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search stay possible. I thank Adrian Röllin for the appraisal of this thesis.

I wish to thank all my current and former colleagues in Osnabrück for the nu-
merous mathematical and non-mathematical talks during the coffee breaks and the
pleasant atmosphere at the institute which no doubt contributed to the success of
my PhD studies. I am thankful to all my friends for their support and encourage-
ment whenever needed. Among these, I am deeply grateful to Stephan Bussmann
and Tobias Soethe for their careful proofreading of this manuscript.
I owe the deepest gratitude to my parents, grandparents and siblings for countless
reasons: Thank you for your encouragement through all the years. Finally, I thank
Paul for his exceptional love, patience and support.

iii



iv



Contents

1 Introduction 1

2 Preliminaries 4
2.1 Stein’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Normal approximation via Stein’s method and size-bias coupling 5
2.1.2 Stein’s method in a nutshell . . . . . . . . . . . . . . . . . . 10
2.1.3 The generator approach . . . . . . . . . . . . . . . . . . . . 11

2.2 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Degree evolutions in preferential attachment models via Stein’s
method 17
3.1 Preferential attachment models . . . . . . . . . . . . . . . . . . . . 17
3.2 Stein’s method for preferential attachment models . . . . . . . . . . 22

3.2.1 Stein-operator . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Stein solution and bounds . . . . . . . . . . . . . . . . . . . 25
3.2.3 Results for general preferential attachment models without

loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Results for the Barabási-Albert model . . . . . . . . . . . . 39

3.3 Rates of convergence for the out-degree . . . . . . . . . . . . . . . . 49

4 Rates of convergence via coupling 53
4.1 Coupling for general models . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Coupling with the Barabási-Albert graph . . . . . . . . . . . . . . . 74

5 A central limit theorem for the number of isolated vertices 83
5.1 Size-bias construction . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 87

List of notations 131

List of Figures 131

Bibliography 132

v



vi



1. Introduction

In many structures in science and nature one can observe components interacting
with one another, e.g. molecules in metabolisms, agents in technological systems
or people in social networks. Such structures can be modeled and analyzed with
the help of random networks, where components are considered as nodes and edges
represent relations between them. [Hof17] provides an excellent overview over this
research field. One of the first and probably most studied models of random graphs
is the Erdös-Rényi graph, which was introduced in [ER59] at the end of the 1950s.
In this graph model each edge exists independent of all others with fixed probability
p. However, it does not explain the structures observed in many real world networks
such as the World Wide Web, social interaction or biological neural networks (see
[HK18], [G+10] and [C+06] respectively). More precisely, such networks exhibit
so-called power-laws as degree distributions, i.e. one finds

P(deg(v) = k) ∝ k−γ,

where deg(v) denotes the degree of some vertex v in the network and γ is a constant
which typically lies in the interval (2, 3). The principle of preferential attachment
has become a well-known concept to explain the occurrence of such scale-invariant
distributions reasonably well. The two typical characteristics of preferential attach-
ment models are that they are dynamic in the sense that vertices are successively
added over time and that new vertices prefer to connect to those of the older ver-
tices, which are already well connected in the existing network. Due to the latter,
preferential attachment is also referred to as the rich-get-richer paradigm.
The construction rules for the network can be made precise in various ways, so that
starting with the pioneering work [BA99] of Barabási and Albert various different
models of preferential attachment random graphs have appeared in the scientific
literature in recent years. In [KR01] and [DM09] the authors suggest to look at
rather general models, in which the probability of attaching a new vertex to a cur-
rent one is a function f of its degree, called the attachment rule. The choice of
this function has a huge impact on the qualitative features of the network. One
can distinguish three main regimes for f : the superlinear regime, where f(k)� k,
the linear regime, where f(k) ≈ k, and the sublinear regime, where f(k) � k. In
the superlinear case there emerges a dominant vertex which attracts most of the
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edges, so that after the insertion of n vertices the degree of that vertex is of order
n. For more details see for instance [OS05]. The behaviour for linear attachment
functions is probably the most studied case. This is not very surprising as the first
mathematical rigorous work on preferential attachment random graphs by Barabási
and Albert was concerned with such networks. Beyond that, the dynamics of the
preferential attachment model in this regime give a plausible explanation for the oc-
currence of power-law distributions which, as mentioned before, is a striking feature
of many real-world networks. The linear along with the sublinear regime were for
example studied in [DM09] and [RTV07]. In both papers almost sure convergence
of the empirical degree distribution towards a power-law distribution in the linear
and stretched exponential distributions in the sublinear regime, is shown for slightly
different models. The results in these works are of asymptotic nature, thus holding
for the number of vertices tending to infinity. However, real-world networks are
always of finite size, though indeed often rather huge. This is the reason why we
are interested in the distributional distance between the empirical distributions of
different random quantities and the known limiting distributions in the presence of
n vertices. For the linear case with fixed outdegree [PRR13] and [PRR17] study the
rescaled degree of a finite number of fixed vertices and in [Ros13] the author shows
that empirical indegree distribution converges to a mixed binomial distribution. All
three works deduce rates of convergence, where [Ros13] and [PRR13] make use of
Stein’s method. We complement these results by deducing error bounds on the dis-
tributional distance between the indegree distribution and the limiting distribution
provided by [DM09] by a new variation of Stein’s method in a more general model,
including the sublinear as well as the linear case and comprising models with fixed
as well as random outdegree.

The aim of this thesis is to deduce error bounds on the distributional distances
between the laws of three random quantities in a graph on n vertices and their
respective limiting distributions. The random quantities we consider are the in-
degree of a uniformly chosen vertex, the outdegree of a vertex and the rescaled
number of isolated vertices. The manuscript is structured as follows: chapter 2
introduces the two main methods of proof used in this thesis: Stein’s method and
coupling. In chapter 3 we first of all introduce a general preferential attachment
model which includes the sublinear as well as the linear case and comprises models
with fixed as well as random outdegree. In section 3.2 we derive error bounds on
the distributional distance between the indegree of a uniformly chosen vertex and
a given limiting distribution µ. In particular we deal with the model introduced
by Barabási and Albert. To do so, we develop a new variation of Stein’s method
for a new class of limiting distributions. Therefore, we will use the fact that the
limiting distribution is the stationary distribution of a Markov chain together with
the generator method of Barbour. Our principal interest concerns the asymptotic
evolution of the indegree distribution, since the outdegree of every vertex is fixed
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after the time step in which it was inserted into the network. However, in Theo-
rem 3.20 we also give a limit result for the outdegree distribution in a preferential
attachment model with random outdegree using well-developed results on Poisson-
approximation via Stein’s method. In chapter 4 we derive similar results as in
the preceding chapter but through the use of coupling techniques this time. In
section 4.1 we take advantage of the fact that the discrete-time Markov chain intro-
duced in chapter 3 resembles the dynamics of a continuous-time Markov chain with
generator given by the Stein operator deduced before. In the following section 4.2
we then couple the general preferential attachment model introduced in chapter 3
to the Barabási-Albert model, which likewise allows us to deduce rates of conver-
gence for this model with the help of coupling. Chapter 5 shows that for some
class of attachment functions, the number of isolated vertices asymptotially follows
a standard normal distribution. Here we use Stein’s method for approximation by
a standard normal distribution in combination with size-bias coupling.
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2. Preliminaries

The following two sections provide an overview of the concepts and methods needed
to follow the thesis at hand. However, the reader is assumed to have basic knowl-
edge in probability and measure theory, as the fundamental notions and results of
these fields will not be recalled.

2.1. Stein’s method

Stein’s method is a well-known tool to derive error bounds between the law of a
random variable of interest and a known and a known target distribution, which
is usually better understood. It was first developed for the approximation of sums
of dependent random variables by the normal distribution in [Ste72] and has been
adopted to various other target distributions, including Poisson in [Che75] and
[BH84], geometric in [Pek96], negative binomial in [BP99] and [Ros13], exponential
in [PR11] and [CFR11], and many more.
When bounding the mentioned error through the help of Stein’s method one con-
verts the original problem of bounding the distributional distance of the two ran-
dom variables under consideration into a problem of bounding the expectation of
some functional operator applied to the random variable whose distribution is to
be approximated. Finding this operator and linking it to a notion of distributional
distance (by solving Stein equation) solely depends on the known limiting distri-
bution, whereas bounding the expectation afterwards only requires information on
the random variable of interest (though information on the target distribution is
of course contained in the operator). There is a collection of techniques both for
the first and the second part of this setup. We will present one technique for each
of the two steps: in section 2.1.3 we introduce the so-called generator approach
which we will use to link the total-variation distance to the mentioned expectation
in chapter 3, and the concept of size-bias coupling to bound the expectation in the
case of normal approximation in chapter 5.
Section 2.1.1 introduces Stein’s method for approximation by a standard normal
distribution, section 2.1.2 gives the general setup for arbitrary limiting distribu-
tions.
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2.1.1. Normal approximation via Stein’s method and
size-bias coupling

As mentioned before, Stein’s method was developed as a tool to prove central limit
theorems for sums of dependent random variables and was first published in 1972
in [Ste72]. The crucial observation lying at the heart of this method is the following
lemma:

Lemma 2.1 (Stein’s lemma). Define the functional operator

Af = f ′(x)− xf(x).

(i) For Z ∼ N (0, 1) we have
E [Af(Z)] = 0

for all absolutely continuous functions f such that E [f ′(Z)] <∞.

(ii) If X is a random variable such that for all continuously differentiable functions
f

E [Af(X)] = 0,

then X ∼ N (0, 1).

Before we prove this lemma we show how this characterization can be used to
determine error bounds in the Kolmogorov metric for the approximation of the law
of a random variable by the normal distribution. To do so, we have to solve the
so-called Stein equation

wf(w)− f ′(w) = h(w)− Φ(z) (2.1)

for every f ∈ FK = {1(−∞,z], z ∈ R}, where Φ denotes the cumulative distribution
function of Z ∼ N (0, 1). Having solved (2.1) then yields

dK(X,Z) = sup
h∈FK

|E [h(X)]− E [h(Z)]| = sup
z∈R

E [Afz(X)] .

Here, fz denotes the unique bounded solution of (2.1) for the test function 1{· ∈
(−∞, z]}.
Lemma 2.2 (Properties of the solution). For fixed z ∈ R the unique bounded
solution fz(w) of the equation

wf(w)− f ′(w) = 1{w ≤ z} − Φ(Z)

is given by

fz(w) =

{√
2πew

2/2Φ(w) (1− Φ(z)) if w ≤ z,√
2πew

2/2Φ(z) (1− Φ(w)) if w > z.
(2.2)

Moreover

‖fz‖ ≤
√
π

2
and ||f ′z|| ≤ 2. (2.3)
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Proof. To show that the solution in (2.2) solves the Stein equation, we first multiply
both sides of (2.1) with e−w

2/2 to obtain(
e−w

2/2fz(w)
)′

= e−w
2/2 (1{w ≤ z} − Φ(z)) .

Integrating both sides gives

e−w
2/2fz(w) =

∫ w

−∞
e−x

2/2 (1{x ≤ z} − Φ(z)) dx,

so that

fz(w) = ew
2/2

∫ w

−∞
e−x

2/2 (1{x ≤ z} − Φ(z)) dx

= −ew2/2

∫ ∞
w

e−x
2/2 (1{x ≤ z} − Φ(z)) dx,

which gives (2.2). We have thus found a specific solution to (2.1). To obtain
the general solution, we have to add a constant multiple of the solution to the
homogeneous equation

f ′(w)− wf(w) = 0,

which is cew
2/2 for any c ∈ R. Hence (2.2) is the only bounded solution to (2.1),

where the boundedness is shown by (2.3). However, we refer to [CGS10, Appendix
chapter 2] for a proof of (2.3), since it is rather technical and does not provide
insights into the techniques necessary to understand this thesis.

Proof of Lemma 2.1. For (i) we need to show that E [Af(Z)] = 0 for all f such
that E [f ′(Z)] <∞ if Z has a standard normal distribution. Therefore, note that

E [f ′(Z)] =
1√
2π

∫ ∞
−∞

f ′(w)e−w
2/2 dw

=
1√
2π

∫ 0

−∞
f ′(w)

(∫ w

−∞
−xe−x2/2 dx

)
dw +

1√
2π

∫ ∞
0

f ′(w)

(∫ ∞
w

xe−x
2/2 dx

)
dw.

By Fubini’s theorem it follows that

E [f ′(Z)] =
1√
2π

∫ 0

−∞

(∫ 0

x

f ′(w) dw

)
(−x)e−x

2/2 dx

+
1√
2π

∫ ∞
0

(∫ x

0

f ′(w) dw

)
xe−x

2/2 dx

=
1√
2π

∫ ∞
−∞

(f(x)− f(0))xe−x
2/2 dx

= E [Zf(Z)] .
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To show (ii) note that for any z ∈ R the function fz in (2.2) is clearly continuous
and piecewise continuously differentiable. Furthermore, due to (2.3) we know that
it is also bounded. Thus

0 = E [Afz(X)] = E [f ′z(X)− xfz(X)] = E [1{X ≤ z} − Φ(z)] = P(X ≤ z)− Φ(z).

Hence, X has a standard normal distribution.

Remark 2.3. We can write (2.1) more generally as

f ′(w)− wf(w) = h(w)− E [h(Z)]

for any measurable function h such that E [h(Z)] < ∞, where Z ∼ N (0, 1). The
solution to this equation is then given by

fh(w) = −ew2/2

∫ ∞
w

(h(x)− E [h(Z)]) e−x
2/2 dx

with

‖fh‖ ≤
√
π

2
‖h(·)− E [h(Z)]‖ and ||f ′h|| ≤ 2 ‖h(·)− E [h(Z)]‖ ,

see for example [CGS10] for more details.

Now, the next step is to bound the right-hand side of (2.1) in order to obtain the
desired error bounds. One approach to do so is via size-bias couplings, which were
first used by Goldstein and Rinott in the context of Stein’s method, see [GR96].
We will make use of this technique in chapter 5. The subsequent results of the
remaining part of this section (except for some minor adjustments) can all be found
in [Ros11].

Definition 2.4. For a random variable X ≥ 0 with E [X] = µ < ∞, we say that
the random variable Xs has the size-bias distribution with respect to X if for f such
that E [Xf(X)] <∞ we have

E [Xf(X)] = µE [f(Xs)] .

An equivalent characterization of the size-bias distribution is that of F s being
absolutely continuous with respect to the distribution F of X with Radon-Nikodým
density

dF s(x)

dF (x)
=
x

µ
.

Corollary 2.5. If X ≥ 0 is a random variable with E [X] = µ < ∞ , then the
random variable Xs with the size-bias distribution of X is such that

P(Xs = k) =
kP(X = k)

µ
.
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The next result, which is the essential part of our proof of a central limit theorem
for the rescaled number of isolated vertices in chapter 5, was first proven in [GR96]
and is also formulated in [Ros11, Theorem 3.20]. Here we state a slightly modified
version of it, which is already adapted to the context of random graphs.

Theorem 2.6. For a random graph Gn let Wn ≥ 0 be some σ(Gn)-measurable
random variable with Wn ≥ 0, E [Wn] = µn < ∞ and V(Wn) = σ2

n. Let W s
n be

defined on the same space as Wn and have the size-bias distribution with respect to
Wn. If W̃n = Wn−µn

σn
and Z ∼ N (0, 1), then

dW (W̃n, Z) ≤ µn
σ2
n

√
2

π

√
V(E [W s

n −Wn|Gn]) +
µn
σ3
n

E
[
(W s

n −Wn)2
]
. (2.4)

Proof. Since we are using Stein’s method the strategy is to bound∣∣∣E [f ′(W̃n)− W̃nf(W̃n)
]∣∣∣

for bounded f with bounded first and second derivative. Using the definition of the
size-bias distribution we obtain

E
[
W̃nf(W̃n)

]
= E

[
Wn − µn

σn
f

(
Wn − µn

σn

)]
=
µn
σn

E
[
f

(
W s
n − µn
σn

)
− f

(
Wn − µn

σn

)]
so that by a Taylor expansion we get

E
[
f(W̃n)

]
=
µn
σn

E
[
W s
n −Wn

σn
f ′
(
Wn − µn

σn

)
+

(W s
n −Wn)2

2σ2
n

f
′′
(
W ∗
n − µn
σn

)]
,

for some W ∗
n in the interval with endpoints Wn and W s

n. Using the definition of W̃n

in the previous expression, we obtain∣∣∣E [W̃nf
′
(
W̃n

)
− W̃nf(W̃n)

]∣∣∣ ≤ ∣∣∣∣E [f ′(W̃n)

(
1− µn

σ2
n

(W s
n −Wn)

)]∣∣∣∣
+

µn
2σ3

n

∣∣∣∣E [f ′′ (X∗n − µnσn

)
(W s

n −Wn)2

]∣∣∣∣ .
Since according to (2.3) the solutions f to the Stein equation fulfill ‖f ′‖ ≤

√
2
π

and

‖f ′′‖ ≤ 2 we have

µn
2σ3

n

∣∣∣∣E [f ′′ (X∗n − µnσn

)
(W s

n −Wn)2

]∣∣∣∣ ≤ µn
σ3
n

E
[
(W s

n −Wn)2
]
,
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which is the second term appearing in the error bound (2.4). To bound the first
term note that by the definition of W s

n we have

E [W s
n] =

1

µn
E
[
W 2
n

]
=
σ2
n + µ2

n

µn

so that by the properties of the Stein solution mentioned above, the law of iterated
expectations and the Cauchy-Schwarz inequality we obtain∣∣∣∣E [f ′(W̃n)

(
1− µn

σ2
n

(W s
n −Wn)

)]∣∣∣∣ ≤
√

2

π
E
[∣∣∣∣1− µn

σ2
n

E [W s
n −Wn|Gn]

∣∣∣∣]
≤ µn
σ2
n

√
2

π

√
V(E [W s

n −Wn|Gn]).

We now give a general construction for a size-bias version of some random vari-
able Wn which can be written as a sum of random variables. Just as the previous
result, this construction was first given in [GR96]. The version we put is taken from
[Ros11].

Coupling construction
For the case in which Wn =

∑n
i=1 Xi with Xi ≥ 0 and E [Xi] = νi, section 3.4.1 in

[Ros11] provides the following construction of a size-bias version of Wn:

1. For each i = 1, . . . n, let Xs
i have the size-bias distribution of Xi independent

of (Xj)j 6=i and (Xs
j )j 6=i. Given Xs

i = x define the vector (X
(i)
j )j 6=i to have

distribution of (Xj)j 6=i conditional on Xi = x.

2. Choose a random summand XI , where the index I is chosen proportional to
µi and independent of all else. Specifically, P(I = i) = νi

µn
, where µn = E [Wn].

3. Define W s
n =

∑
j 6=I X

(I)
j +Xs

I .

Proposition 2.7. Let Wn =
∑n

i=1Xi with Xi ≥ 0, E [Xi] = νi and µn = E [Wn].
If W s

n is constructed according to items 1 - 3 above, then W s
n has the size-bias

distribution of Wn.

Proof. To prove the result it is enough to show that

E [Wnf(Wn)] = µnE
[
f(W I

n)
]
,

where W I
n =

∑
j 6=I X

(I)
j +Xs

I as given above. If we can show that

E [Xif(Wn)] = νiE
[
f(W i

n)
]
. (2.5)
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it follows that

E [Wnf(Wn)] =
n∑
i=1

E [Xif(Wn)] =
n∑
i=1

νiE
[
f(W i

n)
]

= µnE
[
f(W I

n)
]

since P(I = i) = νi
µn

. To show (2.5), note that for h(Xi) = E [f(Wn)|Xi] we have

E [Xif(Wn)] = E [XiE [f(Wn)|Xi]] = E [Xih(Xi)]

= νiE [h(Xs
i )] = νiE [E [f(Wn)|Xs

i ]] = νiE
[
f(W i

n)
]
.

Corollary 2.8. Let X1, . . . Xn be zero-one random variables and let pi := P(Xi =

1). For each i = 1, . . . , n let (X
(i)
j )j 6=i have the distribution of (Xj)j 6=i conditional

on Xi = 1. If Wn =
∑n

i=1 Xi, µn = E [Wn], and I is chosen independent of all else

with P(I = i) = pi
µn

, then W s
n =

∑
j 6=I X

(I)
j + 1 has the size-bias distribution of Wn.

Proof. The result follows directly from Proposition 2.7 and the observation that for
a Bernoulli random variable X, its size-bias version is given by Xs = 1, as for all f
such that E [Xf(X)] <∞ we have E [Xf(X)] = pif(1).

2.1.2. Stein’s method in a nutshell

As mentioned at the beginning of this chapter Stein’s method can be generalized
to limiting distributions other than normal. The general procedure to follow when
developing a Stein’s method for a new target distribution is given by the following
four steps:

1. Decide on a suitable limiting distribution for the random variable of interest.

2. Find a characterizing operator A of the target distribution µ, in the sense
that for all functions g in the domain of A

E [Ag(W )] = 0⇔ W ∼ µ.

3. Find a solution gh to the Stein-equation

h(k)−
∫
h dµ = Ag(k), (2.6)

for each h in a measure-determining class of functions F . This yields

dF(W,X) = sup
h∈F
|E [h(W )]− E [h(X)]| = E [Agh(X)] . (2.7)

For different families F of test functions one gets different probability metrics.
Consider for example the following classes of test functions
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– for F = {h : R → R : |h(x) − h(y)| ≤ |x − y|} we get dF(W,X) =
dW (W,X), where dW denotes the Wasserstein distance.

– for F = {1(−∞,z], z ∈ R} we get dF(W,X) = dK(W,X), where dK
denotes the Kolmogorov distance (see the previous section).

– for F = {1A(·), A ∈ Borel(R)} we get dF(W,X) = dTV (W,X), where
dTV denotes the total variation distance.

4. Bound the right-hand side of (2.7) to get bounds on the distributional dis-

tance of W and X. Usually one needs to find bounds on either g
(k)
h (in the

continuous case) or ∆gh(k) := gh(k + 1) − gh(k) (in the discrete case) to do
so. Uniform bounds on these quantities are then often referred to as Stein’s
“magic factors”.

2.1.3. The generator approach

A rather general approach for finding suitable Stein-operators and corresponding
solutions is the generator-approach introduced by Barbour [Bar88], who applied it to
multivariate Poisson approximation, and which was developed by Götze in [Göt91]
for multivariate normal approximation. The basic idea behind this approach is to
find a Markov process (Xt) with invariant distribution µ. We write

Ttf(x) := E [g(Xt)|X0 = x]

for the operator semigroup corresponding to (Xt), which acts on L2(µ). From gen-
eral Markov theory we now know that the infinitesimal generator A corresponding
to the process Xt is given by the following limit in L2(µ)

Ag := lim
t↘0

Ttg − g
t

(2.8)

for g ∈ dom(A), the class of L2(µ)-functions for which the limit exists.
Under certain conditions on the operator A, the theory of operator semigroups (e.g.
Proposition 1.5 in [EK86]) yields∫ t

0

Tsg ds ∈ dom(A) for all g ∈ L2(µ) and A
(∫ t

0

Tsg ds

)
= Ttg − g, (2.9)

where the integral is a L2(µ) valued Riemann-integral. We now get the following
result which shows that a generator A of a Markov process as given in (2.8) defines
a Stein operator for the invariant distribution µ of the process.

Proposition 2.9. A (X ,B)-valued random variable X has distribution µ with gen-
erator A if and only if for all functions g in dom(A) we have E [Ag(X)] = 0. Thus
A as in (2.8) defines a Stein operator for µ.

11



Proof. Let X have distribution µ and take g ∈ dom(A). As (Xt)t≥0 has invariant
distribution µ we get∫

X
Ttg dµ = Eµ [Ttg(X)] = Eµ [E [g(Xt)|X0 = X]] = Eµ [g(Xt)] =

∫
X
g dµ

so that ∫
X
Ttg − g dµ = 0 and thus

∫
X

Ttg − g
t

dµ = 0

for all t ≥ 0. As

Ag = lim
t↘0

Ttg − g
t

∈ L2(µ)

the theorem of dominated convergence yields

0 = lim
t↘0

∫
X

Ttg − g
t

dµ =

∫
X

lim
t↘0

Ttg − g
t

dµ =

∫
X
Ag dµ = E [Ag(X)]

so that
X ∼ µ⇒ E [Ag(X)] = 0.

For the converse take g ∈ L2(µ) and t > 0. Due to (2.9) we have

E [Ttg(X)− g(X)] = E
[
A
(∫ t

0

Tsg ds

)
(X)

]
= 0

and thus
E [Ttg(X)] = E [g(X)]

for all t > 0, which yields that L(X) is an invariant distribution for (Xt)t≥0. As
(Xt)t≥0 is an ergodic process, we obtain that L(X) = µ.

To find a solution to the Stein equation (2.6), we can apply (2.9) to the function
g = h− µ(h) with h ∈ F . This yields

A
(
−
∫ t

0

(Tsh− µ(h)) ds

)
= h− Tth

and as Tt is the corresponding operator semigroup to the process (Xt)t≥0 with
invariant distribution µ, we obtain

A
(
−
∫ ∞

0

(Tsh− µ(h)) ds

)
= h− µ(h)

for t→∞, if the integral exists. Thus a solution to (2.9) is given by

gh(k) := −
∫ ∞

0

(Tsh(k)− µ(h)) ds.

Consequently, one can deduce a Stein-operator and a corresponding solution to the
Stein equation with the help of the generator approach.

12



2.2. Coupling

The coupling method, which was introduced by Wolfgang Döblin in the late 1930s
[Döb38], is a powerful technique in probability theory which allows to compare two
probability measures defined on the same measurable space. This technique is so
useful because a comparison between distributions is reduced to a comparison be-
tween random variables and thus provides an effective method of obtaining upper
bounds on distributional distances. The following section captures the most impor-
tant results from the works [dH12] and [LPW06] which are relevant for the thesis
at hand. We start by defining the coupling of two probability measures:

Definition 2.10. A coupling of two probability measures µ and ν on the same
measurable space (Ω,A) is any probability measure P on the product measurable
space (Ω × Ω,A ⊗ A) (where A ⊗ A is the smallest σ-algebra containing A × A)
whose marginals are µ and ν, i.e.

µ(x) =
∑
y∈Ω

P(x, y) and ν(y) =
∑
x∈Ω

P(x, y) for all x, y ∈ Ω.

Coupling of two random variables are defined in a similar way.

Definition 2.11. A coupling of two random variables X and Y taking values in
(Ω,A) is any pair of random variables (X ′, Y ′) taking values in (Ω × Ω,A ⊗ A)
whose marginals have the same distribution as X and Y , i.e.

X ′
D
= X and Y ′

D
= Y.

Note that the law P of (X ′, Y ′) is a coupling of the laws of µ and ν of X and Y
respectively in the sense of Definition 2.10.

The following proposition shows the close connection between couplings and
the total variation distance of two random variables. Remember that for any two
probability measures µ and ν we have

‖µ− ν‖TV := sup
A∈A
|µ(A)− ν(A)| .

For the rest of this section we will restrict to the case of discrete probability spaces,
e.g. we assume Ω to be finite or countably infinite. This is sufficient for our purposes
as we will use the given results for Markov chains X and Y taking values in N0.

Proposition 2.12. Let µ and ν be two probability distributions on Ω. Then

‖µ− ν‖TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)| .

13



Proof. Let A ⊂ Ω be an event and set B = {x ∈ Ω : µ(x) ≥ ν(x)}. We then get

µ(A)− ν(A) = µ(A ∩B) + µ(A ∩Bc)− ν(A)

≤ µ(A ∩B) + ν(A ∩Bc)− ν(A)

= µ(A ∩B)− ν(A ∩B)

since for all x ∈ A ∩Bc we have ν(x) > µ(x). Moreover,

µ(A ∩B)− ν(A ∩B) =
∑

x∈A∩B

µ(x)− ν(x) ≤
∑
x∈B

µ(x)− ν(x) = µ(A)− ν(B),

since for all x ∈ B we have µ(x)− ν(x) ≥ 0. Hence

µ(A)− ν(A) ≤ µ(B)− ν(B). (2.10)

Since the result above holds for all A ⊂ Ω we also have

ν(A)− µ(A) = µ(Ac)− ν(Ac) ≤ µ(B)− ν(B) = ν(Bc)− µ(Bc). (2.11)

The last equality shows that the upper bounds (2.10) and (2.11) actually coincide.
Furthermore, for A = B (or Bc) we obtain equality in the calculations above, so
that the maximal difference is achieved in this case. With these considerations we
get

‖µ− ν‖TV = sup
A⊂Ω
|µ(A)− ν(A)| = 1

2
(µ(B)− ν(B) + ν(Bc)− µ(Bc))

=
1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Remark 2.13. The proof of the previous proposition shows in particular that

‖µ− ν‖TV =
∑
x∈Ω

µ(x)≥ν(x)

(µ(x)− ν(x)) . (2.12)

Proposition 2.14. Let X, Y be two random variables with probability distributions
µ and ν. Then, for any coupling (X ′, Y ′) of X and Y , we have

‖µ− ν‖TV ≤ P(X ′ 6= Y ′). (2.13)

In fact, we have

‖µ− ν‖TV = inf{P(X ′ 6= Y ′) : (X ′, Y ′) is a coupling of µ and ν}. (2.14)
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Proof. To show (2.13) note that

µ(A)− ν(A) = P(X ∈ A)− P(Y ∈ A) ≤ P(X ∈ A, Y /∈ A) ≤ P(X 6= Y )

so that definitely

µ(A)− ν(A) ≤ inf{P(X ′ 6= Y ′) : (X ′, Y ′) is a coupling of µ and ν}.

We will now construct a coupling (X ′, Y ′) with ‖µ(A)− ν(A)‖ = P(X ′ 6= Y ′). We
will do so by forcing X and Y to be equal as often as they possibly can be. To
generate X and Y let

p =
∑
x∈Ω

µ(x) ∧ ν(x) =
∑
x∈Ω

µ(x)≤ν(x)

µ(x) +
∑
x∈Ω

ν(x)<µ(x)

ν(x).

Adding and subtracting
∑

x∈Ω
µ(x)>ν(x)

µ(x) to the right-hand side yields

p =
∑
x∈Ω

µ(x) ∧ ν(x) = 1−
∑
x∈Ω

ν(x)<µ(x)

(µ(x)− ν(x)) = 1− ‖µ− ν‖TV , (2.15)

where we used Proposition 2.12. We now flip a coin which shows heads with prob-
ability p. If the coin comes up heads, we choose a value Z ∈ Ω according to the
probability distribution

α(x) =
µ(x) ∧ ν(x)

p

and set X = Y = Z. If the coin comes up tails, we choose X according to the
probability distribution

β(x) =

{
µ(x)−ν(x)
‖µ−ν‖TV

if µ(x) > ν(x),

0, otherwise.

Then we independently choose Y according to the probability distribution

γ(x) =

{
µ(x)−ν(x)
‖µ−ν‖TV

if ν(x) > µ(x),

0, otherwise.

Note that due to (2.12) and (2.15) α, β and γ all define probability distributions.
With these considerations we obtain

P(X = x) = pα(x) + (1− p)β(x)

= µ(x) ∧ ν(x) + (µ(x)− ν(x))1{µ(x) > ν(x)} = µ(x)
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and

P(Y = x) = pα(x) + (1− p)γ(x)

= µ(x) ∧ ν(x) + (ν(x)− µ(x))1{ν(x) > µ(x)} = ν(x)

for all x ∈ Ω, meaning that X has distribution µ and Y has distribution ν respec-
tively. Note that in the case in which the coin comes up tails, we have X 6= Y , so
that X = Y if and only if the coin shows heads. Hence

P(X 6= Y ) = 1− p = ‖µ− ν‖TV

by (2.15).
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3. Degree evolutions in preferential attachment

models via Stein’s method

The main purpose of this chapter is to give rates of convergence in total variation
between the indegree distribution of a uniformly chosen vertex in a general prefer-
ential attachment random graph, based on the model introduced by Dereich and
Mörters [DM09] in 2009, and its limiting distribution with Stein’s method. The
first section states assumptions on the model under which the results, that we will
prove, hold and gives a more detailed description of one of the models, which will
be relevant in section 3.3 and chapter 5. In section 3.2 we develop Stein’s method
for limiting distributions of the form

µk =
1

1 + f(k)

k−1∏
i=0

f(i)

1 + f(i)
,

where f is some monotonically increasing (sub-)linear function in the preferential
attachment model. After that we use this method to derive rates of convergence of
the indegree distribution of a uniformly chosen vertex towards µ.
Finally, section 3.3 proves that the outdegree in a more specific model described
in example 3.1 is approximately Poisson-distributed and also gives error bounds on
this approximation.

The results presented in this section, except for those in section 3.2.4, can be found
in the preprint [BDO19].

3.1. Preferential attachment models

We study a general preferential attachment model, based on the model introduced
by Dereich and Mörters in [DM09], where the connection probabilities are given
by a general (sub-)linear function of the old degree. Though our methods do not
rely on the explicit details of the model under consideration, we will first give a
detailed introduction to the model in [DM09] as this will also be the relevant model
analyzed in section 3.3 and chapter 5. Afterwards we will state the assumptions
on a preferential attachment model that need to be met for our results to hold,
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highlight some other models that fit in this class and then state our results in full
generality.

Example 3.1 (Preferential attachment with random outdegree).

Take any f : N{0} → (0,∞) with f(n) ≤ n + 1. The network we consider is
built according to the following rules. Each graph Gn consists of n vertices labeled
{1, . . . , n} and a random number of edges. We start with the graph G1 consisting
of one vertex and no edges.
At time n+ 1 we insert vertex n+ 1 into the graph Gn and independently for each
k ∈ [n] we add a directed edge from n+ 1 to k with probability

f(deg−n (k))

n
, (3.1)

where deg−n (k) denotes the indegree of vertex k at time n. Due to the assumptions
imposed on our attachment function f it is guaranteed that in each evolution step
(3.1) in fact lies between zero and one.
In contrast to many other models, like for instance those considered in [BA99],
[KR01] [OS05], [Ros13] and [RTV07], the outdegree of every vertex in this model
is random and can be zero. In many applications (like for example collaboration
networks) this seems to be a more reasonable assumption than a fixed outdegree.
Note that the outdegree of every vertex is fixed after the time step in which it was
inserted into the network. Formally we are dealing with a directed network. How-
ever, by construction, edges are always pointing from younger to older vertices, so
that the directions can be recreated from the undirected labeled graph.
An example of the first evolutionary steps of such a preferential attachment graph
is visualized in the following figures.

G1 :

G2 :

G3 :

18



G4 :

Figure 3.1: Evolution of Gn

Clearly, the topological structure of the network crucially depends on the at-
tachment function f . Some examples of networks observed after n = 50 time steps
are depicted in Figures 3.2 -3.5.

Figure 3.2: f(k) = 0.8k + 0.6 Figure 3.3: f(k) =
√
k + 1

Figure 3.4: f(k) = 0.4k + 0.3 Figure 3.5: f(k) = 0.8
√
k + 0.6

Though this framework is already sufficiently general to lead to typical degree
distributions that can be power-laws, but also stretched exponential distributions,
we can prove our results in this section for an even larger class of preferential at-
tachment models, fulfilling the following assumptions:
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Assumptions (A). Fix d0 ∈ N0 and let f : N0 → (0,∞) such that f(n) ≤
max{n + 1 − d0, 1}. We assume that (Gn)n≥1 is a sequence of directed random
graphs with vertex set [n] := {1, . . . , n}. The initial graph G1 consists of one vertex,
labeled 1, and d0 (directed) self-edges. For any n ≥ 1, at time n + 1 we add a
vertex, which we label n + 1, to the vertex set for each j ∈ [n] we insert at most
one directed edge from n+ 1 to j such that

P(n+ 1 connects to j | Gn) =
f(deg−n (j))

n
. (3.2)

Here deg−n (j) denotes the indegree of vertex j after the n-th vertex has been in-
serted. Note that by construction we have that deg−n (j) ≤ d0 + n − 1, so that by
the condition on f the right hand side of (3.2) is indeed ≤ 1.

These assumptions do not completely specify the model: they allow for determin-
istic as well as random outdegree and also only impose conditions on the marginal
probabilities of connecting n + 1 to j. In particular, additionally to the model
introduced in Example 3.1 the following models are included.

Example 3.2 (Preferential attachment with fixed outdegree). Start with G1 con-
sisting of vertex 1 and a (directed) self-loop. At time n+ 1 insert vertex n+ 1 and
connect it to exactly one previous vertex j ∈ [n] with probability

degn(j) + δ

n(2 + δ)
,

where degn(j) denotes the total degree of vertex j at time n and δ > −1 is a
parameter of the model. Noticing that degn(j) = deg−n (j) + 1, this fits into our

framework with f(k) = k+(1+δ)
2+δ

and d0 = 1. This model almost coincides with the
one proposed in [BRST01] (there however δ = 0 and they allow for self-loops) and
it is very closely related to what is referred to as model (b) in [Hof17, Chapter 8.2].

Example 3.3 (Spatial preferential attachment model). In [ACJP08], the authors
introduce the following spatial random graph model. Let S be the unit hypercube
in Rm. The initial graph consists of vertex 1 that is placed uniformly at random
into S and no edges. For each vertex i we define the sphere of influence S(i, n) of i
as the ball (in the torus metric induced by the Euclidean metric) that has volume
A1 deg−n (i)+A2

n
centered at the position of i, where A1, A2 ≥ 0. Fix a parameter

p ∈ [0, 1]. Then, at time n + 1, we insert vertex n + 1 at a position that is chosen
uniformly at random in S. Now, independently for each vertex j such that the
position of n+ 1 is in S(j, n) insert an edge from n+ 1 to j with probability p. In
particular, we get

P(n+ 1 connects to j | Gn) = p · A1 deg−n (j) + A2

n
.
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Thus, this model fits into our framework if we choose f(k) = pA1k+pA2 and assume
that the constants are chosen such that pA1, pA2 ≤ 1.

The following theorem from [DM09] shows that in the model described in Exam-
ple 3.1 the empirical indegree distribution converges almost surely in total variation
norm to a distribution µ and the outdegree of every vertex is asymptotically Poisson
distributed.

Theorem 3.4. (a) Let

µk =
1

1 + f(k)

k−1∏
i=0

f(i)

1 + f(i)
, k = 0, 1, . . . , (3.3)

which is a sequence of probability weights. Then, almost surely,

lim
n→∞

X(n) = µ

in total variation norm, where X(n) = (Xk(n) : k ∈ N0) and Xk(n) =
1
n

∑n
i=1 1{deg−n (i) = k}.

(b) If f satisfies f(k) ≤ ηk+1 for some η ∈ (0, 1), then the conditional distribution
of the outdegree of (n + 1)-th incoming node (given the graph at time n)
converges almost surely in the total variation norm to the Poisson distribution
with parameter λ := 〈µ, f〉 =

∑
k≥0 f(k)µk.

As a side effect our results will also show that part a) of the previous theorem
not only holds for the preferential attachment model described in Example 3.1, but
for all models satisfying Assumptions (A).

Remark 3.5. Following [DM09, Example 1.3.] for f(k) = γk + η with fixed γ, η ∈
(0, 1] for all k ∈ N0, we have

µk =
1

γ

Γ(k + η
γ
)Γ(η+1

γ
)

Γ(k + 1+η+γ
γ

)Γ( η
γ
)
,

so that by Stirling’s formula, Γ(t+ a)\Γ(t) ∼ ta for t tending to infinity, we obtain

µk ∼ −
Γ(η+1

γ
)

γ Γ( η
γ
)
k−(1+ 1

γ
). (3.4)

Therefore, our framework allows for models with power-law distribution with tail
exponent 1+1/γ ∈ [2,∞). Furthermore, if f(k) ∼ γkα with 0 < α < 1, γ > 0, then

log µk ∼
1

γ(1− α)
k1−α, for k →∞,

so that we obtain a limiting distribution with stretched exponential tails.
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3.2. Stein’s method for preferential attachment models

The main purpose of this chapter is to deduce rates of convergence of L(degn(In)) in
preferential attachment models satisfying (A), where In ∼ U{1, . . . , n} and degn(i)
denotes the indegree of vertex i in Gn. Our main result here is the following theorem

Theorem 3.6. Let Wn denote the indegree of a uniformly chosen vertex at time
n in a preferential attachment model satisfying Assumptions (A). Suppose further
that there exists k∗ ∈ N0 such that f(k) > k for all k < k∗ and f(k) ≤ k for all
k ≥ k∗. Then, there exists a constant C > 0 such that for all n ≥ 2

dTV(Wn,W ) ≤ C
log(n)

n
, (3.5)

where W ∼ µ and µ as in (3.3).

The condition that there exists k∗ ∈ N0 such that f(k) > k for all k < k∗ and
f(k) ≤ k for all k ≥ k∗ is for example fulfilled for all sublinear models such that
maxk ∆f(k) = maxk(f(k + 1) − f(k)) < 1, which is a popular condition in the
setting of Example 3.1, see e.g. [DM13].

The next Theorem gives a weaker result in the regime where f(k) ∈ [k, k+γ] for
all k and γ ∈ (0, 1). This is not surprising since for example in the case f(k) = k+γ,
the distribution has power law exponent 2 and does no longer have a finite mean,
see (3.4).

Theorem 3.7. Let Wn denote the indegree of uniformly chosen vertex at time n in
a preferential attachment model satisfying Assumptions (A). Suppose further that
f(k) ∈ [k, k + γ] for all k ∈ N0 and some γ ∈ (0, 1). Then, there exists a constant
C > 0 such that for all n ≥ 1,

dTV(Wn,W ) ≤ C n−(1−γ),

where W ∼ µ and µ as in (3.3).

The proof of these two results uses Stein’s method, which to our knowledge has
not been developed for a general class of limiting distributions as given in (3.3).
The following three paragraphs will now deal with the steps of Stein’s method as
outlined in section 2.1.2.

3.2.1. Stein-operator

Lemma 3.8. Let µ be given by (3.3). Then, µ is a probability distribution and any
N0-valued random variable W satisfies W ∼ µ if and only if

E[Ag(W )] = 0,

for all g : N0 → R such that E[g(Y )] <∞, where

Ag(k) := f(k)
(
g(k + 1)− g(k)

)
+ g(0)− g(k).
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Proof. Let Nt be a process that starts in 0 and jumps from i to i + 1 at rate f(i).
Then the time of the k-th jump is given in distribution by Sk =

∑k−1
i=0

1
f(i)

Ei, where

E0, E1, . . . is an i.i.d. sequence of exponentials with rate 1. Now (see also Cor. 50
in [Bha07]) let Y be an independent exponential random variable with parameter
1, then

P (NY ≥ k) = P (Y ≥ Sk) .

By first conditioning on Sk, we get

P (Y ≥ Sk) = E
[
E[1{Y ≥ Sk} |Sk]

]
= E[e−Sk ] = E[e−

∑k−1
i=0

1
f(i)

Ei ]

=
k−1∏
i=0

E[e−Ei/f(i)] =
k−1∏
i=0

f(i)

1 + f(i)
, (3.6)

using that E[e−λEi ] = 1
1+λ

in the last step. We have

P(NY = k) =
k−1∏
i=0

f(i)

1 + f(i)
−

k∏
i=0

f(i)

1 + f(i)

=

(
1− f(k)

1 + f(k)

) k−1∏
i=0

f(i)

1 + f(i)
=

1

1 + f(k)

k−1∏
i=0

f(i)

1 + f(i)
= µk.

In particular this shows that µ defines a probability measure on N0 and (3.6) gives

µ([k,∞)) =
k−1∏
i=0

f(i)

1 + f(i)
= f(k − 1)µk−1. (3.7)

Using this connection to a jump process we obtain

∞∑
k=0

g(k)µk = E
[
g
(
NY

)]
=

∫ ∞
0

E
[
g
(
Ns

)]
e−s ds

= g(0) +

∫ ∞
0

E
[(
g
(
Ns + 1

)
− g
(
Ns

))
f
(
Ns

)]
e−s ds

= g(0) + E
[(
g
(
NY + 1

)
− g
(
NY

))
f
(
NY

)]
,

where we used an integration by parts formula for the third equality. More precisely,
the fact that Nt is an inhomogeneous Poisson point process yields

d

ds
E [g(Ns)] = E [f(Ns)(g(Ns + 1)− g(Ns))] ,

where we used [Çın11, Theorem 6.11].
So we have shown that ifW ∼ µ then E

[(
g(W + 1)− g(W )

)
f(W ) + g(0)− g(W )

]
=

0 for all g such that E [g(W )] <∞. Conversely, let∑
k≥0

(
(g(k + 1)− g(k))f(k) + g(0)− g(k)

)
P(W = k) = 0
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for all g such that
∑

k≥0 g(k)P (W = k) < ∞. We now have to show that W ∼ µ.
Choose a class of functions (gi)i≥1 with gi(k) := k1{k ≤ i}. Then

∑
k≥0 gi(k)P(W =

k) =
∑i

k=0 kP(W = k) <∞, as for every i, this is a finite sum. Now

0 = E [g1(W )] = ((g1(1)− g1(0))f(0) + (g1(0)− g1(0)))P(W = 0)

+ ((g1(2)− g1(1))f(1) + (g1(0)− g1(1)))P(W = 1)

= f(0)P(W = 0)− (1 + f(1))P(W = 1)

so that

(1 + f(1))P(W = 1) = f(0)P(W = 0). (3.8)

Using (3.8) in the analogous calculations for g2 gives

(1 + f(2))P(W = 2) = f(1)P(W = 1)

⇒ P(W = 2) =
f(1)

1 + f(2)
P(W = 1) =

1

1 + f(2)

f(1)

1 + f(1)
f(0)P(W = 0).

Iterating the whole procedure yields

P(W = k) =
1

1 + f(k)

k−1∏
i=1

f(i)

1 + f(i)
f(0)P(W = 0) = µkP(W = 0)(1 + f(0)).

Now as (µk)k≥0 as given in (3.3) is a probability distribution we get

P(W = 0) = 1− (1 + f(0))P(W = 0)
∑
k≥1

µk

⇔ P(W = 0)
(

1 + (1 + f(0))
∑
k≥1

µk

)
= 1

⇔ P(W = 0)
(

1 + (1 + f(0))(1− µ0)
)

= 1

⇔ P(W = 0)

(
1 + (1 + f(0))

f(0)

1 + f(0)

)
= 1

⇔ P(W = 0) =
1

1 + f(0)
.

Consequently P(W = k) = µk ∀k and we have thus found the Stein operator

Ag(k) =
(
g(k + 1)− g(k)

)
f(k) + g(0)− g(k) (3.9)

for µ.
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As outlined in section 2.1 the next step is now to solve the so-called Stein
equation

Ag(k) = h(k)−
∫
h dµ (3.10)

for all functions in some suitable class of test functions H. As we want to show
rates of convergence in total variation norm we are interested in the case where H is
the class of all indicator functions hA(·) = 1{· ∈ A} with A ∈ B(R). After solving
(3.10) and taking expectations on both sides, we then get

dTV (W,X) = E [Agh(X)] , (3.11)

see section 2.1, and thus bounding the right-handside of (3.11) uniformly in A gives
bounds on the total variation distance.

3.2.2. Stein solution and bounds

This section is concerned with the second step of Stein’s method as described in
2.1.2. It only depends on the operator A and the class of test functions inducing
the probability metric and is thus independent of preferential attachment models.
We first derive solutions to the Stein equation (3.11) in the subsequent lemma and
consequently deduce smoothness estimates of these in Lemma 3.10.

Lemma 3.9. The unique solution of the Stein equation for µ, i.e.

Ag = h− µ(h), (3.12)

for any h(·) = 1{· ∈ A} := 1A(·), with A ⊂ N0 is given by

gh(k) = −
∫ ∞

0

(
Ekh(Zt)−

∫
h dµ

)
dt, (3.13)

where (Zt) is a continuous-time Markov process with generator A and Ek denotes
the expectation with respect to P(·|Z0 = k).

Proof. Let h = 1A for some A ⊂ N0. One can check that the Markov chain (Zt)
with generator A is irreducible, non-explosive and has invariant distribution µ. It
follows that Ekh(Zt)→ µ(h) as t→∞.

By Kolmogorov’s backward equation for the Markov chain (Zt)t≥0, see e.g. [Nor98,
Thm. 2.8.4.], we have for any k, j ∈ N0,

Pk(Zt = j)− 1{k}(j) = Pk(Zt = j)− Pk(Z0 = j)

=

∫ t

0

{
f(k)(Pk+1(Zs = j)− Pk(Zs = j)) + P0(Zs = j)− Pk(Zs = j)

}
ds.
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In particular, as h as above is bounded, we have by Fubini

Ek[h(Zt)]− h(k) =

∫ t

0

f(k)(Ek+1[h(Zs)]− Ek[h(Zs)]) + E0[h(Zs)]− Ek[h(Zs)] ds.

Now, define

gth(k) := −
∫ t

0

(Ekh(Zs)− µ(h)) ds.

Thus, we can deduce that

Ek[h(Zt)]− h(k) = −(Agth)(k).

We note that the left hand side converges to µ(h) − h(k) as µ is the invariant
distribution of (Zt)t≥0. By the definition of A it is straightforward to see that
the operator A is closed under pointwise convergence. Hence, it suffices to show
that gth(k) converges to gh(k) as defined in (3.13) in order to conclude that gh
solves (3.10).

To see the latter, we can estimate since h = 1A,∫ ∞
0

∣∣Ek[h(Zt)]− µ(h)
∣∣ dt =

∫ ∞
0

∣∣∣E [h(Z
(k)
t )
]
− E

[
h(Z

(µ)
t )
]∣∣∣ dt

≤
∫ ∞

0

min
(Xt,Yt) coupling of (Z

(k)
t ,Z

(µ)
t )

P(Xt 6= Yt) dt,

where we denote by Z
(k)
t and Z

(µ)
t the Markov chains started in k and µ respectively.

We will now construct a coupling (Xt, Yt) of Z
(k)
t and Z

(µ)
t in the following way: let

X0 = k and choose Y0 according to µ. We let both chains evolve independently until
Y falls to zero at a random time τ . We then force X to fall to zero as well and from
that point on the two chains evolve together, so that Xt = Yt for t ≥ τ . One can
easily check that this defines a coupling of Z

(k)
t and Z

(µ)
t . As Y falls down to zero

at rate one we get
P(Xt 6= Yt) ≤ P(τ ≥ t) = e−t

so that ∫ ∞
0

∣∣Ek[h(Zt)]− µ(h)
∣∣ dt ≤ ∫ ∞

0

e−t dt = 1.

Hence, gth(k)→ gh(k) by dominated convergence, which completes the proof of the
lemma.

In this section, we exploit the connection to the Markov process with generator
A to find bounds on the Stein solution gA := g1A for A ⊂ N0. As mentioned before,
this part of the proof only depends on the limiting distribution µ and does not
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make use of the preferential attachment setting. More precisely, we will show that
vA(k) := f(k)gA(k) is uniformly bounded in k. We have

gA(k) = −
∫ ∞

0

(
E
[
1{Y (k)

t ∈ A}
]
− µ(A)

)
dt

= −
∫ ∞

0

(
E
[∑
j∈A

1{Y (k)
t = j}

]
−
∑
j∈A

µj

)
dt

=
∑
j∈A

(
−
∫ ∞

0

(
E
[
1{Y (k)

t = j}
]
− µj

)
dt

)
=
∑
j∈A

g1{j}(k), (3.14)

thus gA can be written as a sum of functions of the form g1{j} and we start by
calculating the latter.

Lemma 3.10. For gj := g1{·=j} as in (3.13) we have

∆gj(k) = gj(k + 1)− gj(k) =


− µj
µk

1
f(k)(1+f(k))

, for j ≥ k + 1,
1

1+f(j)
, for j = k,

0, for j ≤ k − 1.

(3.15)

Proof. We apply the techniques used in [BX01] and adapt them to our Markov
process Zt. Therefore define

τk,k+1 = inf{t : Z
(k)
t = k + 1},

where as before, Z
(k)
t denotes a Markov process with generator A starting in k.

Then, for k ≤ j − 1 we obtain via the representation (3.13) of the Stein solution,

gj(k) = −
∫ ∞

0

(
E
[
1{j}(Z

(k)
t )
]
− µj

)
dt

= −E
[ ∫ τk,k+1

0

(
1{j}(Z

(k)
t )− µj

)
dt
]
− E

[ ∫ ∞
τk,k+1

(
1{j}(Z

(k)
t )− µj

)
dt
]

= µjE [τk,k+1] + gj(k + 1),

where the last equality uses the strong Markov property of Zt. Rearranging yields

gj(k)− gj(k + 1) = µjE [τk,k+1] ≥ 0

for k ≤ j−1. Following the same procedure for k ≥ j+1 and τk,0 = inf{t : Z
(k)
t = 0},

we get

gj(k) = −
∫ ∞

0

(
E
[
1{j}(Z

(k)
t )
]
− µj

)
dt
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= −E
[ ∫ τk,0

0

(1{j}(Z
(k)
t )− µj) dt

]
− E

[ ∫ ∞
τk,0

(1{j}(Z
(k)
t )− µj) dt

]
= µjE [τk,0] + gj(0)

and thus

gj(k)− gj(0) = µjE [τk,0]

for k ≥ j+1. Since the rate by which the process Zt moves to zero is 1, independently
of the current state of the process, we notice that E [τk,0] = 1 for all k and therefore
the equation above simplifies to

gj(k)− gj(0) = µj.

This means that gj(k) is constant for k ≥ j + 1, so that

gj(k + 1)− gj(k) = 0 for k ≥ j + 1.

Furthermore, we have

gj(j + 1) = −
∫ ∞

0

(
E
[
1{j}(Z

(j+1)
t )

]
− µj

)
dt

= −E
[ ∫ τj+1,j

0

(1{j}(Z
(j+1)
t )− µj) dt

]
− E

[ ∫ ∞
τj+1,j

(1{j}(Z
(j+1)
t )− µj) dt

]
= µjE [τj+1,j] + gj(j)

= µj
(
E[τj+1,0] + E[τ0,j]

)
+ gj(j)

= µj (1 + E [τ0,j]) + gj(j),

yielding

gj(j + 1)− gj(j) = µj (1 + E [τ0,j]) = µjE [τj,j] ≥ 0,

where τj,j defines the first return time to j of the Markov chain started at j. Thus
the following equations hold for the Stein solution gj:

gj(k + 1)− gj(k) =


−µjE [τk,k+1] , for j ≥ k + 1,

µjE [τj,j] , for j = k,

0, for j ≤ k − 1.

(3.16)

We can simplify this expression further as follows. Let Sk be the first jump time of
Z

(k)
t . Then, by definition of the Markov chain, we have that Sk ∼ Exp(1 + f(k)).

Since Z
(k)
t jumps to k + 1 at rate f(k) and to zero at rate 1 we obtain

E [τk,k+1] = E[Sk] +
1

1 + f(k)
E[τ0,k+1] =

1

1 + f(k)
(1 + E[τ0,k] + E[τk,k+1])
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and thus

E [τk,k+1] =
1

f(k)

(
1 + E [τ0,k]

)
=

1

f(k)
E [τk,k] . (3.17)

The classic theory of Markov chains, see e.g. [Nor98, Thm. 3.6.3], yields that

µj =
1

(1 + f(j))E [τj,j]
. (3.18)

Rearranging (3.18) and combining it with (3.16) and (3.17) yields the statement of
the lemma.

Proposition 3.11. For any k ∈ N0 and A ⊂ N0, we have

|vA(k)| ≤ 1. (3.19)

Proof. By Lemma 3.10 and (3.14) we get

vA(k) =
∑
j∈A

f(k)∆gj(k) = − f(k)

µkf(k)(1 + f(k))
µ(A ∩ [k,∞)) +

f(k)

1 + f(k)
1{k ∈ A}.

Using the identity µ([k,∞)) =
∏k−1

i=0
f(i)

1+f(i)
= (1 + f(k))µk from (3.7), we obtain

vA(k) = − 1

µ([k,∞))
µ(A ∩ [k,∞)) +

f(k)

1 + f(k)
1{k ∈ A},

so that the proposition follows immediately.

3.2.3. Results for general preferential attachment models
without loops

We will now derive the claimed error bounds from the right hand side of (2.7).
Therefore we use the following dynamic way of generating a uniform random variable
on [n] (cf. [For09]): let Jn be a Markov chain with J1 = 1 and such that

P(Jn+1 = Jn | Jn) =
n

n+ 1
and P(Jn+1 = n+ 1 | Jn) =

1

n+ 1
.

Then, we have that Jn is uniformly distributed on [n] for every n (cf. Lemma 3.12).
In particular, we know that we can generate the indegree of a uniform vertex as
Xn := deg−n (Jn) and moreover, (Xn) turns out to be a Markov chain. In a first
step, additionally to Assumptions (A) we assume that d0 = 0, and use the above
Markov structure to show in Lemma 3.13 that

E [AgA(Xn+1)] =
1

n+ 1

( n∑
`=1

`−1∑
k=0

∆vA(k)h(k, `) + vA(0)
)
, (3.20)
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where

vA(k) := f(k)∆gA(k) and h(k, `) := f(k)P(X` = k)− P(X` ≥ k + 1).

Then, since we already have the smoothness estimate (3.19), it remains to analyse
h(k, `) and show that these terms are small. The corresponding analysis is carried
out in Proposition 3.14. We first show inductively, that under the conditions of
Theorems 3.6 and 3.7, for fixed ` the functions k 7→ h(k, `) are first increasing
and then decreasing, which ultimately allows us to deal with the inner sum over k.
Finally, we show that for suitable constants C > 0, k ≤ `− 1,

h(k, `) ≤

{
C `−1 under the assumptions of Thm. 3.6,

C `−(1−γ) under the assumptions of Thm. 3.7.

Via (3.20) these bounds lead to the error bounds of log(n)/n and n−(1−γ) in The-
orems 3.6 and 3.7. Throughout the proofs we will always assume that d0 = 0, the
case d0 > 0 will be shown using an easy coupling argument.
We use the following Markov chain to describe the evolution of the indegree of a
uniform vertex. Similar ideas were also used in [DM09, For09].

Lemma 3.12. Let Xn be a Markov chain with P(X1 = 0) = 1 and transition
probabilities given for any i ≥ 1 as

P(Xn+1 = j |Xn = i) =


f(i)
n+1

if j = i+ 1,

n−f(i)
n+1

if j = i,

1
n+1

if j = 0

and

P(Xn+1 = j |Xn = 0) =

{
f(0)
n+1

if j = 1,

1− f(0)
n+1

if j = 0.

Then L(Xn) = L(Wn), where Wn denotes the indegree of a uniformly chosen vertex
in any preferential attachment model at time n satisfying Assumptions (A) with
d0 = 0.

Note that the Markov chain starts at time 1 to match the index of the random
graph.

Proof. Consider the Markov chain (Jn)n∈N starting in 1, e.g. J1 = 1, and such that
for n ≥ 1

P(Jn+1 = Jn|Jn) =
n

n+ 1
and P(Jn+1 = n+ 1|Jn) =

1

n+ 1
.
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Then it is straightforward to check by induction that Jn is uniformly distributed on
{1, . . . , n}. We now set Xn := deg−n (Jn), so that in particular it follows L(Wn) =
L(Xn). Then, using the dynamics of the preferential attachment model and the
tower property, the following transition probabilities hold for Xn and 1 ≤ j ≤ n :

P(Xn+1 = j + 1|Xn = j) =
f(j)

n
· n

n+ 1
=

f(j)

n+ 1
,

P(Xn+1 = j|Xn = j) = (1− f(j)

n
) · n

n+ 1
=
n− f(j)

n+ 1
,

P(Xn+1 = 0|Xn = j) =
1

n+ 1
.

Moreover, for j = 0,

P(Xn+1 = 1|Xn = 0) =
f(0)

n
· n

n+ 1
=

f(0)

n+ 1
,

P(Xn+1 = 0|Xn = 0) = (1− f(0)

n
) · n

n+ 1
+

1

n+ 1
= 1− f(0)

n+ 1
.

This completes the proof of the lemma.

Following the discussion in section 2.1.2, the next step is to find a bound on

E [AgA(Wn+1)] = E [AgA(Xn+1)]

= E [f(Xn+1)∆gA(Xn+1) + (gA(0)− gA(Xn+1))] ,

where we recall that ∆gA(k) := gA(k + 1)− gA(k).

Lemma 3.13. For the Markov chain (Xn)n≥0 defined in Lemma 3.12 and vA(k) :=
f(k)∆gA(k), with A ⊂ N0, we have

E [AgA(Xn+1)]

=
1

n+ 1

(( n∑
`=1

`−1∑
k=0

∆vA(k)
(
f(k)P(X` = k)− P(X` ≥ k + 1)

))
+ vA(0)

)
. (3.21)

Proof. Let h : N0 → R be such that h(0) = 0. Then,

E [h(Xn+1)] = E [E [h(Xn+1) |Xn]]

= E
[
h(Xn)

n− f(Xn)

n+ 1
+ h(Xn + 1)

f(Xn)

n+ 1

]
=

n

n+ 1
E[h(Xn)] +

1

n+ 1
E[f(Xn)∆h(Xn)].
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Using the fact that X1 = 0, we iteratively obtain

E [h(Xn+1)] =
1

n+ 1

n∑
`=1

E[f(X`)∆h(X`)].

Define
h(k) = AgA(k)− vA(0) = vA(k) + (gA(0)− gA(k))− vA(0).

Thus, we get

E[AgA(Xn+1)] = E[h(Xn+1)] + vA(0)

=
1

n+ 1

n∑
`=1

(
E[f(X`)∆vA(X`)]− E[f(X`)∆gA(X`)]

)
+ vA(0)

=
1

n+ 1

n∑
`=1

`−1∑
k=0

f(k)∆vA(k)P(X` = k)

− 1

n+ 1

n∑
`=1

`−1∑
k=0

(vA(k)− vA(0))P(X` = k) +
vA(0)

n+ 1
. (3.22)

For the second sum, we write

`−1∑
k=0

(vA(k)− vA(0))P(X` = k) =
`−1∑
k=0

k−1∑
i=0

∆vA(i)P(X` = k)

=
`−1∑
i=0

∆vA(i)
`−1∑
k=i+1

P(X` = k) =
`−1∑
i=0

∆vA(i)P(X` ≥ i+ 1).

Combining the latter with (3.22) yields the statement of the lemma.

Now, the next proposition gives the desired results on h(k, l) as mentioned above.

Proposition 3.14. Suppose f satisfies f(k) ≤ k + 1. Define

h(k, `) := f(k)P(X` = k)− P(X` ≥ k + 1),

where (X`)`≥1 is the Markov chain from Lemma 3.12.

(i) Then, for any k ∈ N0, ` ∈ N we have

h(k, `) ≥ 0,

and moreover for k ≥ `, we have h(k, `) = 0.
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(ii) Suppose there exists K such that k ≤ f(k) for all 0 ≤ k ≤ K, then we have

∆(1)h(k, `) := h(k + 1, `)− h(k, `) ≥ 0 (3.23)

for all ` ≤ K + 1, k ≤ `− 2.

(iii) Assume there exist k∗ ∈ N0 such that f(k) ≤ k for all k ≥ k∗ and f(k) > k
for k < k∗. Then, for all ` ∈ N there exists I(`) ∈ {0, . . . , `− 1} such that

h(k + 1, `)− h(k, `)

{
≥ 0 if k < I(`),
≤ 0 if k ≥ I(`).

(3.24)

Moreover, I(`+ 1) ∈ {I(`), I(`) + 1}.

(iv) Assume there exists k∗ ∈ N0 such that f(k) ≤ k for all k ≥ k∗. Then, there
exists a constant C > 0 such that for all k ∈ N0, ` ∈ N,

h(k, `) ≤ C

`
.

(v) If there exists γ ∈ (0, 1) such that f(k) ∈ [k, k + γ] for all k ∈ N0, then

sup
k∈N0

h(k, `) ≤ C`−(1−γ).

Before we start with the proof of the proposition we derive a recursive formula
for the coefficients h in the ` coordinate as well as for its increments in the k
coordinate.

Lemma 3.15. Let h be defined as in Proposition 3.14, then h(k, `) = 0 for all k ≥ `
and for all ` ∈ N, k ∈ N0, we have

h(k, `+ 1) =

(
`

`+ 1
− f(k)

`+ 1

)
h(k, `) +

f(k)

`+ 1
h(k − 1, `), (3.25)

where we define h(−1, `) = 0. Moreover, if we define ∆(1)h(k, `) := h(k + 1, `) −
h(k, `), we have that for all ` ∈ N and k ≤ `− 1

∆(1)h(k, `+ 1) =

(
`

`+ 1
− f(k + 1)

`+ 1

)
∆(1)h(k, `) +

f(k)

`+ 1
∆(1)h(k − 1, `). (3.26)

Proof. Note that since X` ≤ ` − 1 P-a.s, we have h(k, `) = 0 for any k ≥ `.
Moreover, by the definition of the Markov chain (Xn), for k ≥ 1,

h(k, `+ 1) = f(k)P(X`+1 = k)− P(X`+1 ≥ k + 1)

= f(k)
((

1− f(k) + 1

`+ 1

)
P(X` = k) +

f(k − 1)

`+ 1
P(X` = k − 1)

)
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−
( `

`+ 1
P(X` ≥ k + 1) +

f(k)

`+ 1
P(X` = k)

)
=

(
`

`+ 1
− f(k)

`+ 1

)
h(k, `)− f(k)

`+ 1
P(X` ≥ k + 1)

+
f(k)

`+ 1

(
f(k − 1)P(X` = k − 1)− P(X` = k)

)
=

(
`

`+ 1
− f(k)

`+ 1

)
h(k, `) +

f(k)

`+ 1
h(k − 1, `).

Note, for k = 0, we have

h(0, `+ 1) = f(0)P(X`+1 = 0)− P(X`+1 ≥ 1)

= f(0)
((

1− f(0)

`+ 1

)
P(X` = 0) +

1

`+ 1
P(X` ≥ 1)

)
− f(0)

`+ 1
P(X` = 0)−

(
1− 1

`+ 1

)
P(X` ≥ 1)

=
(

1− f(0) + 1

`+ 1

)
h(0, `) =

( `

`+ 1
− f(0)

`+ 1

)
h(0, `).

Therefore, the identity (3.25) also holds for k = 0 since we defined h(−1, `) = 0 for
all ` ∈ N. By (3.25)

h(k + 1, l + 1)− h(k, l + 1)

=

(
`

`+ 1
− f(k + 1)

`+ 1

)
h(k + 1, `) +

f(k + 1)

`+ 1
h(k, `)

−
(

`

`+ 1
− f(k)

`+ 1

)
h(k, `)− f(k)

`+ 1
h(k − 1, `)

=

(
`

`+ 1
− f(k + 1)

`+ 1

)
(h(k + 1, `)− h(k, `)) +

f(k)

`+ 1
(h(k, `)− h(k − 1, `)) ,

which proves (3.26).

Proof of Proposition 3.14. Before we start with the proof, note that for ` = 2, we
have

h(0, 2) = f(0)P(X2 = 0)− P(X2 ≥ 1)

= f(0)

(
1− f(0)

2

)
− f(0)

2
=
f(0)(1− f(0))

2
.

(3.27)

Moreover,

h(1, 2) = f(1)P(X2 = 1) =
f(1)f(0)

2
. (3.28)

(i) We now show that for any ` ∈ N: h(k, `) ≥ 0 for any k ∈ N0 by induction
on `. Note that for ` = 1 the statement holds trivially and for ` = 2 the base
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case follows from (3.27) and (3.28) since f(0) ≤ 1. We now assume that the
statement holds for some `, then from (3.25) and for k ≤ `− 1 we have

h(k, `+ 1) =
( `

`+ 1
− f(k)

`+ 1

)
h(k, `) +

f(k)

`+ 1
h(k − 1, `),

which is nonnegative due to the induction hypothesis and the condition that
f(k) ≤ k + 1 ≤ `. For k = ` we have h(`, ` + 1) = f(`)P(X`+1) ≥ 0. This
implies the induction step since all other terms are 0.

(ii) Now suppose that there exists K such that k ≤ f(k) ≤ k + 1 for all k ≤ K.
As before we will use induction on ` to show the stated result. For ` = 2 we
get from (3.27) and (3.28)

h(1, 2)− h(0, 2) =
f(0)

2
(f(0) + f(1)− 1) ≥ 0,

as f(0) ≥ 0 and f(1) ≥ 1 by assumption.

Suppose that statement (3.23) is true for some ` ≤ K. By (3.26) we obtain

∆(1)h(k, `+ 1) =

(
`

`+ 1
− f(k + 1)

`+ 1

)
∆(1)h(k, `) +

f(k)

`+ 1
∆(1)h(k − 1, `),

which is nonnegative for k ≤ `− 2 due to the induction hypothesis and since

f(k) ≤ f(k + 1) ≤ f(`− 1) ≤ ` ≤ `+ 1.

It remains to show that ∆(1)h(` − 1, ` + 1) ≥ 0. Again by (3.26) and using
that ∆(1)h(`− 1, `) = −h(`− 1, `), we get that

∆(1)h(`− 1, `+ 1) =

(
`

`+ 1
− f(`)

`+ 1

)
(−h(`− 1, `)) +

f(`− 1)

`+ 1
∆(1)h(`− 2, `)

=
f(`)− `
`+ 1

h(`− 1, `) +
f(`− 1)

`+ 1
∆(1)h(`− 2, `),

which is nonnegative by induction hypothesis and since f(`) ≥ `.

(iii) Again we show by induction on ` that there exists I(`) ∈ {0, . . . , ` − 1}
such that (3.24) is valid. Note that for ` = 2 the statement holds trivially.
Moreover, for ` ≤ k∗ the statement holds by (ii) with I(`) = ` − 1. Suppose
statement (3.24) is true for some ` ≥ k∗. By (3.26) we obtain

∆(1)h(k, `+ 1) =

(
`

`+ 1
− f(k + 1)

`+ 1

)
∆(1)h(k, `) +

f(k)

`+ 1
∆(1)h(k − 1, `).

From this we can deduce that if k < I(`), then since I(`) ≤ ` − 1, we have
f(k + 1) ≤ k + 2 ≤ `, so that ∆(1)h(k, `+ 1) ≥ 0. Conversely, if k > I(`) and
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k ≤ ` − 2, we get by a similar argument that ∆(1)h(k, ` + 1) ≤ 0. Note the
case k = ` holds since ∆(1)h(`, `+ 1) = −h(`, `+ 1).

By the recursion (3.25) together with (3.28), we get

h(`, `+ 1) =
f(`)

`+ 1
h(`− 1, `) = f(`)

∏̀
i=1

f(i− 1)

i+ 1
. (3.29)

It remains to show that ∆h(1)(`− 1, ` + 1) ≤ 0. Since ∆(1)h(`− 2, `) ≤ 0, we
have again by (3.25),

∆(1)h(`− 1, `+ 1)

= h(`, `+ 1)−
( `

`+ 1
− f(`− 1)

`+ 1

)
h(`− 1, `)− f(`− 1)

`+ 1
h(`− 2, `)

≤ h(`, `+ 1)− `

`+ 1
h(`− 1, `)

= f(`)
∏̀
j=1

f(j − 1)

j + 1
− `

`+ 1
f(`− 1)

`−1∏
j=1

f(j − 1)

j + 1

=
f(`− 1)

`+ 1
(f(`)− `)

`−1∏
j=1

f(j − 1)

j + 1
,

which is negative as f(`) ≤ ` since ` ≥ k∗. In particular, we have seen that
I(`+ 1) ∈ {I(`), I(`) + 1}.

(iv) Define

C := f(0)
(

1 ∨ max
1≤k≤k∗

k∏
i=1

f(i)

i

)
.

Then, we will show inductively that for all ` ∈ N and k ≤ `− 1:

h(k, `) ≤ C

`
. (3.30)

For ` = 1 we have

h(0, 1) = f(0)P(X1 = 0) = f(0) ≤ C.

Now, assume that (3.30) holds for some ` ∈ N. Using the identity (3.25) we
obtain for k ≤ `− 1

h(k, `+ 1) =

(
`

`+ 1
− f(k)

`+ 1

)
h(k, `) +

f(k)

`+ 1
h(k − 1, `)

≤
(

`

`+ 1
− f(k)

`+ 1

)
C

`
+
f(k)

`+ 1

C

`
=

C

`+ 1
,

36



where we used that f(k) ≤ k + 1 ≤ ` in the second step. For k = `, we have
by (3.29)

h(`, `+ 1) = f(`)
∏̀
i=1

f(i− 1)

i+ 1
=
f(0)

`+ 1

∏̀
i=1

f(i)

i
.

Then, if ` ≤ k∗, this is trivially bounded by C/(`+1). Furthermore, if ` > k∗,
then

h(`, `+ 1) =
f(0)

`+ 1

∏̀
i=1

f(i)

i
≤ C

`+ 1

k∏
i=k∗+1

f(i)

i
≤ C

`+ 1
,

since f(i) ≤ i for all i ≥ k∗. This completes the induction step.

(v) Note that by (ii), k 7→ h(k, `) is increasing for k ≤ `− 1. In particular, from
(i) it follows that

sup
k∈N0

h(k, `) = sup
k≤`−1

h(k, `) = h(`− 1, `).

By (3.29), we get that

h(`−1, `) = f(`−1)
`−1∏
i=1

f(i− 1)

i+ 1
≤
∏`−1

i=0(i+ γ)

`!
=

1

Γ(γ)

Γ(`+ γ)

Γ(`+ 1)
∼ 1

Γ(γ)
`γ−1,

using the asymptotics of the Gamma function. This immediately gives state-
ment (v).

We can now combine our previous estimates to prove the two main theorems
simultaneously.

Proofs of Theorems 3.6 and 3.7. We first consider the case in which the preferential
attachment model satisfies Assumption (A) with d0 = 0, so that we can generate the
indegree of a uniform vertex using the Markov chain (X`)`≥1 defined in Lemma 3.12.
Using the notation h(k, `) = f(k)P(X` = k) − P(X` ≥ k + 1), we have from
Lemma 3.13, that for any A ⊂ N0,

E[AgA(Xn+1)] =
1

n+ 1

(( n∑
`=1

`−1∑
k=0

∆vA(k)h(k, `)
)

+ vA(0)
)
.

Using a discrete integration by parts formula and the fact that h(`, `) = 0, we can
rewrite the inner sum as

`−1∑
k=0

∆vA(k)h(k, `) = −vA(0)h(0, `)−
`−1∑
k=0

vA(k + 1)∆(1)h(k, `).
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Under the assumptions of Theorem 3.6 and 3.7, respectively, there exists I(`) such
that ∆(1)h(k, `) ≥ 0 for k < I(`) and ∆(1)h(k, `) ≤ 0 for k ≥ I(`). In the case of
Theorem 3.6 this follows from Proposition 3.14 (iii), for Theorem 3.7 we used part
(ii) of Proposition 3.14.

In particular, we have that

∣∣∣ `−1∑
k=0

vA(k + 1)∆(1)h(k, `)
∣∣∣

≤ sup
k
|vA(k)|

(
h(I(`), `)− h(0, `) + h(I(`), `)− h(`, `)

)
≤ 2 sup

k
|vA(k)| sup

k≤`−1
h(k, `).

Therefore, we get∣∣E[AgA(Xn+1)]
∣∣

≤ |vA(0)|
n+ 1

+
∣∣∣ 1

n+ 1

n∑
`=1

(( `−1∑
k=0

vA(k + 1)∆(1)h(k, `)
)

+ vA(0)h(0, `)
)∣∣∣

≤ |vA(0)|
n+ 1

+
2

n+ 1
sup
k
|vA(k)|

n∑
`=1

sup
k≤`−1

h(k, `).

Hence, if we combine this estimate with Proposition 3.11, we obtain that

dTV(Wn+1,W ) = sup
A⊂N0

∣∣E[AgA(Xn+1)]
∣∣ ≤ 1

n+ 1
+

2

n+ 1

n∑
`=1

sup
k≤`−1

h(k, `).

Finally, we note that in the case of Theorem 3.6 we can apply Proposition 3.14 (iv)
to deduce that there exists a constant C > 0 such that

dTV(Wn+1,W ) ≤ 1

n+ 1
+

2C

n+ 1

n∑
`=1

1

`
,

which immediately produces the required bound. In the case of Theorem 3.7, we
can instead apply Proposition 3.14 (v) to get a constant C > 0 such that

dTV(Wn+1,W ) ≤ 1

n+ 1
+

2C

n+ 1

n∑
`=1

`−(1−γ),

which again yields the statement of the theorem. Finally, we consider the case
in which the model satisfies Assumptions (A) with d0 > 0. In this case, by the
same argument as in Lemma 3.12, the indegree of a uniformly chosen vertex has the
same distribution as a Markov chain (X̃n)n≥1 with X̃1 = d0, but the same transition
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probabilities as (Xn)n≥1. Let τ = inf{k ≥ 2 : X̃k = 0}. We can couple (Xn), (X̃n)
by first letting X̃n evolve and then letting Xn evolve independently until time τ .
Further, we set Xk := X̃k for all k ≥ τ . By the characterization of dTV in terms of
couplings, we thus have

dTV(Xn, X̃n) ≤ P(τ > n) =
n∏
i=1

(
1− 1

i+ 1

)
=

1

n+ 1
.

By the first part of the proof for d0 = 0, this completes the proof also for d0 > 0.

3.2.4. Results for the Barabási-Albert model

It is straightforward to see that graph models allowing for self-loops do not satisfy
Assumptions (A). Unfortunately this class of graph models includes the proba-
bly most prominent model appearing in the literature. It was first introduced by
Barabási and Albert in [BA99]. A generalized version of this model can be described
as follows: we start with a graph consisting of one vertex and a single self-loop. Now
at each discrete time step n we insert a new vertex, which we label n, together with a
single edge, which connects to one of the present vertices according to the following
probabilities

P(n+ 1→ n+ 1|PA1,δ
n ) =

1 + δ

n(2 + δ) + (1 + δ)
=

f(0)

n+ α
,

P(n+ 1→ i|PA1,δ
n ) =

δ +Dn(i)

n(2 + δ) + (1 + δ)
=
f(deg−n (i))

n+ α
for i ≤ n, (3.31)

where f(k) = k
2+δ

+α, with α = 1+δ
2+δ

. Here Dn(i) denotes the total degree of vertex

i, deg−n (i) refers to the indegree of vertex i a time n, PA1,δ
n denotes the graph at

time n and δ ≥ −1 is a parameter of the model, which, for δ = 0, yields the
classical Barabási-Albert model (cf. [BA99]). In [Ros13] the author deduces rates
of convergence for the degree of a uniformly chosen vertex to a mixed binomial
distribution via Stein’s method. Theorem 3.16 gives the same rates of convergence
towards the limiting distribution µ, however, though we also use Stein’s method,
the proofs are fundamentally different.

Theorem 3.16. Let Wn denote the indegree of a uniformly chosen vertex at time
n in the (generalized) Barabási-Albert model. Then there exists a constant C > 0
such that for all n ≥ 2

dTV(Wn,W ) ≤ C
log(n)

n
, (3.32)

where W ∼ µ and µ as in (3.3).

39



The proof follows the same structure as those of Theorems 3.6 and 3.7. Most of
the calculations are very similar, but as the Markov process can now reach states
0 and 1 from any other state, some additional terms turn up and we have to alter
the statements of Proposition 3.14 to some extent.

Let Jn be defined as in Lemma 3.12 and set Yn = degBA,−n (Jn) := deg−n (Jn), where
degBA,−n (i) refers to the indegree of vertex i in the Barabási-Albert model at time
n. We get the following transition probabilities for the Markov chain Yn:

P(Yn+1 = j + 1|Yn = j) =
n

n+ 1
· f(j)

n+ α
for j 6= 0,

P(Yn+1 = 1|Yn = 0) =
f(0)

n+ α
,

P(Yn+1 = j|Yn = j) =
n

n+ 1

(
1− f(j)

n+ α

)
for j ≥ 2,

P(Yn+1 = 1|Yn = 1) =
n

n+ 1

(
1− f(1)

n+ α

)
+

1

n+ 1
· f(0)

n+ α
,

P(Yn+1 = 0|Yn = 0) =
n

n+ 1

(
1− f(0)

n+ α

)
+

1

n+ 1

(
1− f(0)

n+ α

)
= 1− f(0)

n+ α
,

P(Yn+1 = 0|Yn = j) =
1

n+ 1

(
1− f(0)

n+ α

)
for j 6= 0,

P(Yn+1 = 1|Yn = j) =
1

n+ 1
· f(0)

n+ α
for j ≥ 2.

Lemma 3.17. For the Markov chain (Yn)n≥0 defined above and vA(k) := f(k)∆gA(k),
with A ⊂ N0, we have

|E [AgA(Yn+1)]|

≤

∣∣∣∣∣ 1

n+ 1

(( n∑
`=1

`−1∑
k=0

∆vA(k)
(
f(k)P(Y` = k)− P(Y` ≥ k + 1)

)))∣∣∣∣∣+ C
log(n)

n
,

(3.33)

for some constant C > 0.

Note that throughout this section C denotes a constant, which may vary from
line to line, but is always independent of n.
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Proof. As in the proof of Lemma 3.13 let h : N0 → R be such that h(0) = 0. Then,

E [h(Yn+1)] = E [E [h(Yn+1) |Yn]]

= E
[
h(Yn)

n

n+ 1

(
1− f(Yn)

n+ α

)
+ h(Yn + 1)

n

n+ 1

f(Yn)

n+ α
+ h(1)

f(0)

(n+ 1)(n+ α)

]
=

n

n+ 1
E[h(Yn)] +

1

n+ 1
E
[

n

n+ α
f(Yn)∆h(Yn)

]
+

f(0)

(n+ 1)(n+ α)
h(1).

Through iteration, we get

E [h(Yn+1)] =
1

n+ 1
E [h(Y1)] +

1

n+ 1

n∑
`=1

`

`+ α
E[f(Y`)∆h(Y`)] +

1

n+ 1

n∑
`=1

f(0)

l + α
h(1).

Again we define
h(k) = vA(k) + (gA(0)− gA(k))− vA(0).

Using (3.11) the absolute value of the first term can be bounded by 3
n+1

and the

last one by 3 log(n)
n

. Having taken care of these two terms we obtain

|E[AgA(Yn+1)]| = |E[h(Yn+1) + vA(0)]|

≤

∣∣∣∣∣ 1

n+ 1

n∑
`=1

`

`+ α

(
E[f(Y`)∆vA(Y`)]− E[f(Y`)∆gA(Y`)]

)
+ vA(0)

∣∣∣∣∣+ C
log(n)

n

≤

∣∣∣∣∣ 1

n+ 1

n∑
`=1

(
E[f(Y`)∆vA(Y`)]− E[f(Y`)∆gA(Y`)]

)∣∣∣∣∣
+

∣∣∣∣∣ 1

n+ 1

n∑
`=1

α

`+ α

(
E[f(Y`)∆vA(Y`)]− E[f(Y`)∆gA(Y`)]

)
+ vA(0)

∣∣∣∣∣+ C
log(n)

n

≤

∣∣∣∣∣ 1

n+ 1

n∑
`=1

∑̀
k=0

f(k)∆vA(k)P(Y` = k)− 1

n+ 1

n∑
`=1

∑̀
k=0

(vA(k)− vA(0))P(Y` = k)

∣∣∣∣∣
+
|vA(0)|
n+ 1

+ C
1

n+ 1

n∑
`=1

α

`+ α
E[f(Y`)] + C

log(n)

n
. (3.34)

Now, since Y`
d
= deg−` (U`), where U` denotes the uniform distribution on [`], we get

E [f(Y`)] = E

[
1

`

∑̀
j=1

(
deg−` (j)

2 + δ
+ α

)]
=

1

`(2 + δ)
(`+ `(1 + δ)) = 1,

so that the last terms can all be bounded by C log(n)
n

. Moreover

∑̀
k=0

(vA(k)− vA(0))P(Y` = k) =
∑̀
k=0

k−1∑
i=0

∆vA(i)P(Y` = k)
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=
`−1∑
i=0

∆vA(i)
∑̀
k=i+1

P(Y` = k) =
`−1∑
i=0

∆vA(i)P(Y` ≥ i+ 1).

Plugging all this into (3.34) we obtain the desired statement.

As in section 3.2.3 we define

h(k, `) := f(k)P(Y` = k)− P(Y` ≥ k + 1),

where (Y`)`≥1 is the Markov chain defined at the beginning of this section. The
following lemma gives a similar recursive formula for h as can be found in Lemma
3.15.

Lemma 3.18. Let h be as above, then h(k, `) = 0 for all k ≥ ` + 1 and for all
k, ` ∈ N, k ≥ 2, we have

h(k, `+ 1) =
`

`+ 1

(
1− f(k)

`+ α

)
h(k, `) +

`

`+ 1

f(k)

`+ α
h(k − 1, `) (3.35)

and

h(0, `+ 1) =
`

`+ 1

(
1− f(0)

`+ α

)
h(0, `)− α

(`+ 1)(`+ α)
, (3.36)

h(1, `+ 1) =
`

`+ 1

(
1− 1

`+ α

)
h(1, `) +

`

(`+ 1)(`+ α)
h(0, `) +

α

(`+ 1)(`+ α)
(3.37)

for k = 0, 1.
Moreover for ∆(1)h(k, `) := h(k + 1, `) − h(k, `), we get that for all ` ∈ N and
2 ≤ k ≤ `− 1

∆(1)h(k, `+ 1) =
`

`+ 1

(
1− f(k + 1)

`+ α

)
∆(1)h(k, `) +

`

`+ 1

f(k)

`+ α
∆(1)h(k − 1, `)

(3.38)
as well as

∆(1)h(0, `+ 1) =
`

`+ 1

(
1− 1

`+ α

)
∆(1)h(0, `) +

α

`+ α

`

`+ 1
and

∆(1)h(1, `+ 1) =
`

`+ 1

(
1− f(2)

`+ α

)
∆(1)h(1, `)

+
`

(`+ α)(`+ 1)
∆(1)h(0, `)− α

(`+ 1)(`+ α)

Proof. Note that since Y` ≤ ` P-a.s, we have h(k, `) = 0 for any k ≥ `+1. Moreover,
by the definition of the Markov chain (Yn), for k ≥ 2, we have

h(k, `+ 1) = f(k)P(Y`+1 = k)− P(Y`+1 ≥ k + 1)
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= f(k)
( `

`+ 1

(
1− f(k)

`+ α

)
P(Y` = k) +

`

`+ 1

f(k − 1)

`+ α
P(Y` = k − 1)

)
−
( `

`+ 1
P(Y` ≥ k + 1) +

`

`+ 1

f(k)

`+ α
P(Y` = k)

)
=

`

`+ 1
h(k, `)− `

`+ 1

f(k)

`+ α
f(k)P(Y` = k)

+
`

`+ 1

f(k)

`+ α

(
f(k − 1)P(Y` = k − 1)− P(Y` = k)

)
=

`

`+ 1

(
1− f(k)

`+ α

)
h(k, `) +

`

`+ 1

f(k)

`+ α
h(k − 1, `),

which is exactly (3.35). Using this result we obtain

∆(1)h(k, `+ 1) = h(k + 1, `+ 1)− h(k, `+ 1)

=

(
`

`+ 1
− `

`+ 1

f(k + 1)

`+ α

)
h(k + 1, `) +

`

`+ 1

f(k + 1)

`+ α
h(k, `)

−
(

`

`+ 1
− `

`+ 1

f(k)

`+ α

)
h(k, `)− `

`+ 1

f(k)

`+ α
h(k − 1, `)

=
`

`+ 1

(
1− f(k + 1)

`+ α

)
(h(k + 1, `)− h(k, `))

+
`

`+ 1

f(k)

`+ α
(h(k, `)− h(k − 1, `)) ,

for k ≥ 2, which is (3.38). With f(0) = α we get

h(0,`+ 1) = f(0)P(Y`+1 = 0)− P(Y`+1 ≥ 1)

= f(0)

(
1

`+ 1

(
1− f(0)

`+ α

)
+

`

`+ 1

(
1− f(0)

`+ α

)
P(Y` = 0)

)
−
(

`

`+ 1
P(Y` ≥ 1) +

`

`+ 1

f(0)

`+ α
P(Y` = 0) +

f(0)

(`+ 1)(`+ α)

)
=
f(0)

`+ 1

(
1− f(0)

`+ α

)
+

`

`+ 1
h(0, `)− `

`+ 1

f(0)

`+ α
h(0, `)

− `

`+ 1

f(0)

`+ α
− f(0)

(`+ 1)(`+ α)

=
`

`+ 1

(
1
f(0)

`+ α

)
h(0, `)− α

(`+ 1)(`+ α)
,

where we used that f(0)
`+1

(
1− f(0)

`+α

)
= α`

(`+1)(`+α)
. Similarly we obtain
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h(1, `+ 1) = f(1)P(Y`+1 = 1)− P(Y`+1 ≥ 2)

= f(1)

(
1

`+ 1

f(0)

`+ α
+

`

`+ 1

f(0)

`+ α
P(Y` = 0) +

`

`+ 1

(
1− f(1)

`+ α

)
P(Y` = 1)

)
−
(

`

`+ 1
P(Y` ≥ 2) +

`

`+ 1

f(1)

`+ α
P(Y` = 1)

)
=

f(0)

(`+ 1)(`+ α)
+

`

`+ 1
h(1, `)− `

(`+ 1)(`+ α)
h(1, `) +

`

(`+ 1)(`+ α)
h(0, `)

=
`

`+ 1

(
1− 1

`+ α

)
h(1, `) +

`

(`+ 1)(`+ α)
h(0, `) +

f(0)

(`+ 1)(`+ α)
, (3.39)

where we used f(1) = 1
2+δ

+ 1+δ
2+δ

= 1. This gives (3.36) and (3.37) Using the above
identities as well as (3.35) for h(2, `+ 1) yields the desired results.

The following proposition gives the necessary results on h(k, l), which slightly
vary from the ones given in Proposition 3.14 for models fulfilling Assumptions (A).

Proposition 3.19. (i) For h as before and any ` ∈ N we have

h(0, `) = −1

`
.

(ii) For any k, ` ∈ N we have

|h(k, `)| ≤ Ĉ

`
,

with Ĉ = max{3,
∏k∗

i=1
f(i+1)
i+α
}, where k∗ ≥ 1 is such that

f(k + 1) ≥ k + α ∀k ≤ k∗ and f(k + 1) ≤ k + α for k > k∗.

(iii) For any ` ∈ N we get

∆(1)h(0, `) = h(1, `)− h(0, `) ≥ α

`
.

(iv) For ` ≤ 1
1+δ

, k ≤ `− 1 we have

∆(1)h(k, `) = h(k + 1, `)− h(k, `) ≥ 0.

(iv) For all ` ∈ N there exists I(`) ∈ {0, . . . , `} such that

∆(1)h(k, `) = h(k + 1, `)− h(k, `)

{
≥ 0 if k < I(`),
≤ 0 if k ≥ I(`).

(3.40)

Moreover, I(`+ 1) ∈ {I(`), I(`) + 1}.
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Proof. First note that

h(0, 1) = f(0)P(Y1 = 0)− P(Y1 ≥ 1) = −P(Y1 = 1) = −1,

h(1, 1) = f(1)P(Y1 = 1)− P(Y1 ≥ 2) = f(1)P(Y1 = 1) = 1,

h(0, 2) = f(0)P(Y2 = 0)− P(Y2 ≥ 1) =
f(0)

2

(
1− f(0)

1 + α

)
−
(

1− 1

2

(
1− f(0)

1 + α

))
=

1

2

(
f(0)− f(0)2

1 + α
− 1− f(0)

1 + α

)
= −1

2
,

h(1, 2) = f(1)P(Y2 = 1)− P(Y2 ≥ 2)

= f(1)

(
1

2

(
1− f(1)

1 + α

)
+

f(0)

2(1 + α)

)
− f(1)

2(1 + α)

=
1

2

(
1 +

α− 2

1 + α

)
=

2α− 1

2(1 + α)

and

h(2, 2) = f(2)P(Y2 = 2) =
f(2)

2(1 + α)
.

As in the proof of Proposition 3.14, we will use induction to show all of the stated
results.

(i) From the calculations above we have

h(0, 1) = −1 and h(0, 2) = −1

2
.

Using the induction hypothesis h(0, `) = −1
`

and the recursive formula de-
duced in Lemma 3.18 we get

h(0, `+ 1) =

(
`

`+ 1
− α`

(`+ 1)(`+ α)

)(
−1

`

)
− α

(`+ 1)(`+ α)
= − 1

`+ 1
.

(ii) For k = 0 and all ` ≥ 2 the statement follows from (i). We now proceed via
induction on `. As h(k, `) = 0 for k ≥ ` + 1 we need to show that the result
holds for k ≤ `. For ` = 2 we have

|h(0, 2)| ≤ 1

2
, |h(1, 2)| ≤ 1

2

∣∣∣∣2α− 1

1 + α

∣∣∣∣ ≤ 1

2
, h(2, 2) =

f(2)

2(1 + α)
≤ Ĉ

2
,

which proves the base clause.
Assuming that the statement holds for an ` ∈ N and all k ≤ `, (3.39) and (i)
yield

|h(1, `+ 1)|
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=
∣∣∣ ( `

`+ 1
− `

(`+ 1)(`+ α)

)
h(1, `) +

`

(`+ 1)(`+ α)
h(0, `) +

f(0)

(`+ 1)(`+ α)

∣∣∣
=

∣∣∣∣( `

`+ 1
− `

(`+ 1)(`+ α)

)
h(1, `)− 1

(`+ 1)(`+ α)
+

f(0)

(`+ 1)(`+ α)

∣∣∣∣
≤
(

`

`+ 1
− `

(`+ 1)(`+ α)

)
Ĉ

`
+

1− α
(`+ α)(`+ 1)

≤ Ĉ

`+ 1

(
1− 1

`+ α
+

1− α
`+ α

)
≤ Ĉ

`+ 1

and by (3.35)

|h(k, `+ 1)| =
∣∣∣∣( `

`+ 1
− `

`+ 1

f(k)

`+ α

)
h(k, `) +

`

`+ 1

f(k)

`+ α
h(k − 1, `)

∣∣∣∣
≤
(

`

`+ 1
− `

`+ 1

f(k)

`+ α
+

`

`+ 1

f(k)

`+ α

)
Ĉ

`+ 1
=

Ĉ

`+ 1
,

for 2 ≤ k ≤ ` as we proved the bound on h(1, `) just beforehand. We still
have to deal with the case k = `+ 1 :

|h(`+ 1, `+ 1)| = f(`+ 1)P(Y`+1 = `+ 1) = f(`+ 1)
∏̀
i=1

i

i+ 1

f(i)

i+ α

=
f(0)

`+ 1

∏̀
i=1

f(i+ 1)

i+ α
≤ Ĉ

`+ 1
,

due to the definition of Ĉ.

(iii) For ` = 2 we have

∆(1)h(0, 2) =
2α− 1

2(1 + α)
+

1

2
=

1

2

(
1− 1

1 + α
+

2α

1 + α

)
=

3α

2(1 + α)
≥ α

2
.

Assuming that the statement is true for some ` ∈ N, we get

h(1, `+ 1)− h(0, `+ 1) =

(
`

`+ 1
− `

(`+ 1)(`+ α)

)
∆(1)h(0, `) +

α

`+ α

`

`+ 1

≥
(

`

`+ 1
− `

(`+ 1)(`+ α)

)
α

`
+

α

`+ α

`

`+ 1

=
α

`+ 1
+

α

`+ α

`

`+ 1
− α

(`+ 1)(`+ α)
≥ α

`+ 1
.

(iv) Obviously ∆(1)h(0, `) ≥ 0 for all ` ∈ N due to (iii). Now

∆(1)h(1, 2) =
f(2)

2(1 + α)
− 2α− 1

2(1 + α)
=

1

2(1 + α)

((
2

2 + δ
+ α

)
+ 1− 2α

)
≥ 0,
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as 0 < α < 1, yields the result for ` = 2. Assuming that the statement is true
for some ` ≤ 1

1+δ
− 1, (iii) gives

∆(1)h(1, `+ 1)

=

(
`

`+ 1
− `

`+ 1

f(2)

`+ α

)
∆(1)h(1, `) +

`

(`+ α)(`+ 1)
∆(1)h(0, `)− α

(`+ 1)(`+ α)

≥ `

(`+ α)(`+ 1)

α

`
− α

(`+ 1)(`+ α)
= 0

and for 2 ≤ k ≤ `− 1

h(k + 1, `+ 1)− h(k, `+ 1)

=

(
`

`+ 1
− `

`+ 1

f(k + 1)

`+ α

)
∆(1)h(k, `) +

`

`+ 1

f(k)

`+ α
∆(1)h(k − 1, `),

which is non-negative due to the induction hypothesis as

f(k + 1) ≤ f(`) =
`

2 + δ
+ α ≤ `+ α.

It remains to check the case k = `. We have

h(`+ 1, `+ 1)− h(`, `+ 1)

= f(`+ 1)P(Y`+1 = `+ 1)− f(`)P(Y`+1 = `) + P(Y`+1 ≥ `+ 1)

= f(`+ 1)
`

`+ 1

f(`)

`+ α
P(Y` = `)− f(`)

[
`

`+ 1

(
1− f(`)

`+ α

)
P(Y` = `)

+
`

`+ 1

f(`− 1)

`+ α
P(Y` = `− 1)

]
+

`

`+ 1

f(`)

`+ α
P(Y` = `)

=
`

`+ 1
f(`)P(Y` = `)

(
f(`+ 1)

`+ α
− 1 +

f(`)

`+ α

)
− `

`+ 1

f(`)

`+ α
(f(`− 1)P(Y` = `− 1)− P(Y` = `))

=
`

`+ 1

(
f(`+ 1)

`+ α
− 1

)
h(`, `) +

`

`+ 1

f(`)

`+ α
(h(`, `)− h(`− 1, `)),

which is non-negative due to h(`, `) = f(`)P(Y` = `) > 0, the induction
hypothesis and the fact that

f(`+ 1)

`+ α
− 1 =

`+1
2+δ

+ α− (`+ α)

`+ α
≥ 0 ⇔ ` ≤ 1

1 + δ
.
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Now suppose the statement is true for some ` > 1
1+δ

. The rest of the proof
follows analogously to the case of models fulfilling Assumptions (A), the only
thing to verify is that for I(`) < ` we have ∆(1)h(k, `+ 1) < 0 for k = `, `+ 1.
Indeed,

∆(1)h(`+ 1, `+ 1) = −h(`+ 1, `+ 1) = −f(`+ 1)P(Y`+1 = `+ 1) < 0

and from the calculations above we also get

∆(1)h(`, `+ 1) =

(
`

`+ 1

f(`+ 1)

`+ α
− `

`+ 1

)
h(`, `) +

`

`+ 1

f(`)

`+ α
∆(1)h(`− 1, `)

≤ 0,

since ` > 1
1+δ

so that f(`+1)
`+α

< 1 and ∆(1)h(`− 1, `) ≤ 0 as I(`) < `.

Proof of Theorem 3.16. By Lemma 3.17 it follows that

E [AgA(Yn+1)] ≤ 1

n+ 1

( n∑
`=1

`−1∑
k=0

∆vA(k)h(k, `)
)

+ C
log(n)

n
.

As in the proof of Theorems 3.6 and 3.7 we use a discrete integration by parts
formula to get

`−1∑
k=0

∆vA(k)h(k, `) = −vA(0)h(0, `)−
∑̀
k=0

vA(k + 1)∆(1)h(k, `),

where we also exploited that h(`+ 1, `) = 0. By Proposition 3.19 (iv) we obtain∣∣∣ `−1∑
k=0

vA(k + 1)∆(1)h(k, `)
∣∣∣

≤ sup
k
|vA(k)|

(
h(I(`), `)− h(0, `) + h(I(`) + 1, `)− h(`, `)

)
≤ 2 sup

k
|vA(k)| sup

k≤`−1
h(k, `).

Now Proposition 3.19 (ii) and Proposition 3.11 yield∣∣E[AgA(Xn+1)]
∣∣

≤
∣∣∣ 1

n+ 1

n∑
`=1

(( `−1∑
k=0

vA(k + 1)∆(1)h(k, `)
)

+ vA(0)h(0, `)
)∣∣∣+ C

log(n)

n

≤ 2

n+ 1
sup
k
|vA(k)|

n∑
`=1

sup
k≤`−1

h(k, `) + C
log(n)

n

≤ Ĉ

n+ 1

n∑
`=1

1

`
+ C

log(n)

n
.
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Hence,

dTV(Wn+1,W ) = sup
A⊂N0

∣∣E[AgA(Xn+1)]
∣∣ ≤ C

log(n)

n
,

for some constant C ≥ Ĉ.

3.3. Rates of convergence for the out-degree

Theorems 3.6, 3.7 and 3.16 all deal with the indegree of a uniformly chosen vertex.
However, for the model described in Example 3.1, an obvious question concerns
the distribution of the random outdegree. In [DM09] the authors show that the
outdegree is approximately Poisson distributed. The next theorem gives an error
bound on this approximation.

Theorem 3.20. Let Dn denote the outdegree of vertex n in the model described in
Example 3.1 and suppose that for some γ ∈ (0, 1), we have f(k) ≤ γk + 1 for all
k ∈ N0. Then there exists C > 0 such that

dTV(Dn, Po(λn)) ≤ C


1

n+1
, for 0 < γ < 1

2
,

log(n)
n
, for γ = 1

2
,

n−2(1−γ), for 1
2
< γ < 1,

where Po(λn) denotes the Poisson distribution with parameter λn = E [f(Wn−1)]
and Wn−1 has the distribution of the indegree of a uniformly chosen vertex at time
n − 1. Moreover, λn → λ := E[f(W )], where W ∼ µ as in (3.3). Finally, if
f(k) = γk + β for γ ∈ (0, 1), β ∈ [0, 1], then

|λn − E [f(W )]| ≤ n−1+γ.

For the proof we will need the following moment bound.

Lemma 3.21. For the preferential attachment model as in Example 3.1 with f(k) ≤
γk + 1 for all k and some γ ∈ (0, 1), we have, for all n ∈ N,

E[f(deg−n (i))] ≤
(n
i

)γ
for all i ∈ [n].

Proof. For the linear attachment rule f (γ)(k) := γ · k + 1, the statement of the
lemma is proved in [DM13, Lemma 2.7]. Denote the indegrees in the corresponding
preferential attachment model by deg−,γn (i) and consider general f and associated
degrees deg−n (i). Then, since f ≤ f (γ) we can couple the models so that deg−n (i) ≤
deg−,γn (i) for all i ∈ [n], n ∈ N. In particular, we have that

E[f(deg−n (i))] ≤ E[f (γ)(deg−n (i))] ≤ E[f (γ)(deg−,γn (i))] ≤
(n
i

)γ
,

as required.
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Using a result of [BH84] for Poisson approximation (again based on the Chen-
Stein method), we can now prove Theorem 3.20.

Proof of Theorem 3.20. By the independence assumption for incoming edges, it
follows that the indegree evolutions (deg−k (i))k≥i and (deg−k (j))k≥j are indepen-
dent if i 6= j. In particular, if we write Xi,n = 1{there is an edge from n to
i} = deg−n (i)− deg−n−1(i), then we can write the outdegree Dn of vertex n as

Dn =
n−1∑
i=1

Xi,n,

i.e. as the sum of independent Bernoulli variables. Note that

pi,n := P(Xi,n = 1) = E
[
E
[
deg−n (i)− deg−n−1(i)|Gn−1

]]
= E

[
f(degn−1(i))

n− 1

]
.

Therefore,

λn := E [Dn] = E
[ 1

n− 1

n−1∑
i=1

f(degn−1(i))
]

= E [f(Wn−1)] ,

where Wn−1 denotes the indegree of a uniformly chosen vertex after the insertion
of vertex n − 1. From the proof of Theorem 1.1 (b) in [DM09] we know that
λn → E[f(W )] if W ∼ µ. Applying [BH84, Thm. 1.1] we obtain that

dTV(Dn, Po(λn)) ≤ 1− e−λn
λn

n−1∑
i=1

p2
i,n ≤ min{1, 1

λn
}
n−1∑
i=1

p2
i,n. (3.41)

It remains to control the sum on the right hand side. By Lemma 3.21, we have that

n−1∑
i=1

p2
i,n =

1

(n− 1)2

n−1∑
i=1

E[f(deg−n−1(i))]2 ≤ 1

(n− 1)2

n−1∑
i=1

(n
i

)2γ

.

Since λn → λ := E[f(W )] we can deduce from (3.41) that

dTV(Dn, Po(λn)) ≤ C


1

n+1
, for 0 < γ < 1

2
,

log(n)
n
, for γ = 1

2
,

n−2(1−γ), for 1
2
< γ < 1,

for a suitable constant C > 0, which proves the first part of Theorem 3.20.
For the final part, we assume that f(k) = γk+ β, for γ ∈ (0, 1), β ∈ [0, 1]. First

note that in this case by (3.7)

λ = E[f(W )] = γE[W ] + β = γ
∑
k≥1

µ([k,∞)) + β

= γ
∑
k≥1

f(k − 1)µk−1 + β = γλ+ β.
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In particular, λ = β
1−γ . Following a similar argument as in the proof of Theorem

1.1 (b) in [DM09], we have that

E[f(Wn+1)] =
1

n+ 1

n+1∑
i=1

E
[
E[f(deg−n+1(i)) | Gn]

]
=

1

n+ 1

n∑
i=1

E
[
E[f(deg−n+1(i))− f(deg−n (i)) | Gn]

]
+

f(0)

n+ 1
+

1

n+ 1

n∑
i=1

E
[
E[f(deg−n (i)) | Gn]

]
=

1

n+ 1

(
n∑
i=1

E
[
E[γ(deg−n+1(i)− deg−n (i)) | Gn]

]
+ β +

n∑
i=1

E[f(deg−n (i))]

)

=
1

n+ 1

n∑
i=1

γE
[f(deg−n (i)

n

]
+

β

n+ 1
+

1

n+ 1

n∑
i=1

E[f(deg−n (i))]

= (1− 1− γ
n+ 1

)E[f(Wn)] +
β

n+ 1
.

Using the fact that λ = β
1−γ , we obtain that for λ̄n+1 := E[f(Wn)]− λ,

λ̄n+1 =
(

1− 1− γ
n

)
λ̄n.

Hence,

|λ̄n+1| =
n∏
i=1

(
1− 1− γ

i

)
|λ̄1| ≤ Cn−(1−γ),

for a suitable constant C > 0, as claimed.
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4. Rates of convergence via coupling

In the following chapter we look at the same preferential attachment models as were
considered in the previous one. However, this time we will use a different technique
to derive rates of convergence. Unfortunately, this techniques can only be applied
to a subclass of the attachment functions considered in chapter 3 and the rates of
convergence contain an additional factor of order log(n) compared to the bounds
given in Theorem 3.7.

The coupling method, introduced by Wolfgang Döblin, is a powerful technique
in probability theory which allows to compare two probability measures. One of
the most prominent applications is in the theory of Markov processes. Here, one
constructs two copies of a process, one of which is already in stationarity, on a joint
probability space and shows that the two processes coincide with high probability
after some random time. We will use this technique in an alternative proof to de-
duce rates of convergence for one of the random quantities already considered in
section 3.2, namely the indegree of a uniformly chosen vertex.
In section 4.1 we begin by considering preferential attachment models satisfying our
Assumptions (A) from section 3.1 and subsequently in section 4.2 deal with models
that do not satisfy those assumptions.

4.1. Coupling for general models

Noticing that the behaviour of the discrete-time Markov chain (Xn)n≥1 as given in
Lemma 3.12 resembles that of a continuous-time Markov chain (Zt)t≥0 with gener-
ator A, we can apply coupling techniques to deduce rates of convergence.

Our main result in this section gives bounds on the distance of Wn (the degree
of a uniformly chosen vertex in Gn) and its limiting distribution in the total vari-
ation metric for attachment functions f , such that the first and second moment
exist. The result is formulated in the following theorem.
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Theorem 4.1. For every monotonically increasing attachment function f : N0 →
(0,∞) and f ∈ L2(µ), where µ is the measure defined in (3.3), there exists a
constant C > 0 such that

dTV (Wn,W ) ≤ C
log(n+ 1)2

n
,

where W ∼ µ and Wn denotes the indegree of a uniformly chosen vertex at time n.

Remark 4.2. Following [DM09] for f(k) ∼ γkα with 0 < α < 1, we have

log(µk) ∼ −
1

γ

1

1− α
k1−α,

such that in this case the assumptions of Theorem 4.1 are met. Furthermore, for
f(k) = γk + β with γ, β ∈ (0, 1], [DM09] gives

µk ∼
Γ(β+1

γ
)

γΓ(β
γ
)
k−(1+ 1

γ
),

so in the case γ > 1
2

Theorem 4.1 is not applicable. In particular this shows that
Theorem 3.7 can be applied to a larger class of attachment functions.

In order for the reader not to get lost in the tedious calculations, we give a short
overview of the proof. The main idea is to construct an explicit coupling (X ′n, Y

′
n)

of (Xn, Yn), where Yn and Y ′n respectively are observations of the continuous-time
process Zt at discrete time instances, and apply the coupling inequality

dTV (Xn, Yn) ≤ P(X ′n 6= Y ′n), (4.1)

see Proposition 2.14. Thus, we will construct a coupling of the discrete- and the
continuous-time process so that the two chains are in the same state with high
probability. We will proceed similar as in the proof of Proposition 2.14. Due to
the scaling of the transition probabilities of the discrete-time Markov chain, we will
observe the continuous-time process Z at discrete time steps ψ(n), where

ψ(n) =
n∑
i=1

1

i
,

so that ψ(n + 1) − ψ(n) = 1
n+1

. We denote the observation of Z at the n-th point
in time by Yn, i.e.

Yn = Zψ(n).

As the transition probabilities of the two chains differ, we cannot construct a cou-
pling in such a way, that the chains evolve together from some random point in
time onwards. However, we can construct it in such a way that once the chains
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are in the same state, they stay together with maximal probability, e.g. if the
chains are both in state k at time n they move together to state ` with probability
min{P(Xn+1 = `|Xn = k),P(Yn+1 = `|Yn = k)}. Lemma 4.3 gives the necessary
inequalities to decide which transition probability is the smaller of the two and also
shows that for fixed k these probabilities asymptotically coincide. In the proof of
Lemma 4.5 we give the precise definition of a coupling (X

′
n, Y

′
n) of (Xn, Yn). More

precisely, we force the chains to meet, whenever the continuous-time process moves
to 0 and then keep them together with maximal probability. Furthermore, we show
that this really defines a coupling, and finally deduce an upper bound on the prob-
ability of the event that the chains drift apart, even though they have been in the
same state before. As it is more likely for the discrete-time process to perform a
jump to zero than for the continuous-time process (cf. Lemma 4.3), we show in
Lemma 4.6 that the likelihood of X moving to zero without Y , is small. The proof
of Theorem 4.1 uses these results to show that for n large, the probability that the
chains are not in the same state, is close to zero.

Lemma 4.3. For the time continuous process Yn observed at discrete times we have

P(Yn+1 = 0|Yn = k) ≤ 1

n+ 1
for 0 < k ≤ n, (4.2)

P(Yn+1 = k + 1|Yn = k) ≤ f(k)

n+ 1
, (4.3)

P(Yn+1 = k|Yn = k) ≥ 1− 1 + f(k)

n+ 1
for k 6= 0, (4.4)

P(Yn+1 = 0|Yn = 0) ≥ 1− f(0)

n+ 1
(4.5)

and

P(Yn+1 = j|Yn = k) ≤ (1 + f(k + 1))2

2(n+ 1)2
(4.6)

for n ≥ 4. Moreover

sup
j≥0
|P(Xn+1 = j|Xn = k)− P(Yn+1 = j|Yn = k)| ≤ (1 + f(k + 1))2

(n+ 1)2
(4.7)

for j /∈ {0, k, k+ 1} and all k ≤ n, where (Xn)n≥1 denotes the discrete time Markov
process introduced in the previous chapter.

Proof. Throughout the proof we will make extensive use of the following inequalities,
resulting from bounds on the Lagrange remainder in the Taylor series of exp(−x):

x− x2

2
≤ 1− exp(−x) ≤ x. (4.8)
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Let A
(�)
n+1, with � ∈ {>,≥,=}, denote the events that the time continuous process

Zt moved more than once, at least once or exactly once respectively in the interval
Jn := (0, 1

n+1
]. By Bk we denote the event that Yn is in state k the next time we

observe the process. With this notation we obtain

P(Yn+1 = 0|Yn = k) = Pk(A(=)
n+1, B0) + Pk(A(>)

n+1, B0) (4.9)

for k 6= 0, where we used P(Yn+1 = 0|Yn = k) := Pk(Yn+1 = 0) for simplicity
of notation. Recall that in the time-continuous process Zt the times between two
movements are exponentially distributed, where the parameter is given by the sum
of all rates of jumps which are possible from the current state of the chain. Using

Pk(Yn+1 = 0|A(=)
n+1) =

1

1 + f(k)
and Pk(Yn+1 = k + 1|A(=)

n+1) =
f(k)

1 + f(k)
,

we can then write the first probability in (4.9) as

Pk(A(=)
n+1, B0) =

1

1 + f(k)

(
Pk(A(≥)

n+1)− Pk(A(>)
n+1)

)
=

1

1 + f(k)

(
Pk
(

Exp(1 + f(k)) ≤ 1

n+ 1

)
− Pk(A(>)

n+1)

)
=

1

1 + f(k)

((
1− exp

(
−1 + f(k)

n+ 1

))
− Pk(A(>)

n+1)

)

=
1

n+ 1
− 1 + f(k)

2(n+ 1)2
+
∞∑
j=2

(−1)j
(1 + f(k))j

(j + 1)!(n+ 1)j+1
− 1

1 + f(k)
Pk(A(>)

n+1), (4.10)

where Exp(α) denotes a random variable following an exponential distribution with
parameter α. Plugging this into (4.9) we obtain

P(Yn+1 = 0|Yn = k)

=

(
1

n+ 1
− 1 + f(k)

2(n+ 1)2
+
∞∑
j=1

(−1)j+1 (1 + f(k))j+1

(j + 2)!(n+ 1)j+2

)

−
(

1

1 + f(k)
Pk(A(>)

n+1)− Pk(A(>)
n+1, B0)

)
≤
(

1

n+ 1
− 1 + f(k)

2(n+ 1)2
+

(1 + f(k))2

6(n+ 1)3

)
−
(

1

1 + f(k)
Pk(A(>)

n+1)− Pk(A(>)
n+1, B0)

)
.

We will now show that

− 1 + f(k)

2(n+ 1)2
+

(1 + f(k))2

6(n+ 1)3
− 1

1 + f(k)
Pk(A(>)

n+1) + Pk(A(>)
n+1, B0) < 0.
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For that we denote by D
(�)
n+1, with � ∈ {>,≥,=}, the event that Zt falls down more

than once, at least once or exactly once resepectively in the intervall Jn. This yields

Pk
(
A

(>)
n+1, B0

)
= Pk

(
A

(>)
n+1, B0, D

(=)
n+1

)
+ Pk

(
A

(>)
n+1, B0, D

(>)
n+1

)
.

Now

Pk
(
A

(>)
n+1, B0, D

(=)
n+1

)
= Pk

(
B0

∣∣A(>)
n+1, D

(=)
n+1

)
Pk
(
D

(=)
n+1

∣∣A(>)
n+1

)
Pk
(
A

(>)
n+1

)
≤ 1

1 + f(k + 1)
Pk
(
A

(>)
n+1

)
,

as the process only falls in the last step and has moved before, so that it must fall
down from a stage greater than k.
We now divide the interval Jn into n + 1 equidistant intervalls I` of length 1

(n+1)2

and define the event

M `
0 := {first move occurs in I`} = {no move up to I`} ∩ {process moves in I`}.

Using total probability we then obtain

Pk
(
A

(>)
n+1, B0, D

(>)
n+1

)
= Pk

(
B0, D

(>)
n+1

)
=

n∑
l=0

Pk(B0, D
(>)
n+1|M `

0)Pk(M `
0)

≤
n∑
l=0

P0

(
A

(>)
n+1

) 1

1 + f(k)

(
1− exp

(
−1 + f(k)

(n+ 1)2

))

≤
n∑
l=0

(1 + f(1))2

2(n+ 1)2

1

(n+ 1)2

≤ (1 + f(1))2

2(n+ 1)3
≤ 1 + f(1)

3(n+ 1)2
, (4.11)

for n ≥ 4, since f(k) ≤ k+1 by Assumptions (A). Here we used that the probability
that the process started in 0 moves at least two times in Jn is smaller than the
probability that in a Poisson process of intensity (1+f(1)) on R at least two events

occur in Jn. More generally for Π(1+f(k+1)
n+1

) denoting a Poisson process of intensity
1+f(k+1)
n+1

=: λ, we get

Pk
(
A

(>)
n+1

)
≤ P

(
Π

(
1 + f(k + 1)

n+ 1

)
≥ 2

)
=
∑
l≥2

λl
e−λ

l!
= λ2e−λ

∑
l≥0

λl

l!

1

(l + 1)(l + 2)

≤ λ2

2
e−λ

∑
l≥0

λl

l!
=
λ2

2
=

(1 + f(k + 1))2

2(n+ 1)2
. (4.12)
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We have

1 + f(k)

2(n+ 1)2
− (1 + f(k))2

6(n+ 1)3
=

1 + f(k)

2(n+ 1)2

(
1− (1 + f(k))

3(n+ 1)︸ ︷︷ ︸
≤ 1

3

)
≥ 1 + f(k)

3(n+ 1)2
,

for 1 ≤ k ≤ n− 1, which in combination with (4.11) gives (4.2) for n large enough.

Using (4.10) and the fact that
∑∞

j=2(−1)j (1+f(k))j

(j+1)!(n+1)j+1 > 0 we get

Pk(Yn+1 = 0) ≥ P(A
(=)
n+1, B0) ≥ 1

n+ 1
− (1 + f(k))

2(n+ 1)2
− 1

1 + f(k)
Pk
(
A

(>)
n+1

)
≥ 1

n+ 1
− (1 + f(k))

2(n+ 1)2
− (1 + f(k + 1))2

2(n+ 1)2

≥ 1

n+ 1
− (1 + f(k + 1))2

(n+ 1)2

and thus

|Pk(Xn+1 = 0)− Pk(Yn+1 = 0)| ≤ (1 + f(k + 1))2

(n+ 1)2
. (4.13)

Note that since Pk(Xn+1 = 0) = 1
n+1

for all k ≥ 1, we also have

|P`(Xn+1 = 0)− Pk(Yn+1 = 0)| ≤ (1 + f(k + 1))2

(n+ 1)2
∀` ≥ 1.

Using (4.8) and an adapted version of (4.9), we similarly obtain

Pk(Yn+1 = k + 1)

=
f(k)

1 + f(k)

((
1− exp

(
−1 + f(k)

n+ 1

))
− Pk

(
A

(>)
n+1

))
+ Pk

(
A

(>)
n+1, Bk+1

)
≤ f(k)

1 + f(k)

(
1 + f(k)

n+ 1
− Pk

(
A

(>)
n+1

))
+ Pk

(
A

(>)
n+1

)
Pk
(
Bk+1|A(>)

n+1

)
=

f(k)

n+ 1
+ Pk

(
A

(>)
n+1

)(
Pk
(
Bk+1

∣∣A(>)
n+1

)
− f(k)

1 + f(k)

)
≤ f(k)

n+ 1
= Pk(Xn+1 = k + 1),

since Pk
(
Bk+1

∣∣A(>)
n+1

)
≤ P0

(
A

(≥)
n+1

)
≤ 1+f(0)

n+1
≤ f(k)

1+f(k)
for all k and n ≥ 4 by assump-

tion. With (4.8) and (4.12) we get the following lower bound
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Pk(Yn+1 = k + 1)

≥ f(k)

n+ 1
− f(k)(1 + f(k))

2(n+ 1)2
+ Pk(A(>)

n+1)
(
Pk
(
Bk+1|A(>)

n+1

)
− f(k)

1 + f(k)︸ ︷︷ ︸
≥−1

)

≥ f(k)

n+ 1
− f(k)(1 + f(k))

2(n+ 1)2
− Pk

(
A

(>)
n+1

)
≥ f(k)

n+ 1
− (1 + f(k + 1))2

(n+ 1)2
,

so that

|Pk(Xn+1 = k + 1)− Pk(Yn+1 = k + 1)| ≤ (1 + f(k + 1))2

(n+ 1)2
. (4.14)

Now for k 6= 0,

P(Yn+1 = k|Yn = k) ≥ 1− Pk
(
A

(≥)
n+1

)
= exp

(
−1 + f(k)

n+ 1

)
≥ 1− 1 + f(k)

n+ 1
= Pk(Xn+1 = k), (4.15)

but also

P(Yn+1 = k|Yn = k) = 1− Pk
(
A

(≥)
n+1

)
+ Pk(A(≥)

n+1, Bk)

= exp

(
−1 + f(k)

n+ 1

)
+ Pk(A(≥)

n+1, Bk)

≤ 1− 1 + f(k)

n+ 1
+

(1 + f(k))2

2(n+ 1)2
+ Pk(A(>)

n+1)

≤ 1− 1 + f(k)

n+ 1
+

(1 + f(k + 1))2

(n+ 1)2

so that

|Pk(Xn = k)− Pk(Yn = k)| ≤ (1 + f(k + 1))2

(n+ 1)2
(4.16)

for k ≥ 1. For k = 0 we get

P(Yn+1 = 0|Yn = 0) ≥ 1− P0(A
(≥)
n+1)

and can improve the lower bound (4.15) in this case since the time until the process
moves out of 0 is exponentially distributed with parameter f(0) because in contrast
to (4.15) the process does not move away from 0 if it falls. So we have

P0(A
(≥)
n+1) = P

(
Exp(f(0)) ≤ 1

n+ 1

)
= 1− exp

(
− f(0)

n+ 1

)
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and with (4.8) we get

P(Yn+1 = 0|Yn = 0) ≥ exp

(
− f(0)

n+ 1

)
≥ 1− f(0)

n+ 1
= P(Xn+1 = 0|Xn = 0).

Analogously to the calculations in the case k 6= 0 we get

P(Yn+1 = 0|Yn = 0) = 1− P0

(
A

(≥)
n+1

)
+ P0(A

(≥)
n+1, B0)

≤ 1− f(0)

n+ 1
+

(1 + f(1))2

2(n+ 1)2
+ P0(A

(>)
n+1)

≤ 1− f(0)

n+ 1
+

(1 + f(1))2

(n+ 1)2
,

so that also for k = 0 we obtain

|P0(Xn = 0)− P0(Yn = 0)| ≤ (1 + f(1))2

(n+ 1)2
. (4.17)

Observing that with (4.12)

|Pk(Xn+1 = j)− Pk(Yn+1 = j)| = Pk(Yn+1 = j) ≤ Pk(A(>)
n+1) ≤ (1 + f(k + 1))2

2(n+ 1)2
,

for j /∈ {0, k, k+ 1}, we get (4.6). (4.13), (4.14) and (4.17) together yield (4.7).

Remark 4.4. As P(Xn+1 = 0|Xn = k) = 1
n+1

is independent of k for k 6= 0, we
also have

|P(Xn+1 = 0|Xn = `)− P(Yn+1 = 0|Yn = k)| ≤ (1 + f(k + 1))2

(n+ 1)2
(4.18)

for all ` 6= 0.

For the construction of a coupling (X
′
n, Y

′
n) of Xn and Yn we will use the following

abbreviatory notations

pXn+1(k|m) := P(Xn+1 = k|Xn = m),

pYn+1(j|`) := P(Yn+1 = j|Yn = `),

pX
′

n+1(k|m, `) := P(X
′

n+1 = k|X ′n = m,Y
′

n = `),

pY
′

n+1(j|m, `) := P(Y
′

n+1 = j|X ′n = m,Y
′

n = `) and

p̂n+1(k, j|m, `) := P(X
′

n+1 = k, Y
′

n+1 = j|X ′n = m,Y
′

n = `).
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Lemma 4.5. There exists a (Markovian) coupling (X
′
n, Y

′
n) of Xn and Yn such that

P(X
′

k+1 6= Y
′

k+1|X
′

k = Y
′

k ) ≤ 2
E [(f(Yk + 1) + 1)2]

(k + 1)2
, (4.19)

for all k ≥ 0 .

Proof. As stated before we will couple the chains so that they stay together with
maximal probability once they have met. This idea is made precise in the construc-
tion of an optimal coupling described in [LPW06]. Following that construction, a
step is performed by both chains with the minimal of the two probabilities to do so.
Thus the chain with the higher probability to move in such a way, can only perform
that step without the other one with probability given by the difference of the two
probabilities. If these differences converge to zero for all possible movements, the
chains will stay in the same place with probability one if time tends to ∞. We
define our coupling (X

′
n, Y

′
n) on N× N as follows:

Let J ′n ∼ U{1, . . . , n} for all n and put X ′n = deg−n (J ′n). For ` 6= m` 6= m` 6= m we let the two
chains evolve independently until Yn falls down to 0. In this case we put J ′n = n so
that X ′n = 0. For ` 6= 0 we now define

p̂n+1(k, j|m, `) =
pXn+1(k|m) · pYn+1(j|`)

1− pYn+1(0|`)
for k, j 6= 0,

p̂n+1(0, 0|m, `) = pYn+1(0|`),

p̂n+1(k, 0|m, `) = 0 for k 6= 0.

Furthermore, for j 6= 0, we set

p̂n+1(0, j, J ′n+1 = n+ 1|m, `) =

(
1

n+1
− pYn+1(0|`)

)
pYn+1(j|`)

1− pYn+1(0|`)
,

p̂n+1(0, j, J ′n+1 6= n+ 1|m, `) = 0, for m 6= 0

and

p̂n+1(0, j, J ′n+1 6= n+ 1|0, `) =
(pXn+1(0|0)− 1

n+1
)pYn+1(j|`)

1− pYn+1(0|`)
,

so that

p̂n+1(0, j|m, `) =
(pXn+1(0|m)− pYn+1(0|`))pYn+1(j|`)

1− pYn+1(0|`)
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for j 6= 0. For ` = 0 (and consequently m 6= 0) we set

p̂n+1(k, j|m, 0) = pXn+1(k|m) · pYn+1(j|0).

If the chains are already in the same state, i.e. ` = m` = m` = m, we define the coupling in
such a way that they stay together with maximal probability. Thus, with Lemma
4.3, we get

p̂n+1(0, 0|m,m) = min{pXn+1(0|m), pYn+1(0|m)} = pYn+1(0|m) for m 6= 0,

p̂n+1(m,m|m,m) = min{pXn+1(m|m), pYn+1(m|m)} = pXn+1(m|m) and

p̂n+1(m+ 1,m+ 1|m,m) = min{pXn+1(m+ 1|m), pYn+1(m+ 1|m)} = pYn+1(m+ 1|m).

For k = 0 and m 6= 0 we put

p̂n+1(0,m|m,m) =

(
pXn+1(0|m)− pYn+1(0|m)

) (
pYn+1(m|m)− pXn+1(m|m)

)
1−

(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

) ,

p̂n+1(0,m+ 1|m,m) = 0,

and

p̂n+1(0, j|m,m) =

(
pXn+1(0|m)− pYn+1(0|m)

)
pYn+1(j|m)

1−
(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

) ,
for j /∈ {0,m,m+ 1}. For k = m we put

p̂n+1(m, j|m,m) = 0, (4.20)

for all j 6= m. For k = m+ 1 we let

p̂n+1(m+ 1, 0|m,m) = 0 for m 6= 0,

p̂n+1(m+ 1,m|m,m) =

(
pXn+1(m+ 1|m)− pYn+1(m+ 1|m)

) (
pYn+1(m|m)− pXn+1(m|m)

)
1− (pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m))

and

p̂n+1(m+ 1, j|m,m) =

(
pXn+1(m+ 1|m)− pYn+1(m+ 1|m)

)
pYn+1(j|m)

1− (pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m))
,

for j /∈ {0,m,m+ 1}.
Note that the coupling is constructed in such a way that whenever the two chains
are coupled, X cannot stay in any state without Y staying as well and Y can neither
move to 0 without X nor can it move one state up without X following.
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Y

Figure 4.1: The paths of X and Y are depicted as a dotted red, resp. blue lines.
At times at which the two chains are moving together, their path is displayed as a
continuous violet line.

We now show that this in fact defines a coupling of the two chains. For ` 6= m, ` 6= 0` 6= m, ` 6= 0` 6= m, ` 6= 0
we have

pX
′

n+1(0|m, `) =
∑
j≥0

p̂n+1(0, j|m, `)

= pYn+1(0|`) +
(
pXn+1(0|m)− pYn+1(0|`)

)∑
j≥1

pYn+1(j|`)
1− pYn+1(0|`)

= pXn+1(0|m)

and for k 6= 0

pX
′

n+1(k|m, `) =
∑
j≥0

p̂n+1(k, j|m, `) =
∑
j≥1

p̂n+1(k, j|m, `)

=
∑
j≥1

pXn+1(k|m) · pYn+1(j|`)
1− pYn+1(0|`)

,

= pXn+1(k|m).

We now look at the case ` 6= m` 6= m` 6= m but ` = 0` = 0` = 0 (e.g. m 6= 0) and obtain

pXn+1(k|m, 0) =
∑
j≥0

p̂n+1(k, j|m, 0) = pXn+1(k|m)
∑
j≥0

pYn+1(j|0) = pXn+1(k|m).
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We can now proceed analogously for Y . If j, ` 6= 0j, ` 6= 0j, ` 6= 0 we have

pY
′

n+1(j|m, `)

=
∑
k≥0

p̂n+1(k, j|m, `) = p̂n+1(0, j|m, `) +
∑
k≥1

p̂n+1(k, j|m, `)

=
(
pXn+1(0|m)− pYn+1(0|`)

)
·

pYn+1(j|`)
1− pYn+1(0|`)

+
∑
k≥1

pXn+1(k|m) · pYn+1(j|`)
1− pYn+1(0|`)

= pYn+1(j|`)
(pXn+1(0|m)− pYn+1(0|`)

1− pYn+1(0|`)
+

1− pXn+1(0|m)

1− pYn+1(0|`)

)
= pYn+1(j|`).

For j = 0 and still ` 6= 0` 6= 0` 6= 0, we get

pY
′

n+1(0|m, `) =
∑
k≥0

p̂n+1(k, 0|m, `)

= p̂n+1(0, 0|m, `) = pYn+1(0|`).

In the case ` = 0` = 0` = 0 we have

pY
′

n+1(j|m, 0) =
∑
k≥0

p̂n+1(k, j|m, 0) =
∑
k≥0

pXn+1(k|m)pYn+1(j|0) = pYn+1(j|0).

For X and the case ` = m 6= 0` = m 6= 0` = m 6= 0 the situation is the following:

pX
′

n+1(0|m,m) =
∑
j≥0

p̂n+1(0, j|m,m)

= pYn+1(0|m) +

(
pXn+1(0|m)− pYn+1(0|m)

) (
pYn+1(m|m)− pXn+1(m|m)

)
1−

(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

)
+

∑
j /∈{0,m,m+1}

(
pXn+1(0|m)− pYn+1(0|m)

)
pYn+1(j|m)

1−
(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

)

= pYn+1(0|m)

+
(
pXn+1(0|m)− pYn+1(0|m)

)( pYn+1(m|m)− pXn+1(m|m)

1−
(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

)
64



+
1− (pYn+1(0|m) + pYn+1(m|m) + pYn+1(m+ 1|m))

1−
(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

))

= pXn+1(0|m).

Furthermore, for all m ≥ 0, we have

pX
′

n+1(m|m,m) = p̂n+1(m,m|m,m) = pXn+1(m|m)

by (4.20), as well as

pX
′

n+1(m+ 1|m,m) =
∑
j≥0

p̂n+1(m+ 1, j|m,m)

=

(
pXn+1(m+ 1|m)− pYn+1(m+ 1|m)

) (
pYn+1(m|m)− pXn+1(m|m)

)
1−

(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

) + pYn+1(m+ 1|m)

+
∑

j /∈{0,m,m+1}

(
pXn+1(m+ 1|m)− pYn+1(m+ 1|m)

)
pYn+1(j|m)

1−
(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

)
= pYn+1(m+ 1|m) +

(
pXn+1(m+ 1|m)− pYn+1(m+ 1|m)

)
= pXn+1(m+ 1|m).

Performing the analogous calculations for Y and m 6= 0 yields

pY
′

n+1(0|m,m) = p̂n+1(0, 0|m,m) = pYn+1(0|m)

as well as for m ≥ 0

pY
′

n+1(m+ 1|m,m) = p̂n+1(m+ 1,m+ 1|m,m) = pYn+1(m+ 1|m),

pY
′

n+1(m|m,m) =
∑

k∈{0,m,m+1}

p̂n+1(k,m|m,m)

= pXn+1(m|m) +

(
pXn+1(0|m)− pYn+1(0|m)

) (
pYn+1(m|m)− pXn+1(m|m)

)
1−

(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

)
+

(
pXn+1(m+ 1|m)− pYn+1(m+ 1|m)

) (
pYn+1(m|m)− pXn+1(m|m)

)
1−

(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

)
= pXn+1(m|m) +

(
pYn+1(m|m)− pXn+1(m|m)

)
· 1 = pYn+1(m|m)

and for j /∈ {0,m,m+ 1}

pY
′

n+1(j|m,m) =
∑

k∈{0,m,m+1}

p̂n+1(k, j|m,m)
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=

(
pXn+1(0|m)− pYn+1(0|m)

)
pYn+1(j|m)

1−
(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

) + 0

+

(
pXn+1(m+ 1|m)− pYn+1(m+ 1|m)

)
pYn+1(j|m)

1−
(
pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m)

)
= pYn+1(j|m).

Thus (X
′
n, Y

′
n) is a Markovian coupling of Xn and Yn on N× N.

As mentioned before, we need to bound the probability that the coupled pro-
cesses are not in the same state at a given time in order to prove Theorem 4.1. To
do so, we establish a bound on the likelihood that the chains do not meet, even
though the discrete time chain X moves to 0, in the following lemma.

Lemma 4.6. Let the birthtime of the vertex we look at time n be given by the
Markov chain Jn with J1 = 1 and

P(Jn+1 = Jn | Jn) =
n

n+ 1
and P(Jn+1 = n+ 1 | Jn) =

1

n+ 1
,

just as in the proof of Lemma 3.12. Furthermore we define Fk as the event that we
look at the indegree of vertex k at time k and Gk,n as the event that we look at the
same vertex from time k to time n, i.e.

Fk := {Jk = k} and Gk,n := {Jj = Jk ∀k + 1 ≤ j ≤ n}..

We then get

P(X
′

k+1 6= Y
′

k+1|Fk+1, Gk+1,n) ≤ 3
E [(f(Yk + 1) + 1)2]

k + 1
. (4.21)

Proof. Since for all k ≥ 1 the random variable Jk is independent of the states the
processes are in at time k − 1, we have

P(X
′

k+1 6= Y
′

k+1|Fk+1, Gk+1,n) = P(Y
′

k+1 6= 0|Fk+1)

=
k∑

m=1

∞∑
l=0

P(Y
′

k+1 6= 0|Fk+1, X
′

k+1 = 0, Y
′

k = l, X
′

k = m)P(Y
′

k = l, X
′

k = m|Fk+1)

+
∞∑
l=0

P(Y
′

k+1 6= 0|Fk+1, X
′

k+1 = 0, Y
′

k = l, X
′

k = 0)P(X
′

k = 0, Y
′

k = `)

:= A1 + A2,

where we used that Fk+1 implies {Xk+1 = 0} and that Jk+1 is independent of X
′

k

and Y
′

k . Using the mentioned independence again, we obtain

A1 =
k∑

m=1

∞∑
l=0

P(Y
′

k+1 6= 0, X
′

k+1 = 0|Y ′k = l, X
′

k = m)

P(Fk+1|Y
′
k = l, X

′
k = m)

P(Y
′

k = l, X
′

k = m)
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=
k∑

m=1

∞∑
l=0

P(Y
′

k+1 6= 0, X
′

k+1 = 0|Y ′k = l, X
′

k = m)(k + 1)P(Y
′

k = l, X
′

k = m)

= (k + 1)
k∑

m=1

∞∑
l=0

∞∑
j=1

p̂k+1(0, j|m, l)P(X
′

k = m,Y
′

k = `)

= (k + 1)
k∑

m=1

∞∑
`=0,
` 6=m

∞∑
j=1

p̂k+1(0, j|m, `)P(X
′

k = m,Y
′

k = `)

+ (k + 1)
k∑

m=1

∞∑
j=1

p̂k+1(0, j|m,m)P(X
′

k = m,Y
′

k = m)

:= A1,1 + A1,2.

We can now bound both terms by exploiting the construction of our coupling de-
scribed in Lemma 4.5. Hence,

A1,1 = (k + 1)
k∑

m=1

∞∑
`=0,` 6=m

∞∑
j=1

p̂k+1(0, j|m, `)P(X
′

k = m,Y
′

k = `)

= (k + 1)
k∑

m=1

(
∞∑

`=1,`6=m

∞∑
j=1

p̂k+1(0, j|m, `)P(X
′

k = m,Y
′

k = `)

+
∞∑
j=1

p̂k+1(0, j|m, 0)P(X
′

k = m,Y
′

k = 0)

)

= (k + 1)
k∑

m=1

( ∞∑
`=1,
6̀=m

∞∑
j=1

(pXk+1(0|m)− pYk+1(0|`))pYk+1(j|`)
1− pYk+1(0|`)

P(X
′

k = m,Y
′

k = `)

+
∞∑
j=1

pXk+1(0|m)pYk+1(j|0)P(X
′

k = m,Y
′

k = 0)
)

= (k + 1)
k∑

m=1

( ∞∑
`=1,`6=m

(pXk+1(0|m)− pYk+1(0|`))P(X
′

k = m,Y
′

k = `)

+ pXk+1(0|m)(1− pYk+1(0|0))P(X
′

k = m,Y
′

k = 0)
)

≤ (k + 1)
k∑

m=1

∞∑
`=1,` 6=m

(f(`+ 1) + 1)2

(k + 1)2
P(X

′

k = m,Y
′

k = `)

+ (k + 1)
k∑

m=1

1

k + 1

(
1−

(
1− f(0)

k + 1

))
P(X

′

k = m,Y
′

k = 0)
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≤ E [(f(Yk + 1) + 1)2]

k + 1
, (4.22)

where we used (4.7). Now using the transition probabilities of the coupling in the
case ` = m and (4.7) again gives

A1,2 = (k + 1)
k∑

m=1

P(X
′

k = m,Y
′

k = m)

·

 ∑
j /∈{0,m,m+1}

(pXn+1(0|m)− pYn+1(0|m))pYn+1(j|m)

1− (pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m))

+
(pXn+1(0|m)− pYn+1(0|m))(pYn+1(m|m)− pXn+1(m|m))

1− (pYn+1(0|m) + pYn+1(m+ 1|m) + pXn+1(m|m))

)

= (k + 1)
k∑

m=1

(pXn+1(0|m)− pYn+1(0|m))P(X
′

k = m,Y
′

k = m)

≤ (k + 1)
k∑

m=1

(f(m+ 1) + 1)2

(k + 1)2
P(Y

′

k = m)

≤ E [(f(Yk + 1) + 1)2]

k + 1
. (4.23)

It remains to deal with the case m = 0, thus to bound A2. As a result of the
case distinction for the transition probability p̂n+1(0, j|0, `) outlined in the proof of
Lemma 4.5 we obtain

A2 =
∞∑
l≥1

∑
j≥1

P(Y
′

k+1 = j|Fk+1, X
′

k+1 = 0, Y
′

k = l, X
′

k = 0)P(X
′

k = 0, Y
′

k = `)

+
∑
j≥1

P(Y
′

k+1 = j|Fk+1, X
′

k+1 = 0, Y
′

k = 0, X
′

k = 0)P(X
′

k = 0, Y
′

k = 0)

≤(k + 1)
∑
l≥1

∑
j≥1

P(X
′

k+1 = 0, Y
′

k+1 = j, Fk+1|Y
′

k = l, X
′

k = 0)P(X
′

k = 0, Y
′

k = `)

+ (k + 1)
∑
j≥1

P(X
′

k+1 = 0, Y
′

k+1 = j, Fk+1|Y
′

k = 0, X
′

k = 0)P(X
′

k = 0, Y
′

k = 0)

≤ (k + 1)
∑
l≥1

∑
j≥1

( 1
k+1
− pYk+1(0|`))pYk+1(j|`)

1− pYk+1(0|`)
P(X

′

k = 0, Y
′

k = `)

+ (k + 1)
∑
j≥1

p̂k+1(0, j|0, 0)P(X
′

k = 0, Y
′

k = 0)

= (k + 1)
∑
l≥1

(
1

k + 1
− pYk+1(0|`))P(X

′

k = 0, Y
′

k = `)
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+ (k + 1)
∑
j≥2

p̂k+1(0, j|0, 0)P(X
′

k = 0, Y
′

k = 0)

= (k + 1)
∑
l≥1

(pXk+1(0|l)− pYk+1(0|`))P(X
′

k = 0, Y
′

k = `)

+ (k + 1)
∑
j≥2

(pXk+1(0, |0)− pYk+1(0|0))pYk+1(j|0)P(X
′

k = 0, Y
′

k = 0)

≤ (k + 1)
∑
l≥1

(f(`+ 1) + 1)2

(k + 1)2
P(X

′

k = 0, Y
′

k = `)

+ (k + 1)
(f(1) + 1)2

(k + 1)2
P(X

′

k = 0, Y
′

k = 0)

≤ E [(f(Yk + 1) + 1)2]

k + 1
,

where we used (4.7). In combination with (4.22) and (4.23), this yields the desired
result.

Proof of Theorem 4.1. As Z ∼ W and Yn denotes the observation of Z at deter-
ministic time instances we have

dTV (Wn,W ) = dTV (Xn, Z) = dTV (Xn, Yn) .

Furthermore, remember that by equation 4.1 we have

dTV (Xn, Yn) ≤ P(X
′

n 6= Y
′

n)

for any coupling (X
′
n, Y

′
n) of Xn and Yn. In particular, this is valid for the coupling

described in the previous section.
Using the construction of Jn we can handle the events defined in Lemma 4.6. We
have

P(Fk) =
1

k
and P(Gk,n) =

n∏
j=k+1

(1− 1

j
) =

k

n

and for Ek,n := Fk ∩Gk,n we then obtain

P(Ek,n) = P(Fk ∩Gk,n) = P(Fk)P(Gk,n) =
1

n
,

where we used that Jk and Ji are independent for i 6= k.

With Lemma 4.6 we obtain

P(X
′

n 6= Y
′

n) =
n∑
k=2

P(X
′

n 6= Y
′

n, Ek,n) + P(X
′

n 6= Y
′

n, G1,n)
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≤ 1

n

n∑
k=2

(
P(X

′

n 6= Y
′

n|Ek,n, X
′

k = Y
′

k )P(X
′

k = Y
′

k |Ek,n)

+P(X
′

n 6= Y
′

n|Ek,n, X
′

k 6= Y
′

k )P(X
′

k 6= Y
′

k |Ek,n)
)

+
1

n

≤ 1

n

n∑
k=2

P(X
′

n 6= Y
′

n|Ek,n, X
′

k = Y
′

k )P(X
′

k = Y
′

k |Ek,n)

+
1

n

n∑
k=2

E [(f(Yk + 1) + 1)2]

k
+

1

n

:= R1 +R2 +
1

n
. (4.24)

In order to deal with R1, we define Hk,` as the event that the processes evolve
together from time k to ` and drift apart afterwards, hence

Hk,` = {X ′i = Y
′

i ∀k ≤ i ≤ `,X
′

`+1 6= Y
′

`+1}.

With this notation we get

P(X
′

n 6= Y
′

n|Ek,n, X
′

k = Y
′

k )P(X
′

k = Y
′

k |Ek,n)

≤
n−1∑
l=k

P(X
′

n 6= Y
′

n, Hk,`|Gk,n, Fk, X
′

k = Y
′

k = 0)

≤
n−1∑
`=k

P(Hk,`|Gk,l, X
′

k = Y
′

k = 0)

≤
n−1∑
`=k

P(Hk,`|X
′

k = Y
′

k = 0)

P(Gk,`|X
′
k = Y

′
k = 0)

≤
n−1∑
`=k

`

k
P(X

′

`+1 6= Y
′

`+1|X
′

` = Y
′

` , X
′

k = Y
′

k = 0),

where we used again that Jj is independent of X
′

k and Y
′

k for k + 1 ≤ j ≤ n.

Furthermore,

P(X
′

`+1 6= Y
′

`+1|X
′

` = Y
′

` , X
′

k = Y
′

k = 0)

=
∞∑
m=0

P(X
′

`+1 6= Y
′

`+1|X
′

` = Y
′

` = m,X
′

k = Y
′

k = 0)P(Y
′

` = m|X ′` = Y
′

` , X
′

k = Y
′

k = 0)

=
∞∑
m=0

P(Y
′

` = m|X ′` = Y
′

` , X
′

k = Y
′

k = 0)
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·
(
P(Y

′

`+1 6= 0|X ′`+1 = 0, X
′

` = Y
′

` = m)pX
′

`+1(0|m,m)

+ P(Y
′

`+1 6= m|X ′`+1 = m,X
′

` = Y
′

` = m)pX
′

`+1(m|m,m)

+ P(Y
′

`+1 6= m+ 1|X ′`+1 = m+ 1, X
′

` = Y
′

` = m)pX
′

`+1(m+ 1|m,m)
)

=
∞∑
m=0

P(Y
′

` = m|X ′` = Y
′

` , X
′

k = Y
′

k = 0)

·
((

1− P(Y
′

`+1 = 0|X ′`+1 = 0, X
′

` = Y
′

` = m)
)
pX
′

`+1(0|m,m) + 0

+
(

1− P(Y
′

`+1 = m+ 1|X ′`+1 = m+ 1, X
′

` = Y
′

` = m)
)
pX
′

`+1(m+ 1|m,m)
)

=
∞∑
m=0

P(Y
′

` = m|X ′` = Y
′

` , X
′

k = Y
′

k = 0)

·
(
pX
′

n+1(0|m)− p̂`+1(0, 0|m,m) + pX
′

n+1(m+ 1|m)− p̂`+1(m+ 1,m+ 1|m,m)
)

=
∞∑
m=1

P(Y
′

` = m|X ′` = Y
′

` , X
′

k = Y
′

k = 0)

·
( (
pX`+1(0|m)− pY`+1(0|m)

)
+
(
pX`+1(m+ 1|m)− pY`+1(m+ 1|m)

) )
+ P(Y

′

` = 0|X ′` = Y
′

` , X
′

k = Y
′

k = 0)(pX`+1(1|0)− pY`+1(1|0))

≤
∞∑
m=0

P(Y
′

` = m|X ′` = Y
′

` , X
′

k = Y
′

k = 0) · 2 max
j

∣∣pX`+1(j|m)− pY`+1(j|m)
∣∣

≤ 2
∞∑
m=0

P(Y
′

` = m|X ′` = Y
′

` , X
′

k = Y
′

k = 0)
(f(m+ 1) + 1)2

(`+ 1)2

= 2
E`,k

[
(f(Y

′

` + 1) + 1)2
]

(`+ 1)2
≤ 2

E
[
(f(Y

′

` + 1) + 1)2
]

(`+ 1)2
= 2

E [(f(Y` + 1) + 1)2]

(`+ 1)2
,

where E`,k denotes the expectation with respect to the probability measure P(·|X ′` =
Y
′

` , X
′

k = Y
′

k = 0) and the last inequality follows from the fact that changing to the
newest vertex is independent of the stage the processes are in, so that conditioning
on X ′k = Y ′k = 0 decreases the expectation.
Remembering that Z denotes the continuous-time process corresponding to Y and
that ψ(`) =

∑`
m=1

1
m

, we define the random variable

Mψ
` := 1{Z does not fall between ψ(`) and ψ(`+ 1)} ≤ 1{Zψ(`+1) ≥ Zψ(`)}
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and get

E

[∫ ψ(`+1)

ψ(`)

f(Zs)
2 ds

]
≥ E

[
1{Zψ(`+1) ≥ Zψ(`)}

∫ ψ(`+1)

ψ(`)

f(Zs)
2 ds

]
≥ 1

`+ 1
E
[
Mψ

` f(Zψ(`))
2 ds
]

=
1

`+ 1
E
[
Mψ

` f(Y`)
2 ds
]

≥ 1

`+ 1

(
1− 1

`+ 1

)
E
[
f(Y`)

2
]

=
`

(`+ 1)2
E
[
f(Y`)

2
]
, (4.25)

where the last inequality uses that the process always falls at rate 1, independent
of the state the process is in. By Lemma 4.3

P(Y`+1 6= 0|Y` = k) ≥ 1− 1

`+ 1

for k 6= 0, which we can assume without loss of generality, as in the case ψ(`) = 0
we have P(ψ(` + 1) ≥ ψ(`)) = 1 and the previous inequalities remain valid. (4.25)
now yields

n∑
l=k

E [f(Y`)
2]

(`+ 1)k
≤ 1

k

(
`+ 1

`

) n∑
l=k

E

[∫ ψ(`+1)

ψ(`)

f(Zs)
2 ds

]
≤ 2

k
E

[∫ ψ(n+1)

ψ(k)

f(Zs)
2 ds

]
.

We now have∫ ψ(n+1)

ψ(k)

f(Zs)
2ds ≤

∫ log(n+1)

0

f(Zs)
2 ds

= log(n+ 1)

(
1

log(n+ 1)

∫ log(n+1)

0

f(Zs)
2 ds

)
≤ C log(n+ 1),

since
1

log(n+ 1)

∫ log(n+1)

0

f(Zs)
2 ds −→n→∞ E

[
f(Z)2

]
<∞

by the Ergodic Theorem for stationary Markov processes in continuous-time and

E [f(Z)2] < ∞ by assumption. In a similar way it follows, that
∫ ψ(n)

ψ(1)
f(Zs) ds ≤

C log(n+ 1) as E [f(Z)] <∞. Consequently

1

k

n∑
`=k

E [(f(Y` + 1) + 1)2]

`+ 1
≤ 1

k

n∑
`=k

E [(f(Y`) + 2)2]

`+ 1
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=
1

k

n∑
`=k

E [f(Y`)
2 + 4f(Y`)] + 4

`+ 1

≤ 2

k
E

[∫ ψ(n+1)

ψ(k)

f(Zs)
2ds+ 4

∫ ψ(n+1)

ψ(k)

f(Zs)ds+ 4

]

≤ C
log(n+ 1)

k
.

Hence,

R1 ≤
2

n

n∑
k=1

n∑
`=k

E [(f(Y` + 1) + 1)2]

`2

≤ C log(n+ 1)

n

n∑
k=1

1

k
≤ C

log(n+ 1)2

n
. (4.26)

Similarly we obtain

1

n

n∑
k=1

E [f(Yk)
2]

k
≤ 1

n
E

[∫ ψ(n+1)

ψ(1)

f(Zs)
2ds

]
≤ C

log(n+ 1)

n

and thus

R2 ≤ C
log(n+ 1)

n
. (4.27)

Putting (4.26) and (4.27) into (4.24) proves the Theorem.
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4.2. Coupling with the Barabási-Albert graph

Additionally to the Barabási-Albert model (PAm,δn ) described in section 3.2.4, a
second, rather similar, model is described in [Hof17]. In the following we will refer
to this as model b and denote by PAm,δn (b) the graph at time n corresponding to
this construction where δ ≥ −1 is a parameter of the model, allowing to change
the attachment function. This model does not allow for self loops and satisfies our
Assumptions (A) with attachment function f(k) = k+ η for some η ∈ (0, 1). Thus
Theorem 3.7 can be applied to model b. Again, we will use coupling techniques to
obtain rates of convergence for the Barabási-Albert model.
First, let us give a more detailed description of the second model. We can restrict
to the case m = 1, as for m > 1 the models are defined in terms of the model with
m = 1. We start with a graph consisting of two vertices and two edges connecting
them. As we do not allow for self-loops, connection rule (3.31) changes to

P(n+ 1→ i|PA1,α
n (b)) =

α +D
(b)
n (i)

n(2 + α)
for i ≤ n, (4.28)

where α ≥ −1 is the parameter of the model. By choosing α for each n in a suitable
way (cf. exercise 8.7 in [Hof17]) we are able to construct a coupling, such that we
can transfer our results to the Barabási-Albert model via the triangle inequality.

Unfortunately, the coupling will turn out to be of order log(n)2

n
, so that we do not get

the same order of the rate as before. To formulate this result let Xα
n = deg(b,α)

n (Un)
and Y δ

n = degBA,δn (Ũn), where deg(b,α)
n (i) denotes the indegree of vertex i in model

b with parameter α, degBA,δn (i) refers to the indegree of vertex i in the Barabási-
Albert model with parameter δ and both Un and Ũn are uniformly distributed on
[n]. Note that D

(b)
n (i) = deg(b)

n (i) + 1 and DBA
n (i) = degBAn (i) + 1, respectively.

We get the following theorem on the distance of Xα
n and Y δ

n in the total variation
metric.

Theorem 4.7. For each δ ≥ −1 there exists a sequence of parameters (αn)n≥1 and

a coupling (X̂n, Ŷn) of Xn = Xαn
n and Yn = Y δ

n such that

dTV (Xn, Yn) ≤ P(X̂n 6= Ŷn) ≤ C
log(n)2

n
.

Following [Hof17, Exercise 8.7] we choose αn = 2δ(n+1)
2n+1

so that

αn − δ =
δ

2n+ 1
and αn → δ for n→∞.

Remark 4.8. In order to guarantee that (4.28) in fact defines a probability we

need αn = 2δ(n+1)
2n+1

≥ −1, so our coupling does not work in the case δ = −1. For
−1 < δ < 0 we can couple the chains for n large enough so that αn ≥ −1.
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The structure of the proof is similar to the proof of Theorem 4.1: first we compare
the transition probabilities of the two Markov chains Xn and Yn (see Lemma 4.9),
so that in the proof of Theorem 4.7 we can define a Markovian coupling of the two
chains, such that they stay together with maximal probability once they have met.
In contrast to the previous section we only deal with discrete-time Markov chains,
so that we can define our coupling, such that we look at vertices with the same
birth-times in both models. More precisely, we define two random variables Jn and
J̃n, which are uniformly distributed on [n], in a dynamic way, just as in Lemma
3.12 and put Xn = deg−n (Jn) and Yn = deg−n (J̃n), where Jn = J̃n for all n ∈ N.

Lemma 4.9. There exists a constant C, depending only on δ, such that

max
k
|pXn+1(k|j)− pYn+1(k|j)| ≤ C

j + 1{j = 0}
n2

, (4.29)

where pXn+1 and pYn+1 denote the transition probabilities of the chains Xn and Yn
defined in the previous paragraph.

Proof. In order to compare the transition probabilities of Xn and Yn, we need to
give their exact expressions. To shorten notation we write

pXn+1(k|j) := P(Xn+1 = k|Xn = j) and pYn+1(`|m) := P(Yn+1 = `|Yn = m).

For the chain Xn we obtain

pXn+1(j + 1|j) =
n

n+ 1

j + 1 + αn
(2 + αn)n

=
j + 1 + αn

(2 + αn)(n+ 1)
,

pXn+1(j|j) =
n

n+ 1

(
1− j + 1 + αn

n(2 + αn)

)
for j 6= 0,

pXn+1(0|0) =
n

n+ 1

(
1− 1 + αn

n(2 + αn)

)
+

1

n+ 1
,

pXn+1(0|j) =
1

n+ 1
for j 6= 0

and the analogous calculations for Yn yield

pYn+1(j + 1|j) =
n

n+ 1

(
j + 1 + δ

(2 + δ)n+ (1 + δ)

)
for j 6= 0,

pYn+1(1|0) =
n

n+ 1

(
1 + δ

(2 + δ)n+ (1 + δ)

)
+

1 + δ

(n+ 1)(n(2 + δ) + (1 + δ))

=
1 + δ

(2 + δ)n+ (1 + δ)
,
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pYn+1(j|j) =
n

n+ 1

(
1− j + 1 + δ

n(2 + δ) + (1 + δ)

)
for j ≥ 2,

pYn+1(1|1) =
n

n+ 1

(
1− 2 + δ

n(2 + δ) + (1 + δ)

)
+

1 + δ

(n+ 1)(n(2 + δ) + (1 + δ))
,

pYn+1(0|0) =
n

n+ 1

(
1− 1 + δ

n(2 + δ) + (1 + δ)

)
+

1

n+ 1

(
1− 1 + δ

n(2 + δ) + (1 + δ)

)
,

pYn+1(0|j) =
1

n+ 1

(
1− 1 + δ

n(2 + δ) + (1 + δ)

)
for j 6= 0,

pYn+1(1|j) =
1 + δ

(n+ 1)(n(2 + δ) + (1 + δ))
for j ≥ 2.

We can now compare these transition probabilities. For j 6= 0 we have

0 < pXn+1(0|j)− pYn+1(0|j) =
1

n+ 1
− 1

n+ 1

(
1− 1 + δ

n(2 + δ) + (1 + δ)

)
=

1 + δ

(n(2 + δ) + (1 + δ))(n+ 1)
≤ 1

n2
. (4.30)

Next we deal with

pXn+1(j + 1|j)− pYn+1(j + 1|j) =
j + 1 + αn

(2 + αn)(n+ 1)
− n

n+ 1

(
j + 1 + δ

(2 + δ)n+ (1 + δ)

)
.

Note that for δ ≥ −1, we have

(2 + αn)(n+ 1) = (2 + δ +
δ

2n+ 1
)(n+ 1) = (2 + δ)n+ (2 + δ) +

n+ 1

2n+ 1
δ

≥ (2 + δ)n+ (1 + δ), (4.31)

but

(2 + αn)(n+ 1) =

(
2 + δ +

δ

2n+ 1

)
(n+ 1) = (2 + δ)(n+ 1) +

n+ 1

2n+ 1
δ

≤ (2 + δ)(n+ 1) +
n+ 1

n
(1 + δ).

Therefore

pXn+1(j + 1|j)− pYn+1(j + 1|j) ≥ αn − δ
(2 + δ)(n+ 1) + n+1

n
(1 + δ)

=
n

n+ 1

δ
2n+1

(2 + δ)n+ (1 + δ)
≥ 0,
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for δ ≥ 0 and for δ ∈ (−1, 0)

j + 1 + αn
(2 + αn)(n+ 1)

− n

n+ 1

(
j + 1 + δ

(2 + δ)n+ (1 + δ)

)
≥ (j + 1)

(
1

(2 + αn)(n+ 1)
− n

n+ 1

1

(2 + δ)n+ 1 + δ

)
+ δ

(
1 + 1

2n+1

(2 + αn)(n+ 1)
− n

n+ 1

1

(2 + δ)n+ 1 + δ

)

≥ (j + 1)

(
1

(2 + αn)(n+ 1)
− n

n+ 1

1

(2 + δ)n+ 1 + δ

)
+ 2δ

(
1

(2 + αn)(n+ 1)
− n

n+ 1

1

(2 + δ)n+ 1 + δ

)
≥ (j + 1 + 2δ)

(
1

(2 + αn)(n+ 1)
− n

n+ 1

1

(2 + δ)n+ 1 + δ

)
,

which is non-negative as we are in the case j ≥ 1. Hence, by (4.31) we obtain∣∣pXn+1(j + 1|j)− pYn+1(j + 1|j)
∣∣ = pXn+1(j + 1|j)− pYn+1(j + 1|j)

=
j + 1 + αn

(2 + αn)(n+ 1)
− n

n+ 1

(
j + 1 + δ

(2 + δ)n+ (1 + δ)

)

=
(j + 1 + αn)(2 + δ + (1 + δ)/n)− (j + 1 + δ)(2 + αn)

(n+ 1)(2 + αn)(2 + δ + (1 + δ)/n)

=
(j + 1 + 1+δ

n
)(δ − αn) + 2(αn − δ) + αn(1 + δ)/n

(n+ 1)(2 + αn)(2 + δ + (1 + δ)/n)

≤
(j − 1) δ−αn

2+δ
+ αn(1+δ)

(2+αn)(2+δ)n
+ (j+1)(1+δ)

n(2+δ)

n+ 1

≤
j−1
n

+ j+1
n

+ 1
n

n+ 1
≤ 2j + 1

n(n+ 1)
. (4.32)

In the case j = 0 we obtain

pXn+1(1|0)− pYn+1(1|0) =
1 + αn

(2 + αn)(n+ 1)
−
(

1 + δ

(2 + δ)n+ (1 + δ)

)
=

(1 + αn)((2 + δ)n+ (1 + δ))− (1 + δ)(2 + αn)(n+ 1)

(2 + αn)(n+ 1)(2 + δ)n+ (1 + δ)

=
n(αn − δ)− (1 + δ)

(2 + αn)(n+ 1)(2 + δ)n+ (1 + δ)
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=
δn

2n+1
− (1 + δ)

(2 + αn)(n+ 1)((2 + δ)n+ (1 + δ))
< 0

for δ ≥ −1 and thus

|pXn+1(1|0)− pYn+1(1|0)| = pXn+1(1|0)− pYn+1(1|0) ≤ 2

n(n+ 1)
≤ 2

n2
. (4.33)

Looking at the calculations for pXn+1(j + 1|j) − pYn+1(j + 1|j) in the case j ≥ 1, we
directly see that

pXn+1(j|j)− pYn+1(j|j) < 0,

for δ ≥ −1 and j ≥ 2. It follows that∣∣pXn+1(j|j)− pYn+1(j|j)
∣∣ = pYn+1(j|j)− pXn+1(j|j) ≤ 4

j

(n+ 1)2
. (4.34)

With the same argument in the case j = 1 we obtain

pXn+1(1|1)− pYn+1(1|1) < 0

and consequently∣∣pXn+1(1|1)− pYn+1(1|1)
∣∣ = pYn+1(1|1)− pXn+1(1|1) ≤ 4

(n+ 1)2
. (4.35)

For j = 0 the situation is slightly different. Indeed, for both chains the probability to
stay in state 0 is greater than for any other state, but for Xn the deviation is larger,
since conditioned on Jn = n we have Xn = 0 P-a.s., but P(Yn = 1|Jn = n) > 0.
More precisely

pXn+1(0|0)− pYn+1(0|0) =
n

n+ 1

(
1− 1 + αn

n(2 + αn)

)
+

1

n+ 1

−
(

n

n+ 1

(
1− 1 + δ

n(2 + δ) + (1 + δ)

)
+

1

n+ 1

(
1− 1 + δ

n(2 + δ) + (1 + δ)

))
=

1 + δ

n(2 + δ) + (1 + δ)
− 1 + αn

(n+ 1)(2 + αn)
≥ 0,

which can be seen from the calculations conducted for pXn+1(1|0)− pYn+1(1|0). Con-
sequently ∣∣pXn+1(0|0)− pYn+1(0|0)

∣∣ = pXn+1(0|0)− pYn+1(0|0) ≤ 2

n2
. (4.36)

Combining (4.30), (4.32), (4.33), (4.34), (4.35) and (4.36) yields the desired result.
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We can now proof Theorem 4.7 by first defining a coupling of the two chains and
then using the previous result, that the chains stay together with high probability
once they meet.

Proof of Theorem 4.7. We now define a coupling (X̂n, Ŷn) of the two chains in a
similar way as in section 4.1. Again we let the two chains evolve independently,
but whenever Jn = n, we put J̃n = n as well. Consequently Jn = J̃n for all n.
As before we define the coupling in such a way that whenever Xn = Yn the chains
stay together with maximal probability. We can then bound their distance in total
variation via

dTV (Xn, Yn) = min
(X′n,Y

′
n) coupling of (Xn,Yn)

P(X ′n 6= Y ′n) ≤ P(X̂n, Ŷn).

Just as in section 4.1 we define

P(X̂n+1 = `, Ŷn+1 = `|X̂n = m, Ŷn = m) = p̂n+1(`, `|m,m)

:= min(pXn+1(`|m), pYn+1(`|m))

and for ` 6= j we set

p̂n+1(k, j|m,m) =
(pXn+1(k|m)− p̂n+1(k, k|m,m))(pYn+1(j|m)− p̂n+1(j, j|m,m))

1−
∑

i≥0 p̂n+1(i, i|m,m)
.

For k 6= m we put

p̂n+1(k, j|m, `) =
pXn+1(`|m)pYn+1(j|k)

1− pYn+1(0|k)
for `, j 6= 0,

p̂n+1(0, 1|m, `) = pXn+1(0|m)− pYn+1(0|`),

p̂n+1(0, j|m, `) = pYn+1(j|`)
pXn+1(0|m)− pYn+1(0|`)

1− pYn+1(0|`)
for j ≥ 2,

p̂n+1(`, 0|m, `) = 0, for ` 6= 0 and

p̂n+1(0, 0|m, `) = pYn+1(0, `).

To show that this really defines a coupling of the two chains one can easily adjust
the proof of Theorem 4.1 to this setting.
Remember that we defined

Ek,n := Fk ∩Gk,n := {Jk = k} ∩ {J` ≤ k, k ≤ ` ≤ n}

and that we have

P(X̂n 6= Ŷn) ≤ 1

n

n∑
k=2

P(X̂n 6= Ŷn|Ek,n) +
1

n
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as well as

P(X̂n 6= Ŷn|Ek,n) = P(X̂n 6= Ŷn|Ek,n, X̂k = Ŷk)P(X̂k = Ŷk|Ek,n)

+ P(X̂n 6= Ŷn|Ek,n, X̂k 6= Ŷk)P(X̂k 6= Ŷk|Ek,n)

:= R1,k +R2,k.

Again we will first bound the probability that the two chains do not meet even
though Jk = J̃k = k:

P(X̂k 6= Ŷk|Ek,n) = P(Ŷk = 1|J̃k = k)

=
1 + δ

(k − 1)(2 + δ) + (1 + δ)
≤ 1

k
,

so that

1

n

n∑
k=2

R2,k ≤
1

n

n∑
k=2

1

k
≤ C

log(n)

n
. (4.37)

Note that throughout the proof C always denotes a constant only dependent on δ,
but which may vary from step to step.
From the proof of Theorem 4.1 we know that

P(X̂n 6= Ŷn|Ek,n, X̂k = Ŷk)P(X̂k = Ŷk|Ek,n)

≤
n−1∑
`=k

`

k
P(X̂`+1 6= Ŷ`+1|X̂` = Ŷ`, X̂k = Ŷk = 0).

By the construction of the coupling as well as by the fact that X̂n and Ŷn are Markov
chains, we get

P(X̂`+1 6= Ŷ`+1|X̂` = Ŷ`, X̂k = Ŷk = 0) := Pk(X̂`+1 6= Ŷ`+1|X̂` = Ŷ`)

=
`−1∑
m=0

Pk(X̂`+1 6= Ŷ`+1|X̂` = Ŷ` = m)Pk(X̂` = m|X̂` = Ŷ`)

= P(X̂`+1 = 0, Ŷ`+1 6= 0|X̂` = Ŷ` = 0)Pk(X̂` = 0|X̂` = Ŷ`)

+ P(X̂`+1 = 0, Ŷ`+1 6= 0|X̂` = Ŷ` = 1)Pk(X̂` = 1|X̂` = Ŷ`)

+ P(X̂`+1 = 2, Ŷ`+1 6= 2|X̂` = Ŷ` = 1)Pk(X̂` = 1|X̂` = Ŷ`)

+
`−1∑
m=2

(
P(X̂`+1 = m+ 1, Ŷ`+1 6= m+ 1|X̂` = Ŷ` = m)Pk(X̂` = m|X̂` = Ŷ`)

)

+
`−1∑
m=2

(
P(X̂`+1 = 0, Ŷ`+1 6= 0|X̂` = Ŷ` = m)Pk(X̂` = m|X̂` = Ŷ`)

)
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= (pX`+1(0|0)− p̂`+1(0, 0|0, 0))Pk(X̂` = 0|X̂` = Ŷ`)

+ (pX`+1(0|1)− p̂`+1(0, 0|1, 1))Pk(X̂` = 1|X̂` = Ŷ`)

+ (pX`+1(2|1)− p̂`+1(2, 2|1, 1))Pk(X̂` = 2|X̂` = Ŷ`)

+
`−1∑
m=2

(pX`+1(m+ 1|m)− p̂`+1(m+ 1,m+ 1|m,m))Pk(X̂` = m|X̂` = Ŷ`)

+
`−1∑
m=2

(pX`+1(0|m)− p̂n+1(0, 0|m,m))Pk(X̂` = m|X̂` = Ŷ`)

≤ 2
`−1∑
m=0

max
j

∣∣pX`+1(j|m)− p̂`+1(j, j|m,m)
∣∣Pk(X̂` = m|X̂` = Ŷ`)

≤ 2
`−1∑
m=0

max
j

∣∣pX`+1(j|m)− pY`+1(j|m)
∣∣Pk(X̂` = m|X̂` = Ŷ`)

≤ C

`−1∑
m=0

m+ 1{m = 0}
`2

Pk(X̂` = m|X̂` = Ŷ`).

Hence, we obtain

n∑
k=2

R1,k ≤ C
n∑
k=2

1

k

n−1∑
`=k

`−1∑
m=0

m+ 1{m = 0}
`

Pk(X̂` = m|X̂` = Ŷ`)

≤ C

 n∑
k=2

1

k

n−1∑
`=k

Ek
[
X̂`

]
`

+
n∑
k=2

1

k

n−1∑
`=k

Pk(X̂` = 0|X̂` = Ŷ`)

`


Conditioning on the event that the chain was in state 0 at time k can only decrease
the expectation, as the rate by which the process moves to zero is always one,
independently of the state the process is in. Thus, we get

Ek
[
X̂`+1

]
≤ E

[
X̂`+1

]
For simplicity of notation we write deg` := degb,α`` . Now for all ` ≥ 1

E
[
X̂`

]
= E [deg`(Un)] =

1

`
E

∑̀
[j=1]

deg`(j)


=

1

`
E

[∑̀
j=1

deg−` (j)

]
=

1

`
· ` = 1,
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where Un is uniformly distributed on [n] and deg−` (j) denotes the outdegree of
vertex j at time `, which equals 1 for all j and ` by the definition of the model.
Consequently,

n∑
k=2

R1,k ≤ C

 n∑
k=2

1

k

n−1∑
`=k

Ek
[
X̂`

]
`

+
n∑
k=2

1

k

n−1∑
`=k

Pk(X̂` = 0|X̂` = Ŷ`)

`



≤ C
n∑
k=2

1

k

n−1∑
`=k

Ek
[
X̂`

]
`

≤ C log(n)2.

Combining this with (4.37) yields

P(X̂n 6= Ŷn) ≤ 1

n

n∑
k=2

(R1,k +R2,k) +
1

n
≤ C

log(n)2

n
,

as desired.
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5. A central limit theorem for the number of

isolated vertices

In this chapter we consider the distribution of the number of isolated vertices in
the preferential attachment model introduced in chapter 3. Here we call a vertex
isolated if it has neither incoming nor outgoing edges. In fact, we show that for
a certain class of attachment functions the properly rescaled number of isolated
vertices fulfills a central limit theorem. More precisely, we show the following:

Theorem 5.1. Let Wn denote the number of isolated vertices in the preferential
attachment graph Gn with attachment function f . For the rescaled version

W̃n =
Wn − µn

σn

of Wn, where µn := E [Wn] and σn =
√

V[Wn], we have that

dW (W̃n, Z) ≤ C


1√
n

for γ < 1
2
,

log(n)2
√
n

for γ = 1
2
,

n4γ− 5
2 for γ > 1

2
,

where C > 0 is a constant independent of n, Z denotes a random variable with
Z ∼ N (0, 1) and γ := maxk≥0(f(k + 1)− f(k)).

Example 5.2. The class of attachment functions for which Theorem 5.1 provides a
central limit theorem comprises, for example, functions of the form f(k) = γkα + η
with γ ∈ (0, 5

8
), α ∈ (0, 1] and η ∈ (0, 1] or f(k) = (k + 1)α with α ≤ 0.7.

It is not very suprising to see that the rates vary according to the maximal
increase γ := maxk≥0 ∆f(k) of the attachment function. It is clear that for concave
functions f we have that the larger γ the more likely it is for edges to emerge, so
that connectivity of the network increases with γ. In fact, [DM13, Theorem 1.6]

shows that the network topology changes for γ− := limn→∞
f(n)
n

= 1
2

in the sense
that for γ− ≥ 1

2
a giant connected component emerges, that is, a connected com-

ponent comprising a positive fraction of all vertices present. However, Theorem 5.1
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only yields a limit result for attachment functions f such that γ < 5
8
. Since our

methods of proof do not exhibit sharp bounds, we cannot conclude that the central
limit theorem does not hold for γ ≥ 5

8
. Nevertheless, the fact that with increasing

γ isolated vertices become less frequent suggests that at some point the number of
isolated vertices perhaps rather follows a Poisson than a standard normal distribu-
tion.
The main idea of the proof is to use Theorem 2.6, which gives the distance between
the law of a non-negative random variable and the standardnormal distribution
using a size-bias coupling. In our setting we let

X := Wn =
n∑
i=1

Xi,n,

where Xi,n = 1{vertex i is isolated in Gn}. Now, for each fixed n, we have E [X] =
E [Wn] ≤ n <∞.

Therefore we will need to construct a random variable W s
n having size-bias dis-

tribution of Wn. We will do so by applying the general construction which we
described in chapter 2 (see also [Ros11, section 3.4.1]) to our setting.

5.1. Size-bias construction

Following corollary 2.8 we construct a random variable having the size-bias distri-
bution of Wn as follows: we choose one of the vertices in Gn proportional to

E[Xi,n]

E[Wn]
,

delete all its adjacent edges and adjust the remaining summands. More formally,
for I chosen proportional to ϑi,n := E [Xi,n], independent of all else, we put Xs

I = 1
and (XI

j )j 6=I with distribution conditional on XI = 1. For I = i we generate X i
j for

all i 6= I by reconsidering every edge present in Gn and deleting it with probability

P(edge {k → `} is deleted|{k → `} is in Gn) = 1−
µfk−1(`, i)

µfk−1(`)
,

where µfk−1(`) := E
[
f(deg−k−1(`))

]
and µ̃fk−1(`, i) = E

[
f(deg−k−1(`))|Xi,n = 1

]
. We

will denote the resulting graph by G(i)
n . As connections only depend on the indegree

of the older of the two vertices, we have

µfk−1(`, i) = E
[
f(deg−k−1(`))|Xi,n = 1

]
=

k−`+1∑
m=0

f(m)P(deg−k−1(`) = m|Xi,n = 1)

=
k−`+1∑
m=0

f(m)P(deg−k−1(`) = m|i9 `)

= E
[
f(deg−k−1(`))|i9 `

]
:= µ̃fk−1(`, i)
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for i > ` since the isolation of vertex i only affects the out- but not the indegree of
vertex `. For i < ` we have

E
[
f(deg−k−1(`))|Xi,n = 1

]
=

k−`+1∑
m=0

f(m)P(deg−k−1(`) = m|Xi,n = 1)

=
k−`+1∑
m=0

f(m)P(deg−k−1(`) = m)

= E
[
f(deg−k−1(`))

]
as connections from any k > ` to ` only depend on deg−k−1(`), which is independent
of deg+(`). This shows that for ` > i the isolation of vertex i does not affect

connections {` ↔ k} with k > i so that in order for ` to be isolated in G(i)
n those

edges cannot be present in Gn. More general, the isolation of vertex i does not affect
edges {` → k} if both k and ` emerged later than time i, see also Figure 5.4 for a

visualization of this effect. Figures 5.1-5.4 show how G(i)
n is constructed from Gn.

Figure 5.1: Preferential attachment graph for attachment function f(k) = 3
10 k

1
5 + 2

5

Figure 5.2: Choose one of the vertices according to P(I = i) =
ϑi,n
µn

. Here: i = 7.

85



Figure 5.3: Remove all adjacent edges.

Figure 5.4: Remove all other edges with probability 1− µfk−1(`,i)

µfk−1(`)
. Only the red edges are

affected by the isolation of vertex 7, since for all others the probability to be deleted is 0.

To show that the resulting graph has distribution conditioned on Xi,n = 1 we
first introduce some notation: For the event that there exists an edge between

vertices ` < k in Gn we write {k → `} and accordingly {k i−→ `} for the event that

there is an edge pointing from k to ` in G(i)
n . Every edge k → ` in G(i)

n is now present
with probability given by

P(k
i−→ `) = P(k

i−→ `|k → `)P(k → `)

=
µ̃fk−1(`, i)

µfk−1(`)

µfk−1(`)

k
=
µ̃fk−1(`, i)

k

= P(k → `|i9 `) = P(k → `|Xi,n = 1).

Following Proposition 2.7 (see also [Ros11, Proposition 3.21]) the number of iso-
lated vertices W s

n =
∑n

i=1,i 6=I X
I
j + 1 in GIn has distribution given by the size-bias

distribution of Wn. Additionally to µ̃fk−1(`, i) defined above, we introduce

µ̂fk−1(`, i) := E
[
f(deg−k−1(`))|i→ `

]
so that

µfk−1(`) = P(i9 `)µ̃fk−1(`, i) + P(i→ `)µ̂fk−1(`, i).
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Note that

P(k 6 i−→ `|k → `) = 1−
µ̃fk−1(`, i)

µfk−1(`)
=
µfk−1(`)− µ̃fk−1(`, i)

µfk−1(`)

and

µfk−1(`)− µ̃fk−1(`, i) = (1− P(i→ `))µ̃fk−1(`, i) + P(i→ `)µ̂fk−1(`, i)− µ̃fk−1(`, i)

= P(i→ `)(µ̂fk−1(`, i)− µ̃fk−1(`, i))

≤
µfi−1(`)

i
µ̂fk−1(`, i)

≤ f(1)
iγkγ

i`2γ
, (5.1)

for all ` ∈ {1, . . . , j − 2} by Lemma 3.21. Lemma 2.8. and Lemma 2.10 in [DM13]
yield that

µ̂fk−1(`, i)

µfk−1(`)
≤ f(1)

f(0)
,

which gives

P(k 6 i−→ `|k → `) ≤
µfi−1(`)

i

µ̂fk−1(`, i)

µfk−1(`)
≤ f(1)

f(0)
iγ−1`−γ. (5.2)

5.2. Proof of Theorem 5.1

To bound the distance between the law of Wn and the standard normal distribution
we have to bound both terms on the right-hand side of (2.4). Lemma 5.3 gives
the order of µn as well as a lower bound on σ2

n. With the help of these results we
can then deduce an upper bound on both terms, see Lemma 5.8, Lemma 5.9 and
Lemma 5.10.

Lemma 5.3. Let Wn denote the number of isolated vertices in the preferential
attachment graph Gn described before. For µn = E [Wn] and σ2

n = V [Wn] we then
get

µn ∼ n (5.3)

and
σ2
n ≥ Cn, (5.4)

where C > 0 is a constant independent of n.
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Here, by g ∼ f we mean that limn→∞
g(n)
f(n)

= c ∈ (0,∞) , or equivalently there
exist constants b1, b2 ∈ R such that

b1f(n) ≤ g(n) ≤ b2f(n).

Before proving this Lemma we give three auxiliary results which we will use fre-
quently throughout this chapter. First note that for f(0) := η ∈ (0, 1] and by the
asymptotics of the gamma function we have

n∏
i=2

(
1− f(0)

i

)
=

∏n
i=2(i− η)

n!
=

∏n−1
i=1 (i+ 1− η)

n!

=
Γ(n+ 1− η)

Γ(2− η)Γ(n+ 1)
∼ n−η, (5.5)

since limn→∞
Γ(n+α)
Γ(n)nα

= 1. Furthermore, for η > −1 we have

d1n
1+η ≤

∫ n−1

1

jη dj ≤
n∑
j=2

jη ≤
∫ n+1

2

jη dj ≤ d2n
1+η

so that

n∑
j=1

jη ∼ n1+η. (5.6)

The last auxiliary result concerns the probability of a vertex to have outdegree zero.
First note that

P(j → k) = E [E [1{j → k}|Gj−1]]

= E

[
f(deg−j−1(k))

j

]
=
µfj−1(k)

j
,

so that

pn,0 := P(deg+(n) = 0) = E
[
E
[
1{deg+(n) = 0}|Gn−1

]]
=

n−1∏
j=1

(
1−

E
[
f(degn−1(j))

]
n

)
:=

n−1∏
j=1

(
1−

µfn−1(j)

n

)
> 0,

for every fixed n as µfn−1(j) ≤ µfn−1(1) ≤ n − 1. On account of Theorem 3.20 we
also have

exp(−λ)− a(n) ≤ pn,0 ≤ exp(−λ) + a(n),
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for some positive sequence (a(n)) tending to zero. Here λ = Eµ [f(X)], where Eµ
denotes the expectation with respect to the measure µ defined in (3.3). Thus, as
0 < pn,0 < 1 for all n, there exist constants c1, c2 ∈ (0, 1) such that

c1 ≤ min
n∈N

pn,0 ≤ max
n∈N

pn,0 ≤ c2. (5.7)

With these remarks we now turn to the proof of Lemma 5.3.

Proof of Lemma 5.3. Let {i1,n, . . . , iWn−1,n} denote the set of vertices that are iso-
lated in Gn−1. We then have

E [Wn] = E [E [Wn|Wn−1]]

= E

[
Wn−1∑
j=1

1{ij,n is isolated in Gn|ij,n isolated in Gn−1}+ 1{deg+(n) = 0}

]

= E

[
Wn−1∑
j=1

(
1− f(0)

n

)]
+ pn,0 =

(
1− f(0)

n

)
E [Wn−1] + pn,0,

and by iteration

E [Wn] =
n∏
i=2

(
1− f(0)

i

)
E [W1] +

n∑
j=2

pj,0

n∏
k=j+1

(
1− f(0)

k

)
.

With the auxiliary results mentioned above this yields

E [Wn] =
n∏
i=2

(
1− f(0)

i

)
+

n∑
j=2

n∏
k=j+1

(
1− f(0)

k

)
pj,0

∼ 1

nη
+

n∑
j=2

jη

nη
pj,0 ∼

1

nη
+

1

nη

n∑
j=2

jη ∼ n,

where we used (5.6) in the last step. This shows (5.3). We now turn to the lower
variance bound given in (5.4). We have

V [Wn] =
n∑
i=1

V[Xi,n] + 2
n∑
i=1

i−1∑
j=1

Cov[Xi,n, Xj,n]

=
n∑
i=1

P(Xi,n = 1)(1− P(Xi,n = 1))

+ 2
n∑
i=1

i−1∑
j=1

P(Xi,n = 1)(P(Xj,n = 1|Xi,n = 1)− P(Xj,n = 1)).
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Note that the outdegree is fixed from time i onwards and that connections formed
afterwards only rely on the indegree of i, i.e. deg−n (i) and deg+(i) are independent
random variables. To shorten notation we put

P(deg+(i) = i1, deg−n (i) = i2, deg+(j) = j1, deg−n (j) = j2)

:= P(dn(i) : (i1, i2), dn(j) : (j1, j2))

and accordingly

P(deg+(i) = i1, deg−n (i) = i2) = P(dn(i) : (i1, i2)).

Setting an :=
∏n

i=2

(
1− f(0)

i

)
we have

P(deg−n (i) = 0) =
n∏

`=i+1

P({`9 i}|
`−1⋂
r=i+1

{r 9 i})

=
n∏

`=i+1

(
1− f(0)

`

)
=
an
ai
∼
(
i

n

)η
(5.8)

and thus

n∑
i=1

P(Xi,n = 1)(1− P(Xi,n = 1)) ∼
n∑
i=1

pi,0

(
i

n

)η
(1− pi,0

(
i

n

)η
) ∼

n∑
i=1

(
i

n

)η
∼ n,

where we used (5.7) and (5.6). Furthermore we have

P(Xi,n = 1, Xj,n = 1) = P(dn(j) : (0, 0)|dn(i) : (0, 0))P(dn(i) : (0, 0))

= P(deg+(j) = 0|deg+(i) = 0)P(deg−n (j) = 0|deg+(i) = 0)P(deg+(i) = 0)P(deg−n (i) = 0)

≥ P(deg+(j) = 0)P(deg−n (j) = 0)P(deg+(i) = 0)P(deg−n (i) = 0)

= P(Xi,n=1)P(Xj,n = 1), (5.9)

which shows that Xi,n and Xj,n are positively correlated. Here we used that in- and
outdegree of a fixed vertex are independent as we had noticed before. We will use
this result as well as the fact that deg+(j) is independent of deg−n (i) for i > j to
find a lower bound on Cov[Xi,n, Xj,n]. More precisely

n∑
i=1

i−1∑
j=1

P(Xi,n = 1)(P(Xj,n = 1|Xi,n = 1)− P(Xj,n = 1))

=
n∑
i=1

i−1∑
j=1

P(Xi,n = 1)(P(dn(j) : (0, 0))|dn(i) : (0, 0))− P(dn(j) : (0, 0)))
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≥ C

n∑
i=1

i−1∑
j=1

(
i

n

)η (
P(deg+(j) = 0|deg+(i) = 0)P(deg−n (j) = 0|deg+(i) = 0)

− P(deg+(j) = 0)P(deg−n (j) = 0)
)

≥ C
n∑
i=1

i−1∑
j=1

(
i

n

)η
P(deg+(j) = 0)P(deg−n (j) = 0)

(
1

P(i9 j)
− 1

)

≥ C
n∑
i=1

i−1∑
j=1

(
i

n

)η (
j

n

)η µfj−1(i)

j − µfj−1(i)

≥ C

n∑
i=1

i−1∑
j=1

(
i

n

)η (
j

n

)η
f(0)

j
∼ n

by (5.6) and consequently
V [Wn] ≥ C n,

where C > 0 is independent of n.

Before we start proving Theorem 5.1 we give the following auxiliary result which
shows how the non-existence of an edge influences the degree evolution of the older
of the two vertices forming that edge.

Proposition 5.4. For aj,` := P(j 9 `) and a
(i)
j,` := P(j 9 `|i9 `) we have

k∏
`=m

a
(i)
j,` −

k∏
`=m

aj,` ≤ f(1)
21−γ

21−γ − 1

k∑
`=m

jγ−1iγ−1`−2γ := ξkm(j, i)

for all k,m with m < k ≤ i− 1. It follows

ξkm(j, i) ≤ C


jγ−1iγ−1k1−2γ for γ < 1

2
,

jγ−1iγ−1 log(k) for γ = 1
2
,

jγ−1iγ−1m−2γ+1 for γ > 1
2
.

(5.10)

Furthermore, for any r with m ≤ r ≤ k − 1 we have

i−1∏
`=m
6̀=r

a
(i)
j,` −

i∏
`=m
6̀=r

aj,` ≤ C ξi−1
m (j, i) ≤ C


jγ−1i−γ for γ < 1

2
,

jγ−1iγ−1 log(i) for γ = 1
2
,

jγ−1iγ−1m−2γ+1 for γ > 1
2
.

(5.11)
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Proof. We proceed via induction on the number N of factors. For any m ≤ k ≤ i−1
we have

a
(i)
j,m − aj,m = P(j 9 m|i9 m)− P(j 9 m)

=

(
1−

µ̃fj−1(m, i)

j

)
−

(
1−

µfj−1(m)

j

)

=
µfj−1(m)− µ̃fj−1(m, i)

j

≤ f(1)jγ−1iγ−1m−2γ,

by (5.1). This proves the base clause for N = k−m+1 = 1. For the induction step

note that a
(i)
j,` and aj,` are asymptotically equivalent. More specifically we have

a
(i)
j,`

aj,`
=

P(j 9 `|i9 `)

P(j 9 `)
=

1− µ̃fj−1(`,i)

j

1− µfj−1(`)

j

= 1 +
µfj−1(`)− µ̃fj−1(`, i)

j − µfj−1(`)

≤ 1 +
f(1)iγ−1`−2γjγ

j − jγ
≤ 1 + f(1)

21−γ

21−γ − 1
jγ−1iγ−1`−2γ

:= 1 + Cfj
γ−1iγ−1`−2γ

since µfj−1(`) ≤ jγ by Lemma 3.21. Due to the induction hypothesis we then get

k∏
`=m

a
(i)
j,` −

k∏
`=m

aj,` ≤
k−1∏
`=m

a
(i)
j,`(1 + Cfj

γ−1iγ−1k−2γ)aj,k −
k∏

`=m

aj,`

= aj,k

(
k−1∏
`=m

a
(i)
j,` −

k−1∏
`=m

aj,`

)
+

k−1∏
`=m

a
(i)
j,` · aj,k · Cfj

γ−1iγ−1k−2γ

≤ Cf

k−1∑
`=m

jγ−1iγ−1`−2γ + Cfj
γ−1iγ−1k−2γ

= Cf

k∑
`=m

jγ−1iγ−1`−2γ,

which proves the claim. Consequently

k∏
`=m

a
(i)
j,` −

k∏
`=m

aj,` ≤ C


jγ−1iγ−1k1−2γ for γ < 1

2
,

jγ−1iγ−1 log(k) for γ = 1
2
,

jγ−1iγ−1m−2γ+1 for γ > 1
2
.
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To prove the second part, note that with the definition of aj,i we can write

i−1∏
`=m

a
(i)
j,` −

i∏
`=m

aj,` =
i−1∏
`=1

a
(i)
j,` −

i−1∏
`=1

aj,` · P(j 9 i)

=
i−1∏
`=m

a
(i)
j,` −

i−1∏
`=m

aj,`

(
1−

µfj−1(i)

j

)

≤ Cf

i−1∑
`=m

jγ−1iγ−1`−2γ +
jγ−1

iγ

≤ 2Cf

i−1∑
`=m

jγ−1iγ−1`−2γ, (5.12)

so that the terms only differ by a constant factor. The proof is completed by
showing that the bound also holds if we omit one of the factors in each of the
products. Noting that a

(i)
j,` ≥ aj,` we get

i−1∏
`=m
6̀=r

a
(i)
j,` −

i∏
`=m
6̀=r

aj,` =
1

aj,r

 i−1∏
`=m
` 6=r

a
(i)
j,`aj,r −

i∏
`=m

aj,`


≤ 1

1− µfj−1(r)

j

(
i−1∏
`=m

a
(i)
j,` −

i∏
`=m

aj,`

)

≤ 1

1− jγ−1

(
i−1∏
`=m

a
(i)
j,` −

i∏
`=m

aj,`

)

≤ 1

1− 2γ−1

(
i−1∏
`=m

a
(i)
j,` −

i∏
`=m

aj,`

)
,

so that (5.12) also holds in this case, with an additional factor (1− 2γ−1)−1.

We are now ready to deduce an upper bound on the first term appearing in
(2.4). Therefore, first note that

W s
n −Wn = Dn,I + 1{dI > 0}+Rn,I , (5.13)

where Dn,I denotes the set of neighbours of vertex I with total degree one (to wit:
I is their only neighbour),Dn,I = |Dn,I | , dI = deg−n (I) + deg+(I) denotes the total
degree of vertex I and Rn,I denotes the random variable which conditioned on the
graph gives the number of vertices not in Dn,I that get isolated due to the isolation
of vertex I. Remember that

P(I = i) =
E [Xi,n]

E [Wn]
=
ϑi,n
µn
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and thus

V [E [W s
n −Wn|Gn]] = V

[
1

E [Wn]

n∑
i=1

ϑi,nE
[
W s
n,i −Wn|Gn

]]

=
1

E [Wn]2
V

[
n∑
i=1

ϑi,n (Dn,i + 1{degree(i) > 0}+Rn,i)

]

≤ 3

E [Wn]2

(
V

[
n∑
i=1

ϑi,nDn,i

]
+ V

[
n∑
i=1

ϑi,n1{degree(i) > 0}

]
+ V

[
n∑
i=1

ϑi,nRn,i

])
.

as 2 Cov[X, Y ] ≤ V[X] + V[Y ]. By (5.9) we know that Cov[Xi,n, Xj,n] > 0 so that
also Cov[(1{degree(i) > 0},1{degree(j) > 0})] > 0 and thus,

V

[
n∑
i=1

ϑi,n1{degree(i) > 0}

]
≤ V

[
n∑
i=1

1{degree(i) > 0}

]
= V [n−Wn]

= V[Wn] = σ2
n.

Hence

V [E [W s
n −Wn|Gn]] ≤ 4

E [Wn]2

(
σ2
n + V

[
n∑
i=1

ϑi,nDn,i

]
+ V

[
n∑
i=1

ϑi,nRn,i

])
.(5.14)

To prove an upper bound on this expression we proceed in three steps: Lemma 5.5
gives a bound on V [

∑n
i=1 ϑi,nDn,i], Lemma 5.7 and Lemma 5.8 give bounds on

V[Rn,i] and Cov[Rn,i, Rn,j] respectively.

Lemma 5.5. As before, let Dn,i denote the number of neighbours of vertex i with
total degree one in Gn. We then have

V

[
n∑
i=1

ϑi,nDn,i

]
≤ C


n for γ < 1

2
,

log(n)n for γ = 1
2
,

n2γ for γ > 1
2
.

Proof. To deal with V [
∑n

i=1 ϑi,nDn,i] we define Yn,i := 1{vertex i has degree 1 in Gn}.
We then get

V

[
n∑
i=1

ϑi,nDn,i

]
= V

[
n∑
i=1

ϑ∗i,nYn,i

]

≤
n∑
i=1

V [Yn,i] + 2
n∑
j=1

j−1∑
i=1

Cov[Yn,j, Yn,i]1{Cov[Yn,j, Yn,i] > 0}
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≤ n

4
+ 2

n∑
j=1

j−1∑
i=1

Cov[Yn,j, Yn,i])1{Cov[Yn,j, Yn,i] > 0},

where ϑ∗i,n = ϑj,n if j is the unique neighbour of vertex i and ϑ∗i,n = 0 if i does not
have a unique neighbour. Now, the most involved part of the proof is to deal with
the subtle dependencies between Yn,i and Yn,j in order to estimate Cov[Yn,i, Yn,j].
We have

P(Yn,i = 1, Yn,j = 1) = P(dn(i) : (1, 0), dn(j) : (1, 0)) + P(dn(i) : (1, 0), dn(j) : (0, 1))

+ P(dn(i) : (0, 1), dn(j) : (0, 1)) + P(dn(i) : (0, 1), dn(j) : (1, 0))

as well as

P(Yn,i = 1) = P(dn(i) : (1, 0)) + P(dn(i) : (0, 1)).

Plugging this into

Cov[Yn,j, Yn,i] = P(Yn,i = 1, Yn,j = 1)− P(Yn,i = 1)P(Yn,j = 1)

and rearranging yields

Cov[Yn,j, Yn,i] =
∑

i1+i2=1,
j1+j2=1

P(dn(i) : (i1, i2), dn(j) : (j1, j2))− P(dn(i) : (i1, i2))P(dn(j) : (j1, j2))

=
∑

i1+i2=1,
j1+j2=1

P(dn(i) : (i1, i2))
(
P(dn(j) : (j1, j2)|dn(i) : (i1, i2))− P(dn(j) : (j1, j2))

)

≤ C
∑

i1+i2=1,
j1+j2=1

(
i

n

)γ (
P(dn(j) : (j1, j2)|dn(i) : (i1, i2))− P(dn(j) : (j1, j2))

)
. (5.15)

To see that P(dn(i) : (i1, i2)) ≤ C
(
i
n

)γ
note that

P(dn(i) : (i1, i2)) ≤ max{P(deg−n (i) = 0),P(deg−n (i) = 1)}

and by (5.8) we get

P(deg−n (i) = 0) =
n∏

j=i+1

(
1− f(0)

j

)
≤ C

(
i

n

)η
. (5.16)

In order to bound P(deg−n (i) = 1) we define the event

D
(k)
i = {up to time n the only incoming edge of i is provided by vertex k}

=
n⋂

`=i+1
` 6=k

{k 9 `} ∩ {k → i},
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so that

P(deg−n (i) = 1) =
n∑

k=i+1

P(D
(k)
i ) =

n∑
k=i+1

k−1∏
`=i+1

(
1− f(0)

`

)
f(0)

k

n∏
`=k+1

(
1− f(1)

`

)

≤ C
n∑

k=i+1

(
i+ 1

k − 1

)η
1

k

(
k + 1

n

)f(1)

≤ C
iη

nf(1)

n∑
k=i+1

kf(1)−η−1

≤ C

(
i

n

)η
. (5.17)

as f(1) ≥ f(0) = η. Hence

P(dn(i) : (i1, i2)) ≤ C

(
i

n

)η
for i1, i2 ∈ {0, 1}. We will now bound each of the differences appearing in (5.15)
individually, as the dependencies crucially rely on the exact formation of in- and
outgoing edges of the two vertices.

Before we start, remember that by the definition of the model not only deg−n (j)
and deg+(j) are independent for every fixed vertex j and any n, but also deg−n (j)
is independent of deg−n (i) and deg+(i) for every older vertex i < j.
For (i1, i2) = (j1, j2) = (1, 0), we obtain

P(dn(j) : (1, 0)|dn(i) : (1, 0))− P(dn(j) : (1, 0))

= P(deg−n (j) = 0)
(
P(deg+(j) = 1|dn(i) : (1, 0))− P(deg+(j) = 1)

)
≤ C

(
j

n

)η (
P(deg+(j) = 1|dn(i) : (1, 0))− P(deg+(j) = 1)

)
. (5.18)

according to (5.16). To bound the remaining difference let C
(k)
j denote the event

that vertex j only connects to vertex k when inserted into the network. More
precisely,

C
(k)
j =

{ j−1⋂
`=1,
6̀=k

{j 9 `}, {j → k}
}
.

With this definition we obtain

P(deg+(j) = 1|dn(i) : (1, 0)) = P(deg+(j) = 1|deg+(i) = 1, {j 9 i})

=

j−1∑
k=1,
k 6=i

P(C
(k)
j |deg+(i) = 1, {j 9 i})
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=

j−1∑
k=1,
k 6=i

i−1∑
r=1

P(C
(k)
j |C

(r)
i , {j 9 i})P(C

(r)
i |deg+(i) = 1, {j 9 i})

=

j−1∑
k=1,
k 6=i

i−1∑
r=1

1

P({j 9 i})
P(C

(k)
j |C

(r)
i )P(C

(r)
i |deg+(i) = 1).

Again, the conditional probability P(C
(k)
j |C

(r)
i ) depends crucially on the configura-

tion of the graph. For k 6= r and k ≤ i− 1 we have

P(C
(k)
j |C

(r)
i ) = P

( j−1⋂
`=1
6̀=k

{j 9 `}, {j → k}
∣∣∣ i−1⋂
m=1
m 6=r

{i9 m}, {i→ r}
)

=
i−1∏
`=1
` 6=k,r

P(j 9 `|i9 `) P(j 9 r|i→ r)P(j → k|i9 k)

j−1∏
`=i

P(j 9 `)

≤
i−1∏
`=1
` 6=k

P(j 9 `|i9 `)P(j → k)

j−1∏
`=i

P(j 9 `).

If k ≥ i+ 1 (so in particular k 6= r) we obtain

P(C
(k)
j |C

(r)
i ) =

i−1∏
`=1
6̀=r

P(j 9 `|i9 `)P(j 9 r|i→ r)P(j → k)

j−1∏
`=i
` 6=k

P(j 9 `)

≤
i−1∏
`=1

P(j 9 `|i9 `)P(j → k)

j−1∏
`=i
6̀=k

P(j 9 `).

In the last case, namely k = r and still k ≤ i− 1, we get

P(C
(k)
j |C

(k)
i ) =

i−1∏
`=1
` 6=k

P(j 9 `|i9 `)P(j → k|i→ k)

j−1∏
`=i

P(j 9 `)

Furthermore, we can use the definition of C
(k)
j to write

P(deg+(j) = 1) =

j−1∑
k=1

P(C
(k)
j ) =

j−1∑
k=1

j−1∏
`=1
` 6=k

P(j 9 `)P(j → k).

Putting all these results into (5.18) yields
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P(deg+(j) = 1|dn(i) : (1, 0))− P(deg+(j) = 1)

≤
i−1∑
k=1

(
P(j → k)

i−1∏
`=1
6̀=k

P(j 9 `|i9 `)

j−1∏
`=i+1

P(j 9 `)
) i−1∑

r=1
r 6=k

P(C
(r)
i |deg+(i) = 1)

+
i−1∑
k=1

(
P(j → k|i→ k)

i−1∏
`=1
6̀=k

P(j 9 `|i9 `)

j−1∏
`=i+1

P(j 9 `)
)
P(C

(k)
i |deg+(i) = 1)

+

j−1∑
k=i+1

(
P(j → k)

i−1∏
`=1

P(j 9 `|i9 `)

j−1∏
`=i+1
` 6=k

P(j 9 `)
) i−1∑
r=1

P(C
(r)
i |deg+(i) = 1)

−
j−1∑
k=1

j−1∏
`=1
6̀=k

P(j 9 `)P(j → k)

=
i−1∑
k=1

(
P(j → k)

i−1∏
`=1
6̀=k

P(j 9 `|i9 `)

j−1∏
`=i+1

P(j 9 `)
)(

1− P(C
(k)
i |deg+(i) = 1)

)

+
i−1∑
k=1

(
P(j → k|i→ k)

i−1∏
`=1
6̀=k

P(j 9 `|i9 `)

j−1∏
`=i+1

P(j 9 `)
)
P(C

(k)
i |deg+(i) = 1)

+

j−1∑
k=i+1

(
P(j → k)

i−1∏
`=1

P(j 9 `|i9 `)

j−1∏
`=i+1
` 6=k

P(j 9 `)
)

−

(
i−1∑
k=1

j−1∏
`=1
6̀=k

P(j 9 `)P(j → k) +

j−1∑
k=i

j−1∏
`=1
` 6=k

P(j 9 `)P(j → k)

)

≤
i−1∑
k=1

P(j → k)

j−1∏
`=i+1

aj,`

( i−1∏
`=1
` 6=k

P(j 9 `|i9 `)−
i∏
`=1
6̀=k

P(j 9 `)
)

+
i−1∑
k=1

P(C
(k)
i |deg+(i) = 1)

i−1∏
`=1
` 6=k

a
(i)
j,`

j−1∏
`=i+1

aj,`

(
P(j → k|i→ k)− P(j → k

)

+

j−1∑
k=i+1

P(j → k)

j−1∏
`=i+1
6̀=k

aj,`

( i−1∏
`=1

P(j 9 `|i9 `)−
i∏

`=1

P(j 9 `)
)
,

where the inequality stems from the fact that we omitted the term for k = i in the
subtrahend. The first and third term in the expression above can be bounded using
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Proposition 5.4. For the second term we use the fact that

P(j → k|i→ k)− P(j → k) ≤
µ̂fj−1(k, i)− µfj−1(k)

j
≤ jγ−1k−γ

to obtain

i−1∑
k=1

P(j → k)

j−1∏
`=i+1

aj,`

( i−1∏
`=1
6̀=k

a
(i)
j,` −

i∏
`=1
` 6=k

aj,`

)

+
i−1∑
k=1

P(C
(k)
i |deg+(i) = 1)

i−1∏
`=1
6̀=k

a
(i)
j,`

j−1∏
`=i+1

aj,`

(
P(j → k|i→ k)− P(j → k)

)

+

j−1∑
k=i+1

P(j → k)

j−1∏
`=i+1
` 6=k

aj,`

( i−1∏
`=1

a
(i)
j,` −

i∏
`=1

aj,`

)

≤ C

 j−1∑
k=1
k 6=i

jγ−1

kγ
ξi−1

1 (j, i) +
i−1∑
k=1

P(C
(k)
i |deg+(i) = 1)

jγ−1

kγ


≤ C

 j−1∑
k=1
k 6=i

jγ−1

kγ
ξi−1

1 (j, i) +
i−1∑
k=1

P(i→ k)

P(deg+(i) = 1)

jγ−1

kγ


≤ C

 j−1∑
k=1
k 6=i

jγ−1

kγ
ξi−1

1 (j, i) +
i−1∑
k=1

1

p1,i

iγ−1

kγ
jγ−1

kγ


≤ C

 j−1∑
k=1
k 6=i

jγ−1

kγ
ξi−1

1 (j, i) +
i−1∑
k=1

iγ−1jγ−1

k2γ

 ,

where the last inequality uses the fact that due to Theorem 3.20 there exist constants
C1, C2 ∈ (0, 1) such that C1 ≤ p1,i ≤ C2 for all i ∈ N (cf. (5.7)). Looking at the
different regimes for ξi−1

1 (j, i) we obtain

P(deg+(j) = 1|dn(i) : (1, 0))− P(deg+(j) = 1) ≤ C

 j−1∑
k=1
k 6=i

jγ−1

kγ
ξi−1

1 (j, i) +
i−1∑
k=1

iγ−1jγ−1

k2γ



≤ C


jγ−1i−γ for γ < 1

2
,

j−
1
2 i−

1
2 log(i) for γ = 1

2
,

jγ−1iγ−1 for γ > 1
2
,

(5.19)
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where we used (5.6) to deduce the orders of the sums. For the second case, i.e.
(i1, i2) = (1, 0) and (j1, j2) = (0, 1), we need to consider

P(dn(j) :(0, 1)|dn(i) : (0, 1))− P(dn(j) : (0, 1))

= P(deg−n (j) = 1)
(
P(deg+(j) = 0|dn(i) : (0, 1))− P(deg+(j) = 0)

)
.

We can proceed in a similar way as in the previous case to obtain

P(deg+(j) = 0|dn(i) : (0, 1)) = P(deg+(j) = 0|{j 9 i}, deg+(i) = 1)

=
i−1∑
r=1

P(deg+(j) = 0|C(r)
i , {j 9 i}) P(C

(r)
i |deg+(i) = 1)

=
i−1∑
r=1

P
( j−1⋂
`=1

{j 9 `}
∣∣∣{i→ r},

i−1⋂
m=1
m 6=r

{i9 m}, {j 9 i}
)
P(C

(r)
i |deg+(i) = 1)

=
i−1∑
r=1

1

P(j 9 i)

i−1∏
`=1
6̀=r

P(j 9 `|i9 `)P(j 9 r|i→ r)

j−1∏
`=i

P(j 9 `)P(C
(r)
i |deg+(i) = 1)

≤
i−1∏
`=1

P(j 9 `|i9 `)

j−1∏
`=i+1

P(j 9 `),

where we used that P(j 9 i|{i → r},
⋂i−1

m=1
m 6=r
{i 9 m}) = P(j 9 i) due to the

independence of in- and outdegree of i. Since P(deg+(j) = 0) =
∏j−1

`=1 P(j 9 `) we
get

P(deg+(j) = 0|dn(i) : (0, 1))− P(deg+(j) = 0)

≤
j−1∏
`=i+1

P(j 9 `)

(
i−1∏
`=1

P(j 9 `|i9 `)−
i∏

`=1

P(j 9 `)

)

≤ C


jγ−1i−γ for γ < 1

2
,

j−
1
2 i−

1
2 log(i) for γ = 1

2
,

jγ−1iγ−1 for γ > 1
2
.

on account of (5.11). In the case (i1, i2) = (0, 1) and (j1, j2) = (1, 0) we need to
bound

P(dn(j) : (1, 0)|dn(i) : (0, 1))− P(dn(j) : (1, 0)).

Due to the fact that the indegree of vertex j is independent of its outdegree as well
as of the in- and outdegree of vertex i (for i < j), the expression can be rewritten
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as

P(dn(j) : (1, 0)|dn(i) : (0, 1))− P(dn(j) : (1, 0))

= P(deg−n (j) = 0)
(
P(deg+(j) = 1|deg+(i) = 0, deg−n (i) = 1)− P(deg+(j) = 1)

)
.

The conditional probability can be handled in much the same way as in the first
case. We first condition on the single outgoing edge of j and get

P(deg+(j) = 1|deg+(i) = 0, deg−n (i) = 1) =

j−1∑
k=1

P(C
(k)
j |deg+(i) = 0, deg−n (i) = 1)

=

j−1∑
k=1

P
( j−1⋂

`=1
6̀=k

{j 9 `}, {j → k}|
i−1⋂
`=1

{i9 `}, deg−n (i) = 1
)

=

j−1∑
k=1

i−1∏
`=1
` 6=k

P(j 9 `|i9 `)P(j → k|i9 k)P(j 9 i|deg−n (i) = 1)

j−1∏
`=i+1

P(j 9 `)

+
i−1∏
`=1

P(j 9 `|i9 `)P(j → i|deg−n (i) = 1)

j−1∏
`=i+1

P(j 9 `)

+

j−1∑
k=i+1

i−1∏
`=1

P(j 9 `|i9 `)P(j 9 i|deg−n (i) = 1)P(j → k)

j−1∏
`=i+1
` 6=k

P(j 9 `).

We can now compare these terms with the expression of P(deg+(j) = 1) given in
(5.17) and since P(j → k|i9 k) ≤ P(j → k) we get

P(deg+(j) = 1|deg+(i) = 0, deg−n (i) = 1)− P(deg+(j) = 1)

≤
i−1∑
k=1

P(j → k)

j−1∏
`=i+1

P(j 9 `)
( i−1∏

`=1
` 6=k

a
(i)
j,` −

i∏
`=1
` 6=k

aj,`

)

+

j−1∏
`=i+1

P(j 9 `)
( i−1∏
`=1

a
(i)
j,` P(j → i|deg−n (i) = 1)−

i−1∏
`=1

aj,` P(j → i)
)

+

j−1∑
k=i+1

P(j → k)

j−1∏
`=i+1
6̀=k

P(j 9 `)
( i−1∏
`=1

a
(i)
j,` −

i∏
`=1

aj,`

)
.

The first and third term already appeared in the first case, thus we can bound them
by (5.19). To estimate the second term note that

P(j → i|deg−n (i) = 1) =
n∑

k=i+1

P(j → i|D(k)
i )P(D

(k)
i ) = P(j → i|D(j)

i )P(D
(j)
i ) ≤ f(0)

j
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and thus
i−1∏
`=1

a
(i)
j,` P(j → i|deg−n (i) = 1)−

i−1∏
`=1

aj,`P(j → i) ≤
i−1∏
`=1

a
(i)
j,`

f(0)

j
−

i−1∏
`=1

aj,`
µfj−1(i)

j

≤ f(0)

j

( i−1∏
`=1

a
(i)
j,` −

i−1∏
`=1

aj,`

)

which can be bounded using Proposition 5.4. Hence we obtain

P(dn(j) :(1, 0)|dn(i) : (0, 1))− P(dn(j) : (1, 0))

≤ C · P(deg−n (j) = 0)


jγ−1i−γ for γ < 1

2
,

j−
1
2 i−

1
2 log(i) for γ = 1

2
,

jγ−1iγ−1 for γ > 1
2
.

We continue in this fashion to obtain the following result for (i1, i2) = (j1, j2) =
(0, 1):

P(deg+(j) = 0|dn(i) : (0, 1)) = P
( j−1⋂

`=1

{j 9 `}
∣∣∣ i−1⋂
m=1

{i9 `}, deg−n (i) = 1
)

=
i−1∏
`=1

P(j 9 `|i9 `)P(j 9 i|deg−n (i) = 1)

j−1∏
`=i+1

P(j 9 `)

≤
i−1∏
`=1

P(j 9 `|i9 `)

j−1∏
`=i+1

P(j 9 `)

so that

P(deg+(j) = 0|dn(i) : (0, 1))− P(deg+(j) = 0) ≤
j−1∏
`=i+1

P(j 9 `)

(
i−1∏
`=1

a
(i)
j,` −

i∏
`=1

aj,`

)

≤


jγ−1i−γ for γ < 1

2
,

jγ−1i−
1
2 log(i) for γ = 1

2
,

jγ−1iγ−1 for γ > 1
2

according to Proposition 5.4. Taking all four cases together we get

P(deg+(j) = j1|dn(i) : (i1, i2))− P(deg+(j) = j1) ≤


jγ−1i−γ for γ < 1

2
,

jγ−1i−
1
2 log(i) for γ = 1

2
,

jγ−1iγ−1 for γ > 1
2
,
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for all (i1, i2), (j1, j2) ∈ {0, 1}2 such that i1 + i2 = j1 + j2 = 1. Combing this result
with (5.8) and (5.17) gives

P(dn(i) : (i1, i2), dn(j) : (j1, j2))− P(dn(i) : (i1, i2))P(dn(j) : (j1, j2))

= P(dn(i) : (i1, i2)) (P(dn(j) : (j1, j2)|dn(i) : (i1, i2))− P(dn(j) : (j1, j2)))

≤ C P(deg−n (i) = i1)P(deg−n (j) = j1)


jγ−1i−γ for γ < 1

2
,

j−
1
2 i−

1
2 log(i) for γ = 1

2
,

jγ−1iγ−1 for γ > 1
2
,

≤ C

n2η


jγ+η−1i−γ+η for γ < 1

2
,

j−
1
2

+ηi−
1
2

+η log(i) for γ = 1
2
,

jγ+η−1iγ+η−1 for γ > 1
2

and by (5.6)

n∑
j=1

j−1∑
i=1

1{Cov[Yn,j, Yn,i] > 0}Cov[Yn,j, Yn,i] ≤ C


n for γ < 1

2
,

log(n)n for γ = 1
2
,

n2γ for γ > 1
2
,

so that finally

V

[
n∑
i=1

ϑi,nDn,i

]
≤ C


n for γ < 1

2
,

log(n)n for γ = 1
2
,

n2γ for γ > 1
2
.

The last part to deal with is V [
∑n

i=1 ϑi,nRn,i] . We have

V

[
n∑
i=1

ϑi,nRn,i

]
=

n∑
i=1

ϑ2
i,nV [Rn,i] + 2

n∑
i=1

i−1∑
j=1

ϑi,nϑj,n Cov [Rn,i, Rn,j] .

We consider both sums separately. The corresponding results are formulated in
Lemma 5.7 and Lemma 5.8 respectively. In order to prove these recall that Dn,i
denotes the set of vertices who are only connected to vertex i in Gn . We now define
the random variables

Z
(i)
n,` = 1{` is isolated in G(i)

n but not in Gn ∩ ` /∈ Dn,i}

= 1{N 6=i(`) ∩ E(i)
+ (`) ∩ E(i)

− (`)}
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with

N 6=i(`) := {∃k 6= i : {`↔ k}}, E(i)
+ (`) :=

`−1⋂
r=1

{` 6 i−→ r}, E(i)
− (`) :=

n⋂
r=`+1

{r 6 i−→ `},

so that Rn,i =
∑n

` Z
(i)
n,`. We now recall the dependencies and independencies in the

network that should be kept in mind since the subsequent calculations crucially
rely on these. One important feature of the network, which we already mentioned
before, is the independence of in- and outdegree of a fixed vertex as well as the
independence of outgoing edges of a fixed vertex. Moreover it is useful to remember
that younger vertices only contribute to the indegree of older vertices and older
vertices can only contribute to the outdegree of younger vertices. More precisely,
the event {Z(i)

n,` = 1} only has an impact on deg+(k) but not on deg−n (k) if k > `.

Furthermore, remember that by the construction of Gin the isolation of vertex i does
not affect edges {r → `} if `, r > i, since neither of the two vertices involved depend
on the in- or the outdegree of i, so the edge remains unaffected by the isolation of
i, i.e

{r 6 i−→ `} = {r 9 `} for r, ` > i.

In particular this means that in the case that ` > i for the event {Z(i)
n,` = 1} to

occur ` might neither have any incoming edges nor any outgoing edges to vertices
younger than i, as these connections are unaffected by the isolation of i, so that

E
(i)
− (`) =

n⋂
r=`+1

{r 6 i−→ `} =
n⋂

r=`+1

{r 9 `} = {deg−n (`) = 0}

and

E
(i)
+ (`) =

`−1⋂
r=1

{` 6 i−→ r} =
i−1⋂
r=1

{` 6 i−→ r} ∩
`−1⋂
r=i+1

{r 9 `} for ` > i.

The following proposition states that the likelihood of an edge to exist decreases
if the isolation of vertex I leads to the isolation of vertices not in Dn,I , i.e. Z

(I)
n,` = 1

for some i /∈ Dn,I ∪ I. An intuative example for this might be given by the fact that
more than just Dn,I vertices loose all their present connections due to the isolation
of I hints at a rather sparse graph, since the probability for the deletion of an edge
is rather small (cf. (5.2)).

Proposition 5.6. For the random variables Z
(i)
n,` defined above, we have

P(m→ k|Z(i)
n,` = 1) ≤ P(m→ k)

Proof. For k > ` (and thus m > `) the statement is true and equality holds, since
{m → k} does not have any influence on connections of vertex `. So we have to
consider the case k ≤ `. We have

P(m→ k|Z(i)
n,` = 1) = P(m→ k|Z(i)

n,` = 1, `→ k)P(`→ k|Z(i)
n,` = 1)
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+ P(m→ k|Z(i)
n,` = 1, `9 k)P(`9 k|Z(i)

n,` = 1)

= P(m→ k|`→ k)P(`→ k|` 6 i−→ k)

+ P(m→ k|`9 k)P(`9 k|` 6 i−→ k)

and by Bayes’ Theorem

P(`→ k|` 6 i−→ k) =
P(` 6 i−→ k|`→ k)P(`→ k)

P(` 6 i−→ k)

= P(`→ k) + P(`→ k)

(
P(` 6 i−→ k|`→ k)

P(` 6 i−→ k)
− 1

)

as well as

P(`9 k|` 6 i−→ k) =
P(` 6 i−→ k|`9 k)P(`9 k)

P(` 6 i−→ k)
=

P(`9 k)

P(` 6 i−→ k)
,

since edges not present in Gn cannot emerge in G(i)
n . We then obtain

P(m→ k|Z(i)
n,` = 1)

= P(m→ k|`→ k)P(`→ k) + P(m→ k|`→ k)P(`→ k)

(
P(` 6 i−→ k|`→ k)

P(` 6 i−→ k)
− 1

)

+ P(m→ k|`9 k)P(`9 k) + P(m→ k|`9 k)P(`9 k)

(
1

P(` 6 i−→ k)
− 1

)
≤ P(m→ k) + P(m→ k|`→ k)·(

P(` 6 i−→ k|`→ k)P(`→ k)

P(` 6 i−→ k)
− P(`→ k) +

P(`9 k)

P(` 6 i−→ k)
− P(`9 k)

)

= P(m→ k) + P(m→ k|`→ k)

(
P(` 6 i−→ k|`→ k)P(`→ k) + P(`9 k)

P(` 6 i−→ k)
− 1

)
.

By the construction of G(i)
n from Gn we have

P(` 6 i−→ k) = P(`9 k) + P(`→ k)P(` 6 i−→ k|`→ k),

which proves the assertion.

This result now allows us to prove the following bound on
∑n

i=1Rn,i:
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Lemma 5.7. For the random variable Rn,i denoting the number of vertices not in
Dn,i that lose all their connections in Gn due to the isolation of vertex i we have

n∑
i=1

V [Rn,i] ≤


n for γ < 1

2
,

n log(n)2 for γ = 1
2
,

n2γ for γ > 1
2
.

Proof. With the definition of Z
(i)
n,` we have

V [Rn,i] = V

[
i−1∑
`=1

Z
(i)
n,` +

n∑
`=i+1

Z
(i)
n,`

]
≤ 2

(
V

[
i−1∑
`=1

Z
(i)
n,`

]
+ V

[
n∑

`=i+1

Z
(i)
n,`

])

= 2
i−1∑
`=1

V
[
Z

(i)
n,`

]
+ 4

i−1∑
`=1

`−1∑
k=1

Cov
[
Z

(i)
n,`, Z

(i)
n,k

]
+ 2

n∑
`=i+1

V
[
Z

(i)
n,`

]
+ 4

n∑
`=i+1

n∑
k=`+1

Cov
[
Z

(i)
n,`, Z

(i)
n,k

]
.

Since

V
[
Z

(i)
n,`

]
≤ P(Z

(i)
n,` = 1)

we will now deal with the probability on the right-hand side. Therefor, we define
the following events in order to condition on the first connection of a vertex:

{` 1.←→ m} :=
m−1⋂
r=1

{`9 r} ∩ {`→ m} for m < `

and

{` 1.←→ m} :=
`−1⋂
r=1

{`9 r} ∩
m−1⋂
r=`+1

{r 9 `} ∩ {m→ `} for m > `.

Note that Z
(i)
n,` = 0 if ` is only connected to vertex i, so that in the case that `

1.←→ i

the event {` 1.←→ k} refers to the first connection formed ignorant of all edges with

endpoint in i.

P(Z
(i)
n,` = 1) =

`−1∑
m=1

P(Z
(i)
n,` = 1|` 1.←→ m)P(`

1.←→ m) +
n∑

m=`+1
m 6=i

P(Z
(i)
n,` = 1|` 1.←→ m)P(`

1.←→ m)

≤
`−1∑
m=1

µ`−1(m)

`
P(` 6 i−→ m|`→ m) +

n∑
m=`+1
m 6=i

f(1)

m

m−1∏
k=`+1
k 6=i

(
1− f(0)

k

)
P(m 6 i−→ `|m→ `)
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≤ C

 `−1∑
m=1

`−1+γm−γiγ−1m−γ +
n∑

m=`+1
m 6=i

m−1

(
`

m

)η
`−1iγ−1`−γ


for ` < i, where we used (5.6), (5.2) and the fact that (1− f(0)

i
) ≥ 1

2
for i ≥ 2. For

` > i we have that P(m 6 i−→ `|m→ `) = 0 and P(Z
(i)
n,` = 1|` 1.←→ m) = 0 for m ≥ i+1,

since the isolation of vertex i only affects the indegree of vertices older than vertex
i. Due to (5.2) it follows that

P(Z
(i)
n,` = 1) =

i−1∑
m=1

P(Z
(i)
n,` = 1|` 1.←→ m)P(`

1.←→ m)

≤
i−1∑
m=1

P(` 6 i−→ m|`→ m)P(`→ m)

≤
i−1∑
m=1

`−1+γm−2γiγ−1.

To summarize, we have

V
[
Z

(i)
n,` = 1

]
≤ P(Z

(i)
n,` = 1) ∼


iγ−1`−γ for γ < 1

2
,

`−
1
2 i−

1
2 log(`) for γ = 1

2
,

`γ−1iγ−1 for γ > 1
2
,

(5.20)

for ` < i and

V
[
Z

(i)
n,` = 1

]
≤ P(Z

(i)
n,` = 1) ∼


i−γ`γ−1 for γ < 1

2
,

`−
1
2 i−

1
2 log(i) for γ = 1

2
,

`γ−1iγ−1 for γ > 1
2
,

(5.21)

for ` > i. To deal with the covariances we write

P(Z
(i)
n,` = 1, Z

(i)
n,k = 1)− P(Z

(i)
n,` = 1)P(Z

(i)
n,k = 1)

= P(Z
(i)
n,` = 1)

(
P(Z

(i)
n,k = 1|Z(i)

n,` = 1)− P(Z
(i)
n,k = 1)

)
and again condition on the first connection of k in order to bound the conditional
probability. We thus get

P(Z
(i)
n,k = 1|Z(i)

n,` = 1) =
k−1∑
m=1

P(Z
(i)
n,k = 1|k 1.←→ m,Z

(i)
n,` = 1)P(k

1.←→ m|Z(i)
n,` = 1)
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+
n∑

m=k+1
m 6=i

P(Z
(i)
n,k = 1|k 1.←→ m,Z

(i)
n,` = 1)P(k

1.←→ m|Z(i)
n,` = 1)

≤
k−1∑
m=1

P(k 6 i−→ m|k → m)P(k → m)

+
n∑

m=k+1
m 6=i

P(m 6 i−→ k|m→ k)P(m→ k)

≤
k−1∑
m=1

iγ−1kγ−1m−2γ +
n∑

m=k+1
m 6=i

iγ−1mγ−1k−2γ

≤ C


nγiγ−1k−2γ for γ < 1

2
,

i−
1
2k−

1
2 log(k) + n

1
2 i−

1
2k−1 for γ = 1

2
,

iγ−1kγ−1 + nγiγ−1k−2γ for γ > 1
2
.

(5.22)

By repeated use of (5.6) and with (5.20) we obtain

n∑
i=1

i−1∑
`=1

`−1∑
k=1

Cov
[
Z

(i)
n,`, Z

(i)
n,k

]
≤ C


n2γ for γ < 1

2
,

n log(n) for γ = 1
2
,

n2γ for γ > 1
2
.

With (5.20) this yields

n∑
i=1

V

[
i−1∑
`=1

Z
(i)
n,`

]
≤ C


n for γ < 1

2
,

n log(n) for γ = 1
2
,

n2γ for γ > 1
2
.

(5.23)

For ` ≥ i + 1 variance and covariance can be handled in much the same way with
only minor differences in the precise calculations. In fact, we have

P(Z
(i)
n,k = 1|Z(i)

n,` = 1) =
i−1∑
m=1

P(Z
(i)
n,k = 1|k 1.←→ m,Z

(i)
n,` = 1)P(k

1.←→ m|Z(i)
n,` = 1)

=
i−1∑
m=1

P(deg−n (k) = 0)P(k 6 i−→ m|k → m)
i−1∏

r=m+1

P(k 6 i−→ r|` 6 i−→ r)

·
`−1∏
r=i+1

P(k 9 r|`9 r)
k−1∏
r=`+1

P(k 6 i−→ r)P(k
1.←→ m|Z(i)

n,` = 1)

≤
i−1∑
m=1

P(deg−n (k) = 0)P(k 6 i−→ m|k → m)
i−1∏

r=m+1

P(k 6 i−→ r|` 6 i−→ r)
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·
`−1∏
r=i+1

P(k 9 r|`9 r)
k−1∏
r=`+1

P(k 6 i−→ r)
k−1∏
r=1

P(k 9 r|`9 r)P(k → m), (5.24)

where we used that P(k → m|Z(i)
n,` = 1) ≤ P(k → m) by Proposition 5.6 and

P(k 9 r|Z(i)
n,` = 1) ≤ P(k 9 r|`9 r). In the same manner we can see that

P(Z
(i)
n,k = 1) =

i−1∑
m=1

P(Z
(i)
n,k = 1|k 1.←→ m)P(k

1.←→ m)

=
i−1∑
m=1

P(deg−n (k) = 0)P(k 6 i−→ m|k → m)
i−1∏

r=m+1

P(k 6 i−→ r)
k−1∏
r=i+1

P(k 9 r)P(k → m).

Proposition 5.4 gives

`−1∏
r=i+1

P(k 9 r|`9 r) ≤
`−1∏
r=i+1

P(k 9 r) + ξ`−1
i+1 (m, `) + ξ`−1

i+1 (k, `)

and putting this into (5.24) we observe that

P(Z
(i)
n,k = 1|Z(i)

n,` = 1)− P(Z
(i)
n,k = 1)

≤
i−1∑
m=1

P(deg−n (k) = 0)P(k → m)P(k 6 i−→ m|k → m)
k−1∏
r=`+1

P(k 9 r)
k−1∏
r=i+1

P(k 9 r)

·

(
i−1∏

r=m+1

P(k 6 i−→ r|` 6 i−→ r)−
i−1∏

r=m+1

P(k 6 i−→ r)

)

+
i−1∑
m=1

P(deg−n (k) = 0)P(k → m)P(k 6 i−→ m|k → m) ξ`−1
i+1 (k, `).

Note that

P(k 6 i−→ r|` 6 i−→ r)− P(k 6 i−→ r)

=
µ̃fm−1(r, i)(µ̃fm−1(r, `)− µfm−1(r))

mµfm−1(r)
≤

(µ̃fm−1(r, `)− µfm−1(r))

m

≤ mγ−1`γ−1r−2γ,

so we can proceed just as in the proof of Proposition 5.4 to show that for all
m < j < i− 1

j∏
r=m

P(k 6 i−→ r|` 6 i−→ r)−
j∏

r=m

P(k 6 i−→ r) ≤ ξjm(k, `)
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and hence

P(Z
(i)
n,k = 1|Z(i)

n,` = 1)− P(Z
(i)
n,k = 1)

≤
i−1∑
m=1

P(deg−n (k) = 0)P(k → m)P(k 6 i−→ m|k → m)ξi−1
m+1(k, `)

+
i−1∑
m=1

P(deg−n (k) = 0)P(k → m)P(k 6 i−→ m|k → m) ξ`−1
i+1 (k, `)

≤ 2
i−1∑
m=1

P(deg−n (k) = 0)P(k → m)P(k 6 i−→ m|k → m) ξ`−1
m+1(k, `)

≤ C
i−1∑
m=1

(
k

n

)η
kγ−1m−γiγ−1m−γξ`−1

m+1(k, `)

for m < j < i < `. Here we used (5.2) and the fact that ξi−1
m+1(k, `) ≤ ξ`−1

m+1(k, `) as
well as ξ`−1

i+1 (k, `) ≤ ξ`−1
m+1(k, `) by the definition of ξ. According to Proposition 5.4

we have

ξ`−1
m+1(k, `) ≤ C


kγ−1`−γ for γ < 1

2
,

k−
1
2 `−

1
2 log(`) for γ = 1

2
,

kγ−1`γ−1m2γ−1 for γ > 1
2
,

which in combination with (5.6) gives

P(Z
(i)
n,k = 1|Z(i)

n,` = 1)− P(Z
(i)
n,k = 1) ≤ C

nη


i−γk2γ+η−2`−γ for γ < 1

2
,

i−
1
2 `−

1
2kη−1 log(i) log(`) for γ = 1

2
,

iγ−1kη−1`γ−1 for γ > 1
2
.

Combining these results with (5.21) and repeatedly using (5.6) yields

n∑
i=1

n∑
`=i+1

n∑
k=`+1

Cov
[
Z

(i)
n,`, Z

(i)
n,k

]
≤


n for γ < 1

2
,

n log(n)2 for γ = 1
2
,

n2γ for γ > 1
2
.

(5.21) and (5.6) eventually yield

n∑
i=1

V

[
n∑

`=i+1

Z
(i)
n,`

]
≤


n for γ < 1

2
,

n log(n)2 for γ = 1
2
,

n2γ for γ > 1
2
,

so that with (5.23) we finally obtain the desired result.

110



Lemma 5.8. For Rn,i denoting the number of vertices in G(i)
n that lose all their

connections in Gn due to the isolation of vertex i and which are neither isolated in
Gn nor contained in Dn,i, we have

n∑
i=1

i−1∑
j=1

ϑi,nϑj,n Cov [Rn,i, Rn,j] ≤ C


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n6γ−2 for γ > 1
2
.

Proof. As Rn,i =
∑n

`=1 Z
(i)
n,` we get

Cov [Rn,i, Rn,j] =
n∑
`=1

n∑
m=1

Cov
[
Z

(i)
n,`, Z

(j)
n,m

]
=

n∑
`=1

Cov
[
Z

(i)
n,`, Z

(j)
n,`

]
+

n∑
`=1

n∑
m=1
m 6=`

Cov
[
Z

(i)
n,`, Z

(j)
n,m

]
.

Starting with the first sum (where m = `) we get

Cov
[
Z

(i)
n,`, Z

(j)
n,`

]
= P(Z

(i)
n,` = 1)

(
P(Z

(j)
n,` = 1|Z(i)

n,` = 1)− P(Z
(j)
n,` = 1)

)
so that we have to bound P(Z

(j)
n,` = 1|Z(i)

n,` = 1)−P(Z
(j)
n,` = 1). As mentioned before,

edges of vertex i do not have an impact on edges {m → `} if m, ` > i, so that the
isolation of i only affects those edges with at least one endpoint older than i. Hence
for ` ≥ i+1 we have

P(Z
(j)
n,` = 1|Z(i)

n,` = 1) =

j−1∑
k=1

P(Z
(j)
n,` = 1|Z(i)

n,` = 1, `
1.←→ k)P(`

1.←→ k|Z(i)
n,` = 1)

≤
j−1∑
k=1

P(` 6 j−→ k|`→ k)P(`→ k|Z(i)
n,` = 1),

and by Bayes’ Theorem

P(`→ k|Z(i)
n,` = 1) = P(`→ k|` 6 i−→ k) =

P(` 6 i−→ k|`→ k)

P(` 6 i−→ k)
P(`→ k)

≤ C iγ−1k−γ`γ−1k−γ, (5.25)

as
1

P(` 6 i−→ k)
≤ 1

P(`9 k)
=

`

`− µf`−1(k)
≤ 1

1− `γ−1
≤ 1

1− 2γ−1
.
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With (5.2) we then get

P(Z
(j)
n,` = 1|Z(i)

n,` = 1) ≤ C

j−1∑
k=1

jγ−1k−3γ`γ−1iγ−1

≤ C


j−γ`γ−1iγ−1 for γ < 1

2
,

log(j)j−
1
2 `−

1
2 i−

1
2 for γ = 1

2
,

jγ−1`γ−1iγ−1 for γ > 1
2

and by (5.6) and (5.20) we obtain

n∑
i=1

i−1∑
j=1

n∑
`=j+1

Cov
[
Z

(i)
n,`, Z

(j)
n,`

]
≤ C


nγ for γ < 1

2
,

log(n)2n
1
2 for γ = 1

2
,

n5γ−2 for γ > 1
2
,

where we used that ϑn,j ∼
(
j
n

)η ≤ ( `
n

)η
. Using (5.25) in the case ` < j on the first

sum we obtain

P(Z
(j)
n,` = 1|Z(i)

n,` = 1) ≤
`−1∑
k=1

P(` 6 j−→ k|`→ k)P(`→ k|Z(i)
n,` = 1)

+
n∑

k=`+1

P(k 6 j−→ `|k → `)P
(
k → `

∣∣∣ k−1⋂
m=`+1

{m9 `}, Z(i)
n,` = 1

)
≤ C

(
`−1∑
k=1

jγ−1k−2γ`γ−1iγ−1 +
n∑

k=`+1

jγ−1`−2γk−1iγ−1

)

≤ C log(n)


jγ−1`−2γiγ−1 for γ < 1

2
,

j−
1
2 `−

1
2 i−

1
2 for γ = 1

2
,

jγ−1`γ−1iγ−1 for γ > 1
2
,

and using (5.20) we thus obtain

n∑
i=1

i−1∑
j=1

j−1∑
`=1

Cov
[
Z

(i)
n,`, Z

(j)
n,`

]
=

n∑
i=1

i−1∑
j=1

j−1∑
`=1

P(Z
(i)
n,` = 1)

(
P(Z

(j)
n,` = 1|Z(i)

n,` = 1)− P(Z
(j)
n,` = 1)

)
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≤ C log(n)
n∑
i=1

i−1∑
j=1

j−1∑
`=1


jγ−1`−3γi2γ−2 for γ < 1

2
,

j−
1
2 `−1i−1 log(`) for γ = 1

2
,

jγ−1`2γ−2i2γ−2 for γ > 1
2
,

≤ C


log(n)nγ for γ < 1

2
,

log(n)3
√
n for γ = 1

2
,

log(n)n5γ−2 for γ > 1
2
,

where we used (5.6). It thus remains to deal with

Cov
[
Z

(i)
n,`, Z

(j)
n,m

]
= P(Z

(i)
n,` = 1)(P(Z(j)

n,m = 1|Z(i)
n,` = 1)− P(Z(j)

n,m = 1))

for m 6= `. To find a bound on P(Z
(i)
n,` = 1|Z(j)

n,m = 1)− P(Z
(i)
n,` = 1) we proceed just

as in the previous case and condition on the first edge connecting ` to some other

vertex of the network, i.e. on the event {` 1.←→ k} . For ` < m we get

P(Z
(i)
n,` = 1|Z(j)

n,m = 1) =

(i−1)∧(`−1)∑
k=1

P(Z
(i)
n,` = 1|Z(j)

n,m = 1, {` 1.←→ k})P(`
1.←→ k|Z(j)

n,m = 1)

+ 1{` < i}
n∑

k=`+1

P(Z
(i)
n,` = 1|Z(j)

n,m = 1, {` 1.←→ k})P(`
1.←→ k|Z(j)

n,m = 1)

:= T1,1 + T1,2,

where (i− 1) ∧ (`− 1) = min{i− 1, `− 1}. Analogously we get

P(Z
(i)
n,` = 1) =

(i−1)∧(`−1)∑
k=1

P(Z
(i)
n,` = 1|{` 1.←→ k})P(`

1.←→ k)

+ 1{` < i}
n∑

k=`+1

P(Z
(i)
n,` = 1|{` 1.←→ k})P(`

1.←→ k)

:= T2,1 + T2,2.

Remember that

{Z(i)
n,` = 1} =

`−1⋂
r=1

{` 6 i−→ r} ∩
n⋂

r=`+1

{r 6 i−→ `} ∩ {` /∈ Dn,i}

and

{` 1.←→ k} =
k−1⋂
r=1

{`9 r} ∩ {`→ k}
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for k < ` and

{` 1.←→ k} =
`−1⋂
r=1

{`9 r} ∩
k−1⋂
r=`+1

{`9 r} ∩ {k → `} for k > `.

Thus, for k ≤ `− 1 we obtain

P
(
Z

(i)
n,` = 1|Z(j)

n,m = 1, {` 1.←→ k}
)

= P
( `−1⋂
r=k

{` 6 i−→ r},
n⋂

r=`+1

{r 6 i−→ `}
∣∣∣ ⋂̀
r=k+1

{m 6 j−→ r}, {`→ k}
)

= P
((`−1)∧(i−1)⋂

r=k

{` 6 i−→ r},
`−1⋂
r=i+1

{`9 r}
∣∣∣ `−1⋂
r=k+1

{m 6 j−→ r}, {`→ k}
)
P
( n⋂
r=`+1

{r 6 i−→ `}
∣∣∣m 6 j−→ `

)

= P(` 6 i−→ k|`→ k)

(`−1)∧(i−1)∏
r=k+1

P(` 6 i−→ r|m 6 j−→ r)
`−1∏
r=i+1

P(`9 r)P
( n⋂
r=`+1

{r 6 i−→ `}
∣∣∣m 6 j−→ `

)
,

where we used the independence of in- and outdegree of a fixed vertex, the fact that
decisions for outgoing edges of a given vertex are made independently from each

other as well as {` 6 i−→ k} = {`9 k} for `, k > i. As k < ` < m we furthermore get

P(`
1.←→ k|Z(j)

n,m = 1) = P
( k−1⋂
r=1

{`9 r} ∩ {`→ k}|
`−1⋂
r=1

{m 6 j−→ r}
)

=
k−1∏
r=1

P(`9 r|m 6 j−→ r)P(`→ k|m 6 j−→ k)

≤
k−1∏
r=1

P(`9 r|m9 r)P(`→ k)

and for k ≥ `+ 1

P(`
1.←→ k|Z(j)

n,m = 1) ≤
`−1∏
r=1

P (`9 r|m9 r)
k−1∏
r=`+1

P
(
r 9 `

∣∣∣m 6 j−→ `,
r−1⋂
s=`+1

{s9 `}
)

· P(k → `|{m 6 j−→ `}, deg−k−1(`) = 0).

In the same manner we deduce

P(Z
(i)
n,` = 1|` 1.←→ k) = P(` 6 i−→ k|`→ k)

(`−1)∧(i−1)∏
r=k+1

P(` 6 i−→ r)
`−1∏
r=i+1

P(`9 r)P

(
n⋂

r=`+1

{r 6 i−→ `}

)
,

P(`
1.←→ k) = P

( k−1⋂
r=1

{`9 r} ∩ {`→ k}
)

=
k−1∏
r=1

P(`9 r)P(`→ k)
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for k ≤ ` and

P(`
1.←→ k) =

`−1∏
r=1

P(`9 r)
k−1∏
r=`+1

P
(
r 9 `

∣∣∣ r−1⋂
s=`+1

{s9 `}
)
P(k → `| deg−k−1(`) = 0)

for k ≥ ` + 1. One can see that the terms in the sums above differ in the three
factors

P(`
1.←→ k|Z(j)

n,m = 1) and P(`
1.←→ k),

(`−1)∧(i−1)∏
r=k+1

P(` 6 i−→ r|m 6 j−→ r) and

(`−1)∧(i−1)∏
r=k+1

P(` 6 i−→ r)

as well as P
( n⋂
r=`+1

{r 6 i−→ `}
∣∣∣m 6 j−→ `

)
and P

( n⋂
r=`+1

{r 6 i−→ `}
)
. (5.26)

Due to Proposition 5.4 we have

P(`
1.←→ k|Z(j)

n,m = 1)− P(`
1.←→ k)

≤
k−1∏
r=1

P
(
`9 r|m 6 j−→ r

)
P
(
`→ k|m 6 j−→ k

)
−

k−1∏
r=1

P (`9 r)P (`→ k)

≤ P (`→ k)

(
k−1∏
r=1

P
(
`9 r|m 6 j−→ r

)
−

k−1∏
r=1

P (`9 r)

)
≤ P (`→ k) ξk−1

1 (`,m)

and noting that for any r ≤ `− 1

P(` 6 i−→ r|m 6 j−→ r)− P(` 6 i−→ r) ≤ P(` 6 i−→ r|m9 r)− P(` 6 i−→ r)

=

(
1−

µ̃f`−1(r,m)

`

)
+
µ̃f`−1(r,m)

`

(
1−

µ̃f`−1(r, i)

µf`−1(r)

)
−

(
1−

µ̃f`−1(r, i)

`

)

≤
µf`−1(r)− µ̃`−1(r,m)

`
≤ f(1)`γ−1mγ−1r−2γ,

we can again proceed just as in the proof of Proposition 5.4 to obtain

(`−1)∧(i−1)∏
r=k+1

P(` 6 i−→ r|m 6 j−→ r)−
(`−1)∧(i−1)∏
r=k+1

P(` 6 i−→ r) ≤ ξ
(`−1)∧(i−1)
k+1 (`,m).

Using that

P(m 6 j−→ `) ≥ P(m9 `)

yields
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P
( n⋂
r=`+1

{r 6 i−→ `}
∣∣∣m 6 j−→ `

)
−P
( n⋂
r=`+1

{r 6 i−→ `}
)
≤ P

( n⋂
r=`+1

{r 6 i−→ `}
)( 1

P(m 6 j−→ `)
− 1

)

≤ P

(
n⋂

r=`+1

{r 6 i−→ `}

)(
1

P(m9 `)
− 1

)
= P

(
n⋂

r=`+1

{r 6 i−→ `}

)
µfm−1(`)

m− µfm−1(`)

∼ P

(
n⋂

r=`+1

{r 6 i−→ `}

)
mγ−1`−γ.

With these considerations we can now substitute the terms in (5.26) and rewrite
T1,1 given above.

T1,1 =

(i−1)∧(`−1)∑
k=1

P(Z
(i)
n,` = 1|Z(j)

n,m = 1, {` 1.←→ k})P(`
1.←→ k|Z(j)

n,m = 1)

≤
(i−1)∧(`−1)∑

k=1

P
(
` 6 i−→ k

∣∣∣`→ k
) (`−1)∧(i−1)∏

r=k+1

P(` 6 i−→ r|m 6 j−→ r)
`−1∏
r=i+1

P(`9 r)

· P
( n⋂
r=`+1

{r 6 i−→ `}
∣∣∣m 6 j−→ `

) k−1∏
r=1

P(`9 r|m9 r)P(`→ k)

≤
(i−1)∧(`−1)∑

k=1

P(` 6 i−→ k|`→ k)

(`−1)∧(i−1)∏
r=k+1

P(` 6 i−→ r)
`−1∏
r=i+1

P(`9 r)

· P
( n⋂
r=`+1

{r 6 i−→ `}
∣∣∣m 6 j−→ `

) k−1∏
r=1

P(`9 r)P(`→ k)

+

(i−1)∧(`−1)∑
k=1

ξk−1
1 (`,m)P(` 6 i−→ k|`→ k)P(`→ k)P

(
n⋂

r=`+1

{r 6 i−→ `}

)

+

(i−1)∧(`−1)∑
k=1

ξ
(i−1)∧(`−1)
k+1 (`,m)P(` 6 i−→ k|`→ k)P(`→ k)P

(
n⋂

r=`+1

{r 6 i−→ `}

)

+

(i−1)∧(`−1)∑
k=1

mγ−1`−γP(` 6 i−→ k|`→ k)P(`→ k)P

(
n⋂

r=`+1

{r 6 i−→ `}

)

≤ T2,1 + 3 ·
(i−1)∧(`−1)∑

k=1

ψ(m, `, k) · P(` 6 i−→ k|`→ k)P(`→ k)P
( n⋂
r=`+1

{r 6 i−→ `}
)
,
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where

ψ(m, `, k) = max{mγ−1`−γ, ξ
(i−1)∧(`−1)
k+1 (`,m), ξk−1

1 (`,m)}

≤


`−γmγ−1 for γ < 1

2
,

log(`)m−
1
2 `−

1
2 for γ = 1

2
,

mγ−1`γ−1 for γ > 1
2
,

with (5.10). Hence

T1,1 − T2,1 ≤ 3 ·
(i−1)∧(`−1)∑

k=1

ψ(m, `, k) · P(` 6 i−→ k|`→ k)P(`→ k)P
( n⋂
r=`+1

{r 6 i−→ `}
)
,

so that we have to consider P
(⋂n

r=`+1{r 6
i−→ `}

)
. We get

P
( n⋂
r=`+1

{r 6 i−→ `}
)

= P
( n⋂
r=`+1

{r 6 i−→ `}
∣∣∣ n⋂
r=`+1

{r 9 `}
)
P
( n⋂
r=`+1

{r 9 `}
)

+
n∑

k=`+1

P
( n⋂
r=`+1

{r 6 i−→ `}
∣∣∣` 1.←→ k

)
P(`

1.←→ k)

≤
(
`

n

)η
+

n∑
k=`+1

P(k 6 i−→ `|k → `)P(`
1.←→ k)

≤
(
`

n

)η
+

n∑
k=`+1

`−γiγ−1

(
`

k

)η
f(0)

k

≤
(
`

n

)η
+ `−γiγ−1 ≤ 2 max

{( `
n

)η
, `−γiγ−1

}
so that by (5.6)

T1,1 − T2,1 ≤ C max
{( `

n

)η
, `−γiγ−1

} (i−1)∧(`−1)∑
k=1

iγ−1k−2γ`γ−1 · ψ(m, `, k)

≤ C max
{( `
n

)η
,
iγ−1

`γ

}
`−1mγ−1iγ−1((i− 1) ∧ (`− 1))1−2γ for γ < 1

2
,

log(n) log(`)m−
1
2 `−1i−

1
2 for γ = 1

2
,

mγ−1`2γ−2iγ−1 for γ > 1
2
.

(5.27)

We now proceed in a similar way to bound T1,2 − T2,2. For k ≥ `+ 1 we get
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P(Z
(i)
n,` = 1|Z(j)

n,m = 1) =
n∑

k=`+1

P(Z
(i)
n,` = 1|Z(j)

n,m = 1, {k 1.←→ `})P(k
1.←→ `|Z(j)

n,m = 1)

≤
n∑

k=`+1

P(k 6 i−→ `|k → `)P
( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1, {m 6 j−→ `}

)
·
`−1∏
r=1

P(`9 r|m 6 j−→ r)P
( k−1⋂
r=`+1

{r 9 `}
∣∣∣m 6 j−→ `

)
P(k → `| deg−k−1(`) = 0)

and

P(Z
(i)
n,` = 1) =

n∑
k=`+1

P(Z
(i)
n,` = 1|{k 1.←→ `})P(k

1.←→ `)

=
n∑

k=`+1

P(k 6 i−→ `|k 1.←→ `)P
( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1

)
·
`−1∏
r=1

P(`9 r)P
( k−1⋂
r=`+1

{r 9 `}
)
P(k → `| deg−k−1(`) = 0).

Again, the summands differ in three of the factors, which are

P
( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1, {m 6 j−→ `}

)
,
`−1∏
r=1

P(`9 r|m 6 j−→ r),

P
( k−1⋂
r=`+1

{r 9 `}
∣∣∣m 6 j−→ `

)
and

P
( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1

)
,

`−1∏
r=1

P(`9 r), P
( k−1⋂
r=`+1

{r 9 `}
)

respectively. By Proposition 5.4 we have

`−1∏
r=1

P(`9 r|m 6 j−→ r)−
`−1∏
r=1

P(`9 r) ≤
`−1∏
r=1

P(`9 r|m9 r)−
`−1∏
r=1

P(`9 r)

≤ ξ`−1
1 (`,m) ≤


`−γmγ−1 for γ < 1

2
,

`γ−1mγ−1 log(`) for γ = 1
2
,

`γ−1mγ−1 for γ > 1
2
.

Analogous to the case k ≤ `− 1 we obtain
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P
( k−1⋂
r=`+1

{r 9 `}
∣∣∣m 6 j−→ `

)
− P

( k−1⋂
r=`+1

{r 9 `}
)
≤ P

( k−1⋂
r=`+1

{r 9 `}
)( 1

P(m 6 j−→ `)
− 1

)

≤ P
( k−1⋂
r=`+1

{r 9 `}
)
mγ−1`−γ.

In almost exactly the same way as in the previous case we can show

P
( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1, {m 6 j−→ `}

)
− P

( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1

)
≤ P

( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1, {m9 `}

)
− P

( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1

)
≤ P

( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1

)( 1

P(m9 `| deg−k (`) = 1)
− 1

)

≤ P
( n⋂
r=k+1

{r 6 i−→ `}
∣∣∣ deg−k (`) = 1

)
mγ−1`−γ,

because
P(m9 `| deg−k (`) = 1) = 1−

E
[
f(deg−m−1(`))| deg−k (`) = 1

]
m

≥ 1−
E
[
f(deg−m−1(`))| deg−`+1(`) = 1

]
m

≥ 1− f(1)mγ`−γ

m

by Lemma 3.21, so that
1

P(m9 `| deg−k (`) = 1)
− 1 ≤ m− (m− f(1)mγ`−γ)

m− f(1)mγ`−γ
=

f(1)mγ`−γ

m(1− f(1)mγ−1`−γ)

≤ C
mγ`−γ

m
= C mγ−1`−γ,

where we used that f(1) ≤ f(0) + 1 < 2 for all attachment functions considered
in this chapter, so that f(1)mγ−1`−γ < 1 for all m > ` ≥ 1. Similar to the case
k ≤ (i− 1) ∧ (`− 1) we get

T1,2 =
n∑

k=`+1

P(Z
(i)
n,` = 1|Z(j)

n,m = 1, {k 1.←→ `})P(k
1.←→ `|Z(j)

n,m = 1)

≤
n∑

k=`+1

P(k 6 i−→ `|k → `)P
( n⋂
r=k+1

{r 6 i−→ `}|{m 6 j−→ `}, deg−k (`) = 1
) `−1∏
r=1

P(`9 r|m 6 j−→ r)

· P
( k−1⋂
r=`+1

{r 9 `}|m 6 j−→ `
)
P(k → `| deg−k (`) = 0)
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≤ T2,2 + 3
n∑

k=`+1

max{mγ−1`−γ, ξ`−1
1 (`,m)} P

( k−1⋂
r=`+1

{r 9 `}
)

· P(k 6 i−→ `|k → `)P(k → `| deg−k−1(`) = 0)

≤ T2,2 + C
n∑

k=`+1

(
`

k

)η
iγ−1`−γ

f(0)

k
·


`−γmγ−1 for γ < 1

2
,

`−
1
2m−

1
2 log(`) for γ = 1

2
,

`γ−1mγ−1 for γ > 1
2
,

so that

T1,2 − T2,2 ≤ C

n∑
k=`+1

(
`

k

)η
iγ−1`−γ

f(0)

k
·


`−γmγ−1 for γ < 1

2
,

`−
1
2m−

1
2 log(`) for γ = 1

2
,

`γ−1mγ−1 for γ > 1
2

≤ C


`−2γmγ−1iγ−1 for γ < 1

2
,

`−1m−
1
2 i−

1
2 log(`) for γ = 1

2
,

`−1mγ−1iγ−1 for γ > 1
2
.

Combining this result with (5.27) yields

P(Z
(i)
n,` = 1|Z(j)

n,m = 1)− P(Z
(i)
n,` = 1)

≤ C max
{( `

n

)η
, `−γiγ−1

}
`−2γmγ−1iγ−1 for γ < 1

2
,

log(n)m−
1
2 `−1i−

1
2 for γ = 1

2
,

mγ−1`2γ−2iγ−1 for γ > 1
2

and by repeated use of (5.6) we can now calculate

n∑
i=1

i−1∑
j=1

∑
`,m
`<m

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m]

=
n∑
i=1

i−1∑
j=1

∑
`,m
`<m

ϑi,nϑj,nP(Z(j)
n,m = 1)

(
P(Z

(i)
n,` = 1|Z(j)

n,m = 1)− P(Z
(i)
n,` = 1)

)

for the various constellations of i, j,m and `. Before we begin recall (5.20) and
(5.21), which we will use in all following cases. Also remember that

ϑi,n ∼
(
i

n

)η
for all i ≤ n. Starting with ` < m < j < i we get
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n∑
i=1

i−1∑
j=1

j−1∑
m=1

m−1∑
`=1

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m]

=
n∑
i=1

i−1∑
j=1

j−1∑
m=1

m−1∑
`=1

ϑi,nϑj,nP(Z(j)
n,m = 1)

(
P(Z

(i)
n,` = 1|Z(j)

n,m = 1)− P(Z
(i)
n,` = 1)

)

≤
n∑
i=1

i−1∑
j=1

j−1∑
m=1

m−1∑
`=1


jγ−1m−γ · `−2γmγ−1iγ−1 for γ < 1

2
,

max
{

log(`)
(
`
n

)η
, 1
}
m−

1
2 j−

1
2 log(m) log(n)m−

1
2 `−1i−

1
2 for γ = 1

2
,

mγ−1jγ−1 ·mγ−1`2γ−2iγ−1 for γ > 1
2
,

≤ C



∑n
i=1

∑i−1
j=1

∑j−1
m=1 j

γ−1m−2γiγ−1 for γ < 1
2
,

log(n)3
∑n

i=1

∑i−1
j=1

∑j−1
m=1m

−1j−
1
2 i−

1
2 for γ = 1

2
,∑n

i=1

∑i−1
j=1

∑j−1
m=1m

4γ−3jγ−1iγ−1 for γ > 1
2
,

≤ C



∑n
i=1

∑i−1
j=1 j

−γiγ−1 for γ < 1
2
,

log(n)4
∑n

i=1

∑i−1
j=1 i

− 1
2 j−

1
2 for γ = 1

2
,∑n

i=1

∑i−1
j=1 j

5γ−3iγ−1 for γ > 1
2
,

≤ C


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n6γ−2 for γ > 1
2
.

We will omit the calculations in the remaining five cases, however the procedure is
always exactly the same. For j < ` < i < m we get

n∑
i=1

i−1∑
j=1

i−1∑
`=j+1

i−1∑
m=i+1

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m] ≤ C


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n6γ−2 for γ > 1
2

and

n∑
i=1

i−1∑
j=1

i−1∑
`=j+1

i−1∑
m=`+1

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m] ≤ C


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n6γ−2 for γ > 1
2
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for j < ` < m < i, where we used ϑj,n ∼
(
j
n

)η ≤ ( `
n

)η
in both cases. Similarly with

ϑj,n ∼
(
j
n

)η ≤ (m
n

)η
in the case ` < j < m < i we obtain

n∑
i=1

i−1∑
j=1

i−1∑
m=j+1

j−1∑
`=1

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m] ≤ C


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n4γ−1 for γ > 1
2

and

n∑
i=1

i−1∑
j=1

n∑
`=i+1

n∑
m=`+1

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m] ≤ C


n for γ < 1

2
,

n log(n)3 for γ = 1
2
,

n6γ−2 for γ > 1
2

for j < i < ` < m and as ϑi,nϑj,n ≤ mη`η

n2η in this case. The last case to consider is
` < j < i < m, for which we obtain

n∑
i=1

i−1∑
j=1

j−1∑
`=1

n∑
m=i+1

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m] ≤ C


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n4γ−1 for γ > 1
2
.

Hence

n∑
i=1

i−1∑
j=1

n∑
m=1

m−1∑
`=1

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m] ≤ C


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n6γ−2 for γ > 1
2
.

All these calculations can be conducted in the exact same way for m < ` if we swap
the roles of m and `, i.e. we look at

n∑
i=1

i−1∑
j=1

n∑
`=1

`−1∑
m=1

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m]

=
n∑
i=1

i−1∑
j=1

n∑
`=1

`−1∑
m=1

ϑi,nϑj,nP(Z
(i)
n,` = 1)

(
P(Z(j)

n,m = 1|Z(i)
n,` = 1)− P(Z(j)

n,m = 1)
)
.

Finally we obtain

n∑
i=1

i−1∑
j=1

n∑
m=1

n∑
`=1

ϑi,nϑj,n Cov[Z
(i)
n,`, Z

(j)
n,m] ≤ C


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n6γ−2 for γ > 1
2
.
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We can now combine Lemma 5.5, Lemma 5.7 and Lemma 5.8 to bound the first
term appearing in (2.4).

Lemma 5.9. For W s
n having the size-bias distribution of Wn there exists a constant

C > 0 independent of n such that

V[E [W s
n −Wn|Gn]] ≤

(
2σn
µn

)2

+
C

µ2
n


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n6γ−2 for γ > 1
2
.

Proof. Remember that by (5.14) we have

V[E [W s
n −Wn|Gn]] ≤ 4

µ2
n

(
σ2
n + V

[
n∑
i=1

ϑi,nDn,i

]
+ V

[
n∑
i=1

ϑi,nRn,i

])
.

Lemma 5.5 gives

V

[
n∑
i=1

ϑi,nDn,i

]
≤ C


n for γ < 1

2
,

log(n)n for γ = 1
2
,

n2γ for γ > 1
2
,

whereas Lemma 5.7 and Lemma 5.8 yield

V

[
n∑
i=1

ϑi,nRn,i

]
≤ C


n for γ < 1

2
,

n log(n)4 for γ = 1
2
,

n6γ−2 for γ > 1
2
,

which proves the claim.

The next lemma now gives an upper bound on the second term in (2.4).

Lemma 5.10. For Wn denoting the number of isolated vertice in a preferential
attachment graph Gn and W s

n having the size-bias distribution of Wn, there exists a
constant C independent of n such that

E
[
(W s

n −Wn)2
]
≤ C

µn


n for γ < 1

2
,

n log(n)2 for γ = 1
2
,

n4γ−1 for γ > 1
2
.

Proof. First remember that to construct a graph for which the number of isolated
vertices has the size-bias distribution of Wn, we choose one vertex I according to
P(I = i) =

ϑi,n
µn

. Furthermore, recall that Di,n denotes the number of neighbours of
vertex i, which are only connected to i and di refers to the total degree of vertex i.
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Consequently we have
∑n

i=1 Di,n ≤ n. By conditioning on the graph Gn at time n
and using (5.13), we obtain

E
[
(W s

n −Wn)2
]

= E

[
1

µn

n∑
i=1

ϑi,n (Di,n + 1{di > 0}+Rn,i)
2

]

=
1

µn

(
n∑
i=1

ϑi,nE
[
D2
i,n

]
+ 2

n∑
i=1

ϑi,nE [Di,n1{di > 0}] +
n∑
i=1

ϑi,nE [1{di > 0}]

+ 2
n∑
i=1

ϑi,nE [Di,nRn,i] + 2
n∑
i=1

ϑi,nE [1{di > 0}Rn,i] +
n∑
i=1

ϑi,nE
[
R2
n,i

])

≤ 1

µn

(
n∑
i=1

E
[
D2
i,n

]
+ 2

n∑
i=1

ϑi,nE [Di,nRn,i] + 2
n∑
i=1

ϑi,nE [1{di > 0}Rn,i]

+
n∑
i=1

ϑi,nE
[
R2
n,i

])
+

3n

µn

and since µn ∼ n according to Lemma 5.3 the last term is of constant order. To
bound the remaining sums we define

S
(n)
ij := 1{i is the only neighbour of j in Gn}

=


⋂j−1

r=1
r 6=i
{j 9 r} ∩ {j → i} ∩

⋂n
r=j+1{r 9 j} for i < j,

⋂j−1
r=1{j 9 r} ∩ {i→ j} ∩

⋂n
r=j+1
r 6=i
{r 9 j} for i > j.

Thus Di,n =
∑n

j=1 S
(n)
ij , where by construction of the network S

(n)
ii = 0. With these

notations we get

D2
i,n =

n∑
j=1

S
(n)
ij + 2

n∑
k=1

k−1∑
j=1

S
(n)
ij S

(n)
ik .

To calculate E
[
S

(n)
ij

]
we distinguish the two cases i < j and i > j. For the latter

we have

E
[
S

(n)
ij

]
= P

j−1⋂
k=1

{j 9 k},
n⋂

`=j+1
6̀=i

{`9 j}, {i→ j}


= pj,0

i−1∏
k=j+1

(
1− f(0)

k

)
f(0)

i

n∏
k=i+1

(
1− f(1)

k

)
≤ c2

(
j

i− 1

)η
f(0)

i

(
i

n

)η
≤ C

jη

inη
, (5.28)
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by the independence of in- and outdegree of a fixed vertex. For i < j we get

E
[
S

(n)
ij

]
= P

(
j−1⋂

k=1,k 6=i

{j 9 k}, {j → i},
n⋂

`=j+1

{`9 j}

)

=

j−1∏
k=1,k 6=i

(
1−

µfj−1(k)

j

)
µfj−1(i)

j

n∏
`=j+1

(
1− f(0)

`

)
≤ 1

j

(
j

i

)γ (
j

n

)η
=
j−1+γ+η

iγnη
, (5.29)

where we used (5.5) in both calculations. Consequently

1

µn

n∑
i=1

n∑
j=1

E
[
S

(n)
ij

]
=

1

µn

(
n∑
i=1

i−1∑
j=1

E
[
S

(n)
ij

]
+

n∑
i=1

n∑
j=i+1

E
[
S

(n)
ij

])

≤ C

µn

(
n∑
i=1

i−1∑
j=1

jη

inη
+

n∑
i=1

n∑
j=i+1

jγ+η−1

iγnη

)

≤ 2
C

µn

n1+η

nη
,

where we used bounds of the form (5.6). As µn is of order n we obtain

1

µn

n∑
i=1

n∑
j=1

E
[
S

(n)
ij

]
≤ C (5.30)

for some constant C > 0 independent of n. In order to bound E
[
S

(n)
ij S

(n)
ik

]
we

consider the three cases i < j < k, j < i < k and j < k < i. Since

E
[
S

(n)
ij S

(n)
ik

]
= P(S

(n)
ij S

(n)
ik = 1)

Thus, for i < j < k and using the multiplication formula for conditional probabili-
ties

P(S
(n)
ij S

(n)
ik = 1)

= P

(
n⋂

m=k+1

{m9 k},
n⋂

`=j+1

{`9 j},
k−1⋂
m=1,
m 6=i,j

{k 9 m},
j−1⋂
`=1,
6̀=i

{j 9 `}, {k → i}, {j → i}

)

= P
( n⋂
m=k+1

{m9 k}
)
P
( n⋂
`=j+1

{`9 j}
)
P
( k−1⋂

m=1,
m 6=i,j

{k 9 m}
∣∣∣ j⋂
`=1,
` 6=i

{j 9 `}
)
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· P
( j−1⋂

`=1,
6̀=i

{j 9 `}
)
P (k → i|j → i)P (j → i)

≤
n∏

m=k+1

(
1− f(0)

m

) n∏
`=j+1

(
1− f(0)

`

)
P (k → i|j → i) ·

µfj−1(i)

j

≤ C

(
k

n

)η (
j

n

)η
kγ−1

iγ
jγ−1

iγ
= C kη+γ−1jη+γ−1n−2ηi−2γ

where we used [DM13, Lemma 2.10] and Lemma 3.21 to deduce that

P(k → i|j → i) =
µ̂fk−1(i, j)

k
≤
µ̂fk−1(i, i+ 1)

k
≤ f(1)kγ−1i−γ

and also exploited the dependency structure of the network. Similarly, for j < i <
k,

P(S
(n)
ij S

(n)
ik = 1)

= P
( n⋂
m=k+1

{m9 k},
n⋂

`=j+1,
6̀=i

{`9 j},
k−1⋂
m=1,
m6=i,j

{k 9 m},
j−1⋂
`=1

{j 9 `}, {k → i}, {i→ j}
)

= P
( n⋂
m=k+1

{m9 k}
)
P
( n⋂

`=j+1,
6̀=i

{`9 j}
∣∣∣{i→ j}

)
P
( k−1⋂

m=1,
m 6=i,j

{k 9 m}
∣∣∣ j⋂
`=1

{j 9 `}
)

· P
( j−1⋂

`=1,
6̀=i

{j 9 `}
)
P
(
k → i

)
P (i→ j)

≤
n∏

m=k+1

(
1− f(0)

m

) i−1∏
`=j+1

(
1− f(0)

j

) n∏
`=i+1

(
1− f(1)

j

)
µfk−1(i)

k

µfi−1(j)

i

≤ C

(
k

n

)η (
j

n

)η
kγ

iγk

iγ

ijγ
= C k−1+η+γjη−γn−2ηi−1.

In the last case, j < k < i, we obtain

P(S
(n)
ij S

(n)
ik = 1)

= P
( n⋂

m=k+1,
m 6=i

{m9 k},
n⋂

`=j+1,
` 6=i

{`9 j},
j−1⋂
`=1

{j 9 `},
k−1⋂
m=1,
m 6=j

{k 9 m}, {i→ k}, {i→ j}
)

= P
( n⋂

m=k+1,
m 6=i

{m9 k}
∣∣∣{i→ k}

)
P
( n⋂

`=j+1,
` 6=i

{`9 j}|{i→ j}
)
P
( j−1⋂

`=1,
` 6=i

{j 9 `}
∣∣∣ k−1⋂
m=1,
m 6=i,j

{k 9 m}
)
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· P
( k−1⋂

m=1,
m 6=i,j

{k 9 m}
∣∣∣{i→ j}

)
P ({i→ k})P ({i→ j})

≤
i−1∏

m=k+1

(
1− f(0)

m

) n∏
m=i+1

(
1− f(1)

m

) i−1∏
`=j+1

(
1− f(0)

`

) n∏
`=i+1

(
1− f(1)

`

)

·
µfi−1(k)

i

µfi−1(j)

i

≤ C

(
k

n

)η (
j

n

)η
1

i2

(
i

k

)γ (
i

j

)γ
= C n−2ηkη−γjη−γi−2+2γ.

By repeated use of (5.6) we obtain

n∑
i=1

n∑
k=1

k−1∑
j=1

E
[
S

(n)
ij S

(n)
ik

]
≤ C

(
n∑
i=1

n∑
k=i+1

k−1∑
j=i+1

kη+γ−1jη+γ−1n−2ηi−2γ

+
n∑
i=1

n∑
k=i+1

i−1∑
j=1

k−1+η+γjη−γn−2ηi−1

+
n∑
i=1

i−1∑
k=1

k∑
j=1

n−2ηkη−γjη−γi−2+2γ

)

≤ C

n2η

(
n2η+1 + n2η+1 + n2η+1

)
= C n, (5.31)

Combining (5.30) and (5.31) yields

E
[
D2
i,n

]
=

n∑
j=1

E
[
S

(n)
ij

]
+ 2

n∑
k=1

k−1∑
j=1

E
[
S

(n)
ij S

(n)
ik

]
≤ C n. (5.32)

With the definitions of Di,n and Rn,i as well as the fact that Z
(i)
n,m = 0 for S

(n)
i,m = 1

we get

E [Di,nRn,i] = E

[
n∑
j=1

n∑
m=1

S
(n)
i,j Z

(i)
n,m

]
=

n∑
j=1

n∑
m=1
m 6=j

P
(
S

(n)
i,j = 1

)
P
(
Z(i)
n,m = 1|S(n)

i,j = 1
)

≤ C

nη

i−1∑
j=1

n∑
m=1
m 6=j

jη

i
P
(
Z(i)
n,m = 1|S(n)

i,j = 1
)

+
C

nη

n∑
j=i+1

n∑
m=1
m 6=j

jη+γ−1

iγ
P
(
Z(i)
n,m = 1|S(n)

i,j = 1
)
,

where we used (5.28) and (5.29). For the conditional probability we obtain

P(Z(i)
n,m = 1|S(n)

i,j = 1) = P
(
Z(i)
n,m = 1|

j−1⋂
r=1

{r 9 r},
n⋂

r=j+1
s 6=i

{s9 j}, {i→ j}
)

127



=
m−1∑
r=1

P(Z(i)
n,m = 1|S(n)

i,j = 1, {m 1.←→ r})P(m
1.←→ r|S(n)

i,j = 1)

+ 1{m < i}
n∑

r=m+1

P(Z(i)
n,m = 1|S(n)

i,j = 1, {r 1.←→ m})P(m
1.←→ r|S(n)

i,j = 1)

≤
m−1∑
r=1

iγ−1r−2γmγ−1 + 1{m < i}
n∑

r=m+1

iγ−1rγ−1m−2γ

≤ C


iγ−1m−γ + nγiγ−1m−2γ for γ < 1

2
,

log(m)iγ−1mγ−1 + nγiγ−1m−2γ for γ = 1
2
,

iγ−1mγ−1 + nγiγ−1m−2γ for γ > 1
2

:= Ψf (n,m, i, j),

where we used that

P(m→ r|S(n)
i,j = 1) ≤ P(m→ r)

and

P(r → m|S(n)
i,j = 1) ≤ P(r → m),

with equality holding for j < r in the first, and j < m in the second case. Hence
we get

n∑
i=1

ϑi,nE [Di,nRn,i]

≤ C

n2η

n∑
i=1

i−1∑
j=1

n∑
m=1
m 6=j

jη

i1−η
Ψf (n,m, i, j) +

C

n2η

n∑
i=1

n∑
j=i+1

n∑
m=1
m 6=j

jη+γ−1

iγ−η
Ψf (n,m, i, j)

≤ C


n for γ < 1

2
,

log(n)n for γ = 1
2
,

n2γ for γ > 1
2
,

(5.33)

where we used (5.6) three times to obtain the last inequality. Using (5.20) and
(5.21) it is straightforward to bound E [

∑n
i=1 1{di > 0}Rn,i]. More precisely, we

have

E

[
n∑
i=1

1{di > 0}Rn,i

]
≤ E

[
n∑
i=1

Rn,i

]
=

n∑
i=1

(
i−1∑
j=1

P(Z
(i)
n,j = 1) +

n∑
j=i+1

P(Z
(i)
n,j = 1)

)
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≤ C


n for γ < 1

2

n log(n)2 for γ = 1
2

n2γ for γ > 1
2
.

It now remains to deal with E
[∑n

i=1 ϑi,nR
2
n,i

]
. We have

E

[
n∑
i=1

ϑi,nR
2
n,i

]
= E

[
n∑
i=1

n∑
j=1

ϑi,nZ
(i)
n,j

]
+ E

 n∑
i=1

n∑
j=1

n∑
m=1
m 6=j

ϑi,nZ
(i)
n,jZ

(i)
n,m


=

n∑
i=1

n∑
j=1

ϑi,nP(Z
(i)
n,j = 1) +

n∑
i=1

n∑
j=1

n∑
m=1
m 6=j

ϑi,nP(Z
(i)
n,j = 1)P(Z(i)

n,m = 1|Z(i)
n,j = 1).

On account of (5.20) and (5.21) it is straightforward to see that

n∑
i=1

n∑
j=1

ϑi,nP(Z
(i)
n,j = 1) ≤ C


n for γ < 1

2
,

log(n)n for γ = 1
2
,

n2γ for γ > 1
2
.

Furthermore, (5.22) yields

P(Z(i)
n,m = 1|Z(i)

n,j = 1) ≤ C


nγiγ−1m−2γ for γ < 1

2
,

i−
1
2m−

1
2 log(m) + n

1
2 i−

1
2m−1 for γ = 1

2
,

iγ−1mγ−1 + nγiγ−1m−2γ for γ > 1
2
,

so that using (5.20), (5.21) and (5.6) again gives

n∑
i=1

n∑
j=1

n∑
m=1
m 6=j

ϑi,nP(Z
(i)
n,j = 1)P(Z(i)

n,m = 1|Z(i)
n,j = 1) ≤


n for γ < 1

2
,

n log(n)2 for γ = 1
2
,

n4γ−1 for γ > 1
2
.

Thus

E

[
n∑
i=1

ϑi,nR
2
n,i

]
≤


n for γ < 1

2
,

n log(n)2 for γ = 1
2
,

n4γ−1 for γ > 1
2
.

(5.34)

Combining (5.32), (5.33),(5.34) and the fact that µn ∼ n by Lemma 5.3, proves the
assertion.
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We can finally prove our main result, Theorem 5.1.

Proof of Theorem 5.1. Remember that due to Theorem 2.6

dW (W̃n, Z) ≤ µn
σ2
n

√
2

π

√
V[E [W s

n −Wn|Gn]] +
µn
σ3
n

E
[
(W s

n −Wn]2
]
.

According to Lemma 5.3 σ2
n is at least of order n, so substituting the results given

in Lemmas 5.3 and 5.9 into the first term yields

µn
σ2
n

√
2

π

√
V[E [W s

n −Wn|Gn]] ≤ C


1√
n

for γ < 1
2
,

log(n)2
√
n

for γ = 1
2
,

n3γ−2 for γ > 1
2
.

Moreover Lemma 5.10 gives

µn
σ3
n

E
[
(W s

n −Wn)2
]
≤ C

σ3
n


n for γ < 1

2

n log(n)2 for γ = 1
2

n4γ−1 for γ > 1
2

≤ C


1√
n

for γ < 1
2
,

log(n)2
√
n

for γ = 1
2
,

n4γ− 5
2 for γ > 1

2
.

Here, the last equality uses the fact that due to Lemma 5.3 we have σ2
n ≥ Cn.

Combining these two results proves Theorem 5.1.
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{` 1.←→ m} first connection of ` is to m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

{k → `} there exists an edge between vertices ` < k in Gn . . . . . . . . . . . . . . . . . 86

{k i−→ `} there is an edge pointing from k to ` in G(i)
n . . . . . . . . . . . . . . . . . . . . . . 86
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Ek,n Fk ∩Gk,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Fk we look at the indegree of vertex k at time k . . . . . . . . . . . . . . . . . . . . . 66
Gk,n we look at the same vertex from time k to time n . . . . . . . . . . . . . . . . 66
Hk,` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
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