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1. Introduction

In many structures in science and nature one can observe components interacting
with one another, e.g. molecules in metabolisms, agents in technological systems
or people in social networks. Such structures can be modeled and analyzed with
the help of random networks, where components are considered as nodes and edges
represent relations between them. [Hofl7] provides an excellent overview over this
research field. One of the first and probably most studied models of random graphs
is the Erdos-Rényi graph, which was introduced in [ER59] at the end of the 1950s.
In this graph model each edge exists independent of all others with fixed probability
p. However, it does not explain the structures observed in many real world networks
such as the World Wide Web, social interaction or biological neural networks (see
[HK18], |[GT10] and [CT06] respectively). More precisely, such networks exhibit
so-called power-laws as degree distributions, i.e. one finds

P(deg(v) = k) o< k77,

where deg(v) denotes the degree of some vertex v in the network and + is a constant
which typically lies in the interval (2,3). The principle of preferential attachment
has become a well-known concept to explain the occurrence of such scale-invariant
distributions reasonably well. The two typical characteristics of preferential attach-
ment models are that they are dynamic in the sense that vertices are successively
added over time and that new vertices prefer to connect to those of the older ver-
tices, which are already well connected in the existing network. Due to the latter,
preferential attachment is also referred to as the rich-get-richer paradigm.

The construction rules for the network can be made precise in various ways, so that
starting with the pioneering work [BA99] of Barabési and Albert various different
models of preferential attachment random graphs have appeared in the scientific
literature in recent years. In [KROI] and [DMOQ9] the authors suggest to look at
rather general models, in which the probability of attaching a new vertex to a cur-
rent one is a function f of its degree, called the attachment rule. The choice of
this function has a huge impact on the qualitative features of the network. One
can distinguish three main regimes for f: the superlinear regime, where f(k) > k,
the linear regime, where f(k) = k, and the sublinear regime, where f(k) < k. In
the superlinear case there emerges a dominant vertex which attracts most of the



edges, so that after the insertion of n vertices the degree of that vertex is of order
n. For more details see for instance [OS05]. The behaviour for linear attachment
functions is probably the most studied case. This is not very surprising as the first
mathematical rigorous work on preferential attachment random graphs by Barabasi
and Albert was concerned with such networks. Beyond that, the dynamics of the
preferential attachment model in this regime give a plausible explanation for the oc-
currence of power-law distributions which, as mentioned before, is a striking feature
of many real-world networks. The linear along with the sublinear regime were for
example studied in [DM09] and [RTV07]. In both papers almost sure convergence
of the empirical degree distribution towards a power-law distribution in the linear
and stretched exponential distributions in the sublinear regime, is shown for slightly
different models. The results in these works are of asymptotic nature, thus holding
for the number of vertices tending to infinity. However, real-world networks are
always of finite size, though indeed often rather huge. This is the reason why we
are interested in the distributional distance between the empirical distributions of
different random quantities and the known limiting distributions in the presence of
n vertices. For the linear case with fixed outdegree [PRR13] and [PRR17] study the
rescaled degree of a finite number of fixed vertices and in [Ros13] the author shows
that empirical indegree distribution converges to a mixed binomial distribution. All
three works deduce rates of convergence, where [Rosl3] and [PRR13] make use of
Stein’s method. We complement these results by deducing error bounds on the dis-
tributional distance between the indegree distribution and the limiting distribution
provided by [DMQ9] by a new variation of Stein’s method in a more general model,
including the sublinear as well as the linear case and comprising models with fixed
as well as random outdegree.

The aim of this thesis is to deduce error bounds on the distributional distances
between the laws of three random quantities in a graph on n vertices and their
respective limiting distributions. The random quantities we consider are the in-
degree of a uniformly chosen vertex, the outdegree of a vertex and the rescaled
number of isolated vertices. The manuscript is structured as follows: chapter
introduces the two main methods of proof used in this thesis: Stein’s method and
coupling. In chapter [3| we first of all introduce a general preferential attachment
model which includes the sublinear as well as the linear case and comprises models
with fixed as well as random outdegree. In section we derive error bounds on
the distributional distance between the indegree of a uniformly chosen vertex and
a given limiting distribution p. In particular we deal with the model introduced
by Barabasi and Albert. To do so, we develop a new variation of Stein’s method
for a new class of limiting distributions. Therefore, we will use the fact that the
limiting distribution is the stationary distribution of a Markov chain together with
the generator method of Barbour. Our principal interest concerns the asymptotic
evolution of the indegree distribution, since the outdegree of every vertex is fixed



after the time step in which it was inserted into the network. However, in Theo-
rem [3.20| we also give a limit result for the outdegree distribution in a preferential
attachment model with random outdegree using well-developed results on Poisson-
approximation via Stein’s method. In chapter [4] we derive similar results as in
the preceding chapter but through the use of coupling techniques this time. In
section [4.1| we take advantage of the fact that the discrete-time Markov chain intro-
duced in chapter |3 resembles the dynamics of a continuous-time Markov chain with
generator given by the Stein operator deduced before. In the following section
we then couple the general preferential attachment model introduced in chapter
to the Barabasi-Albert model, which likewise allows us to deduce rates of conver-
gence for this model with the help of coupling. Chapter |5 shows that for some
class of attachment functions, the number of isolated vertices asymptotially follows
a standard normal distribution. Here we use Stein’s method for approximation by
a standard normal distribution in combination with size-bias coupling.



2. Preliminaries

The following two sections provide an overview of the concepts and methods needed
to follow the thesis at hand. However, the reader is assumed to have basic knowl-
edge in probability and measure theory, as the fundamental notions and results of
these fields will not be recalled.

2.1. Stein’s method

Stein’s method is a well-known tool to derive error bounds between the law of a
random variable of interest and a known and a known target distribution, which
is usually better understood. It was first developed for the approximation of sums
of dependent random variables by the normal distribution in [Ste72] and has been
adopted to various other target distributions, including Poisson in [Che75] and
[BH84|, geometric in [Pek96], negative binomial in [BP99] and [Ros13], exponential
in [PR11] and |[CFR11], and many more.

When bounding the mentioned error through the help of Stein’s method one con-
verts the original problem of bounding the distributional distance of the two ran-
dom variables under consideration into a problem of bounding the expectation of
some functional operator applied to the random variable whose distribution is to
be approximated. Finding this operator and linking it to a notion of distributional
distance (by solving Stein equation) solely depends on the known limiting distri-
bution, whereas bounding the expectation afterwards only requires information on
the random variable of interest (though information on the target distribution is
of course contained in the operator). There is a collection of techniques both for
the first and the second part of this setup. We will present one technique for each
of the two steps: in section we introduce the so-called generator approach
which we will use to link the total-variation distance to the mentioned expectation
in chapter (3] and the concept of size-bias coupling to bound the expectation in the
case of normal approximation in chapter [5]

Section introduces Stein’s method for approximation by a standard normal
distribution, section gives the general setup for arbitrary limiting distribu-
tions.



2.1.1. Normal approximation via Stein’s method and
size-bias coupling

As mentioned before, Stein’s method was developed as a tool to prove central limit

theorems for sums of dependent random variables and was first published in 1972

in [Ste72]. The crucial observation lying at the heart of this method is the following
lemma:

Lemma 2.1 (Stein’s lemma). Define the functional operator

Af = fl(z) — zf ().
(i) For Z ~ N(0,1) we have
E[Af(Z)] =0
for all absolutely continuous functions f such that E[f'(Z)] < oc.

(i1) If X is a random variable such that for all continuously differentiable functions

f
E[Af(X)] =0,

then X ~ N(0,1).

Before we prove this lemma we show how this characterization can be used to
determine error bounds in the Kolmogorov metric for the approximation of the law
of a random variable by the normal distribution. To do so, we have to solve the
so-called Stein equation

wf(w) = f(w) = h(w) — &(2) (2.1)
for every f € Fx = {1(—x0,2), 2 € R}, where ® denotes the cumulative distribution
function of Z ~ N(0,1). Having solved (2.1)) then yields

dx(X. 2) = sup [E[h(X)] - E[(2)]| = supE[AL.(X)].

Here, f, denotes the unique bounded solution of ({2.1)) for the test function 1{- €
(—OO, Z]}

Lemma 2.2 (Properties of the solution). For fized z € R the unique bounded
solution f,(w) of the equation

wf(w) = f(w) = Hw < 2} — &(Z)

15 given by

fo(w) = 27Tew2/2(1>(w) (1—®(2) ifw<z,
2 27Tew2/2<13(z) (1—®w)) ifw> =

Moreover
T ’
15 <[5 and 201 <2 (2.3
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Proof. To show that the solution in ([2.2)) solves the Stein equation, we first multiply
both sides of ([2.1)) with e=**/2 to obtain

/

(72 w)) = e (1w < 2} - 0(2)).

Integrating both sides gives
e 2 f, (w) = /w e (1{x < 2} — ©(2)) du,
so that
Folw) = ev*/2 / U e (1 < 2} — 0(2)) da
e’/ /OO e (1{z < 2} — ®(2)) du,

which gives . We have thus found a specific solution to (2.1). To obtain
the general solution, we have to add a constant multiple of the solution to the
homogeneous equation
f(w) —wf(w) =

which is ce®’/2 for any ¢ € R. Hence is the only bounded solution to ,
where the boundedness is shown by . However, we refer to [CGS10, Appendix
chapter 2| for a proof of , since it is rather technical and does not provide
insights into the techniques necessary to understand this thesis. O]

Proof of Lemma [2.1. For (i) we need to show that E[Af(Z)] = 0 for all f such
that E[f'(Z)] < oo if Z has a standard normal distribution. Therefore, note that

E[f(2)] = J% / " Fw)e P duw

g ([ o i [ ([ e

By Fubini’s theorem it follows that

BL/(2)) = / (/ w)dv ) (~a)e 2 da
I o)

- = U@ - )

—E[2f(2)).



To show (i) note that for any z € R the function f, in (2.2} is clearly continuous
and piecewise continuously differentiable. Furthermore, due to (2.3) we know that
it is also bounded. Thus

0= E[A.(X)] = E[fL(X) — 2/.(X)] = E[I{X < 2} - (2)] = P(X < 2) - 2(2).

Hence, X has a standard normal distribution.
m

Remark 2.3. We can write (2.1) more generally as
f'(w) = wf(w) = h(w) = E[h(Z)]

for any measurable function h such that E[h(Z)] < oo, where Z ~ N(0,1). The
solution to this equation is then given by

Ju(w) = e/ /Oo (h(x) —E[h(Z)]) e*/* du
with
1fall < \/gllh(‘) —ER2))| and ||f;ll < 2|A(-) = E[R(Z)]|I,
see for example [CGS10] for more details.

Now, the next step is to bound the right-hand side of in order to obtain the
desired error bounds. One approach to do so is via size-bias couplings, which were
first used by Goldstein and Rinott in the context of Stein’s method, see [GR96].
We will make use of this technique in chapter 5] The subsequent results of the

remaining part of this section (except for some minor adjustments) can all be found
in [Ros11].

Definition 2.4. For a random variable X > 0 with E[X] = p < 0o, we say that

the random variable X* has the size-bias distribution with respect to X if for f such
that E[X f(X)] < oo we have

EXf(X)] = pE[f(X7)].

An equivalent characterization of the size-bias distribution is that of F** being
absolutely continuous with respect to the distribution F' of X with Radon-Nikodym

density 4F*(2)
*(z x

AF(x)
Corollary 2.5. If X > 0 is a random variable with E[X] = u < oo , then the
random variable X*® with the size-bias distribution of X is such that
EP(X = k)

P(X* = k) = —



The next result, which is the essential part of our proof of a central limit theorem
for the rescaled number of isolated vertices in chapter [5 was first proven in [GRI6]
and is also formulated in [Ros11, Theorem 3.20]. Here we state a slightly modified
version of it, which is already adapted to the context of random graphs.

Theorem 2.6. For a random graph G, let W,, > 0 be some o(G,)-measurable
random variable with W,, > 0, E[W,] = u, < oo and V(W,,) = o2. Let W; be
defined on the same space as W,, and have the size-bias distribution with respect to
W,. If W, = W"U—;“" and Z ~ N(0,1), then

dyy (W, Z) < “”fﬂf W|gn])+“”E[(W ~ W] (2.4)

7’L

Proof. Since we are using Stein’s method the strategy is to bound

for bounded f with bounded first and second derivative. Using the definition of the
size-bias distribution we obtain

r7 r7 Wn - Mn Wn - Mn
E (W, f(7)] =E[ . f( : )}
On On
= M—]E [f (—“> — f (—'LL)}
On On On
so that by a Taylor expansion we get

B [07)] = {WSJHW ; (Wn(; un) PR (W;; - Mn)] |

2
" 207 On

for some W in the interval with endpoints W, and W. Using the definition of W,
in the previous expression, we obtain

o i (1) - g0 < [ o (1- 50

n

(5 o)

Since according to ([2.3]) the solutions f to the Stein equation fulfill || f|| < \/g and
£l < 2 we have

| (B o]

Hn
+ 203

n

Hn
203




which is the second term appearing in the error bound (2.4). To bound the first
term note that by the definition of W;” we have

2 2
B = E[Wg] = 2t

so that by the properties of the Stein solution mentioned above, the law of iterated
expectations and the Cauchy-Schwarz inequality we obtain

‘E [f’(Wn) ( - %(Wi - Wn))} ‘ < \@E H1 ~ DR - w6

n O-'IZ

]

We now give a general construction for a size-bias version of some random vari-
able W,, which can be written as a sum of random variables. Just as the previous
result, this construction was first given in [GR96]. The version we put is taken from
[Ros11].

Coupling construction
For the case in which W,, = Y°" | X; with X; > 0 and E [X;] = v;, section 3.4.1 in
[Ros11] provides the following construction of a size-bias version of W,,:

1. For each @ =1,...n, let X have the size-bias distribution of X independent
of (Xj)jz and (X3);%. Given X; = x define the vector (X]@)#Z- to have
distribution of (X}),; conditional on X; = x.

2. Choose a random summand X;, where the index [ is chosen proportional to
p; and independent of all else. Specifically, P(/ =) = -, where p, = E[W,].

3. Define Wg =Y., X\" + X;.

Proposition 2.7. Let W,, = >°" | X; with X; > 0, E[X;] = v; and p,, = E[W,,].
If W2 s constructed according to items 1 - 3 above, then W? has the size-bias
distribution of W,.

Proof. To prove the result it is enough to show that
E [Wof(Wa)] = paE [f(W,)]
where W/ = Z#I X;I) + X7 as given above. If we can show that

E[Xif(Wa)] = v [f(W,)] . (2.5)



it follows that
E[Wof (Wa)] = Y E[XGF(Wa)] = D [F(W))] = mE [F(W,)]

since P(I =) = ;=. To show ([2.5)), note that for h(X;) = E[f(W,)[X;] we have

E [Xzf(Wn)] =E [XiE [f(Wn)|XzH =E [Xih(Xi)]
= WE [h(X})] = wE [E[f (W) X{]) = wE [f(W;)].

7

[]

Corollary 2.8. Let X1,... X, be zero-one random variables and let p; = P(X; =
1). For eachi=1,...,n let (X](Z))#i have the distribution of (X;);z conditional
on X;=1. IfW,, =>"" | X;, pn, =E[W,], and I is chosen independent of all else

with P(I = i) = - then Wi =", X](I) + 1 has the size-bias distribution of W,.

tn?
Proof. The result follows directly from Proposition 2.7/ and the observation that for
a Bernoulli random variable X, its size-bias version is given by X* =1, as for all f

such that E [X f(X)] < oo we have E [X f(X)] = p; f(1). O

2.1.2. Stein’s method in a nutshell

As mentioned at the beginning of this chapter Stein’s method can be generalized
to limiting distributions other than normal. The general procedure to follow when
developing a Stein’s method for a new target distribution is given by the following
four steps:

1. Decide on a suitable limiting distribution for the random variable of interest.

2. Find a characterizing operator A of the target distribution u, in the sense
that for all functions ¢ in the domain of A

E[Ag(W)] =0 & W ~ 4.

3. Find a solution g; to the Stein-equation

k)~ [ hdu= Ag(h), (2.6)
for each h in a measure-determining class of functions F. This yields
dx(W.X) =sup [E (b ()] - E[R(X)| =EAp(X)].  (27)
€

For different families F of test functions one gets different probability metrics.
Consider for example the following classes of test functions

10



—for F={h:R = R: |h(z) — h(y)| < |z —y|} we get dr(W,X) =
dw (W, X)), where dy denotes the Wasserstein distance.
— for F = {l(coos, 2 € R} we get dp(W,X) = dg(W, X), where dg

denotes the Kolmogorov distance (see the previous section).

— for F = {14(+), A € Borel(R)} we get dz(W, X) = dpry(W, X), where
dry denotes the total variation distance.

4. Bound the right-hand side of (2.7) to get bounds on the distributional dis-

tance of W and X. Usually one needs to find bounds on either g,(lk) (in the
continuous case) or Agy (k) := gn(k+ 1) — gn(k) (in the discrete case) to do
so. Uniform bounds on these quantities are then often referred to as Stein’s
“magic factors”.

2.1.3. The generator approach

A rather general approach for finding suitable Stein-operators and corresponding
solutions is the generator-approach introduced by Barbour [Bar88|, who applied it to
multivariate Poisson approximation, and which was developed by Gotze in [G6t9]1]
for multivariate normal approximation. The basic idea behind this approach is to
find a Markov process (X;) with invariant distribution p. We write

Tif(x) == E[g(Xe)[Xo = 2]

for the operator semigroup corresponding to (X;), which acts on £2(u). From gen-
eral Markov theory we now know that the infinitesimal generator A corresponding
to the process X; is given by the following limit in £%(1)

Toa—
Ag :=lim 9

lim — (2.8)

for g € dom(A), the class of £L?(u)-functions for which the limit exists.
Under certain conditions on the operator A, the theory of operator semigroups (e.g.
Proposition 1.5 in [EK86]) yields

t t
/ T.gds € dom(A) for all g € £?(y) and A (/ T.g ds) =Tyg — g, (2.9)
0 0

where the integral is a £%(u) valued Riemann-integral. We now get the following
result which shows that a generator A of a Markov process as given in (2.8)) defines
a Stein operator for the invariant distribution p of the process.

Proposition 2.9. A (X, B)-valued random variable X has distribution p with gen-
erator A if and only if for all functions g in dom(A) we have E[Ag(X)] = 0. Thus
A as in (2.8) defines a Stein operator for p.

11



Proof. Let X have distribution p and take g € dom(A). As (X;)i>o has invariant
distribution p we get

/XTtg du = E, [T,9(X)] = E, [E[g(X,)|Xo = X]] = E, [9(X,)] = /Xg e

so that

Toa—
/Ttg—gdu:0andthus / g gduzO
X X t
for all £ > 0. As
Y Tiyg—yg 2
Ar=l = <A W
the theorem of dominated convergence yields

Tg— T,g —
Ozlim/ g gd,u:/lim g gd,u:/Agdu:E[Ag(X)]
X X X

t\0 t N0 t

so that
X ~pu=E[Ag(X)] = 0.

For the converse take g € £L2(u) and ¢ > 0. Due to (2.9) we have

(1) - 9(X)] =5 |4 [ t Tgds) ()] =0

and thus
E[Tg(X)] = E [g(X)]

for all ¢ > 0, which yields that £(X) is an invariant distribution for (X;);>o. As
(X¢)t>0 is an ergodic process, we obtain that £(X) = p. O

To find a solution to the Stein equation ({2.6)), we can apply (12.9) to the function
g =h — u(h) with h € F. This yields

A (— /Ot(Tsh — u(h)) ds) =h—Th

and as T; is the corresponding operator semigroup to the process (X;)i>o with
invariant distribution p, we obtain

A= [T n - umyas) = - u)

for t — o0, if the integral exists. Thus a solution to ([2.9)) is given by

gn(k) == — /0 S (Tuh(k) — p(h)) ds.

Consequently, one can deduce a Stein-operator and a corresponding solution to the
Stein equation with the help of the generator approach.

12



2.2. Coupling

The coupling method, which was introduced by Wolfgang Déblin in the late 1930s
[D6b3Y], is a powerful technique in probability theory which allows to compare two
probability measures defined on the same measurable space. This technique is so
useful because a comparison between distributions is reduced to a comparison be-
tween random variables and thus provides an effective method of obtaining upper
bounds on distributional distances. The following section captures the most impor-
tant results from the works |[dH12] and [LPWO06] which are relevant for the thesis
at hand. We start by defining the coupling of two probability measures:

Definition 2.10. A coupling of two probability measures p and v on the same
measurable space (€2, A) is any probability measure P on the product measurable
space (2 x Q, A® A) (where A ® A is the smallest o-algebra containing A x A)
whose marginals are p and v, i.e.

p(x) = ZIP’(x, y) and v(y) = ZP(m, y) for all x,y € Q.

yeN z€eQ
Coupling of two random variables are defined in a similar way:.

Definition 2.11. A coupling of two random variables X and Y taking values in
(Q,A) is any pair of random variables (X',Y") taking values in (Q x Q, A ® A)
whose marginals have the same distribution as X and Y, i.e.

X'2x ady 2y,

Note that the law P of (X’ Y”) is a coupling of the laws of u and v of X and Y
respectively in the sense of Definition [2.10]

The following proposition shows the close connection between couplings and
the total variation distance of two random variables. Remember that for any two
probability measures p and v we have

[ = vligy = sup |u(A) — v(A)].
AcA

For the rest of this section we will restrict to the case of discrete probability spaces,
e.g. we assume (2 to be finite or countably infinite. This is sufficient for our purposes
as we will use the given results for Markov chains X and Y taking values in N.

Proposition 2.12. Let p and v be two probability distributions on 2. Then

= vy = 5 3 lute) — (@)

€

13



Proof. Let A C 2 be an event and set B = {z € Q: u(x) > v(x)}. We then get

u(A) - v(A)

w(ANB) + u(AN B°) —v(A)
<u(ANB)+v(An B —v(A)
=u(ANB)—v(ANB)

since for all x € AN B¢ we have v(z) > u(x). Moreover,

WANB)—v(ANB) = 3 ple) - v(a) <3 ple) - viz) = p(A) - v(B),

z€ANB zeB

since for all x € B we have u(x) — v(z) > 0. Hence
u(A) ~ v(A) < u(B) - v(B). (2.10)
Since the result above holds for all A C €2 we also have
V(A) — j(A) = p(A%) — v(A%) < u(B) — w(B) = v(BY) — u(B%).  (2.11)

The last equality shows that the upper bounds (2.10) and (2.11)) actually coincide.
Furthermore, for A = B (or B®) we obtain equality in the calculations above, so
that the maximal difference is achieved in this case. With these considerations we
get

1 C C
= vllpy = sup 1(A) = v(A)| = 5 (u(B) = v(B) + v(B°) - u(B))
1
= 53 llw) = vl
z€e
O]
Remark 2.13. The proof of the previous proposition shows in particular that

ln=vlpy = Y (u(@) = v(2)). (2.12)

rEQ
w(z)2v ()

Proposition 2.14. Let X, Y be two random variables with probability distributions
w and v. Then, for any coupling (X', Y") of X and Y, we have

1= vl <BOX £ V7). (2.13)
In fact, we have

| — vy = nf{P(X’" #Y") : (X',Y") is a coupling of p and v}. (2.14)
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Proof. To show note that
WA —v(A)=P(X € A)—PY € A) <P(X €AY ¢gA) <PX#Y)
so that definitely
w(A) —v(A) <inf{P(X' #Y’): (X',Y’') is a coupling of u and v}.

We will now construct a coupling (X', Y’) with ||u(A) —v(A)|| = P(X' #Y’). We
will do so by forcing X and Y to be equal as often as they possibly can be. To
generate X and Y let

p=> ma)Ave) = Y pa)+ Y v)

e e e
p(@)<v(z) V(@) <p(o)

Adding and subtracting > «co  u(x) to the right-hand side yields

p(z)>v(x)

p=Sn@)Av@)=1- 3 (@)~ v(@) =1-lu—vlp. (215

e z€EQ
v(z)<p(z)

where we used Proposition [2.12l We now flip a coin which shows heads with prob-
ability p. If the coin comes up heads, we choose a value Z € 2 according to the
probability distribution

px) Av(z)

a(x) = 5

and set X =Y = Z. If the coin comes up tails, we choose X according to the
probability distribution

px) = {% if p(x) > v(x),

0, otherwise.

Then we independently choose Y according to the probability distribution

p@)—v(z)
(z) = Bty v(z) - ),
0, otherwise.

Note that due to (2.12) and (2.15) «, 5 and v all define probability distributions.
With these considerations we obtain

P(X = z) = pa(z) + (1 = p)B(x)
= p(x) Av(x) + (p(x) — v(x) Hu(r) > v(z)} = p(z)

15



and

P(Y = z) = pa(z) + (1 — p)y(z)
= p(x) Av(z) + (v(z) — p(x)) I{v(z) > p(x)} = v(z)

for all x € ), meaning that X has distribution x4 and Y has distribution v respec-
tively. Note that in the case in which the coin comes up tails, we have X # Y, so
that X =Y if and only if the coin shows heads. Hence

PX#Y)=1-p=lp—vlp

by (2.15). O
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3. Degree evolutions in preferential attachment
models via Stein’s method

The main purpose of this chapter is to give rates of convergence in total variation
between the indegree distribution of a uniformly chosen vertex in a general prefer-
ential attachment random graph, based on the model introduced by Dereich and
Mérters [DMO09] in 2009, and its limiting distribution with Stein’s method. The
first section states assumptions on the model under which the results, that we will
prove, hold and gives a more detailed description of one of the models, which will
be relevant in section and chapter 5| In section we develop Stein’s method
for limiting distributions of the form

H = 1+f HHf

where f is some monotonically increasing (sub-)linear function in the preferential
attachment model. After that we use this method to derive rates of convergence of
the indegree distribution of a uniformly chosen vertex towards .

Finally, section proves that the outdegree in a more specific model described
in example is approximately Poisson-distributed and also gives error bounds on
this approximation.

The results presented in this section, except for those in section [3.2.4] can be found
in the preprint [BDOT9).

3.1. Preferential attachment models

We study a general preferential attachment model, based on the model introduced
by Dereich and Morters in [DM09], where the connection probabilities are given
by a general (sub-)linear function of the old degree. Though our methods do not
rely on the explicit details of the model under consideration, we will first give a
detailed introduction to the model in [DMO09] as this will also be the relevant model
analyzed in section and chapter )] Afterwards we will state the assumptions
on a preferential attachment model that need to be met for our results to hold,
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highlight some other models that fit in this class and then state our results in full
generality.

Example 3.1 (Preferential attachment with random outdegree).

Take any f : Nygp — (0,00) with f(n) < n + 1. The network we consider is
built according to the following rules. Each graph G, consists of n vertices labeled
{1,...,n} and a random number of edges. We start with the graph G; consisting
of one vertex and no edges.

At time n + 1 we insert vertex n + 1 into the graph G,, and independently for each
k € [n] we add a directed edge from n + 1 to k with probability

f(deg,, (k))

. , (3.1)

where deg, (k) denotes the indegree of vertex k at time n. Due to the assumptions
imposed on our attachment function f it is guaranteed that in each evolution step
in fact lies between zero and one.

In contrast to many other models, like for instance those considered in [BA99],
[KRO1] [OS05], [Ros13] and [RTV0T], the outdegree of every vertex in this model
is random and can be zero. In many applications (like for example collaboration
networks) this seems to be a more reasonable assumption than a fixed outdegree.
Note that the outdegree of every vertex is fixed after the time step in which it was
inserted into the network. Formally we are dealing with a directed network. How-
ever, by construction, edges are always pointing from younger to older vertices, so
that the directions can be recreated from the undirected labeled graph.

An example of the first evolutionary steps of such a preferential attachment graph
is visualized in the following figures.

G o
P,
Gy : B -
HE O
Gs : t

OJoXOINOIORG
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Figure 3.1: Evolution of G,

Ga :

Clearly, the topological structure of the network crucially depends on the at-
of networks observed after n = 50 time steps

tachment function f. Some examples

are depicted in Figures [3.2] 3.5

36 37 38 39 40

Figure 3.3: f(k) =vk+1

36 37 33 39 40

Figure 3.2: f(k) = 0.8k + 0.6

a2
a1

35 .
.
36 37 33 39 40

5 ®
e e
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Figure 3.4: f(k) = 0.4k + 0.3 Figure 3.5: f(k) = 0.8k 4 0.6

Though this framework is already sufficiently general to lead to typical degree
distributions that can be power-laws, but also stretched exponential distributions,
we can prove our results in this section for an even larger class of preferential at-

tachment models, fulfilling the following assumptions:
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Assumptions (A). Fix dy € Ny and let f : Ny — (0,00) such that f(n) <
max{n + 1 — dp,1}. We assume that (G,),>1 is a sequence of directed random
graphs with vertex set [n] := {1,...,n}. The initial graph G; consists of one vertex,
labeled 1, and dy (directed) self-edges. For any n > 1, at time n + 1 we add a
vertex, which we label n 4 1, to the vertex set for each j € [n] we insert at most
one directed edge from n + 1 to 5 such that

P(n + 1 connects to j|G,) = M. (3.2)
Here deg, (j) denotes the indegree of vertex j after the n-th vertex has been in-
serted. Note that by construction we have that deg, (j) < do +n — 1, so that by
the condition on f the right hand side of is indeed < 1.

These assumptions do not completely specify the model: they allow for determin-
istic as well as random outdegree and also only impose conditions on the marginal
probabilities of connecting n + 1 to j. In particular, additionally to the model
introduced in Example the following models are included.

Example 3.2 (Preferential attachment with fixed outdegree). Start with G; con-
sisting of vertex 1 and a (directed) self-loop. At time n + 1 insert vertex n + 1 and
connect it to exactly one previous vertex j € [n| with probability

deg, (j) + 9
n(2+9)

where deg,(j) denotes the total degree of vertex j at time n and § > —1 is a
parameter of the model. Noticing that deg, (j) = deg, (j) + 1, this fits into our
framework with f(k) = % and dy = 1. This model almost coincides with the
one proposed in [BRST01] (there however § = 0 and they allow for self-loops) and
it is very closely related to what is referred to as model (b) in [Hof17, Chapter 8.2].

Example 3.3 (Spatial preferential attachment model). In [ACJPO0§|, the authors
introduce the following spatial random graph model. Let S be the unit hypercube
in R™. The initial graph consists of vertex 1 that is placed uniformly at random
into S and no edges. For each vertex i we define the sphere of influence S(i,n) of i
as the ball (in the torus metric induced by the Euclidean metric) that has volume
M%M centered at the position of 7, where A;, A, > 0. Fix a parameter
p € [0,1]. Then, at time n + 1, we insert vertex n + 1 at a position that is chosen
uniformly at random in S. Now, independently for each vertex j such that the
position of n + 1 is in S(j,n) insert an edge from n + 1 to j with probability p. In
particular, we get

P(n + 1 connects to j|G,) =p
n
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Thus, this model fits into our framework if we choose f(k) = pA;k+pA; and assume
that the constants are chosen such that pA;,pAs; < 1.

The following theorem from [DM09] shows that in the model described in Exam-
ple the empirical indegree distribution converges almost surely in total variation
norm to a distribution p and the outdegree of every vertex is asymptotically Poisson
distributed.

Theorem 3.4. (a) Let

s = 1+f leHf k=0,1,..., (3.3)

which 1s a sequence of probability weights. Then, almost surely,

lim X(n)=p
n—oo

in total variation norm, where X(n) = (Xix(n) : k € Ny) and Xi(n) =

5 i Ldeg, (i) = k}.

(b) If f satisfies f(k) < nk+1 for somen € (0,1), then the conditional distribution
of the outdegree of (n + 1)-th incoming node (given the graph at time n)
converges almost surely in the total variation norm to the Poisson distribution

with parameter X == (i, f) = > 150 f (k)1

As a side effect our results will also show that part a) of the previous theorem
not only holds for the preferential attachment model described in Example [3.1] but
for all models satisfying Assumptions (A).

Remark 3.5. Following [DM09, Example 1.5.] for f(k) = vk +n with fized v,n €
(0,1] for all k € Ny, we have
1T+ (e

5
~ L+ \p(n)’
YTk + 22T (2)

[k =

so that by Stirling’s formula, T'(t + a)\I'(t) ~ t* for t tending to infinity, we obtain
nt+l
I3
Therefore, our framework allows for models with power-law distribution with tail
exponent 1+1/v € [2,00). Furthermore, if f(k) ~ vk* with0 < o < 1, v > 0, then

1t
(1 —a)

L ~ — =0+, (3.4)

log pug ~ K for k — oo,
so that we obtain a limiting distribution with stretched exponential tails.
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3.2. Stein’s method for preferential attachment models

The main purpose of this chapter is to deduce rates of convergence of L(deg,(1,,)) in
preferential attachment models satisfying (A), where I, ~U{1,...,n} and deg,, ()
denotes the indegree of vertex ¢ in G,,. Our main result here is the following theorem

Theorem 3.6. Let W, denote the indegree of a uniformly chosen vertex at time
n in a preferential attachment model satisfying Assumptions (A). Suppose further

that there exists k. € Ny such that f(k) > k for all k < k. and f(k) < k for all
k > k.. Then, there exists a constant C > 0 such that for alln > 2

1
drpy(W,, W) < C %(") (3.5)
where W ~ p and p as in .

The condition that there exists k., € Ny such that f(k) > k for all k£ < k, and
f(k) <k for all k > k, is for example fulfilled for all sublinear models such that
maxy; Af(k) = max,(f(k + 1) — f(k)) < 1, which is a popular condition in the
setting of Example 3.1} see e.g. [DM13].

The next Theorem gives a weaker result in the regime where f(k) € [k, k+~] for
all k and v € (0,1). This is not surprising since for example in the case f(k) = k+7,
the distribution has power law exponent 2 and does no longer have a finite mean,

see ((3.4).

Theorem 3.7. Let W,, denote the indegree of uniformly chosen vertex at time n in
a preferential attachment model satisfying Assumptions (A). Suppose further that
f(k) € [k, k+~] for all k € Ny and some v € (0,1). Then, there exists a constant
C > 0 such that for allmn > 1,

dpy (W, W) < C n~ 077,
where W ~ p and p as in .

The proof of these two results uses Stein’s method, which to our knowledge has
not been developed for a general class of limiting distributions as given in (3.3).
The following three paragraphs will now deal with the steps of Stein’s method as
outlined in section 2.1.2]

3.2.1. Stein-operator

Lemma 3.8. Let p1 be given by (3.3). Then, u is a probability distribution and any
No-valued random variable W satisfies W ~ 1 if and only if

E[Ag(W)] =0,
for all g : Ng — R such that E[g(Y')] < oo, where
Ag(k) = f(k)(g(k +1) — g(k)) + 9(0) — g(k).
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Proof. Let N; be a process that starts in 0 and jumps from i to i + 1 at rate f(4).

Then the time of the k-th jump is given in distribution by Sy = Zf 01 f(l)E where

Ey, Ey, ... is an i.i.d. sequence of exponentials with rate 1. Now (see also Cor. 50
in [BhaO7]) let Y be an independent exponential random variable with parameter
1, then

P(Ny > k)=P(Y > S).

By first conditioning on S, we get

P(Y > S)) = E[E[1{Y > sk}| H [ -Sk] — Ele” 0 7t4)
= H1 e~ B/ 1) (3.6)

=0

using that Efe~*"] = =< in the last step. We have

1_! 2) H1+f
k
:< 1+f )H1+f _1+f H1+f

In particular this shows that p defines a probability measure on Ny and (3.6]) gives

-1

H o f — 1) g1 (3.7)

=0

Using this connection to a jump process we obtain

S ot = Efo(w)] = [ B3]

— g0)+ / TE[(o( 4 1) g(80) ) £ ()] e s
= 9(0)+E[(g(Ny +1) = g(Ny) ) £ (V).

where we used an integration by parts formula for the third equality. More precisely,
the fact that N, is an inhomogeneous Poisson point process yields
d
ds
where we used [Cinll], Theorem 6.11].
So we have shown that if W ~ p then E [(g(W + 1) — g(W)) f(W) + g(0) — g(W)] =
0 for all g such that E [¢(1V)] < co. Conversely, let

S ((glk +1) — g(k)) f(k) + g(0) — g(k))P(W = k) =0

k>0
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for all g such that ), ., g(k)P (W = k) < co. We now have to show that W ~ p.
Choose a class of functions (g;)i>1 with g;(k) := k1{k <i}. Then ), g:(k)P(W =

k) =31 _o KP(W = k) < oo, as for every 4, this is a finite sum. Now

((91(1) = 92(0)) £(0) + (62(0) = 62(0)))P(W = 0)
+((921(2) = (1)) F (1) + (92(0) — g (1)) P(W = 1)
FOP(W =0) = (1+ f(1))P(W = 1)

0=E[g(W)

so that
(14 F))BOV = 1) = FOROW = 0). 3.9
Using (B8) in the analogous calculations for g, gives
(1 + F)POV = 2) = F1)POV = 1)
Spw =)= J pap gy ! f(l)l FOYP(W = 0).

Iterating the whole procedure yields

P(W = k) P(W = 0) = uP(W = 0)(1 + £(0)).

T+ f H 1+ f
Now as (ug)k>0 as given in (3.3) is a probability distribution we get
P(W =0)=1— (14 f(O)P(W =0)>

= P(W = 0)(1 +(1+ f(o))Z@ —1

& W =0)(1+ (14 f(0))(1 - o)) =1

o ]P’(W:O)(lJr(lJrf(O)) 1) ):1

& P(W=0)= T3 70)

Consequently P(W = k) = u; Vk and we have thus found the Stein operator

Ag(k) = (g(k + 1) — g(k)) f (k) + 9(0) — g(k) (3.9)

for p. O
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As outlined in section the next step is now to solve the so-called Stein
equation

Ag(k) = (k) — / hdu (3.10)

for all functions in some suitable class of test functions H. As we want to show
rates of convergence in total variation norm we are interested in the case where H is
the class of all indicator functions ha(-) = 1{- € A} with A € B(R). After solving
and taking expectations on both sides, we then get

dry(W, X) = E[Agn(X)], (3.11)

see section , and thus bounding the right-handside of (3.11)) uniformly in A gives
bounds on the total variation distance.

3.2.2. Stein solution and bounds

This section is concerned with the second step of Stein’s method as described in
2.1.2] It only depends on the operator A and the class of test functions inducing
the probability metric and is thus independent of preferential attachment models.
We first derive solutions to the Stein equation in the subsequent lemma and
consequently deduce smoothness estimates of these in Lemma |3.10}

Lemma 3.9. The unique solution of the Stein equation for u, i.e.
Ag = h—p(h), (3.12)

for any h(-) = 1{- € A} := 14(-), with A C Ny is given by

gn(k) = — /O ) (Ekh(zt) —~ / hdu) dt, (3.13)

where (Z;) is a continuous-time Markov process with generator A and By, denotes
the expectation with respect to P(-|Zy = k).

Proof. Let h = 14 for some A C Nj. One can check that the Markov chain (Z;)
with generator A is irreducible, non-explosive and has invariant distribution p. It
follows that Exh(Z;) — p(h) as t — oo.

By Kolmogorov’s backward equation for the Markov chain (Z;);>¢, see e.g. [Nor98|
Thm. 2.8.4.], we have for any k, j € Ny,

Pr(Zy = j) — Ly (j) = Pu(Zy = j) — Pr(Zo = j)

= [ {F0)®un (2. = ) =iz = ) + BolZ, = ) = Pu(Z = ) } .
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In particular, as h as above is bounded, we have by Fubini

Exlh(Z)] — h(k) = /0 J(B)(Epi1[h(Zs)] — Ex[h(Zs)]) + Eo[h(Z)] — Ex[h(Z)] ds.

Now, define

Thus, we can deduce that
Ex[h(Z:)] — h(k) = —(Agh) (k).

We note that the left hand side converges to pu(h) — h(k) as p is the invariant
distribution of (Z;);>o. By the definition of A it is straightforward to see that
the operator A is closed under pointwise convergence. Hence, it suffices to show
that g; (k) converges to gn(k) as defined in in order to conclude that g

solves (3.10)).

To see the latter, we can estimate since h = T4,
| Bz - uiw] at = [ [B [1(z)] - B [nz)] | at
0 0

< / min P(X; # Y;)dt,
0 (X,Yr)

coupling of (Zt(k),ZZS“))

where we denote by Zt(k) and Zt(“ ) the Markov chains started in k and 1 respectively.
We will now construct a coupling (X, ;) of Zt(k) and Zt(” ) in the following way: let
Xo = k and choose Yj according to . We let both chains evolve independently until
Y falls to zero at a random time 7. We then force X to fall to zero as well and from
that point on the two chains evolve together, so that X; =Y, for ¢ > 7. One can
easily check that this defines a coupling of Zt(k) and Zt(” ). As Y falls down to zero
at rate one we get
P(X;#£Y,) <P(r>t)=e"

so that

/OOO |Ex[h(Z)] — pu(h)| dt < /OOO e tdt = 1.

Hence, ¢ (k) — gn(k) by dominated convergence, which completes the proof of the
lemma. [

In this section, we exploit the connection to the Markov process with generator
A to find bounds on the Stein solution g4 := ¢y, for A C Ny. As mentioned before,
this part of the proof only depends on the limiting distribution p and does not
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make use of the preferential attachment setting. More precisely, we will show that
va(k) := f(k)ga(k) is uniformly bounded in k. We have

aah) = = [ B[00 € 4)] - () a

— [T (B[ X1 =) - ) at

JEA JEA
-3 (- [T e = - ) )
jEA 0
= >_ (k). (3.14)

thus g4 can be written as a sum of functions of the form gy(;; and we start by
calculating the latter.

Lemma 3.10. For g; := gi.—j; as in we have

— T feriz R+,
Agj(k) = g;(k +1) — g;(k) = § 7507 for j =k, (3.15)
0, forj <k—1.

Proof. We apply the techniques used in [BX01] and adapt them to our Markov
process Z;. Therefore define

Tkk+1 = Hlf{t . Zt(k) =k + 1},

where as before, Zt(k) denotes a Markov process with generator A starting in k.
Then, for £ < j — 1 we obtain via the representation (3.13)) of the Stein solution,

g;(k) = — /0°° (E[14(2)] — ) at

B —E[/OWW (Jl{j}<Zt(k)) _ ,@dt} — IE[/W+1 <]l{j}(Zt(k)) - Mj)dt]
= ;B [ k1] + g5 (k + 1),

where the last equality uses the strong Markov property of Z;. Rearranging yields
9i(k) = gi(k + 1) = B [T p41] = 0

for k < j—1. Following the same procedure for k > j+1 and 7o = inf{t : Zt(k) =0},
we get

() == [ Bl16)(2)] )
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- _E[/OTk’O(ﬂ{j}(Zt(k)) — 1)) dt} N E[/oo(l{j}(zlt(k)) — ) dt

Tk,0

= 1;IE [130] + 9;(0)
and thus

gj<k) - gj<0> = ;e (k.0

for £ > j+1. Since the rate by which the process Z; moves to zero is 1, independently
of the current state of the process, we notice that E [1;, 0] = 1 for all k£ and therefore
the equation above simplifies to

9i(k) = 95(0) = p;-
This means that g;(k) is constant for k£ > j + 1, so that

Furthermore, we have
. > i+1
9;(i+1) = —/ (E[L(Z27H)] = py) dt
0

- g] / T gy (25) < ) ar] - B / (2 - ) ]

= 1 E (7515 + 9;(J) -
= 14 (Elrj+1,0] + Elro ]) + 9;(j)
= uj (1 +E[m,]) + g;0j),

yielding
957 +1) = g;(j) = p; 1+ Elro,]) = wE[755] >0,

where 7; ; defines the first return time to j of the Markov chain started at j. Thus
the following equations hold for the Stein solution g;:

— 1B [Ty, for j > k41,
gi(k +1) —g;(k) = € ;E[r;,], for j =k, (3.16)
0, for g <k—1.

We can simplify this expression further as follows. Let Sy be the first jump time of
Z"™_ Then, by definition of the Markov chain, we have that S, ~ Exp(1 + f(k)).

Since Z* jumps to k + 1 at rate f(k) and to zero at rate 1 we obtain

1 1

E [7x11] = E[Sk] + Tf(k)E[TO,k—H] = Tj’(k‘)(

1 + E[ro k] + E[7sk+1))
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and thus

1 1
]ETng = < 1—|—E T0,k =—F Tk,k] - 3.17
The classic theory of Markov chains, see e.g. [Nor98, Thm. 3.6.3], yields that

1
M= U+ FONE 1]

Rearranging (3.18)) and combining it with (3.16)) and (3.17)) yields the statement of

the lemma. O

(3.18)

Proposition 3.11. For any k € Ny and A C Ny, we have
lva(k)] < 1. (3.19)

Proof. By Lemma [3.10 and (3.14)) we get

_ P () F)
va(k) = jEZAf(k)Agj(k) = T Ima +f(k>)u(z4ﬂ [k, 00)) + 1+f(k)ll{k € A}.
Using the identity u([k, 00)) = []1=, 11%) = (1+ f(k))p from (3.7), we obtain
1 f (k)
so that the proposition follows immediately. O

3.2.3. Results for general preferential attachment models
without loops

We will now derive the claimed error bounds from the right hand side of .
Therefore we use the following dynamic way of generating a uniform random variable
on [n] (cf. [For09)): let J, be a Markov chain with J; = 1 and such that
n 1
P(Jps1 = Jn| Jn) = T and P(Jpp1=n+1|J,) = T

Then, we have that J,, is uniformly distributed on [n] for every n (cf. Lemma3.12)).
In particular, we know that we can generate the indegree of a uniform vertex as
X, = deg, (J,) and moreover, (X,,) turns out to be a Markov chain. In a first
step, additionally to Assumptions (A) we assume that dy = 0, and use the above
Markov structure to show in Lemma [3.13] that

n (-1
B A0 = 5 (3 Awabilh 0 +0a0), (320)
(=1 k=0
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where
va(k) == f(k)Aga(k) and h(k,l) := f(k)P(X, = k) —P(X, > k+1).

Then, since we already have the smoothness estimate , it remains to analyse
h(k, ) and show that these terms are small. The corresponding analysis is carried
out in Proposition [3.14, We first show inductively, that under the conditions of
Theorems and 3.7, for fixed ¢ the functions k +— h(k, () are first increasing
and then decreasing, which ultimately allows us to deal with the inner sum over k.
Finally, we show that for suitable constants C' > 0, k < /¢ —1,

cet under the assumptions of Thm. [3.6]
h(k,0) <

C ¢~(=7  under the assumptions of Thm. [3.7]

Via these bounds lead to the error bounds of log(n)/n and n~(1=") in The-
orems [3.6] and 3.7l Throughout the proofs we will always assume that dy = 0, the
case dy > 0 will be shown using an easy coupling argument.

We use the following Markov chain to describe the evolution of the indegree of a
uniform vertex. Similar ideas were also used in [DM09, [For(09].

Lemma 3.12. Let X,, be a Markov chain with P(X; = 0) = 1 and transition
probabilities given for any i > 1 as

P(Xn—i-l = | X, = Z) = n;ﬁl) if j =1,
w1 W=

and 0
P(XnJrl:j‘Xn:O):{ " O

Then L(X,,) = L(W,,), where W,, denotes the indegree of a uniformly chosen vertex

in any preferential attachment model at time n satisfying Assumptions (A) with

dp = 0.

Note that the Markov chain starts at time 1 to match the index of the random
graph.

Proof. Consider the Markov chain (J,),en starting in 1, e.g. J; = 1, and such that
forn>1
n 1

and P(Jn—f—l =n-+ 1|Jn) = n——f—l

P(Joi1 = Jul|Jn) = -
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Then it is straightforward to check by induction that .J,, is uniformly distributed on
{1,...,n}. We now set X,, := deg, (J,,), so that in particular it follows L(W,,) =
L(X,). Then, using the dynamics of the preferential attachment model and the
tower property, the following transition probabilities hold for X, and 1 < j < n:

P(Xn+1:j+1|Xn:j):f7(j)'nil :7{:{)1’
f(j)) n__n—f()

n’ n+l n+l

P(Xyt1 =71X,=7)=(1—
1
n+1

?

]P)(Xn+1 = Oan = ]) =

Moreover, for j = 0,

P(X, 1 = 1|X, = 0) = ffl()) n_ f()

n+l n+1’
fO), n 1 f(0)
P(X,1=0/X,=0)=(1- . =1- )
(X1 = 0] 0) = n>n—|—1+n+1 n+1
This completes the proof of the lemma. O

Following the discussion in section [2.1.2] the next step is to find a bound on

E[Aga(Wni1)] = E [Aga(Xnia)]
= E[f(Xn41)Aga4(Xn11) + (94(0) — ga(Xnta))],

where we recall that Aga(k) := ga(k+ 1) — ga(k).

Lemma 3.13. For the Markov chain (X,)n>0 defined in Lemmal[3.19 and va(k) :=
f(k)Aga(k), with A C Ny, we have

E [-AQA (Xn—i-l)

— - i 1 (( Ava(k) (f(R)P(Xe = k) = P(X, > K+ 1)) ) +0a(0)). (3:21)

Proof. Let h : Ny — R be such that ~(0) = 0. Then,
E[h(Xni1)] = E[E [A(Xni1) | Xa]]

n_f(Xn)
n+1

E[h(X,)] +

= E|h(X,) +h(X, + 1)

n+1

n

— Bl (X, AR, )
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Using the fact that X; = 0, we iteratively obtain

E [h<Xn+l)] =

1 n
o—— ;E[f(Xe)Ah(Xe)l

Define
h(k) = Aga(k) — va(0) = va(k) + (94(0) — ga(k)) — va(0).

Thus, we get

n+1 =
1 n (-1
= A P(X, =
3 FR AP = B)
=1 k=
1 n £—1 v (0)
- k) — P(X, = k) + — 22
S (walh) — waO)PCYe = B+ A (3.22)
(=1 k=0
For the second sum, we write
/—1 {—1 k—1
(UA(]{?) — "UA(O))]P)(XZ = k) = A'UA(Z)P(Xg = k’)
k=0 k=0 i=0
1 -1 -1
= Avai) Y P(Xp=k)=> Ava()P(X,>i+1)
=0 k=i+1 i=0
Combining the latter with (3.22) yields the statement of the lemma. O

Now, the next proposition gives the desired results on h(k, ) as mentioned above.
Proposition 3.14. Suppose f satisfies f(k) < k+ 1. Define
h(k,0) = f(k)P( X, =k) —P(X, > k+1),
where (X;)e>1 is the Markov chain from Lemma .
(i) Then, for any k € Ny, ¢ € N we have
h(k, ) = 0,

and moreover for k > {, we have h(k,l) = 0.
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(ii) Suppose there exists K such that k < f(k) for all0 < k < K, then we have
AD Rk, 0) == h(k +1,0) — h(k, ) > 0 (3.23)
foralll < K+1, E</{-—2.

(iii) Assume there exist k. € No such that f(k) < k for all k > k. and f(k) > k
for k < k.. Then, for all ¢ € N there exists 1({) € {0,...,¢ — 1} such that

>0 ifk < I(0),

Mk+L@—Mh©{§O if k> I(0).

(3.24)

Moreover, I(¢+1) € {I(0),1(¢) + 1}.

(iv) Assume there exists k. € Ny such that f(k) < k for all k > k.. Then, there
exists a constant C > 0 such that for all k € Ny, € N,
h(k,0) < %

(v) If there exists v € (0,1) such that f(k) € [k, k + ] for all k € Ny, then

sup h(k, ) < =07,

keNy

Before we start with the proof of the proposition we derive a recursive formula
for the coefficients h in the ¢ coordinate as well as for its increments in the k
coordinate.

Lemma 3.15. Let h be defined as in Proposition then h(k,¢) =0 for allk > ¢
and for all ¢ € N, k € Ny, we have

t [k

£(k)
(F1 (+1 h

h%l+&):< )h@xy+713(k—L@, (3.25)

where we define h(—1,¢) = 0. Moreover, if we define AVh(k,l) == h(k + 1,¢) —
h(k,?), we have that for all ¢ € N and k < ¢ —1

¢ fk+1)
(1 11

Ath€+D::( )AWM&@+Jﬂ@Aka—L@.(&%)

C+1

Proof. Note that since X, < ¢ —1 P-a.s, we have h(k,¢) = 0 for any k > /.
Moreover, by the definition of the Markov chain (X,,), for £ > 1,

h(k,t+1) = f(k)P(Xer1 = k) = P(Xe1 > b+ 1)
f(k)+1 f(k—1)

= (1= S JEe =)+ SR = k- 1))
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_ (HLIP()Q >k+1)+ {i—k)lP(Xe = k))
_ (Hil _ %"7)1) Wik, 0) — gfi—k)lp(xf k1)
n %(f(k — DP(X, =k —1) = P(X, = k))
_ (z% - %) h(k, 0) + Zi—k)lh(k ~1,0)

h(0,€+1) = fO)P(Xp1 = 0) — P(Xpyy > 1)

= 50((1- 2 )pee =0+ —pex > 1)
- ef(+—0>1p(Xf —0)— (1- H%)MXe > 1)
— (1 - %) h(0,0) = (Hil - ZJ(F—O)l)h(O,f)-

Therefore, the identity (3.25]) also holds for k£ = 0 since we defined h(—1,¢) = 0 for
all ¢ € N. By (3.25)

h(k+1,1+1) — h(k,l+1)

0 f(k) f(k)
- (m - e+_1> k.0~ T~ 1,0
= (é_f - f(f:ll)) (h(k +1,0) — h(k, 0)) + Efi—k")l (h(k, 0) — h(k — 1,0),
which proves . O

Proof of Proposition |3.14. Before we start with the proof, note that for £ = 2, we
have

h(0,2) = f(O)P(Xs = 0) — P(X5 > 1)

— £(0) (1 _ @ ) B f(20) _ f(O)(12— f(0) (327)
Moreover,
h(1,2) = F(OP(X, = 1) = f(1)2f(0)’ (3.28)

(i) We now show that for any ¢ € N: h(k,¢) > 0 for any k € Ny by induction
on ¢. Note that for / = 1 the statement holds trivially and for £ = 2 the base
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(iii)

case follows from ([3.27)) and (3.28) since f(0) < 1. We now assume that the
statement holds for some ¢, then from (3.25)) and for £ < ¢ — 1 we have

h%%+1%:Qéj—j%%>Mh@+g¥%Mk—L@,

which is nonnegative due to the induction hypothesis and the condition that
flk) <k+4+1< ¥ For k =1/{wehave h({,{+ 1) = f({)P(X,y1) > 0. This
implies the induction step since all other terms are 0.

Now suppose that there exists K such that k£ < f(k) < k+ 1 for all £ < K.
As before we will use induction on ¢ to show the stated result. For ¢ = 2 we

get from and
h(1.2) - h0.2) = L2 (5(0) + 1) - 1) 20,

as f(0) > 0 and f(1) > 1 by assumption.
Suppose that statement (3.23) is true for some ¢ < K. By (]3.26]) we obtain

( flk+1)
(+1 (+1

Ath€+U:( )AMMh@+i@me@—L@,

(41
which is nonnegative for k < ¢ — 2 due to the induction hypothesis and since
fR)<fk+1) < f(l—-1)<e<l+1.

It remains to show that AMWA(f — 1, + 1) > 0. Again by (3.26]) and using
that AWh(¢ —1,0) = —h({ — 1,¢), we get that

Amhw—lj+l):(Zéi—%¥%)@h@—lJD+I¥E%QAmME—Z@
_f) -t f=1)
= = L0+ AR = 2,0),

which is nonnegative by induction hypothesis and since f(¢) > /.

Again we show by induction on ¢ that there exists I(¢) € {0,...,¢ — 1}
such that is valid. Note that for ¢ = 2 the statement holds trivially.
Moreover, for ¢ < k, the statement holds by (ii) with I(¢) = ¢ — 1. Suppose
statement (3.24)) is true for some ¢ > k,. By we obtain

I FlE+1)N ., fk) \a
€+f—g+1)N%m@+@jN%M—LA

Ath£+1y:(

From this we can deduce that if k& < I(¢), then since I(¢) < ¢ — 1, we have
fk+1) <k+2</ sothat AWh(k,¢+ 1) > 0. Conversely, if k > I(¢) and
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k < ¢ —2, we get by a similar argument that A®™A(k,¢ 4+ 1) < 0. Note the
case k = £ holds since AWh((, 0+ 1) = —h((, 0+ 1).

By the recursion ([3.25)) together with (3.28]), we get

e 0+1) = gff)h(é—lf Hfz'ﬂ. (3.29)

It remains to show that AR (¢ — 1,4+ 1) < 0. Since AVA(L —2,0) < 0, we
have again by (3.25),
AVl —1,041)

¢ fe-y
(+1 {+1

< h(£,£+1)—$h(£—l,£)

)hw—1m)—fgiﬁjmz—z@

:h(€,€+1)—<

l

fG-1 ¢ fG—=1)
j[[l j+1 £+1f(€_1)j:1 j+1

Cfe-1) mrG-1

= (f(@—@j[[le,

which is negative as f(¢) < ¢ since ¢ > k,. In particular, we have seen that
I(0+1)e{I(),1(0)+ 1}.

Define

(3.30)

For ¢ =1 we have
B(0,1) = FO)B(X, = 0) = £(0) < C.

Now, assume that (3.30)) holds for some ¢ € N. Using the identity (3.25)) we
obtain for £k < /¢ —1

(! f(k) (k)
h(k,0+1) = (H—l - H—l) h(k,0) + £+—1h<k - 1,0)

<(L_m>€ e ¢

—\l+1 +1/) 7 +17 +17



where we used that f(k) < k+ 1 < { in the second step. For k = ¢, we have

by (20)

‘ ¢ L.
fi=1)  f(0) y1 f()
h(l, ¢ =
(66+1 le[ 1+ 1 (+1 H i
Then, if ¢ < k*, this is trivially bounded by C/(£+1). Furthermore, if £ > k*,
then , i
f(@) c f(@) c
h(l, ¢ SN o
(£ e+1 11 —€+111;[+1 i T4+ 1

since f(z) <7 for all # > k*. This completes the induction step.

(v) Note that by (ii), k& + h(k,¥) is increasing for k£ < ¢ — 1. In particular, from
(i) it follows that

sup h(k,l) = sup h(k,l) = h({ —1,7).

keNo k<t—1
By (3.29), we get that
Me—1.0) T 1f N I e O S o () B
i+ 1 - 0 L(yre+1) T(y)

=1

using the asymptotics of the Gamma function. This immediately gives state-
ment (v).

]

We can now combine our previous estimates to prove the two main theorems
simultaneously.

Proofs of Theorems and[3.7. We first consider the case in which the preferential
attachment model satisfies Assumption (A) with dy = 0, so that we can generate the
indegree of a uniform vertex using the Markov chain (X;),>; defined in Lemma m
Using the notation h(k,¢) = f(k)P(X, = k) — P(X, > k + 1), we have from
Lemma [3.13] that for any A C Ny,

n (-1

BlAga (X)) = —— (30 X0 Aeathith,0) +ea(0)).

{=1 k=0

Using a discrete integration by parts formula and the fact that h(¢,¢) = 0, we can
rewrite the inner sum as

T
_
~

S Ava(k)h(k, £) = —va(0)h(0,0) - Y va(k + 1) Ak, 0).

i
o
B
Il
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Under the assumptions of Theorem and respectively, there exists /() such
that AWh(k,¢) > 0 for k < I(¢) and AWh(k,£) < 0 for k > I({). In the case of
Theorem this follows from Proposition m (iii), for Theorem we used part
(ii) of Proposition [3.14]

In particular, we have that

~

) _111,4(1@ + 1)A<1)h(k,€)‘
0

ES
Il

< sup ua (k)| (h([(é), 0) — 1(0,0) + h(I(0), ) — h(L, z))

< 2suplua(k)] sup h(k,0).
k k<i—1

Therefore, we get

|E[A9A(Xn+1)”
24(0) o ’
=t ‘n+1 2 ((;“A (k+1)Ah(k, 0)) +va(0)h(0,0))
[va(0)] | 2
< n+1+n—|— sup|v st;;plhkg

Hence, if we combine this estimate with Proposition [3.11] we obtain that

d "y _ E[ i < h(k,?).
v(Whg, W) = :2150‘ [Aga(Xni1)]| nt n—l—l Z Sup

k<t—-1

Finally, we note that in the case of Theorem we can apply Proposition m (iv)
to deduce that there exists a constant C' > 0 such that

which immediately produces the required bound. In the case of Theorem [3.7] we
can instead apply Proposition m (v) to get a constant C' > 0 such that

1 20 <&
dpy (Wiaq, W) < ¢~ =),

which again yields the statement of the theorem. Finally, we consider the case
in which the model satisfies Assumptions (A) with dy > 0. In this case, by the
same argument as in Lemma [3.12] the indegree of a uniformly chosen vertex has the
same distribution as a Markov chain (Xn)nzl with X; = dp, but the same transition
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probabilities as (X, )n>1. Let 7 = inf{k > 2 : X = 0}. We can couple (X,,), (X,)
by first letting X,, evolve and then letting X,, evolve independently until time 7.
Further, we set X := X for all k£ > 7. By the characterization of dry in terms of

couplings, we thus have

n

dTV(Xn,Xn) S]P)(T>TL) :H<1—2_|1_1) = n—1|—1

1=

By the first part of the proof for dy = 0, this completes the proof also for dy > 0. [

3.2.4. Results for the Barabasi-Albert model

It is straightforward to see that graph models allowing for self-loops do not satisfy
Assumptions (A). Unfortunately this class of graph models includes the proba-
bly most prominent model appearing in the literature. It was first introduced by
Barabési and Albert in [BA99]. A generalized version of this model can be described
as follows: we start with a graph consisting of one vertex and a single self-loop. Now
at each discrete time step n we insert a new vertex, which we label n, together with a
single edge, which connects to one of the present vertices according to the following
probabilities

1oy 1+0 (o)
Pn+1—n+1|PA,)°) = W20+ (110 ntal
P(n+1— ilpAls) = — 0+ D) Jdes, () ¢ (33

n(240)+ (1+9) n+a

where f(k) = 2i+5 + a, with a = ;j:—g. Here D, (i) denotes the total degree of vertex
i, deg, (i) refers to the indegree of vertex i a time n, PAL° denotes the graph at
time n and § > —1 is a parameter of the model, which, for 6 = 0, yields the
classical Barabdsi-Albert model (cf. [BA99]). In [Ros13] the author deduces rates
of convergence for the degree of a uniformly chosen vertex to a mixed binomial
distribution via Stein’s method. Theorem |3.16| gives the same rates of convergence
towards the limiting distribution p, however, though we also use Stein’s method,
the proofs are fundamentally different.

Theorem 3.16. Let W, denote the indegree of a uniformly chosen vertex at time
n in the (generalized) Barabdsi-Albert model. Then there exists a constant C > 0
such that for all n > 2
1
dev (W, ) < ¢ 2081, (3.32)

n
where W ~ p and p as in .
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The proof follows the same structure as those of Theorems [3.6] and [3.7 Most of
the calculations are very similar, but as the Markov process can now reach states
0 and 1 from any other state, some additional terms turn up and we have to alter
the statements of Proposition to some extent.

Let J,, be defined as in Lemma and set Y, = deg?*7(J,) := deg,, (J,), where
degB47 (i) refers to the indegree of vertex i in the Barabasi-Albert model at time
n. We get the following transition probabilities for the Markov chain Y,,:

. . n f() .
Vo =j + 1Y =) n+1 n+a or j 70,
f(0)
( 1 | ) n+ o

P =Y =) = i (1= 225) dor 22

S S P11

P(Y,,; = 0[Y, = 0) = 11(1 nfTL)JrnL(l_?ﬁ—OL):l_?ﬁ—ol/
BV = 0%, =) = — (1 nfflé) for j 0,

P(Y,iy = 1Y, = j) = ni1 n+>a for j > 2.

Lemma 3.17. For the Markov chain (Y,,),>o defined above and v (k) := f(k)Aga(k),
with A C Ny, we have

E [AQA( Yor)ll

(( " Aua(k (R)P(Ye = k) = P(Y; > k+ 1)) ))

=1 k=0

]
e og(n)7
n

- n+1

(3.33)

for some constant C' > 0.

Note that throughout this section C' denotes a constant, which may vary from
line to line, but is always independent of n.
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Proof. As in the proof of Lemma let b : Ng — R be such that h(0) = 0. Then,
E[h(Yo1)] = E[E [2(Yos1) | Vo]

i 2 (1299 s 22
£(0)

n 1 n
— BB + —E | n+D(n+a)

n+1

f(Yn)Ah(Yn)} + (

n+«

Through iteration, we get

1
E R(Y, = ——F F(Y)Ah(Y?)]
[h(Yosr)] n+1 [h(¥) n+1zﬁ+a 0 0] n—l—lzl—i—a

Again we define

h(k) = va(k) + (94(0) = ga(k)) — va(0).

Using (3.11]) the absolute value of the first term can be bounded by ? and the

last one by : 2181 Having taken care of these two terms we obtain
A0 = ) 0
<|— Z €+a< F(Y) Ava(Ye)] — E[f(n)AgA(n)]) +va(0)|+C 10%5 n)
<|- i 1 Z (B DA - E[fm)AgA(m])‘
1 2 g (0D AA00)] - EF0080200)) + )] + € 25

n

- 1
> (R Ava(k)P(Y, = k) —

=1 k=0 (=1 k=

)| 1 — «
1 +Cn+1gz::€+OzE[f(Y£)]+C

n+1

|’UA(
n +

+

Now, since Y} 4 deg, (Uy), where U, denotes the uniform distribution on [¢], we get

S

=1

=L (oo =

so that the last terms can all be bounded by C 2% Moreover

n

l V4
D _(walk) = va(O)P(Ye = k) = 3> S Ava()P(Ye = k)




L -1

/-1
= Ava(i) Y PYi=k)=> Ava()P(Y;>i+1).

k=i+1 i=0
Plugging all this into (3.34)) we obtain the desired statement. ]
As in section [3.2.3] we define
h(k, 0) .= f(k)P(Y, = k) —P(Y; 2 k + 1),

where (Yy)r>1 is the Markov chain defined at the beginning of this section. The
following lemma gives a similar recursive formula for A as can be found in Lemma

2. 1ol

Lemma 3.18. Let h be as above, then h(k,¢) = 0 for all k > ¢+ 1 and for all
k.0 €N, k> 2, we have

Bk, 0+ 1) = Hil <1 _ Efi—k;) h(k, £) + Hilﬁ—kih(k — 1,0 (3.35)
and
0,0+ 1) = e% (1 - gfioi) hO0) = J‘Ha), (3.36)
14 1 14 o
ML E+1) = (+1 (1 a €+a) AL, 6+ (¢ + 1)(€+a)h(0’€) * 4+ 1)l + )
(3.37)
for k=0,1.

Moreover for AVh(k,l) := h(k + 1,¢) — h(k, ), we get that for all £ € N and
2<k<l—1

/¢ f(k—i—l) 14 f(k)
ARk N)=—-(1—"—"—") AWKk — 2 AYQ(k -1
(k,£+1) €+1( {4+« ) ( ’£)+€+1€+a ( )
(3.38)
as well as
14 1 o 14
(1) — _ (1)
A h(0,€+1) £+1(1 €+a>A h(0’€)+€+a£+1 and
¢ f(2)
1) _ _ (1)
AWh(1,04 1) £+1(1 €+a>A h(1,¢)
14 o
AD =
+ (l+a)(l+1) 70, 6) 4+ 1)(¢+ )

Proof. Note that since Y, < ¢ P-a.s, we have h(k,{) = 0 for any k > ¢+1. Moreover,
by the definition of the Markov chain (Y},), for k£ > 2, we have

h(k,t+1) = f(k)P(Yes1 = k) = P(Yes1 > k+1)
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B f<k)<e-i 1 (1 - szi)w =k + e%f(ek;al)myf =k- 1>>
—<£L1]P>(Yg>k+ )+£L1€f(—k>ﬂ"<n:k))
:%h(kf)—ﬂil{i—@f()( k)
Y a( —DP(Y; =k —1) = P(Y; = k))
(- B et

which is exactly (3.35] . Using this result we obtain

AYRh(k, 0+ 1) =h(k+1,0+1)—h(k,{+1)

4 ¢ flk+1) ¢ flk+1)
= — 1 A S
(£+1 (+1 (+a )h(k+ ’€)+£+1 (4«

_( 0t f(k))h(H)_L&h(k_l,e)

(+1 (+10+a (+10+«

hk, 0)

~ -i 1 (1 - f(gk:al)) (h(k+1,0) — h(k,0))
fkR)

for k > 2, which is (3.38). With f(0) = o we get

h(0,04+1) = fO)P(Yerr = 0) = P(Yey1 > 1)

B 1 £(0) 14 f(0) _
=10 <£+1 <1_€+a) RS (1_“—0‘)Pm_0))
p ) B f(0)
_ (H_lmnzlwmﬁaﬂ”m—o)*m)

(0) £(0) : £ 0
S (1 - €+a> S A G

f(0)
(+ 1)+ «)

1
A0
+

) _
1/+

Sl
_ ¢ f(0) a
B e+—1( m) h0,6) - L+ 1)+ )’

where we used that Kil) (1 - %) = m Similarly we obtain
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h(1,0+1) = f()P(Yes1 = 1) = P(Yiyq > 2)

_ LfO) , € f0) s l f(1) _
= /) (€+1€+a+€+1£+ap(n_0)+€+—1(1_€+—a> MYE‘”)

(LMYE sy L Wy, 1))

C+1

£(0) ‘ ( ¢
T WDt T¥1 ST LR SNy

h(0, 0)

1 1 14 f(0)
=— 11— h(1,0) + ————h(0,0) + ——————, 3.39
é—l—l( €+a) (1,4) (+ 1)L+ ) (0.9 (+ 1)+ «) (3:39)
where we used f(1) = + 115 = 1. This gives ) and ((3.37) Using the above
identities as well as (3.35)) for h(2, ¢+ 1) yields the des1red results. O

The following proposition gives the necessary results on h(k,1), which slightly
vary from the ones given in Proposition for models fulfilling Assumptions (A).

Proposition 3.19. (i) For h as before and any ¢ € N we have

1

h(0,0) = —-.

( ) ) g

(i1) For any k,¢ € N we have

C

h(k, ¢ —

Ak, O) < 7,

with C' = max{3, HZ L fgfal)}, where k* > 1 is such that

flk+1)>k+a VE<E and f(k+1) <k+« fork > k"
(11i) For any ¢ € N we get

AWR(0,0) = h(1,£) — h(0,0) >

| e

(iv) For £ < 15,k < 0 —1 we have
AWk, €) = h(k +1,0) — h(k,£) > 0.
(iv) For all ¢ € N there exists I(¢) € {0,...,¢} such that

ADR(k, 0) = h(k + 1, — h(k, 0) { i 8 ZZZ S %; (3.40)

Moreover, 1(¢+1) € {I(¢),1(¢) + 1}.
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Proof. First note that

1 f(0)? £(0) 1
AR Tta ! 1—|—a> PX

M1,2) = f(HP(Yz = 1) = P(Ys > 2)
_ 1 f() f(0) f()
= /) 5(1_ 1+a) +2(1+a)) - 2(1+a)

and

f(2)

As in the proof of Proposition we will use induction to show all of the stated
results.

(i) From the calculations above we have

1
h(0,1) = ~1 and h(0,2) = 7.

Using the induction hypothesis h(0,¢) = —% and the recursive formula de-
duced in Lemma [3.18| we get

14 ol 1 o 1
MO, £+1) = (e+1 - (e+1)(£+a)> (7) T+ D(l+a) l+ 1

(ii) For k = 0 and all ¢ > 2 the statement follows from (i). We now proceed via
induction on ¢. As h(k,¢) =0 for k > ¢ 4+ 1 we need to show that the result
holds for k < /. For ¢ = 2 we have

1

20 — 1
h(L2)] < 5 |5

1+«

1
h(0,2)] < <3 h22)=

N —

which proves the base clause.
Assuming that the statement holds for an ¢ € N and all k£ < ¢, (3.39) and (¢)
yield

h(1,€+1)]
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(iii)

_ t ¢ f(0)
_‘<£+1 (€+1€+wx)hujy+w+JXE+aﬂwL@+(K+Uw+aﬂ
e e

(41 (L+1€+a) S+ D)(l+a)  ((+1D)(+a)

l C 1—«a
§(£+1 (T 1) z+a)7+ T+ 1)

C 1 1-a C
SE—I——1<1_E+Q €+oz> (+1
and by (|3.35])

O i N () ¢ C
“\U+1 d+1l4a L+t a) 41 0T

for 2 < k < ¢ as we proved the bound on h(1,¢) just beforehand. We still
have to deal with the case k = ¢+ 1:

h(l+ 1,0+ 1) = fl+1)P(Y1 =0+ 1)
A+ 1,4+ 1) = F(E+ Py = £+ -0

ﬁ z+1 C
€+1 n 14+« f—i—l

due to the definition of C.

For ¢ = 2 we have

200 — 1 1 1 1 2 3 o
AVR0,2) = ——+ =5 (1— = Z 5
(0.2) 2(1+a)+2 2( 1+oz+1+oz> 2(1+a) = 2

Assuming that the statement is true for some ¢ € N, we get

¢ ( 1
R 1)(€+oz)) ATRO,6) +

o 14
{4+ al+1

h(1,0+1) = h(0,£+1) = (

S ? B 14 oz+ Q 14
“\U+1 (+1)(+a) (+al+1
« « 14 « o
_ i - > :
(+1 /l+al+1 (+1D)(l+a) — £+1

Obviously AWh(0,¢) > 0 for all £ € N due to (iii). Now

1 i) 20-1 1 2
A()h(l’Q)_2(1+a)_2(1+a)_2(1+a)((2+5+0‘>+1_QO‘)20’
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as 0 < a < 1, yields the result for £ = 2. Assuming that the statement is true
for some ¢ < 5 — 1, (i1i) gives

ADR(1,0+1)

14 14 f(2) 1 ¢ 1 —Oé

- <€+1 B £+1€+a> ATR(L 6 + (E—I—oz)(€+1)A( (0,6 - L+ 1)L+ )
l

T o)+ D)

and for2 <k </¢—-1

«

4+l +a)

o
14

h(k+1,0+41) = h(k,(+1)

I ¢ flk+1) ¢ f(k)
— —_ ADR(E — 2 ARk -1
<£+1 (+1 [+« ) (’€)+€+1€+a ( 0,

which is non-negative due to the induction hypothesis as

f(k;+1)§f(€):%+a§€+a.

It remains to check the case £ = ¢. We have
h(€+1,0+1)—h({,L+1)
=fl+1D)PYo1=0+1) — fOPYou1 =) +P(Yyy >0+ 1)

— s+ e 0 - 10 | (1- 2 e -0

LDy, g 1)} v SOy, g

1 (+a (+1l+a
= o OP(Y =) <% ~1+ fi—i)

_ Himffl (f(C = DB(Y; =~ 1) — B(Y; = 1))
L (f i 1> WO+ o (e 0) (e - 1,0),

_l’_
which is non-negative due to h(¢,¢) = f({)P(Y, = ¢) > 0, the induction
hypothesis and the fact that
fe+1) 25 o~ ((+a) 1

—1= > (< —.
{+ « {4+ « 20 — 144

(3
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Now suppose the statement is true for some ¢ > ﬁ. The rest of the proof
follows analogously to the case of models fulfilling Assumptions (A), the only
thing to verify is that for I(¢) < ¢ we have AWh(k,f+1) <0 for k ={¢,(+ 1.
Indeed,

AVRU+1,04+1)=-h(l+1,0+1)=—fl+1)P(Yi1 =0+1) <0

and from the calculations above we also get

¢ fe+1) 14 ¢ f0)
e _ _ eh) _
ATRE L+1) (£+1 {+ £+1)h(£’€)+€+1e+aA ME=1.0)

<0,

since £ > 1 so that ”1) <land AWl —1,0) <0as I(¢) < L.

Proof of Theorem[3.16. By Lemma it follows that
n (-1

E[Aga(Vor)] < — = (303 Aua(bnk, 0) L lostn).

+1 (=1 k=0 n

As in the proof of Theorems and we use a discrete integration by parts
formula to get

-1 ¢
> Ava(k)h(k, ) = —va(0)h(0,£) = > valk + 1)AVh(k, ),
k=0 k=0
where we also exploited that k(¢ + 1,¢) = 0. By Proposition [3.19] (iv) we obtain
-1
‘ valk + 1)A<”h(k,£)’
k=0

< sup v (k)| (AUI(0),0) = n(0, 0) + h(1(0) +1,0) = h(¢,0))

< 2sup [va(k)| sup h(k, ().
k k<t—1

Now Proposition (ii) and Proposition yield

[E[Aga(Xps1)]]

< ‘n i 1 Z ((gm(k - 1)A<1>h(k;,e)> + UA(Q)h(O’@)’ L o los(n)
< g e leal®)] ;1 kigplh(k,éﬂc logrf”)

= ni ] " %J“ g,fn)
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Hence,

1
dry(Wii1, W) = sup |E[Aga(Xn11)]| < C Og(”)’

ACNp n

for some constant C > C. ]

3.3. Rates of convergence for the out-degree

Theorems [3.6] [3.7 and all deal with the indegree of a uniformly chosen vertex.
However, for the model described in Example an obvious question concerns
the distribution of the random outdegree. In [DMQ9] the authors show that the
outdegree is approximately Poisson distributed. The next theorem gives an error
bound on this approximation.

Theorem 3.20. Let D,, denote the outdegree of vertex n in the model described in
Example and suppose that for some v € (0,1), we have f(k) < vk + 1 for all
k € Nyo. Then there exists C' > 0 such that

1 1
1 f07’0<’}/<§,

drv(D,, Po(\,)) < C %, fory =1,

n=20=7 " for % <7<,

where Po(\,) denotes the Poisson distribution with parameter X\, = E[f(W,_1)]
and W, _1 has the distribution of the indegree of a uniformly chosen vertex at time
n — 1. Moreover, A, — X = E[f(W)], where W ~ p as in (3.3). Finally, if
f(k) =~k + 5 fory e (0,1),5 €[0,1], then

A = E[f(W)]] <077
For the proof we will need the following moment bound.

Lemma 3.21. For the preferential attachment model as in Example with f(k) <
vk + 1 for all k and some v € (0,1), we have, for alln € N,

Elf(deg, ()] < (5) " for alli € [n].

Proof. For the linear attachment rule f© (k) := ~ -k 4 1, the statement of the
lemma is proved in [DM13] Lemma 2.7]. Denote the indegrees in the corresponding
preferential attachment model by deg, "7 (i) and consider general f and associated
degrees deg, (7). Then, since f < f© we can couple the models so that deg,, (i) <

deg, (i) for all ¢ € [n],n € N. In particular, we have that
E[f (des, (2))] < L/ (deg, (1)] < E[f(deg, ()] < () "

as required. O
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Using a result of [BH84] for Poisson approximation (again based on the Chen-
Stein method), we can now prove Theorem [3.20]

Proof of Theorem[3.20. By the independence assumption for incoming edges, it
follows that the 1ndegree evolutions (degy (¢))k>; and (deg (j))r>; are indepen-
dent if ¢ # j. In particular, if we write X;, = 1{there is an edge from n to
i} = deg, (i) — deg, (i), then we can write the outdegree D,, of vertex n as

—

n—
Dn = Xi,na

1

(2

i.e. as the sum of independent Bernoulli variables. Note that

Pin = P(Xin =1) = E [E [deg, (i) — deg,_,(i)|Gn-1]] = E [M} _

n—1

Therefore,

S f(deg, 1)) = ELF(W,0)].

An i=E[D,] :E[n_ :
=1

where W,,_; denotes the indegree of a uniformly chosen vertex after the insertion
of vertex n — 1. From the proof of Theorem 1.1 (b) in [DM09] we know that
An = E[f(W)] if W ~ u. Applying [BH84, Thm. 1.1] we obtain that

)\nl

drv (D, Po(A\,)) me < min{1, —}me (3.41)

It remains to control the sum on the right hand side. By Lemma[3.21] we have that
n—1

n—1 , 1 ) o 1 .
;pi’”:(n—w E[f(deg,,_,(i))] SW;(;) |

Since A, — X := E[f(W)] we can deduce from (3.41)) that

1 1
el f01"0<’}/<§

drv(Dy, Po(\,)) < C @, fory=1
n20=0 0 for L <y <1,

—_

n—

i=1

for a suitable constant C' > 0, which proves the first part of Theorem [3.20]
For the final part, we assume that f(k) = vk + 3, for v € (0,1),8 € [0, 1]. First
note that in this case by (3.7))

A=E[f(W)] =1EW]+ =7 n(k, o))+ 8
=) flk =D + 8 = ’M; B.

k>1
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In particular, A = % Following a similar argument as in the proof of Theorem

1.1 (b) in [DMQ9], we have that

1 n+1

E[f(Wosa)] = —— D~ E[Elf(deg,11(1)) 6]

n

> E|E[f(degy, (1)) — f(deg; (1)) | G|

i=1

0 1
SO 1
n+1 n-+1

B 1
Cn+1

+ > B[Rl (des, () 6]

= ( > E [El (degy (1) — deg, (i) | G,]] + 5+ ZE[f(deg;(i))])

n

- n+1 ZPYE[f(dej;(iq + n f— 1 + n—li- 1 ZE[f(deg;(i))]

B
n+1

Using the fact that A\ = %, we obtain that for A, 1 := E[f(W,)] — A,

_ 1 —
Air = (1 - 7))\71.
n

Hence,

Pl = T (1= 157 )l < €n 0,

i=1

for a suitable constant C' > 0, as claimed. n

o1
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4. Rates of convergence via coupling

In the following chapter we look at the same preferential attachment models as were
considered in the previous one. However, this time we will use a different technique
to derive rates of convergence. Unfortunately, this techniques can only be applied
to a subclass of the attachment functions considered in chapter [3| and the rates of
convergence contain an additional factor of order log(n) compared to the bounds

given in Theorem [3.7]

The coupling method, introduced by Wolfgang Doblin, is a powerful technique
in probability theory which allows to compare two probability measures. One of
the most prominent applications is in the theory of Markov processes. Here, one
constructs two copies of a process, one of which is already in stationarity, on a joint
probability space and shows that the two processes coincide with high probability
after some random time. We will use this technique in an alternative proof to de-
duce rates of convergence for one of the random quantities already considered in
section namely the indegree of a uniformly chosen vertex.

In section we begin by considering preferential attachment models satisfying our
Assumptions (A) from section [3.1|and subsequently in section 4.2 deal with models
that do not satisfy those assumptions.

4.1. Coupling for general models

Noticing that the behaviour of the discrete-time Markov chain (X,,),>1 as given in
Lemma resembles that of a continuous-time Markov chain (Z;);>¢ with gener-
ator A, we can apply coupling techniques to deduce rates of convergence.

Our main result in this section gives bounds on the distance of W, (the degree
of a uniformly chosen vertex in G,) and its limiting distribution in the total vari-
ation metric for attachment functions f, such that the first and second moment
exist. The result is formulated in the following theorem.
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Theorem 4.1. For every monotonically increasing attachment function f : Nog —
(0,00) and f € L3(u), where p is the measure defined in (3.3), there exists a
constant C' > 0 such that
1 1)
dry (W, W) < C M’

n

where W ~ p and W,, denotes the indegree of a uniformly chosen vertex at time n.
Remark 4.2. Following [DM09] for f(k) ~ vk* with 0 < o < 1, we have

1 1

log(pug) ~ ——

kl—a
71—« ’

such that in this case the assumptions of Theorem are met. Furthermore, for
f(k) =~k + 5 with ~, 8 € (0,1], [DM0Y] gives

B+1
F( ~ )k,(pr%)
()

?

Hk ™~

so in the case v > % Theorem 18 not applicable. In particular this shows that
Theorem 3.7 can be applied to a larger class of attachment functions.

In order for the reader not to get lost in the tedious calculations, we give a short
overview of the proof. The main idea is to construct an explicit coupling (X/,Y)
of (X,,Y,), where Y,, and Y, respectively are observations of the continuous-time
process Z; at discrete time instances, and apply the coupling inequality

dry (X, Yn) S P(X, #Y,), (4.1)

see Proposition 2.14 Thus, we will construct a coupling of the discrete- and the
continuous-time process so that the two chains are in the same state with high
probability. We will proceed similar as in the proof of Proposition [2.14 Due to
the scaling of the transition probabilities of the discrete-time Markov chain, we will
observe the continuous-time process Z at discrete time steps ¢ (n), where

v =3+

_ 1 . .
so that ¢(n +1) —¥(n) = =5. We denote the observation of Z at the n-th point
in time by Y, i.e.

Y, = Zym)-
As the transition probabilities of the two chains differ, we cannot construct a cou-

pling in such a way, that the chains evolve together from some random point in
time onwards. However, we can construct it in such a way that once the chains
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are in the same state, they stay together with maximal probability, e.g. if the
chains are both in state £ at time n they move together to state ¢ with probability
min{P(X,,1 = X, = k),P(Y,,s1 = {|Y,, = k)}. Lemma gives the necessary
inequalities to decide which transition probability is the smaller of the two and also
shows that for fixed k these probabilities asymptotically coincide. In the proof of
Lemma 4.5 we give the precise definition of a coupling (X,Y,) of (X,,Y,). More
precisely, we force the chains to meet, whenever the continuous-time process moves
to 0 and then keep them together with maximal probability. Furthermore, we show
that this really defines a coupling, and finally deduce an upper bound on the prob-
ability of the event that the chains drift apart, even though they have been in the
same state before. As it is more likely for the discrete-time process to perform a
jump to zero than for the continuous-time process (cf. Lemma , we show in
Lemma that the likelihood of X moving to zero without Y, is small. The proof
of Theorem uses these results to show that for n large, the probability that the

chains are not in the same state, is close to zero.

Lemma 4.3. For the time continuous process Y, observed at discrete times we have

P(Y,1 =0|Y,=k) < ] for0 <k <n, (4.2)
B =k + 1, =8 < T (4.3)
P(Yoor = kY, = k) > 1— 17?—4]6(1]{) for k 40, (4.4)
P(Y,1 =0]Y,=0) > 1-— gf)l (4.5)
and
o (1+ f(k+1))2

P(vs =l =) < EIEE (4.6

forn > 4. Moreover
U [P(Xoir = 1K = ) — P(Yaps = ¥, = k) < LELEED g

j20 - (n+1)?
forj ¢ {0,k,k+1} and all k < n, where (X,),>1 denotes the discrete time Markov

process introduced in the previous chapter.

Proof. Throughout the proof we will make extensive use of the following inequalities,
resulting from bounds on the Lagrange remainder in the Taylor series of exp(—x):

22
- <1—exp(—z) <z (4.8)
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Let Aq(fll, with o € {>,>,=}, denote the events that the time continuous process
Z; moved more than once, at least once or exactly once respectively in the interval
Jn = (0, 725]- By By we denote the event that Y, is in state k the next time we
observe the process. With this notation we obtain

P(Y, 1 =0, = k) = P,(A7), By) + Pr(AT),, By) (4.9)

for k # 0, where we used P(Y,,11 = 0|Y, = k) = Px(Y,y1 = 0) for simplicity
of notation. Recall that in the time-continuous process Z; the times between two
movements are exponentially distributed, where the parameter is given by the sum
of all rates of jumps which are possible from the current state of the chain. Using

1 f(k)
P.(Y, A= — and Pu(Y,., =k + 1A —_—
we can then write the first probability in (4.9) as
(=) _ 1
Pk(AnJrl?BO) - 1+ f(k) (Pk<An+1) Pk(An+1))

_ %ﬂk} <]P’k <Exp(1 + fk)) < ﬁ) —~ (Afil))

_ %f(k) <(1 —exp (—lqj—j:(lk))) - IP’k(Afil))

R o O S VN e ) >)
T+l 2(n+1)2+§( DG D+ 0t~ 1 e+ Ane): (4:10)

where Exp(«) denotes a random variable following an exponential distribution with
parameter . Plugging this into (4.9) we obtain

P(Yn+1 - 0|Yn - k’)
(1 1+ f(k (14 f(k))"*
_(n+1 2(n + 1)2 +Z J+ly+2)( +1)j+2>

1 (>) >)
— <mpk(f4n+1) Pk(An+17BO))

S( 1 _1+f(k)+(1+f(k)22)_(;P (4 - Pk(Af;)l,Bo))

n+1 2n+1)2  6(n+1) 1+ f(k)

We will now show that

A4Sk (AR
2(n+1)2  6(n+1)3 14 f(k)
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For that we denote by fo_al, with ¢ € {>,>,=}, the event that Z; falls down more
than once, at least once or exactly once resepectively in the intervall J,,. This yields

Pk <A7(~;)17 BO) = Pk (Agzi)lﬂ BO: Di?l) + Pk (AE;-)D BO> D’EL?‘)].)
Now

Py <A£L+1v BOv D£L+1> Py, (B }An+1’ n+1>Pk< +1 }An+1> (Av(;-)1>
ot
T 1+ f(k+1)

as the process only falls in the last step and has moved before, so that it must fall
down from a stage greater than k.

We now divide the interval J,, into n + 1 equidistant intervalls I, of length
and define the event

Pe(47h).

n+1

M¢ .= {first move occurs in I;} = {no move up to I;} N {process moves in I}.

Using total probability we then obtain

Pk (Agjr)l’ BO; D£L+)1) ]Pk (B(]?Dn+1> Z]pk BO7 n+1|MZ>]P>k(M€)

< ZPO 1) 1f(k) (1 —oP (_UTJCY)?D
< Z 22 n+11)2

(L+f(1)* _ 1+ /(1)
S 1P S 31

(4.11)

forn > 4, since f(k) < k+1 by Assumptions (A). Here we used that the probability
that the process started in 0 moves at least two times in .J, is smaller than the
probability that in a Poisson process of intensity (1+ f(1)) on R at least two events

occur in J,. More generally for H(%) denoting a Poisson process of intensity
—Hﬁffl) =: )\, we get

( L+ f(k+1) _ e oo N 1
P(a) < (1 (AL ) 5 ED 3 By ¥y

A2 AA (14 f(k+1))?
<_€AZW_E_ 2n+1)2 (4.12)
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We have

L+ f(k)  (L+f(k)? _ 1+ f(k) <1_ (1+f(k))) o L+ fR)

2n+1)2  6(n+173  2n+1)? 3(n+1) /= 3(n+1)%

=

for 1 <k <n—1, which in combination with (4.11)) gives (4.2)) for n large enough.

Using (4.10) and the fact that Zig(—l)j% > 0 we get

1 (1+/fk) 1
ntl 2n+1)2 1+ f(k)

1 A+ fk) O+ f(k+1))?

Pi(Yoi1 = 0) > P(AS)), By) > P (A7)

“n+1  2(n+1)? 2(n+1)2
1 A+ f(k+ 1))?
“n+1 (n+1)2

and thus

By(Xoss = 0) — By(Yyps = 0)] < L SEL D

S I (4.13)

Note that since Py(X, 1 =0) = #1 for all £ > 1, we also have

(1+ f(k+1))
(n+1)?

Using (4.8) and an adapted version of (4.9)), we similarly obtain

By(Xpy = 0) — (Yo = 0)] < Ve > 1,

]P)k(Yn_;’_l — k ‘l— 1)

- - +(f2k:) ((1 — exp (_1:;{(1@)) Pk(ALl)) +P(AC) Bisy)

flk 1+ f(k > >
=7 +(f()k:) ( n 1{(1 ) Py (Afer)l)) + P (Asz)Pk (Bk+1|A£l+)1)
k > > k
= ) (pueeala) - 1)
< f—ﬁ =Pu(Xpr1 =k +1),

ntl = 1+f(k

since Py, (Bk+1 ‘Agli)1> <Py (A%)l) < O < J®)_ for all k and n > 4 by assump-
tion. With (4.8) and (4.12)) we get the following lower bound
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Pp(Yoi1 =k + 1)

f(k)  f(R)(A+ f(k)) >) >) f(k)
=il 2(n + 1) + P’“(A"“)(P’“(B’““'A"H) B Tfﬂc))
) SR FE) e -
- n+1 2(n +1)2 — P <A"+1)
o Sk A+ fE+1)
“n+1 (n+1)2 7
so that
uXs1 = b+ 1) = Bu¥oa =+ 1) < S0 fj)gw. (4.14)
Now for k # 0,
P(Y, 1 = k[Y, = k) > 1 =Py (AZ)) = exp (—17;“—{(1]‘“‘))
k
> 1:—5(1) — Py(Xns = k), (4.15)
but also
P(Y, 1 = k|Y, = k) = 1 — P, (AZ)) + P(AT), By)
= exp (—1:—_{(1]{:)) + Pk(Afi)l, By)
L+ f(k)  (+ f(R)? >)
Sl T * Buldnn)
1 1+ f(k)  (1+ f(k+1))>
- n+1 (n+1)2
so that
Bu(X, = k) — By(Y, = )| < LS DY (116)

- (n+1)2
for K > 1. For k =0 we get
P(Yos1 = 0¥, =0) > 1—Py(AZ))

and can improve the lower bound (4.15)) in this case since the time until the process
moves out of 0 is exponentially distributed with parameter f(0) because in contrast
to (4.15)) the process does not move away from 0 if it falls. So we have

Po(A7)) =P (Exp(f<0)) < L) —1—exp (—&)

n—+1 n+1
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and with (4.8)) we get

P(Y,41 = 0]Y, = 0) > exp (—T{(—ﬂ) >1-— 7{(—?1 =P(X, 11 = 0[X,, =0).

Analogously to the calculations in the case k # 0 we get
P(Y,iy = 0]Y, = 0) = 1 —Py(AZ)) + Po(AZ), By)
fO) (LS

== 2n + 1)2 +Po(A,7)
f0) A+ f)?
Sl_n—i—l+ (n+1)2
so that also for kK = 0 we obtain
1 2
IPo (X, = 0) — Py(Y, = 0)] < % (4.17)

Observing that with (4.12))

(14 f(k+1))?
2(n+1)2 7

for j ¢ {0,k,k+ 1}, we get (4.6). (4.13)), (4.14) and (4.17)) together yield (4.7).

Remark 4.4. As P(X,, = 0|X, = k) = n%l is independent of k for k # 0, we
also have

IPL( Xt = §) = Pe(Yoyr = §)] = Pa(Yorr = 5) < Pu(AT) <

(14 f(k+1))?

(4.18)

for all ¢ # 0.

For the construction of a coupling (X,,,Y) of X,, and Y, we will use the following
abbreviatory notations

Py (k) := P(Xpp1 = K| X, = m),
pn+1(]|£) =P(Yoi1 =Y. =10),
Pn+1<k|m l) == P(X = k|X =m, YI =1{),
Py Glm, 0) = P(Y,,, _3|X =m,Y, = () and
i (K, jlm, €)== P(X, ) = k, Y,y = j|X, =m,Y, = 0).
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Lemma 4.5. There exists a (Markovian) coupling (X,,,Y,) of X, and Y, such that

n’-n

E[(f(Yi+1)+ 1)
(k+1)2 ’

P(Xp # YelXp = 1)) <2 (4.19)

forall k>0 .

Proof. As stated before we will couple the chains so that they stay together with
maximal probability once they have met. This idea is made precise in the construc-
tion of an optimal coupling described in [LPWO0G]. Following that construction, a
step is performed by both chains with the minimal of the two probabilities to do so.
Thus the chain with the higher probability to move in such a way, can only perform
that step without the other one with probability given by the difference of the two
probabilities. If these differences converge to zero for all possible movements, the
chains will stay in the same place with probability one if time tends to oco. We
define our coupling (X, ,Y,) on N x N as follows:

Let J! ~U{1,...,n} for all n and put X/ = deg, (J!). For £ # m we let the two
chains evolve independently until Y,, falls down to 0. In this case we put J! = n so
that X] = 0. For ¢ # 0 we now define

X Y (.
) ) Doy (kElm) - p) o (5|¢ )
n+1

Prt1(0,0/m, £) = p) 1 (0[0),

Pn+1(k,0lm, 0) =0 for k # 0.
Furthermore, for j # 0, we set

(n+r1 - PLA(OM)) pgﬂ(ﬂ@
1 —pna(01) ’

ﬁnJrl(Ouja ‘];H-l#n_‘_l’mag):oa form;«é()

ﬁn-l-l(O?j? ‘]7,1+1 =n-+ 1|m7€) =

and

(P12 (010) = =5)pk 41 (410)
I pZH(OM) ’

ﬁn+1(oaja J7/z+1 7& n+ 1’076) =

so that

(11 (01m) — pry1 (01)) i (416)
1= pnya(016)

ﬁn-l—l(o’ J |m7 E) -
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for j # 0. For £ = 0 (and consequently m # 0) we set

ﬁn+1(/{:,j|m, O) = p§+1(k|m) ) pfﬂ (J’O>

If the chains are already in the same state, i.e. £ =m, we define the coupling in
such a way that they stay together with maximal probability. Thus, with Lemma

[4.3] we get
B 1(0, 0fm, m) = min{p,  (0m), B,y (Olm)} = p 1 (0fm) for m 0,
D (m, mlm, m) = min{p,, (mlm), py, (mlm)} = py, (mlm) and
ﬁn+1(m + 17m + 1|m7 m) = min{p1)1(+1(m + 1|m)7p5+1(m + 1|m)} = pg—i—l(m + Hm)
For k=0 and m # 0 we put

(P41 (0m) = pY 1 (0lm)) (py4y (m|m) — pyy (m|m))
1- (pq)z/+1(0|m) +p31/+1(m + 1|m) —I—p§+1(m|m))

ﬁn+1(0, m|mv m) =
Pnt1(0,m 4+ 1jm,m) =0,

and

(an+1(0|m) - p}{+1(0|m)) pg—i—l(ﬂm)
1— (p{+1(0|m) + py i (m 4+ 1m) + p§+1(m|m)) 7

ﬁn-ﬁ-l (Ovj|m7 m) -

for j ¢ {0,m,m + 1}. For k = m we put

Prt1(m, jlm, m) =0, (4.20)
for all j 2 m. For k =m + 1 we let
Prnr1(m+1,0lm,m) =0 for m # 0,

(pf_H(m + 1|m) - p5+1(m + 1|m)) (pg+1(m|m) - p§+1(m|m))

st (m + 1, mlm,m) =
P fm,m) T (%1 (0m) + Py (1 + L[m) + Xy ()

and

6o s(m 4 L . m) = (X1 (m 4 1m) — Yoy (m+ 1m)) oy (m)
R 1— (pY1(0m) + pYoy(m + 1m) + pX,1 (mm))’

for j ¢ {0,m,m+ 1}.

Note that the coupling is constructed in such a way that whenever the two chains
are coupled, X cannot stay in any state without Y staying as well and Y can neither
move to 0 without X nor can it move one state up without X following.
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state

...............

............

012345...

Figure 4.1: The paths of X and Y are depicted as a dotted red, resp. blue lines.
At times at which the two chains are moving together, their path is displayed as a

continuous violet line.

We now show that this in fact defines a coupling of the two chains. For £ £ m, € # 0

we have
pn+1 (0m, £) an—H (0, j|m, £)
7>0
Y X Yy pXH(jlﬁ)
=Py (010) + (P41 (0lm) — iy, (0]0)) Y —— =
§>1 1 anrl(OM)

= pps1 (0m)

and for k # 0

P (klm, €) = Zﬁn—i—l(l{:a.ﬂmug) = Zﬁn+1(k,j]m, 0)

j=0 j=1

_ an+1 (k|m) p?fﬂ(jlf)
§>1 anrl(Ow) ’

= P (Klm).
We now look at the case £ #m but £ =0 (e.g. m # 0) and obtain

p§+1<k|ma 0) = Zﬁn-ﬁ-l(k?j'ma 0) = pf+1(k|m) prﬂ(ﬂo) = p?i(—&-l(k’m)'

>0 >0
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We can now proceed analogously for Y. If j,£ # 0 we have

!

pz;&(j’nlag)

= bk, jm, £) = Pryr(0,3m, 0) + Y posa(k, jlm, €)

k>0 k>1

= (P Om) = s 010) - 22 57 P Bt U1

1 — 11 (016) =1 1 —pn1(00)

— Y (ilg p§+1(0’m) —pZH(OW) 1 —pr(O\m)
Pr41(01€) Pr41(0[€)
= Py (J10)-
For j = 0 and still £ # 0, we get

a1 (0lm, £) =" posa (k. 0lm, 0)

k>0

= Pn41(0,0lm, €) = p) ., (00).

In the case £ = 0 we have

Paar (ilm,0) = Pk, jlm, 0) =Y p),y (klm)p 1 (70) = pl 1 (j]0).
k>0 E>0

For X and the case £ =m # 0 the situation is the following:

pé;laNTnvnw ::zz:ﬁn+l(0hjhnvnw
j=0

(pffH(O]m) - pZH(O’m)) (szrl(m’m) - pfﬂ(m]m))

Y
= Pp11(0[m) +
- 1- (p7{+1(0|m) —{—p}fﬂ(m + Hm) +an+1(m|m))

(Pr41(0m) — prya (0Im)) Py 4 (51m)

_|_
mo%;nm L= (Praa(Olm) + pii (m =+ 1m) + pyls (mlm))

= P11 (0Im)

X y Pria(m|m) — piiii (m|m)
+ (pn—&-l(o‘m) _pn—&-l(O‘m)) <1 . (pz_’_l(o’m—; _|_p¥+1<m ++1‘m) _I_p7)l(+1(m|m))
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L= O (0fm) + Py (mlm) + plea(m + 1|m>>>

1 - (px+1(0|m) + py i1 (m 4 1|m) +p§+1(m|m))

= pf+1(0|m).
Furthermore, for all m > 0, we have
x' oA X
pn+1 (m|m> m) = Pn+1 <m7 m‘m7 m) - pn+1(m|m)

by (4.20)), as well as

pr)f—&-l(m + 1|m’ m) = Zﬁn-&-l(m + 17j|m7 m)
J>0
(Pra (m 4 1m) — p) oy (m + 1m)) (py i (m|m) — pyy, (mlm))

= + Py (m+ 1|m)
1 - (pz+1(0|m) + ph i (m 4 1|m) +p§+1(m|m)) i

Z (pf_,_l(m + 1|m) - prr{-s-l (m + 1|m)) p};.l (]|m)

_l’_
I (pz+1(0|m) + py i (m 4+ 1|m) +p7)1(+1(m‘m>)

j¢{0,m,m+1}
= Ppa(m + 1m) + (pr . (m + 1m) — pyy (m + 1jm))
= Py (m + 1m).
Performing the analogous calculations for Y and m # 0 yields
px+1(0|m7 m) = ﬁnJrl(O? 0|m7 m) = pz;rl (0|m>
as well as for m >0
Py (m+ 1m,m) = Py (m+ 1,m + 1m,m) = pb_;(m + 1|m),

pz+1(m|m,m) = Z ﬁn+1<kam|mam)
ke{0,m,m+1}
(pfﬂ(o‘m) - pr}:+1(0|m)) (pzﬂ(m\m) ~ pfﬂ(m\m))
1— (P11 (0lm) + pY i (m + 1m) + p),, (m|m))

= pffﬂ(m’m) +

(Prya (m + 1jm) — pyyy (m + 1|m)) (py i (m|m) — pify, (mIm))
1= (p1(0[m) + py iy (m + 1m) + pyy (mfm))

= Poya(mlm) + (ppa(mlm) — prya(mlm)) - 1= py s (mlm)

and for j ¢ {0,m,m + 1}
pz+1<j|mam) = Z ﬁn+1(k>j|m7m)
ke{0,m,m+1}
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L a0l — Y 0m) P lm)
1- (p31/+1(0|m) —I—p}{+1(m + 1|m) —|—p§+1(m|m))

+0

(ngrl(m + 1]m) - pZH(m + 1|m)) p}lf+1(j|m)
1— (Y1 (0lm) + p¥yy (m + 1m) + p,, (m|m))

Y .
= pn—‘,—l (] ’m)
Thus (X,,Y.) is a Markovian coupling of X,, and Y, on N x N. O
As mentioned before, we need to bound the probability that the coupled pro-
cesses are not in the same state at a given time in order to prove Theorem [£.1 To

do so, we establish a bound on the likelihood that the chains do not meet, even
though the discrete time chain X moves to 0, in the following lemma.

Lemma 4.6. Let the birthtime of the vertex we look at time n be given by the
Markov chain J,, with J, =1 and
1
n+1
just as in the proof of Lemma[3.12. Furthermore we define Fy as the event that we

look at the indegree of vertex k at time k and Gy, as the event that we look at the
same vertex from time k to time n, i.e.

We then get

P(Jyir = Jo | ) = HLH and  P(Jp =n+1|J,) =

E[(f(Yi+1)+1)%

k+1 '
Proof. Since for all £ > 1 the random variable J; is independent of the states the
processes are in at time k — 1, we have

P(Xpi1 # Yiet|Fii1, Grrin) = P(Yey # 0[Fiia)
k [e%)
= P(Ye 1 # 0| Fiy1, Xy = 0,Y, =1, X, = m)P(Y,, = 1, X, = m|Fjy1)
m=1 [=0
=

P(Xy1 # i1 Frst, Grgrn) <3 (4.21)

+ D PYiegr 7 0[Frr, Xy = 0,V = 1, X;, = 0)P(X;, = 0,Y; = 0)
0
= Al +A27

where we used that Fj.; implies { Xy = 0} and that J,; is independent of X ,;
and Yk'. Using the mentioned independence again, we obtain

P(Y, =1, X, =m)

k oo ’ ’ ’ ’
Z P(Yipr # 0, Xy g = 0)Y, =1, X} =m)

A = , |
m=1 [=0 ]P>(Fk—i-1|Y;ﬂ = l,Xk = m)
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k 0o
=3 Y PV #0, Xppy =01V, =1, X = m)(k + DP(Yy =1, X, = m)
m=1 [=0
koo

=E+DY DY pra (0, lm, DP(X, = m, Yy = £)

m=1 [=0 j=1

= (k+1) ZZ Pre1(0, |m, OP(X, = m,Y, = ()

1: , =1
m

k oo
+(k+1) ZZ Dre1(0, jlm, m)P(X, = m, Y, =m)

=1 j=1

=A11 + Ao,

B

We can now bound both terms by exploiting the construction of our coupling de-
scribed in Lemma 4.5, Hence,

k o) 00
A= k4D D> (0, jlm, OP(Xy, = m, Y, = ()

m=1{=0/4#m j=1

k+1z< S S a0l OBCX, = m, Y = 0

1 \t=1#£m j=1

+Zpk+1 (0, j|m, 0)P (X m, Yk = 0))

7j=1

_ (k—i-l)i <ii pk;+1 0|m1_pk+1< ¢ ))Pkﬂ(]w) (X m, Y — ()

=l =1, j=1 Pi+1(010)
e;ﬁm
£ 3 Ol GTOVBCX, = m, Y, = 0))
7j=1
k )
=<k+1>z( 2 Bia0lm) = P (OIO)PX = m. Y = 0
m=1 =1#m

+ R (0m) (1 = Pl (010)) (X = m, Y = 0)

Sk+1) > W;,jf)l;” P(X, =m, Y, =1)
=1¢=1#

+(k+1)mi_l%+l (1— (1—%))]}”(&;:771,}/,;:0)




_E[((+ 1) + 17

-~ k’ + 1 )
where we used (4.7). Now using the transition probabilities of the coupling in the
case { = m and (4.7) again gives

(4.22)

/

k
Aip=(k+1)) P(X, =m,Y, =m)

m=1
3 (Pr1(0[m) — Py (0m))pyr sy (7]m)
§2{0,m,m+1} - (p%/—&—l(o‘m) + p};-i,—l (m + Hm) + p§+1(m|m))

(Pa41(01m) — pyy1 (0[m)) (P4 (m2frm) — pf+1(m|m)))
1= (P11 (0m) + ppyy (m + 1m) + pyiy s (m|m))

(P2 (0lm) = py 1 (Olm))P(X, = m, Yy = m)

hE

=(k+1)

m=1

B[+ 1)+ 1))
- k+1 '

It remains to deal with the case m = 0, thus to bound A,. As a result of the
case distinction for the transition probability p,.1(0, 7|0, ¢) outlined in the proof of
Lemma (L5 we obtain

=

m)

(4.23)

= ZZP<YIQ+1 = j‘Fk+17XIlc+l = 07Yk/ = laxllc = O)P(Xl/c = ankl =)

I>1 j>1
+ Y P(Yeyy = jlFesr, Xy = 0,Y, =0, X, = 0)P(X;, = 0,Y; =0)
j>1
<(k+ DS S T P(Xp = 0,V = j, FoalYe = 1, X, = 0)P(X, = 0,Y; = 0)
1>1 j>1
+(k+1)Y P(Xpyy =0,Y = j, Fe|Vy = 0, X, = 0P(X, = 0,Y; =0)
j>1
pk+1 0\5))pk+1(1|€) / /
(k+1) (eix P(X,=0Y, =/
>1 j>1
j>1
1 / !
= (k+1) Z(k—H — e (010))P(X, = 0,Y, = ¢)
>1
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j>2
= (k+1) > (i (01) = pir (010))P(X, = 0, Yy = 0)
1>1
+ (k1)) (01(0,10) = py1 (000)ph, (G]0)P(X, = 0, Y, = 0)
j>2
(fU+1)+1)2 . :
<(k+1 P(X,=0,Y, =/
1>1
(f)+1)? /
kE+1)~————P(X, =0,Y, =
B[+ 1) + 17
- k+1 ’
where we used (4.7)). In combination with (4.22)) and (4.23)), this yields the desired
result. ]

Proof of Theorem[[.1. As Z ~ W and Y,, denotes the observation of Z at deter-
ministic time instances we have

dry (Wi, W) = dpy (Xn, Z) = drv (Xn, Ya) -
Furthermore, remember that by equation we have

for any coupling (X, ,Y,) of X,, and Y,,. In particular, this is valid for the coupling

n’-n

described in the previous section.
Using the construction of J,, we can handle the events defined in Lemma [£.6, We

have
n

P(Fk> = % and ]P)(Gk,n) - H (1 - _~) -

j=k+1
and for Ly, := I} N G}, we then obtain
1
P(Ey,) = P(F, N Gip) = P(EFL)P(Grpn) = e
where we used that J, and J; are independent for i # k.

With Lemma (4.6 we obtain

P(X, £Y,) ZIP’ (X, # Yy Bin) + P(X,, # Y1, G1)
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3

<=3 (POX, # V1B, X, = Y)P(X, = Y| By)

k=2

’ ’ ’ / / / 1
+P(X,, # Y, | B, X # VR, # Vil B) ) + =

S|

3

]_ ! ’ ! ! ! !

k=2

I =E[(fYV,+1)+1)? 1
42 [(f(k+)+)]+_

n k n

k=2
1

=Ry + Ry + E (4.24)

In order to deal with R;, we define Hj, as the event that the processes evolve
together from time k to ¢ and drift apart afterwards, hence

Hip = {X; =V VE<i <, X, # Yo}
With this notation we get
P(X,, # Y| B, X = Yo )P(X;, = Y| Br )

n—1
< P(X, # Y, HiglGr, Frs X = Yy = 0)
=k

n—1
< ZP(HIC,AGk,l’X]; =Y, =0)
=k

n—1

P(Hy | X, =Y, =0)
P(G4|X, =Y, =0)

(]

L

n—1
é / ’ ’ ! / 4
< Z EP(XeH #Y X, =Y, X, =Y, =0),
l=k

k

where we used again that J; is independent of X,; and Yk' fork+1<j<n.

Furthermore,
P(XéJrl # Y£/+1|Xé = Ye/a X,; = Yk/ = 0)

=Y P(Xpp A Yol X =Y, = m, X = Y, = OP(Y, =m|X, =Y,, X = Y = 0)
m=0

=D P, =m|X, =Y, X, =Y, =0)

m=0
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(PO # 01Xy = 0, X, = ¥ = m)pi%, (0]m, m)
+ P(Ye/ﬂ # m|Xé+1 =m, Xé = Ye/ = m)pﬁl(mlm, m)

+ P(YE,H #m + 1|X1;+1 =m+ 17Xé = Ye/ = m)pgil(m + 1m, m)>

/

Y B, =mlX, =Y, X, =Y, =0)
0

m=

(

(1= PO = 01 X0 = 0,X; = ¥, = m) ) %1 (0fm, m) +0
+ (1 —P(Y =m 41Xy =m+1,X, =Y, = m)) Pty (m + 1|mvm)>

> P, =mlX, =Y, X, =Y, =0)

m=0

<pf+1(0|m) — Pe+1(0,0lm, m) —i—pfﬂ(m +1jm) — peyr(m + 1, m + 1|m, m))

S B = miX; = Y. X, =¥ =0)

m=1

< (Pigrl(o‘m) - szH(O!m)) + (piil(m + 1|m) — P?H(m + Hm)) >

+P(Y, = 01X, =Y, X, = Yy = 0) (91 (1/0) — p) (1]0))

<

<

Y BY, =mlX, =Y, X, =Y, =0) 2m?X\pﬁ1(j|m) = P (3Im))|

m=0

> ’ ’ ’ ’ ’ f(m+1)+12
m=0

5 e [(f(Y, +1) +1)7] <9 E [(FY+1)+1)°] | E[(f(Ye+1) +1)?
(0+1)2 = (0+1)2 N (0+1)2 ’

where E, 5, denotes the expectation with respect to the probability measure P(-| X z; =

Y,, X, =Y, = 0) and the last inequality follows from the fact that changing to the
newest vertex is independent of the stage the processes are in, so that conditioning

on

X, =Y/ =0 decreases the expectation.

Remembering that Z denotes the continuous-time process corresponding to Y and
that (¢) =S¢ L we define the random variable

m=1m

M} :=1{Z does not fall between t(¢) and (£ + 1)} < 1{ Zy@r1) > Zyo)}
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(t+1

P(L+1)
> B 1{Zyesn) > Zw(e)}/ f(Z5)*ds
P(e

PY(L+1)
/ f(Zs)2 ds
P

)
> | M [(Zy)*ds]

M () s

[ [
— + =4~
— —

> (1 - H%) E [f(Y2)?]

- B w). (4.25)

((+1)
where the last inequality uses that the process always falls at rate 1, independent
of the state the process is in. By Lemma [4.3
1
P(Y, oY, =k)>1—- ——
( {41 ?A ’ L ) = / + 1
for k # 0, which we can assume without loss of generality, as in the case ¥(¢) = 0
we have P(¢(¢ 4+ 1) > 9(¢)) = 1 and the previous inequalities remain valid. (4.25))

now yields
SE[f()Y _ 1 (€+1) " /WM ) o [ ey
EVOOT L) s fzras| < B | [ s

We now have

$(n+1) log(n+1)
/ f(ZS)st < / f(ZS)2 ds
P 0

(k)
og(n+1)
= log(n + 1) (;) /01 g(n+1 f(ZS)QdS)

log(n +1
< Clog(n+1),

since

1 log(n+1)

by the Ergodic Theorem for stationary Markov processes in continuous-time and
E[f(Z)?*] < oo by assumption. In a similar way it follows, that ff((lr;) f(Zs)ds <
Clog(n+1) as E[f(Z)] < oco. Consequently

LS EIGOe+ D) # 17 1~ B[V +2))
k= (+1 ~—k (+1

l=k
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1~ E[f(Y0)? +4f(Yo)] +4
k (+1

P(n+1) P(n+1)
/ f(Z,)%ds +4/ f(Z)ds + 4
P (k)

Hence,

(4.26)

Similarly we obtain

I -EF()Y _ 1
W2 k<P

and thus

Ry < ¢ e+l (4.27)

n
Putting (4.26)) and (4.27)) into (4.24) proves the Theorem. O
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4.2. Coupling with the Barabasi-Albert graph

Additionally to the Barabési-Albert model (PA™°) described in section a
second, rather similar, model is described in [Hof17]. In the following we will refer
to this as model b and denote by PA™°(b) the graph at time n corresponding to
this construction where § > —1 is a parameter of the model, allowing to change
the attachment function. This model does not allow for self loops and satisfies our
Assumptions (A) with attachment function f(k) = k+n for some n € (0,1). Thus
Theorem can be applied to model b. Again, we will use coupling techniques to
obtain rates of convergence for the Barabasi-Albert model.

First, let us give a more detailed description of the second model. We can restrict
to the case m = 1, as for m > 1 the models are defined in terms of the model with
m = 1. We start with a graph consisting of two vertices and two edges connecting
them. As we do not allow for self-loops, connection rule changes to

a+ DY (1)

P(n+1—i|PALY*(b)) = "2t o)

for i <n, (4.28)
where o > —1 is the parameter of the model. By choosing « for each n in a suitable
way (cf. exercise 8.7 in [Hof17]) we are able to construct a coupling, such that we
can transfer our results to the Barabdsi-Albert model via the triangle inequality.

Unfortunately, the coupling will turn out to be of order W, so that we do not get

the same order of the rate as before. To formulate this result let X¢ = deg®®(U,)
and Y = deg?4?(U,), where deg!™® (i) denotes the indegree of vertex i in model
b with parameter «, degf A"s(i) refers to the indegree of vertex ¢ in the Barabasi-
Albert model with parameter 6 and both U, and U, are uniformly distributed on
[n]. Note that D (i) = deg® (i) + 1 and DBA(i) = degP4 (i) + 1, respectively.

We get the following theorem on the distance of X< and Y,? in the total variation
metric.

Theorem 4.7. For each § > —1 there ezists a sequence of parameters (au,)n,>1 and
a coupling (X,,,Y,) of X,, = X and Y, = Y? such that

~ 2
dry(X,,Y,) <P(X, #Y, <C 10g72n) _

Following [Hof17, Exercise 8.7] we choose o, = % so that
0
oy — 0 = and «,, — ¢ for n — oo.
2n +1
Remark 4.8. In order to guarantee that (4.28) in fact defines a probability we
need o, = % > —1, so our coupling does not work in the case 6 = —1. For

—1 < <0 we can couple the chains for n large enough so that oy, > —1.
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The structure of the proof is similar to the proof of Theorem [4.1} first we compare
the transition probabilities of the two Markov chains X,, and Y,, (see Lemma ,
so that in the proof of Theorem [£.7] we can define a Markovian coupling of the two
chains, such that they stay together with maximal probability once they have met.
In contrast to the previous section we only deal with discrete-time Markov chains,
so that we can define our coupling, such that we look at vertices with the same
birth-times in both models. More precisely, we define two random variables J,, and
J,., which are uniformly distributed on [n], in a dynamic way, just as in Lemma
and put X,, = deg, (J,) and Y,, = deg;(jn), where J, = J, for all n € N.

Lemma 4.9. There exists a constant C, depending only on 0, such that

. et =0}
mase [, (k1) — o ()] < 020 =2 (4:29)

where pfﬂ and pzﬂ denote the transition probabilities of the chains X, and Y,
defined in the previous paragraph.

Proof. In order to compare the transition probabilities of X,, and Y,,, we need to
give their exact expressions. To shorten notation we write

p;);_l(k’j) = ]P)<Xn+1 = k’Xn = ]) and pZ—i-l(g’m) = ]P)(YnJrl = g’Yn = m)
For the chain X,, we obtain

X gy it ldtan jtltay
1)7) = -
P (G +117) n+1 (24 a,)n 2+ ap)(n+1)

Pl = 2 (1= ) o £,
pfﬂ(OlO) " j— 1 <1 a n(12—ioz;n)> + n —1|— 1’
PEA(01]) = — for j £0
and the analogous calculations for Y,, yield
Pt 1) = i (G g ) o #0
Prall0) = =5 <(2 n 5)1n++5(1 T 5)) o 1)(n(21j56) TA+0)

1+6
2+o)m+(1+0)
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P (717) =
Pr}:+1(1|1) =
PZ+1(0|O) =
le(OU) =

p:+1(1|j) =

3

1—

(
&
(
(1-

1

S
+

S
+ S
—_

3

1—

S
+
—

1
+1

3

(n+1)(n(2+9)

J+1+4+46 for
n(2+0)+ (1+0) 22
2+5 )+ 140
n(2+446) + n+1)(n2+9)+ (1+9))’
1+6 )+ 149 )
n(2+0)+ n+1 n(2+0)+ (1+4)/
1+90
f
n(2+0) + 1+5> orj 70,
L+o for j > 2.

+(1+96))

We can now compare these transition probabilities. For j # 0 we have

0 < ppya(0[7)

Next we deal with

P (G +117)

_p31/+1(j +1]j) =

- pZH(OU) =

149
n2+9)+ (1+ 6))
ni. (4.30)

1 1
n+1_n+1(
B 146
240+ (1+6)(n+1)

~—

IN

j+1+4+a, n (
(

Jj+1+9 )
2+a,)(n+1) n+1

2+ 0)n + (1+0)

Note that for § > —1, we have

24+ a,)(n+1) =

but

24+ a,)(n+1) = <2+5+

Therefore

pii (G + 1)

n+1
(2+5+2n+1)(n+1)—(2+5)n+(2+5)+2n+16
>240)n+(1+9), (4.31)
n+1
2n+1)(n+1)—(2+5)(n+1)+2n+15

<2+08)(n+

—py (G +15) >

1
1) +%(1+5).

oy — 0
(2+d8)(n+1)+

_o
n 2n+1

>0,
n+12+d)n+(1+6) —

2411 4 9)
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for 6 > 0 and for ¢ € (—1,0)

j+1+a, n ( j+1+96
(

C+a)n+1) n+l\(2+0)n+(1+9)

2(j+1)( 1 o 1 )

2+a,)(n+1) n+12+dHn+1+9

15 +2nl+1 o n 1
2+a,)(n+1) n+12+0Hn+1+90

Z(]+1)((2+an)(n+1) _n—|—1(2+(5)n—|—1+5)

+25( ! - ! )
24+ a,)(n+1) n+12+dHn+1+9

. 1 n 1
ZU+1+2®(@+a@m+4)_n+1@+5m+1+5)’

which is non-negative as we are in the case j > 1. Hence, by (4.31]) we obtain
[P G+ 117) = Poga (G + 19| = paa G+ Ll5) = g (5 4 115)

jtl+a, — n ( jH+1+0 )
2+a,)(n+1) n+1\(2+0)n+(1+9)
GH+l+a)2+0+1+6)/n)—G+1+6)2+ an)
m+1)2+a,)24+d+(1+0)/n)

(G + 14+ 596 — ) + 2(an — 6) + (1 + 8) /n
n+1)2+a,)24+d5+(1+0)/n)

: S—om an (1+9) (J+1)(A+9)
U= D%+ Graneeon T e

<
- n—+1

=1 | j+1 | 1 ,
pELL L 954
no =t (4.32)
n

+1 “nn+1)
In the case j = 0 we obtain

1+ a, 149
(2+mﬁm+1f_(@+5m+ml+®>
(1+a,)((24+0)n+(1+9)—(14+0)(2+ an)(n+1)

2+a,)(n+1)2+0)n+ (149)
n(a, —0) — (14 9)
24+ a,)(n+1)(2+5n+ (1+9)

D1 (110) = py 1 (1]0) =
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2521 —(1+9)

= <0
24+ a,)(n+1)((24+0)n+ (1+9))
for 6 > —1 and thus
2 2
|p§+1(1|0) —p75:+1(1|0)| =p§+1(1|0) —p5+1(1|0) < m < ﬁ (4-33)

Looking at the calculations for p; ,(j + 1|j) — pL.1(j + 1]7) in the case j > 1, we
directly see that

Poi (413) — pria(Gld) <O,

for 6 > —1 and j > 2. It follows that

i (1) — praa Gld)| = Pha (G15) — P (Gl5) < 4 - (4.34)
(n+1)
With the same argument in the case j = 1 we obtain
Pt (111) = popa(11) <0
and consequently
4
P (1) = g (U] = ppia (11) = p (11) < (4.35)

(n+1)2

For j = 0 the situation is slightly different. Indeed, for both chains the probability to
stay in state 0 is greater than for any other state, but for X,, the deviation is larger,
since conditioned on J, = n we have X,, = 0 P-a.s., but P(Y,, = 1|J, = n) > 0.
More precisely

x v n I+a, 1
0[0) — 0[0 :—(1— )

n 1+0 1 146
B (n+1<1_n(2+5)+(1+5)>+n—|—1<1_n(2+5)+(1+5)>)
B 140 B 1+ a, >0
Cn24+0)+(1+6) (m+DR2+a,) T

which can be seen from the calculations conducted for p;. ;(1|0) — pY_;(1]0). Con-
sequently

2
[241(010) = P41 (010)] = pris1 (010) = priya (00) < —. (4.36)
Combining (4.30)), (4.32)), (4.33), (4.34]), (4.35) and (4.36]) yields the desired result.
[
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We can now proof Theorem 4.7 by first defining a coupling of the two chains and
then using the previous result, that the chains stay together with high probability
once they meet.

Proof of Theorem[{.7]. We now define a coupling (Xn,Yn) of the two chains in a
similar way as in section [£.1] Again we let the two chains evolve independently,
but whenever J, = n, we put J, = n as well. Consequently J, = J,, for all n.
As before we define the coupling in such a way that whenever X,, = Y], the chains
stay together with maximal probability. We can then bound their distance in total
variation via

dry (X, Y,) = min P(X! 4£Y) <P(X,.Y,).

(X2,.Y;1) coupling of (X,,Yy)
Just as in section 1] we define
P(Xpi1 = 0, Yy = 0| X, = m, Y, = m) = s (£, €|m, m)
= min(pfﬂ(ﬁlm),pﬁﬂ(ﬁlm))

and for ¢ # j we set

(P41 (K[m) — P (K, Klm, m)) (P41 (F]m) = Pasa (G, Jlm, m))

An kf, . , — N ..
p +1( j|m m) 1-— Zizoanrl(ZaZ’mam)

For k # m we put

X Y -
R . P (lm)py 1 (F]F) :
Pn ka] m7€ = for €7j 07
sk glm, £ = =5 o) 7

Pnr1(0,1m, £) = p§+1(0|m) - pZJrl(Ow)v

p§+1(0|m) - p?fH(OI!f)
1- p§+1(0\€)

Prs1(£,0lm, £) =0, for £ # 0 and

Pnr1(0,0]m, 0) = pY . (0, 0).

To show that this really defines a coupling of the two chains one can easily adjust
the proof of Theorem [4.1] to this setting.
Remember that we defined

Prs1(0,5|m, 0) = pX 1 (j]0) for j > 2,

Ek,n 2:FkﬂGk’n = {Jk:k}ﬂ{JgSk,kSESn}

and that we have

n

~

. 1 . N 1
k=2
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as well as
+ P(X,, # Y| Epny Xi # Vi)P(Xy # Vi|EBrp)
= Ry + Rap.

Again we will first bound the probability that the two chains do not meet even
though J, = J, = k:
P(Xy # Yi|Epn) = P(Yi = 1, = k)
149

1
— < =
(k—1D2+d)+(1+05) — Kk
so that
1 & 1 -1 log(n )
- < = < .
- ;2 Ry < — ;2 S <C— (4.37)

Note that throughout the proof C' always denotes a constant only dependent on 9,
but which may vary from step to step.
From the proof of Theorem [4.1] we know that
P(X,, # Yo|Epny Xi, = Yi)P(Xy, = Yi|Er)
n—1
/ L .
“P( Xy # Yo |Xe =Y, Xi = V3 = 0).

k
=k

By the construction of the coupling as well as by the fact that X,, and Y,, are Markov
chains, we get

P(Xps1 # Yo | Xo = Yo, Xp = Vi = 0) := Pp( Xy # Yo | Xo = V2)

-1

~

Py (Xp1 # Yo | Xo = m)Py(X, = m|X, = Y})

I
ﬁM

~

=P(Xpi1 =0, Y1 # 0]X, = Vi = 0)P(X, = 0| X, = V)

FP(Xp1 =0,Y £0/X, = Yo = DPL(X, = 1|1 X, = V)
FP(Xpp1 =2, Yo # 2| X, = Y = DP(X, = 1| X, = Y))
-1
+ 3 (PR = m+ 1, Vo £ m+ 1%, = ¥ = mPu(%, = m| X, = V7))
m=2
-1
£ 3 (P(Xes = 0,V £ 01X, = Vi = m)By(X, = m| X, = V7))
m=2
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= (p751(0]0) — fe11(0,0]0,0))Py(X, = 0| X, = V)
+ (9251 (0[1) = Prgr (0,0[1, 1) PR(X, = 11X, = V7)

+ (P (211) = Praa (2,211, 1)P (X, = 2| X, = V7)
-1
+) (o (m+ 1m) — pepr(m + 1,m + 1m, m))Pr(X, = m| X, = V2

~

3
||
N

~

-1

+ (png(O‘m) _ﬁn+1(0v O‘ma m))]P)k<X€ = m‘Xf = }Aff)

3
N}

ef
<2 max 241 (G lm) = Pega (4, Jlm, m)| Pr(Xe = m| X, = Yy)

[y

3
=}

-1
<2 max[pp (jlm) =y (lm) [ Pe(Xe = m| X, = Y7)

m=0

m—+ 1{m = N N .
< CZ { }]P’k(Xg =m|X, =Y).

Hence, we obtain

n nlﬁl

" m—{—]l{sz} A A ~
< P.( X, =m| X, =Y,
;Rlvk <C kZZ k( ¢ m| 1 z)

k=2 {=k m=0

n n—

[y

n n—

—_
=
B

—

=,

P (X, = 0| X, = V)
14

<C

T =
~
T =

k=2 12

I
e

k=2 ¢

Il
>

Conditioning on the event that the chain was in state 0 at time & can only decrease
the expectation, as the rate by which the process moves to zero is always one,
independently of the state the process is in. Thus, we get

Ky [XEJA] <E [Xeﬂ]
For simplicity of notation we write deg, := degZ’o“. Now for all £ > 1
E [Xg} = E[deg,(U,)] = —]E Z deg, (j
li=1]

=1,

1
(

=-E Zdegﬂg)
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where U, is uniformly distributed on [n] and deg, (j) denotes the outdegree of
vertex j at time ¢, which equals 1 for all ;7 and ¢ by the definition of the model.
Consequently,

n n n—1 K % n n—1
1 k «‘f] 1 ]Pk(Xg = 0|Xg )
< — -
2 RiesC (D g T2 7
k=2 =2 " o=k k=2 = =k
n 1 n—1 Ek €:|
<C P / <C log(n)Q.
k=2 = 0=k
Combining this with (4.37)) yields
. - 1 & 1 log(n)?
(Xn #Y2) ” g(Rl,k + Roy) + - C -
as desired. O
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5. A central limit theorem for the number of
isolated vertices

In this chapter we consider the distribution of the number of isolated vertices in
the preferential attachment model introduced in chapter 3| Here we call a vertex
isolated if it has neither incoming nor outgoing edges. In fact, we show that for
a certain class of attachment functions the properly rescaled number of isolated
vertices fulfills a central limit theorem. More precisely, we show the following;:

Theorem 5.1. Let W,, denote the number of isolated vertices in the preferential
attachment graph G, with attachment function f. For the rescaled version

T Wn_ n
W, = Hn

On

of W, where p, :=E[W,] and o, = \/V[W,], we have that

1 1
1 Jory<d,

~ log(n)?
dyw (W, 2) < C {22 fory =1,
"2 fory > 3

where C' > 0 s a constant independent of n, Z denotes a random wvariable with

Z ~N(0,1) and v := max>o(f(k + 1) — f(k)).

Example 5.2. The class of attachment functions for which Theorem [5.1] provides a
central limit theorem comprises, for example, functions of the form f(k) = vk* +n
with v € (0,2), € (0,1] and 5 € (0,1] or f(k) = (k+ 1)* with o < 0.7.

It is not very suprising to see that the rates vary according to the maximal
increase 7 := maxg>o Af(k) of the attachment function. It is clear that for concave
functions f we have that the larger v the more likely it is for edges to emerge, so
that connectivity of the network increases with ~. In fact, [DM13| Theorem 1.6]
shows that the network topology changes for v~ := lim,, @ = % in the sense
that for v~ > % a giant connected component emerges, that is, a connected com-

ponent comprising a positive fraction of all vertices present. However, Theorem
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only yields a limit result for attachment functions f such that v < g. Since our
methods of proof do not exhibit sharp bounds, we cannot conclude that the central
limit theorem does not hold for v > g. Nevertheless, the fact that with increasing
v isolated vertices become less frequent suggests that at some point the number of
isolated vertices perhaps rather follows a Poisson than a standard normal distribu-
tion.

The main idea of the proof is to use Theorem [2.6], which gives the distance between
the law of a non-negative random variable and the standardnormal distribution
using a size-bias coupling. In our setting we let

X =W, = Zn:Xn

=1

where X;,, = 1{vertex i is isolated in G, }. Now, for each fixed n, we have E [X] =
E[W,] <n < oo.

Therefore we will need to construct a random variable W7 having size-bias dis-
tribution of W,,. We will do so by applying the general construction which we
described in chapter [2] (see also [Ros1l, section 3.4.1]) to our setting.

5.1. Size-bias construction

Following corollary we construct a random variable having the size-bias distri-
bution of W,, as follows: we choose one of the vertices in G,, proportional to ]]EE[[);?"}],
delete all its adjacent edges and adjust the remaining summands. More formaﬁy,
for I chosen proportional to ¥, ,, := E[X ], independent of all else, we put X} =1
and (X ]I )j21 with distribution conditional on X; = 1. For I = i we generate X; for

all © # I by reconsidering every edge present in G,, and deleting it with probability

. :ui—l (6’ 7’)
/MJ:—1<€)

where i (¢) := E [f(deg;_,(6))] and f_,(¢,4) = E [f(degi_,(0))[Xin = 1]. We
will denote the resulting graph by gfj). As connections only depend on the indegree
of the older of the two vertices, we have

P(edge {k — ¢} is deleted|{k — ¢} isin G,) =1

Y

Wl L (6) = E [f(dege (0)|Xin = 1] = 3 Fm)P(deg 1(€) = m|Xon = 1)

k—f+1

= > f(m)P(deg;_,(£) = mli - )

= E [f(degy ()i » €] = il ,(£.3)
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for ¢ > ¢ since the isolation of vertex ¢ only affects the out- but not the indegree of
vertex £. For ¢ < ¢ we have

k—0+1
E [f(degy_1(6)Xipn = 1] = > f(m)P(deg;_,(£) = m|Xipn = 1)

k—0+1

= Y f(m)P(deg; () =m)
= E [f(deg;_,(0))]

as connections from any k > ¢ to ¢ only depend on deg,_,(¢), which is independent
of deg*(¢). This shows that for ¢ > i the isolation of vertex i does not affect
connections {¢ <» k} with & > i so that in order for ¢ to be isolated in G\ those
edges cannot be present in G,,. More general, the isolation of vertex ¢ does not affect
edges {¢ — k} if both k and ¢ emerged later than time i, see also Figure for a

visualization of this effect. Figures show how g}? is constructed from G,,.

LI T ] e * o s " " " 8 0 e . .
1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Figure 5.1: Preferential attachment graph for attachment function f(k) = 13—0 ks + %

. o @ . .
1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

9

Figure 5.2: Choose one of the vertices according to P(I = i) = ‘jn" Here: 1 =17.
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LI ] . L] * s s 8 & @ . .
8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35

Z 0 .

L ] L] L] L] L] L ] [ ] L] L ] [ ] L] L] L] L] L]
1 2 3 4 5 6 & 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
_ . s Hy ()
Figure 5.4: Remove all other edges with probability 1 — —%; 0 Only the red edges are
Hi—1

affected by the isolation of vertex 7, since for all others the Igrobability to be deleted is 0.

To show that the resulting graph has distribution conditioned on X;, =1 we
first introduce some notation: For the event that there exists an edge between

vertices ¢ < k in G, we write {k — ¢} and accordingly {k - ¢} for the event that

there is an edge pointing from k to ¢ in Gy, Every edge k — ¢ in G is now present
with probability given by

P(k 5 0) =Pk 5 0|k — OP(k — 0)

_ /-L£—1(€7i) N£—1(£> . ﬂi—l(& i)

M£—1(£) k k
=Pk = li »{) =Pk — (| X;, =1).

Following Proposition (see also [RosIll, Proposition 3.21]) the number of iso-
lated vertices W = ZLL# ;X ]I + 1 in G! has distribution given by the size-bias

distribution of W,,. Additionally to ii{_,(¢,7) defined above, we introduce

il (6,4) =B [f(deg;_,(€))]i — (]
so that

N£—1(£) =P(i » E)ﬂ£—1(€7 i) + P> — g)ﬂiﬁ(ﬂ i).
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Note that

[Liq(& i) _ Hiq(@ - ﬁgﬂ(& i)
l’diqw) Niﬂ(@

Pk 5 (k=) =1—

and

P () = iy (0) = (1 =B = O) il (6,1) + B( = O)fi_y(0,7) — if_,(¢,4)
=P(i = O)(fif_1(6.9) — i}, (€,))

f
pi1(€) .
< 21 N£_1(£> i)
kY

Sf(l)l-g_%? (5-1)

for all ¢ € {1,...,7 — 2} by Lemma [3.21] Lemma 2.8. and Lemma 2.10 in [DM13]
yield that

ﬂi—l(gv Z) < f(l)
M£—1(£> ~ f(0)
which gives
i #{71(5) ﬂifl(ﬁ, i) f(1) y—1 p—y
Pk 4 Uk — 1) < ; Mﬁ,l(f) < f(O)Z . (5.2)

5.2. Proof of Theorem |5.1

To bound the distance between the law of W,, and the standard normal distribution
we have to bound both terms on the right-hand side of (2.4). Lemma gives
the order of j, as well as a lower bound on ¢%. With the help of these results we

can then deduce an upper bound on both terms, see Lemma [5.8] Lemma [5.9) and
Lemma 5.10

Lemma 5.3. Let W, denote the number of isolated vertices in the preferential
attachment graph G, described before. For u, = E[W,] and 6% = V [W,] we then
get

L ™~ T (5.3)

and
2
n

v

g

Cn, (5.4)

where C' > 0 is a constant independent of n.
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Here, by g ~ f we mean that lim,, % = c € (0,00) , or equivalently there

exist constants by, by € R such that

bif(n) < g(n) <baf(n).

Before proving this Lemma we give three auxiliary results which we will use fre-
quently throughout this chapter. First note that for f(0) :=n € (0, 1] and by the
asymptotics of the gamma function we have

- (1 _ m> M- L5 +1-n)

. n! n!
I'n+1-—n) _
= ~n 5.5
T2 —nT(n+1) (5:5)
since lim,,_, % = 1. Furthermore, for n > —1 we have

n+1
1) < dan'*
2

n—1 n
din"t" < / Jdj < < /
1 -
7j=2

so that

n

DIF ARSI (5.6)

j=1

The last auxiliary result concerns the probability of a vertex to have outdegree zero.
First note that

P(j = k) = E[E[1{j = k}|G]]

Fldeg; s (k) |y 1 (k)
J J

Y

so that
*(n) = 0) = E [E [1{deg*(n) = 0}[G1]]

f .

n

Il
< 3
[Num])
VR
—_
|
=
=
—~
o,
R
S 3
N
(S
~_
Il
< 3
Il |
— —
VR

for every fixed n as pu!_,(j) < pu!_,(1) < n —1. On account of Theorem we
also have
GXp(—A) - a(n) < Pn,o < eXp(—)\) + a(n)a
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for some positive sequence (a(n)) tending to zero. Here A = E, [f(X)], where E,,
denotes the expectation with respect to the measure p defined in (3.3). Thus, as
0 < pno < 1 for all n, there exist constants ¢y, co € (0,1) such that

¢y < min < max < ¢o. 5.7
1> pom Pno > el Pno > Co ( )

With these remarks we now turn to the proof of Lemma [5.3]

Proof of Lemmal[5.3 Let {i1n,...,iw, ,n} denote the set of vertices that are iso-
lated in G,,_1. We then have

E W] = E[E W[ W]

-Wn—l
=K Z 1{i;,, is isolated in G,|i;,, isolated in G,,_1} + 1{deg™(n) = O}]
L j=1

—

o[ (-2)

L j=1

+pn,0 = (]- - @) E [Wn—l] +pn,0>

and by iteration

E[Wn]:ﬁ(l—

1=2

f(0) - - f(0)
i E[Wl]—i-ij,o H 1—T .
Jj=2 k=j+1
With the auxiliary results mentioned above this yields

o)1 (1-22) + 52 T (1-22)

=2 k=j+1

where we used (5.6)) in the last step. This shows (5.3). We now turn to the lower
variance bound given in ((5.4). We have

n n 1—1
VW] =Y V[Xin] +2) > Cov[Xin, Xl
i=1 i=1 j=1

=3 B = (1 B(X, = 1))

+2) Y P(Xip = D(P(Xjn = 1 Xip = 1) = P(X;,, = 1)).

i=1 j=1

89



Note that the outdegree is fixed from time ¢ onwards and that connections formed
afterwards only rely on the indegree of i, i.e. deg (i) and deg™ (i) are independent
random variables. To shorten notation we put

]P’(deg (i) = i1, deg,, (i) = iy
P(dn (i) - (21722) n(J) : (Jl,Jz))

deg™(j) = jr, deg, (j) = j2)

and accordingly
P(deg* (i) = i1, deg,, (i) = is) = P(d, (i) : (i1,12)).

Setting a, =[], (1 — @) we have

n {—1
P(deg,, () = 0) = [ P{e =} () {r=i})

)2 e
and thus
N O O PO

where we used and . Furthermore we have
P(X;,=1,X,,=1)=P(d,(j) : (0,0)|d,(¢) : (0,0))P(d,(7) : (0,0))
= P(deg”(j) = O|deg™ (i) = 0)P(deg, (j) = O|deg™ (i) = 0)

> P(deg™ (j) = 0)P(deg, (j) = 0)P(deg™ (i) = 0)P(deg, (i) = 0)
— P(Xi et )P(Xj = 1), (5.9)

which shows that X, and Xj,, are positively correlated. Here we used that in- and
outdegree of a fixed vertex are independent as we had noticed before. We will use
this result as well as the fact that deg™(j) is independent of deg, (i) for i > j to
find a lower bound on Cov[X;,, X;,]. More precisely

iiﬂ”(){m = D)(P(Xjn = 1Xin = 1) = P(X; = 1))
= 33 P = D) : 0,05 0,0)) ~ B(da(3) : 0,0))
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> 035 () (plaes” ) = Ofdes” (1) = O)Bldes; ) = Oldes () =0
— P(deg™(j) = 0)P(deg;, () = 0))

> 035 (£ miaee () = pptens ) = 0 (G 1)

() ()2

5 () ()

by (5.6 and consequently

@
I
—
. T

3
|
— =

vV
Q
LM

<
Il

V[Wn] = Cn,

where C' > 0 is independent of n. n

Before we start proving Theorem [5.1] we give the following auxiliary result which
shows how the non-existence of an edge influences the degree evolution of the older
of the two vertices forming that edge.

Proposition 5.4. For a;, :=P(j - () and aﬁ :=P(j - L|i » ) we have

k k
i 21
[T e =TT e < r 217_12.7” TR = 60 (4, 4)

{=m l=m

for all k,m with m < k <1 —1. It follows
gyl =2y fory <

1
2

¢k (i) < ¢ {7 og(k)  fory = 3, (5.10)
1

y—1,v—1,,,—2vy+1
7T m Jory > 3.

Furthermore, for any r with m <r < k — 1 we have

i fory < 4,
i—1
T4 - H a0 < CETNG i)y < og(i)  fory =3, (5.11)
Z;Z;L 227&7: ]’y 1 ’y 1m 2v+1 fO,r, ,y > l
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Proof. We proceed via induction on the number N of factors. For any m < k <i1—1
we have

) — a0 = P(j - m|i - m) —P(j - m)

_ (1 B ﬂ;l(mﬁl)> B (1 B Nj’cl.(m))
J J

_ /i;cq(m) - ﬁ;':1(m> i)
J
< P,

by (5.1). This proves the base clause for N = k—m+1 = 1. For the induction step

(@)

note that a fz and a;, are asymptotically equivalent. More specifically we have

J

i ‘ ‘ Al () . .
ﬁ:P(‘y—Hﬂz—H@ _ 1——j :1+u§11(€)—u§:1(€,2)
aje P(j = ¢) wl_i(0) j— M§_1(€)

1 — A=

J
ey 2
<1 1) ——
j_j,y —_ +f( )21_7_1

=14 Cpf7 i

<1+ Ay

since uf_l(ﬁ) < 57 by Lemma @ Due to the induction hypothesis we then get

k k k—1 k
[T~ TLose < TT 00+ G0y~ Lo
l=m t=m t=m =
k=1 k-l k=l
= a (H ajr 11 ) el a- Crn o e
l=m l=m t=m
k-1
SOy YT O
l=m

which proves the claim. Consequently

gyl for v < %,

k k
(1) =171 1
H aj,f — H Qjp S C j’y ! log(k) for Y= 2
f=m t=m G im s+ for v > %
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To prove the second part, note that with the definition of a;; we can write

i—1

Haﬁ_Haﬂ H%e Hagé (7 - 1)
f=m /=m
a% - gaj,e (1 - —Mj_].l (2)>

i—1

<Cf2j7 Liv=tp= 274—‘7

i—1
<20y T (5.12)
{=m
so that the terms only differ by a constant factor. The proof is completed by
showing that the bound also holds if we omit one of the factors in each of the
products. Noting that a; z > aj, we get

i—1 i i—1 i
1

NORER » D P —TTa
5,0 Jib = 5,093, Jsl
_ _ ajr _
=m l=m ’ l=m {=m
L#£r LH#£r LH#£r

= Lo 1— “J i (z i Bf“)
]_ — j'Y_ (H a(v H Clj’g)
{=m
1 PO
S (H ae— 11 aﬂ) :
l=m

| /\

so that (5.12) also holds in this case, with an additional factor (1 —27~1)~1,
[

We are now ready to deduce an upper bound on the first term appearing in
(2.4). Therefore, first note that

WS—WH IDnJ—i—]l{d[ > 0}+Rn71, (513)

where D,, 1 denotes the set of neighbours of vertex I with total degree one (to wit:
I is their only neighbour),D,, ; = |D, 1| , dr = deg,, (I) + deg™ (I) denotes the total
degree of vertex I and R, ; denotes the random variable which conditioned on the
graph gives the number of vertices not in D,, ; that get isolated due to the isolation
of vertex I. Remember that

)

V=EW) =

P(I =
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and thus

VIE W, —W,|G,.]] =

Z 9 [W, Wn\gn}]

\Y Zﬁm ni + 1{degree(i) > 0} + R,.;)
i=1

(Wa]?
<_3 < ZﬁmDm >
~ E[W,)?

as 2 Cov[X,Y] < V[X]+ V[Y]. By (5.9) we know that Cov[X, ., X;,] > 0 so that
also Cov[(1{degree(i) > 0}, 1{degree(j) > 0})] > 0 and thus,

+V +V

Zﬁm]l{degree( ) > 0} ZﬁmRm

=1

n

Z Vi n1{degree(i) > 0} | <V |y " 1{degree(i) > 0} | =V [n — W]
=1
= V[W,] = o2.
Hence
VI[E W2 — W,|G.]] < = [V4V E <ag + VD 0inDui| +V D 00 R ) (5.14)
n i=1 =1

To prove an upper bound on this expression we proceed in three steps: Lemma
gives a bound on V[>" ;,D,;], Lemma and Lemma give bounds on
V[R,.;] and Cov[R,,;, R, ;| respectively.

Lemma 5.5. As before, let D,,; denote the number of neighbours of vertex i with
total degree one in G,. We then have

n fory < 1
< CJQlog(n)n  for~y=

\Y Zn: ﬁi,nDn,i

=1

|>—l wl»—l wl

n® Jor vy >3

Proof. Todeal with VY7 | ¥; ,D,, ;] we define Y,, ; := 1{vertex i has degree 1 in G, }.
We then get

v zn: ﬁi,nDn,i
i=1

§ :19171 n,i
n j—1

< Z VYol 42> ) Cov[Yay, Yol 1{Cov[Y,;, V] > 0}

i=1 j=1 i=1
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-1

ZZ ov[Voj, Vil 1{Cov[Y, ;, Yni] > 0},

hklﬁ

where 97, = 9;,, if j is the unique neighbour of vertex ¢ and ¥, = 0 if ¢ does not
have a unique neighbour. Now, the most involved part of the proof is to deal with

the subtle dependencies between Y, ; and Y, ; in order to estimate Cov|[Y,,;, Y, ;].
We have

P(Yoi=1,Yn; = 1) = P(dn(i) : (1,0),dn(j) : (1,0)) + P(dn(i) : (1,0),dn(3) : (0,1))
+P(dn(2) : (0,1),dn(5) : (0,1)) + P(dn(i) : (0,1),dn(j) = (1,0))

as well as
P(Yoi = 1) = P(dn(i) : (1,0)) + P(dn(i) : (0,1)).
Plugging this into
CoviY,;, Yo, =PV, =1,Y,,;=1) —P(Y,, =1)P(Y,, =1)

and rearranging yields

COV Yn]7YTLZ - Z IED Z17Z2) d (]) : (jlan)) —]P)(dn<2> : (21722))]?((1”(]) : (j17j2))
= Z P(dn (i) - (il,iQ))(]P’(dn(j) t (1, J2)1dn(0) : (i1, 12)) = P(dn(j) : (jl,jz)))
=C Z <%)7 (P(dn(j) - (J1, J2)|dn (i) : (i1, 32)) — P(d(5) : (jl,jg))>. (5.15)

To see that P(d,,(i) : (i1,i2)) < C (£)” note that

P(dn(i) : (i1, 12)) < max{P(deg, (i) = 0),P(deg,, (i) = 1)}

and by we get
P(deg (i) = 0) = f[l ( - @) <c (%)n (5.16)

In order to bound P(deg, (i) = 1) we define the event
ng) = {up to time n the only incoming edge of i is provided by vertex k}

- ﬁ{k+>£}ﬂ{k—>z‘},

(=it1
04k
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so that

n

rooctr=n= St = 5 1 (- 22) 20 11 (-42)

k=i+1 k=i+1¢=i+1

< ¢ Z <z+1> 1(14:;1)1”(”

k=i+1

<C (i)n. (5.17)

P(dn(i) : (in,2)) < C (%)"

for iy,15 € {0,1}. We will now bound each of the differences appearing in (/5.15))
individually, as the dependencies crucially rely on the exact formation of in- and
outgoing edges of the two vertices.

Before we start, remember that by the definition of the model not only deg, ()
and deg™(j) are independent for every fixed vertex j and any n, but also deg, ()
is independent of deg, (i) and deg™ (i) for every older vertex i < j.

For (i1,12) = (j1,72) = (1,0), we obtain

P(dn(5) : (1,0)[dn() : (1,0)) = P(dn(4) : (1,0))
= P(deg, (j) = 0) (P(deg™(j) = 1|da(i) : (1,0)) — P(deg™ (j) = 1))

<C (E)n (P(deg™(j) = 1|dn(i) : (1,0)) — P(degt(j) =1)).  (5.18)

according to (5.16)). To bound the remaining difference let C’j(k) denote the event
that vertex j only connects to vertex k£ when inserted into the network. More
precisely,

j—1
e ={ M= 1 =k}
o
With this definition we obtain
P(deg™ (j) = 1]dn(i) : (1,0)) = P(deg™(j) = 1|deg™ (i) = 1,{j - i})

j—1

— Z]P’(C’J(k”deg*(i) =1,{j »1})

k=1,
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= P(CP|C, {j -+ i})P(C{ |deg™ (i) = 1,{j -+ i})

k=1, r=1
k#i
7j—1 ¢—1 1
= > s PG IR deg™ (6) = 1).
— —~P({j»i})
k#i

Again, the conditional probability P(C;k)wi(r)) depends crucially on the configura-
tion of the graph. For k # r and k <17 — 1 we have

P(C|C) = (ﬂ{we}{Hk}m{wm}{mr})

Z;ék m;é'r
i—1 Jj—1
= [[ PG » tli » 0) P(j » rli — r)P(j — kli » k) [[P( - ¢)
Zﬁé:k%r t=i
i—1 Jj—1
<[IPG - tli » OrG — k) [[PG = 0.
=1 =i

0£k

If k> i+ 1 (soin particular k # r) we obtain

i1 j—1
P(CMC) =T PG+ ti - OPG - rli — r)PG — k) [[ PG - 0)
iz st
i—1 j—1
<[IPG - ti» OrG — k) [[PG = 0.
= o
In the last case, namely £ = r and still £ <17 — 1, we get
i1 j—1
P(CPey =T rG - ti - OPG — kli — k) [P - ©)
ot =
Furthermore, we can use the definition of C’j(k) to write
j—1 j—1j—1
P(deg® () = 1) = Y B(C}") = Y [] PG + OPG — k).
k=1 k=1 (=1
04k

Putting all these results into (5.18)) yields
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P(deg™ (j) = Lldn(i) : (1,0)) — P(deg” (J) 1)

gZ(]P’;—>kHIP’g+>€|z—»€) (9%5)21@0(’“\@@() 1)

k=1 =1 (=i+1
£k r;ék

+ (IP’(j — kli — k) ﬁIP’(j w li»0) [ PG - e))IP(C}’“Hdeg*(z) =1)

k=1 =1 l=i+1
£k

<.

j—1 i—1 j—1 i—1

+ Y (P(j B [[PG = i = 0 [] PG +>£)) S P(C"|deg (i) = 1)

k=i+1 =1 L=i+1 r=1
£k

> T[PG » 0P — k)

i—1

=Y (PG —H prewz HPJM)( — P(CP|deg™ (1) = 1))

k=1 l=i+1
Z;ék

i—1 i—1 j—1

+ ( (= kli = k) Hpj+e|@+e HIP’]—HE))IP(OZ-(k)|deg+(i):1)
ke

l=i+1

—_

+ _ (P(]%k)ﬁp(j%ﬂz—z%ﬁ) 1:[ P(j+>€))

k=i+1 /=1 =i+1
£k

_< T ]P’(j+>£)IP’(j—>k)+iﬁp(‘7’+>€ﬂp(j—>k)>
gi]}”(j—)k) H aj,g<H]P(j—/—>€‘i—/->€)—HP(j—/—>€))

k=1 f=it+1 =1
04k

+)» PC k\deg )=1) HaMHaﬂ< j—>k]i—>k)—P(j—>k>
k=1 =1 (=i+1
Z;ékz

j—1 i—1

v Z G-k ] aj,g<HIP’(j—/->€|i—/->€)—HIP’(j—/—>€)>,
k=i+1 it =1 =1

where the inequality stems from the fact that we omitted the term for k =i in the
subtrahend. The first and third term in the expression above can be bounded using
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Proposition [5.4. For the second term we use the fact that

iy (ki) — il (k)

P(j = kli = k) —P(j — k) < , <G
J
to obtain
i1 j-1
P(j — k) H a]g(Haﬂ HCZ]@>
k=1 (=i+1

Z;ék Z;ék

—1
+ ZIP’ (C®|deg™( Ha( ]H aj. (P(j Skl = k) —P( — k:))

o t=i+1
7j—1 1—1 ‘ 7
+ Z G =8 [T are( T2 T o)
k=i+1 e=i+1 (=1 (=1
04k
J- < oy ) jr
<C Z 60+ Y PG ldeg™ (1) = 1)
k;él k=1
(S g+ 3 RO
< J,1) + —
—~ K p P(deg™ (i) = 1) k”
k#i
=1 . i—1 o1 iy
I i, g
SC 2761 (]77’)+ D1 kfy k’y
k=1 E=1
ki
3 Ot
co| S e D)
k;éz

where the last inequality uses the fact that due to Theorem there exist constants
C1,Cy € (0,1) such that C1 < p1; < Cy foralli € N (cf. (5.7)). Looking at the
different regimes for £&:7*(j,4) we obtain

J=1
Bdes* (1) = 1) (1,0) = P’ () = 1) <€ | 26+ Z i
ki
R for v < %,
<C{j 23 log(i) for v =3, (5.19)
Gl for v > %,
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where we used ) to deduce the orders of the sums. For the second case, i.e.
(i1,12) = (1,0) and (]1,]2) (0,1), we need to consider

P(dn(5) (0, 1)[dn () : (0,1)) = P(dn(4) : (0,1))
= P(deg,, () = 1) (P(deg™ (j) = 0ldn(3) : (0,1)) — P(deg™(j) = 0)).

We can proceed in a similar way as in the previous case to obtain
IED(deg+(') = 0[dn(q) : (0,1)) = P(deg™(j) = O[{j - i}, deg™ (i) = 1)

:zmdeg () = 01C7 4G+ i}) B(C|deg™ (i) = 1)

=ZP(H{JM}\{HT} ﬂ{wm} (i i} )P(C | deg (i) = 1)

m;ﬁr
i—1 1 i—1 7j—1
=3 gy [1#6 = i 08 = ol = ) [T G = OB s )= 1)
z;sr
i—1 j—1
<[[eG—»di»0 [] PG>0,
/=1 l=i+1

where we used that P(j - i|{i — r}, ﬂ’_:l {i » m}) =Py » 2) due to the

independence of in- and outdegree of i. Smce P(deg™(j) = 0) = [[\=; P(j - £) we
get

P(deg™ (j) = 0ldn(d) : (0,1)) —P(deg (7) = 0)

t=i+1 =
i for v < 5
<C jT2is log(i) for v =1,
gLt for v > %

on account of (5.11)). In the case (i1,72) = (0,1) and (ji,j2) = (1,0) we need to

bound
P(dn(4) : (1,0)|dn(4) : (0,1)) = P(dn(y) : (1,0)).

Due to the fact that the indegree of vertex j is independent of its outdegree as well
as of the in- and outdegree of vertex i (for i < j), the expression can be rewritten
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as

P(dn(j) = (1,0)|dn(i) : (0,1)) = P(dn(j) : (1,0))
= P(deg, (j) = 0) (P(deg™ (j) = 1|deg” (i) = 0,deg, (i) = 1) — P(deg" (j) = 1)) .
The conditional probability can be handled in much the same way as in the first

case. We first condition on the single outgoing edge of j and get

-1

P(deg* (j) = 1|deg™ (i) = 0,deg;, (i) = 1) = > _P(C{"|deg™ (i) = 0,deg;, (i) = 1)

1

P(ﬂ{jw} {J—>k}|ﬂ{l+>€} deg;; (i) = 1)

<.

Q.

»—n
x>
Il

ES
Il
—

e¢k
Jj—14i—1
= P(j = Lt » OP(j — kli - k)P(j - i|deg, (1) H P(j = ¢)
k=1 1 (=it1
i—1
+ | | P(j - l)i » O)P(j — i|deg, (1) H P(j = ¢)
=1 l=i+1
j—1 -1 j—1
+ [IPG = tli » OP( - ildeg;, (i) = P — k) ] P(j = 0).
k=i+1 (=1 (=it1
04k

We can now compare these terms with the expression of P(deg®(j) = 1) given in

(5.17) and since P(j — k|i = k) < P(j — k) we get
P(deg™(j) = 1|deg™ (i) = 0,deg, (i) = 1) — P(deg™ (j) = 1)

1—1 J— 1
SZ (j = k) HPJ—HE(H ajy Haﬂ>
k=1 I=i+1
Z¢k z¢k

j_l i—1 i—1

+ [ G - 6)( o) P(j — ildeg; (i) = 1) = [J s PG — i))
l=i+1 (=1 /=1
J—1 Jj—1 -1 i

+ Z (j — k) HIP]—H£)< aﬁ— aﬂ).
k=i+1 E;Jlgl =1 /=1

The first and third term already appeared in the first case, thus we can bound them
by (5.19). To estimate the second term note that

P(j — ildeg, (i) = 1) = i P(j — ilD®)B(DY) = B(j — i)D" )p(DY) < LU

k=i+1
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and thus

i—1 i1 L . ;
i . . _ . , _ 5 F(0 0
Haﬂ P(j — ildeg, (i) = 1) — Haj,g]P)(] — i) < a;-}L,) ~TTa= 1
=1 =1 =1 J =1 J
i—1 i—1
< &( o) —TTa é)
= J j
J =1 £=1

which can be bounded using Proposition [5.4 Hence we obtain

G for v < %,
< C-P(deg, (j) = 0) ¢ j2i~2log(i) for v =3,
gLt for v > %
We continue in this fashion to obtain the following result for (iy,i2) = (j1,j2) =
(0,1):
P(deg* (j) = 0/du (i) : (0, 1)) :P( G - 0} ﬂ{zw} deg, (i) = 1)
=1
i—1
=BG = tli = OP(j - ildeg,, (i) H P(j - ()
=1 l=i+1
i—1 j-1
<I[eG—»di»0 [[ PG ~+0
=1 e=it1

so that

P(deg"(j) = 0]dn(i) : (0,1)) — P(deg™ (j) = 0) < H P(j = 1) ( ajy = [ [ ase

Rt for vy < 1,
P(deg™ (j) = jilda(i) : (i1, 2)) — P(deg™ (j) = ja) < { 4777 2logi)  for v =3,
gLt for v > 1,
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for all (iy,12), (j1,J2) € {0,1}? such that i; + i = j; + jo = 1. Combing this result
with and gives
P(dn (i) = (i1, 12), dn(G) = (15 52)) — P(dn(i) : (i1,2))P(dn () = (51, J2))
= P(dn(2) = (i1,22)) (P(dn(5) 1 (1, J2)|dn(7) © (i1,42)) — P(dn(5) : (41, 72)))

R for v < %,
U o , 1.1 : 1
< C P(deg;, (i) = i1)P(deg;, (j) = j1) { J 24 2 log(i) for vy =3,
gLt for v > %,
gyrn=ti=otm for v < %’
< ¢ G733t log (i) for v = 1,
S o
gyrn—tyytn=l for v > %
and by (5.6)
1
—— n for v < 5
Z Z 1{Cov[Yy ;, Yni] > 0} Cov[Y;, Yni] < C ¢ log(n)n  for v = 3,
j=1 i=1 - .
n for v > 3,
so that finally
n for v < %,
N Zﬁi,nDn,i < C{log(n)n for v =3,
i=1
n* for v > 1.

The last part to deal with is V> 9;, R, ;]. We have

n n n -1
\Y% Zl 191"an71' = Zl ﬁf,nV [Rn,z] + 2 Zl Zl ﬁi,nﬁj,n Cov [Rn,iu ij] .
1= i= i=1 j=

We consider both sums separately. The corresponding results are formulated in
Lemma and Lemma respectively. In order to prove these recall that D, ;
denotes the set of vertices who are only connected to vertex 7 in G,, . We now define
the random variables

an;)e = 1{/ is isolated in fo) but not in G, N ¢ & Dy}
= 1N () n BV (0 n BV (0))
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with

N#(0) = {3k #£i: {0 k}}, EV () = ﬁ{e Ay, BY0) = () {r 410},

r=~+1

so that R,; =Y, ZS)Z We now recall the dependencies and independencies in the
network that should be kept in mind since the subsequent calculations crucially
rely on these. One important feature of the network, which we already mentioned
before, is the independence of in- and outdegree of a fixed vertex as well as the
independence of outgoing edges of a fixed vertex. Moreover it is useful to remember
that younger vertices only contribute to the indegree of older vertices and older
vertices can only contribute to the outdegree of younger vertices. More precisely,
the event {ZS)Z = 1} only has an impact on deg™ (k) but not on deg, (k) if k > .
Furthermore, remember that by the construction of gg the isolation of vertex ¢ does
not affect edges {r — £} if £, > 14, since neither of the two vertices involved depend
on the in- or the outdegree of i, so the edge remains unaffected by the isolation of
1, 1.e
{r A0y ={r »(}forr{>i.

In particular this means that in the case that ¢ > 4 for the event {fo,e =1} to
occur ¢ might neither have any incoming edges nor any outgoing edges to vertices
younger than i, as these connections are unaffected by the isolation of 7, so that

EO) = (N {r A 0= () {r-»0={deg, (t) =0}

r=~0+1 r=¢+1
and
] -1 . i—1 ‘ -1
EQ(@0) = (e Hry=(eHrn () fr=» 0 for >,
r=1 r=1 r=i+1

The following proposition states that the likelihood of an edge to exist decreases
if the isolation of vertex I leads to the isolation of vertices not in D, y, i.e. foz =1
for some i ¢ D,,;UI. An intuative example for this might be given by the fact that
more than just D,, ; vertices loose all their present connections due to the isolation

of I hints at a rather sparse graph, since the probability for the deletion of an edge

is rather small (cf. (5.2)).
Proposition 5.6. For the random variables Zfﬁ, defined above, we have
P(m — k|Z\) = 1) < P(m — k)

Proof. For k > ¢ (and thus m > () the statement is true and equality holds, since
{m — k} does not have any influence on connections of vertex ¢. So we have to
consider the case k < ¢. We have

P(m — k|Z\) = 1) = P(m — k|Z\') = 1,0 — k)P({ — K| Z), = 1)
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+P(m — K|Z), = 1,0 » k)P( » k|20, = 1)
=P(m — k|l — k)Pl — k|0 5 k)
+P(m — k|6 = k)Pl - k|0 5 k)

and by Bayes’ Theorem

P(¢ 5 k|t — k)P(( — k)
P(( 5 k)

_ Pl — k) +P(C — k) (P“Piéf; k) _ 1)

P(6 — k|6 5 k) =

as well as

P(E%klg%k):]P’(é%k|£+ﬁ)1@(£+k) _ P(éfk)

P(¢ 4 k) P(¢ 4 k)

since edges not present in G,, cannot emerge in Qy(f). We then obtain

P(m — k]Z,(j;e =1)

= P(m — K¢ — k)P — k) + P(m — k| — k)P({ — k) (W #REok) 1)

P(C 5 k)
+P(m — k|l - k)Pl » k) +P(m — k|l » k)P({ —» k) <; - 1)
P(¢ 5 k)
<P(m — k) +P(m — k|{ — k)-
(P(ﬁ%k|€—>k‘)l@(€—>k) Py s PR —Wﬁk))
P(¢ % k) P(( 4 k)

_ P(m = k) + B(m — k0 > &) <P(€%k|€—>k)P(€—>k)+P(€+k) _1>.

P(¢ 5 k)
By the construction of QT(f) from G,, we have
P(l 4 k) =P - k) + P — k)Pl 4 k|l — k),
which proves the assertion. O

This result now allows us to prove the following bound on """ | R, ;:
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Lemma 5.7. For the random variable R, ; denoting the number of vertices not in
D,,; that lose all their connections in G,, due to the isolation of vertex i we have

n n for~v < %
Y VIR, < {nlog(n)*  fory =1,
' n* fory > 1.

Proof. With the definition of fo)g we have

1—1 n i—1 n
ViR =V m+zms4VEM+vz4Q
=1 l=i+1 =1 l=i+1
i—1 i—1 /-1
—2)" v 20| +43° " Cov |2, 2]
=1 (=1 k=1
w23 [zl +a > Y cov[28, 20).
f=i+1 l=i+1k=0+1
Since

v [2] < v =1)
we will now deal with the probability on the right-hand side. Therefor, we define

the following events in order to condition on the first connection of a vertex:

{Kém}::nh{é—f»r}ﬂ{é%m} form < ¢

r=1
and

{t& m) = ﬂ{eﬁw}m ﬂ {r-»0n{m= forms>L.

r=0+1

Note that Z ’)g = ( if ¢ is only connected to vertex i, so that in the case that ¢ Ny

the event {¢ & k} refers to the first connection formed ignorant of all edges with

endpoint in 7.

/-1 n
P(Z0 =1) =Y P(ZY, =1t > m)P(C <> m)+ Y P(Z0) = 1|0 5 m)P( <5 m
m=1 m:i{l
o o1 (m) ~f) Tr £(0)
m=1 m=£+1 k:é«!.»l
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-1 n n
<O Tt mT T Y m ! (£> !
=1 m

m=£+1

for ¢ < i, where we used (5.6)), (5.2)) and the fact that (1 — @) > % for ¢ > 2. For
¢ > i we have that P(m % llm — ) = 0 and IP’(ZS)K =1/ & m) =0 form >i+1,

since the isolation of vertex ¢ only affects the indegree of vertices older than vertex
i. Due to (5.2)) it follows that

i—1
P(Z0, =1) =Y P(ZY), = 1|t <> m)P(( <5 m)
i—1 '
< Z P(¢ % m|l — m)P({ — m)

IN

i—1
S
m=1

To summarize, we have

TRy ] for v < 1,
V|70 =1] <PZ0 =)~ { e bithlog(t) fory =1 (5.20)
Ay S for v > %,

(5.21)

N N[ N

(Lt for v >

A for v <
V-] <r -~ [ b i1
w

and again condition on the first connection of k in order to bound the conditional
probability. We thus get

N

-1
Pz =12, =1) = Y P(ZY), = 1]k > m, Z\') = D)P(k <> m|ZY), = 1)
1

3
Il
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+ Z P(Z\) = 1k <> m, 2, = DP(k «> m|Z), = 1)

m=k+1
m#i

-1

< N Pk % mlk — m)P(k — m)

S

3
Il

+ i P(m 5 klm — k)P(m — k)

m=k+1
k—1 n
< T T Z i e
m=1 m=k+1
nY g2 for v <
< Clizk2log(k) +n2i 2kt fory=
TR g for v >
By repeated use of (5.6) and with (5.20)) we obtain
n =1 {-1 n* for 7 <
Z Z Cov [ ZSL] < C{ nlog(n) fory=
i=1 (=1 k=1 N2y for ~ >

With ((5.20)) this yields

n f0r7<%,
< Cqnlog(n) fory=3

n* for v > 1.

i—1

>z
/=1 7

Sy
i=1

- N N~

NI NI— N

(5.22)

(5.23)

For ¢ > i 4+ 1 variance and covariance can be handled in much the same way with

only minor differences in the precise calculations. In fact, we have

i—1
P(Z\) =12, =1) = Y P(ZY), = 1]k <> m, Z{') = 1)P(k <> m|ZY), = 1)
m=1
i—1 ] i—1 ] )
=) P(deg, (k) = 0P(k - mlk —m) [[ P(k 7|t 5r)
m=1 r=m+1
1 Bk rle =) T] Pk 4 r)P(k 5 m|Z, =1)
r=i+1 r={+1

i—1 i—1

< 3" P(deg, (k) = 0)P(k % mlk —m) [] B(k 4 rl¢ 1)

m=1 r=m+1
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_ k-1 k—1
[ Pkl -r) T[R4 ) [P rle - r)P(k— m), (5.24)
r=i+1 r=0+1 r=1

where we used that P(k — m|Z7(j)é = 1) < P(k — m) by Proposition and

Pk - T"Zf:)z =1) <P(k -» r|¢ - r). In the same manner we can see that

P(Z) =1) =Y P(Z0} = 1]k <> m)P(k <> m)
m=1
i—1
= 3 pldos 9 = 0P(h ik ) T] 26 71 T Blk = s ),
o] r=m+1 r=i+1
Proposition [5.4] gives
-1
H P(k ¢ 1) < [T Bl = r)+ €5l (m, 0) + €51 (K, 0)
r=i+1 r=i+1

and putting this into ([5.24]) we observe that

P(Z\), =120, =1) - P(Z), = 1)

i—1 k-1 k—1
< " P(deg, (k) = 0)P(k — m)P(k + mlk —m) [[ Ptk —»r) ] P(k—»r)
m=1 r=~+1 r=i+1
i—1 i—1
-(H]P’(k:;érw;ér)— HP(k%T))
r=m-+1 r=m+1
+ i P(deg;, (k) = 0)P(k — m)P(k + m|k — m) 51 (k, 0).
Note that
P(k 7 |t 7 1) = P(k 1)
_ ﬂiw—l(ra Z) (ﬁfn—l(ra g) _ /’L’I{”L—].(T)) < (ﬂfn—l(ra f) _ an—l(r))
mﬂfnfl(r) B m

<l

Y

so we can proceed just as in the proof of Proposition to show that for all
m<jg<i—1

[Tek % ﬁp r) <& (k,0)

r=m r=m
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and hence

+ Y P(deg, (k) = 0)P(k — m)P(k - m|k —m) &1 (k, ()
<2 P(deg; (k) = 0)P(k — m)P(k + mlk — m) €5 (k, ()

k n
<C (-) K im0 el (k, 0)
1

for m < j < i < £. Here we used (5.2) and the fact that &} (k, ¢) < &1 (k, E) as
well as &1 (k, £) < &1 (k, () by the definition of £. According to Proposition
we have

k=t for v < 3
el (k,0) < O{ k2072 log(l) for v =1
E=to=tm2=t for v > %

which in combination with ({5.6]) gives

ik =20 for vy < 1,
P(Zz9 = 1|z% = @) _ Clisebin1o (i) log(¢) for 2
(Zpk = ’n,€_1>_P<Zn,k_1)§ﬁ g\1) 108 7=
TR L for v > %
Combining these results with (5.21]) and repeatedly using (5.6) yields
n for v < %
Z Z Z Cov [ZSZ,Z(Z } < qnlog(n)?  fory =3
i=1 f=i+1 k=(+1 n? for v > 1.
(5.21)) and (5.6)) eventually yield
n n n for y < 1 55
ZV Z Z,(LZ)Z nlog(n)® for y =3,
i=1 (=i+1 n2v for v > 57
so that with (5.23)) we finally obtain the desired result. O
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Lemma 5.8. For R, ; denoting the number of vertices in G\ that lose all their
connections in G, due to the isolation of vertex i and which are neither isolated in
G, nor contained in D, ;, we have

n izl n fory < 3
SN intn Cov [Rug, Rug) < C S mlog(n)* fory =1,
=t nbr—2 fory > 1.

Proof. As R,,; = ,_, ZT(Z;)Z we get

Cov [Rn, Ry ] = ZZCOV[ n] ]

/=1 m=1
- Z Cov 24, 29)] + Z Z Cov |20, 2]
(=1 m=1
m#£L

Starting with the first sum (where m = ¢) we get

Cov [20), 28)| =Pz} = 1) (P(20) = 1128, = 1) — P(20) = 1))
so that we have to bound IP’(ZT% = 1]27(:)[ =1)— P(foé = 1). As mentioned before,
edges of vertex i do not have an impact on edges {m — ¢} if m,¢ > i, so that the

isolation of ¢ only affects those edges with at least one endpoint older than . Hence
for ¢ > i+1 we have

j—1
P(Z) = 1Z = 1) = Y P(Z)) = 1Z[, = 1L 5 R)P(C & k|2, = 1)
k=1
Jj—1 ) '
< NP B k= B)P(C— K| Z)), = 1),
k=1

and by Bayes’ Theorem

P(¢ 5 k|t — k)

Pl — k|Z) = 1) = P(t — k|t 4 k) = i P(¢ — k)
’ P(¢ 5 k)
<C PR, (5.25)
as
1 I ¢ 1 1

. < = 7 < = < -
P(¢ 7ZL>/€) P(¢ - k) ﬁ_,ueil(k;) 1—0 1—-27
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With (5.2) we then get

P(zY) =12, =1) < C ﬂ—lk—i“w—lw—l

pr <.
I
—

g for v < %,
<C log ]2€ 225 forfy:%
Jto=pt for v > 1
and by (5.6) and ((5.20) we obtain
n? for v < %,

iz Z COV[ nZ)bZ ] C < log(n)*n>  for y =3

i=1 j=1 t=j+1 _
=t n®—2 f01"7>%,

where we used that 9, ; ~ (%)n < (ﬁ) Using (5 in the case ¢ < j on the first

sum we obtain

P(ZY) =112, = 1) <Y P 4 k|t — k)P(C — k|20, = 1)

k—1
+3° Pk % Uk e)P(k = e‘ M {m = 3,29 = 1)

k=(+1 m=0+1
-1

<cC (Zﬁ_lk =it Z A el ﬂ_l>
k=1 k=t+1

G2 for y < %,
< Clog(n)< j~2072i 2

gt for y > %,

and using (5.20) we thus obtain

n i—1 j—1
SN cov |20, 2Y)]
i=1 j=1 (=1
n i—1 j—1
=33 =) (P28 = 120 = 1) - PP = 1))
i=1 j=1 /=1



=1 =3y 2y—2 1
G for v < 3,

_ 2

<Clog(n)) > > i sttitlog(f) for v =14,
1

2

LSS 1222 for v > 3,
log(n)n?” for v < 1,
< CRlog(n)¥y/n  forvy =4,
log(n)n®=2  for v > 1,

where we used ([5.6)). It thus remains to deal with

n

Cov [ z, ZUH — (2% = 1)(B(29), = 1125 = 1) - B(29), = 1))

for m # ¢. To find a bound on IP’(Z(ZZ =1z8),=1) - ]P’(fo)e = 1) we proceed just
as in the previous case and condition on the first edge connecting ¢ to some other
vertex of the network, i.e. on the event {¢ & k} . For £ < m we get

(i—1)A(—1)
Pz, =129, =1) = P(Z0), =1]Z9), = 1,{ < kNP <5 k| 29), = 1)
k=1
+1{¢ < i} Z Zf;; 1Z0) = 1,{0 5 k})P(L <& k| Z9), = 1)
k=0+1
=T, + T,

where (i — 1) A (£ — 1) = min{i — 1,/ — 1}. Analogously we get

' (i—1)A(l—1) '
Pz =1) = P(28), = 1[{¢ & K}P(C & k)
k=1
+1{e<i} Y Bz} = 1{e & kP k)
k=0+1
=151+ 1.

Remember that

{z5 =1} = ﬂ{fv‘w}ﬂﬂ{r Gy {€ ¢ Do}

r=0+1

and
{ﬁék}:kﬂl{ﬁﬁgr}ﬂ{é%k}
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for k < ¢ and

/—1 k—1
{teky=({e»ry 0 () {l»rtn{k— 0} for k>
r=1 r=~+1

Thus, for £k < ¢ — 1 we obtain

n

P (Z% = 1|29, = 1,{t & k})
{—

—P(ﬂ{e SR () o %13 {t— k})

r=0+1 r=k+1

) 5116 0)B(() ¢ 5 0l 5 0

(e=DAG-1)

—IP’( ﬂ{z r}, ﬁ{zﬂw}

r=i+1 r=k+1 r=0+1
' (C-DAG-1) ' -1 n 4 .
— P Bk k) [] P4 rim %) ] P(e%m@( N {r ;w}‘m ;w),
r=k+1 r=i+1 r={(+1

where we used the independence of in- and outdegree of a fixed vertex, the fact that
decisions for outgoing edges of a given vertex are made independently from each

other as well as {¢ A k} = {¢ » k} for £,k > i. As k < { < m we furthermore get

B¢ & K|Z0), = 1) = (ﬂ{f% r}n{e— iy ﬂ{m #1})
_ H]P(g o rlm b PYP(L — Km 5 k)

< [P+ rlm - r)P(t — k)

r=1

and for k > ¢+ 1

/—1 k—1 r—1
]P’(fék]Z?(jZn: 1) gH]P’(ﬁ—Hr\m—Hr) H ]P’(r—»ﬁ‘m 7]46, ﬂ {S—Hﬁ})
r=1

r=~0+1 s=0+1
P(k — (|{m % (},deg;_,(£) = 0).

In the same manner we deduce

(e—1)AG—1) n '
P(Zy) = 1|t <> k) =P(L 4 k|t — k) [[P(¢ 4 r) Hwﬁw (ﬂ{r%é}),

r=k+1 r=i+1 r=~+1

P(EHk)zP(H{K—HT}ﬂ{E%k}) H]P’E—/»r (¢ — k)
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for k < ¢ and

P(eék):ﬁp(e+r) 1:[ P(rﬁge‘ ﬁ {sﬁ%f})P(k%f\degE_l(f):O)

for K > ¢+ 1. One can see that the terms in the sums above differ in the three
factors
(C—1)A(i—-1) (C—1)A(>i—1)

P(C <5 k|ZY), =1) and P(C <5 k), [] B¢ 4 rlm % ) and J] P(¢ 1)

r=k+1 r=k+1
as well as IP( m {r % E}‘m 7]4> 6) and IP’( ﬂ {r % 6}) (5.26)
r=0+1 r=0+1
Due to Proposition [5.4] we have
P(0 <5 k| Z9), = 1) — P(£ <5 k)
k—1 , ' k—1
< IP)(€+>7=|m %T)P(f—)/ﬂm %k) S EEDIEY)
r=1 r=1
k—1 , k—1
<P —k) <HIP<€—/—>7“|m 7%7“) —HP(Z—/—W’))
r=1 r=1

<P (k)& (m)

and noting that for any r < ¢ —1

Pl 5 r|m % 7) =P b 1) <P 4 rlm-» 1) — P 5 7)

ﬂffl (r,m) [Lfil(r, m) ﬂffl(n i) ﬂffl(n i)
(o) i) e

_ () = s ()
- l
we can again proceed just as in the proof of Proposition to obtain
(E—1)A(i—1) (E=1)A(i—1)
i ' i —1)A(i—1
[I eesrim#n- I BeHr<g Ve m).

r=k+1 r=k+1

< f(HO e

Using that '
P(m 2% ) > P(m - ()

yields
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) - ; 1 - ; I
(040 (st 1) -2 ( 0 020) 255
~ IP’( ﬂ {r 724 €}> mY e

With these considerations we can now substitute the terms in (5.26) and rewrite
T' 1 given above.

(i—1)A(—1)

ST P20, =1Z0), =1,{0 < k}P(C > K| Z0),

k=1

Ty =

(i—1)A(¢—1) (—1)A(i—1) '
Z ]P’(E;ék’ﬁ—ﬂc) H P(ﬁ%r!m%r)HP(ﬁ—Hr)

<
r=k+1

k=1

( ﬂ {r %K}lm%onﬁ”ﬁ—»r!m—/»r) (0 — k)
r=0+1
(t—1)A(i—1)

< > PeHke—k ] P(E%r)ﬂ[?’(fﬁer)

r=k+1 r=i+1

~IP’< (n] {r %z}‘m ;‘w) ﬁwﬁ PP = k)

(i=1A(L-1)

+ Z e, )P(ﬁ%k%—%)ﬁ”(ﬁ—%)?(ﬁ{r%ﬁ})

r=0+1

A1)

+ Z g, >P<e%kw%>mmk>@(ﬁ{rw})
r={+1

(i—1)A(£-1) n
+ Z m? YU k|C— k)P — k)P ( N {r# e}>

r=~0+1

(= )AE-1) .
< Ty 33 w(m, k)P A k= KB = RP( () {r 5 (),
k=1 r=0+1
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where

b(m, €, k) = max{m =17 e DNED (0 m) €10, m))

ymyt for v < %,
< log(O)ym207z for v = :
mY~ L=t for v > 1,

with (5.10). Hence
(i—1)A((—1)

Tiy—Toa <3 9(m, k) -P(C 35 k|€ = B)P({ — k)P <ﬂ{r )
k=1 r=0+1

so that we have to consider IP( i {7 % E}) We get

11»( _ﬁ {r;éé}):]?( _ﬁ {7«7’45}] _ﬁ {T—/»E})]P’( _(n] {r%e})

+ > P (n] {r %e}]eék)ﬂb(eék)

k=¢+1 r=0+1

so that by (5.6))

I\ (i—1)A(£—1)
Tiq—Toy < Cmax{ (—) ,z*w*} Z D0 p(m 4 k)
n

k=1
I T (= ) A (C= 1)) for y < 4,
12 K /L.’Y_l 1, 1._1 1
§C’max{ - 75_7} log(n)log(¢)ym=z¢~ 12 for v =3, (5.27)
1
2

mY =2t for v >

We now proceed in a similar way to bound 79 — Th. For k > ¢ 4 1 we get
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n

P20 = 1129, =1) = 3 Bz, = 1120), = 1,{k & )Pk & 029), = 1)
k=¢+1
< 3Pl k= OP( () {r A 0} deg(0) = 1, {m 5 1)
k=(+1 r=k+1

HPE%Hm%T (ﬂ{r—/eﬁ}‘m ) (k — ¢ deg,_,(¢) =0)

r=~+1

P29 =1) = 3 B2 = 1]{k & 0BGk & 0

k=¢+1
= > P(k A k< e)P( N {r # é}‘deg;(@ = 1)
~ ]:[P(f - T)IP’( ﬁ {r » z})m — (| degy_,(¢) = 0).

Again, the summands differ in three of the factors, which are

P( () & # 0]degi (0 = 1, (m 5 1)), Hw+r|m7é> ),

r=k+1
k—1 ‘
]P’( N {rﬁw}‘m ;M)
r=0+1
and
(ﬂ{r%é}‘degk —1) HIP’(—HT (ﬂ{r+>£}>
r=k+1 r=~_+1
respectively. By Proposition [5.4] we have

/-1 /-1

-1 -1
[Te@ = rim % r) = TP > r) < [[BU -+ rlm —+r) = ] P+ r)

(rmr1 for v < 5 1

< &7Ne,m) < S et log(d)  for v =

7

1, -1
O mY for v > 5.

Analogous to the case k < £ — 1 we obtain
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IP’( ﬁ{r%é}‘m%é)—l@( ﬁ{r—»ﬁ})ﬁﬁ”( Iﬁ{r%é}) (;@—1)

r=~+1 r=»+1 r=0+1 ]P’(m 7]L>
k—1

< ]P’( ﬂ {r-» E})m%lf—”.
r={+1

In almost exactly the same way as in the previous case we can show

P( () {r % 0)]degc(0) = 1.{m 5 1) ~B( () {3 )] degi (0 = 1)

r=k+1 r=k+1

<P( () {r # | degi () = 1 {m = }) =P ) {r 5 0}|degi;(0) = 1)
r=k+1 r=k+1
r A ()| deg, (¢) = —
<B( ()t #0dem(=1) (o ae=0 )
< ]P’( ﬁ {r % (}| degy, (£) = 1>m7’1€’7,
r=k+1
because - (/) —
P(m — (| deg; () =1) = 1 — E [ﬂdegml(i),z’ deg;, (£) = 1}
o 1 Ef(deg,,(0)]degyy (6) = 1]
S
by Lemma , so that m— (m — F()me-) F)me
P(m - (| deg, (¢) = 1) —ls m — f(1)ymr— B m(1 — f(1)mr—1=7)
<™ _ oo,
m

where we used that f(1) < f(0) +1 < 2 for all attachment functions considered
in this chapter, so that f(1)m?~'¢/= < 1 for all m > ¢ > 1. Similar to the case
E<(@i—1)A(—1) we get

Tio= Y P(Z0), =120, = 1,{k <> (})P(k <> (|Z{), = 1)

k=0+1
n n ) ) /-1 )
< 3" Pk 4k — 5)1@( () {r % O {m 2 ¢}, deg; (£) = 1) [IB - rim % r)
k=(+1 r=k+1 r=1
k-1 ,
-IP’( M {r = }im % é)]P’(k = 0| deg; () = 0)
r=~¢+1
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k-1

<Ths+3 Z max{m 177 & 1(€m}IP’< ﬂ {r—HE})

k=(+1 r={+1

P(k 4 (|k — OP(k — £| degi_,(£) = 0)

o g [ e
<Thz+C ), (E) e O L b log(e) fory =
h=t+1 Ayt for v > 1,
so that
(rmot f 1
¢ y—1 p—ry f(O) 1 1 1
TLZ_T?:?SCZ - i A ("zm~zlog(¢) for vy =3
Rt Ot for v > 3
(~mr—pt for v < %,
<CR Um0 log(¢) for v = %,
tmar ot for v > 1.

Combining this result with (5.27)) yields

P(Z,; =129, =1) - P(Z,,=1)
o\ ~my—ip L for v < 3,
< Cmax{ (—> ,57717*1} log(n)m=30~4"z  for y =1,
" mY~L2 =2t for v > %

and by repeated use of (5.6) we can now calculate

n 1—1
()
E E E 19,n193nCovZM, nj]
1 1 ¢
=1 a=l i
n i—1

=33 it P (Z0), = 1) (P2, = 1129), = 1) - P(20} = 1))

=1 j=1 ¢m
L<m

for the various constellations of 4, j,m and ¢. Before we begin recall (5.20) and
(5.21)), which we will use in all following cases. Also remember that

S\ 7
()
n
for all © < n. Starting with £ < m < j < i we get
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Jinsn CovlZ,y, Z3),]

i=1 j=1 m=1 (=1

n 1—1 j—1 m—1 '
- Dyt P(20), = 1) (P(20) = 1128), = 1) —P(Z}), = 1))

i=1 j=1 m=1 /=1

n i—1 j—1 m—1 j’Y—lm—”/ ’ g_meW_liW_l for Y < %
< max { log(¢) (£)", 1}m’%j’% log(m) log(n)m~2¢%~2 fory=1

=L =t mELEL =11 = 1p2y=20-1 for v > 3,

(S S S i for v < 5

1

< Cqlog(n)® S0 Y St m e fory =4,

(i X Yoy m e for v > 3

ZZ 12] 1]’ Y1 for v < %,
< C{ log(n iz fory =1
i=1 2aj=1 T=79
Ez 12; 13573 f0r7>%
n f0r7<%
< C < nlog(n)* fory=3
n®r—2 for v > 1.

We will omit the calculations in the remaining five cases, however the procedure is
always exactly the same. For j < ¢ < i < m we get

n =1 i-1 i—1 n fOI"7< %a
ZZ Z Z Vi ¥ Cov|Z nl)f’ Zn nl < C < nlog(n)t  fory =1,
i=1 j=1 l=j+1 m=i+1 n6'y—2 fOI’ v > %

and

n t—1 i-1 i—1 n f01"7 < %7

Z Vi n¥;n Cov ZT(LZ}, ZT(“ ] <C S nlog(n)t fory =3,
i=1 j=1 f=j+1m=0+1 nbr—2 for v > %
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for j <{ < m < i, where we used 9;,, ~ (%)n < (%)n in both cases. Similarly with
Djm ~ (£)" < (2)" in the case £ < j < m < i we obtain

n

n =1 -1 - n for V< %
219, 20;n Cov ZS@ ZO) 1< C S nlogn)* fory=1
i=1 j=1 m=j+1 (=1 nir—1 for v > %

and
n =1 n n n for V< %
DD > Puadin CovlZ, Z9)] < C S nlog(n)*  fory =3
i=1 j=1 t=i+1m=0+1 nb1—2 for v > 1

for j <i </l < mandas 9,;,7;, < mz,‘;" in this case. The last case to consider is
¢ < j <1< m, for which we obtain

noi-1j-1 = n for v < 1,
Z Z ¥in0jn Cov Zf;é, Z(J) n <C ¢ nlog(n)*  for vy =1,
i=1 j=1 (=1 m=i+1 n4~/—1 for v > %
Hence
n n m-—1 n for v < %
Z Yinj.n Cov| Zf ,Zn}n] < C {nlog(n)* fory=3
i=1 j=1 m=1 /=1 n6772 fOI"}/>%.

All these calculations can be conducted in the exact same way for m < ¢ if we swap
the roles of m and ¢, i.e. we look at

n i—1 n

Zzzzﬁmﬂ]nCovZT ’Zn,r)n]

21j1€1m1

n i—1 n

=3y Z it nP(2) = 1) (P(Z,g{

i=1 j=1 {=1 m=1

S\_/

Finally we obtain

" n for v < %,
Z Z Z Zﬁlnﬁ]n Cov Zr(zl,)é7 Z’r(zjr)n] <C nlog(n)4 for v = %,
o n%-2 for v > 3.
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We can now combine Lemma [5.5] Lemma [5.7 and Lemma[5.8| to bound the first
term appearing in ([2.4)).

Lemma 5.9. For W, having the size-bias distribution of W, there exists a constant
C > 0 independent of n such that

o5 \2 o | fory < 1,
V[E [WS - Wnlgn“ S ('u_nn) + E nlog(n)4 for v = %7
"o n5? fory > 1.

Proof. Remember that by (5.14)) we have

zn: ﬁi,an,i

i=1

+V

Zn: ﬁi,nDn,i

i=1

4
V[E [er - Wn|gn]] < IU_Q (O-Z +V

) |

Lemma [5.5] gives

whereas Lemma [5.7] and Lemma [5.8] yield

n n for v < 1,
VY 0inRai| <C {nlog(n)t  fory =1,
=1 nb1—2 for v > £,
which proves the claim. =

The next lemma now gives an upper bound on the second term in (2.4)).

Lemma 5.10. For W,, denoting the number of isolated vertice in a preferential
attachment graph G,, and W having the size-bias distribution of W, there exists a
constant C' independent of n such that

o n for v < %,
E[(Wy —W,)?] <— < nlog(n)? fory= z,
B for v > %

Proof. First remember that to construct a graph for which the number of isolated
vertices has the size-bias distribution of W,,, we choose one vertex I according to
P(I =1i) = 19;”. Furthermore, recall that D, ,, denotes the number of neighbours of
vertex i, which are only connected to ¢ and d; refers to the total degree of vertex 7.
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Consequently we have Y " | D;,, < n. By conditioning on the graph G, at time n

and using (5.13)), we obtain

E[(W: - Zﬁm in + 1{d; > 0} + Ry

Mnil

— ui (Z UinE [D7,] + 2 Z Ui [Din1{d; > 0}] + Y0, ,E [1{d; > 0}]
™ \i=1

i=1 i=1

+2) 0B [DinRoil +2) i [1{d; > 0} Ry ] + > inE [Ri,i])

=1 =1 i=1

Mi ( SE (D] 423 0B (DRl + 23 0 E[1{d, > 0}R,.]
=1 =1
3n
/197/ sn
DRI ) 3

and since pu, ~ n according to Lemma the last term is of constant order. To
bound the remaining sums we define

n) e . .
Sy’ = 1{i is the only neighbour of j in G}
jrlll_{j #ryn{j—=iyN_ {r =g} fori<y,

r#i

N_; jﬁ»r}ﬂ{z%j}ﬁﬂTﬁl{rﬁ»j} for i > j.

Thus D;, = Y7, SU , where by construction of the network S = 0. With these
notatlons we get
n n k-1
2 _ (n) (n) g(n)
D;, =) 57 +2) Y Ssp.
j=1 k=1 j=1

To calculate E [Sfjn )} we distinguish the two cases ¢ < 7 and ¢ > j. For the latter

we have

E[S ] ﬂ{J+k} ﬂ{€+3} {i =7}

l=j+1
(£33

o ] (-2 1 (-2

k=j+1

< e (Zfl)n@(@ngc% (5.28)

b ‘




by the independence of in- and outdegree of a fixed vertex. For ¢ < j we get

jf

E sy :]P’< (i kL7 = ) {Hj})
k=1,k=i l=j+1
- = M§—1(k> N§—1<i> . f(0)
- .(1— ] ) L)

t=j+1

-\ Y S\ 1 i—1+v+n
<1) <l) _ (5.29)
1 n Ynn

where we used (j5.5)) in both calculations. Consequently

n n n i—1 n n
L3 Sefs] - ok (S Se[s]+ 3 3 st
L j=1 Hn \ 5= j=1 i=1 j=i+1
C n i—1 j” n n ]’YJF??
PRSI I
% 7=1 =1 j=i+1
C nttn
<2— ;
P, TV

where we used bounds of the form ([5.6). As pu, is of order n we obtain

L Xn: f: E [s§f>] <C (5.30)

- j=1

for some constant C' > 0 independent of n. In order to bound E [Sfjn ) SZ(: )} we
consider the three cases i < j <k, j <t < k and j < k < i. Since

E |S5sW] =Ry sl = 1)

v v

Thus, for ¢+ < 7 < k and using the multiplication formula for conditional probabili-
ties

]P’( () {m= kb () {03}, (j{k+>m},ﬂ{jﬁ»é},{kﬂ},{j%})

ﬁ{j+é})

meti,g 047

:]p( ﬁ {m—x»k})l?’( ﬁ {K—Hj}>IP’< lhl{k;ﬁ«»m}

m=k—+1 f=j+1
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-P(ﬁ{j+g}> Pk —ilj — )P (j — i)

z;sz’

(-

11 (1—@>P(k—>i|‘j—>i)-u];(>

m=k+1 =j+1
n =\ 7 -1 v—1
< C E l k’Y j’Y :Ckn+,y_1jn+ry—1n—2nl‘—2’y
- n n AR

where we used [DM13, Lemma 2.10] and Lemma to deduce that

/“Lk: (4, 5) < ﬂi—l(iui"‘l)
k - k

Pk —ilj — i) = < f(HE Y

and also exploited the dependency structure of the network. Similarly, for 7 < i <
k,

P(5 S5 = 1)

2

() tm kb () L), ﬂ{mm} ﬂ{we} [k =i} {i = j})

m=k+1 £=5+1,

_p( ﬂ {m - k})B( ﬂ {f+j}‘{i—>j})ﬁ”< ﬁ{mm}\é{we})

(Q G- 0)B(k— PG )
< HM (1_&) ﬁ (1_&) ﬁ (1_f(.1)) ui_k?('i)uf_}(j)
m j j i

m=k+1 l=j+1 l=i+1
NN :
<C E J ﬂi — Ck*1+n+7jnﬂnf2nfl'
- n n/) kg

In the last case, 7 < k < i, we obtain

P(S™M s = 1)

[

() me kb () L), ﬂ{1+>5} ﬂ{mm} {i =k} {i = 3})

m=k+1, L=j+1,
m#£i LF£i m;&]

—( ﬁ {m » K} {i = k})P( (n] {E%j}|{i—>j}>1?’(ﬁ{j%€}’ H{k—»m})

m=k+1, 0=j+1, —1, =1,
ma#i 22 oA m#i,j
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B 1) Gk m]ti = 1B (G > BB (G 1)

< IL(-S) IO IO IL0-)
) )

<(C E n l 771 i ol 1 ’YZOn_an‘n_A/jn—'yZ’—}i‘QW'
- n n) 2\ k j

By repeated use of (5.6)) we obtain

n n k-1 n n
ZZZE[SW Z2}<C<ZZ an+’71n+’yl ;-
i=1 k=1 j=1 i=1 k=i+1 j=i+1

n n

+ Z Z iklﬂﬂjnvn?nil

i=1 k=i+1 j=1

+ i i i n27]k7]7j77’72'2+2'y>

i=1 k=1 j=1
C
S —277 (n277+1 + n277+1 + n277+1) = OTL, (531)
Combining ((5.30) and - yields
n n k-1
=Y E |55 +2 E|sPs@] <cn. (5.32)

k=1 1

<.
Il

With the definitions of D;,, and R,,; as well as the fact that Z,(fzn = 0 for Sz(ﬁ,)l =1
we get

E [Di,Roi) = Z Z S 70 Z Z P (s = 1) B (28, = 1ls%) = 1)
7j=1 m=1 j=1 m 1
- n C u nL gyl i n
ZZJ (20, ‘S(J)Zl)*m > Y P (20, = s = 1),
Z;ﬁ; J=i+1 Z;;

where we used ([5.28]) and ((5.29). For the conditional probability we obtain

P20, =118 = 1) = P(20), = m{rw} ﬂ{s+y} fi—j})
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3
L

i) _ (n) _ 1. (n) _
]P’(Zr(hzn = 1|SZ] L, {m &y rHP(m <> T‘Si’j =1)
r=1

+1{m < i} Z P(Z{), =1[S" = 1, {r «> m})P(m <> r[SY = 1)
r=m+1
m—1
Zﬂ =2t 1{m < 4} Z i,
r=1 r=m+1
I i, fory <1
< C{log(m)d'm =t + n " tm~* for y = 5
im0 im for v > %
=W (n,m, i, j),

where we used that

P(m — r|Si(3) =1)<P(m—r)
and

P(r — m|S;;) =1) <B(r —m),

with equality holding for 7 < r in the first, and j < m in the second case. Hence
we get

i ﬁi,nE [Dz,an,z]

i=1

n 1—1 n
C jnﬂ
- f f
<L Sl vemint 53 5 S A Vems
=1 j=1 Z;; =1 j= Z+1 m 1
n for v < %,
< C Slog(n)n  for y =1, (5.33)
n® for v >

where we used ((5.6) three times to obtain the last inequality. Using ([5.20) and
(5-21) it is straightforward to bound E[> "  1{d; > 0}R,;]. More precisely, we
have

n

> 1{d; > 0}R,,;

i=1

E <E

_y (iiw(zfjg =1+ i P(Z) = 1))



n for v <
< C < nlog(n)? fory=
n* for v >

N N N

It now remains to deal with E [, ¢;,R2;]. We have

+E ZZZﬁmejj @,

i=1 j=1 m=1

SB[ 0,20

i=1 j=1

]E iﬁl,nRil
1=1
= DS (] = 1)+ D030 D B = DR, =117 = 1)

’Lljl Zl]lml
m#j

On account of ([5.20)) and ([5.21)) it is straightforward to see that

n n n for v < %,
Z Zﬁmp(zfjg =1) < C{log(n)n for vy =3,
=1 j=1 n?Y for v > %
Furthermore, (5.22)) yields
nY " im =2 fory<1
]P’(Z ) = 1\Z(Z 1) < Ci~2m 2 log(m) +n2i~2m='  for y = 1
i im T i, 2 for v > 1

so that using ((5.20)), (5.21]) and (5.6) again gives

n for v < %
>3 > () = (5, = 128 = 1) < o)t for 7= &
==t nt—t for v > 1.

Thus
n n for v < %,
E Z VinRe ;| << nlog(n)? fory =32, (5.34)
=1 nir=1 for v > 3

Combining (5.32)), (5-33)),(5-34) and the fact that p, ~ n by Lemma 5.3 proves the
assertion.
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We can finally prove our main result, Theorem [5.1]
Proof of Theorem[5.1. Remember that due to Theorem

dW(Wna Z) < %\/%\/V[E [Wﬁ - Wn|gn]] + %E [(Wi - WH]Q] :

n

According to Lemma o2 is at least of order n, so substituting the results given
in Lemmas [5.3] and into the first term yields

\/Lﬁ for v < 1,

Hn 2 s log(n)?
1
3

for v >

Moreover Lemma [5.10] gives

- for v < 2,

o | fory <1 \/ﬁ( . 2

Fin S log(n _1
;E [(Wn - Wn)ﬂ < py nlog(n)? for v = % <C NG for v = 3,
ni-1 for v > % n4’yf% for ~ > %

Here, the last equality uses the fact that due to Lemma we have o2 > Chn.
Combining these two results proves Theorem |5.1}
m
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