ¥ is an equivalence if and only if for every morphismh: X - X
of € the map v is an equivalence.

3. Letg:Y — X,h:7Z — X be morphisms of C that admit left adjoints
f: X —>Y respectively k : X - Z and let ¢ : Y — Z be a morphism in
C over X.

Denote w the morphism
hok > hokogof~hokohogof >hogof~gof
n [X,X].
Then hokog o8, gofog— g is equivalent to the composition
hokog=~hokohog¢>hod~g.
Proof. The composition

Y, X](hog,goe)
LARTee T

[Y,X](hog,gofog) [ [Y,X](hog,g)

— [X,X](hogof,gof)
is equivalent to the composition

[X,X](hogof,goeof)
—r 2

[Y,X](hog,gofog) = [X,X](hogof,gofogof)

[X,X](hogof,gof)
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and the composition

[X,X](hogof,gof) LoXhomeed,

[X,X](h,gof)
= [Y,X](hog,gofog)
is equivalent to the composition

[X,X](hogof,gof) - [Y,X](hogofog,gofog)

[Y,X](honog,gofog)
L ARIREERTPE)

[Y,X](hog,gofog).
So B o« is equivalent to

[X,X](h,gof) - [X,X](hogof,gofogof) LilometsD

[X,X](h,gofogof) M»

and a o (8 is equivalent to

[X,X](h,gof)

[Y,X](hogofog,goe)
—>

[Y,X](hog,g) > [Y,X](hogofog,gofog)

[Y,X](honog,g)

[Y,X](hogofog,g) [Y,X](hog,g).

As

[X,X](hon,gofogof)
—r 2

[X,X](h,gof) > [X,X](hogof,gofogof)
[X,X](h,gofogof)
is equivalent to

[X,X](h,gofon)
—)

[X,X](h,gof) [X,X](h,gofogof)

and

[Y,X](hogofog,goc)
Y. X](hogofog,goe)

[Y,X](heog,g) > [Y,X](hogofog,gofog)
[Y,X](hogofog,g)
is equivalent to

[Y,X](hogoe,g)

[Y,X](hog,g)

B o« is equivalent to

[Y,X](hogofog,g),

[X.X](h,gofon) [X.X](h,gocof)
—) _

[X,X](h,gof) [X,X](h,gofogof)

[X,X](h,gof)
and a o § is equivalent to

[Y,X](hogoe,g) [Y,X](honog,g)
e e

[Y,X](hog,g) [Y,X](hogofog,g)

[Y,X](hog,g).
Therefore statement 1. follows from the triangular identities:
The compositions f fon, fogof = f and g o8, gofog £, g of
morphisms of the category [X,Y] respectively [Y,X] are the identities.

It remains to show 2:
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Tono ofo o€
The CompOSition’L/J:Tog—ng>Togofog(P—g>gofogg_>gjs

equivalent to
Tonog Togoe %2} . .
Tog ——— Togofog —— Tog — g and is thus equivalent to ¢ due
to the triangular identities.

It remains to show 3:
The composition

hokog—>hokogofog~hokohopofog—>hogofogngofog—g
is equivalent to the composition
hokog—>hokogofog~hokohogofog—>hogofog—>hogp=g
and thus equivalent to the composition
hokog>hokogofog—>hokog~hokohog>hog~g,
which is equivalent to
hokog~hokoho¢>hogp=~g

by the triangular identities.
O

Proposition 5.33. Let ¢: C — S be a functor such that for all objects s
of S the fiber Cs admits a final object X(s).

Assume that one of the following conditions is satisfied:

1. ¢:C— S is a locally cocartesian fibration.

2. ¢:C — Sisalocally cartesian fibration such that the induced functors
on the fibers preserve the final object.

The category Funs(S, C) admits a final object o : S — € such that for
every s € S the image a(s) is the final object of Cs.

Especially a section a: S — € of ¢ is a final object of Fung(S, €) if and
only if for every s €S the image a(s) is the final object of Cs.

Proof. Denote W the full subcategory of Cats spanned by those cate-
gories K with the property that for every functor ¢ : K — S the following
condition holds:

The category Fung(K, €) admits a final object a: K - € such that for
every k € K the image a(k) is the final object of Cy ).

We will show that W = Cateo.

As Cats is the only full subcategory of Cate that contains the con-
tractible category and A' and is closed in Cate. under small colimits, it
is enough to see that W contains the contractible category and A' and is
closed in Cate under arbitrary coproducts and pushouts.

Tautologically the contractible category belongs to 'W.

Being right adjoint to the functor €7 : Cate, — (Cateoss)°? the functor
Fung(—,C) : (Cates)” — Cato sends small colimits to limits.

So the case of coproducts follows from the fact that an object in an
arbitrary product of categories is a final object if every component is final
in each factor.
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Let X,Y,Z be objects of W and X ]Iy Z — S a functor. Then X[y Z —
S is the pushout in Cate g of the induced functors 6:Y - X and¢: Y - Z
over S.

So the categories Fung(X, €),Funs(Y,C),Funs(Z,€) admit final ob-
jects a, B respectively v that take values in final objects of each fiber.

Hence the unique morphisms o6 - 8 and yo¢ — 8 in Fung(Y, €) are
equivalences being levelwise equivalences.

Thus the category Funs(X [y Z,C) ~ Fung (X, €) Xpung(y,e) Funs(Z, C)
admits a final object that takes values in final objects of each fiber using
that every object of the pushout X[y Z — S is the image of an object of
X or Z.

It remains to show that A' belongs to W :

Let f : s - t be a morphism of S.

By assumption the fibers Cs, €; admit final objects X(s) respectively
X(t).

If condition 1. holds, there is locally ¢-cocartesian lift X(s) — f.(X(s))
of f in €, whose composition with the unique morphism f.(X(s)) - X(t)
in C¢ yields a morphism a : X(s) - f.(X(s)) - X(t) in € lying over f.

If condition 2. holds, there is locally ¢-cartesian lift 8 : X(s) - X(t)
of f in C.

Let F: A - B,G:X — Y be morphisms of € lying over f.
We have a canonical equivalence

FunS(A17 e)(F7 G) = ({f} XFun(Al,S) Fun(Ala e))(F>G) =

{idf} Xpuncat,sy.n Fun(A',€)(F,G) =
{ide} X (85,950,080 (B(A,X) xe(a,yv) (B, Y)) =
({ids} xs(s,8) C(A X)) X(fidryxs ey eay)) ({idi} x5ty C(B, X)) =
Cs (A, X) X({idyxg ey e(a,v)) Ce(B,Y)

L C(ALX) xey (£, (a),v) Ce(B,Y) if 1.holds.
T €4(A, X) Xy (A (vy) Co(B, Y) if 2.holds.
So for G = a or G = 8 we see that « respectively [ is the final object

of the category Fung(Al,@).
O
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5.3 Eilenberg-Moore objects

In this section we develop the theory of Eilenberg-Moore objects in a given
2-category that abstract the category of algebras over a monad from the
2-category Cate to an arbitrary 2-category.

To do so we abstract in definition 5.35 the notions monadic functor
and monad from Cat. to an arbitrary 2-category.

We show in example 5.36 that for every small category S the 2-category
Cate /s admits Eilenberg-Moore objects and co-Eilenberg-Moore objects.

From this we deduce in theorem 5.47 that for every categorical pat-
tern P on S (see [18] def. B. 0.19) the subcategory of P-fibered ob-
jects of Cateo/g is closed in Cateoyg under Eilenberg-Moore objects and
coEilenberg-Moore objects.

5.3.1 Eilenberg-Moore objects

Let S be a category and G : D — C a functor over S that admits a left
adjoint relative to S.

By proposition 6.78 the functor G over S admits an endomorphism
object T € Fung(C, €) with respect to the canonical left module structure
on Fung (D, €) over Fung(C, C).

By remark 5.19 for every category B over S we have a canonical equiv-
alence

0 : LModr(Funs (B, €)) ~ Fung (B, LMod/? (€))

over Fung(3B,C).
For B = D the endomorphism left module structure on G over T cor-
responds to lift a: D — LModé?(C) of G.

We say that G is a monadic functor over S or that G exhibits D as
monadic over C relative to S if « is an equivalence.

If S is contractible, we will drop S. In this case our definition coincides
with the usual one.
Remark 5.34. Let G : D — C be a functor over S that admits a left

adjoint relative to S.

Then G is a monadic functor over S if and only if for every category
B over S the induced functor Fung(B,G) : Fung(B,D) — Fung(B,€) is a
monadic functor.

Proof. Let a:D — LMod/TS(C) be the canonical lift of G from above.

By Yoneda « is an equivalence if and only if for every functor B — S
the induced functor

B : Funs (B, D) - Fung(B, LMod/? (€)) ~ LModr(Funs(3B, €))

over Fung(B,C) is an equivalence.

The canonical Fung(€, €)-left module structure on € := Fung(B,C)
is the pullback of the endomorphism left module structure on € over
Fun(€’,€") along a canonical monoidal functor Fung(€,€) — Fun(€’,€")
that sends T to some monad T’ on €. So we obtain a canonical equivalence
LModr/(€") ~ LModr(€") over €'.
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By remark 5.27 the 2-functor Funs(B,-) : Cate /s — Cate sends the
endomorphism left module structure on G over T to the endomorphism
left module structure on Fung(B,G) : D’ := Fung(B, D) — € = Fung(B, C)
over T’ with respect to the canonical left module structure on Fun(D’, €")
over Fun(€’, €") corresponding to the functor 8 : D’ — LMod (€") over
€’. So 3 is an equivalence if and only if Fung(B, G) is monadic.

O

By remark 5.34 the following definition generalizes the notion of monadic
functor over S.

Definition 5.35. (monadic morphism, Eilenberg-Moore object, repre-
sentable monad)

Let € be a 2-category and ¢ : Z — X a morphism of C.

o We say that 1 exhibits Z as monadic over X or call ¢ : Z - X
a monadic morphism if Y admits a left adjoint in C and for every
object Y of C the induced functor [Y,Z] - [Y,X] is monadic.

Let T € Alg([X,X]) be a monad.

o We say that a morphism ¢ :Z — X of C exhibits Z as an FEilenberg-
Moore object of T or that ¢ : Z — X is an FEilenberg-Moore object of
T if ¢ is monadic and there is a left T-module structure on ¢ with
respect to the canonical [X,X]-left module structure on [Z,X] that
ezhibits T as the endomorphism object of ¢.

In this case we say that ¢ : Z — X represents the monad T.

e We call the monad T representable if there is an Eilenberg-Moore
object of T.

o We say that a right adjoint morphism ¢ : Z — X of C is representable
if its associated monad is representable.

If every monad T € Alg([X, X]) admits an Eilenberg-Moore object, we
say that X admits Eilenberg-Moore objects.

If all objects X of € admit Eilenberg-Moore objects, we say that C
admits Eilenberg-Moore objects.

If ¢ : Z - X is a morphism of € that admits a left adjoint f : X - Z
and exhibits Z as an Eilenberg-Moore object of T, by proposition 5.31 we
have a canonical equivalence T ~ ¢ of in Fun(X, X).

By proposition 5.31 every right adjoint morphism Y — X admits an
endomorphism object with respect to the canonical [X,X]-left module
structure on [Y,X]. So every monadic morphism Y — X is an Eilenberg-
Moore object of some monad T on X.

Tautologically every monadic morphism is representable.

We have the dual notion of comonadic morphism and coEilenberg-
Moore object.

Given a 2-category € we call a morphism ¢ : Z - X of € comonadic if
1 is a monadic morphism in Cop, i.e. if 1 admits a right adjoint and for
every object Y of € the induced functor [Y,Z] — [Y,X] is comonadic.

Let T € Alg([X,X]°?) be a comonad.
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We say that a morphism ¢ : Z — X of € exhibits Z as a coEilenberg-
Moore object of T or that ¢ : Z - X is a coEilenberg-Moore object of T if
¢ is an Eilenberg-Moore object of T in Cqp.

Example 5.36. Let C — S be a functor and T € Alg(Fung(C, €)) a monad.

The forgetful functor i) : LMod/TS(G) — C over S is an Filenberg-Moore
object of T in Catoo/s.

So for every small category S the 2-category Cateos admits Eilenberg-
Moore objects.

The opposite category involution (Cate /s )op = Cato jsop lifts to a canon-
ical equivalence of 2-categories.

Thus (Cateos)op = Cateo/gor admits Eilenberg-Moore objects so that
Catooys admits coFEilenberg-Moore objects.

Given a comonad L € Coalg(Funs(C,C)) on a category C over S its
coFEilenberg-Moore object is given by the forgetful functor

coLModéS(G) = Ll\/IOC1£Sop(eop)Op -C
over S.

Proof. By proposition 6.78 the functor ) : LMod/TS (€) » € over S admits
a left adjoint relative to S.

By remark 5.19 for every category B over S we have a canonical equiv-

alence
0 : LModr (Funs (B, €)) =~ Fung (B, LMod/s (€))
over Fung(3B,C).

For B = LMoerS (€) the identity corresponds under 6 to a left T-module
structure on v : LModé?(@) — C that exhibits T as the endomorphism
object of ¥ by lemma 5.43.

So v is a monadic functor over S with associated monad T, in other

words 1) is an Eilenberg-Moore object of T in Catess.
O

Every 2-functor G : D — € that preserves monadic morphisms, also
preserves Eilenberg-Moore objects:

Let v : Z - X be an Eilenberg-Moore object of some monad T ¢
Alg([X,X]) on some object X of D.

By remark 5.27 the left T-module structure on ) gives rise to a G(T)-
left module structure on G(%) : G(Z) - G(X) that exhibits G(T) as the
endomorphism object of G().

So if G(v) is a monadic morphism, G(¢) is an Eilenberg-Moore object
of G(T).

Observation 5.37. Let G : D — C be a 2-functor that admits a left
adjoint F.

Then G : D — C preserves monadic morphisms and thus Eilenberg-
Moore objects.

Proof. As a 2-functor G: D — C preserves right adjoint morphisms.

For all X € C,Y € D the induced functor

[F(X), Y]~ [G(F(X)),G(Y)] = [X,G(Y)]
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is an equivalence.

Let ¢ : Z - X be a morphism of D. Then for every object Y of C the
functor [F(Y),Z] —» [F(Y),X] is equivalent to the functor [Y,G(Z)] —
[Y,G(X)] so that with ¢ also G(¢) is monadic.

O

Let € be a 2-category, B a subcategory of € and X an object of B.

Let ¥ : Z - X be an Eilenberg-Moore object in € of some monad T in
B on X.

Then v : Z — X is an Eilenberg-Moore object of T in B if and only if
1) is a monadic morphism of B and by cor. 5.39 if and only if ¥ belongs
to B and for all morphisms a:Y — Z of € with Yoa:Y - Z - X also «
belongs to B.

We say that B is closed in € under Eilenberg-Moore objects of X if
every Eilenberg-Moore object 1 : Z — X in € of some monad T in B on X
is an Eilenberg-Moore object of T in B, i.e. is monadic in B.

We say that B is closed in € under Eilenberg-Moore objects if B is
closed in € under Eilenberg-Moore objects of X for all objects X of B.

Thus B is closed in € under Eilenberg-Moore objects of X if and only
if every Eilenberg-Moore object 9 : Z — X in € of some monad T in B
on X belongs to B such that for every morphism « : Y — Z of C with
Ppoa:Y = 7Z - X also a belongs to B.

This has the following consequence:

Let A c €, B c € be subcategories and X e AnB c C.

If A, B are closed in € under Eilenberg-Moore objects of X, the sub-
category A N B is also closed in € under Eilenberg-Moore objects of X.

Lemma 5.38. Suppose we have given a commutative square

D'—D (24)

T

¢——¢,

where the horizontal functors are fully faithful and the right vertical func-
tor ¢ is monadic and its left adjoint F : C — D restricts to a functor
¢ - D

Then the functor v’ : D' — €' is monadic if and only if square 24 is a
pullback square.

Proof. Denote Fun(€, €)" c Fun(€, €) the full subcategory spanned by the
functors € — € that send objects of €’ to objects of €.

Then the endomorphism left module structure on € over Fun(€, C) re-
stricts to a left module structure on €’ over Fun(C, €)’ that is the pullback
of the endomorphism left module structure on €’ over Fun(€’,€’) along a
canonical monoidal functor Fun(€, C)" — Fun(€’, €").

As ¢ : D - @ is monadic, we have a canonical equivalence D =
LModr(€) over € for some monad T on € with T ~ ¢ o F in Fun(C, €).
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As F restricts to a functor ¢’ - D’, the monad T is an associative
algebra of Fun(€, @)’ and so gives rise to a monad T’ on €.

We have a canonical equivalence LMod/(€") ~ €’ xe LModr(€) =~
@’ xe D over €. So the functor €’ xe D — €’ is monadic.

Moreover F : € — D restricts to a functor F: €' - €' xeD that restricts
to a functor €' — D’

So by theorem 5.62 the canonical functor D’ — €' xe¢ D over €’ is an
equivalence if and only if ¥’ is monadic.

O

Corollary 5.39.
Let C be a 2-category, B a subcategory of C,v : Z — X a morphism of
B and T a monad in B on X.

Assume that v : Z — X is a monadic morphism of C with left adjoint
F:X -7

By lemma 5.38 the morphism v is monadic in B if and only if F: X —
7 is a morphism of B and for all Y € B the commutative square

[Y, Z]IB e [Y, Z]e

L]

[Y,X]B Em— [Y, X]e

is a pullback square.

In other words the morphism v is monadic in B if and only if for all
morphisms a:Y — Z of € with Yoa:Y - 7Z — X also a belongs to B and
the composition o F : X - Z — X is a morphism of B.

Observation 5.40. Let C be a 2-category and B a 2-localization of C.

Let ¢ : Z — X be an FEilenberg-Moore object in C of a monad T ¢
Alg([X,X]) on some object X of B.

Then 7 belongs to B so that ¢ : 7 — X is an Filenberg-Moore object of
T in B.

So if an object X of B admits FEilenberg-Moore objects in C, it admits
FEilenberg-Moore objects in B and thus with C also B admits Filenberg-
Moore objects.

If B is a 2-localization of C, then Bop is a 2-localization of Cop.
So every coFilenberg-Moore object in C of a comonad T € coAlg([X, X])
on some object X of B is a coEilenberg-Moore object of T in B.

Proof. Denote ® : 3 — X the map of cocartesian fibrations over C°P
classifying the natural transformation [-,¢] : [-,Z] — [-,X] of functors
C? - Cateo-
By prop. 5.41 the canonical map 3 - LModr(X) of cocartesian fibra-
tions over C°P over the cocartesian fibration X — C°P is an equivalence.
Thus for every morphism f: A - B of € the commutative square

[B,Z] —— [A,Z]

L]

[B,X] —— [A,X]

185



is equivalent to the commutative square

LModr([B, X]) —— LModr([A, X])

l l

[B,X] —  [A,X].

So if f : A - B is a local equivalence of €, the [X,X]-linear func-
tor [B,X] — [A,X] is an equivalence and thus induces an equivalence
LMod([B,X]) - LModr([A, X]).

Hence the functor [B,Z] — [A,Z] is an equivalence so that Z belongs
to B.

O

Proposition 5.41. Let C be a 2-category, T € Alg([X,X]) a monad on
some object X of C and ¢ :7Z — X a right adjoint morphism of C.

Denote ® : 3 — X the map of cocartesian fibrations over C°P classifying
the natural transformation [—, @] : [-,Z] = [, X] of functors C°P? — Cateo.

Then ¢ : Z - X is an FEilenberg-Moore object of T if and only if 3 is
equivalent over X to LModr(X).

Proof. By proposition 6.55 we have a 2-functor 6 : € — Cati‘j/cggi, that
sends the morphism ¢ :Z — X to ® : 3 - X. By definition of the notion of
monadic morphism 6 preserves monadic morphisms and thus Eilenberg-
Moore objects.

So if ¢ : Z - X is an Eilenberg-Moore object of T in €, the map
®: 3 —> X of cocartesian fibrations over C°? is an Eilenberg-Moore object
of 0(T) in Catfes, ¢ Catoojeop-

Thus by 5.36 we have a canonical equivalence 3 =~ LMod[Feop(.'f) over X.

On the other hand if there is an equivalence LModfFCOp (X) ~ 3 of
cocartesian fibrations over C°P over the cocartesian fibration X — C°P, the
assumptions of lemma 5.42 2. are satisfied so that the morphism ¢:Z - X

is an Eilenberg-Moore object of T.
O

Lemma 5.42. Let C be a 2-category and T € Alg([X,X]) a monad on
some object X of C. Let ¢ :7Z — X be a morphism of C.

Denote T € {T} x[x x] LModr ([X,X]) the left T-module structure on
T coming from the associative algebra structure on T.

1. Assume that ¢ is endowed with a left T-module structure such that
for every Y € C the induced left T-module structure on [Y,¢] :
[Y,Z] - [Y,X] corresponds to an equivalence [Y,Z] - LModr([Y,X])
over [Y,X].

Denote T: X — 7Z the image of T' under this equivalence for Y = X
so that T : X — 7 lifts the functor T along ¢ : Z — X and denote
n:idx — T the unit of the monad T.

Then 1 :idx — T ~ ¢ o T exhibits T : X — Z as the left adjoint of
¢:7Z—-X.
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2. Let [X,X],[Z,X] be endowed with the canonical left-module struc-
tures over [X,X].

Assume that the functor [T,X] : [Z,X] = [X,X] is a [X,X]-linear
functor such that the induced C(X,X)-linear functor

C(7,X) : €(Z,X) - €(X,X) on mazimal subspaces is the canonical
C(X, X)-linear functor.

Suppose that the commutative square

T,z
z,72] — 21X, 7]

2,X] — L [x,x]
is equivalent over [T,X]:[Z,X] - [X,X] to the commutative square

LModr([Z, X]) —ed™ XDy 1\ foder ([X, X])

L

(2, X] [X,X].

Denote ¢ the left T-module structure on ¢ : Z — X that corresponds
to the identity of Z.

Then the left action map B : To ¢ — ¢ of ¢' exhibits T as the
endomorphism object of ¢ with respect to the canonical [X, X]-left
module structure on [Z,X].

Proof. 1: We first assume that ¢ : Z - X admits a left adjoint F.

Denote 7 the unit of the adjunction F: X 2 Z: ¢ in C.

The functor [X,-]: € — Cato is a 2-functor.

Thus the natural transformation [X,7] : id;x,x] = [X,¢] o [X,F] ex-
hibits [X, F] : [X,X] = [X,Z] as the left adjoint of the forgetful functor

LModr([X,X]) ~ [X,Z] LN [X,X], i.e. as the free left T-module func-

tor.

AsT 2% ToT % Tis the identity, the unit 7 :idx — T of the monad
T exhibits T as the free T-module generated by the tensor unit idx of
[X,X].

Thus there is a unique equivalence T — F ~ [X,F](idx) such that
n:idx = ¢ 0T ~ ¢ o F is homotopic to 7 = [X, 7](idx) : idx = po F.

Son:idx = T ~ ¢poT exhibits T : X — Z as the left adjoint of ¢ : Z - X.

Now let ¢ be arbitrary. We will show that ¢ admits a left adjoint.

By lemma 6.78 it is enough to see that for every Y € C the induced
natural transformation [Y,n] :id - [Y,¢] o [Y,T] of functors [Y,X] —
[Y, X] exhibits [Y,T] as left adjoint to [Y, ¢].

The 2-functor [Y,-]: € - Cate sends the monad T on X to a monad
[Y,T] on [Y,X].

The left T-module structure on ¢ gives rise to a left [Y, T]-module
structure on Fun([Y, X],[Y, ¢]) : Fun([Y, X],[Y,Z]) - Fun([Y,X],[Y, X]).
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We have a canonical equivalence
Fun([Y,X],[Y,Z]) = Fun([Y,X], LModr ([Y,X])) =

LModyy 11 (Fun([Y,X],[Y,X]))
over Fun([Y,X],[Y,X]).

We have a commutative square

[X,Z] LModr([X,X])

| |

Fun([Y,X],[Y,Z]) —— LMody r1(Fun([Y,X],[Y,X])).

The functor [Y,¢] : [Y,Z] ~ LModr([Y,X]) — [Y,X] admits a left
adjoint.

So by what we have proved so far, [Y,n]:id = [Y, T] =~ [Y,¢] o [Y,T]
exhibits [Y,T] : [Y,X] — [Y,Z] as the left adjoint of [Y,¢] : [Y,Z] —
[Y,X].

2.: By 1. the unit n:idx - T ~ ¢ o T of the monad T exhibits T as the
left adjoint of ¢ : Z — X. Thus by proposition 5.31 we have to see that the

s T BoT . .
composition T L To ¢poT 5 ¢ o T is an equivalence.

The [X, X]-linear functor T := [T,X] : [Z,X] = [X, X] yields a functor

LModr([Z,X]) = LModr([X, X]) that sends the left T-module struc-
ture ¢’ on ¢ to the left T-module T’.

So ToT~ToT*(¢p)~T*(To¢) B9, T*(¢) ~ T is the multiplication
map of the monad T as the canonical equivalence T o T*(¢) ~ T*(T o ¢)
is the associativity equivalence of C.

SofoT:TopoT~ToT - @oT ~T is the multiplication map of the
monad T.

O

Lemma 5.43. Let X — S be a functor and T € Alg(Fung(X, X)) a monad.

By remark 5.19 for every category Y over S we have a canonical equiv-
alence

0 : LMod (Funs (Y, X)) = Funs (Y, LMod/: (X))

over Fung (Y, X).

ForY = LModf(X) the identity corresponds under 0 to a left T-module
structure on the forgetful functor i) : LModeS (X) = X with respect to the
canonical Fung (X, X)-left module structure on Funs(LModZFS(X)7 X).

This left T-module structure exhibits T as the endomorphism object of 1.

Proof. Set € := Catos. Denote Ug — €°PxS the map of cartesian fibrations
over C°P classifying the identity of C.

We have a 2-functor 6 : € - Fun(€°?, Cate,) ~ Cat2fee, adjoint to the
functor [—,—] : €°? x € - Cate that sends 7 to a natural transformation
Fung(-,¢) : Funs(—,LMod/TS(X)) — Fung(—,X) of functors C°? - Cate
classified by the map

W :9) = Funle, o (U5, C°P x LMod/S (X)) — X := Funls, «(Us, €°P x X)

188



of cocartesian fibrations over C°? by theorem 5.23.
By remark 5.18 we have a LM®-monoidal category

Funls, o (U5, €% x X)®
over C°P, whose pullback along the monoidal diagonal functor
€ x Fung (X, X)® - Mapeop (Ug, € x Fung (X, X))®
o~ Funéi(:)xs(u/s, €°? x S x Funs(X,X))®
over C°" classifies a left module structure on ¥ — €°° over Funs(X, X)

that is the image of the endomorphism left module structure on X — S
over Fung(X,X) under the 2-functor 6.

By cor. 541 ¢:Y — X is an Eilenberg-Moore object of T if and only
if there is an equivalence LMod/Teop (%) ~ Q) of cocartesian fibrations over
C°P over the cocartesian fibration X — C°P.

This equivalence is the composition of canonical equivalences

LMod/S™ (%) = LMod/S™ (Fun§op s (Us, €% x X)) ~

Fun/S, o (US, LMod/®™" % (€% xX)) ~ FunlS, o (US, €°PxLMod/S (X)) = 9

over X provided by remark 5.19 1.
O

5.3.2 An existence result for 2-categories with Eilenberg-
Moore objects

Let S be a category. By example 5.36 the 2-category Cate;g admits
Eilenberg-Moore objects and coEilenberg-Moore objects.

Goal of this subsection is to show that many subcategories of Catoo /g
are closed in Cate/s under Eilenberg-Moore objects and coEilenberg-
Moore objects.

We will show that for every categorical pattern 8 on S the subcategory
Cat‘i/s c Catoo /g with objects the P-fibered objects and with morphisms
the maps of those admits Eilenberg-Moore objects and coEilenberg-Moore
objects which are preserved by the subcategory inclusion Cat?i /s € Cateo/s

(theorem 5.47).

Example 5.44. Theorem 5.47 will imply that structure on a monad is
reflected in structure on its category of algebras and dually structure on a
comonad is reflected in structure on its category of coalgebras:

Let T be a monad on a category C and denote LModr(€) — C its
category of algebras.

Let L be a comonad on € and denote coLMody,(€) = LModr (€°P)°P —
C its category of coalgebras.

1. If C carries the structure of an operad and T lifts to a map of operads
such that the unit and multiplication of T are natural transforma-
tions of operads, then the forgetful functor LModt(€C) - C and its
left adjoint lift to maps of operads.
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2. If C carries the structure of an operad and L lifts to a map of operads
such that the counit and comultiplication of L are natural transfor-
mations of operads, then the forgetful functor coLMody(€C) - € and
its right adjoint lift to maps of operads.

Let V® be a monoidal category.

3. If C carries the structure of a left module over V and T lifts to a V-
linear functor such that the unit and multiplication of T are V-linear
natural transformations, then the forgetful functor LModr(C) — €
and its left adjoint lift to V-linear functors.

4. If C carries the structure of a left module over V and L lifts to a
V-linear functor such that the counit and comultiplication of L are
V-linear natural transformations, then the forgetful functor
coLMody,(€) — € and its right adjoint lift to V-linear functors.

5. If C carries the structure of a symmetric monoidal category and T
lifts to an oplax symmetric monoidal functor such that the unit and
multiplication of T are oplax symmetric monoidal natural transfor-
mations, then the forgetful functor LModrt(€) — C lifts to a sym-
metric monoidal functor.

6. If C carries the structure of a symmetric monoidal category and L
lifts to a lax symmetric monoidal functor such that the unit and
multiplication of L are lax symmetric monoidal natural transforma-
tions, then the forgetful functor coLModr,(C) — € lifts to a symmet-
ric monoidal functor.

We start with the following observation:

Observation 5.45. Let S be a small category and & c Fun(A*,S) a full
subcategory.

1. The full subcategory of Cates spanned by the (locally) cartesian
fibrations relative to & admits Filenberg-Moore objects, which are
preserved by the full subcategory inclusion to Cateo/s.

Dually, the full subcategory of Cate s spanned by the (locally) co-
cartesian fibrations relative to € admits coFilenberg-Moore objects,
which are preserved by the full subcategory inclusion to Cato/s.

Moreover for every (locally) cartesian fibration € — S relative to €
and every monad T € Alg(Fung(C,Q)) the functor LModés(G) - C
is a map of (locally) cartesian fibrations relative to E.

Dually for every (locally) cocartesian fibration C — S relative to € and
every comonad T € coAlg(Fung (€, C)) the functor coLMod/TS(G) -3
is a map of (locally) cocartesian fibrations relative to €.

2. The subcategory of Cateos with objects the (locally) cartesian fi-
brations relative to & and with morphisms the maps of (locally)
cartesian fibrations relative to & admits Filenberg-Moore objects and
coFilenberg-Moore objects, which are preserved by the subcategory
inclusion to Cateo/g.

Dually, the subcategory of Cate s with objects the (locally) cocarte-
sian fibrations relative to €and with morphisms the maps of such ad-
mits Eilenberg-Moore objects and coFilenberg-Moore objects, which
are preserved by the subcategory inclusion to Catoo/g.

190



Proof. By the canonical equivalence (Cateos)op = Catossop of 2-categories
it is enough to show that the full subcategory of Cate/s spanned by the
(locally) cartesian fibrations relative to & and the subcategory of Cateo /g
with objects the (locally) (co)cartesian fibrations relative to & and with
morphisms the maps of such admit Eilenberg-Moore objects, which are
preserved by the subcategory inclusions to Cate/s.

By remark 5.39 2. it is enough to see the following;:

1. For every (locally) cartesian fibration € — S relative to € and every
monad T € Alg(Fung(C, €)) the functor LModf(G) — Sis a (locally)

cartesian fibration relative to € and the functor LModKFS(@) — C over
S is a map of such.

2. For every (locally) cocartesian fibration € — S relative to €& and
every monad T € Alg(Fun(C, €)), whose underlying endofunctor of
C over S is a map of (locally) cocartesian fibrations relative to £, the
functor LMoerS (€) — S is a (locally) cocartesian fibration relative
to € and the functor LMod/TS (€) — € over S preserves and reflects
(locally) cocartesian morphisms lying over morpisms of €.

1. follows from remark 5.12.

2: Denote Fung(€,€)’ c Fung(€,€) the full subcategory spanned by
the maps of (locally) cocartesian fibrations relative to €.

The restriction of the endomorphism left module structure on € over
Fung(C, €) restricts to a left module structure over Fung(C,€C)" in the
subcategory of Cat., /g of (locally) cocartesian fibrations relative to & and
maps of such.

Thus the left module structure on € — S over Fung(€, €)' is classified
by a map M® - SxLM® of cocartesian fibrations over LM® that is a map
of (locally) cocartesian fibrations relative to €.

So the functor LMod/®(€) - Alg(Funs(C, €)") x € is a map of (locally)
cocartesian fibrations relative to €.

Moreover the map LMod/TS (€) = € of (locally) cocartesian fibrations
relative to € induces on the fiber over every object s of S the conservative
forgetful functor LModr, (Cs) — Cs.

This implies 2.

O

Observation 5.46. Let S be a small category and & c Fun(A",S) a full
subcategory.
Let B c Cat‘;ff;‘fg be a 2-categorical localization.

Then B is closed in Cato, s under Eilenberg-Moore objects and coEilenberg-
Moore objects.

We remark that a full subcategory B c Catzf,’/csaf; is a 2-categorical

localization if it is a localization and for every small category K cotensoring
with K restricts to B.

Recall that a categorical pattern B3 on a category S is a triple (€, F, X)
consisting of full subcategories & c Fun(A',S), F c Fun(A?,S) and a
family of functors of the form K® — S for some category K such that &
contains all equivalences, F contains all functors that factor through A®
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and every functor K® — S that belongs to X sends morphisms of K® to &
and triangles of K to F (see [18] B.0.19.).

Given a categorical pattern P = (&,F,K) on a category S we call a
functor ¢ : ¢ - S fibered with respect to P if it satisfies the following
conditions:

1. The functor ¥ : € - S is a locally cocartesian fibration relative to €.

2. Every locally 1-cocartesian morphism lying over a morphism f of &
is cocartesian with respect to the pullback A% xg @ - A? of ¢ along
every functor A® — S that belongs to F and whose restriction to
0—-1isf

3. For every functor K* — S of X the pullback K™ xg € - K™ (that is
a cocartesian fibration by 1. and 2.) classifies a functor K* - Cate
that is a limit diagram.

4. For every functor K — S of X and every cocartesian section of the
pullback K™ xg€ — K the composition K® - K¥xg€ — € is a t-limit
diagram.

Denote Cat‘i /s © Catﬁ?‘;’?a” the full subcategory spanned by the B-
fibered objects.

The full subcategory Cat(ﬁ)/S c Catﬁ‘}‘sc");a“ is a localization that can be
modeled by a Quillen adjunction as in [18] App. B.

For every small category K cotensoring with K restricts to an endo-

functor of Catz /st

From observation 5.46 we deduce the following proposition:
Proposition 5.47. Let S be a category and P a categorical pattern on S.

The subcategory Cat?i/s c Cateoyg admits Eilenberg-Moore objects and
coFilenberg-Moore objects which are preserved by the subcategory inclusion
C:atzi/S c Catooys.

Example 5.48. Let O% be an operad.

e Let B be the categorial pattern for operads over O%.

Then Opoo/o® is closed in Cate oo under Eilenberg-Moore objects
and coFilenberg-Moore objects.

This implies 1.-4. of example 5.44.

e Denote W the full subcategory of Cates 00 spanned by the (locally)
cocartesian fibrations over O%.

Then Opw/o® N'W c Catw 0@ is the category of O0®-monoidal cate-

gories (respectively representable operads over O% ) and lax O® -monoidal
functors.

By observation 5.45W is closed in Cateo joe under coEilenberg-Moore
objects. Thus by 5.40 the 2-category Opw/o® NW is closed in Cate j0e
under coFilenberg-Moore objects.

This together with observation 5.45 1. implies 6. of example 5.44.

5. of of example 5.44 follows in the following way:
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e Let C® - O%® be a O®-monoidal category classifying a O®-monoid ¢
of Cateo.
Denote (C®)®V — 0% the fiberwise dual relative to O® of the co-
cartesian fibration C® — 0% and (C®)Y = ((C®)™¥)°P — (O®)°P the
cartesian fibration classifying ¢.

Let T € Coalg(Fun oPlax (@ ©)°P) be a comonad in OPes joe NW on
(€®)® - 0%, d.e. an oplax O®-monoidal monad on C.

So the coFilenberg-Moore object
coLMod/®® ((€®)™) = LMod/®™)" (((€®)*V)*P)°P - 0@

of T in Cateojoe 15 @ 0%-monoidal category and the forgetful functor

' coLMod/To®(((3®)rev) - (C®)™ is a O®-monoidal functor.
Thus

LMOd/’_[EO‘@)OP ((e®)v)v ~ COLMOd/’T‘O‘X’((e@)reV)rev N O@

is a O®-monoidal category and the forgetful functor
vrev :Ll\/[od/T(o® ((C®)Y)Y - €® is a O®-monoidal functor.

)P

5.3.3 Kan-extensions in Eilenberg-Moore objects

Let T be a monad on some symmetric monoidal category C such that T
lifts to an oplax symmetric monoidal functor and the unit and multipli-
cation of T are oplax symmetric monoidal natural transformations.

Then by prop. 5.47 the forgetful functor LMody(C) — € lifts to a
symmetric monoidal functor.

In this section we will construct another symmetric monoidal structure
on LMod(€) with the property that not the forgetful functor LMod(€) —
€ but the free functor € - LMod(€) lifts to a symmetric monoidal func-
tor (prop. 5.55):

Let T be a monad on some symmetric monoidal category € such that T
lifts to a lax symmetric monoidal functor and the unit and multiplication
of T are symmetric monoidal natural transformations.

Assume that € admits geometric realizations that are preserved by T
and the tensorproduct of € in each component.

Then the free functor € — LModr(€) lifts to a symmetric monoidal
functor and the tensorproduct of LModr(C) preserves geometric realiza-
tions in each component.

Moreover if the tensorproduct of € preserves small colimits in each
component, the tensorproduct of LModr(C) preserves small colimits in
each component, too.

We obtain the following examples:

Example 5.49.

1. Let C be a presentably symmetric monoidal category and T a monad
on C such that T lifts to a lax symmetric monoidal functor and the
unit and multiplication of T are symmetric monoidal natural trans-
formations.
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Assume that T is an accessible functor and preserves geometric re-
alizations.

Then LModr (@) is a presentably symmetric monoidal category and
the free functor C — LModr(C) lifts to a symmetric monoidal func-
tor.

2. Let C be a presentably monoidal category and M a presentably left
module over C.

Let T be a monad on M such that T lifts to a lax C-linear functor and
the unit and multiplication of T are C-linear natural transformations.
Assume that T is an accessible functor and preserves geometric re-
alizations.

Then LModr (M) is a presentably left module over C and the free
functor M - LModr(M) is C-linear.

3. Let C be a monoidal category compatible with geometric realizations
and D a left module over C compatible with geometric realizations.

Let ¢ : A — B be a map of associative algebras in C.

Denote T the image of ¢ under the functor Fun(A', Alg(C)) —
Fun(A', Alg(Fun(D, D))) ~ Alg(Funa: (D x A, D x A')).

The functor LModfFAl (D x A'Y - A is a cocartesian fibration clas-
sifying the free functor B®a (=) : LModa (D) - LModg (D).

This follows from prop. 5.47 and the following prop. 5.55:

Let € - S be a cocartesian fibration that is compatible with geometric
realizations and T € Alg(Fung(C, C)) a monad such that for every object s
of S the induced functor Ts : Cs — Cs on the fiber over s preserves geometric
realizations.

Then LModéS (€) = S is a cocartesian fibration compatible with geo-

metric realizations and the free functor € — LMod/TS(G) over S is a map
of cocartesian fibrations over S.

Moreover if € — S is compatible with small colimits, then LMod/TS (©)—
S is compatible with small colimits.

Moreover we can derive the following example:

Example 5.50.

Let X® — E® be an associative monoid in the category of Ex-operads
for some natural k and A an Ey1-algebra of X.

Then by prop. 5.47 the category LModa (X) carries the structure of an
Ex-operad and the forgetful functor LModa (X) — X and its left adjoint
are maps of Ex-operads.

If X® » E® is additionally a Ex-monoidal category that admits geo-
metric realizations that are preserved by the tensor product of X® — Ef
and the functor A®@—: X - X induced by the associative monoid structure
on X® — EP, then by proposition 5.55 the category LModa (X) is a Ex-
monoidal category and the free functor X - LModa (X) is a Ex-monoidal
functor.

Moreover if X admits small colimits that are preserved by the tensor
product of X® - E2, then the same holds for LModa (X).
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We deduce prop. 5.55 via cor. 5.59 from the fact that for every monad
T on a category C the category LModr(C) is generated under geometric
realizations by the free T-algebras and from cor. 5.54:

Given a 2-category C the subcategory of € with objects those that are
compatible with geometric realizations and with morphisms those that
are compatible with geometric realizations is closed in € under Eilenberg-
Moore objects.

We start with the following definitions:

Let C be a 2-category, X an object of C and ¢ : A - B a morphism of
C.Let H: A - X and H' : B - X be morphisms of Cand a: H— H' o a
2-morphism of C.

e We say that « exhibits H' as the left kan-extension of H along ¢ and
write lan,, (H) for H' if the canonical map [B, X](H',G) — [A,X](H'o
»,Gop) = [A,X](H,G o) is an equivalence.

e We say that X admits left kan-extensions along ¢ if every morphisms
H: A - X admits a left kan-extension B — X along (.

So X admits left kan-extensions along ¢ if and only if the functor
[p,X]:[B,X] - [A, X] admits a left adjoint lan, : [A,X] - [B,X].

Let ¢ : X - Y be a morphism of C. Let H: A - X and H : B » X be
morphisms of € and a : H—» H' o » a 2-morphism of € that exhibits H' as
the left kan-extension of H along ¢.

e We say that ¢: X - Y preserves the left kan-extension of H along ¢
if poa: poH — ¢poH 0 exhibits po H' as the left kan-extension of
¢ o H along ¢.

e We say that ¢ : X — Y preserves left kan-extensions along ¢ if ¢ :
X — Y preserves the left kan-extension of every morphism H: A - X
of C along ¢.

Let ¢’ : Y — Z a morphism of C. If ¢ : X - Y preserves the left kan-
extension of H along ¢ and ¢’ : Y — Z preserves the left kan-extension of
¢oH along ¢, then ¢'o¢ : X — Z preserves the left kan-extension of H along
. So with ¢ : X = Y and ¢’ : Y — Z also the composition ¢' o ¢ : X — Z
preserves left kan-extensions along .

Let € be a 2-category, X an object of € and ¢ : A - B a morphism of
C.Let H: A - X and H' : B - X be morphisms of C and a: H o - H a
2-morphism of C.

We say that o exhibits H' as the right kan-extension of H along ¢ and
write ran, (H) for H' if o exhibits H' as the left kan-extension of H along
@ in Cop.

Proposition 5.51. Let C be a 2-category and v : Y — X an Eilenberg-
Moore object for some monad T on some object X of C.
Let ¢ : A - B be a morphism of C.
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1. If X admits left kan-extensions along ¢ and T : X — X preserves left
kan-extensions along p, then Y admits left kan-extensions along ¢
that are preserved and reflected by ¢ :Y — X.

2. If X admits right kan-extensions along o, then Y admits right kan-
extensions along ¢ that are preserved and reflected by ¥ : Y — X.

The subcategory of C with objects those that admit left (right) kan-
extensions along ¢ and with morphisms those that preserve left (right)
kan-extensions along ¢ is closed in C under FEilenberg-Moore objects and
coEilenberg-Moore objects.

The full subcategory of C spanned by the objects of C that admit left
(right) kan-extensions along ¢ is closed in € under coEilenberg-Moore
objects (Eilenberg-Moore objects).

Proof. 1.: Denote [X, X]" the full subcategory of [X,X] spanned by those
morphisms X — X that preserve left kan-extensions along ¢ : A - B.

As [X,X] is closed under composition in [X, X], the monoidal struc-
ture on [X, X] restricts to a monoidal structure on [X,X]".

The functor [p,X] : [B,X] = [A,X] is [X,X]-linear and thus also
[X,X]"-linear after pulling back along the monoidal full subcategory in-
clusion [X, X]' ¢ [X,X].

If X admits left kan-extensions along ¢, the functor [p,X]: [B,X] —
[A,X] admits a left adjoint lan, : [A,X] — [B,X]. Denote 1 the unit of
this adjunction and let ¢ : X - X a morphism of C that preserves left
kan-extensions along ¢.

Then for every morphisms H: A — X of € the morphism lan,(¢oH) —
¢olan,(H) in [B, X] adjoint to the morphism ¢on: goH — ¢olan,(H) oy
in [A, X] is an equivalence.

Hence we obtain a [X,X]'-linear adjunction lan, : [A,X] =2 [B,X] :
[, X].

So given a monad T on X that preserves left kan-extensions along ¢, i.e.
an associative algebra of [X, X]’ we obtain an adjunction LModr([A,X]) 2
LModr([B,X]) and a map of adjunctions from the adjunction

LModr([A,X]) 2 LModr([B,X]) to the adjunction lan, : [A,X] 2
[B,X]: [, X].

Let ¥ : Y — X be an Eilenberg-Moore object for T.

Then by corollary 5.41 the induced functor [B,Y] — [A,Y] is equiv-
alent to the functor LModr([B,X]) — LModr([A,X]) over the functor
[B,X] - [A,X].

So the morphism Y — X yields a map of adjunctions from the adjunc-
tion [A,Y] =2 [B,Y] to the adjunction [A,X] 2 [B,X].

As the forgetful functors LModr([B, X]) — [B,X] and LModr([A,X]) —
[A,X] are conservative, wee see that Y admits left kan-extensions along
© that are preserved and reflected by ¥ : Y — X.

2.: The proof of 2. is similar but easier than 1.

If X admits right kan-extensions along ¢, the functor [, X]: [B,X] —»
[A,X] admits a right adjoint ran, : [A, X] - [B, X].

Hence we obtain a [X,X]-linear adjunction [¢,X]: [B,X] 2 [A,X]:
rang.

So given a monad T on X we obtain an adjunction LModr([B,X]) 2
LModr([A,X]) and a map of adjunctions from the adjunction

LModr([B,X]) 2 LModr([A,X]) to the adjunction [¢,X]: [B,X] 2
[A,X]:ran,.

196



Let v : Y — X be an Eilenberg-Moore object for T.

Then by corollary 5.41 the induced functor [B,Y] — [A,Y] is equiv-
alent to the functor LModr([B,X]) — LModr([A,X]) over the functor
[B,X] - [A,X].

So the morphism Y — X yields a map of adjunctions from the adjunc-
tion [B,Y] 2 [A,Y] to the adjunction [B,X] 2 [A,X].

As the forgetful functors LModr([B, X]) — [B,X] and LModr([A,X]) —
[A,X] are conservative, wee see that Y admits right kan-extensions along
o that are preserved and reflected by ¢: Y — X.

O

For € = Cate proposition 5.51 says the following:

Let T be a monad on a category X and ¢ : A — B a functor.

If X admits left kan-extensions along ¢ that are preserved by T, then
LModr(X) admits left kan-extensions along ¢ that are preserved and
reflected by the forgetful functor LModr(X) — X.

If X admits right kan-extensions along ¢, then LMod(X) admits right
kan-extensions along ¢ that are preserved and reflected by the forgetful
functor LModr(X) — X.

In the following we will study some consequences of proposition 5.51.
We begin by giving some further notions:

Let € be a 2-category, X an object of € and ¢ : A — B a functor.

e We say that X is compatible with left (right) kan-extensions along
o if for every object Y of € the category [Y,X] admits left (right)
kan-extensions along ¢ and for every morphism 5 :7Z — Y of C the
functor [B3,X]: [Y,X] — [Z,X] preserves left (right) kan-extensions
along ¢.

e If ¢ is the full subcategory inclusion K ¢ K* for some category K,
we say that X is compatible with colimits indexed by K instead of
saying that X is compatible with left kan-extensions along ¢.

e Dually if ¢ is the full subcategory inclusion K ¢ K* for some category
K, we say that X is compatible with limits indexed by K for saying
that X is compatible with right kan-extensions along .

Let X, X" be objects of € that are compatible with left kan-extensions
along ¢ : A - B.

e We say that a morphism 0 : X - X' of € is compatible with left
(right) kan-extensions along ¢ if for every object Y of € the functor
[Y,0]: [Y,X] - [Y,X'] preserves left (right) kan-extensions along
®.

Observation 5.52. Let C be a cotensored left module over Catoo.

Then X is compatible with left (right) kan-extensions along ¢ if and
only if the morphism X¥ : XB » XA of C admits a left (right) adjoint.

If X, X' are objects of € that are both compatible with left (right) kan-
extensions along ¢ : A — B, then a morphism 0 : X — X' of € is compatible
with left (right) kan-extensions along ¢ if and only if 0 induces a map of
adjunctions from the adjunction X* 2 X® to the adjunction X'* 2 X'B.
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Proof. By proposition 6.78 the morphism X? : X® » X* of € admits a
left adjoint if and only if for every object Y of € the induced functor
Fun(y, [Y,X]) : Fun(B,[Y,X]) ~ [Y,X"] - [Y,X*] ~ Fun(A,[Y,X])
admits a left adjoint laan’X and for every morphism 5 :7Z — Y of € the
natural transformation

lanl”* o Fun(A, [8,X]) — Fun(B, [, X]) o lan}"*!

adjoint to Fun(A,[3,X]) - Fun(A, [B,X]) o Fun(p,[Y,X]) o lanE,Y’X] ~
Fun(yp, [Z,X]) o Fun(B, [3,X]) o lanEQY’X] is an equivalence.

Example 5.53. Let C = Catif,’fgrt for some small category S.
Let ¢ : A - B be a functor and X — S a cocartesian fibration.

X — S is compatible with left (right) kan-extensions along ¢ if and only
if for every s € S the fiber Xs admits left (right) kan-extensions along ¢ and
for every morphism f :s > t of S the induced functor Xs - Xt preserves
left (right) kan-extensions along ¢.

Let X - S, X’ — S be cocartesian fibrations that are compatible with left
(right) kan-extensions along p. A map 0: X - X' of cocartesian fibrations
over S is compatible with left (right) kan-extensions along ¢ if and only if
for every s € S the induced functor Xs — X. on the fiber over s preserves
left (right) kan-extensions along .

Proof. The map X? : X® - X* of cocartesian fibrations over S admits a
left adjoint in CatS(3*", i.e. a left adjoint relative to S, if and only if for
every s € S the induced functor Fun(p,Xs) : Fun(B, Xs) — Fun(A, X;) on
the fiber over s admits a left adjoint lanf,fs and for every morphism f:s —t

of S the natural transformation
lanf,ft oFun(A,f.) - Fun(B,f.) o lanf,fs

adjoint to Fun(A,f.) — Fun(A,f.) o Fun(yp,Xs) o lang® ~ Fun(p,X;) o
Fun(B, f.) olan}* is an equivalence.

Similarly the map X? : X® — X* of cocartesian fibrations over S
admits a right adjoint in Catiﬁ,’/csm, i.e. a right adjoint relative to S that
is a map of cocartesian fibrations over S, if and only if for every s € S the
induced functor Fun(y,Xs) : Fun(B,Xs) — Fun(A,Xs) on the fiber over
s admits a right adjoint ranf,fs and for every morphism f : s - t of S the
natural transformation

Fun(B,f.) o ranfzs - 1ranf§t o Fun(A,f.)

adjoint to Fun(p, X¢)oFun(B, f.)oran}* ~ Fun(A, f.)oFun(y, Xs)orany:® -
Fun(A,f.) is an equivalence.

By remark 5.52 6 : X — X' is compatible with left kan-extensions along

¢ if and only if 0 induces a map of adjunctions from the adjunction X* 2

XB to the adjunction X" 2 X'®, which is equivalent to the condition that

for every s € S the induced functor Xs — X. on the fiber over s induces a

map of adjunctions from the adjunction Fun(A,Xs) 2 Fun(B,X;) to the
adjunction Fun(A, X{) 2 Fun(B, X{).

O
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Corollary 5.54. Let C be a 2-category and ¥ : Y — X an Filenberg-
Moore object for some monad T on some object X of C. Let p: A - B be
a functor.

1. If X is compatible with left kan-extensions along ¢ and T : X - X
is compatible with left kan-extensions along p, then Y is compatible
with left kan-extensions along ¢ and ¢ : Y — X is compatible with
left kan-extensions along .

2. If X is compatible with right kan-extensions along ¢, then Y is com-
patible with right kan-extensions along ¢ and ¢ : Y — X is compatible
with right kan-extensions along .

Thus the subcategory of C with objects the objects of C that are com-
patible with left (right) kan-extensions along ¢ and with morphisms the
morphisms of C that are compatible with left (right) kan-extensions along
w is closed in C under Eilenberg-Moore objects and coFEilenberg-Moore ob-
jects.

The full subcategory of C spanned by the objects of C that are compatible
with left (right) kan-extensions along ¢ is closed in C under coEilenberg-
Moore objects (Eilenberg-Moore objects).

Proposition 5.55. Let © — S be a cocartesian fibration that is compatible
with geometric realizations and let T € Alg(Fung(C,€)) be a monad such
that for every object s of S the induced functor Cs — Cs on the fiber over s
preserves geometric realizations.

Then LMOdé?’(G) — S is a cocartesian fibration compatible with geo-

metric realizations and the free functor € — LModés(G) over S is a map
of cocartesian fibrations over S.

Moreover if C — S is compatible with small colimits, then LModf(G) -
S is compatible with small colimits.

Proof. By corollary 5.54 LMod/TS (€) - S is compatible with geometric
realizations.

So by remark 5.52 the functor LMOd{FS(C)(AOp)l> - LMOdé?(C)AOp over
S admits a left adjoint relative to S.

Being a relative left adjoint the free functor € — LModéS (€) over S
preserves cocartesian morphisms.

For every object s of S the fiber Cs is the only full subcategory of
LModé?((‘f)s = LMod[rSs((‘fs) that contains the free Ts-algebras and is closed

in LMod{FS (€)s under geometric realizations.
Hence by remark 5.59 LModZFS(G) — S is a cocartesian fibration and

the free functor € — LMons (@) over S is a map of cocartesian fibrations
over S.
By lemma 5.56 LModéS(C) — S is compatible with coproducts and is
thus compatible with small colimits.
O

Lemma 5.56. Let C be a category, T a monad on € and 1 a set.
Assume that LModr(C) admits geometric realizations.

1. With € also LModt(C) admits coproducts indexed by 1.
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2. Let H: LModt(C) — D be a functor that preserves geometric real-
izations.
If LModr (@) admits coproducts indexed by 1 and the composition
HoT:C - LModr(€C) — D preserves coproducts indexed by 1, then
H preserves coproducts indexed by 1.

Proof. 1:

Denote v : € - Fun(I, €) and § : LModr(€) - Fun(I, LModr(€)) the
diagonal functors.

Denote W c Fun(I,LModr(C)) the full subcategory spanned by the
families A = (Aj)ier in LModr(€) that admit a coproduct indexed by
I, i.e. that the functor Fun(I,LModr(C))(A,-) o4 : LModr(C) — 8 is
corepresentable.

W is closed under geometric realizations as LModr(€) admits geomet-
ric realizations.

By [18] prop. 4.7.4.14. every object of LModr(€) is the geometric
realization of a simplicial object of LMod1(C) that takes values in the full
subcategory of LModr(€) spanned by the free T-algebras of C.

Hence it is enough to see that for every family B = (Bi)ic in € the
family A := (T(Bi))ier in LModr(€) belongs to W.

The functor Fun(I, LModr(€C))(A,-)od : LModr(C) — 8 factors as the
forgetful functor LModr(€) — € followed by the functor Fun(I, €)(B,-)o
v:C— 8.

As € admits coproducts indexed by I, the functor Fun(I,C)(B,-) o~ :
C — § is corepresentable and thus also its composition with the right
adjoint forgetful functor LModr(€) — € is corepresentable.

2:
Replacing H : LModr(€) - D by the functor LModr(C) L=
Fun(D, 8)°" we can assume that D admits coproducts indexed by I.

As LModr(€) and D admit coproducts indexed by I, the diagonal
functors § : LModr(€) - Fun(I,LModr(€)) and ¢’ : D — Fun(I, D) admit
left adjoints [] respectively II". Denote

a:[[eFun(I,H) > Ho ]

the natural transformation of functors Fun(I, LModr(€)) — D adjoint to
the natural transformation Fun(I,H) - Fun(I,H) oo ] ~ §" o Ho ] of
functors Fun(I,LModr(€)) - Fun(I, D).

As LModr(€) admits geometric realizations, with H : LModr(€)) - D
also Fun(I, H) : Fun(I,LModr(€)) — Fun(l, D) preserves geometric real-
izations so that source and target of o are geometric realizations preserv-
ing functors.

Thus the full subcategory Q c Fun(I,LModr(C)) spanned by the ob-
jects X such that a(X) is an equivalence is closed under geometric real-
izations.

Consequently it is enough to see that for every family B = (Bj)ier in €
the morphism a(T(B1),...,T(By)) : [I, H(T(B;)) - H'(LIL, T(B))) is
an equivalence.

But the composition [[}L; H (T(B;)) — H'(1IiL; T(B;)) ~ H'(T(1I%; Bi))
is the canonical morphism and thus an equivalence as Ho T preserves co-
products indexed by I.

O

200



Let ¢ : X - S be a functor and € c S a subcategory.

Denote X c X the full subcategory spanned by the objects A lying over
some object s of S such that for every morphism f :s — t of € there exists
a ¢-cocartesian lift A — B of f.

Denote ¢ : X ¢ X %, S the restriction.

Observation 5.57. For every morphism of & the pullback A* xg X > Al
is a cocartesian fibration, whose cocartesian morphisms are ¢’-cocartesian
and the full subcategory inclusion X c X sends ¢'-cocartesian morphisms
to ¢-cocartesian morphisms.

Proof. Let f :s > t be a morphism of & and A € X;. Then there is a
¢-cocartesian lift A — f,(A) of f. We will show that f,(A) belongs to X.

Let g : t - r be a morphism of & As A belongs to Xs, there is a
¢-cocartesian lift A > (gof)«(A) of gof:s—>t—r.

Using that the morphism A — f.(A) is ¢-cocartesian, the morphism
A - (gof).(A) factors as the morphism A — f,(A) followed by a lift
f«(A) > (gof)«(A) of g:t —>r.

As the morphisms A — f.(A) and A — (gof).(A) are ¢-cocartesian,
the morphism f.(A) - (gof)«(A) is ¢-cocartesian, too. Thus f.(A)
belongs to X.

O

Lemma 5.58. Let ¢ : X = S be a functor, K a category and € c S a
subcategory.

If the diagonal functor X — XX over S admits a left adjoint relative to
S, then for every object s of S the fiber Xs is closed in Xs under colimits
indexed by K.

Proof. Let K® —» X be a colimit diagram, whose restriction H: K ¢ K* —
X, factors through 5(5. We want to see that colim(H) belongs to }N(s.

Let f:s — t be a morphism of £&. We have to find a ¢-cocartesian lift
colim(H) — Z of f.

Denote ¢’ : X c X 2, S the restriction and ) : XK ~ 8 XFun(K,S)
Fun(K,X) - S the cotensor.

For every morphism A' — & the pullback A' xg X is a cocartesian
fibration, whose cocartesian morphisms are ¢'-cocartesian.

Thus for every morphism A - & the pullback Al xg X¥ is a cocarte-
sian fibration, whose cocartesian morphisms are -cocartesian, i.e. are
levelwise ¢’-cocartesian.

So we get a 1-cocartesian morphism « : H — . (H) lying over f.

By assumption the diagonal functor X — X¥ over S admits a left
adjoint x : X¥ - X relative to S.

X sends « to a morphism 3 : colim(H) — colim(f.(H)) of X lying over
f.

The morphism [ is ¢-cocartesian as the composition XK e x¥ X x
sends t-cocartesian morphisms to ¢-cocartesian morphisms:

Being a relative left adjoint the functor x : X¥ — X over S sends
morphisms that are cocartesian with respect to the functor XX — S to
¢-cocartesian morphisms.

The full subcategory inclusion X ¢ X sends ¢'-cocartesian morphisms
to ¢-cocartesian morphisms so that the full subcategory inclusion XK ¢
XX sends 1-cocartesian morphisms to levelwise ¢-cocartesian morphisms,
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which are especially cocartesian with respect to the functor X¥ — S ac-
cording to lemma 5.60.
O

Corollary 5.59. Let ¢: X - S,p:Y — S be functors, £: Y — X a functor
over S and K a category and € c S a subcategory.

Assume that o : Y — S is a cocartesian fibration relative to € and &
sends @-cocartesian morphisms lying over morphisms of € to ¢-cocartesian
morphisms. (This implies that for every object s of S the fiber X, contains
the essential image of & :Ys > Xs.)

Assume that for every object s of S the fiber X is the only full subcat-
egory of Xs that contains the essential image of & :Ys = Xs and is closed
in Xs under colimits indexed by K.

If the diagonal functor X — XX over S admits a left adjoint relative to
S, then ¢ : X - S is a cocartesian fibration relative to E.

Proof. If the diagonal functor X — X* over S admits a left adjoint relative
to S, by lemma 5.58 5(5 is closed in X under colimits indexed by K.

So by assumption we have Xs = X, and so X =X.

Thus by observation 5.57 for every morphism of & the pullback A' xg
X - A' is a cocartesian fibration, whose cocartesian morphisms are ¢-
cocartesian.

O

Lemma 5.60. Let ¢: X — S be a functor and K a category.
¢ induces a functor Fun(K, ¢) : Fun(K, X) - Fun(K, S).

A morphism T of Fun(K, X) is Fun(XK, ¢)-cocartesian if it is levelwise
¢-cocartesian, i.e. for every k € K the component 7(k) is ¢-cocartesian.

Especially we have the following:

Denote ¢ : XX ~ § Xpun(k,s) Fun(K, X) the cotensor of the category K
with the category X over S.

Every levelwise ¢-cocartesian morphism of XX is Fun(K, ¢)-cocartesian
and thus especially 1 -cocartesian.

Proof. Denote W c Cats the full subcategory spanned by those cate-
gories K such that every levelwise ¢-cocartesian morphisms of Fun(K, X)
is Fun(K, ¢)-cocartesian. We want to see that W = Cate..

As Cate is the only full subcategory of Cato, that contains the con-
tractible category and A' and is closed in Cate, under small colimits, it
is enough to check that W contains the contractible category and A' and
is closed in Cate under small colimits.

Tautologically the contractible category belongs to W.
To verify that W is closed in Cate under small colimits, it is enough to
check that W is closed in Cate under arbitrary coproducts and pushouts.

As the functor Fun(—, X) : Catef — Cate sends small colimits to limits,
the case of coproducts follows from the fact that given a family of functors
(0; : Yj = Z;)jeg a morphism in the product [Tjc; Yj is ITje 0j-cocartesian
if for every j € J its image in Yj is €j-cocartesian and the case of pushouts
follows from the fact that given functors a: A - X,6: B> Y,y: C —>
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Z and morphisms a — 7,8 — v in Fun(A',Cate) a morphism in the
pullback A xc¢ B is a x, f-cocartesian if its images in A,B,C are «,f
respectively ~-cocartesian.

So it remains to show that A' belongs to W.
We want to see that every levelwise ¢-cocartesian morphism of Fun(A*, X)
corresponding to a commutative square

A——B
]
C——D

in X, whose horizontal morphisms are ¢-cocartesian, is Fun(A', ¢)-cocartesian.
Given a morphism k: E - F of X the commutative square

Fun(A',X)(h, k) ——— Fun(A', X)(g, k)

| |

Fun(A*,S)(4(h), ¢(k)) —— Fun(A',S)(4(g), 6 (k))

is equivalent to the commutative square

X(D,F) xx(B,r) X(B,E) X(C,F) xx(a,r) X(AE)

S(#(D), d(F)) xs(s(B),0@) S(¢(B), ¢(E)) —— S(#(C), d(F)) xs(s(a),6(m)) S(A(A), S(E))

and is thus a pullback square as the morphisms A - B and C - D of X
are ¢-cocartesian and taking pullback preserves pullbacks being a right
adjoint.

O
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5.4 A localization between monads and right ad-
joint morphisms

Let S be a category, €® — S x LM® a cocartesian S-family of 2-categories
and X a cocartesian section of € — S.

Denote (Gfi)mon c (eg)rep c (e?i)R c G%S( the full subcategories
spanned by the morphisms Y — X(s) in € for some s € S that are monadic
respectively whose associated monad on X(s) is representable, i.e. admits
an Eilenberg-Moore object, respectively admit a left adjoint.

We construct a map End : (G;i)R - Alg/S([X,X]/5)™" of cocartesian
fibrations over S that sends a morphism g:Y — X(s) for some s € S with

left adjoint f: X(s) > Y to its associated monad gof on X(s).

We show that the restriction End : (G;;)rep - (Alg([X, X]/S)repyrev
admits a fully faithful right adjoint Alg relative to S with essential image
(Gfi)"“m (theorem 5.62).

Thus the functor End restricts to an equivalence

(€)™ ~ (Alg([X,X]%)™n)™

inverse to the functor Alg and the full subcategory (Gﬁ)s()mon c (@f)s( P g
a localization relative to S.

If C is a subcategory of Cate/g for some small category S and X ¢ C,
we give a more explicite description of the adjunction End : (€/x)™"
(Alg([X, X])™)°.

We show in theorem 5.68 that Alg is the restriction of the functor

—

Alg(Funs (X, X)) - ((Cateoss)/x)" € Cateox

classified by the map LMod/®(X) — X x Alg(Funs(X,X)) of cartesian
fibrations over Alg(Fung(X,X)).

Having this description we are able to give a more coherent version
of the adjunction of theorem 5.62 for the case that € is a subcategory of
Catoo/s :

We define a category Alg([X,X]/®™ )P over €°P, whose fiber over an
object X of € is the category Alg([X,X])"™P of monads on X that admit an
Eilenberg-Moore object in € that is preserved by the subcategory inclusion
G/X c (Catoo/s)/x.

Denote Fun(A',@)™P c Fun(A', Q) the full subcategory spanned by
the morphisms Y — X, whose associated monad on X admits an Eilenberg-
Moore object in € that is preserved by the subcategory inclusion €/x c
(Catm/s)/x.

We construct a localization

End : Fun(A', €)™ 2 (Alg([X,X]/¢)™P)°P : Alg

relative to C that induces on the fiber over an object X of € the localization
End : (€/x)"P = (Alg([X,X])"P)°P : Alg (theorem 5.69), where we use
the explicite description of the functor Alg given by theorem 5.68.

So the functor End restricts to an equivalence

Fun(A', €)™ — (Alg([X,X]/")rer)or

204



relative to C and the full subcategory Fun(A', €)™ c Fun(A',€)™P is a
localization relative to C.

From this we deduce the statement that for every 2-category € the full
subcategory Fun(A',@)™°" c Fun(A', €)™P is a localization relative to @
(theorem 5.73). Moreover we show that this localization can be enhanced
to a localization of 2-categories if € is cotensored over Cateo.

So if € is a 2-category that admits Eilenberg-Moore objects, we obtain
alocalization Fun(A', €)™" c Fun(A', €)® from monadic morphisms into
right adjoint morphisms.

Construction 5.61.

Let S be a category and C® — S x LM® a cocartesian S-family of 2-
categories.
By proposition 6.55 we have a map

0:C® - Mapg (€™, S x Cate)®

of S-families of operads over LM®, whose pullback to Ass® is the diagonal
map
S x Cats, - Mapg (€™, S x Cate,)®

of S-families of operads over Ass®.
0 induces a Funs(S,S x Catee)* = Fun(S, Cateo )™ ~ (Catifg™)*-linear
map

x : Funs (S, €)® — Funs (S, Mapg (€™, Sx Cates ))® = Funs (€™, Sx Cateo )

~ Fun (€™, Catoo)* =~ (Catijerer )

of operads over LM®.
The composition

el Mapg (€™, S x Cateo) ® S xcat., Cocart - S xcar., £
of functors over S is equivalent to the Yoneda-embedding
C~S xcate, U €S Xcate, RS xcat,, £

over S.
Hence the composition Funs(S,C) > Catlfeiew — Lerev is equivalent
to the Yoneda-embedding

Fung (S, €) ~ Funcat., (S,U) c Funca., (S, R) ~ Funcat., (S, £) ~ Lerev.

Let X be a cocartesian section of € — S and p: X — C™V the cocartesian
fibration that classifies the functor CV — Cate adjoint to the functor
0oX:C"™ - S x Cate overS.

So we have a canonical equivalence (Gji)rev ~ X% of left fibrations over
C™V, where X~ c X denotes the subcategory with the same objects and with
morphisms the p-cocartesian morphisms.

We have a canonical endomorphism left module structure on X over the
cocartesian fibration [X, X]/S — S with respect to the LM®-operad structure
on Fung(S,C) over Fung(S,S x Cate) ~ Fun(S, Cateo) = Catig/cgrt, which
is sent by x to a left module structure on p: X — C™V over the pullback
eV xs [X, X]/® - €.

205



Denote XY ¢ X~ ~ (Cﬁ()rev the full subcategory spanned by the mor-
phisms g : Y — X(s) in Cs for some s € S that admit an endomorphism
object with respect to the canonical [X(s),X(s)]-left module structure on
[Y,X(s)] that is sent by any morphism ¢ :s —t of S to an endomorphism
object of ¢+(g) : ¢« (Y) = ¢.(Xs) ~ X(t) with respect to the canonical
[X(t), X(t)]-left module structure on [¢+(Y),X(t)].

By proposition 5.31 we have an embedding ((C;i)R)rev c Xgnd -
So by 5.2.8 we have a map

((CJR)™)™ > Alg/* ([X,X]®)

of cocartesian fibrations over S that is the endomorphism object of the
inclusion ((G%S()R)rev c X with respect to the left module structure on

Funerev (((e;)S()R)rev7 x) over Funerev (((eji)l’{)rev’ @Y xg [X, X]/S)
~ Funs (((€/3)™)™", [X, X]7®).
Passing to fiberwise duals over S we get a map

End : (€/3)" — Alg/® ([X,X]/®)™

of cocartesian fibrations over S that sends a morphism g :Y — X(s) for
some s € S with left adjoint f: X(s) > Y to its endomorphism object with
respect to the canonical [X(s),X(s)]-left module structure on [Y,X(s)],
which is given by gof according to proposition 5.51.

This functor End restricts to a functor
B (€f3)" — (Alg/S ([X,X])")"™
over S.

Now we are ready to state the main theorem:

Theorem 5.62. LetS be a category, C® — SxLM® a cocartesian S-family
of 2-categories and X a cocartesian section of € — S.

We have a localization End : (G;i)mp - (Alg/5([X,X]/5)™P)™v : Alg
relative to S.

For every object s € S the local objects of ((Cs)/x(s))" " are the monadic
morphisms over X(s) so that the restriction

mon rep End rep\rev
(€)™ € (€)™ = (Alg/*([X, X]%)"")

S )mon

is an equivalence and (G;X

c ((ig’()rep is a localization relative to S.

Let S be contractible and let g: Y — X, h: Z — X be morphisms in C
that admit left adjoints f: X =Y respectively k: X - Z.

A morphism ¢:Y — Z in (C/x)™" is a local equivalence if and only if
the morphism

hok—-hokogof~hokohogpof shogpof~gof

in [X,X] is an equivalence.
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Especially a morphism ¢:Y — 7 in (C/x)"" with Z a local object is a
local equivalence if and only if the morphism k — kogof ~kohogof — ¢of
in [X,Z] is an equivalence.

Let g: Y — X be a right adjoint morphism in C with associated monad
T that admits an Eilenberg-Moore object ¥ : Z — X in C.

We have a canonical equivalence [Y,Z] ~ LModr([Y,X]) over [Y,X]
under which the endomorphism left module structure on g:Y — X over T
corresponds to a lift g’ 1Y - Z of g: Y - X.

The morphism g’ : Y — Z is a local equivalence in (Cx)™P with target
a local object.

Proof. Being a map of cocartesian fibrations over S the functor End :
(eji)mp - (Alg/S([X,X])/%)™P)™ over S admits a fully faithful right
adjoint relative to S if and only if for every s € S the induced functor
Ends : ((€s)/x(s))™" = (Alg([X(s),X(s)])"®)°" on the fiber over s admits
a fully faithful right adjoint.

So we can reduce to the case that S is contractible.

Let ¢ : Z - X be a monadic morphism of € and T ~ End(Z) its
endomorphism object with respect to the canonical [X,X]-left module
structure on [Y, X].

It is enough to find an equivalence

a:Cpx(-,Z) ~ Alg([X,X])°"(End(-), End(Z))
of functors ((€/x)"")°” — 8 such that under the induced equivalence
€/x(Z,Z) ~ Alg([X,X])°*(End(Z),End(Z))
of spaces the identity of Z corresponds to an autoequivalence of End(Z).

The morphism ¢ : Z — X induces a natural transformation [—,¢] :
[-,Z] = [-,X] of functors C°? — Cate classified by a map 3 — X of
cocartesian fibrations over C°P. By 5.41 there is a canonical equivalence
3- LMoereop(I{) over X.

By remark 5.30 2. we have a canonical equivalence

(Alg([X,X]) x ((€x)™)) * (atg(x.x7)xx) LMod’®™ (%) =

o 1
(Alg([X,XT) % ((€/%)™)™) % (ara(x xpy O xats(rx x) 3y Al([X, XD
over Alg([X,X]) x ((€/x)™)°P that gives rise to an equivalence
((€7x)™)™ xx LMod!y” () = ((€x)™) xatg(rx,x) Alg([X, X])y
over ((€,x)™).
As ¢ :Z — X is monadic, for every Y € € the functor [Y,¢]:[Y,Z] —

[Y,X] is monadic and thus conservative.
Hence the commutative square

€ ———— 37

l |

C/x ————— X°P
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of cartesian fibrations over C is a pullback square as it induces on the fiber
over every Y € C the pullback square

C(Y7 Z) E— [Ya Z]Op

l |

e(Y,X) ——— [Y, X]°P.
So we get a canonical equivalence
(€)™ xepx (€2 = (€)™ xep €z 2 (€)™ xxon 37 =

(G/X)R X xop LMOd{[‘eop(:{)Op o~ (G/X)R XAlg([X,X])Op (AAlg([)(7 X])T/)Op o~
(€)™ xarg(rx xper (Alg([X,X])™)/m

of right fibrations over (C/x)™ that classifies an equivalence
C/x (=, 2) = Alg([X,X])*" (End(-), End(Z))

of functors ((€/x)™)° — 8, whose restriction to ((€,x)™?)°" c ((€/x)™)°?
is the desired equivalence.
Proposition 5.31 guarantees that under the induced equivalence

€/x(2,2) = Alg([X, X])* (End(Z), End(Z))
the identity of Z corresponds to an autoequivalence of End(Z).

So the functor End : (€/x)"? - (Alg([X, X])"")°? admits a fully faith-
ful right adjoint that sends a representable monad T on X to the monadic
morphism Z — X representing the functor Alg([X,X])°?(End(-),T) :
((€x)™)" = 8.

So given a monadic morphism Z — X the right adjoint sends the rep-
resentable monad End(Z) on X to Z - X.

Hence the local objects of (€;x)"" are exactly the monadic morphisms
over X.

The statements about local equivalences follow from lemma 5.32 3.

Let se S and let g: Y — X be a right adjoint morphism in Cs with
associated monad T that admits an Eilenberg-Moore object ¢ : Z — X in
Cs.

By definition of a under the equivalence

a(Y) 1 (€s)/x(s) (Y, Z) = Alg([X(s), X(s)])* (End(Y), T)

the lift g’ : Y - Z of g: Y — X corresponds to the identity of T = End(Y)
and is thus the unit and so a local equivalence.

O

Remark 5.63. Let F: C— D be a 2-functor.
We have a commutative square

(C/x)™® = (Alg([X,X])rP)°P

l |

(D))" P ———20 (Alg([F(X), F(X)])™P)°P.
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If F preserves monadic morphisms with target X, by remark 5.27 F pre-
serves the FEilenberg-Moore object of every monad on X. In this case the
last square induces a commutative square

Alg

(e/X )rep

J

(D))" P 4 (Alg([F(X), F(X)])™)°"

(Alg([X, X])"P)°®

cocart

Applying remark 5.63 to the 2-functor 6 : € - CatZl/cop that preserves
monadic morphisms we obtain a commutative square

(Alg([X, X])™P)P — 5 (€x)"P

| |

O Alg cocar
Alg([X, X])*? ———————— ((CatZjess ) )"
with X := 6(X).
As the composition € 5 Catif/cgﬁﬁ, o, Leop is the Yoneda-embedding,
the composition

repyop Al re
(Alg([X,X])"P)°" =5 (€/x)"" € €/x € Leow /(e )or

is equivalent to the functor

(Alg([X, X])™) - Alg([%, X])% 25 ((Catsass ) )"

cocar =)
c (CatSjeor )z —— (Leor) /(e x)op-

Thus the functor Alg : (Alg([X,X])"P)°P - (€/x)"" is induced by the
functor Alg : Alg([%,X])°" — ((Cati‘;/cgﬁfj)/x)R.

In the following we will give a more explicite description of the local-

ization
End : ((Catfee ) x)"™ 2 Alg([X,X])°" : Alg,

i.e. the localization End : (D/X);RCP 2 Alg([X, X])rs, : Alg of theorem 5.62
for D = Cat2jeiy and X = X e D.

More generally we will give a more explicite description of the local-
ization

End: (Dx)" " 2 (Alg([X, X])"*")°" : Alg

of theorem 5.62 for D a subcategory of Cate g for some small category S
and X e D.

To do so, we need some notation:

Let G : S°° - Cate be a functor and € c G*(Fun(A',Cate)) =
S°P xcat., Fun(A', Cato,) a subcategory.

Passing to cotensors over S°® we obtain a subcategory inclusion
1 1 1
€4 c G*(Fun(A', Cate))® = G*(Fun(A', Cates )™ ) over S°P.
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Denote L L . L
(GA )mon c (CA )rep c (GA )R c CA

the full subcategories spanned by the objects of Fun(A', @) for some
s € S corresponding to morphisms in Cs that are monadic, whose associ-
ated monad admits an Eilenberg-Moore object that is preserved by the
subcategory inclusion Cs ¢ Cateo /g (s) respectively that admit a left adjoint.

Let X be a section of the functor € ¢ G*(Fun(A', Catw)) — S°P cor-
responding to a natural transformation H — G of functors S°° — Cate.

Set

S°Pymon o Alymon SOP\re o Al\re
(Cl% )™M = 8 gy (€)™, (57" = 8% xoqy (€2)"P,
op o 1
(€% ) =8 xeqy (€)™

Let D - € be a map of cartesian fibrations over S classifying the
natural transformation H — G of functors S°® — Cateo.

Denote [X,X]/S ¢ Fun/gS(D,D) the full subcategory spanned by the
objects that belong to [X(s),X(s)]e, c Fune (Ds, Ds) for some s € S.

As for every s € S the monoidal structure on Fung (Ds, Ds) restricts

to a monoidal structure on [X(s),X(s)]e,, the monoidal structure on
Fun/es(D,D) over S restricts to a monoidal structure on [X,X]’S over

Denote Alg/S([X,X]/%)™P c Alg/5([X, X]/®) the full subcategory spanned
by the monads on X(s) for some s € S that admit an Eilenberg-Moore ob-
ject that is preserved by the subcategory inclusion Cs c Cateo ¢, .

Construction 5.64.
The endomorphism Fun/gs’(D7 D)-left module structure on D — & gives
rise to a forgetful functor

¢ : LMod/® (D) — Alg/® (Fun/’ (D, D)) xs D.

By lemma 5.18 the functor ¢ is a map of cartesian fibrations over
Alg/® (FunéS(D,D)), where a morphism of LMod/¢ (D) is cartesian with
respect to the cartesian fibration LMod/¢ (D) — Alg/S(Fun/eS(D7 D)) if and
only if its image in D is cartesian with respect to the cartesian fibration

D-S.

So ( classifies a functor

¢ : Alg/S (Fun’? (D, D))°P - H* (Fun(A', Cato)) =

1 o
S X e (pun(at cat 1) G (Fun(A', Catee))® = G (Fun(A', Catoo)) 5

over S°P that induces on the fiber over s €S the functor
Alg(Fung, (Ds, Ds))™ — Catoop, = (Cateose, ) /o,

classified by the map LMod/®s(D,) - Alg(Fung,(Ds, Ds)) x Ds of cartesian
fibrations over Alg(Fune, (Ds, Ds)).

By example 5.36 for every monad T € Alg(Funeg (Ds, Ds)) the functor
LMod/Tgs(Ds) — Ds is the Eilenberg-Moore object of T in Cateo e, .
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Thus & restricts to a functor

re [e) °op mon °pP
Alg: (Alg/([X, X]/5) Py » (€)™ e (€5 )"

over S°P that induces on the fiber over s €S the functor
Alg : (Alg([X(s),X()])")*" = (Cs/x(5)) ™" © (Cateose, ),
of theorem 5.68.

Remark 5.65. By remark 5.15 1. for every functor S' — S the pullback
8" xgop Alg s §P xson (Alg/®([X, X]%)"P)%P > 8P xgon (€5 )™
is equivalent over S"°P to the functor

8P o (Alg/* ([X,X]/%)"P)°P = (Al ([X', X'}y 7)™ 25 ()"

1z S°P\R
~ S op Xgop (e;x )
over S"P with €' := S"P xgop C and X’ := §P xgop» X.
We have a commutative square

Alg

(Alg/S([X,X]/5)r)°r (€% )

| l

Alg/S (Fun/ (D, D)) —— %, (8% xca Fun(AY, Catoe))5 O™

(25)
of categories over S°P.

Construction 5.66.
Let a be a section of the functor

(€% )" e G (Fun(A', Cate)))y " = H' (Fun(A', Cat)) > S
corresponding to a map of cartesian fibrations ¢ : B — D over S.

For every s € S the induced functor ¢s : Bs - Ds over & admits a
left adjoint relative to Es that is a morphism of Cs so that ¢ admits a left
adjoint F relative to € that is a map of cartesian fibrations over S.

So by proposition 5.31 ¢ admits an endomorphism object T with respect
to the canonical left module structure on Fung (B, D) over Fung (D, D),
which is given by poF.

Under the monoidal equivalence Fung (D, D) ~ Funs(S,Fun/es(D,D))
the monad T corresponds to an associative algebra of Fung (S, Fun/gs(ﬂ, D))
corresponding to a functor ¢ : S — Alg/S(P‘un/gs(D, D)) over S that sends
every s € S to the morphism ps o Fs: Dy — Dy of Cs that is the endomor-
phism object of ws.

So ¢ induces a functor S — Alg/([X,X]/®) c Alg/S(Fun/&S(D,D)) over S.

Given a functor : W — (G?iop)R over S°P adjoint to a section of
W xgop (Gﬁ:p)r{ ~ ((W xgop G);%XSOPX)R - W we get a functor

WP — Alg/™" ([W xgop X, W xgop X]/™77) = WP xg Alg/S([X,X]/®)
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over WP adjoint to a functor 1 : W — Alg/>([X,X]/®) over S.

For B the identity we obtain a functor
op o
End: (€5 )™ - Alg/S ([X,X]/%)°

over S°P that restricts to a functor (G;)S:p)rep - (Alg/3([X,X]/8)repyor
with the same name.

Remark 5.67. We have a commutative square

(@R s Alg®([X, X)®) - (26)
(G*(Fun(A', Cateo)) 5 )t —2—— Alg/S (Fun/ (D, D))",

where the bottom functor over S°P is End for € = G*(Fun(A', Cate)).

By 5.19 3. we have a canonical equivalence
LModr (Fung (B, D)) ~ Fune (B, LModZFS (D)),

under which the endomorphism T-left module structure on ¢ corresponds
to a lift $: B - LMod/E (D) of ¢.

As D — S is a cartesian fibration, the functor LModKFS(D) - S isa
cartesian fibration (rem. 5.5), whose cartesian morphisms are those that
get cartesian morphisms of D — S. So with ¢ also @ is a map of cartesian
fibrations over S.

We have a canonical equivalence

LMod/Tg(ﬂ) = SXAlg(Fung(D,@))xSLMOd/S(D) ~ Sx LMod/® (D)

Alg/S (Fun/S (D,D))
over D. )
= . 2 ~ /€
The map @ : S - LModf (D) ~ S X Alg/S (Funl® (D)) LMod’“ (D) of
cartesian fibrations over S over the cartesian fibration D — S classifies a
natural transformation v:a — £ o ¢°° of functors

8% > (S xcar, Fun(A, Cate))y = 8% xcaro, Fun(A', Catoo)

over S°P that sends every s € S to the functor v(s) : Bs — LModZFE:(DS)
over &s that corresponds to the endomorphism Ts-left module structure on
the functor s : Bs — Ds over Es.

With ¢s also y(s) belongs to Cs so that v induces a natural transfor-
mation a - Alg o ¢°P of functors S°F — (Gﬁ)s( p)R over S°P.
Given a functor 8 : W — (Cﬁ’:p)R over S°° adjoint to a section of
op
W xgop (Cfi Yo (W xgop C);xXSOPX)R — W we get a natural transfor-
op
mation of functors W — W xgop (G%S( YR~ (W xgop C);%XSOPX)R over W

adjoint to a natural transformation 8 — Algoyy°? of functors W — (Gg:p)R
over S°P.
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For B the identity we get a natural transformation A : id — Algo
End of functors (Gﬁ(p)R - (G;)S(p)R over S°P that sends an object Y €
((€s)/x(s)™ © ((Catesse,)jn,)™ for some s € S to the the functor Y —

LMod{E&:d(Y)(DS) over D that corresponds to the endomorphism End(Y)-

left module structure on the right adjoint functor Y — Ds over Es.

Proposition 5.68. Let S be a small category, € c Cateo/s a subcategory
and X an object of C.

The functor Alg : (Alg([X,X])"P)P - (€/x)™™" c (€/x)™" of con-
struction 5.64 1. is right adjoint to the functor

End: (€/x)"" - (Alg([X,X])"")*"
of theorem 5.62.

Especially the functor Alg is fully faithful.
So if every monad on X admits an Eilenberg-Moore object that is pre-
served by the subcategory inclusion C c Cateos, the functor

Alg : Alg([X, X])*P = (€x)™" < (€x)"™

of construction 5.64 1. is a fully faithful right adjoint of the functor End :
(€/x)® — Alg([X,X])°P of theorem 5.62.

Proof. We first observe that we can reduce to the case C = Catm/s :
We have commutative squares

(Alg([X, X])™P)P — 5 (€)x)"P

l l

Al
Alg(Fung (X, X))*P ——— ((Cateo/s)/x) ™

and
(€x)"™® ————0 5 (Alg([X, X])™?)°P

l |

((Cateoss)x)F —24 5 Alg(Funs(X, X)),

where the vertical functors are subcategory inclusions.

For every representable monad T e Alg([X,X]) c Alg(Funs(X, X))
and morphism v : Y — X of C c Cate /s that admits a left adjoint in C the
canonical map

Alg(Funs(X, X)) (End(¢), T) = (Cateo/s ) /x (1, Alg(T))
is canonically equivalent to the map

Alg([X, X])(End(¢), T)™ = €/x (¢, Alg(T)),

where by remark 5.39 the full subcategory inclusion Cx (1, Alg(T)) c

(Cateoss)/x (¥, Alg(T)) is an equivalence as Alg(T) is an Eilenberg-
Moore object for T that is preserved by the subcategory inclusion € c
Catoo/s.
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As Cateo g admits Eilenberg-Moore objects, for € = Cate ;s we have to
show that the functor Alg : Alg(Funs(X, X)) - ((Cate/s)/x)" is right
adjoint to the functor ((Cate/s);x)"™ — Alg(Funs(X,X)).

To show this, we will construct an equivalence
Alg(Funs (X, X)) (End (), T) = (Cateo s ) /x (¥, Alg(T))

= Catoo/x (¢, Alg(T))

natural in every monad T € Alg(Funs(X, X)) and functor ¥ : Y - X over
S that admits a left adjoint relative to S.

Let X - S be endowed with the canonical endomorphism left module
structure over Fung (X, X).

Denote W — ((€/x)%)°" x X the map of cartesian fibrations over
((C/X)R)Op classifying the subcategory inclusion (G/X)R c Cateo/x and
set B := Alg(Fung(X, X)).

As the functor W - ((€/x)")°" x X is a map of cartesian fibrations
over (((?/X)R)Op7 the functor

« Ryop
U Funﬁ(igj;’;;)ipxx(ﬁ X W, (€))% x LMod/S (X)) > B x ((€/x)%)°
is a map of cocartesian fibrations over ((€x)™)P.

¥ induces on the fiber over a functor ¥ : Y — X over S that admits a
left adjoint relative to S the functor ¢ : Fungix(% x Y, LMod/® (X)) — B.

© is a cartesian fibration by remark 5.5 3. and the fact that the functor
LMod/®(X) - Alg(Funs(X,X)) x X is a map of cartesian fibrations over
Alg(Fung(X, X)) due to remark 5.12.

By proposition 5.23 ¥ classifies the functor

((€/x)™)% - CatZf ~ Fun(B°”, Cateo)

idx Al
adjoint to the functor ((€/x)™)°" x B°? ¢ (Cateo/x ) x BP SN

Funx (-,-)
—_

(Catoo/x )" x Catoo/x Catoo.

The functor @ :
((Cx)™) P X pun((1}, A1g(yy Fun(A', Alg(B)) — Fun({0}, Alg(B))x((€/x)™)?

is a map of cocartesian fibrations over ((C/x)%)°" that induces on the
fiber over a functor ¢ : Y — X over S that admits a left adjoint relative to
S the right fibration Alg(Funs(X,X))/gna(y) = Alg(Funs(X,X)).

By proposition 6.9 & classifies the functor ((G/X)R)Op - Ralg(s) ©
Catgfﬁglg(g) adjoint to the functor

p End®Pxi
——

4 Alg(B)xAlg(B)°P

Alg(B)°P(-,-) S c Cat

((€/x)™)xAlg(B)°
Consequently we have to construct an equivalence

(o

¢: 'Bx(((?/x)R)Opxx(g x U, ((G/X)R)Op % LMOd/S(X))

= ((€/x)™)™ Xpun((1},A1e(5)) Fun(A', Alg(B))
over Alg(B) x ((€/x)™)°P.
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Denote Us — (Cateoys)®® x X the map of cartesian fibrations over
(Cates)°? classifying the identity of Cateo/s.

By remark 5.18 the endomorphism left module structure on X — S over
. . . op
Funs (X, X) gives rise to a LM®-monoidal category Fungoep g (U5, €°P x X)®
over C°P, whose pullback along the monoidal diagonal functor

€°? x Fung (X, X)® - Mapgop (U, C°P x Fung(X, X))®

P

~ }5‘ur1/£,zxs(u’s7 €°? x 8 x Fung (X, X))®
over C°P exhibits X' := Fun/e%(;is (Us, €°PxX) as a left module over Fung (X, X).

The endomorphism left module structure on X — S over Fung(X, X)
gives rise to a canonical left module structure over Fung(X,X) on the
cocartesian fibration X — (Cateo/s)?” classifying the functor

Funs(—,X) H (Catm/s)“’p - Catoo_

By remark 5.24 we have a canonical Fung(X,X)-linear equivalence
X = X' of cocartesian fibrations over (Cates;s)°P.
By remark 5.19 3. we have a canonical equivalence

LMod/®™ (%) ~ LMod/®”™ (6* (X)) =

N = Fun/i 8 (B x UG, €°P x LMod/® (X))

over

BxXxBxX =Funf o) o (Bx U, C% x B x X).
By remark 5.2 7. we have a canonical equivalence
((C/x)™)°P xar N = (Alg(B) x ((€/x)™)) X Atg(mywary N =

R\op ~
(Alg(B) x ((€x)")™) XFunQ}f(‘g)xﬁi"xs(Alg(ﬁ)xu' ,€oPx Alg(B)xX) N=

/Alg(B)x((€/x)™)°P
Alg(B)x((€/x)R)°PxX

over Alg(B) x ((G/X)R)Op.

Fun (Alg(B) x U, ((€/x)™)°P x LMod/® (X))

By 5.30 we have a canonical equivalence
€/x)™)PxxLMod’®” (%) = ((€/x)™)°" Fun(A', Alg(B
((€/x)7)""xxLMo (%) = ((€/x) 7)™ *XFun({1},a15(5)) Fun(A~, Alg(B))

over Alg(B) x ((€/x)™)°P.

So we obtain the desired equivalence ¢ over Alg(B) x ((C/X)R)OPA
O

Let S be a category, G : S°P — Catoo a functor, C c G* (Fun(A®, Cate))
a subcategory and X a section of the functor € c¢ G*(Fun(A', Cateo)) —
SOP.

In the following we will see that the functor

re O °opP re
Alg s (Alg/([X, X]/)"P)P - (€3 )P
of construction 5.64 1. is a fully faitful right adjoint relative to S°® of the
functor End : (Gﬁ‘( p)rcp - (Alg/5([X, X]/%)*P)°P constructed in 5.64 2.
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By theorem 5.68 this localization
°pP re re O
End: (€% )P 2 (Alg/>([X,X]/%)"")P : Alg
relative to S°P induces on the fiber over every object s € S the localization
of theorem 5.62 applied to Cs and X(s).

But different to the situation of theorem 5.62 we don’t need to assume
X to be a cocartesian section.
This flexibility is essential to prove corollary 5.70.

Theorem 5.69. Let S be a category, G : S°® - Cate a functor, C c
G*(Fun(A',Catw)) a subcategory and X a section of the functor @ c
G*(Fun(A', Cate.)) — S°P.

We have a localization
°opP re re [e]
End: (€% )P 2 (Alg/>([X,X]/%)"")P : Alg
relative to S°P constructed in 5.64.

Proof. Let D — € be the map of cartesian fibrations over S classifying the
natural transformation H - G of functors S°® — Cate corresponding to
the functor X : S°® - € c G*(Fun(A', Cate)) over S°P.

In view of the commutative squares 25 and 26 we can reduce to the
case that € = G*(Fun(A', Cate,)).
We first show that the functor

Alg ; Alg/s (Fun/as (D7 D))Op - (G* (Fun(A17 Catoo))j)s(op mon

is an equivalence.
This is equivalent to the condition that for every functor a: S’ — S
the induced functor

Funser (7, Alg) : Funges (S"P, Alg/® (Fun/’ (D, D))°") —

Funses (S, (S xcor.. Fun(A', Catee))/y )™ ")

is an equivalence.
By remark 5.15 1. this functor Funger (S"°P, Alg) factors as

Fungor (S"P, Alg/S (Fun/gS (D, D))P) ~

Fung/op (S’°P,Alg)
- -

Fungon (87, Alg/S (Funfy,_, (8" x5 D,8' x5 D))
Fungron (P, ((S"P xcar. Fun(A', Cate))/S " )m0m) o

[Xoa
Fungor (87, (S Xcat. Fun(A', Catoo))y )™ ").
So we can reduce to the case that o : S" — S is the identity.
By remark 5.15 3. the functor
Alg(Fung (D, D)) = Funser (S°°, Alg’® (Fun’ (D, D))°P)

Fungop (S°P,Alg)
P e

Fungor (S, (S xca.. Fun(A', Catoc));f:p) ~
(Cati:l/ré)/p c Catw/g
is equivalent to the functor Alg: Alg(Fung (D, D)) — Cateo /.
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By theorem 5.68 this functor induces an equivalence

Alg : Alg(Fung(D, D))Op — ((Catm/g)/g)mon.

Consequently it is enough to see that the subcategory inclusion

Fungos (S°°, (S xcar., Fun(A', Catoo));)s(op) ~

(Cateljs) o < (Catoose) /o
restricts to a subcategory inclusion

Funses (S, (S xcaro, Fun(A', Cato))/S )™™)  ((Catoose ) )™ "

Let ¢ : B - D be a map of cartesian fibrations over S over the cartesian
fibration €& — S that induces on the fiber over every s € S a functor s :
Bs - Ds over & that admits a left adjoint relative to Es.

Being a map of cartesian fibrations over S the functor ¢ : B - D
admits a left adjoint relative to & and so admits an associated monad T
in Cateoyc.

The T-left module structure on ¢ corresponds to a functor g : B —
LModZFS(ﬂ) over D that induces on the fiber over every s e S the functor
Bs — LModfFE:(DS) over Ds corresponding to the endomorphism Ts-left
module structure on ;.

As D — S is cartesian fibration, by remark 5.5 the functor LMod/TS (D) -
S is a cartesian fibration, whose cartesian morphisms are those that get
cartesian morphisms of D — S. So with ¢ also § is a map of cartesian
fibrations over S.

Hence ¢ is monadic in Cate ¢ if and only if for every s € S the functor
s : € > Ds is monadic in Catw/gs.

In this case a morphism of B is cartesian with respect to B — S if and
only if its image in D is cartesian with respect to D — S.

So we have seen that

Alg: Alg’ (Funf’ (D, D))" > (8 xcar. Fun(A', Catee)) 5 )™

is fully faithful.

By construction 5.64 3. we have a natural transformation A : id —

op
Alg o End of endofunctors of ((S°P xcar., Fun(A*, Catm))fi YR over S°P
that sends an object Y € ((Catoo/c, )/n,)" for some s € S to the the functor
AMY):Y - LMod/TSS(ﬂs) over & that corresponds to the endomorphism

T-left module structure on the right adjoint functor Y - Ds over &5 with
associated monad T.

We will show that A :id - Alg o End exhibits End as left adjoint to
Alg relative to S°P.

As Alg is fully faithful, it is enough to see that End o A : End —
End o Alg o End and Ao Alg : Alg — Alg o End o Alg are equivalences
or equivalently that for every s € S the induced natural transformations
Endso Xs : Ends — Endso Alg oEnds and Aso Alg, : Alg, — Alg oEndso Alg,
on the fiber over s are equivalences.

So it is enough to see that for every s € S the natural transformation
As 1 id — Alg, o Ends exhibits Ends as left adjoint to the fully faithful
functor Alg,, i.e. that for every Y € ((Catw/gs)/DS)R the functor A(Y) :
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Y > LMod/Tgs(st) over Ds induces for every € e ((Cateose,)/n,)""" an
equivalence Catoo/DS(LMOd/TSS(DS), &) - Cateoyp (Y, E).

By theorem 5.62 the full subcategory ((Catoo /e, )/n,)™" ¢ ((Catooje, )/n,)"

is a localization and A(Y):Y — LModéSS(DS) is a local equivalence.
O

Let S be a category, G : S°® - Cato, a functor and € ¢ G*(Fun(A', Cato))
a subcategory.

Set €' := € xgop € c € xcato, Fun(Al, Cato ) and denote U the section of
€’ - € adjoint to the identity of C.

Then we have a canonical equivalence (?;/Ue ~ 2" over €1,

So we obtain the following corollary:

Corollary 5.70. Let S be a category, G : S°® — Cate a functor and
€ c G*(Fun(A', Catw)) a subcategory.

We have a localization
End: (€)= (Alg/®” ([U, U)/®”)™?)*" : Alg

relative to € with local objects those of ((?Al)mon.
So the restriction

(€)™ e (€37 2 (Al ([, u) T yeryr

is an equivalence and the full subcategory (CAl ) e (CAl )P is a local-
ization relative to C.

Lemma 5.71. Suppose we have given a commutative square

e— e (27)

|,

DY

of categories and let Ac B c C,A c B’ c @ full subcategories with p(A) c
A o(B) cB.

Assume that the functor € - ¢(C) induced by ¢ admits a left inverse.

Assume that the full subcategory inclusion A’ c B’ admits a left adjoint
relative to D' and for every object X of D the full subcategory inclusion
Ax c Bx admits a left adjoint and the induced functor Cx — CZp(X) pre-
serves local equivalences.

1. The full subcategory inclusion A c B admits a left adjoint relative to
D.

2. Assume that C is a V-enriched category that is cotensored overV such
that for every K € V cotensoring with K restricts to an endofunctor

of A.

The embedding A c B admits a V-enriched left adjoint.
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Proof. Let Y be an object of B lying over some object X of D.

For 1. it is enough to find a morphism Y — Z of Bx with Z € A such
that for every object A of A the induced map C(Z,A) — C(Y,A) is an
equivalence, for 2. it is enough to find a morphism Y — Z of Bx with Z ¢ A
such that for every object A of A the induced morphism [Z,A] - [Y,A]
is an equivalence.

As the full subcategory inclusion Ax c Bx admits a left adjoint, we
find a local equivalence f:Y — Z of Bx with Z € A. Set X" := 9(X).

By assumption the image ¢(f) : ¢(Y) — ¢(Z) is a local equivalence
with respect to the localization A’ c B'.
So for every object A of A the induced map

C'(p(2),9(A)) = €' (p(Y), p(A))
is an equivalence.

As the functor € - ¢(C) induced by ¢ admits a left inverse, we have
a commutative square

€(Z,A) —— €'(p(Z), ¢(A)) —— C(Z,A)

| J |

C(Y,A) —— €'(@(Y),p(A)) —— C(Y,A)

of spaces, where the compositions €(Z,A) - C'(¢(Z),p(A)) - C(Z,A)
and C(Y,A) - C'(o(Y),9(A)) - €(Y,A) are the identity.

So with the map C'(¢(Z),p(A)) - C'(©(Y),p(A)) also the map
C(Z,A) - C(Y,A) is an equivalence. This shows 1.

2: By 1. for every A € A and K €V the induced map
€(Z,A%) > €(Y,A%)

is an equivalence so that the equivalent map V(K,[Z,A]) - V(K,[Y,A])
is an equivalence, too.

So by Yoneda the morphism [Z,A] — [Y,A] is an equivalence.
O

Observation 5.72. Let S be a category and C — S a cocartesian S-family
of 2-categories.

By proposition 6.55 we have a functor 6 : € - Mapg(C™", Cateo) =
S xcat,, Cocart over S that sends an object X of C lying over some s € S
to the cocartesian fibration over CF classifying the functor [—,X]: CP —
Cateo.

The functor ' : € — 0(C) over S induced by 6 admits a left inverse
over S.

Proof. The composition

0:C— S xcat,, Cocart o S Xcato, L =~ ?/S((‘,’)

over S is the Yoneda-embedding relative to S.
Thus the functor (=) : S xca., Cocart - S xcare, £ = T/S(G) over
S restricts to a functor (C) — € ¢ P/5(C) over S and the composition
e % 9(C) - € is the identity.
O
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Theorem 5.73. Let S be a category and C — S a cocartesian S-family of
2-categories.

The embedding (GA1 )mer ¢ (GAl )P of categories admits a left adjoint
relative to C.

Let S be contractible so that embedding Fun(A', €)™ c Fun(A', €)™
admits a left adjoint relative to C.
If @ is cotensored over Cate, the embedding Fun(A',@)™" c Fun(A', €)™P
admits a 2-categorical left adjoint.

Proof. We apply lemma 5.71:
The functor 0 : € - Sxcar,, Cocart over S induces a commutative square

P

1 1
eA S Xcato, Cocart®

| |

et o S Xcato, Cocart}

of categories over S.
0 restricts to functors

(CAI)R — S Xcato, (CocartAl ", (CAI )" > S Xcate (CoceurtAl )

over S.

By observation 5.72 the functor 6’ : € — 6(€) over S induced by 6
admits a left inverse over S. Thus the functor 02" : €& 9(6)Al over
S also does and so, as we have an embedding GAI(GAI) c G(C)Al, the
functor GAI — HAl(GAl) over S induced by GAl : @Al — S Xcat., COC&I‘tAl
admits a left inverse over S.

By theorem 5.62 for every object X of € lying over some object s of S
the full subcategory inclusions

((€9)x)™™ € ((€5)x)™, ((CatiZyesh)jo,cx)) ™"  ((Catesh) o )™

cocart

admit left adjoints and the canonical 2-functor (Cs)/x ~ (Catljcer) 6,(x)
preserves local equivalences being a 2-functor.

By corollary 5.70 the embedding S xcat., (CocartAl )" S Xcat
(Coc:aurtAl )R admits a left adjoint relative to S xcar., Cocart.

So all requirements are satisfied to apply lemma 5.71 1.

Let S be contractible. With € also the 2-category Fun(Al, C) is coten-
sored over Cato, with levelwise cotensor.

For every monadic functor A — B and every category W the induced
functor Fun(W,A) — Fun(W, B) is monadic. Thus given a monadic mor-
phism f:Y — X of €, an object Z € € and a small category K the functor
Fun(K, [Z,Y]) = Fun(K, [Z, X]) is monadic so that the equivalent functor
(Z,Y"] - [Z,X¥] is monadic, too. Hence also the morphism Y* — X* is
monadic.

So 2. follows from lemma 5.71 2.
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Construction 5.74. Let C be a Ez-monoidal category compatible with
geometric realizations.

The forgetful functor p : RMod(C) — Alg(C) lifts to a cocartesian
fibration RMod(C)® — Alg(@)® of monoidal categories.

Given a functor B : S — Alg(€) denote o : LM® x S — Alg(C)® the
functor over Ass® adjoint to the composition
S — Alg(C) ~ LMod; (Alg(C)) — LMod(Alg(C)).
The pullback
X® := (LM® x S) X p1(cye RMod(€)® — LM® x S
along « is a cocartesian S-family of LM®-monoidal categories with {m}xy ye
X®=~8 X alg(e) RMod(€) - S and Ass® xppe X® ~C® xS — Ass® x S.

Thus X® — LM® x Alg(C) corresponds to a LM®-monoid of Cat‘;f/cgrt
that exhibits the cocartesian fibration S x5y RMod(€C) — S as a left

module over € x S in Catfx?/cgrt and so especially as a cocartesian S-family
of C-enriched categories.

The left module structure on S x a1y RMod(€C) — S over € xS in
Catggjg” induces on sections a left module structure on
Fung (S, Sxa1g(eyRMod(€)) =~ Funyee) (S, RMod(€)) ~ RModg (Fun(S, €))
over Fun(S, C) encoded by the LM®-monoidal category

Fun/5M° (LM® x S, X®) - LM,

This left module structure is the canonical left module structure on
RModg (Fun(S, €)) over Fun(S, €) encoded by the LM®-monoidal cat-

egory
LM® % a1 (runs,eyye RMod(Fun(s, €))®

as we have a canonical equivalence

Fun/"M° (LM®xS,X®) = Fun/52 (LM®xS, (LM®xS)x ey RMod(€)®)

LM®x LM®xS
2 LM® Xpuncs, alg(e))® Fun(S,RMod(€))® =
LM® X pjg(Funs,eyye RMod(Fun(s, €))®

of LM®-monoidal categories.
The first equivalence is represented by the following equivalence natural
in every functor K - LM®:

Funy pre (K, Fun/SM (LM® xS, (LM® x S) % oj5(e)0 RMod(€)®)) =

LM®xS
Fung pexs (K x S, (LM® x S) xz14(eye RMod(€)®) =
Fun g eye (K x S, RMod(€)®) = Funp,, (s, aie(eye (K, Fun(S, RMod(€))®)
~ Funy pe (K, LM® Xpun(s alg(eyye Fun(S, RMod(€))®)

Let A be an associative algebra in Fun(S,C) and X a (A, B)-bimodule
in Fun(S, €) corresponding to a functor S — BMod(C).
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Assume that the composition S - BMod(€) - RMod(€) is a cocarte-
sian section of S x alg(e) RMod(€) — S, i.e. that for every morphism s — t
of S the canonical By-linear map Xs ®B, By = X¢ is an equivalence.

Suppose that for every s € S the image X(s) € RModgs)(€) admits an
endomorphism object [X(s),X(s)] € C.

Then X € RModg (Fun(S, €)) admits an endomorphism object [X, X]/S
with respect to the canonical left module structure on RModg(Fun(S, C))
over Fun(s, C).

The (A, B)-bimodule structure on X corresponds to a left A-module
structure on the right B-module X with respect to the canonical left module
structure on RModg (Fun(S, €)) over Fun(S, €) and so in turn corresponds
to a map of associative algebras 8 : A — [X,X]/S in Fun(S, @).

So we end up with a map A - [X,X]/® in Alg(Fun(S,€)).

If X is the (B, B)-bimodule structure on B that comes from the asso-
ciative algebra structure on B, the map B is an equivalence.

Example 5.75. We apply construction 5.74 to € = Catoo:

Let ¢ : S - Alg(Cate) be a functor corresponding to an associative
monoid B — S in Fun(S, Cate ) ~ Catif/cgrt.

Construction 5.74 asserts that the pullback
S X Alg(Cates) RMod(Cateo ) = S

of RMod(Catw ) — Alg(Cate ) along 1 has the structure of a cocartesian
S-family of 2-categories.

Let A - S be a further associative monoid in Cantig/csmt and M —
S a (A,B)-bimodule in Catfs/cg” corresponding to a functor ¢ : S —
BMod(Cate).

Assume that the composition X : S — BMod(Cate ) > RMod(Cate ) is
a cocartesian section of S X a1g(cat..) RMod(Cateo) = S, i.e. that for every
morphism s — t of S the canonical By-linear functor Ms @5, By — My is
an equivalence.

Then by construction 5.74 applied to C = Cate we have a map 5: A —
[M, M]’® of associative monoids in Catgg’/Cg“ that yields a map Alg/S(A) —
Alg/S([M, M]/S) of cocartesian fibrations over S.

If M is the (B, B)-bimodule structure on B — S that comes from the
associative monoid structure on B — S, the map B is an equivalence.

Theorem 5.62 applied to the cocartesian S-family of 2-categories
S Xalg(catee) RMod(Cates) = S and its cocartesian section X asserts
that we have a localization

End: ((S X Alg(Catoo) RMod(Catm))ji)R — Alg/s([M,M]/s)rcv . Alg

relative to S.
So we get a functor

Alg/® (A)™ = Alg” ([M, M]®)™  ((S X atg(cates) RMod(Catee))5)"
over S that induces on the fiber over s €S a functor

Alg(As) > Alg([Ms, M:])°P © (RMods, (Cates )i, )"
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that sends an associative algebra A of As to the forgetful functor LModa (Ms) ~
LModr(Ms) — Ms, where T := A ® — is the Bs-linear monad on Ms asso-
ciated to A.

We have a canonical equivalence B® ~ (S ><Ass®) Xcato, U over S x Ass®.
So we get a canonical equivalence Alg/S(B) = S XMon(Cate,) Mon(U)

over S that is the restriction of the canonical equivalence F‘Lln/ASSSMS(Ass® X
S, B) = S Xpun(Ass®,Caten) Fun(Ass®, W) over S represented by the canonical
equivalence

Funs (K, Funfss@, S (Ass®xS, B®)) = Fung, ae (KxAss®, (SxAss®)xcat., U)

~ Funcar,, (K x Ass®, U) =~ Funpy,ass®,catos ) (K, Fun(Ass®, U)) ~
Funs (K, S Xpun(ass®,Catee) Fun(Ass®, u))

natural in every functor K — S.

Let M be the (B,B)-bimodule structure on B — S that comes from
the associative monoid structure on B - S and ¢ : S - Alg(Cates) the
identity.

Set

e RMod(Cate, )™ := RMod(Catw);i

e (RMod(Cate)™**)™ = (RMod(Cateo )3)™

e (RMod(Cateo )™"8)™" := (RMod(Catm);i)mOn

So we have for every monoidal category C canonical equivalences

RMod(Cateo )%™ ~ RMode(Cateo) e,

(RMod(Catee)*®)6 =~ (RMode (Cate ) /e) ™,
(RMod(Cate )*®) ™" ~ (RMode (Cateo ) je ) ™"

So we get a localization
End : (RMod(Cateo)*™8)™ — Alg(U)™" : Alg

relative to Alg(Catw ) that induces on the fiber over every monoidal cate-
gory € a localization

End : (RMode (Cate ) e)™ — Alg(€)° : Alg.

The right adjoint Alg sends a pair (C,A) consisting of a monoidal
category C and an associative algebra A of € (corresponding to the C-
linear monad T := A® — on C associated to A) to a right C-linear functor
lifting the forgetful functor LModa (€) ~ LModr(C) — C.

Especially we get an equivalence
(RMod(Cate, )*™"8)™" =~ Alg(U)™

over S that induces on the fiber over every monoidal category C an equiv-

alence
(RMOde(Catw )/e )mon B Alg(e)Op.
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5.5 From Hopf operads to Hopf monads

In this subsection we will show that every Hopf operad gives rise to a Hopf
monad.

So by example 5.44 the category of algebras over every Hopf operad
gets a canonical symmetric monoidal structure.

We start by defining Hopf operads in a symmetric monoidal category
C compatible with small colimits.

To do so, we first need to define the composition product on symmetric
sequences in C.

Denote X ~ [, B(X4) the groupoid of finite sets and bijections.

The category €7 := Fun(%,€) = [I,50 Fun(B(Zs),C) admits a sym-
metric monoidal structure compatible with small colimits given by Day-
convolution.

We have a fully faithful symmetric monoidal functor € — €% left ad-
joint to evaluation at O that considers an object of C as a symmetric
sequence concentrated in degree zero.

We have a monoidal structure on € called the composition product
corresponding to composition under the canonical equivalence

€ = Fun® (X, €%) = Fun®**(8%, €) = Fung,**(€¥, €¥).

For every X,Y € € we have XoY = [ Xk ®x, Y®*, where we embed
k20

. b . .
C into C~, and so for every n > 0 we have a canonical equivalence

(XoY)n =~ H( H ¥n X(S0XEny X-..XEny ) (X ®( ® Ynj)))2k~

k>0 np+...+ng=n 1<j<k

The composition product on €¥ makes € to a left module over itself.
This left module structure on CF over itself restricts to a left module

structure on € over ¥ that sends (X,Y) € C¥ x € to [ Xy ®x, Y& .
K20

This left module structure on € over € corresponds to a monoidal
functor T : € — Fun(@, C) that sends every associative algebra respec-
tively coassociative coalgebra in €* to a monad respectively comonad on
C.

For every symmetric monoidal functor B — € that preserves small col-
imits between symmetric monoidal categories compatible with small col-
imits the co-base-change functor Calg(Cated®)s; — Calg(Catl®))e, is nat-
urally a 2-functor and so yields a monoidal functor B= ~ Fung’/L(BE, B -

) L/ pS p%
e zFung/ (e=,e%).
Especially the symmetric monoidal small colimits preserving functor

Cocoalg(€) — € between symmetric monoidal categories compatible with
small colimits yields a monoidal functor Cocoalg(€)* — €.

We call associative algebras in €% with respect to the composition
product operads in € and define the category of O-algebras in C by
LModo(€C) = Algr,, (C).

We refer to operads in Cocoalg(C) as Hopf operads in € so that every
Hopf operad in € has an underlying operad in C.
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Now we are able to state the main proposition:

Proposition 5.76. There is a monoidal functor
Cocoalg(€)” — Fun®P**(e, @)

that fits into a commutative square

Cocoalg(C)® —— Fun®°P#*(¢, @)

| |

e — s Fun(C,0)

of monoidal categories.

This commutative square of monoidal categories yields a commutative
square

Alg(Cocoalg(€)*) —— Alg(Fun®°P'**(¢, €))

l |

Alg(€¥) ————— Alg(Fun(C, C)).

In other words the associated monad of a Hopf operad in C is an oplax
symmetric monoidal monad.

So example 5.44 implies that category Alg;(C) =~ Algy, (€) of H-
algebras in € carries a canonical symmetric monoidal structure such that
the forgetful functor Alg, (C) — € gets symmetric monoidal.

More generally if € admits small colimits but the symmetric monoidal
structure on € is not compatible with small colimits, by constr. 5.80 we
only have a representable operad (GE)® — Ass® over Ass® that is the
symmetric monoidal category encoding the composition product if € is
compatible with small colimits.

Moreover for every O1,...,0n € C¥ for some n > 1 and X ¢ @ the
composition O o... 0 O, o X belongs to C.

So the representable operad LM® x 50 (€F)® — LM® over LM® re-
stricts to a representable operad over LM® with fiber over a the category
©*¥ and with fiber over m the category €.

We define operads in € as associative algebras in (C*)®.
With € also Cocoalg(€) admits small colimits and we define Hopf
operads in € as operads in Cocoalg(C) in this more general sense.

Given an operad O in € we define the category of O-algebras in C by
Alg,(C) := LModp(C).

So we get the following proposition:

Proposition 5.77. Let C be a symmetric monoidal category that admits
small colimits and H a Hopf operad in C.

Then the category Alg, (C) of H-algebras in C carries a canonical sym-
metric monoidal structure such that the forgetful functor Alg,(€) — C gets
symmetric monoidal.
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Proof. By the functoriality of constr. 5.80 the symmetric monoidal Yoneda-
embedding € c €' := P(C) yields a canonical equivalence Alg, (C) =~
C xer Algy(C') over € that makes the forgetful functor Alg, (€) — €
symmetric monoidal as €' := P(C) is compatible with small colimits.

O

We deduce proposition 5.76 respectively its fibered version 5.84 from
proposition 5.83, which relates the composition product on a category of
sections to the monoidal structure on endofunctors given by composition.

To prove proposition 5.83, we need to make the composition product
on CF functorial in €.

We first construct a functor ¥ : Calg(Catso®) — Mon(Cate ) that sends
€ to €% = Fung;" (€%, €%).
In a second step we extend ¥ to a functor

¥ : Cmon(Catoo )**° — 6¥)oc/Ass®7

where Cmon(Cate, )°°° ¢ Cmon(Catw ) denotes the full subcategory spanned
by the symmetric monoidal categories, whose underlying category admits
small colimits.

U takes values in the full subcategory of 6500 /asse spanned by the
representable operads over Ass®.

As we work with cocartesian S-families of symmetric monoidal cate-
gories for some category S, we make the following definition:

Let D® - S x Fin. be a cocartesian S-family of symmetric monoidal
coc

categories classifying a functor S — Calg(Cats©).
Denote
(D7)® - S x Ass®

the cocartesian S-family of monoidal categories classifying the functor
S — Calg(Catl) 2, Mon(Cate ).

We start with constructing the functor ¥ : Calg(Cates®) - Mon(Catoo )
that sends € to € = Fun?;}L(CE, e¥).

Construction 5.78. .
_ —— cocar
The finite products preserving functor Fins x — : Catee — Cateo/Fin,
makes (fa\ti)/c;fi* to a closed left module over Cato and so to a 2-category.

—~— cocart cocart

For X, Y € Catooin, the morphism object is given by Fungi®™ (X,Y).
Thus also the subcategories

—~— cocart

Calg(Cate®) c Cmon(Catoo ) ¢ Cateo/gin,

get 2-categories. For X,Y € Calg(Catss®) the morphism object is given by
Fun®*°(X,Y) ¢ Fun$e (X, Y).

So by 6.69 4. the cartesian fibration
¢ : Fun(A', Calg(Cat2¢)) — Fun({0}, Calg(Cat%))

lifts to a cartesian Calg(Cats®)-family of 2-categories.
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For every morphism C — D of Calg(Cateo®) the induced functor
Calg(Cato®)p; — Calg(Cat®)ey
admits a left adjoint D ®¢ — : Calg(Caty)e; — Calg(Catd®)mp,.
For every X e Calg(Catee®)e; and Y € Calg(Catee)p, the functor

Fun (D @e X, Y) - Fung (D ®¢ X, Y) - Fung (X, Y)

is an equivalence as for every K € Cate the induced functor

Cateo (K, Fun (D ®¢ X, Y)) — Catee (K, Fung; (D ®¢ X, Y))

- Catoo (K, Fung; X, Y)

is equivalent to the equivalence
Calg(Cat2)n, (D ®c X, Y™) - Calg(Cati)e/(D ®e X, Y)
- Calg(Cat%)e/ (X, YX).
Hence by cor. 6.74 the 2-functor Calg(Catee®)p, — Calg(Catee®)ey
admits a 2-categorical left adjoint.

Thus the cartesian Calg(Catee®)-family of 2-categories
¢ :Fun(A', Calg(Cate2)) — Fun({0}, Calg(Cat®))
is a bicartesian Calg(Catil®)-family of 2-categories.

The unique small colimits preserving symmetric monoidal functor

8 - P(X) yields a natural transformation id ~ 8§ ® — - Fun(X,-) ~
P(X) ® - of endofunctors of Calg(Catee®) corresponding to a cocartesian
section of (.

So by 5.28 there is a functor ¥ : Calg(Cate®) - Mon(Cate ) that sends
@ to ¥~ Fun(xJ L(GE C¥) and fits into a commutative square

Calg(Cat®®) —~— Mon(Catw)

| |

Fun(X,-) —
Catl® — " Catw.

As next we extend ¥ to a functor Cmon(Cate )“° — @M/ASS® that
takes values in the full subcategory of 6?’00 /asse spanned by the repre-
sentable operads over Ass®.

To do so, we make the following definitions:

Let X c Cato be a full subcategory and S — Cmon(Cate )*°° ¢ Cmon(Cate )
a functor corresponding to a cocartesian S-family D® — S x Fin, of sym-
metric monoidal categories.

Denote

o P/ S(D)® - Sx Fin. the cocartesian S-family of symmetric monoidal
categories corresponding to the functor

S - Calg(Catm )™ ¢ Calg(Cata) B Calg(Catn™) ¢ Calg(Catn).
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° ?éf(iD)® c ??S/S(D)g’ the full subfamily of operads spanned by the
functors D — § that preserve K-indexed limits for some s € S and
TPQCS(D)S’ c @&S(D)g; the full subfamily of operads such that for every
s € S the full subcategory iPé(S (D)s is the smallest full subcategory of

f’ﬁg{S(D)s that contains Ds and is closed under small colimits.

If K is empty, we write P/S(D)® for P (D)®.
If X = Cato, we have P2 (D)® = D®.
If S is contractible, we drop S in the notation.

We have a Yoneda-embedding map D® ¢ P/5(D)® of cocartesian S-
families of symmetric monoidal categories that induces an embedding
D® c PLE(D)® c P2 (D)® of S-families of operads.

For every s € S the full subcategory "JSQCS(Q)S c P/3(D)s is a localization.

The left adjoint P/%(D)s - f’ﬁé(s(@)s restricts to a functor P/5(D)s —
PIE(D)s.

Especially we see that the full subcategory ’iﬁ/citm (D)s ¢ PI3(D)s is a
localization so that also the full subcategory ’ﬂs/csatw (D)s < 'ﬂsf(D)s is a
localization. The localization f’ﬁé?(@)s 2 P8

Cateo
tion P2 (D)s 2 PL, (D) = Ds.

Catoo

(D)s restricts to a localiza-

If the cocartesian fibration D® — SxFin, is compatible with K-indexed
colimits, this fiberwise localization is compatible with the cocartesian fi-
bration P/5(D)® — S x Fin.. In this case the restriction "‘]35?(@)@ c
PIS(D)® - S x Fin, is a cocartesian fibration and the full subcategory
inclusion P (D)® ¢ P/5(D)® admits a left adjoint relative to S x Fin,.

This implies that the cocartesian fibration ’TJSQCS(D)QZ’ — Sx Fin, is com-
patible with colimits and so restricts to a cocartesian fibration Técs(ﬂ)® -
S x Fin. compatible with small colimits with the same cocartesian mor-
phisms.

So there is a cocartesian S-family ((]DQCS(‘D)Z)® — S x Ass® of monoidal

categories with underlying cocartesian fibration TPQCS(D)E - S.
Remark 5.79. The embedding
PLE(D)® c PLE(D)® < P3(D)®

of cocartesian S-families of symmetric monoidal categories yields an em-
bedding
(P (D)) e (PR(D))® e (PFF(D)™)°
of S-families of operads over Ass® :
Being a map of cocartesian fibrations over S x Fin, the left adjoint
PIS(D)® - fﬁg{s(ﬂ)c@ relative to S x Fin. gives rise to a map

(PE(D))® ~ (P (D)™)°
of cocartesian S-families of monoidal categories that induces on the fiber
over everys € S and (1) € Fin, the left adjoint of the full subcategory inclu-
sion Fun(E,f’ﬁgcs(D)s) c Fun(E,’?S/S(D)S) and thus admits a fully faithful
right adjoint (’ﬂséf(D)Z)c'D c (PS(D)*)® relative to S x Ass® lifting the
canonical embedding @éf(@)z c PIS(D)E.
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The embedding TPQCS(fD)@’ c "JSQS(D)@ of cocartesian S-families of sym-
metric monoidal categories yields an embedding (‘J’é?(@)z)® c (’334(5(9)2)8’
of cocartesian S-families of monoidal categories.

Construction 5.80. Denote
(D%)® e (P5(D))®
the full subfamily spanned by the objects of D c fP/S(D)Z.

As the embedding D* c iP/S(D)Z is a map of cocartesian fibrations
over S, the restriction (D¥)® c (P/S(D)F)® - S x Ass® is a cocartesian
S-family of operads over Ass® corresponding to a functor S — Opeo/ass®

and the embedding (D*)® c (P/5(D)*)® is a map of such.

For S » Cmon(Cate )**° the identity we denote the resulting functor
Cmon(Cateo ) = Opg/asee by V.

If the cocartesian S-family D® - Sx Fin. of symmetric monoidal cate-
gories classifies a functor S — Calg(Cate®) ¢ Cmon(Cat ), the embedding
D® ¢ :P/cicw (D)® of cocartesian S-families of symmetric monoidal cate-
gories classifies a natural transformation of functors S — Calg(Cates®) c

— . . . b S =
Cmon(Catw) and so gives rise to an embedding (D>)® c (fP/Catm (D)*)®
of cocartesian S-families of operads over Ass®.

Thus by remark 5.79 we have an embedding (D*)® c (‘P/Csatw (D)*)® c
(5/3(9)2)‘8 of S-families of operads over Ass®.

So the functor ¥ : Cmon(Cateo )®® — OT)w/ASS® extends the functor
¥ : Calg(Catl®) - Alg(Catw ) and fits into a commutative square

Cmon(Cate )¢ LN GI)OO/ASS®

| |

—_ Fun(X,-) —
Catoo Cateo.

For every s € S the localization iPQCS('D)S 2 Ds yields a localization
Fun(%, P (D)s) 2 Fun(Z, Ds).

So the restriction (D*)® c (Tf(9)2)® — Sx Ass® is a locally cocarte-
sian fibration.

Hence the functor ¥ : Cmon(Cate )¢ — @w/ASS@, takes values in the
full subcategory spanned by the representable operads over Ass®.

Thus a symmetric monoidal functor ¢ : B - € between symmetric
monoidal categories that admit small colimits gives rise to a map (BE)® -
(€%)® of representable operads over Ass® that is an embedding of planar
operads if ¢ is fully faithful.

Remark 5.81. If ¢ preserves small colimits, the lax monoidal functor
(B*)® - (€%)® is monoidal.

Proof. The symmetric monoidal functor ¢ extends to a symmetric monoidal
small colimits preserving functor ¢’ : B’ := P(B) - €' := P(C) along

symmetric monoidal embeddings B ¢ B’,C c €' that admit left adjoints

L:B -B,L:¢ =C.
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The symmetric monoidal embeddings B c B’, € c €’ lift to lax monoidal
embeddings (B*)® c (B%)®,(C¥)® c (€"¥)® on composition products.

The symmetric monoidal functors ¢, ¢’ lift to lax monoidal functor
(B)® - (€%)® respectively a monoidal functor (BZ)® - (€*)® on
composition products such that the monoidal functor (B*)® — (€)®
restricts to the lax monoidal functor (B*)® — (€*)8.

To see that the lax monoidal functor (B*)® — (€*)® is already monoidal,
it is enough to check that ¢’ and so ¢'> : B’ — @' preserve local equiv-
alences.

We show that for every X € B’ the canonical morphism L'(¢'(X)) -
¢(L(X)) is an equivalence.

This is true for every X € B and so also true for every X ¢ B’ as ¢
preserves small colimits and B’ is the only full subcategory of itself that
contains B and is closed under small colimits.

O

As next we prepare the proof of proposition 5.76.
We need the following definitions and observations:

e Let D® - S x Fin, be a cocartesian S-family of symmetric monoidal
categories classifying a functor S — Calg(Catoo )°°°.

Denote
(D¥)® > S x Ass®
the cocartesian S-family of representable operads over Ass® classi-

fying the functor S — Cmon(Cate )¢ 2, @w/ASS®.

e Similarly let D® — S x Fin, be a cartesian S-family of symmetric
monoidal categories classifying a functor S°® - Cmon(Cate )°° (and

a commutative monoid in Ca\t:;; on the cartesian fibration D — S).
Then we write

(DE)® - S x Ass®
for the cartesian S-family of representable operads over Ass® classi-

fying the functor S°® — Cmon(Cate )¢ 2, C/)Y)w/Ass@).

If for every s € S the induced symmetric monoidal structure on the fiber

Ds is compatible with small colimits, the functor S°® - Cmon(Cateo )¢ 2
Op.oasse takes values in the full subcategory spanned by the monoidal

categories and so by cor. 6.43 the cartesian S-family (DE)® - S x Ass®
of representable operads over Ass® is a map of cocartesian fibrations over
Ass® classifying an associative monoid in Cate, /s on the cartesian fibration
D¥ - 8.

If for every morphism s — t in S the induced functor Ds - Dy preserves

small colimits, the functor S°° — Cmon(Cate )¢ 2 GE)OO/ASS® factors
as S°P — Calg(Cat°) AR Mon(Cato ) © O-f)w/Ass® so that the associative

. N . .. ... =—cart
monoid structure on D - S in Cato/s is an associative monoid in Cat.s.

. . . . — cart
Moreover given commutative monoids € - S,D — S in Cat.,s a map of

commutative monoids € - D in Cat,, /s that induces on the fiber over every
s € S a small colimits preserving symmetric monoidal functor between
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symmetric monoidal categories compatible with small colimits yields a
map of associative monoids €% — D¥ in Catoos.

e Let & c Fun(A', T) be a full subcategory.
Given cartesian fibrations B - S x T,D — S x T denote

Funésx’é(B, D) c Fun/ssxT(B, D)

the full subcategory spanned by the maps Bs — Ds of cartesian
fibrations relative to € for some s € S.

For & = Fun(A',T) we write Fun/ssx’;fm(B, D) for Fun/ssx’é(B7 D).

For S contractible we write Funf (B, D) for Funésx’;‘;(B, D) and
Fun$"™*(B, D) for Fumésx’;art (B,D).

Example 5.82.

For T = Fin%®, & c Fun(A', Fin®) the full subcategory spanned by
the inert morphisms and cocartesian S-families B® — Sx Fin,, D® —
S x Fin. of symmetric monoidal categories we have

Fun/Sop,®,oplax(37 D) - Fun/S,@,lax(,Blrev7 .DreV)op ~

Fun/SOP,S Op(((B®)reV)OP7 ((-D@)I‘EV)OP)'

SOPxTFiny
For B® — S x Fin. the identity we set
Cocoalg’>” (D) := Fun/>" ®°Px (g, D).

By 5.6 the functor Fun/SSxT(S xT, D) - S is a cartesian fibration that

restricts to a cartesian fibration Fun/ssx’é(S xT,D) - S with the same
cartesian morphisms.

The endomorphism associative monoid structure on Fun/siT(D,fD)

in Cato/g restricts to Funésx’i(D, D) so that the endomorphism asso-

ciative monoid structure on Funéi:i FinoP (((D®) Y)°P, ((D®)")°P)

in Cate /g restricts to Fun/5"&oPlax(p D).
e By 5.6 the finite products preserving functor

Fun/SSXT(S X T7 _) : Catoo/SxT g Catoo/s

restricts to a finite products preserving functor Catfﬁ;ng - Catﬁj}é

that sends a commutative monoid € - S x T in CatZjg, 1 to a com-

mutative monoid FunéiT(S xT,C) in Catif;é.

If for every s € S;t € T the induced symmetric monoidal cate-
gory Cs ¢ is compatible with small colimits, the commutative monoid
Fun/SiT(S x T,€) in Catiffg induces on the fiber over every s € S
a symmetric monoidal category Funt (T, Cs) compatible with small
colimits.

So the commutative monoid Fun/SSxT(S x T, €) in Catgljg gives rise to

an associative monoid Fun/ssxT(S x T,€)” in Catoos.
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Proof. For every t € T we have a natural transformation
Funt(T,-) — Funr({t},-) of finite products preserving functors
that yields a symmetric monoidal small colimits preserving functor
Funr(T,Cs) — Funr({t},Cs) ~ Cs¢ between cocomplete categories
using that Cs — T is a cartesian fibration.

O

The commutative monoid structure on FunésxT(S xT,€) - S in
Catijg restricts to Funésx’é(s xT,€) — S such that for every s € S
the fiber Funésx’é(S xT,C)s c Fun/SiT(S x T, C)s is closed under small
colimits.

Thus the composition product on Fun/SSxT(S x T, G)Z — S restricts to

Fun/ssx’i(S xT,@)" - 8.

Proof. To see this, we may reduce to the case that S is contractible.
If for every t € T the category C; admits small colimits, the full
subcategory Fun& (T, @) c Fun(T, @) is closed under small colimits,
which follows from the case & = T = A,

For D — S x T the cartesian fibration corresponding to the identity
of S = Catif,‘ffr the embedding Fun/ss;‘%8 (SxT,D)c Funés;T(S xT, D)
of cartesian fibrations over S classifies a natural transformation
B: Fun (T, ) - Funr(T, -)
cart

of finite products preserving functors Catgjp — Cate that sends
C — T to a fully faithful symmetric monoidal functor

Fun (T, €) —» Funr (T, C).

O

Now we are able to state the main proposition, from which we dedude
proposition 5.84 as a corollary.

Proposition 5.83. Let S, T be categories and C — S x T a commutative
monoid in Catfs;ng such that for every s e S,t € T the induced symmetric

monoidal category Cs is compatible with small colimits.

There is a map
FunS (S x T,€)” - Funly (€, €)

of associative monoids in Cateys that sends a symmelric sequence A in
Funr(T,Cs) and an object X € Csy for some s € S;t € T to the object
A(t) oXe 657(;.

Let & c Fun(A", T) be a full subcategory.

If for every s € S and morphism f : t — t' in T that belongs to & the
induced functor Csy — Cs v preserves small colimits, this map restricts to
a map

Fun/ssx’,f:(S xT, Q)" — Funésx’i(e, ©)

of associative monoids in Cate/s.

232



Proof. The counit transformation Fun/SiT(S xT,-) x T — id of finite
products preserving functors Cate/sxr — Cateo/sxr yields a map o :
FunésxT(S xT,C) x T - € of commutative monoids in Cate/sx-

«a induces on the fiber over every s € S;t € T the small colimits pre-
serving functor Funt (T, Cs) - Funt({t},Cs) ~ Cs.

So « yields a map

@ Fun/ssxT(S xT,€)” xT —» e~
of associative monoids in Cateo/gxr-

The evaluation map €= — @19 of cartesian fibrations over $xT induces
on the fiber over every s e S,t € T the evaluation functor € — Gig} right
adjoint to the fully faithful functor that considers an object of Cs as a
symmetric sequence concentrated in degree 0.

Being a map of cartesian fibrations over S x T the functor €% — (%

admits a fully faithful left adjoint € — C= relative to S x T.

The associative monoid structure on €¥ — S x T in Cate /sxT endows
C¥ - S x T with a left module structure over itself in Cateo/sxr that
restricts to a left module structure on € - S x T over € - S x T as
for every s € S,t € T the induced left module structure on C’SZ, . over itself
restricts to a left module structure on Gy over CZ;.

Pulling back along ¢ we get a left module structure on ¢ - S x T
over Fun/ssxT(S x T, @)* with respect to the canonical Cat., /s-left module
structure on Cato,/sxr corresponding to a map of associative monoids

Fun/ssxT(S xT, Q)" — FunésxT(G7 ©)

in Cat,/s that sends a symmetric sequence A in Funt (T, Cs) and an object
X € Cs ¢ for some s€S,t €T to the object A(t) o X € Cs .

2. To show 2. we can assume that S is contractible.

For every functor T — T we have a commutative square

Funt(T,C)* ——— Funt (G, @)

l |

Funy: (T, T/ x1 €)* ——— Funq (T’ x7 €, T’ x1 €)

of monoidal categories.
So to prove 2. we can reduce to the case &€ = F‘un(Al, T).

If for every morphism f : s — t in T the induced functor Cs — G
preserves small colimits, the associative monoid €= — T in Cater is an
associative monoid in Cat$jy.

Moreover the embedding € c CF is a map of cartesian fibrations over
T so that € — T is a left module over €* — T in Cat)t.

The functor a : Funt (T, €)xT — € over T restricts to a map Funs**(T, €) x
T — € of cartesian fibrations over T.
Thus the restriction

¢

Fun®"*(T, C)E x T c Funp (T, (?)Z xT 5 e®
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is a map of cartesian fibrations over T.
The composition product on Funy (T, @) restricts to Fun$™ (T, €)%,

So the left module structure on € - T over Funr (T, €)* with respect
to the canonical Cateo-left module structure on Cate, 7 restricts to a left
module structure on € - T over Fun$?**(T, @)* with respect to the canon-
ical Catoo-left module structure on Cat‘;j;fr.

So the monoidal functor Funt (T, €)* x T — Funt (G, €) restricts to a
monoidal functor Fun$®* (T, €)* x T - Fun$™* (€, €).

O

Let € — S be a commutative monoid in Catgg/Cg“ corresponding to a

cocartesian S-family C® — S x Fin. of symmetric monoidal categories.
cocart

The category Cmon(Cat:l /s ) is preadditive so that the forgetful func-
tor Cmon(Cmon(Catf,ngart)) - Cmon(Catf,S/csart) is an equivalence.

Thus the cocartesian S-family €® — S x Fin, of symmetric monoidal
categories lifts canonically to a commutative monoid in CatSj3iy,,, that
induces on the fiber over every s € S, (n) € Fin, the canonical symmetric
monoidal structure on Gfm ~ XM,

So if for every s € S the induced symmetric monoidal category Cs
is compatible with small colimits, the commutative monoid structure on
€® - SxFin, in Cat2f& Y, induces on the fiber over every s € S, (n) € Fin,
a symmetric monoidal category compatible with small colimits.

. . S .

Hence the cartesian fibration Funéx&"in* (S x Fin., (C®)

op

Funéipx%n:p (S°P x FingP, ((€®)™V)°P) — S°P carries a canonical struc-

cart

ture of a commutative monoid in CatJjgop that restricts to

rev )op ~

Cocoalg/s"” (€) ~ Fun/2"¢ (S°P x Fing®, ((€®)™)°P)

SOPxTFin,

and thus the composition product on (Funésxgin* (S x Fin., (€®)™V)°P)¥ in

Cato,/gop restricts to an associative monoid structure on Cocoalg/Sop (e~
in Catoo/sop .

Proposition 5.84. Let S be a category and C - S a commutative monoid
n Cat‘;f/cgrt such that for every s € S the induced symmetric monoidal
category Cs is compatible with small colimits.

There is a map of associative monoids
Cocoalg/sop(@)E N Fun/SOp7®,oplax(e’ €)
mn Catm/sop .

Proof. The cocartesian S-family C® — S x Fin. of symmetric monoidal

categories corresponding to the commutative monoid € — S in Catf,g/cg”

lifts canonically to a commutative monoid in Catgf,’/cs‘"‘it?ime that induces on
the fiber over every s € S, (n) € Fin, the symmetric monoidal structure on

G?(n) ~ G that is compatible with small colimits.

So by prop. 5.83 we have a map

F\un/SOP Op(Sop % ?inip, ((e®)reV)op)E =

SOPxFin§
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Funfy oo (((€5)™), ((€9))°)

nSOI’ xFing

of associative monoids in Catsor canonically equivalent to a map

(Fun/S (S « g:'iILH (e®)reV)op)Z = Fun/S ((e®)rev7 (e®)reV)op

SxFiny SxFiny
of associative monoids in Cate/gop.
This map restricts to the desired map of associative monoids

Cocoalg/sop(@)Z N Fun/SOp7®,oplax(e’ )

in Cate sor as for every s € S and inert morphism (n) - (m) the induced
functor Gfm - (3;@<m) preserves small colimits.

O

235



6 Appendix

6.1 Appendix A : About the universal properties
of the Day-convolution

Given an operad 0%, a small O®-monoidal category C® and a ©®-monoidal
category D® compatible with small colimits we define a O®-monoidal cate-
gory Fun(€, D)® compatible with small colimits and satisfying Fun(C, D)%
Fun(Cx,Dx) for every X € O, which we call the Day-convolution O-
monoidal structure.

Denote R ¢ Fun(A*, égt:) the full subcategory spanned by the right
fibrations that is closed under finite products.

Given a O®-monoidal category B® corresponding to a O®-algebra ¢ :
0® - Cate . denote P(B)® the pullback of the symmetric monoidal func-
tor R* c Fun(A!, Cat..)* — Fun({1}, Cat.)* along ¢.

We define Fun(€,D)® c P(€"Vx¢D)® to be the full suboperad spanned
by the objects of

ljs(erev xX© D)?& ~ ’93((32’(" X Dx) ~ Fun(@x,’iﬁ(Dx))
for some X € O that belong to Fun(€x, Dx) ¢ Fun(€x, P(Dx)).

We prove that the restriction Fun(@, D)® c P(C™ xo D)® - 0% is a
cocartesian fibration of operads (prop. 6.4).

We show that O®-algebras in the Day-convolution Fun(€,D)® are lax
O0®-monoidal functors C® — D® (proposition 6.26).

This proves by the way that for O® the commutative operad our Day-
convolution coincides with Glasman’s Day-convolution [11].

We show that there is a canonical 9®-monoidal equivalence Fun(@, D)®
P(C™¥)® ® D® (prop. 6.23). This implies that our Day-convolution coin-
cides with Lurie’s Day-convolution [18].

We use this description of the Day-convolution and its universal prop-
erties in section 3. to prove theorem 3.21.

Moreover we use the characterization of O-algebras in the Day-convolution
to deduce the following result (prop. 6.35):

Given O®-monoidal categories C®, D® taking the right adjoint defines
an equivalence between the category of left adjoint oplax O-monoidal func-
tors €® — D® and the category of right adjoint lax O-monoidal functors
D® - %,
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6.1.1 Construction of the Day convolution

The evaluation at the target functor g : Fun(A®, Cate) — Fun({1}, Cate.)
is a bicartesian fibration as Cate admits pullbacks.

Denote R c Fun(A', Cate) the full subcategory spanned by the right
fibrations.

As right fibrations are stable under pullback, g restricts to a cartesian
fibration q: R - Cate, with the same cartesian morphisms classifying the
functor Fun((-)°?,8) : Cat® - Cat® c Catw..
ience q is also a cocartesian fibration classifying a functor P : Cate, —
Catl c Cato, that induces a functor P : Cateo — GTg:C.

The evaluation at the target functor g preserves finite products and
so induces a symmetric monoidal functor ¢* : Fun(A*', Cate, ) — CatX, on
cartesian structures that is equivalent to the symmetric monoidal func-
tor Fun(A', Cateo )™ =~ (Cat;)Al — (Cat%)™ by the uniqueness of the
cartesian structure.

Corollary 6.14 guarantees that ¢* is a cocartesian fibration of symmet-
ric monoidal categories compatible with small colimits.

The full subcategory R c Fun(A', Cate,) is closed under finite products
so that we get a symmetric monoidal functor ¢* : R* ¢ Fun(A', Catee ) ==
Catl.

The next proposition 6.1 tells us that q* : R ¢ Fun(A?, Cate. ) = Cat,
is a localization of o* : Fun(A', Cat. )* — Cat) relative to Catl.

This implies that q* : R* — Cat, is a cocartesian fibration of symmet-
ric monoidal categories compatible with small colimits classifying a lax
symmetric monoidal functor Cat}, — Catigc(g c Cate” lifting P that sends
a small O®-monoidal category D® — 0% to the O®-monoidal category

P(D)® 1= 0% xcax, R > 0°.

Denote U c R the full subcategory spanned by the representable right
fibrations. By theorem 6.12 the restriction U ¢ R — Cato classifies the
identity of Cate. As U is closed under finite products in R, the embedding
U c R of cocartesian fibrations over Cato, induces a symmetric monoidal
embedding U* ¢ R* that is a map of cocartesian fibrations over Caty,.

By corollary 6.12 the cocartesian fibration U* — Cat, corresponds to
the identity of Catl, and the map U* c R* of cocartesian fibrations over
Cat}, corresponds to a symmetric monoidal natural transformation from
the symmetric monoidal embedding Caty, c Catw  to the lax symmetric

—Q —
monoidal functor Cat), — Catl¢ c Catw lifting P.

So we get a O®-monoidal Yoneda-embedding
D = 0% xcpee U € P(D)® = 0% xcp, R

Thus lemma 6.7 1. implies that the lax symmetric monoidal functor
Catl — Cati‘j°® lifting P is symmetric monoidal.

Proposition 6.1. The restriction ¢* : R* ¢ Fun(A', Cate ) <> Catl, is
a localization of ¢* : Fun(A', Cate)* — Cat, relative to Catl,.
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Proof. Recall the notion of a factorization system:

Given a category € we call a pair (L, R) consisting of full subcategories
L,R c Fun(A', €) a factorization system on € if the following conditions
are satisfied:

1. Factorization: Every morphism in € admits a factorization X - Y —
Z, where the morphism X — Y belongs to L and the morphism Y — Z
belongs to R.

2. Retracts: L, R c Fun(A', @) are closed under retracts.

3. Liftings: For every morphism A — B of L and every morphism X - Y
of R the induced square

e(B,X) — 3 C(A,X)

| |

e(B,Y) — 3 C(A,Y)

is a pullback square.

Denote Cof c Fun(A', Cat..) the full subcategory spanned by the co-
final functors.

The full subcategories Cof, R c Fun(Al, Catoo) define a factorization
system (Cof,R) on the category Cateo.

1. follows from the fact that there is a strict factorization system on
sSet, where the left class are the right anodyne maps and the right class
are the right fibrations and that every right anodyne functor is cofinal.

2. follows from the following descriptions of right fibrations and cofinal
functors:

A functor A - B is a right fibration if and only if the commutative
square

Fun(A',A) ———— Fun(A',B)

| |

Fun({1},A) ——  Fun({1},B)

is a pullback square ([19] cor. 2.1.2.10.).

A functor A — B is cofinal if and only if for every X € B the pullback
A xg Bx, is weakly contractible ([19] theorem 4.1.3.1.).

These descriptions also imply that the full subcategories Cof, R c
Fun(A', Cato.) are closed under finite products.

3. follows from [19] cor. 2.1.2.9. and the fact that every cofinal functor
factors as a right anodyne functor followed by an equivalence according
to [19] cor. 4.1.1.12..

Remark 6.18 implies that the restriction g : R* ¢ Fun(A*, Cateo )™ LN
Cat), is a localization of ¢* : Fun(A', Cate)* — CatX, compatible with
the cocartesian fibration.

O

As next we consider localizations of presheaf categories.

Let @®, D® be O®-monoidal categories for some operad 0%.
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Let B® c P(D)® be a full O®-monoidal subcategory.

We write _
Fun(@, B)® c P(C™ xo D)®
for the full subcategory spanned by the objects of P(C¥ xDx ) =~ Fun(Cx, P(Dx))
for some X € O that belong to Fun(Cx, Bx) ¢ Fun(€x,P(Dx)).

Observation 6.2. Let C®, D® be O®-monoidal categories for some operad
0%,

Let B® ¢ P(D)® be a O®-monoidal localization and A® c B® a full
0%-monoidal subcategory.

1. Then Fun(€,B)® c P(C™" x¢ D)® is a O®-monoidal localization.

2. Assume that for every operation h € Mulg (X1, ...,Xn,Y) for some
objects X1,...,Xn, Y € O with n e N left kan extension

Fun(Cx, x ... x Cx,,By) = Fun(Cy, By)

along the functor Cx, x ... x Cx, — Cy induced by h restricts to a
functor Fun(Cx, x ... x Cx,,Av) - Fun(Cy, Ay).

Then the restriction Fun(C,.A)® c Fun(€, B)® — 0% is a O®-monoidal
category and the embedding Fun(C, A)® c Fun(C, B)® is a O®-monoidal
functor.

Proof. 1: For every X € O the localization Bx c P(Dx) yields a localiza-
tion Fun(€x, Bx) c Fun(Cx,P(Dx)).

Given an operation h € Mulg (X1, ..., Xy, Y) for some objects X1, ..., Xn, Y €
O with n € N the induced functor

T(G;pl x Dx, ) x ... x P(CF x Dx,) - P(CY x Dy)
factors as
?(G;’(pl x Dx, ) x ... x P(CY x Dx,,) = T(((‘fg’(pl x Dx, ) x ... x (€ x Dx,,)) =
P((Cx, % ... x Cx, )P x (Dx, x ... x Dx,)) > P(CYF x Dy)
and thus as the functor «:
’P(@‘;(plxDXl)x...xiP(G;‘:xDXn) ~ Fun(Cx,,P(Dx, ))x...xFun(Cx,,P(Dx,)) >
Fun(Cx, x...xCx,,, P(Dx, )x...xP(Dx,)) - Fun(Cx, x...xCx,,, P(Dx, x...xDx,.))

- Fun(Cx, x ... x Cx,,P(Dy))
followed by the functor

B :Fun(€x, x...x Cx,,P(Dy)) = Fun(Cy,P(Dy)) ~ P(CY x Dy)

by lemma 6.6.

The functor a preserves local equivalences as the functor
P(Dx,) x ... x P(Dx,) - P(Dx, x ... x Dx,) > P(Dy) induced by h
does by our assumption that B® c P(D)® is a O®-monoidal localization.

Denote Ly : P(Dy) — By the left adjoint of the full subcategory
inclusion By ¢ P(Dvy).
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We have a commutative square
Fun(Cy,By) ——— Fun(Cx, x ... x Cx,,By)
Fun((?y,fP(Dy)) B — Fun((?xl X ... X GXH,T(‘Dy))
of right adjoints that yields a commutative square
Fun(€x, x ... x €x,, P(Dy)) — - Fun(Cy, P(Dy))
JFun((‘?xl X xCx L, Ly) J{Fun((‘?y,Ly)
Fun(€x, x ... x Cx,,By) — 5 Fun(Cy, By)

of left adjoints, where the functor Fun(Cy, By) - Fun(Cx, x...xCx,, By)
admits a left adjoint 8’ because By admits large colimits as a localization
of a category with large colimits. Hence 8 preserves local equivalences.

2: 1. implies that the restriction Fun(€,B)® c P(C™ xo D)® - 0% is
a O®-monoidal category.

Fun((?xl s BX1) X ... X Fun((?xm 'an) g Fun(@x1 X ... X GXI,7BX1 X ... X 'an)

For every operation h € Mulp (X1, ..., Xn, Y) for some objects X1,...,Xn, Y €
O with n € N the induced functor

Fun(€x,,Bx,) x ... x Fun(€x,, Bx, ) > Fun(Cy, By)
factors as
Fun(€x,, Bx, )x...xFun(€x,, Bx, ) c Fun(Cx,, P(Dx, ))x...xFun(Cx, , P(Dx,)) —

Fun((?xl X---XCXH7 fP(fDXl )X...X?(Dxn )) g FuIl(GX1 X...xme :P(fDXl XA..XDXD))
nd Fun((‘?xl X ... X Gxn,?(Dy))
followed by the functor

Fun(Cy,Ly)
_

Fun(@xl X ... X GXH,T(Dy)) - Fun(Gy, fp(gy)) Fun(Gy,By)

and thus factors as

Fun(Cx,,Bx, ) x...xFun(Cx, , Bx, ) - Fun(Cx, x...xCx,, Bx, x...xBx,) —
Fun(@xl X ... X GXU,By) & Fun(Cy,By)

using that B® c P(D)® is a O®-monoidal localization.

As next we turn to generalized presheaf categories:
Given full subcategories K, X’ c Cateo and a small category € denote
Px(€) c P(€)
the full subcategory spanned by the functors C°? — § that preserve limits
indexed by categories that belong to X.
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The Yoneda-embedding € — P(C) induces an embedding € - P (C)
as every representable functor preserves small limits.

Moreover by the Yoneda-lemma the Yoneda-embedding € — Px(C)
preserves colimits indexed by categories that belong to K.

Denote ,
P (€)
the smallest full subcategory of Px(C) that contains the representable
presheaves and closed under colimits indexed by categories that belong to
X'

The Yoneda-embedding € — P(€) factors as an embedding € — TP%’(C)
that preserves colimits indexed by categories that belong to X followed
by an embedding P (€) c P« (@) that preserves colimits indexed by cat-
egories that belong to X'

Remark 6.3.

1. If X c Cate, the category Poc(€) is the localization of P(C) with
respect to S := {colim(y o H) — y(colim(H)) | H: J - € a functor
with J € X that admits a colimit}

2. If X' c Cateo and C € Cato, the category ’fﬁﬁ'(e) belongs to Cateo.

3. Let X c X'. For arbitrary categories € € Cat:d®(X) and D € Catd®(X')
the functor

Fun®** (PX (@), D) - Fun“>* (€, D)

induced by composition with the Yoneda embedding C c @%I(C) s an
equivalence.

4. Let X c Cateo, X' = Cateo and C € Catoo (X).

Then ’93%(6) is the smallest full subcategory of Ps(€) that contains
the representable presheaves and closed under colimits indexed by
small categories and thus coincides with Px(C).

Especially we have the following:
If C is a small category, X = @ and X' = Cate, we have fﬁ%'(e) =
P(C).

Let K, X' c Cate be full subcategories.
Let O® be an operad and D® a small O®-monoidal category.

We write T%I(D)‘g c Py (D)® c P(D)® for the full suboperads spanned
by the objects of P(Dx) that belong to T%l(DX) respectively Py (Dx) for
some X € O.

By prop. 6.5 for every O®-monoidal category D® compatible with col-
imits indexed by categories that belong to X the full suboperad @x(ﬂ)‘g c
P(D)® is a O®-monoidal localization so that Py (D)® is a O®-monoidal
category compatible with large colimits.

As we have a O®-monoidal Yoneda-embedding D® c P(D)®, the sub-
operad DX (D)® c Py (D)® is a full O®-monoidal subcategory.

So by observation 6.2 1. for every O®-monoidal category €® the full
suboperad Fun(€, P (D))® c P(€™ xo D)® is a O®-monoidal localiza-
tion and thus especially a O®-monoidal category compatible with large
colimits.
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Given a full O®-monoidal subcategory B® c Py (D)® such that for
every operation h € Mulg (X1, ..., X5, Y) for some objects Xi,...,X,,Y €O
with n € N the category By admits all left kan extensions along the functor
Cx, x...x Cx, = Cy induced by h that are preserved by the embedding
By ¢ Py (Dy) by 6.2 2. the full suboperad Fun(€, B)® c Fun(C, Px(D))®
is a full O®-monoidal subcategory.

Choosing K = Cate, and B® = D€ ¢ Py (D)® we find that Fun(C, D)® c
Fun(@, Py (D))® is a full O®-monoidal subcategory if €® is a small O%-
monoidal category and D® is compatible with small colimits.

This leads to the following proposition:

Proposition 6.4. Let O% be an operad, €% a small O®-monoidal category
and D® a O®-monoidal category compatible with small colimits.

Then Fun(C,D)® — O® is a O®-monoidal category compatible with
small colimits.

We start with prop. 6.5:
Proposition 6.5. Let X c Catoo be a full subcategory.

Let O% be an operad and D® - 0% a O®-monoidal category compatible
with colimits indexed by categories that belong to XK.

Poc(D)® c P(D)® is a O®-monoidal localization.

Proof. By remark 6.3 1. for every X € O the full subcategory Py (Dx) c
P(Dx) is a localization.

It is enough to check the following conditions:

1. For every morphism G : D — D’ of CatJ*(X) the induced functor
P(G) : P(D) - P(D') preserves local equivalences.

2. For every natural n € N and arbitrary categories D1, ..., Dy, € Catd(XK)
the canonical functor

@:P(D1) % ... x P(Dy) » P(D1 x ... x Dy) » P(D1® ... 0 Dy)

preserves local equivalences.

1: The set of morphisms of ’fJS(D) that are sent to local equivalences by
?(G) is strongly saturated because ?(G) preserves small colimits. As the
set of local equivalences of fﬁ(D) is the smallest strongly saturated set of
P(D) that contains S, it is enough to show that P(G) sends morphisms
of S to local equivalences.

Let a functor H: J — D with J € X be given and denote ys : D — P(D)
and ypr : D' — f’ﬁ(@') the corresponding Yoneda-embeddings.
The natural transformation P(G)(colim(yp o H)) - P(G)(yn (colim(H)))
factors as

P(G)(colim(yp o H)) = colim(P(G) o yp o H) = colim(yp o G o H)

= yor(colim(G o H)) = ypr (G(colim(H))) = P(G)(yp (colim(H))),
where we use that G and P(G) preserve colimits indexed by categories
that belong to X.

As € : colim(ypr 0 G o H) — ypr(colim(G o H)) belongs to S¥', the
functor P(G)(colim(ypoH)) - P(G)(yn (colim(H))) is a local equivalence
in P(D').
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2: The functor a preserves small colimits in each component because
the cocartesian fibration of symmetric monoidal categories q* : R* — Catl,
is compatible with small colimits.

This implies that for every naturalie {1,...,n} and arbitrary presheaves
Fj € P(D;) for j € {1,...,n} \ {i} the set of morphisms in P(D;) that are
sent to local equivalences under «(F4,...,Fi-1,—, Fis1,...,Fn) : @(Di) —
’US(fDl ®...® Dy) is strongly saturated.

As the set of local equivalences of ?(Di) is the smallest strongly satu-
rated set of ’(]3('Di) that contains S;Ji‘, it is enough to show that for every
natural i € {1,...,n} and arbitrary presheaves Fj e P(D;) for je {1,...,n}
{i} the functor a(F4i,...,Fi-1,—, Fis1,...,Fn) : "JS(Di) — ’ﬂs(Dl ® ...® Dy)
sends morphims of S;Dc‘ to local equivalences.

Using again that o preserves small colimits in each component and that
the category of presheaves is generated by the representable presheaves
under small colimits, it is enough to check the last condition for the case
that all presheaves Fj € P(D;) for j e {1,...,n} ~ {i} are representable.

That one may reduce to the case of representable presheaves follows by
induction from the fact that for every i,j € {1,...,n} the full subcategory
of ?PS(DJ-) spanned by the objects X with the following property is closed
under small colimits:

For all presheaves Fy € f/ﬁ(Dk) with k < j and k # i and all representable
presheaves Fy € P(Dy) with k > j and k # i the functor

CM(Fl, ey Fj_l, X, Fj+1, . Fi_l, -, F1+1, ey Fn) : E]S(Dl) — :‘]3(@1 ®...®'Dn)
sends morphims of Sj’i‘ to local equivalences.

So let a natural i€ {1,...,n}, objects X; € D; for je {1,....,n} \ {i} and
a functor H: J - D; with J € X be given and denote yp, : Dk - P(Dx)
the Yoneda-embedding of Dy for k € {1,...,n}.

We have to see that
¢ : a(yDl (Xl), < YDy (Xi—l )7 COhm(Y'D; © H)> YDit1 (Xi+1)7 < YDy (X“)) -

CM(y'Dl (Xl)v s YD (Xifl)’ YD, (COlim(H))7 YDip1 (Xi+1)7 < YDy (Xﬂ))

is a local equivalence in ’33(91 ®...0 Dy).
Denote 8: D1 x ... x Dy, > D1 ® ... ® Dy, the canonical functor.
Corollary 6.12 implies that we have a canonical equivalence

ao(yp, X...XyDp,) YD e..0D, ° 5,

via which we can factor ¢ as

a(Y'Dl (Xl )7 s YDy (X171), COlim(yDi ° H)? YDis1 (Xi+1 )7 s YDy (Xn)) =
COhm(a(yDl (Xl)v YD (Xi—1)7 YD, © H(_)7 YDip1 (Xi*'l), <y YDy (Xn))) =

colim(ys, e...em, 0 B(X1, .., Xio1, H(=), Xis1, .., Xn))
YD1®...8Dy (COlim(ﬂ(Xla (X3} Xi—h H(7)7 Xi+17 ey Xn)) =
y'Dl®--»®'Dn (ﬂ(Xl, veey Xi—h colim(H), Xi+1, veey Xn)) =4
O‘(}/171 (X1)7 s YDy (Xi—l)v YD; (COhm(H))v YDis1 (Xi+1)7 s YDy (Xn))
By definition
w : COhm(yDl®m®Dn ° ﬂ(Xh SE) Xiflv H(7)7Xi+17 7Xﬂ)) -

y®1®m®'Dn(COhm(ﬂ(X17 sy Xi—lvH(_)7Xi+17 >Xn)))
belongs to S%@“'@D“ so that ¢ is a local equivalence in ’33(91 ®...0 Dn).

O
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Lemma 6.6.

1. Let F:C— € and G:D — D’ be functors between small categories.
The functor P(C°P? x D) — P(C"°? x D") induced by F and G is equiv-
alent to the composition

P(EPxD) ~ Fun(€, P(D)) - Fun(C, P(D')) % Fun(€’, P(D')) =~ P(CPxD"),

where @ denotes a left adjoint of the functor Fun(€',P(D")) — Fun(C, P(D"))

given by composition with F: € — €'
2. Let n e N be a natural and C1,...,Cn, D1, ..., Dy be small categories.

Denote

9?11"“’62" :Fun(€q, D1)x...xFun(Cn, Dy ) —» Fun(Ci x...xCn, D1 x...xDy)

,,,,,

the functor adjoint to the functor

(€1 x...xCp) x (Fun(C1,D1) x ... x Fun(Cn, Dy)) ~
(C1 x Fun(€1,D1)) x ... x (Cn x Fun(Cn,Dpn)) = D1 x ... x Dy,
induced by the evaluation functors C; x Fun(Ci,D;) — D; for i €

{1,...,n}.

The canonical functor

P(C1)PxD1)x..xP((Cn)PxDpn) = P(((€1)PxD1)x..x((Cn)FxDy)) ~
P((C1)Px.ccx(Cn)P)x(D1x...xDy ) = P((C1x...xCH ) Px(D1x...xDy,))
is equivalent to the composition

P((C1)PxD1)x..xP((Cn)TxDy) = Fun(Cq, P(D1))x...xFun(Cy, P(Dn))

g (D1), P (D)
Cpynnns Cn

Fun(Cy x ... x Cp, P(D1) x ... x P(Dy)) —
Fun(€q x...xCn, P(D1x...xDy)) = P((C1 x...xCy )P x (D1 x...xDy)).

Proof. We start by proving 1.
The functors F: € — € and G : D — D’ yield a commutative square

P(EP x D) ——= 5 Fun(€, P(D)) (28)

|

Fun(C,P(D"))

l

P(CP x D) ————— Fun(€, P(D)),
where the vertical functors are given by composition.

If we set G: D — D’ to be the identity of D', we see that the functor
Fun(€’,P(D")) - Fun(€,P(D")) given by composition with F : ¢ - ¢
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admits a left adjoint ¢ . This shows the existence of ¢ in the assertion of
1. Turning to left adjoints square 28 gives rise to a commutative square

Fun(€, P(D)) ——=— P(CP x D)

|

Fun(C,P(D"))

Fun(€’,P(D’)) ———— P(C"P x D),

that provides the desired equivalence.

2: Denote Bs,,...3, : P(B1)x ... x P(Bn) » P(B1 x ... x By) the functor
adjoint to the functor

(B1x...xBn)Px(P(B1)%..xP(Bn)) = ((B1)Px...x(Bn)P)x (P(B1)%..xP(Byn)) =

(B1)P xP(B1)) x ... x ((Bn)® x P(Byn)) » 8" = 8

induced by the evaluation functors (B;)°? xP(B;) — S forie {1,...,n} and
the functor 8" — § determined by the cartesian structure on 8.

By lemma 6.7 for 2. it is enough to see that the canonical functor

(€1)°PxD1,....(€n)°PxDy

W P(C1)P xD1) x ... x P((C1)°P x D) ’
P>((C1)PxD1)x...x((Cn)PxDn)) = P(((C1)Px..x(Cn)P)x (D1 x...xDy))
2 P((C1 x ... x Cp)P x (D1 x ... x Dy))
is equivalent to the composition
¢ : P((C1)PxD1)x..xP((€y)PxDy) = Fun(Cy1, P(D1))x...xFun(Cpn, P(Dy))

o7 (P1), - P (D)

MM Fun(€qx...xCn, P(D1)x...xP(Dy))
Fun(C1 x ... x Cn, P(D1 x ... x D)) » P((C1 x ... x C)P x (D1 x ... x Dy)).
The functors ¢ and 1 are equivalent if and only if their adjoint functors
¢’

((C1x...xCr)Px (D1 x..xDy ) )P xP((C1)PxD1) x..xP((Cn) T xDy) - 8

Fun(€1x...xCn,80,, . m,)

are equivalent.
But both adjoint functors ¢, are equivalent to the following composi-
tion:

((C1x...xCp)Px (D1 x...xDn))PxP((C1)P xD1) x ... x P((Cr)P x Dyy) =

((C1x . xCr) x (D1 % ... x D) P)x P((C1)P x D1) x ... x P((Cn )P x Dyy) =

(C1x..xCr)x((D1)Px.ccx (D) P)xP((C1)P xD1 ) x ... xP((C1 )P x Dy ) =

(C1x (D1)P) x oo x (Cox (Dn)P) x P((C1)P xD1) x ... x P((Cn )P x Dyy) =

((C1x (D1)PYxP((C1)PxD1)) x ... x ((Cn x (Dn)P) x P((Cn)P xDy)) -
§" = 8.

O
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The following lemma is an important ingredient in the proof of lemma
6.6:

Lemma 6.7. Let n e N be a natural and C1,Ca,...,Cn be small categories.
The following three functors are equivalent:

1. The functor P(C1) x ... x P(Cn) = P(C1 x ... x Cn) induced by the

lax symmetric monoidal functor Catl, — Catll® corresponding to
the cocartesian fibration of symmetric monoidal categories q : R* —
Catl.

2. The induced functor
P(C1) x ... x P(Cn) = Re, x .. x Rey, = {(€1,..0, Cn) } Xcapn R —

{61 X ... X (3,,} XCatoo .’R o~ CP((31 X ... X Gn)
on pullbacks, where the functors R** — R and Catl' — Cate are

induced by the cartesian structures.
3. The functor P(C1)x...xP(Cy) - P(C1x...xCy) adjoint to the functor

(C1 % ... xCr)P x (P(C1) x ... x P(Cn)) = (G x ... x C3P) x (P(Cy) x
e x P(CR)) = (CP x P(C1)) x . x (CP x P(Ch)) = 8" > 8

induced by the evaluation functors C¥ x P(C;) - 8 forie {1,...,n}
and the functor 8" — 8 induced by the cartesian structure on 8.

Proof. The equivalence of the functors in 1. and 2. follows from cor. 6.20.

By lemma 6.8 it is enough to see that the functors in 1. and 3. pre-
serve small colimits in each variable and are compatible with the Yoneda-
embeddings.

For the functor in 1. this follows from the fact that q* : R* — Catl, is
compatible with small colimits.

Denote g the functor in 3.

Then it remains to check that 8 preserves small colimits in each variable
and that the composition €q x...xCn — P(C1) x...xP(Cr) LA P(C1x...xCy)
is the Yoneda-embedding of €; x ... x Cy.

As colimits in functor-categories are formed levelwise, we can assume
that Ci,...,Cn are contractible when we proof that 8 preserves small col-
imits in each component. But in this case 3 is the functor 8" — § induced
by the cartesian structure on 8 and 8 is cartesian closed.

We complete the proof by showing that the composition €y x...xC, —
P(C1)x...xP(Cn) LA P(C1x...xCy) is the Yoneda-embedding of C1 x...xCy.

By adjunction this is equivalent to the condition that the composition
0:(C1 % xCr)Px(Crx...xCp) = (C1x...xCr)Px (P(C1) x...xP(C)) =
(CTP x .. x C2P) x (P(C1) x ... x P(Cy)) =
(€57 % P(C1)) X oo x (€ x P(€n)) » 8™ 8

is the mapping space functor (€1 x ... x Cp)°? x (€1 x ... x Cy) - 8 of
Gy x...xCh.
o is equivalent to the composition

(C1 % xCn) x (€1 x .. xCp) = (CF x.e.x CP) x (€1 x ... x Cy) =
(CTP x C1) x ... x (CP x Cp) = (CP x P(C1)) x ... x (CF x P(Cn))
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- 8" 5 8.

As (€ x €;) — (€ x P(C;)) — 8 is the mapping space functor of C;
for i € {1,...,n} and the mapping space functor of a small category B is
classified by the twisted arrow category Tw(B) — B°P x B, we conclude
by observing that we have a commutative square

Tw(C1 X .. X Cp) ——————— Tw(C1) x ... x Tw(Cn)

| l

(C1 % .. x Cr)P x (C1 X . x Cp) —— (P x C1) x ... x (CP x Cy).

Lemma 6.8. Let K c X' c Catoo be full subcategories.
Let n € N be a natural and D1, Da, ..., Dy € Cat®(K) be categories.

1. Leta: T%’(fDl) X ... x?%l(Dn) - ?%’(91 ®...9 Dy) be a functor that
preserves component-wise colimits indexed by categories that belong
to X' such that that the composition

Di X oo x Dy = PR (D) X o x PR (D) = PX (D1 ® ... ® Dy)

is the composition D1 x ...x Dy > D1 ®...0 Dy, — Tﬁ%r(‘Dl ®...0Dy)
of the canonical functor D1 x...xDy, > D1 ®...Q9 Dy, and the Yoneda-
embedding.

Then « satisfies the following universal property:
For every category & € Catl®(X’) the functor

Fun®*™ (P (D1®...8Dy), €) » Fun" ™ (PE (D1)x..xP% (Dn), €)
given by composition with o is an equivalence.

In other words a corresponds to a morphism ('353”2'(@1), ey lﬂsﬁl(Dn)) -
—~aqr! —_— ®
Pr (D1®...0Dy) of Cat®(K') that is cocartesian with respect to

s\ ®
the cocartesian fibration Catle®(X’) — Fin..

2. Let & : PX(D1) x . x P (D) = PX (D1 ® ... ® D) be another
functor as in 1.

Then o and o are equivalent in Fun(?gg(‘Dl)x...x’i-ﬁgg('Dn), @%l(ﬂléb
..®Dy)).

Proof. By assumption the composition
Dy x...x Dy - ?%,(Dl) X . X ’iﬁf(ﬂn) — ?%,(91 ®...09Dy)
is the composition Dy x...x Dy, > D1 ®...9 Dy, — ’33%'(@1 ®...® Dy) of the
canonical functor D; x...x Dy, - D1 ®...9 D,, and the Yoneda-embedding
of D1 ®..0 D,.
Hence the composition

Fun®X (PX (D1 ® ... ® D), &) —» Fun" ™ (X (D) x ... x P (Dn), )

S Fun¥ % (Dy x ... x Dy, &)
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is equivalent to the composition

Fun®*™ (P (D1 © .. ® Dn), &) > Fun™* (D1 ® .. © Dy, £)
- Fun" "™ (D x ... x Dy, &)

and thus is an equivalence.
Therefore for 1. it is enough to see that € is an equivalence.
This follows by induction from the fact that € admits a factorization

FuHVCOC’CK,(?%,(Dl) X ... X E]S%,(‘DDL 8) =

Fun " (PX (D1) x ... x PR (Da_1 ), Fun* (PX (Dy), €)) ~
Fun"°* (PX (D1) x ... x P (Dyo1 ), Fun®* (D, €)) —
Funvcoc’x(Dl X oot X Dn,l,Fumcoc‘K(fDn7 &)) =~ Funvcoc’x(Dl x...x Dy, &),

where we use that Fun®®*’ (?%'(Dn), €) belongs to Cated®(K").
As next we show 2.
It follows from 1. that o and o' satisfy the same universal property.
Consequently there is a unique autoequivalence p of 'ﬂ3§§ (D1®...9Dy)
so that u o« is equivalent to o'.

Composing this equivalence from the right with the functor
Dix...x Dy — '3532 (D1) x ... x ?% (Dn) we find that the composition

Dy x o xDn> D1 ®...08 Dy > Px (D1 ®...0 Dy) L PX (D1 ®...® Dy)

is equivalent to the composition D1 x...x Dy, - D1 ®...@ Dy, — ’93%(@1 ®
.. ®Dy).

Consequently p and the identity of @%r(Dl ®...®Dy) correspond under
the equivalence

Fun®* (PF (D1 ® ... Do), PX (D1 ® ... ® D)) —

Funcoc,JC(Dl ®..® Dn,§£,(91 ®..0 Dn)) —
Fun"**“*(Dy x ... x Dn,asjﬂg(Dl ®...®Dn))

to the functor Dy x ... x Dy > Dy ® ... ® Dy » Pk (D1 ® ... ® Dyy) and so
have to be equivalent.

O

Denote R c Fun(A', Cate) the full subcategory spanned by the right
fibrations and U c R the full subcategory spanned by the representable
right fibrations.

We will show the following:

The restriction U c¢ R ¢ Fun(A®', Cateo) — Fun({1}, Cateo) is a cocarte-
sian fibration and classifies the identity of Cate (prop. 6.9).

The full subcategory U c R is closed under finite products so that
the functor U ¢ R ¢ Fun(A',Cate,) - Fun({1},Cate) preserves finite
products.

The induced symmetric monoidal functor U* — Catl, is a cocartesian
fibration and corresponds to the identity of Cat}, (corollary 6.12).
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Proposition 6.9. The restriction U c R — Cate is a cocartesian fibration
and classifies the identity of Cateo.

Remark 6.10. The cartesian fibration R — Catoo is a bicartesian fibration
as for every functor C — D the induced functor Rp — Re admits a left
adjoint.

The left adjoint Re — Rp preserves representable right fibrations.

Hence the cocartesian fibration R — Cate restricts to a cocartesian
fibration U — Cateo with the same cocartesian morphisms.

Especially the embedding U c R is a map of cocartesian fibrations over
Cateo.

Proof. Let U — Cato be the cocartesian fibration classifying the identity
of Cateo.
We will show that there is a canonical equivalence U’ ~ U over Cato.

By Yoneda it is enough to find for every functor H: S - Cate a bijec-
tion between equivalence classes of objects of the categories Funca., (S, U")
and Funcat.. (S, U) such that for every functor T — S over Cato the square

Funcat,. (S,U") —— Funcat.. (S,U)

| |

Funcat,, (T, U') —— Funcar, (T,U)

commutes on equivalence classes.

Denote D — S the cocartesian fibration classifying H : S - Cate so
that we have a canonical equivalence D ~ S xc,, U over S.

We have a canonical equivalence Funca, (S,U') =~ Fung(S,D) such
that the square

Finca_ (S, W) —— Funs (S, D)
FunCatN (T, u/) e FLIIIT(T, T xg D)

commutes on equivalence classes.
We have a fully faithful functor

Funcar, (S, U) c Funca.. (S, R) c Funcar.. (S, Fun(Al7 Catoo)

~ Fun(S, Cate ) /it = (Catefs™) /o,

whose essential image W(S, D) consists of those maps € - D of cocarte-
sian fibrations over S that induce on the fiber over every object of S a
representable right fibration and the square

cocart

FunCatm (S7u) —_— (Catoo/S )/D

| |

Funcar., (T, U) —— (CateiT™) /res»

commutes on equivalence classes.
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Consequently it is enough to find for every cocartesian fibration D —
S a bijection between equivalence classes of objects of the categories
Fung(S, D) and W(S, D) such that the square

Fung(S,D) ——— W(S, D) (29)

l |

FunT(T, T xg 'D) — W(T,T Xg D)

commutes on equivalence classes.

Let X be a section of D — S.

By lemma 6.13 the map DA & D of cocartesian fibrations over
S is a cocartesian fibration, whose cocartesian morphisms are those that
are sent by the map DA DI of cocartesian fibrations over S to a
cocartesian morphism of D — S.

So the pullback Dj)s( = S X1 pA L s along X is a cocartesian

fibration and « : S x pA' pA'! DO} f tesi
: p{1} - - is a map of cocartesian
fibrations over S.
The map « of cocartesian fibrations over S induces on the fiber over
every s € S the representable right fibration (Ds)/x(s) = {X(S)} XFun({1},Ds)
Fun(A', Ds) - Fun(A', Ds) — Fun({0}, Ds). So a belongs to W(S, D).

Pulling back «a along the functor T — S we get the map
1 1
T X (pxgmyy (T xs D)2 - (T xsD)> — (T xs D) of cocartesian
fibrations over T, where the pullback T'x (1, 1) (Txs D)Al is taken over

the functor T — T xg D over T corresponding to the functor T — S )]
over S. This shows the commutativity of square 29.

On the other hand let € - D be a map of cocartesian fibrations over
S such that for every object s of S the induced functor C; — Ds is a
representable right fibration.

As for every object s of S the category Cs admits a final object, by
lemma 5.33 the category Fung(S, €) admits a final object Z such that for
every object s of S the image Z(s) is the final object of Cs.

The functor Fung(S, €) - Fung(S, D) sends Z to the desired object Y
of Fung (S, D).

We have a canonical equivalence Funs (S, S x5 13 DAl) = Fung (S, D)/x
over Fung(S,D) so that the image of the final object of the category
Funs(S,S 1) D) under the functor

Funs(S,S x5y D) > Funs(S, D) - Fung(S, D)

is X. So the functor Fung(S,D) - W(S,D) induces a retract on equiva-
lence classes.
Lemma 6.15 states that we have a canonical equivalence € ~ Dﬁ over
D.
O

The full subcategory U c R spanned by the representable right fibra-
tions is closed under finite products:

Given two representable right fibrations €/x - € and D/y - D with
X eCand Y €D the square
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Fun(A',€x D) ————=— s Fun(A', €) x Fun(A', D)

l l

Fun(8A', € x D) ————=— Fun(9A*', €) x Fun(dA', D)
induces an equivalence C x D;x vy = C/x x D,y over € x D after pulling
back to € x D x {(X,Y)}.

So the functor U ¢ R c Fun(A', Cate,) - Fun({1}, Cate,) preserves
finite products and so yields a symmetric monoidal functor U* — CatZ,.

The identity of Cat), corresponds to a Cats-monoid of Cate and so to
a cocartesian fibration U® — Cat, of symmetric monoidal categories that
lifts the cocartesian fibration U — Cate corresponding to the identity.

By the next lemma the symmetric monoidal structure U® is cartesian.

By the uniqueness of the cartesian structure we get the following corol-
lary:

Corollary 6.11. The symmetric monoidal functor W — Catl, is a co-
cartesian fibration and corresponds to the identity of Caty.

Lemma 6.12. The symmetric monoidal category U® is cartesian.

For every objects (€,X),(D,Y) of U with X e Ueg ~C,Y € Up ~ D we
have
(€X)®(D,Y) = (€xD,(X,Y)).

Proof. We wish to see that the tensorunit 1y of U is a final object of U
and that for every two objects (C,X), (D,Y) € U the induced morphisms

(67X)®(®7Y) - (C7X)®ﬂu = (C,X), (G7X)®(®7Y) - ]lu@(D,Y) = (D,Y)
exhibit (€,X) ® (D,Y) as a product of (€,X) and (D,Y) in U.

The symmetric monoidal functor U® - Cat), sends 1y to the ten-
sorunit Lcae,, of Cate being the final object of Cate.

As U — Cato is a cocartesian fibration, 1y is a final object of U if and
only if 1y is a final object of the contractible fiber Uﬂmw ~ lcaty, -

For every object (€,Z) of U we have a commutative square

U((€,2),(¢,X)® (D,Y)) —— U((&,2), (€, X)) xU((&,2), (D, Y))

| l

Catew (&, x D) ————— Catwo (&, C) x Cates (€, D)
(30)
that induces on the fiber over every functor ¢: € - € x D the map

uGXD(¢*(87 Z)7 (G7X) ® (DvY)) i)

Ue(pry, (¢+(€,2)),pry, ((€,X) ® (D,Y)))x
U (pry, (¢+(€,2)),pr,, ((€,X) © (D, Y)))

2 Ue((pry 0 8)+(€,2), (€, X)) x Un ((pry 0 6)+(€,2), (D, Y)),
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where pry : €xD — € and pr, : € x D — D denote the projections.
Let (A,B) € € x D be the pair of objects corresponding to (C,X) ®

(D,Y) € Uexd ~ € x D so that we have (Ex D, (A,B)) ~(C,X)® (D,Y).
The map « is equivalent to the canonical equivalence

(€xD)(¢(2), (A, B)) = C(pr(¢(Z)), A) x D(pry(¢(2)), B).

So it remains to show that 3 is an equivalence.
This follows from the fact that the induced morphisms

(€, X)®(D,Y) - (€, X)oly ~ (€,X) (€,X)®(D,Y) - 1y®(D,Y) ~ (D,Y)

are cocartesian with respect to U — Catoo :

The morphisms (C,X) — 1y and (D,Y) — 1y are cocartesian with
respect to U — Cateo because the fiber Usc, =~ lcat,, is contractible.

As U® — Catl, is a cocartesian fibration, the collection of morphisms
that are cocartesian with respect to U — Cats is closed under the tensor-
product of U.

O

For the proof of prop. 6.9 we used the following lemmata:

Lemma 6.13. Let p: X — S be a functor. Denote evy : x& L xlor
1
X, evy: X > X%~ X the induced functors over S.

1
If p: X > S is a cocartesian fibration, then evy : X& — XM ~X isa
1
cocartesian fibration, where a morphism of XA is evi-cocartesian if and
only if its image under evy is p-cocartesian.

This implies the following:
Given a functor T — X over S such that the pullback ¢ : T xgX — T is
a cocartesian fibration. Then the pullback

1 1
TXX{l} XA :TX(TXSX)“} (T Xs X)A —>T

is a cocartesian fibration, whose cocartesian morphism are those, whose
tmage under the functor evg is ¢-cocartesian.

Especially for T = A' we see that if p: X — S is a locally cocartesian
1
fibration, then evy : X4 5 XMW v X s a locally cocartesian fibration,

where a morphism of XA s locally evi-cocartesian if and only if its image
under evg s locally p-cocartesian.

Proof. If S is contractible, the statement of the lemma is well-known.

Assume that p: X - S is a cocartesian fibration.
1
Then evy : X2 - X is a map of cocartesian fibrations over S. So
for every morphism Z — Z’ in S we have a commutative square
Al 0
J/a l

X5 —————— X\
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As ev; is a map of cocartesian fibrations over S, it is enough to see that
1
for every Z € S the induced functor (evi)z: X5 — X;l} is a cocartesian

1
fibration and for every morphism Z — Z’ in S the functor o : X5 — X5
sends (evi)z-cocartesian morphisms to (evi)zs-cocartesian morphisms.

This follows from the case that S is contractible.

It remains to characterize the evi-cocartesian morphisms:

Let f: A - B be a morphism of x4 lying over a morphism g:s —t
in S.

Then we can factor f as a morphism «a : A — g.(A) that is cocartesian

with respect to the cocartesian fibration X2" 5 S followed by a morphism
B:g+(A) » B in the fiber over t.

As evy : XA L oxin is a map of cocartesian fibrations over S, the
morphism evi(a) : evi(A) — evi(g«(A)) is p-cocartesian and thus « :
A - g.(A) is evi-cocartesian.

Therefore f : A - B is evi-cocartesian if and only if 3 : g«(A) - B
is evi-cocartesian which is equivalent to the condition that g is (evy)s-
cocartesian because evi is a cocartesian fibration.

B is (evi)¢-cocartesian if and only if evo(8) : evo(g«(A)) — evo(B)
is an equivalence which is equivalent to the condition that evo(f) is p-
cocartesian.

O

Corollary 6.14. Let p: C® — 0% be a cocartesian fibration of oper-
ads.

1. The induced O®-monoidal functor & : (C® - ((‘3®){1} on cotensors

in Alg,(Cate ) is a cocartesian fibration of O®-monoidal categories,
Al
)

A

is £-cocartesian if and only if its image
Al
)

where a morphism of (C®

under the O®-monoidal functor (C®

2. ¢&:(c® - (@®){1} is compatible with the same sort of colimits
p:C® - 0% is compatible with.

- (€®){0} is p-cocartesian.

A

Proof. (1) follows immediately from lemma 6.13.

For (2) let f e Mule(Y71, ..., Yn,Z) be an operation for some Y1, ..., Yn,Z €
€ corresponding to a morphism f:Y — Z in C® lying over the unique ac-
tive morphism (n) — (1) in Fin, with Y « G‘?m ~ @*" corresponding to
(Y1,..., Yn) € C™.

Let g € Mulp(X1,...,Xs,T) be the image of f in O® corresponding
to a morphism g : X - T in O® with X € 02@“) ~ 0" corresponding to
(X1, ..., Xn) € O

Then we can factor f : Y — Z as a p-cocartesian morphism Y —
®¢(Y1,...,Yn) followed by a morphism ®¢(Y1,...,Yn) - Z in the fiber
Cr.

B n n ee\A @ A @A

Thus the functor [TiL; (Cx;),y, = [Tit1 (€%)y, = (€%)y - (C%); =
(Cr),y induced by f:Y — Z factors as the functor
[1@x)py, = T1E)3 =€)~ () - (€r)

14 Xil) v —H Y; T Y ®g(Y1,..,Yn) = \CT) /@, (Y1,...,Yy)
induced by the p-cocartesian morphism Y — ®¢(Y1,...,Yn) followed by

Al Al .
the functor (e®)®g(yl,...,yn) = (Cr)/g, (vy,va) = €%); = (C1),y in-
duced by the morphism ®¢(Y1,..., Yn) — Z in the fiber Cr.
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Moreover by corollary 6.20 the first induced functor in the composition
= o8 Al @ Al NS
11 (eXa)/Yi = 11 (e )Yi ~ (€ )y - (€ )®g(Y1,A..,Yn) = (eT)/®g(Y1,...,Yn)

is equivalent to the induced functor IT; ({Yi} xey, Fun(A',€x,)) =

L {Yibxme, ex, T Fun(AY, €x,) = {®g(Y1, ., Yu) }xe, Fun(A', 1)
on pullbacks.

Therefore we have a commutative diagram

i )y, = Co)peuviv)

| |

[T, Fun(A',Cx,) ———— Fun(AY, @r)

| |

H?:l Fun({0}> eXi) I — Fun({0}7 CT)

where the bottom square is induced by g : X - T and the O®-monoidal

functor (@‘3)Al - (@‘X’){O} and the vertical functors of the outer square
are (induced by) the forgetful functors.

So (2) follows from the fact that for every category B € Cateo and every
object C € B the category B,c admits the same colimits like B which are
preserved and reflected by the forgetful functor B, — B.

O

Lemma 6.15. Let S be a category and ¢ : € — D a map of locally co-
cartesian fibrations over S that induces on the fiber over every object s of
S a right fibration.

Let X be a section of C — S such that for all s € S the image X(s) € Cs
is a final object of Cs.

The functor C — D is canonically equivalent over D to the functor

S xp1y pA' L pAT L, plo),

Proof. We have a commutative square

S Xe(1) CAI — S X1} @Al (31)

| |

eto s Dio}

of categories over S that induces on the fiber over every object s of S the
commutative square

(Cs)/x, — (Ds) j¢(xy) (32)

|

Cs ———— Ds.

As Cs —» Dy is a right fibration, the top horizontal morphism of square 32
is an equivalence.

As X(s) is a final object of Cs, the left vertical morphism of square 32
is an equivalence.
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By lemma 6.13 square 31 is a square of locally cocartesian fibrations
over S. Hence the left vertical and top horizontal map of locally cocarte-
sian fibrations over S of square 31 are equivalences.

O

Let p : €® — O® be a cocartesian fibration of operads and B c C a
full subcategory such that for every X € O the full subcategory inclusion
Bx c Cx admits a left adjoint Lx.

Denote B® c €% the full suboperad spanned by the objects of B.

Assume that p: C® — 0% is compatible with the localization B c € so
that the restriction B® c €® — 0% is a cocartesian fibration of operads
and the full suboperad inclusion j : B® c €® defines a lax O®-monoidal
functor that admits a left adojnt L : C® — B® relative to O® which is a
O®-monoidal functor.

Observation 6.16. If 0% is a symmetric monoidal category, C® is a
cartesian symmetric monoidal category and B is closed under finite prod-
ucts in C, then B® is a cartesian symmetric monoidal category.

In this case the full suboperad inclusion j : B® c C® is a symmetric
monoidal functor and the relative left adjoint © — B over O of the embed-
ding B c C preserves finite products.

Proof. The tensorunit 1e of the symmetric monoidal category C® is a final
object of € and thus a final object of B so that its image L(Lle) ~ 1¢ is a
final object of B.

But L(1¢) is the tensorunit of the symmetric monoidal category B®
because L : €® — B® is a O®-monoidal functor and thus a symmetric
monoidal functor as O® is a symmetric monoidal category.

Given two objects X,Y € B we have the following chain of natural
equivalences X ® Y ~ L(j(X)) @ L(j(Y)) » L(j(X) xj(Y)) 2 L(G(X xY)) ~
X xY, so that the canonical morphisms X®Y - X®1lg ~X and X®Y —
13®Y ~Y in B exhibit X® Y as a product of X and Y in B.

O

Observation 6.17. Let q: C — D be a bicartesian fibration and B c C
a full subcategory such that for every X € D the full subcategory inclusion
Bx c Cx admits a left adjoint.

Then q is compatible with the localizations on the fibers Bx c Cx for
X €D if and only if the restriction B c C 2 D is a cartesian fibration and
the full subcategory inclusion B c € is a map of such.

Proof. For every morphism of D the functor on fibers induced by the
cocartesian fibration q is a left adjoint of the functor on fibers induced by
the cartesian fibration q.

A functor with a right adjoint between categories that admit localiza-
tions preserves local equivalences if and only if its right adjoint preserves
local objects.

O

Let p: C® — 0% be a cocartesian fibration of operads.
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By lemma 6.13 the induced 9®-monoidal functor ¢ : (G®)Al - (e®)
is a cocartesian fibration.

Let £L,Rc A" be full subcategories such that for every X € O the full
subcategories £x,Rx ¢ ((3Al )x Fun(Al, Cx) determine a factorization
system on Cx.

Then by [18] 5.2.8.19. for every X € O the full subcategory Rx c

(Ct’A1 )x =~ Fun(A',€x) is a localization such that a morphism F — G of
F‘un(Al, Cx) with G € Rx is a local equivalence if and only if its image
under evaluation at the source Fun(A', €x) — Fun({0}, Cx) belongs to Lx
and its image under evaluation at the target Fun(A', €x) — Fun({1}, €x)
is an equivalence.

So the cocartesian fibration Fun(A', €x) — Fun({1}, Cx) is compatible
with the localization Rx c Fun(Al, Cx).

Denote R® c ((3@’)Al the full suboperad spanned by the objects of
Rcer
Lemma 6.18. If for every natural n € N, every objects X1,...,X,, T € O
and every operation g € Mulg (X1, ..., Xn; T) the induced functor [TiL; Cx, ~
CE — Cr sends objects of [1i; Lx, to objects of L1 and objects of TTiL; Rx,
to objects of R, the cocartesian fibration ((“,’®)Al - ((“3@){1} of O®-monoidal

categories is compatible with the localization R® c (€®)A1.

Thus the restriction R® c (G®)Al - (€)Y is a cocartesian fibration
of O®-monoidal categories and the full suboperad embedding R® c ((?‘X’)Al
is a lax O®-monoidal functor over C® that admits a left adjoint relative
to C® which is a map of cocartesian fibrations of O®-monoidal categories

over C%.

Proof. Let f €e Mule(Y1,..., Yn,Z) be an operation for some Y1,...,Yn,Z €
C corresponding to a morphism f : Y — Z in C® lying over the unique
active morphism (n) — (1) in Fin, with Y « C?w ~ @*" corresponding to
(Y1,...,Yy) € G

Let g € Mulp(X1,...,Xn; T) be the image of f in O% corresponding
to a morphism g : X - T in O® with X € O‘fn) ~ 0" corresponding to
(X1,..., Xn) € 07"

Then we can factor f : Y — Z as a p-cocartesian morphism Y —
®¢(Y1,...,Yn) followed by a morphism ®¢(Y1,...,Yn) - Z in the fiber
Cr.

Thus the functor

n n Al Al Al
H (GX;)/Yi = H (e®)yi = (G®)Y - (e®)z = (GT)/Z
i=1 i=1
induced by f: Y — Z factors as the functor
= = Al Al Al
“ q (€x)y, = 1,_{ €y, =€)y > (g v,y CT)joy vy, v

induced by the p-cocartesian morphism Y — ®g(Y1,...,Yn) followed by
the functor

..........

induced by the morphism ®¢(Y1,...,Yn) = Z in the fiber Cr.
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The second functor in the composition preserves local equivalences
because Fun(A',Ct) - Fun({1},Cr) is compatible with the localization
Rt c Fun(A', Cr).

By corollary 6.20 the functor « is equivalent to the induced functor

[THY:} xex, Fun(A', €x,)) = [T{Yi} 12, ex, []Fun(A', €x,)
i=1

i=1 i=1

- {®(Y1,..., Yn)} xe, Fun(A', Cr)

on pullbacks so that we have a commutative diagram

Hinzl (exi)/Yi ? (CT)/®g(Y1 ,,,,, Yn) (33)

J |

[T, Fun(A',Cx,) ———— Fun(A', Cr)

| |

[TiLy Fun({0}, Cx;) ———————— Fun({0}, Cr).

By the assumption that the middle horizontal functor in diagram 33
sends objects of [TiL; Rx, to objects of Rt the top horizontal functor in
diagram 33 sends objects of []iL; (Rx,)y; to objects of (RT)%(YU“,Y“).

The assumption that the bottom horizontal functor in diagram 33
sends objects of []iL; £x, to objects of L1 implies that the top horizontal
functor in diagram 33 preserves local equivalences.

O

For the proof of lemma 6.18 we needed the following lemma:

Lemma 6.19. Let S be a category and £ : X — Y a morphism of cocarte-
sian fibrations over S.

Let a: T — S be a functor and f: T - T xsY a cocartesian section of
the cocartesian fibration T xg Y — T.

Then the pullback TxyX - T of X = Y along the functor T LA TxsY —
Y is equivalent over T to the the pullback of the maps T xg X - T xgY
and B : T — T xsY of cocartesian fibrations over T and is therefore in
particular a cocartesian fibration.

Consequently if £ : X = Y is itself a cocartesian fibration classifying a
functor H:Y — Cate and classifying a natural transformation 7: F - G

of functors S — Cates then the composition T LA\ xsY - Y L Cate
is equivalent to the pullback * xGoa F o a in Fun(T, Cate ) formed by the
natural transformations Toa:Foa - Goa and » - G o « classified by
B:T—->TxgY.

In particular if B : A* = A'xgY corresponds to a cocartesian morphism
Z - 7' inY lying over a morphism A — B in S corresponding to a: A' - S
the induced functor Xz — Xz on the fiber is equivalent to the induced
functor {Z} xv, Xa = {Z'} xyy Xp between the fibers.

Proof. Consider the following diagram:
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Txy X ——TxgsX—X

L1

T o TwsY — Y

| ]

T——S
The lower right square and the outer right square are pullback squares
and thus also the upper right square.
As the outer upper square is a pullback square, the upper left square
is, too.

O

Corollary 6.20. Let O® be an operad and & : €® - D® a cocartesian
fibration of O®-monoidal categories.
LetnelN and X € DZ@H) ~ D*" be an object corresponding to the family

(X1,...,Xn) € D" that lies over an object Y € Of’n) ~ O™ correspond-
ing to the family (Y1,...,Yn) € O and let f € Mulo(Y1,..., Yn,Z) be an
operation.

Then the functor
H Cx; = Cop(xy,mXn)

i=1
induced by a cocartesian lift h: X - ®¢(X1,...,Xn) of f: Y = Z is equiva-
lent to the induced functor

LI(0X) xy, €v) = [T} xrmy, oy, [T€% = {6(X1, Xa)} %, €2

on pullbacks.
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6.1.2 Presheaves with Day convolution are the free monoidal
category compatible with small colimits

Let O® be an operad and €® a small O®-monoidal category.

In this chapter we characterize the Day convolution on P(€) as the free
O®-monoidal category compatible with small colimits (proposition 6.21):

For every small O®-monoidal category £® compatible with small col-
imits composition with the ©®-monoidal Yoneda-embedding C® — P(€)®
yields an equivalence

Fund**(P(€), &) » Funf (€, &)

between the category of O®-monoidal functors P(C)® — £® that preserve
small colimits and the category of O®-monoidal functors C® — £°.

To do so, we show that for X = @, K’ = Cates the symmetric monoidal
e e @ . :
functor P¥ : Cate — (Catx®)  corresponding to the cocartesian fibra-

p® | F— . . Lo I~
tion RE" — Cate of symmetric monoidal categories is left adjoint rela-

® @ —
tive to Fin. to the suboperad inclusion ¢: Catly¢ c Cates .
If this is shown, we obtain an induced adjunction Alg,(Cate) 2
Alg,(Cat?), where the left adjoint restricts to the functor

Algy(P) : Algy(Catoo ) — Algy (Catl®).

Together with remark 6.22 this implies that the Day convolution P(€)®
is the free O®-monoidal category compatible with small colimits.

More generally we show the following proposition:

Proposition 6.21. Let X c X' c Cateo be full subcategories.

== s ® —oe\®
The symmetric monoidal functor PX : Catd®(K) — Cated®(X’)  corre-

sponding to the cocartesian fibration
— ® —® —_ . ®
Cat(K)  xggzx RE - Cat(X)

of symmetric monoidal categories is left adjoint relative to Fin. to the
suboperad inclusion v : Catf,ffc(fK’)® c Caty© (fK)®.

Proof. Due to 6.1.1 the full subcategory U ¢ R spanned by the repre-
sentable right fibrations is closed under finite products.

Thus the full subcategory inclusion U ¢ R induces a symmetric monoidal
embedding UW* ¢ R* which is a map of cocartesian fibrations of symmetric
monoidal categories over Catws .

Pulling back this map of cocartesian fibrations of symmetric monoidal

R — .\ ®
categories over Cateo along the suboperad inclusion Catid®(X) c Cat,
we obtain a map

Cate (K)” xmx U € Catl* () xgmr R

. . . . . —ocTan®
of cocartesian fibrations of symmetric monoidal categories over Cateo®(K)
that induces a map

——— o~ _— —Q®
¢+ Cat (K) xgmn U*  Catie (K)” xemr R
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—soeTn® T .
of symmetric monoidal categories over Catso®(K)  as R¥' ¢ R contains all
representable presheaves.

By lemma 6.25 it is enough to construct a symmetric monoidal natural
—coere o ®
transformation A from the identity of Catsd®(X) to the lax symmetric
N s\ ®
monoidal functor Cat®(X) —— Cat®(X’) c Cat®(X) such that
the underlying natural transformation id,woerme, — tPX" exhibits PX’ as
left adjoint to the subcategory inclusion ¢ : CatZ®(X’) c Catel®(X).

According to corollary 6.12 such a symmetric monoidal natural trans-
formation A corresponds to a map of cocartesian fibrations
—_ ® —~ — . ® —=®
Cat(K)  xgmx W € Catd?(K)  xgmx R

—oe \®
of symmetric monoidal categories over Catse®(X) compatible with col-
imits indexed by categories that belong to K’ such that that for every

category € € Cati?c(fK)® the induced functor on the fiber € = Ue —
5% K .
RE o = P (@) factors as an autoequivalence of € followed by the Yoneda-
embedding.

Consequently A corresponds to a map of cocartesian fibrations of sym-

— .\ ®
metric monoidal categories over Cateo®(X) compatible with colimits in-
dexed by categories that belong to X’ that factors as an autoequivalence

of Catee(X)°

metric monoidal categories over Catf,ﬁ,’c(ﬂC)® followed by (.

« U* in the category of cocartesian fibrations of sym-

Catoo

So we choose A to be the symmetric monoidal natural transformation
corresponding to (.
O

Remark 6.22. Let K c K’ c Cateo be full subcategories and O% an operad.
The adjunction

PR Catl’(K) 2 Cate“(K) =
of proposition 6.21 yields an adjunction
Alg, (Catee(X)) = Algy (Cates(X")).

Given a small O®-monoidal category C® compatible with colimits in-
dexed by categories that belong to K corresponding to a O®-algebra 0% -
Cat(K)® of Cat®(K)® the unit nee : C° — :J>3§'(e)® is equivalent to
the induced O®-monoidal functor

€® ~ O® XCatéQ ux g O® XCat; :Rﬁl = “:Pﬂggl(("))®

We call nes : C® — f]’%r(ff)‘8 the O®-monoidal Yoneda-embedding of
c®.

For every small O®-monoidal category D® compatible with colimits in-
dexed by categories that belong to XK' the functor

Fun®<°X (9% (@), D) - Fun2 % (€, D)

given by composition with nee is an equivalence:
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For every small category W the cotensor DY i Alg,(Cateo ) is com-
patible with colimits indexed by categories that belong to X' and for every
small O®-monoidal category B® compatible with colimits indexed by cate-
gories that belong to X' the canonical equivalence

Algy (Cato ) (B, D) = Catee (W, Fun (B, D))
restricts to equivalences
Alg (Cate® (X)) (B, D") = Cateo (W, Fun® ™ (B, D))
and

Alg, (Cati® (X)) (B, DY) = Catee (W, Fun® ™ (B, D)).
So by Yoneda the commutativity of the square

Cate (W, Fun&<e*' (X' (€), D)) —— Cateo (W, Fun8*°>* (€, D))

Alg (Cat2® (X)) (P (€), DY) —— Algy(Cat®(KX))(€, ™)
implies that the functor
Fun§ ““* (P (€), D) - Fun§ ™ (€, D)

giwen by composition with nee is an equivalence.

Let O® be an operad, C® a small O®-monoidal category and D® a
0®-monoidal category compatible with small colimits.

We complete this section by showing that there is a canonical O®-
monoidal equivalence

Fun(€,D)® ~ P(€"")® @ D®
(prop. 6.23).
In the proof of prop. 6.23 we use the following fact:

Let € be a small category and D a presentable category.
Denote a: P(€) x D — Fun(C°?, D) the functor adjoint to the functor

CP x (P(€) x D) = (CP x P(€)) x D - 8 x D D,

where the functor 8 x D — D is the left action map of the canonical left
S$-module structure on D.

With 8§ x D — D also « preserves small colimits in both variables and
so induces a small colimits preserving functor o’ : P(€) ® D — Fun(€°?, D)
that is an equivalence by [18] 4.8.1.16.

Proposition 6.23. Let O% be an operad, C® a small O®-monoidal cate-
gory and D® a O®-monoidal category compatible with small colimits.

The canonical O® -monoidal equivalence ¥ : P(C™VxD)® =~ P(€™V)®® P(D)®
restricts to a O®-monoidal equivalence

Fun(@, D)® ~ P(C*)® @ D®.
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Proof. Assume that D® is compatible with T-small colimits for some un-
countable regular cardinal .
By prop. 6.5 we have O®-monoidal localizations

P(€" x D)® 2 Fun(C, Ind,(D))®, P(D)® 2 Ind, (D)®.

The O®-monoidal functor P(C*¥)®® P(D)® = P(€™)®® Ind.(D)®
induces on the fiber over every X € O the localization

Fun(Cx,P(Dx)) 2 Fun(€x, nd, (Dx))

and is thus a O®-monoidal localization.
Hence 1 restricts to a O®-monoidal equivalence

¢ : Fun(€,Tnd, (D))® ~ P(€*")®® Ind, (D)®.
We have a canonical O®-monoidal equivalence
Fun(C@, Ind, (D))® ~ P(€*)®*® Ind, (D)® ~ Ind, (P(C*"))®® Ind, (D)®
~ Tnd, (P(C*") ® D)®
that induces on the fiber over every X € O the canonical equivalence
Fun(Cx,Tnd, (Dx)) ~ P(EP)® Ind, (Dx) ~ Ind, (P(CY))® Ind, (Dx)
~ Ind, (P(CP) ® Dx)
that restricts to an equivalence
Fun(€x, Dx) = Fun(Cx,Ind, (Dx)") = Fun(Cx, Ind, (Dx))” ~
Ind, (P(EP) ® Dx)" = P(CY) ® Dx.
Consequently ¢ restricts to a O®-monoidal equivalence

Fun(@, D)® ~ P(C*Y) ® D®.

Lemma 6.24. Let B be a category and F : C - D a map of cocartesian
fibrations over B.

Let G:D — C be a functor over B and A :ide - G o F a natural transfor-
mation relative to B, i.e. a morphism of the category Funs(C, C).

Assume that for every X € B the induced natural transformation
Ax tidey = Gx o Fx ezhibits Fx as a left adjoint of Gx.

Then X :ide — G o F exhibits F as a left adjoint of G relative to B.

Proof. We want to see that for arbitrary objects C € € and D € D the
canonical map

0:D(F(C),D) - €(G(F(C)),G(D)) - €(C,G(D))

is an equivalence.
Let Y be the image of C in B and Z the image of D in B.
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Then we have a commutative square of spaces

D(F(C),D) —— C(G(F(C)),G(D)) —— C(C,G(D))

|

B(Y,Z).

Therefore 6 will be an equivalence if and only if for every morphism
¢:Y — Z in B the map induced by 6 on the fiber over ¢ is an equivalence.

As € - B and D — B are cocartesian fibrations, this map is equivalent
to the map

p: Dz(¢«(Fy(C)),D) - Cz(Gz (¢« (Fy(C))),Gz(D)) —»
Cz(¢+(Gy (Fv(C))),Gz(D)) — €z(¢+(C),Gz(D)).

By our assumption that F : € - D preserves cocartesian morphisms,
the canonical morphism ¢« (Fy(C)) - Fz(¢.(C)) in Dz is an equivalence.
We will complete the proof by showing that the composition

€:Dz(F2(6+(C)), D) = Dz(6:(Fv(C)), D) % €2(¢+(C), Gz(D))
is equivalent to the map
7 : Dz(Fz(¢+(C)), D) - C2(Gz(Fz(4+(C))), Gz(D)) — Cz(¢+(C), Gz(D))

that is an equivalence because we assumed that Az : ide, - Gz o Fz
exhibits Fyz as a left adjoint of Gz.
¢ is equivalent to the map

Dz(Fz(¢+(C)), D) = Cz(Gz(Fz(4+(C))), Gz(D)) ~
Cz(Gz(¢+(Fv(C))),Gz(D)) » Cz(¢«(Gy(Fyv(C))),Gz(D)) —»
€z(¢+(C),Gz(D))
and is therefore equivalent to v if Az(¢.(C)) factors as
$+(C) = ¢+ (Gy(Fy(C))) = Gz(+(Fy(C))) > Gz(Fz(¢+(C))).
The composition
¢+(Gy (Fy(C))) = Gz(+(Fy(C))) - Gz(Fz(¢+(C)))

is the canonical morphism ¢« ((G o F)y(C)) - (G o F)z(¢.(C)).
So it remains to show that

9+(C) = ¢:((G o F)v(C)) = (GoF)z(+(C))

and ¢ (C) = (GoF)z(¢«(C)) are equivalent in Cz (¢« (C), (GoF)z(4«(C))).

By the equivalence

€z(¢+(C), (G o F)z(¢+(C))) = {9} x5(v,2) €(C, (G o F)z(¢+(C)))
this is equivalent to the condition that

a:C = $.(C) = ¢ ((GoF)v(C)) = (GoF)z(¢+(C))

and B : C = ¢«(C) = (G oF)z(¢+(C)) are equivalent in {¢} xu(y, z)
€(C, (G oF)z(+(C))).
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By definition ¢.(C) - ¢.((G o F)y(C)) corresponds under the equiv-

alence

€z(¢+(C), ¢« ((G o F)v(C))) = {9} xm(v.z) €(C, ¢+ ((G o F)v(C)))
to C = (GoF)y(C) = ¢ ((GoF)v(C)).

Thus by the commutativity of

C2(¢+(C), ¢+ ((G 2 F)v(C))) ————= C2(¢+(C), (G 0 F)z(+(C)))

{6} x3(v,2) €(C, 9+ ((GoF)y(C))) —— {8} x5(v,2) C(C, (G o F)z(¢+(C)))
the morphisms a and o' : C - (G o F)v(C) = ¢«((GoF)y(C)) - (Go
F)z($+(C)) are equivalent in {¢} x5y, z) €(C, (G o F)z(¢+(C))).

Similarly ¢«((GoF)y(C)) = (G oF)z(¢«(C)) corresponds under the
equivalence

Cz(¢+((GoF)y (C)), (GoF)z(¢+(C))) = {¢}x5(v,2) C((GoF)v (C), (GoF)z(¢+(C)))
to (GoF)y(C) = (G o F)z(¢:(C)).

Therefore o’ : C - (G o F)y(C) - (G o F)z(¢«(C)) is the image of
d«((GoF)y(C)) » (GoF)z(¢+(C)) under the map

C2(¢+((GoF)y (C)), (GoF)z(¢+(C))) = {¢}x5(v,2) C((GoF)v (C), (GoF)z(¢+(C)))

= {0} xn(v.2) €(C, (G o F)z(6+(C))).
Consequently o', o’ are equivalent in {¢} x5 (y,z)C(C, (GoF)z(¢+(C))).

By the naturality of X relative to B we have a commutative square

C— 5 (GoF)y(Q)

| |

$+(C) —— (G o F)z(¢+(C))
in € which lies over the identity of ¢ in B(Y,Z) and therefore yields an
equivalence in {¢} x5¢y,z) C(C, (G o F)z(¢«(C))) from
a’:C > (GoF)y(C) ~ (GoF)z(4+(C))

to f:C = ¢:(C) > (G o F)z(¢+(C)). .

Corollary 6.25. Let 0% be an operad, F : C® - D® a 0®-monoidal
functor and G : D® - C® g lax O®-monoidal functor.

Let X\ :idge - G o F be a O®-monoidal natural transformation, i.e. a
morphism of the category Alge,o(C) c Funge (€®,c®).

Assume that for every X € O the induced natural transformation
Ax tidey = Gx o Fx on the fiber over X exhibits Fx as a left adjoint of
Gx.

Then A :ide — G o F exhibits F as a left adjoint of G relative to O%.
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Proof. By lemma 6.24 we have to check that Ax :idey, = Gx oFx exhibits
Fx as a left adjoint of Gx for every X 0°®.

Let X € O?n) ~ ™" for some n € N corresponding to the family (X1, ...,Xn)
and let C e C% ~ [T, Cx, and D € D% ~ [T, Dx, be objects corresponding
to the families (Cu,...,Cyn) and (Dq,...,Dy).

Then we have a commutative square of spaces, where all vertical maps
are equivalences:

DE(Fx(C),D) ——————— €% (Gx(Fx(C)),Gx (D)) —————— €$(C,Gx (D))

| | |

[T Dx; (Fx;(Ci), Di) —— TIiL; Cx, (Gx, (Fx,(Ci)), Gx; (Di)) —— TIiL: €x,(Ci, Gx, (Dy))

O
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6.1.3 Algebras in the Day convolution are lax monoidal
functors

Let O'® - 9% be a map of operads, €® a small O®-monoidal category and
D® a O®-monoidal category compatible with small colimits.
In this chapter we show that there is a canonical equivalence

Algo’xo e/o (D) = Algo'/o (Fun(€, D))

between maps of operads O'® xge C® - D® over O® and O’®-algebras
relative to O® in the Day convolution Fun(€,D)® (prop. 6.28).

Especially if we choose the map 0'® — O® to be the identity, we get a
canonical equivalence

Alge/o('D) = Alg/o (Fun(€, D))

between lax O®-monoidal functors €% — D® and O®-algebras relative to
O® in the Day convolution Fun(C,D)®.

Here we don’t need to assume that €% is a small O®-monoidal cate-
gory and D® is compatible with small colimits as we don’t need the Day
convolution Fun(C, D)® to be a O®-monoidal category but only an operad
over 0%,

The strategy to construct this equivalence is as follows:
We show in proposition 6.26 that there is a canonical equivalence

Alggrjo(P(D)) = Algor  mrev ().

Applying this equivalence twice we obtain an equivalence
Algo'/o (P(C™ xp D)) = Algo'xo (Crevx o D)rev (8) = Algo'xO Cx o Drev (8)

= Algo'xo e/o (P(D))
that restricts to the desired equivalence

Algeor o (Fun(C,D)) ~ Algo,xO e/o('D).

For later applications we work with cocartesian S-families of operads
for some category S.
We start with some notation:

Given S-families of operads O® — 0® xS, 0"® - 0% x S denote
Algd,(0”) ¢ Fungin, «s(0'®,0”®) the full subcategory spanned by the
functors over Fin. x S that induce on the fiber over every s € S a map
of operads 0° —» 0%,

Given maps of S-families of operads a.: O"® - 0%,0"® - 9® we write
Alg}/(0") for the pullback {a} X AlgS , (0) Algh, (0.

Given an operad B® denote Alg,(B) c Fungin, (0%, B®) the full sub-
category spanned by the functors over Fin. such that for every s € S the
composition 02 - O® — B® preserves inert morphisms so that we have a
canonical equivalence Alg, (B) =~ Alg3 (B x S).

Given a category with finite products € denote Mong (€) c Fun(O®, C)
the full subcategory spanned by the functors such that for every s € S the
composition Of - O® - € is a O®-monoid of €.
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For C = Cate the objects of Mone(Cate) are exactly classified by
cocartesian fibrations D® — 0% of cocartesian S-families of operads.

The universal €*-monoid €* — € of € yields an equivalence
B: Algy(€) = Algd (€ x S) — Mone (€).
Proof. The map
Algl (€x8S) c Funly | (0%, €*xS) - Mapg (0%, €*xS) - Mapg (0%, €xS)

of cartesian fibrations over S induces on the fiber over every s € S the fully
faithful functor

Alg, (€) c Fungin, (05, €") » Fun(07, €*) - Fun(0¢, €)

with essential image Mongp, (€) and so induces on sections a fully faithful
functor given by 3 : Alg3 (€ x S) - Mone (€) c Fun(0®,€) ~ Funs (0%, € x
S) with essential image Mong (C).

O

Especially for @ = Cat., every cocartesian fibration D® - 0% of co-
cartesian S-families of operads classifies an object of Monp (Cate ) ~

Alg,(Cateo) =~ Alg(SD(Catoo x S), i.e. a map of S-families of operads
0® > Cat’ xS.

Given a cocartesian fibration D® — 0% of cocartesian S-families of
operads corresponding to a map O® — CatX x S of S-families of operads
denote iP/CSatm (D)® - O% the pullback of the symmetric monoidal functor
Cart* — Catl along O® - Catl xS — Cat’ and T/S(D)® - 0% the
pullback of the symmetric monoidal functor R* — CatZ, along O® — CatX, x
S — CatX,.

If S is contractible, we write Pc,,_(D)® - 0% and P(D)® - O°.

Proposition 6.26.

Let S be a category, ¢ : O'® - 0% a map of cocartesian S-families of
operads and D® - O® a cocartesian fibration of cocartesian S-families of
operads.

There is a canonical equivalence
S S S
B:Algh, o (Ph, (D)) = Algl,,  prev (Cateo x )
over S.

For every X € O and s € S the following square commutes:

Algly (PE_ (D)) = AlggS,XO,D,ev(Catw xS)s

N |

Fun((00)x, Fun((Ds)¥, Cate)) ————— Fun((02)x x (Ds)¥, Cateo ).
(34)
Hence [ restricts to an equivalence

Algly, o (P5(D)) = Alglyy,,  prev (S % S)

over S.
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Proof. The cocartesian fibration D® — O® of cocartesian S-families of
operads classifies a functor ¢’ : O® — Cate that corresponds to a map of
S-families of operads O%® — Cat}, x S.

Denote ¢ the composition O® — Catl, x S — Cat.

We have a canonical embedding
{(-)Po¢ op} X Mon g (Catoo ) Monof(Fun(Al, Cate)) =

{(-)®o @' o 0} X Mon / (Cates ) Fun(Al, Mong/(Cates)) ©
{(_)OP o ¢, © 90} ><Fun(O’@’,Catm) Fun(Ala Fun(ol®7 Catw)) =

1 t
{O'® X 9® ('D®)rev} Xcat:/cgrlé Fun(A ,Catig/%i@) ~

(Catf,;’/cgfé )/o/@ Xo® (D®)rev .
The subcategory inclusion

cocart
Catoo/o@XO@ (D®)rev C Catm/o@xO@ (D®)rev =

(Catoo/o@ )/O@Xo@ (D®)rev
restricts to a subcategory inclusion

cocart cocart
Catoo/o’®><o® (D®)rev C (Catoo/o@ )/O'®Xo® (D®)rev

and the embedding
{(=)°" 09" 00} Xmon, (Cato) Mones (Fun(A', Cates))

(Catig/cg%)/o@xo@(f))@)rev
restricts to an embedding

cocart

{(-)Po¢ op} X Mon o (Catos) Monor (Cocart) c Cateo/or@x g (D®)rev

A map B - 0"® xge (D®)"™" of cocartesian fibrations over O'® is a co-
cartesian fibration if and only if it classifes a functor O'® - Fun(A', Cate.)
that factors through Cocart.

Given cocartesian fibrations B — 0'® xge (D®)"™", € - 0'® xge (D®)""
a functor B — € over O'® xye (D®)™" that is a map of cocartesian fibra-
tions over O’® is a map of cocartesian fibrations over 0’® xge (D®)™" if

and only if for every X € O® the induced functor Bx — Cx over D?:EX) is

op

a map of cocartesian fibrations over Dw(x).

Moreover the embedding

cocart

{(-)P o op} X Mony/ (Cateo) Mongs (Cocart) c Catm/o!®xo®('D®)rev

~ Fun(0"® xge (D®)*Y, Cate)
restricts to an equivalence
{(_)op o (251 o Lp} XMonO,(Catm) MOHo/(COCZH‘t) ~ MOnoleDrev (Catoo) :

Given a cocartesian fibration B — O'® xge (D®)*¥ and an object s € S
the induced cocartesian fibration By - 0 xge (D)™ exhibits Bs as a
o0e X o® (D&)**“-monoidal category if and only if the composition Bs —
o0e X o8 (DE)™ - 0% exhibits Bs as a 9.®-monoidal category.
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The duality involution on Cate, induces an involution on Fun(A®, Cato,)
that restricts to an equivalence Cart ~ Cocart.

So we obtain a canonical equivalence
B Alg o (Pl (D)) = {¢ 09} XAty (Catu) Algos (Cart) =
{¢" © @} XMong, (Cate) Moner (Cart) =
{(=) 0 ¢" 0 ¢} XMon,, (Cates) Mongr(Cocart) =
Mongrx, prev (Cates ) = Algry , prev (Cates ).

For every map 0”® - 9'® of cocartesian S-families of operads over O®
we have a commutative square

Algl, /o (P, (D)) —— Alggs,  prev (Cateo) (35)

Catoo

| |

S ~
Alg o (PL,_ (D)) —— Alggn, prev(Cateo)
and for every functor T — S we have a commutative square

Algd, o (P, (D)) ————— Algys, prev(Cateo)

Cateo

| |

T ~
Alg%st’/TxSO((‘Péatm (TxsD)) —— Alngso'xTXSoszDrev(Catw)-
(36)
Given a functor K — S we have canonical equivalences

Funs (K, Algly, o (Pl (D)) =

Fung (K, K xs Algh, (P, _ (D)) =
FunK(K,Algﬁiso,/KxSo(Tgtw(K xg D)) =
Algi o710 (Pl (K xs D))
and
Funs (K, Algly, | prev (Cateo x S))
Funk (K, K xg Alg{DS,XODrev(Catoo xS)) =

K
FHHK(K, Alg{(xSO’XKXSOKXSD‘”EV(Cat°° x K)) =

K
AngxSO’xKXSOKXS'Drcv (Catw X K)

So we obtain a canonical equivalence

¢ Fung (K, Alg’S, (PLE. (D)) ~ Funs (K, Alg/S (Cateo x 9)).

0’/O\"Y Catoo O'x g Drev

Moreover the commutativity of square 36 implies that for every functor
K - K’ over S we have a commutative square

Funs (K, Algl, o (Pl (D)) —— Funs (K, Algl, | prev (Cates x S))

| l

Funs (K, Algl, o (Pl (D)) — Funs (K, Algl,,  pev (Cates x S)).
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Thus v represents an equivalence

Algl, o (PE, (D)) = Algly,  prev (Cateo x S)

over S that fits into square 34 and so restricts to an equivalence

Algly, o (P5(D)) = Algly, (8x8)

O'x g Drev

over S.

Corollary 6.27. Let O® be an operad and D® - 0% a O®-monoidal
category.

There is a canonical equivalence
Algg o (Pestcs (D)) = Algy prev (Catec)
natural in every map of operads ©'® — O% that restricts to an equivalence

Algorjo (P(D)) = Algoryy prev (8)-

Proof. For O"® - 0® xS the map of cocartesian S-families of operads that
classifies the identity of S = Op,,;0e We get an equivalence

Algl s (Peate (D) x 8) = Algly, e (Catoo x S)

O'x
of cartesian fibrations over S that classifies an equivalence
Alg(Lyj0(Peate. (D)) = Alg (., prev)(Cateo)

of functors (Op.,pe )’ — Cate (theorem 5.23) that sends a map of op-
erads O"® - O® to the canonical equivalence

Algg o (Pese, (D)) = Algg, mrev (Cateo)

of prop. 6.26 (for S contractible).
O

Proposition 6.28. Let S be a category, ¢ : 0'® - 0% a map of cocartesian
S-families of operads and C® — 9%, D® — O® cocartesian fibrations of
cocartesian S-families of operads.

There is a canonical equivalence
S rev S
Algly, o (PI(E™Y x0 D)) = Algly, o/0(P5(D))
over S.

For S contractible we get the following:

Let ¢ : O"® — O® be a map of operads and C®, D® small O®-monoidal
categories.

There is a canonical equivalence

Algor/o (P(C™ x0 D)) = Algor,, ¢/0 (P(D))
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natural in @ :O'® - 0%,
For every X € O the following square commutes:

Alg o (P(E™Y x0 D)) —————— Algorye0(P(D)  (37)

l |

Fun(0%, P((€x)°P x Dx)) ——— Fun(0% x Cx,P(Dx))

So this equivalence restricts to an equivalence
Algol/o(Fun((?,D)) o Algo'xoe/o(D)

natural in @ : O'® - 0%,

Proof. By proposition 6.26 applied twice there is a canonical equivalence

Algly, o (PI(E™Y x0 D)) = Algly, erevyy pyrew (8 X S)

Alg’S prev (8% 8) = Algly, oo (P5(D))

O'x9Cxg
over S.

For S contratible we get an equivalence
Algo'/o(fp(Grev xo D)) =~ Algo'xo(erevXOD)reV(S) = Algo'xoexofprev (8)
= Algo,m c/o(g)(D))

natural in ¢ : O"® - 9% and making square 37 commutative.
So this equivalence restricts to an equivalence
Algo,/O(F\m(G, D)) = Algo'xoe/o(D)

natural in ¢ : O'® — (9%,

Corollary 6.29.

1. Let O® be an operad and C® a small O®-monoidal category corre-
sponding to a O®-monoid ¢ of Cateo.
There are canonical O®-monoidal equivalences

Fun(C*, Cateo x 0)® = Pcar, (€)®
and
Fun(C™,8 x 0)® ~ P(€)®
represented by the canonical equivalences
Algys /o (Fun(€™, Catee x 0)) = Algg/,, erev o (Cateo x 0) =
Alg sy erev (Cateo ) = Algr/o (Peate. (€))
respectively
Alggrjo (Fun(C™,8 x 0)) = Algyr, erevyo (8 x 0) =
Algolxocrcv (S) =~ Algol/o(ip((‘f))

natural in the operad O'® over O® provided by the second part of
proposition 6.28 and proposition 6.26.
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2. Let D® be a small O®-monoidal category.
There is a canonical O®-monoidal equivalence
Fun(C, P(D))® = P(C* xo D)®
such that we have a commutative square

Fun(€, P(D))® — 5 P(C™ xo D)®

| |

Fun((‘ZX,TP(DX)) ;) fP(((EX)Op X @)()
represented by the canonical equivalence
Algo,/o(Fun(G, P(D))) = Algo'xo e/o(?(D))

= Algo'/o(?(ercv xo D))

natural in the operad O'® over O% provided by the first and second
part of proposition 6.28.

Corollary 6.30.
Let ¢ : 0"® - 0% be a map of small operads and C® - 0% a small
0%-monoidal category.

The functor — xge C® : Opoo/o® — Opoo/o® admits a right adjoint.
Proof. Given a map of small operads D® — O® denote Envy (D)® — 0% its

enveloping O®-monoidal category that comes equipped with an embedding
D® - Enve (D)® of operads over 0%,

Denote Fun(€,D)® c Fun(C,Enve(D))® the full suboperad spanned
by the objects of Fun(Cx,Enve(D)x) for some X € O that belong to
Fun(@x,DX).

By proposition 6.28 there is a canonical equivalence
Algo,/o(Fun((f, Enve(D))) ~ Algyri,eo (Enve (D))
natural in ¢: 0'® - 9% ¢ OPo 0o that restricts to an equivalence

Algyro (Fun(€,D)) ~ Algyry, e/o(D)-
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6.1.4 O®-monoidal adjointness

Denote Catl,Catl c Cato, the subcategories with the same objects and
with morphisms the left respectively right adjoint functors.

Recall that there is a canonical equivalence Catl, =~ (Cat%)°P that
sends a category to itself and a left adjoint functor to its right adjoint.
This equivalence is represented by the equivalence

Cate (-, Catl) = (Catz';?ft)): ~ Cates ((-)°", Catyy) = Cate (—, (Caty)°P).

Given two categories C,D € Cato, there is a canonical equivalence
Fun™ (D, €) ~ Fun" (€, D)°P

that sends a right adjoint functor to its left adjoint.

Taking the opposite category defines a functor Fun™ (@, D)°P ~ Fun™(€°P, D°P).
The canonical equivalence Fun™ (D, €) ~ Fun®™(€, D)°P ~ Fun™(€°?, D°P)

is induced by the canonical equivalence

Fun(D,P(€)) =~ Fun(D x C°?,8) ~ Fun(€C® x D, 8) ~ Fun(C°?, P(D°?))

as Fun™(D,€) c Fun(D,P(€)) corresponds to the full subcategory of
Fun(D x €°?,8) spanned by the functors D x €°® — § that are repre-
sentable in both variables and so Fun™(C°?, D°P) ¢ Fun(€°?, P(D°P)) cor-
responds to the full subcategory of Fun(C°?xD, §) spanned by the functors
C°? x D — 8§ that are representable in both variables.

Moreover we have a canonical equivalence (Cat%)°P ~ Catl,, under
which a right adjoint functor corresponds to its left adjoint.

The canonical involution (-)°" on Cate restricts to an equivalence
Catl ~ Cat® so that we obtain a canonical equivalence (Cat?<> )P~ Catd.

In this section we generalize the notion of adjunction to the notion
of O®-monoidal adjunction for every operad O® and construct similar
equivalences.

We show in prop. 6.35 that for every operad O® and arbitrary O®-
monoidal categories C®,D® there is a canonical equivalence

F\un‘@,R,IaX(D7 e) ~ F\un®,L,oplaX(e, D)op

between the category of lax ©O®-monoidal functors D® — €® that admit
fiberwise a left adjoint and the opposite category of the category of oplax
O®-monoidal functors €® — D® that admit fiberwise a right adjoint.

We show in proposition 6.40 that there is a canonical equivalence
(Mong*(Cate)™)°P = Mong™(Cate )™

that sends a right adjoint lax O®-monoidal functor G : D® — €% to the
right adjoint lax O®-monoidal functor F*" : (€®)" — (D®)**" represent-
ing the oplax O®-monoidal left adjoint F : €® - D® of G.

Definition 6.31.
Let O® be an operad and C®,D® be O®-monoidal categories.
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1. LetF:C® - D% be an oplaz O®-monoidal functor corresponding to a
lax O®-monoidal functor F*¥ : (C®)*Y —» (D®)*V and G : D® - @®
a lax O®-monoidal functor.

We say that F : €® — D® is O®-monoidally left adjoint to G : D® —
C® or G:D® - C® is O®-monoidally right adjoint to F : C® - D® if
the lax O®-monoidal functors

Frev . (e®)rev N (D®)rev c 9)(,DreV)®7 G . D® N e® c T(@)@
correspond to equivalent lax O®-monoidal functors

(C®)' xpe D® - 0% xgin, 8.

2. Let €% be a O®-monoidal category, F : C® xgo D® — £® an oplazx
O®-monoidal functor corresponding to a lax O®-monoidal functor

Frev . (e®)rev X8 (D®)rev N (8®)rev

and G : (D®)rev X® E® N G®,H . (6®)rev X ® 8® N ®® lax O®-
monoidal functors.

We call the triple (F,G,H) a O®-monoidal adjunction of two vari-
ables if the lax O®-monoidal functors

Frev . (e®)rev X8 (@@)rev N (8®)rev c CP((.SreV)(XJ7
G:(D®) Vx0e€® - % cP(€)®, H:(C®)“xpel® = D®cP(D)®
correspond to equivalent lax O®-monoidal functors

(e@)rev X 0o (D®)rev X0 8® N O® X Fin, SX.

Remark 6.32. Let F: C® » D® be an oplax O®-monoidal functor cor-
responding to a lax O®-monoidal functor F**¥ : (C®)™ — (D®)*V and

G :D® - C® a lax O®-monoidal functor corresponding to an oplaz O%-
monoidal functor G*¥ : (D®)"™ — (C®).

The oplax O®-monoidal functor F : C® — D® s O®-monoidally left
adjoint to G : D® — C® if and only if G : (D®)*¥ - (C®)™ is O®-
monoidally left adjoint to F*¥ : (%)™ — (D®)™".

Remark 6.33. An oplax O®-monoidal functor F : €€ — D® corresponding
to a lax O®-monoidal functor F**¥ : (C®)**Y - (D®)**V is O®-monoidally
left adjoint to G : D® — C® if and only if the laz O®-monoidal functors

® (Frev)*

P® cp(D)® L p@)®, D5 e®cpe)®
are equivalent.

Dually F : €% - D% is O®-monoidally left adjoint to G : D® — C® if
and only if the lax O®-monoidal functors

(e®)rev c T(el‘QV)@ E:) ﬂ)(@%\l)@7 (e®)rev Frev (D®)rev c ?(DreV)QB

are equivalent.
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Proof. Let o be an equivalence of lax O®-monoidal functors
(€®)rev Xp® D® N o@ X Fin, Sx

between the lax O®-monoidal functor (€®)*¥ xye D® - 0% x5, §* adjoint
to F™V : (€®)*Y - (D®)™ c P(D*¥)® and the lax O®-monoidal functor
(C®)Y xge D® —» 0% xgi,, 8 adjoint to G : D® —» C® c P(C)%.

a is adjoint to an equivalence of lax 9®-monoidal functors D® — P(C)®

between D® ¢ P(D)® L2 p(€)® and D° S ° ¢ P(e)°.

O

As the 0% -monoidal Yoneda-embeddings are fully faithful, O®-monoidal
left respectively right adjoints are unique if they exist.

Hence an oplax O®-monoidal functor F : C® — D® admits a lax O%-
monoidal Tight adjoint G : D® - C® in the sense of definition 6.31 if and
only if for all X € O there is a functor Gx : Dx — Cx such that the functors

(F)* Gx
DX [ T(Dx) —> :P(ex) DX e GX C ?(ex)
are equivalent or equivalently if for all X € O the induced functor Fx :
Cx — Dx admits a right adjoint Gx : Dx — Cx.

Dually a lax O®-monoidal functor G : D® — €% admits an oplaz O®-
monoidal left adjoint F : C® — D® if and only if for all X € O there is a
functor Fx : Cx — Dx such that the functors
O O O [e) (F )
(€)%« P((€x)°) ‘2L p((Dx)P), (Ex) X
are equivalent or equivalently if for all X € O the induced functor Gx :
Dx — Cx admits a left adjoint Fx : Cx — Dx.

—— (Dx)™ =« P((Dx)™)

So an oplaz O®-monoidal functor F : €® — D® admits a lax O%-
monoidal right adjoint G : D® — C® if and only if for all X € O the
induced functor

(Fx)?PxDx
—_—

(GX)OP X ‘DX (Dx)Op X ®X — S

is representable in both variables.

Dually a lax O®-monoidal functor G : D® - C® admits an oplax O®-
monoidal left adjoint F : C® - D% if and only if for all X € O the induced

functor

op o
(ex)op x DX (€x) Gx

is representable in both variables.

(Cx)Px€x > 8

Given categories C, D, & denote
e Fun®(D,€) c Fun(D,€) c Fun(D,P(€)) = P(D°® x €) the full sub-
category spanned by the functors G : D — C that are representable in

C(X,—
both variables, i.e. that for every X € € the functor D Se L), S
is corepresentable.
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o Fun®(Dx&, @) c Fun(Dx¢&,C) c Fun(Dx &, P(C)) = P(D°P x E°P x C)
(by abuse of notation) the full subcategory spanned by the functors
v:D x & - € that are representable in all three variables, i.e. that

for every X € C,Y € D,Z € & the functors D RISEON ¢ L0, 8 and

e 2000, e L&D, 8 are representable.

If a functor G : D — € belongs to Fun™(D, €), the functor

e c j)(eop)op ((;*—)Op) :P(‘Dop)op

induces a functor F : € = D so that we have an equivalence
D(F(X),Y) = €(X,G(Y))
natural in X e C, Y € D.

Remark 6.34. If ¢ : M — A' denotes the cartesian fibration classifying
G:D — C, for every X € C there is a canonical equivalence

D Xe GX/ ~D XM MX/ ~ {1} XAl Mx/,

where the final objects of the category DxeCx, are the corepresentations of

e(X,- .
the functor D Se L&), 8 and the final objects of the category {1} x a1
My, are the ¢-cocartesian lifts of the canonical morphism 0 — 1 in Al
starting at X.

So a functor D — € belongs to Fun™(D, Q) if and only if ¢ : M - A*
is a bicartesian fibration, i.e. G admits a left adjoint.

If a functor G : D x & - € belongs to Fun™(D x &, €), the functors
C x & - P(C°?) x Fun(D, €) — P(DP)

and
Cx D — P(C°?)° x Fun(&, )P — P(EP)P

induce functors 8 : €°P x & — D°P respectively a : € x D°? - € so that
we have equivalences &(a(X,Y),Z) ~ DP(Y,B(X,Z2)) ~ C(X,v(Y,Z))
natural in X e C, Y eD,Ze €.

Let O® be an operad and C®,D® £® be O®-monoidal categories.
We introduce the following abbreviations:

Denote

e Fun®™(D,€)® c Fun(D, €)® c P(D™VxC)® the full suboperad spanned
by the objects that belong to

Fun™(Dx, €x) ¢ Fun(Dx, €x) ¢ Fun(Dx, P(Cx)) = P((Dx)*"xCx) =
:P(.Drev ) e)%
for some X € O
e Fun™(C,D)® := Fun™ (™Y, D™)®
e Fun®'>¥(D, @) := Alg/O(FunR(D, €)) c Alg;o(Fun(D,C)) = Fun®'**(D, €)
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° Fung,oplax,L(D’ e) = Fung,lax,R(Drev7 ereV)op _ Alg/o(FunR(ﬂrev, ereV))op —
Alg, o (Fun®™(D, €))°P ¢ Funf ™ (D™, €"¥)° = Fun§ °P**(D, €).
e Fun®(€ x¢ D, C)® c Fun(& xo D, €)® the full suboperad spanned by

the objects that belong to FunR(EX x Dx,Cx) c Fun(&x x Dx, Cx) =~
Fun(€ xo D, €)% for some X € O

° FunL(S X o @7 e)@ = F\unR(Erev X Drev7 ereV)®
o Fund'™(€ xo D, €) i= Alg, (Fun™(€ x¢ D, €)) c Alg), (Fun(€ xo
D,Q)) ~ Fung‘lax(g xo D,C)

° Fung,oplax,L(S X D, e) = F\ung,lax,R(Ercv X fDrCV, e[‘CV)Op _
Algo (Fun® (€ xo D, €))°P ¢ Alg,q (Fun(€™" xo D', €™"))*P
Fun® "'**(& xo D, €)

Proposition 6.35.
Let O® be an operad and C®, D% E® be O®-monoidal categories.

There are canonical equivalences
®,lax,R ~ ®,oplax,L op
Fung (D,€) =~ Fungy (¢,D)

and
Fun@,lax,R(erev X0 E,D) ~ Fun@,oplax,L(e X0 D, g)op ~

F\un®,lax,R(Drev Xo 87 G)

Proof. The canonical equivalence
(D®) x g0 € = €2 x o (D)™
of O®-monoidal categories induces an equivalence
P(D™ %o €)% = P(Cxo D*V)®
of O®-monoidal categories.
For every X € O the categories
Fun"(Dx, Cx) ¢ Fun(Dx, P(Cx)) = P((Dx)*® x Cx)
and
Fun'((€x)°", (Dx)°*) € Fun((€x)™, P((Dx)™")) = P(Cx x (Dx)*")
correspond to the full subcategory of
P((Dx)?" x €x) = P(Cx x (Dx)™)
spanned by the presheaves that are representable in both variables.

So the equivalence P(D**V xo C)® = P(Cxo D "")® restricts to an equiv-
alence
Fun™(D, €)® ~ Fun™ (€™, D*")® = Fun" (€, D)®

of operads over O® that yields an equivalence

Fun§ ™™ (D, €) = Alg,, (Fun™(D, €)) = Alg, (Fun"(€, D)) =
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qung),oplax,L (e’ ,D)op.

The canonical equivalence
Cxo (E" x9D)=Cxp (Dxp &™) = (Dxep &) xpC
of O®-monoidal categories yields an equivalence
P(Cxo (£ xg D)) = P(Cxp (D xp ) 2 P((D xp £) xp C)

of ©®-monoidal categories that induces on the fiber over every X € O the
canonical equivalence

P(Ex x ((Ex)™ x Dx)) = P(Cx x (Dx x (Ex)*")) =

P((Dx x (€x)°P) x €x).
The full subcategories

Fun™((Cx)°® x &x, Dx) = Fun™((€x)° x (Dx)°", (Ex)°P) =
FunR((DX)Op x €x,Cx)

correspond to the full subcategory of
P(Ex x ((Ex)™ x Dx)) = P(Cx x (Dx x (Ex)*")) =

:P((‘DX X (Ex)Op) X Cx)
spanned by the presheaves on

Cx x ((€x)” x Dx) = Cx x (Dx x (Ex)") =
(DX X (Ex)OP) X GX

that are representable in all three variables.

Thus the canonical equivalence
P(Cxo (£ x9 D)) 2 P(Cxp (D xp E)) 2 P((D xp £) xp C)
restricts to an equivalence
Fun™ (€™ x¢ €,D)® =~ Fun™(€ xo D,€)® = Fun™ (€™ x¢ D™, &"")® ~
Fun™ (D™ xo &,€)®

of operads over O® that induces a canonical equivalence
Fun®' " (€™ x €,D) = Alg o (Fun" (€™ x¢ €,D)) =

Fun@,oplax,L(e X D, E)OP ~ Alg/o(FunR(Grev Xe Drev, greV)) ~
Fun®'™ (D™ x €, €) = Algo (Fun" (D™ x¢ €,€)).

Given cocartesian fibrations 