ALGORITHMS FOR SCALABLE ON-LINE MACHINE LEARNING
ON REGRESSION TASKS

JAN H. SCHOENKE

(T JUNIVERSITAT
@()SNABRUCK

In partial fulfillment of the requirements
for the Doctorate degree
in Computer Science (Dr. rer. nat.)

Department of Mathematics and Computer Science
Institute of Computer Science
University of Osnabriick

Osnabritick
25 October, 2018



SUPERVISOR:
Prof. Dr. Joachim Hertzberg

DISPUTATION:
18 April, 2019

LOCATION:
Osnabriick

Jan H. Schoenke: Algorithms for Scalable On-line Machine Learning on
Regression Tasks, © 25 October, 2018



ABSTRACT

In the realm of ever increasing data volume and traffic the process-
ing of data as a stream is key in order to build flexible and scalable
data processing engines. On-line machine learning provides powerful
algorithms for extracting predictive models from such data streams
even if the modeled relation is time-variant in nature. The modeling
of real valued data in on-line regression tasks is especially important
as it connects to modeling and system identification tasks in engi-
neering domains and bridges to other fields of machine learning like
classification and reinforcement learning. Therefore, this thesis con-
siders the problem of on-line regression on time variant data streams
and introduces a new multi resolution perspective for tackling it.

The proposed incremental learning system, called Adaptive Sim-
plicial Multi Resolution Approximation (AS-MRA), comprises a new
interpolation scheme for symmetric simplicial input segmentations, a
layered approximation structure of sequential local refinement layers
and a learning architecture for efficiently training the layer structure.
A key concept for making these components work together in har-
mony is a differential parameter encoding between subsequent refine-
ment layers which allows to decompose the target function into inde-
pendent additional components represented as individual refinement
layers. The whole AS-MRA approach is designed to form a smooth
approximation while having its computational demands scaling lin-
early towards the input dimension and the overall expressiveness and
therefore potential storage demands scaling exponentially towards in-
put dimension.

The AS-MRA provides no mandatory design parameters, but offers
opportunities for the user to state tolerance parameters for the ex-
pected prediction performance which automatically and adaptively
shape the resulting layer structure during the learning process. Other
optional design parameters allow to restrict the resource consump-
tion with respect to computational and memory demands. The effect
of these parameters and the learning behavior of the AS-MRA as such
are investigated with respect to various learning issues and compared
to different related on-line learning approaches. The merits and con-
tributions of the AS-MRA are experimentally shown and linked to gen-
eral considerations about the relation between key concepts of the
AS-MRA and fundamental results in machine learning.
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ZUSAMMENFASSUNG

Angesichts stindig wachstender Datenmengen und insbesondere mit
Blick auf das Wachstum des Datenaufkommens ist die Verarbeitung
von Daten als kontinuierlicher Strom von entscheidender Bedeutung,
um flexible und skalierbare Datenverarbeitungsmechanismen zu eta-
blieren. Maschinelles On-line Lernen bietet in diesem Zusammen-
hang maéchtige Algorithmen, um zuverldssig und schnell Vorhersa-
gemodelle aus Datenstromen zu generieren, selbst wenn sich die da-
bei beobachteten Zusammenhénge im Verlauf der Zeit verandern. Ei-
ne besondere Rolle spielt hierbei die Modellierung von reellwertigen
Groflen im Rahmen der On-line Regression, diese Art von Problem-
stellung ist sowohl in vielen Bereichen des Ingenieurwesens fiir die
Modellierung physikalischer Zusammenhénge notwendig, als auch
wichtiger Bezugspunkt zu anderen Bereichen des Maschinellen Ler-
nens wie etwa der Klassifikation oder dem Bestdarkenden Lernen. Ins-
gesamt behandelt diese Arbeit das Problem der On-line Regression
auf zeitvarianten Datenstromen und fiihrt dabei eine neue Multiska-
lenperspektive fiir dessen Losung ein.

Der hier vorgestellte Ansatz der Adaptive Simplicial Multi Resolu-
tion Approximation (AS-MRA) fiir Inkrementelles On-line Lernen um-
fasst eine neue Interpolationsvorschrift auf symmetrischen simplizia-
len Strukturen, eine Multi-Skalen-Struktur lokaler Approximationen
und eine Lernarchitektur zur effizienten Verarbeitung von Lerndaten
innerhalb der Multiskalen-Approximation. Dreh- und Angelpunkt
fir die erfolgreiche Zusammenarbeit dieser einzelnen Teile ist ein
differenzielles Kodierungsschema zwischen benachbarten Schichten
der Multi-Skalen-Struktur, welches es erlaubt das zu lernende Mo-
dell in einzelne additiv aufeinander aufbauende Teile zu zerlegen,
die jeweils durch eine Schicht der Multiskalen Approximation repra-
sentiert werden. Insgesamt erzeugt das AS-MRA so eine glatte Appro-
ximation des gesuchten Modells, wobei der Aufwand zum Lernen
und Auswerten der Approximation hinsichtlich Rechenbedarf linear
mit der Anzahl der Dimensionalitdt der betrachteten Daten skaliert,
wéahrend der potentielle Speicherbedarf hinsichtlich dieser Grofie ex-
ponentiell wéchst.

Die allgemeine und einfache Anwendbarkeit der AS-MRA wird durch
das Vermeiden von notwendigen Designparametern sichergestellt. Da-
bei bietet der Ansatz gleichzeitig tiber verschiedene optionale Para-
meter die Moglichkeit die vom Nutzer erwartete Vorhersagegenauig-
keit festzulegen, wodurch sich die Struktur des Ansatzes dynamisch
zur Laufzeit an die jeweilige Aufgabe anpasst. Aufierdem lassen sich
Beschriankungen fiir die genutzten Ressourcen hinsichtlich Rechen-
aufwand und Speicherbedarf definieren. All diese Faktoren beein-
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flussen das Lernverhalten von AS-MRA und dieser Einfluss wird zu-
sammen mit verschiedenen weiteren Aspekten des On-line Lernens
in den Untersuchungen behandelt und es werden Vergleiche mit an-
deren verwandten Verfahren aus dem Bereich gemacht. Die dabei
herausgestellten Leistungen des AS-MRA kniipfen an grundsitzliche
Erkenntnisse und Fragestellungen im Bereich des Maschinellen Ler-
nens an.
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INTRODUCTION

1.1 MOTIVATION

The processing and analysis of data streams [1] is a key feature in
many classical engineering domains like signal processing, system
identification or system control and gains more and more attraction in
recent Big Data related domains like (Wireless) Sensor Networks [65],
the Internet of Things or Industry 4.0. In engineering related topics
the data stream perspective is easy to grasp as the field frequently
deals with embedded systems which read sensors and steer actors in
order to fulfill some task. Sensor readings come in one-by-one at a
certain rate, thus they form a stream of data over time.

In Big Data related applications the data stream perspective is less
obvious as here one is concerned with analyzing huge amounts of
data that are not necessarily are stream-based. The issues of dealing
with large data sets are considered in [20] on a general and formal
level. For large data sets the complexity of the processing algorithm
and the processing time to get reasonable results becomes relevant.
In [20] the good generalization properties of a sequential processing
of the data are highlighted as they naturally allow to steer the trade-
off between quality and time consumption in a fine-grained manner.
An additional problem with Big Data is the need to process data sets
that not necessarily fit into main memory and thus many commonly
used data analysis algorithms that need to look at all the data as one
batch fail to handle these data sets. Here the data stream perspective
comes in handy as the whole data set is split into chunks or processed
incrementally, i.e. in a one-by-one manner, which allows a good scal-
ability concerning the size of the data set to be processed. All in all,
the analysis of data streams is useful in different realms and fosters
the perspective of incremental data processing which requires appro-
priate algorithms in order to consume data in a stepwise manner.

One common task in engineering and Big Data applications on data
streams is to learn a model [173, 74, 199]. Models in engineering are
used e.g. in order to separate signal from noise, to estimate system
state variables or to find optimal control values. In data analysis ap-
plications the models describe relations like the predicted quality of
a product depending on the quality of its ingredients, the estimated
mean time to failure in predictive maintenance or a forecast of power
consumption and production in renewable energy. With respect to
Big Data, models may as well be simply used to compress the incom-
ing data in an easily accessible manner in order to find aggregations
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and abstractions. The models f in the above examples all describe
mappings between some input values x € X and output values y € Y.
Learning such models from data streams is the task of on-line regres-
sion by means of incremental or on-line learning algorithms in which
the input and output values are represented as vectors x € X C R™
and y € Y C R™, respectively.

On-line learning is a subfield of Machine Learning which studies
algorithms for processing data streams. Machine Learning itself con-
sists of three main parts, namely supervised learning, unsupervised
learning and reinforcement learning. Supervised learning comprises
classification as well as the already mentioned regression and is based
on learning a certain mapping based on examples of the from (x,y)
where x is an instance and y the corresponding label. In classification
y belongs to a set of discrete categories, e.g. y € {0, 1}™ in binary clas-
sification. Whereas in regression y belongs to a real vector space as
mentioned above. Algorithms from unsupervised learning only deal
with instances x and thus do not discover a relation between input
and output variables, but perform tasks like clustering, dimensional-
ity reduction or density estimation in order to give insights about the
structure of the data itself. Another quality of learning is covered by
reinforcement learning which is based on reward and punishment. It
aims at improving the behavior of agents acting in an environment
by rating the actions an agent is able to perform. Reinforcement learn-
ing algorithms learn from experience as they observe the actions an
agent takes and the rewards it gets and optimize the agent’s behavior
in order to maximize the expected future reward.

These three traditional parts of Machine Learning are accompanied
by the younger fields of semi-supervised learning, where only a small
fraction of all available instances is labeled, and active learning, where
the learning algorithm is allowed to ask a supervisor to label an in-
stance chosen by the algorithm in order to best improve its prediction
performance. Both of these fields make use of supervised and unsu-
pervised algorithms and thus may be counted as part of one of these
categories, but they likewise extend the standard supervised learning
schema in substantial ways.

The different parts and fields of Machine Learning are all con-
nected on a conceptual level as they strive to make use of data in
order to extract useful information. On an algorithmic level, many
on-line learning algorithms internally make use of clustering and
dimensionality reduction methods in order to adapt to the data at
hand and use them efficiently. In addition to that, some approaches
use density estimation techniques in order to estimate the validity of
their analysis which provides valuable additional information for the
user or other consuming algorithms. An even stronger connection is
recently bound between regression and classification in data stream
analysis as the mean squared error provides a valuable surrogate for
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typical classification losses and allows for an incremental data pro-
cessing, [68]. Thus, it makes many classification algorithms capable
of efficiently handling data streams of potentially imbalanced classes.
Even reinforcement learning for continuous states and action has al-
ready been reduced to the task of on-line regression in the Knows
What It Knows (KWIK) framework and other adaptive control related
approaches in reinforcement learning, [113].

Hence, on-line regression is important for many application do-
mains and is strongly connected to many fields of machine learning.
Moreover, the on-line and incremental processing of data makes it
possible to explicitly treat and handle time variance, i.e. a change in
the observed model over time, because the temporal ordering of the
data is preserved while processing them. A time variant data stream
is called evolving data stream in the evolving fuzzy systems and com-
putational intelligence realm. The time variance may affect the way
the instances of the stream are generated or how they are labeled
or both in combination. A change in the labeling process sometimes
is called real because here the target function to be learned actually
changes over time while a time-variant instance generation only af-
fects the kind of examples the algorithm gets over time from the same
target function.

Time variant effects in data streams are usually divided into two
classes: drifts and shifts. Drifts are slow continuous changes over time,
e.g. caused be wear in sensors and actuators, while shifts mark in-
stantaneous and abrupt changes from one step to another, e.g. when
holidays cause an abrupt change in the energy consumption of a city.
One issue, that naturally rises when dealing with time-variance, is
the stability-plasticity dilemma or the question whether to follow a
novel example or not. Following a novel example would mean to be
plastic and thus to assume that this example contains valuable infor-
mation about a new and changed target function making it necessary
to adapt or even discard the current model. Being static would mean
to ignore the novel example assuming that it does not belong to a
new target function but rather is contaminated by noise and the cur-
rent model needs to be protected from being disturbed by this faulty
example. This dilemma is always present when dealing with noisy
and time-variant data streams and can only be solved in hindsight by
comparing different examples or applying statistical tests.

Looking at the rapid growth of data volume to be processed in Big
Data applications due to new sources of data like wearables, sensor
networks and process monitoring it is reasonable to look at the hard-
ware that runs the algorithms to process the resulting data streams.
The computer hardware and architecture changes from time to time
and different architectures make some kinds of algorithms preferable
to other. Today two main resources a designer needs to keep in mind
when developing algorithms seem to be unlimited, namely process-
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ing power and memory. Thanks to multi-core processors the process-
ing power of modern CPUs is still increasing although the processor
frequency has reached physical limits due to the power wall [82]. This
trend makes the parallel programming paradigms even more impor-
tant as they not only apply to clusters but to single machines.

The available memory today is huge, relatively cheap and is still
getting faster in terms of clock-rate and bandwidth. A limiting factor
today is the memory latency which has even increased due to the in-
creased size of each single module. Thus, although a huge memory
may be available, accessing this memory is costly with respect to la-
tency. Modern caching technologies allow a fast access but only to a
small fraction of the whole memory and they are limited by memory
bandwidth and latency as well. In consequence, algorithms for cur-
rent computer hardware may build complex models but should only
need a very small fraction of the whole model in order to answer
queries or learn from new data due to the bandwidth and latency
limitations. In multi-core processors the algorithms can use a reason-
able amount of processing power for parallel tasks, but all of these
tasks compete against each other for memory access and thus should
share the same piece of the model. Further parallelization of on-line
regression algorithms on different machines for distributed learning,
e.g. on a cluster, requires the splitting of the stream and network com-
munication with even harder bandwidth and latency limitations and
is thus outside the scope of this work.

All of these general considerations are now phrased and condensed
into the formal problem this thesis considers and the requirements
that form the perspective towards the solution this work is heading
for.

1.2 THE INCREMENTAL LEARNING PROBLEM

The On-line learning problem is the formal description of learning
from data streams. It is formulated as a task for an Incremental Learn-
ing System (ILS) that receives a data stream of instances x; € R™ and
labels y; € R™ in consecutive time steps t = 0,1, 2, ... . The ILS con-
sists of two parts. A hypothesis f; € F represents the current knowl-
edge of the system about the mapping y; = fi(x¢). This hypothesis
belongs to some set F of parameterized functions F 5 fo g : R™ = R™
of the form in equation (1) where « are parameters influencing the
output in a linear way, the parameters 3 influence the output in a
non-linear way and the potentially non-linear mapping ¢ defines a
set of basis functions for the linear parameters o.

fop(x) = &’ d(x,B) (1)

A learning algorithm updates the hypothesis f; based on samples
of the form (x¢41, Y1) by adjusting the parameters & and 3 and pos-
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sibly changing their size while the kind of basis functions ¢ remain
fixed as they essentially define the structure of the representation.

The process of learning one sample (x¢i1,Y¢,1) from the data
stream is always the same. For each new instance x¢,7 the ILS pre-
dicts the label {J,,; based on its current hypothesis f; about the
relation §j = f(x). After predicting the label {j,; the ILS suffers a
loss (Y, 1,0¢1) by receiving the corresponding label y;,; from
the data stream and the ILS updates its hypothesis to i, 1. The goal
of the ILS is to minimize the cumulated loss defined in equation 2
over all learning steps and thus learn the relation §j = *(x) that best
predicts the labels y; from the instances x. Depending on the set of
possible hypotheses f € F the best hypothesis f* may perfectly fit the
target function f, i.e. f* = f, or only approximate the target function
f* = argming{|lf — gll}. The former case is referred to as a realizable
case but the latter case of approximate solutions represents most real
world scenarios.

The labels y; the ILS receives from the data stream are assumed
to be of the form y; = f(x¢) + € where f is the actual labeling func-
tion and e is an additive noise term. Thus, the ILS has to reconstruct
the actual mapping f from noisy samples in order to find the best
hypothesis f*. This task becomes even more complex when dealing
with time-variance as the actual labeling function f; becomes time
dependent. The stability-plasticity dilemma formally originates from
labels generated according to y; = fi(x¢) + €, which generalizes the
task of the learner to track a non-stationary and potentially non-linear
target function f; from noisy samples (x¢,y) and highlights the dif-
ficulty in judging whether a prediction error is caused by noise or
time-variance.

In regression the considered loss l(yy, ) is usually chosen to be
the squared error as it has many desirable properties like smoothness
and convexity, see equation (3). This loss gives rise to one of the cen-
tral performance measures in on-line learning, i.e. the Cumulative
Square Loss (CSL) as shown in equation (4). The CSL measures the
performance of a learning system in predicting the unknown target
function f(x) over the whole course of learning.

CL(t) = ) UyuBi) (2)
i=0

e% = (yt_gt)z (3)

CSL(t) = Z(Ut_gt)z (4)
i=0

There are other loss metrics in on-line learning like the absolute
error |e¢] = [yy — §¢| which does not prefer small errors to large
ones like the squared error does. This absolute error treats all errors
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equally irrespective of their magnitude which directly affects the be-
havior of all on-line learning algorithms which make use of the gradi-
ent information. Selecting an appropriate loss metric for a particular
on-line learning problem can greatly simplify the learning task but
requires corresponding prior knowledge. This thesis only focuses on
the squared error as a widely used metric in machine learning. Thus,
throughout this document the cumulative squared loss is referred to
as Cumulative Loss (CL).

1.3 REQUIREMENTS

This section will sort, group and complete the different perspectives
onto on-line learning sketched in the introduction so far and state
them as requirements for on-line learning systems. The following list
of categorical requirements spans the coordinate system for rating al-
gorithms in this thesis but they are inherently connected to each other
and these connections may be most important in some applications
while negligible in others.

* Accuracy

The prediction accuracy of a learning algorithm is a quite obvi-
ous and easy to grasp measure in rating on-line learning algo-
rithms. The squared cumulative loss is a natural choice to mea-
sure the accuracy of an ILS as it takes into account all available
samples and indirectly even the development of the hypothesis
of the ILS because the course of the CL over time converges to a
linear function as the hypothesis of the ILS converges.

The slope of this linear function depends on the noise term and
the approximation quality of f*. The former is inevitably deter-
mined by the data while the latter entirely depends on the hy-
pothesis set F the ILS makes use of, i.e. the representation, and
the ability of the learning algorithm to generalize from samples
to a model. Thus, accuracy is strongly related to representation
as well as generalization.

Moreover, representation and generalization are directly con-
nected to each other because a rich representation allows to
exactly match many target functions which may appear favor-
able in terms of accuracy but makes the generalization for the
learner very hard due to the problem of overfitting. The term
overfitting states that the out-of-sample error in the learning
process is much high than the in-sample error, i.e. the learning
system only memorizes the data but performs no valid general-
ization. Thus, a rich representation featuring a huge hypothesis
space F requires much more data to achieve a good generaliza-
tion compared to a restricted representation with a small hy-
pothesis space F. This observation is formally supported by the
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bias-variance decomposition of the expected approximation er-
rOr.

A

Exp [(y—f(x))?] = o* + Bias [ﬂz + Var [f] (5)

This decomposition accompanies the consideration of the con-
vergence towards an accurate approximation by the progress of
learning in order to get to such an approximation. This raises
the question whether the application requires a reasonable hy-
pothesis right from the start or only after a certain amount
of time, i.e. learning samples. It may be important to provide
a good hypothesis in every step like in any-time prediction
settings or only after certain learning episodes of reasonable
length. A suitable incremental learning system should support
both options, but providing a reasonable hypothesis in every
step is usually harder to achieve as the conflict represented in
the bias-variance decomposition does not relax in time which is
especially important in non-stationary learning tasks.

Scalability

A huge or growing amount of the data to be processed is a
fundamental motivation for incremental learning as their pro-
cessing inherently scales linearly in data size. However, there
are other aspects of scalability which are more severe. A factor
especially important in regression is the scalability towards the
dimensionality n of the instances, i.e. the dimension of the input
space of the target function f : R™ — R™. This scaling is quite
tricky as it is directly related to the curse-of-dimensionality which
basically states that any fixed number of samples d provides
an exponentially less dense sampling of the input space as the
dimension n of the input space increases. Thus, samples in low
dimensions are much more useful and informative than they
are in high dimensional spaces. This fact makes dimensionality
reduction techniques very powerful and in some applications
fundamental, but they are not within the scope of this thesis
and will only appear as components of certain on-line learning
algorithms.

While the sampling gets exponentially sparse with increasing in-
put dimensionality, the potential complexity of the target func-
tion f grows exponentially regarding input dimension. Thus,
high dimensional data cause two inevitable and severe prob-
lems that directly link to the bias-variance decomposition and
make the problems discussed there even worse. The increased
potential complexity of the target function requires an accord-
ingly rich representation which threatens generalization and in-
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creases the necessary amount of data in addition to the expo-
nentially less dense sampling due to the curse-of-dimensionality.

For every learning algorithm this increases the conflict between
choosing a huge hypothesis set to account for the potential com-
plexity of the target function or to choose a small hypothesis set
in order to foster a reasonable generalization from the available
data. The design of an algorithm with respect to this funda-
mental conflict also determines its scalability towards input di-
mension. The extreme cases of input scalability are linear and
exponential as best and worst cases, respectively.

Unfortunately, the scalability of an algorithm is not a scalar mea-
sure but is in general different for evaluation and learning. The
scalability of an ILS towards evaluation itself is twofold as it
touches the computing and memory demands. The scaling of
the memory demand refers to the amount of parameters needed
to answer a single query, i.e. to predict the label of one instance
x¢. The extreme cases here are the need to process the whole
model or only a single parameter. The computational demand
at least scales like the memory demand but may be even higher,
e.g. if the evaluation requires to solve some kind of optimization
problem.

The scalability of an ILS toward learning splits into memory and
computational demands as well. However, here the memory de-
mands span two different aspects. On the one hand, the amount
of parameters needed to do one update step of the model and
on the other hand, the memory demands of the total model. The
computational demands for learning follow the same consider-
ations as for evaluation.

In total, there are five different aspects of scalability of an ILS
towards dimensionality:

- Computational demands for evaluation
- Memory demands for evaluation

- Computational demands for learning

— Memory demands for learning

- Overall memory demands

All of them correspond to key hardware aspects like comput-
ing power, memory size and memory access performance. The
limiting factor for algorithms that process a large amount of
parameters for each sample is memory bandwidth, while algo-
rithms that only require a small amount of parameters are lim-
ited by memory latency in their overall processing performance,
i.e. the amount of data they can process per time. This process-
ing performance relates to the throughput rate of the learning



1.3 REQUIREMENTS

system and its response time which may be crucial in embed-
ded systems applications with real-time constraints or impact
user experience in service applications.

The top four of the above aspects of scalability are easy to state
in Bachmann-Landau notation for most algorithms, while the
last one - the overall memory demand - depends on many fac-
tors like the relation between hypothesis space and target func-
tion, the complexity of the target function, the amount of sam-
ples, the distribution of the instances, noise and time-variance.
Identifying how the total memory amount of an algorithm scales
towards the input dimension and to clearly separate this influ-
ence from all others is hardly achievable by analyzing an al-
gorithm formally. Thus, the formal consideration of the total
memory amount of an algorithm will be simplified to just look
at a minimal scaling for a realizable case in order to have a valid
lower bound for this value as its natural upper bound would be
the memory needed to store all samples.

When focusing on memory access, only the three memory re-
lated aspects of scalability from above are relevant which es-
sentially condense into a single ratio between the total memory
demand of the model and the necessary subpart for evaluation
and learning. This Memory Access Ratio (MAR) simplifies many
important aspects of certain approaches but it allows to eas-
ily compare them in terms of their memory access efficiency
and thus gives insights about the scalability of the memory effi-
ciency towards dimensionality.

Usability

Usability is a complex topic in software engineering, but for
on-line learning algorithms usability boils down to the number
of parameters the user needs to set and how difficult it is to
tune these parameters. While the number of parameters an al-
gorithm provides is easy to count formally, the tuning of these
parameters is hard to judge beforehand. Nevertheless, on a for-
mal level it is possible to state whether a user-defined parameter
belongs to some internal mechanism of the algorithm and thus,
forces the user to have prior knowledge about the algorithm or
if a parameter offers the user the ability to express prior knowl-
edge about the application at hand or define certain standards
in terms of accuracy or response time the user expects the ILS to
have in operation.

Of course, this separation is not strict as every parameter af-
fecting the internals of an algorithm influences the behavior the
user can expect and parameters guiding the behavior of the ILS
need to affect the internals of the algorithm to make that hap-
pen, but most parameters have a strong tendency to either re-
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quire knowledge about the algorithm or allow to express knowl-
edge about the application and the expected behavior, respec-
tively. Many algorithms offer default values for most of their
user-defined parameters and thus, it is reasonable to count the
number of necessary parameters and the optional ones sepa-
rately.

Usability of on-line learning algorithms in general should as
well cover the issue of prior knowledge about the application in
more detail as for many applications there is plenty of expert
knowledge available, but this topic is too rich to be covered
here and does not fit the scope of learning from time-variant
data streams as the desired algorithms for this problem are fully
automatic.

Validity

One theoretically sound aspect of validity for on-line learning
algorithms is to ask for their convergence against batch process-
ing results after receiving a sufficiently large amount of data.
For time-variant data streams there is no actual batch counter-
part as the time dependent target is not representable in batch
processing which handles all data equally and at once. In on-
line learning the concepts for validity are related to estimating
the out-of-sample error and reflect the uncertainty about the cur-
rent hypothesis. Such concepts are not unique to on-line learn-
ing, but the processing of a data stream inherently restricts the
considered measures to incremental statistical estimators and
similar aggregated values which do not require retrospective
data access.

What supports the validity of a hypothesis is the data that con-
tributes to it and what threatens the validity is a lack of data or
the quality of the data which may be reduced by noise in labels
Yy, or by poorly distributed instances x;. Thus, the validity of
a hypothesis is rather a local measure than a global one as in
some regions of the input space many samples with low noise
may be available while other regions are sparsely covered by
noisy samples.

Validity as an estimation of the out-of-sample error is connected
to the generalization power of a hypothesis and to the uncer-
tainty about this hypothesis. Generalization is the superordinate
concept of interpolation and extrapolation whose discrimina-
tive factor is the position of the evaluation point in the input
space with respect to the sample distribution.

Interpolation is performed in regions with many samples which
fully surround the evaluation point, making it an inner point
of the sample distribution. Extrapolation is the opposite of in-
terpolation and applies to points that are outside the input re-
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gions which are populated with samples or in very sparsely
populated ones, making the evaluation point an outer point of
the sample distribution. Although the concepts of inter- and ex-
trapolation seem clearly separable by definition, the transition
between them is smooth. Depending on the actual sample dis-
tribution it may be infeasible to definitely classify certain evalu-
ation points as inter- or extrapolation.

How reliable inter- and extrapolation are depends on the hy-
pothesis set and the sample distribution. A small set of hypothe-
ses together with a uniform sample distribution may allow for
valid estimations as basically there is no extrapolation. Other
situations with imbalanced instance distributions and huge hy-
pothesis sets may be challenging as the potential extrapolation
turns into blind guessing.

Overall, the uncertainty about a hypothesis is based on igno-
rance and conflict. Ignorance is directly related to the sample
distribution properties of inter- and extrapolation as the igno-
rance in sparsely populated input regions is high which is re-
lated to extrapolation regions and the ignorance is low in input
regions with many samples where interpolation applies.

Conflict is related to noise in the labels as well as to the bias
of the hypothesis set. The connection between conflict and ran-
dom noise is quite natural as higher noise levels result in more
contradicting labels and increases the amount of data needed in
order to average out the noise. The effect of contradicting labels
also appears if the hypothesis set of the ILS is not rich enough
to grasp the target concept.

In such a case the labels only appear to the learning system
as noisy, but by averaging out this noise the learning system
actually loses some fine grained structure of the target function.
Thus, conflict is a good measure to see if there is a problem
in learning but does not directly tell why. This aspect again
is directly connected to the bias-variance decomposition as any
measure of conflict only represents the sum of bias and variance
errors but never indicates their relation.

In summary, the validity of a hypothesis should reflect igno-
rance and conflict with respect to the chosen hypothesis set
and position in the input space. To some degree, this can be
achieved independent of any particular learning algorithm by
tracking the necessary statistics about density and variance of
the labels but this lacks the connection to the hypothesis set
and may cause considerable additional processing and memory
demands.

e Efficiency

11



12

INTRODUCTION

Efficiency in computer science covers many different aspects,
for on-line learning the traditional topics like power or cost ef-
ficiency of course apply, but more interesting is the issue of
data efficiency. As pointed out in the description of accuracy
and validity above it may appear useful to have a hypothesis
set that grows by processing new data. The bias-variance de-
composition and the Hoeffding inequality support this idea as
a small hypothesis set bounds the variance term and enhances
generalization. A possible downside of a growing hypothesis
set may be the loss of information due to a coarse representa-
tion in the beginning while the hypothesis set is small, i.e. a
high bias of the model to foster generalization may yield an
inefficient data handling. In an optimal case, the user has some
knowledge about the expected complexity of the target function
and can choose the hypothesis set accordingly. This way the
variance term may cause a poor generalization before enough
data is gathered to train the model, but the data efficiency is
high, because no information from the data gets lost by training
a model with insufficient expressiveness.

The topic of data efficiency becomes even more urgent when
dealing with time-variance as in this case there is no guaran-
tee that a static target function lasts for a certain period of time
when shifts occur and for drifting target functions the classical
concept of convergence towards a static function does not ap-
ply at all. This links the data efficiency to the stability-plasticity
dilemma and to accuracy as well in the coordinate system for
rating incremental learning systems in this thesis. But it also in-
cludes the perspective of convergence rates in stationary on-line
learning as faster convergence relates to higher data efficiency.
In summary, accuracy asks how precise a hypothesis might be-
come, while efficiency asks how long it takes to get there in
terms of sample demand.

1.4 GOAL AND OUTLINE OF THE THESIS

The requirements defined in section 1.3 span the coordinate system to
rate different approaches in this work. These requirements cover gen-
eral aspects of on-line learning which apply to all incremental learn-
ing systems irrespective of their particular application context. When
focusing on the potential of incremental learning systems to support
reinforcement and control application contexts the smoothness of the
learned approximation becomes relevant in terms of a valid deriva-
tive which is learned together with the actual output. Smooth approx-
imations not only provide a globally well-defined derivative, but also
ensure a reasonable correspondence between the learned output sur-
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face and its local derivatives without explicitly stating it as learning
samples. As this smoothness aspect is not important in on-line learn-
ing in general, it is not part of the considered rating system, but it is
part of the goal definition in this thesis as it is an important feature for
an incremental learning system which is widely applicable, especially
for supporting other machine learning domains. Hence, the goal of
this thesis is to show the current boundary of on-line learning ap-
proaches in terms of approximation properties and memory efficiency
and to develop an on-line learning system that pushes this boundary
towards scalable and smooth approximations. Other aspects of the co-
ordinate system like accuracy, validity and efficiency are considered,
too, but focus and priority is on smoothness and scalability in terms
of a low memory access ratio.

13
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As the goal of this thesis is to develop a new incremental learning sys-
tem, the relate work treats the fundamentals of approximation struc-
tures and on-line learning algorithms as well as current approaches
in the field of on-line and incremental learning systems. The special
emphasis on scalability and smoothness highlights the role of the
hypothesis representation in on-line learning systems and thus, the
approximation structure being used. Moreover, the memory access
ratio of every on-line learning system is mainly determined and lim-
ited from below by the approximation structure it uses and thus, the
related work focuses on scalability properties of the approximation
structures. The accompanying fundamentals for on-line learning al-
gorithms cover techniques for estimating the linear parameters of an
approximation structure. In this field on-line learning algorithms con-
sider stationary target functions while adaptive learning algorithms
extend the scope to tracking non-stationary targets. The particular
on-line learning approaches reviewed here are organized according
to the approximation structure they make use of, as most of them
combine an approximation structure, an on-line learning algorithm
and a structure-specific component for non-linear parameter estima-
tion.

2.1 APPROXIMATION STRUCTURES

Approximation structures are inherently important in on-line learn-
ing as they describe the representation of the desired solution and
thus, define the shape and size of the hypothesis set. These represen-
tations are not restricted to on-line learning and build the foundation
for many approximation tasks. Some important properties to catego-
rize different approximation structures are already mentioned in the
introduction and are described here in more detail in order to high-
light their relation to the considered coordinate system for ranking.

The general formal description of approximation structures in equa-
tion (1) introduces two different kinds of parameters, the linear ones
« and the non-linear ones B. This distinction is fundamental for on-
line learning as the impact of the parameters onto the output shapes
the optimization problem that needs to be solved in order to update
the parameters to new data and this links to the topics of data effi-
ciency and hypothesis set size.

On-line learning algorithms focus on adapting the linear param-
eters o as optimizing them yields a convex optimization problem
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which can be efficiently solved on-line in one step. The on-line adap-
tation of non-linear parameters p yields a non-convex optimization
problem with subsequent problems of iterative optimization like lo-
cal minimums, exploration-exploitation dilemma, quality uncertainty
and so on. While the non-linear parameters (3 are harder to train they
allow for a more compact representation of a hypothesis set in terms
of number of parameters. This parameter efficiency may impact the
data efficiency accordingly if the non-convex optimization problem is
easily traceable. As this is not the case in general, the adaptation of
non-linear parameters in on-line learning is usually done indirectly
by means of heuristics or surrogates. Thus, when looking at different
approximation structures it is important distinguish which parame-
ters are linear and which ones are non-linear, because only the linear
parameters are directly handled by on-line learning algorithms.

The basis functions ¢ define a certain kind of approximation struc-
ture and are shaped by the non-linear parameters . In on-line learn-
ing each sequential sample (x,y) only provides local information
about the target mapping at one point in the input space. Hence,
when integrating a new sample into the current hypothesis, it is im-
portant to take care of both, the appropriate representation of the new
sample and the preservation of knowledge about the target mapping
in regions far away from this sample. Whether the local information
of a sample can be incorporated locally into the hypothesis depends
on the actual shape and support of the basis functions ¢. One central
aspect of locality is the support of each basis function ¢;. A basis
function ¢; is called locally supported if [supp(di)| < [X], i.e. the pa-
rameter corresponding to this basis functions affects the output only
in a small subspace of the whole input space X C R™. Globally sup-
ported basis functions ¢; span the whole input space supp(¢di) = X
and thus, the parameters corresponding to them have a global impact
onto the output. The support of the basis functions ¢ determines
the sparsity of the resulting feature vector vi = $(x¢) € RY and
thus, the ratio between total model parameters and model parame-
ters necessary for learning and evaluation. This ratio greatly affects
the scalability of an approximation structure with respect to MAR, see
equation 6 for a formal definition of MAR.

J 1,
MAR(¢) = max iz loio
xeX q

(6)

A second aspect of locality is the shape of a basis function ¢; as
even globally supported basis functions may effectively be local if
their influence is centralized to a small region of the input space. A
basis function with centralized shape shows only one global max-
imum and vanishes rapidly outside the small region of the input
space it belongs to. In terms of approximation properties the oppo-
site of a centralized shape is a monotone one, i.e. a function that is
monotonically increasing or decreasing over the whole input space.
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The described concepts for locality based on support and shape cover
the extreme cases along these axes, i.e. local and global support as
well as centralized and monotone shape. The rich variety of approx-
imation structures in the literature fills the entire spectrum between
these extreme cases and even includes periodic shapes and further
special cases.

Another important formal property of the basis functions ¢ is their
continuity as the basis function with the lowest continuity defines the
continuity of the approximation structure as a whole. Here only non-
continuous, non-differentiable and differentiable or smooth functions
are distinguished as they relate to three different classes of target
functions.

As discussed in the requirements concerning efficiency, an increas-
ing complexity of the approximation structure that adapts to the avail-
able data may be beneficial for balancing and bounding bias and vari-
ance components of the expected approximation error. Although in
principle all approximation structures allow to change their expres-
siveness on-line, it depends on the exact properties of the approxi-
mation structure how demanding such an adaptation is. On the one
hand, it is important to see how fine grained the adaptation of the
expressiveness can be and how this scales with input dimensionality.
In the best case the expressiveness can be adjusted on a single pa-
rameter level, in the worst case any adjustment causes an exponential
growth of the total number of parameters. On the other hand, it is
questionable if the current hypothesis remains valid partly or in total
when increasing the expressiveness of the approximation structure.
So, expressiveness adaptation can support learning as long as the ap-
proximation structure allows for a fine grained adaptation and the
validity of the hypothesis is preserved.

The scope of the considered approximation structures is rather
broad, but the focus on their scalability and continuity properties is
quite narrow. So, for more general considerations and formal intro-
ductions to the principle approximation structures reviewed in this
chapter, please refer to the corresponding literature like [77, 63, 56,
135, 188, 59]. The textbooks [63, 135, 188, 59] handle the approxi-
mation structures with a more general perspective and in contexts
different from on-line learning. The review in [77] focuses on mono-
tonic functions, but covers many different structures and has a similar
perspective with respect to the requirements defined here. Closely re-
lated to the scope and requirements of this thesis is [56], but the list of
approximation structures there lacks some approaches and its review
follows a different focus.
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2.1.1  Polynomials

Polynomials are among the oldest and best studied approximation

structures, [154, 178, 61]. They form globally supported basis func-
tions that cover the full spectrum from monotone to centralized shapes.
The following review of different polynomial bases is restricted to

the one dimensional case, followed by the description of ways to use

polynomials in higher dimension.

In their monomial basis 1, x, x2, ..., polynomials form a mainly mono-
tone shape and are either defined by their degree or by choosing
certain powers. In this basis, polynomials are hard to train due to
an ill-conditioned optimization problem for the parameter update. A
common alternative yielding a well-conditioned optimization prob-
lem are Legendre- or Tschebyscheff-Polynomials which more or less
form an oscillating shape of the basis functions ¢;. Although one may
omit certain powers in Legendre- and Tschebyscheff-Polynomials as
well, usually they are defined only by their degree. The centralized
shape of a polynomial basis is realized using Bernstein-Polynomials
which even form a partition of unity, i.e. the sum of all basis func-
tions adds up to one everywhere in the input space and Bernstein-
Polynomials are only defined by their degree.

Lagrange-Polynomials introduce another concept of locality to poly-
nomials as they are defined over interpolation points x, ..., xn and
each basis function ¢; belongs to one such point as ¢i(xj) = dj, i-e.
each basis function equals one at their corresponding interpolation
point and zero at all other interpolation points. The overall shape
of the basis function is oscillating and the corresponding interpola-
tion point not necessarily marks a global maximum. Thus, the shape
of the basis functions and the polynomial degree of the approxima-
tion are completely determined by the positions of the interpolation
points and can even produce a behavior similar to the bases men-
tioned above. A crucial aspect for placing the interpolation points is
again the resulting condition for the parameter update.

When dealing with high dimensional problems polynomials range
from linear scaling to exponential scaling. In the monomial basis all
kinds of scalings are possible as one can use cross terms like in equa-
tion (7) or only pure monomials as in equation (8)

(I)(X)CTOSS — (]/X1IX2/X%/X]XZIX%/“') (7)
q)(x)pure = (]/X'UXZ/X%/X%/X?/X%“') (8)

A restricted basis set without cross terms scales linearly towards the
dimensionality at the cost of limited expressiveness and strong as-
sumptions about the interaction between the different inputs. The
variant with exponential scaling uses all cross terms and defines the
degree of the polynomial by the maximum of the powers of all mono-
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mials which builds a very expressive hypothesis set at the cost of high
computational and memory demands.

Due to their construction Legendre-, Tschebyscheff-, Bernstein- and
Lagrange-Polynomials only allow for an exponential scaling as their
extension to higher dimensions is based on the tensor product of
their one-dimensional basis functions. For Lagrange-Polynomials the
tensor expansion has a geometric interpretation as the interpolation
points in higher dimensions form a regular grid. The issue of ill-
conditioned parameter updates becomes even more severe in high
dimensions. This favors well-conditioned and local basis functions
for the tensor expansion as these properties are preserved in higher
dimensions due to the tensor expansion.

For the Lagrange-Polynomial, the positions of the nodes are non-
linear parameters and the corresponding heights for the interpolation
are linear ones. For all other polynomials the coefficients are their
only linear parameters and their degree or their set of powers are
non-linear ones.

The expressiveness of a polynomial is determined by its degree.
Thus, a growing expressiveness in the on-line case results in an in-
creasing degree. This yields an additional amount of parameters that
grows exponentially in dimensionality and thus does not allow for
a fine grained steering of the expressiveness of the approximation
structure. In a monomial basis it is possible to add individual mono-
mials at the cost of additional memory demands to explicitly store
the actual monomial basis. Changing the degree of a polynomial may
also invalidate the former hypothesis as an increased expressiveness
may turn a non-realizable case into a realizable one and thus yield
a completely different optimal parameter vector. Due to the globally
supported basis functions any change in the set of basis functions
affects all parameters and thus makes an invalidation of the current
parameter vector likely.
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Characteristics: Polynomials

n : Number of inputs

p : Polynomial degree

Basis: Lagrange all other
Memory demand Ollp+1™) O((p+1)™)
Linear parameters Ollp+1™) O((p+1)™)
Non-linear parameters O ((p+1)-n) O (1)

Evaluation effort

Linear parameters O(lp+1™) O((p+1)™)
Feature vector O(lp+1)™) O(p+1)™)
memory access Ollp+1™) O(p+1)™)
MAR Evaluation 1.0 1.0

Learning effort

Linear parameters Ollp+1™) O((p+1)™)
Feature vector O(lp+1)"™) O(p+1™)
memory access O(lp+1™) O((p+1)™)
MAR Learning 1.0 1.0

2.1.2  Grid-based Look-up Tables

A Grid-based Look-up Table (GLT) forms a strictly local approxima-
tion, [191, 54, 14]. This approximation structure is based on a regular
grid and uses only locally supported basis functions which are cen-
tered at their corresponding interpolation points. GLTs are either a
pure look-up table ([180]) that maps every input to one element of
the table and thus, forms a piecewise constant output or they are
combined with linear interpolation between all vertexes of the grid
cell, which contains the current instance xy.

As a non-trivial piecewise constant output is discontinuous, a high
quality approximation of smooth or at least continuous target func-
tions usually requires a high grid resolution. Even with linear interpo-
lation the output only becomes continuous and is non-differentiable
at the grid points and the boundary of the hypercubes that form the
grid in high dimensions, respectively.

Due to their strictly local nature GLTs are easy to train and by design
form a sparse feature vector. In the extreme case of pure look-up only
one element of the feature vector is non-zero, which is best in terms of
scalability towards dimensionality andMAR. With linear interpolation
the feature vector is still sparse but the scaling is already exponential
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as the interpolation takes into account every vertex of the hypercube
an input falls into.

The great scalability of the GLTs without interpolation comes at the
cost of a discontinuous approximation which requires a high grid res-
olution to form accurate approximations and thus yields a huge total
amount of parameters especially in high dimensions as the total num-
ber of parameters of a GLT always scales exponentially towards input
dimension. The overall memory demand scales accordingly and is
dominated by the stored heights for the grid vertexes as linear param-
eters. The only non-linear parameters in GLTs are the grid resolution
and vertex positions which scale linear towards input dimension.

The approximation quality of a GLT is greatly improved by using
linear interpolation, but this raises the scalability directly to the expo-
nential level as all vertexes of a hypercube need to be considered for
interpolation. Nevertheless, the feature vector remains sparse even
when using linear interpolation because the total amount of param-
eters in the grid is huge compared to the number of vertexes in one
hypercube.

These properties and the fact that GLTs are easy to store and to eval-
uate make them very powerful for applications with no more than
four or five input dimensions. With such low-dimensional inputs the
GLTs even benefit from current memory development as they allow
finer grids and thus, higher accuracy.

Increasing the expressiveness of a GLT on-line equals a grid refine-
ment. The additional amount of parameters introduced in this step
grows exponentially with respect to the dimensionality. The grid re-
finement has global impact as the grid needs to remain regular, but
the heights of the additional nodes can easily be set by interpolat-
ing neighboring heights. This allows a nearly seamless migration to
more expressive hypothesis sets in terms of the validity of the for-
mer hypothesis as the local information of the coarser grid is mainly
preserved. The increased grid resolution raises the learning sample
demands accordingly, but the validity of the old hypothesis is only
affected in regions where the resolution is actually increased and re-
mains the same elsewhere. All in all, GLTs do not allow for a fine
grained expressiveness steering but guarantee the validity of the hy-
pothesis due to the locally supported basis functions and the proper
initialization of the additional parameters using interpolation.
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Characteristics: GLTs

n : Number of inputs

1 : Nodes per input

Interpolation: flat linear
Memory demand O(rm) O(rm)
Linear parameters O™ O™
Non-linear parameters O (r-n) O (r-n)
Evaluation effort

Linear parameters O 02
Feature vector O(n) O2m)
memory access O(n) 02
MAR Evaluation ™ (r2)™
Learning effort

Linear parameters om 02
Feature vector O(n) O2M
memory access O(n) O2M
MAR Learning Y (r/2)

2.1.3 Splines

Splines fill the gap between polynomials and GLTs as they are based
on a grid like the GLTs, but introduce additional local interpolation
schemes, [40, 41, 168, 117, 164]. They aim at combining the good ap-
proximation properties of low degree polynomials with the benefits
of local approximation in order to form globally accurate and easy to
learn approximation structures.

The classical spline approximation performs an input segmentation
using a grid which not necessarily needs to be regular and defines a
polynomial of a certain degree over each input segment. Boundary
conditions for the different polynomials link each pair of neighbor-
ing input segments to each other and hence, form a set of global
continuity conditions for all local polynomials in the different input
segments. Altogether, this forms a set of linear equations that incor-
porates the data, the local polynomials and the boundary conditions
and its solution yields the globally smooth approximation of the data.

For on-line learning, (Cardinal) B-Splines form a reasonable alter-
native to the batch learning approach of classical spline approxima-
tion. The B-Splines form a basis of the Spline function space and thus
define the set of basis functions in equation (10). The shape of a sin-
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gle B-Spline depends on its degree and the placement of the nodes it
spans. A o order B-Spline function spans one node and forms a lo-
cally constant function, just like the GLT without interpolation. The 1°
order one spans three nodes in one dimension and yields a piecewise
linear approximation, identical to the GLT with linear interpolation.
Thus, GLTs are special cases of low degree B-Spline interpolation. The
2" order B-Spline is the first differentiable kind of this family and
already spans 5 nodes. In general a k-th order B-Spline is in C*~!
and spans 2k + 1 nodes. By spanning multiple nodes, the B-Splines
implicitly encode the boundary conditions of the general splines and
this directly affects the sparsity of the feature vector. The resulting
MAR and scalability depend on the B-Spline order the same way.

Bi,O (x) = ]1[131,191+1] (9)
Bik(x) = A Bix—1(x)+ Pleit] — %
Pit+k —Pi Pr+k+1 —Pit1

The extension of B-Splines to higher dimensions scales exponen-
tially as all interpolation is based on a grid. An alternative are Simpli-
cial B-Splines, which are defined on a simplicial mesh and not on a
hypercubical grid. The simplex tessellation of the input space allows
for a linear scalability for evaluating a Simplicial B-Spline approxima-
tion, but comes at the cost of handling boundary condition explicitly
for learning. Thus, the scalability for learning a Simplicial B-Spline
depends on the chosen continuity. In the base case, the scalability is
linear towards input dimension, but this is only possible up to C'
continuity requirements in Simplicial B-Splines. For all higher conti-
nuity degrees the geometry of the boundary conditions yields an ex-
ponential scaling because the parameter scope for learning becomes
global, i.e. all parameters need to be considered for learning one sam-
ple while taking into account the continuity constraints. Nevertheless,
Simplicial B-Splines are remarkable as they allow for a linear scalabil-
ity at least for evaluation while having a high flexibility in meeting
certain properties of the target function in terms of continuity. Their
main drawback is the scaling for learning which restricts their appli-
cation to low-dimensional inputs like for GLTs.

For this approximation structure the positions of the nodes are non-
linear parameters and the corresponding heights for the interpolation
are linear ones. The expressiveness of B-Splines behaves the same way
as for GLTs when subject to on-line adaptation. Only the Simplicial B-
Splines behave worse because the degree of the polynomials localized
in each simplex is easy to increase but the resulting change in the
boundary conditions is much more complex and has global impact.

There are many special applications of Simplicial B-Splines in two
and three dimensions with optimized computational demands and
for arbitrary node configurations. Unfortunately, they do not scale
to higher dimensions and building a problem-specific simplex mesh

Biy1,k—1(x)(10)

23



24

RELATED WORK

on-line in higher dimensions is cumbersome as well. The need to
explicitly define and store irregular structures in high dimensions
increases both computational and memory demands, however a well
suited mesh structure based on prior knowledge greatly reduces the
challenges of learning and improves data efficiency and accuracy.

Characteristics: Splines

n : Number of inputs
d : Polynomial degree
T : Nodes per input

Spline type: Base 1% Order dh Order

Simplex Simplex
Memory demand O O™ O ((§) -nir™)
Linear parameters O O (™) O ((3) -nir™)
Non-linear parameters O(r-n) O(r-n) O(r-n)

Evaluation effort

Linear parameters O(2a)™) O (n) 0((%))
Feature vector 0(2d)") O(nlogn) O ((3) nlog n)
memory access O((2da)™ On 0 ((%)
MAR Evaluation (&) " n(r)—" d-n(r) ™
Learning effort

Linear parameters O(2d)™) O (n) O (() -nir™)
Feature vector O0((2d)™) O (nlogn) O (() -nir™)
memory access O(2da)m™ O(n) O ((g) . n!r”)
MAR Learning (ﬁ)fn n(r)y—"m 1

2.1.4 Radial Basis Function Networks

The basic idea of a RBF is to represent a complex non-linear target
function using a set of local representatives, i.e. local models, with cor-
responding receptive fields which define the part of the input space
the representative covers, [148, 149, 49, 24, 84, 85]. The receptive fields
are defined based on a distance metric between the center of the re-
ceptive field, i.e. the position of the representative, and a non-linear
radial basis function. Together they form the shape of the reception
field. The output of the RBF is calculated as the normalized weighed
interpolation of all local representatives. Typically, the Euclidean dis-
tance in combination with a Gaussian basis function is used, but there
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are many different kinds of radial basis functions as well as distance
metrics designed for particular purposes and applications.

This basic kind RBFs achieves linear scalability for learning, evalua-
tion and total memory amount, but may suffer from a high constant
in big-o-notation due to the number of local representatives in order
to achieve an accurate approximation. The approximation provided
by Gaussian RBFs is smooth and due to the local nature of the linear
parameters RBFs are easy to handle in on-line learning.

An unweighted distance metric like the standard Euclidean one
allows to define receptive fields shaped like a ball which not neces-
sarily need to fit to the actual target function and data distribution.
Weighing each single input dimension allows to form axis-parallel
ellipsoids and thus enriches the flexibility of the receptive fields with-
out compromising the scalability of the approximation structure. A
fully arbitrary and unrestricted definition of the ellipsoids requires a
weighing matrix to equip the distance matrix with and increases the
scalability to quadratic.

The feature vector v of a typical RBF is asymptotically sparse as
the Gaussian decays exponentially and the close-to-zero elements are
usually omitted, but the ratio of non-zero elements is not structured
like for GLT as it depends on the distribution of the receptive fields
and the current evaluation point. This makes it hard to tell in ad-
vance which local representatives are relevant for an evaluation and
requires to evaluate all receptive fields in order to find the relevant
ones. Thus, the ratio between effective and total model parameters
may be small for the linear parameters but equals one for non-linear
ones. Indexing techniques can help to speed up the search for the
relevant receptive fields and thus improve the Memory Access Ratio
at the cost of increased overall memory demands. Using an approx-
imate nearest neighbor approach to identify the relevant receptive
fields threatens the smoothness of the approximation, as the index-
ing impacts the output of the RBF.

Another common extension to RBFs are local linear models. The
increased local expressiveness of linear models may significantly re-
duce the total number of local models and thus make the RBFs more
efficient. Using linear models neither increases the scalability of the
RBFs nor does it alter the MAR.

Due to the local representatives, RBFs allow a fine grained steering
of the expressiveness as the local models can be added one by one and
do not need to fit into some grid or other regular structure. The only
costly aspect of this approximation structure is the global search for
the locally relevant models. This becomes challenging if the number
and position of the local models is adapted on-line as there is no fixed
indexing to speed up the search. Therefore, in general here the RBF is
assumed to have a MAR equal to one.
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Characteristics: RBF

n : Number of inputs

K : Number of local models

Ellipsoid shape: axis-parallel unconditional
Memory demand O(K-n) 0 (K-n?)
Linear parameters O (K) O (K)
Non-linear parameters O(K-n) O (K . nz)

Evaluation effort

Linear parameters O (K) O (K)
Feature vector O(K-n) O(K-n)
memory access O(K-n) O (K-n?

—
o
p—
o —

MAR Evaluation

Learning effort

Linear parameters O(K-n) O(K-n)
Feature vector O(K-n) O(K-n)
memory access O(K-n) O(K-n)

—y
o
—_
o

MAR Learning

2.1.5 Takagi-Sugeno-Kang Fuzzy Systems

Conceptually, Takagi-Sugeno-Kang Fuzzy Systems (TSKFSs) formalize
the linguistic fuzziness of if-then rules in order to describe the po-
tentially complex behavior of a system by a set of simple local rules,
[179, 193, 4, 126, 81]. Formally, these fuzzy systems segment the input
space into potentially overlapping rules and define a local polynomial
model for each rule similar to RBFs. Each fuzzy rule consists of an an-
tecedent which defines the region in the input space where this rule
is relevant and the consequence part describes the output of this rule
by means of the polynomial model. The output of the whole fuzzy
system comprising multiple such rules is defined as the interpolation
of the local models. The common combinations of input segmenta-
tion and interpolation range from regular grid with B-Spline interpo-
lation to arbitrarily placed nodes with Gaussian interpolation, i.e. a
grid-based or RBF like approach.

TSKFSs ensure the desired continuity the same way as B-Splines do,
i.e. by using an appropriate interpolation between the local models.
In addition to that, they steer the local expressiveness by varying the
degree of the local polynomial models. This way continuity and local
expressiveness are decoupled and depending on the number of local
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models and their polynomial degree TSKFSs can behave like polyno-
mials or GLTs. Hence, they share the approximation properties of one
or another. Typically, TSKFSs with o' or 1 polynomial degree are
used for the local models in order to achieve a good local scalability
while keeping the total amount of local models small due to their
expressiveness and a suitable input segmentation and interpolation.

The input segmentation includes the position and span of the local
models as non-linear parameters, while the coefficients of the local
models are linear parameters. As TSKFSs are a generalization of GLTs,
RBFs and Polynomials, to some degree, they show similar properties
with respect to the adaptation of their expressiveness. The number
of local models is the easiest way to adjust the expressiveness of the
whole TSKFS. For grid-based antecedent placements this yields the
same coarse grained steering of the number of models as for GLTs
while arbitrarily placed antecedents allow for a more fine grained ad-
justment at the cost of explicitly maintaining their positions. An adap-
tation of the local model degrees is possible as well which follows the
general behavior of polynomials in terms of granularity, except for
the validity which is mainly preserved as each adapted polynomial
model only affects its local region of the input space. This preserves
the validity in other input regions the same way as in other local
approximation structures.

In general, the fine grained expressiveness adjustments are all re-
lated to an explicit antecedent and monomial handling which fosters
overall small fuzzy systems as it increases memory demands. The
grid-based and thus, more memory efficient versions only allow for
a coarse grained steering of the expressiveness. In essence, for small
TSKFS one can afford a fine-grained expressiveness adaptation while
for bigger or more complex models the adjustments become coarser.
As TSKFSs are meant to be interpretable they are usually restricted to
a small number of local models in order to be human readable, but
the general concept is not inherently limited.
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Characteristics: TSKFS

n : Number of inputs
p : Local model degree
K : Number of local models

T : Nodes per input

Input segmentation: grid-based RBF-like
Memory demand O™ -(p+1)™) O(K-(p+1)M)
Linear parameters O™ -(p+1)™) O(K-(p+1)™)
Non-linear parameters O(r-n) 0 (K-n?)

Evaluation effort

Linear parameters o2™-p+1™) OK-(p+1)™)
Feature vector o2™-p+M1™) OK-(p+1)™)
memory access o2™-p+M1™) OK-(p+1)™)
MAR Evaluation 1.0 1.0

Learning effort

Linear parameters o2"-(p+1™ OK-(p+1)™)
Feature vector o2"-(p+1™ OK-(p+1)™M)
memory access oR2"-(p+1™ OK-(p+1)™)
MAR Learning 1.0 1.0

2.1.6  Multi Layer Perceptrons

Multi Layer Perceptronss (MLPs) are motivated by nature and try to
imitate the way the human brain processes information and adapts
to it. The basic entities in MLPs are neurons which perform a non-
linear transformation of their input. A single neuron has only limited
expressiveness and they are arranged in layers in order to increase
the overall expressiveness of the MLP, [111, 159, 80, 83, 160].

The input to a neuron is either a weighted sum of the input vector
or the weighted sum of the output of a previous layer of neurons.
This way, the input vector propagates through the MLP from the in-
put layer to the output layer. All layers in between the input and
output layers are called hidden layers as they are encapsulated and
not directly accessible. The size of the input and output layer is de-
termined by the application a MLP is used for, but the design of the
hidden layer structure is less obvious and needs to fit the expected
target complexity as well as data demands due to the resulting total
number of parameters.
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This kind of MLP is the standard Feed-Forward Neural Network
(FFNN), recurrent neural networks allow loops in the processing path
which introduces internal states to the network. This is not within
the scope of this work as this kind of networks have fundamentally
different properties compared to the other approximation structures
reviewed here.

The scalability of the MLP is linear in the input dimension and linear
in the size of each layer. All parameters except for output weights are
non-linear parameters, which makes MLPs in general very hard to
handle in on-line learning settings. The concept of a feature vector
applies multiple times in MLPs as the output of each hidden layer is a
feature vector and in general none of these feature vectors are sparse.

MLPs allow for different ways of on-line adaptation of their expres-
siveness. The existing layers can be enhanced by adding neurons to
them. Further, the overall number layers can be increased. Both vari-
ants are likely to threaten the validity of the former hypothesis as
most of the parameters are non-linear and interact with each other on
a global scale. The granularity of steering the expressiveness depends
on the actual structure of the MLP but scales linear in the wrapping
layer sizes.

Characteristics: MLP

n : Number of inputs

K : Number of hidden neurons

Hidden layer size: 1 L
Memory demand O(K-n) O(K-n+L-K?)
Linear parameters O (K) O (K)
Non-linear parameters O(K-n) 0O (K ‘n+1L Kz)
Evaluation effort

Linear parameters O (K) O (X)
Feature vector O(K-n) O(K-n+L-K?)
memory access O(K-n) O(K-n+L-K?)
MAR Evaluation 1.0 1.0
Learning effort

Linear parameters O (K) O (K)
Feature vector O(K-n) O(K-n+L-K?)
memory access O(K-n) 0O (K ‘n+1L- KZ)
MAR Learning 1.0 1.0
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2.1.7 Fourier Series

In signal processing, the time-frequency transformation based on a
discrete Fourier Series is a standard technique to decompose, analyze
and process signals. It is used to approximate periodic signals as well
as none-periodic ones which are decomposed into their Fourier Se-
ries and represented compactly as the basis functions of the Fourier
Series form an orthonormal basis, [198, 22, 16, 106]. The course of
the signal in the time domain is transformed into a set of amplitudes
of discrete frequencies. This gives additional insights about the signal
not directly visible in the time domain and allows to define additional
features in order to separate signal and noise.

The only non-linear parameter of the Fourier Series is the order
of the discrete wave spectrum. The coefficients of the sine and co-
sine terms are the linear parameters which are optimized by on-line
learning. As the expansion of the Fourier Series to higher dimensions
requires a tensor expansion, its scalability is exponential and the ef-
fective and total parameter ratio is one, just like for polynomials. All
basis functions are globally supported, have a periodic shape and the
overall approximation is smooth. Prior knowledge may help to ex-
clude some discrete frequencies from the spectrum in order to form a
more compact representation or to use pure sine or pure cosine terms
when approximating odd or even target functions.

The Fourier Series is also similar to polynomials with respect to
their expressiveness adaptation. A fine grained adjustment is only
possible when adding single frequency components which are hard
to identify as the frequency acts as a non-linear parameter to the over-
all approximation. Increasing the general considered frequency spec-
trum by one requires to add two parameters when handling a one di-
mensional input space. In general, this amount of parameters added
by adjusting the expressiveness grows exponentially in input dimen-
sion and polynomially in the former considered frequency spectrum.
Thus, the expressiveness adaptation of the Fourier Series is rather
coarse and scales exponentially with the input dimension. Moreover,
as all basis functions are globally supported, any change in the fea-
ture vector potentially renders the former knowledge in the parame-
ter vector o invalid.
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Characteristics: Fourier Series

n : Number of inputs

p : Number of Frequencies

Spectrum: only (co-)sine full
Memory demand O(p+1™) O(2p+1)™)
Linear parameters O(lp+1)™) O(R2p+1)™)
Non-linear parameters O(1) O (1)
Evaluation effort

Linear parameters O(lp+1™) O(2p+1™)
Feature vector O(lp+1)™) O(R2p+1)™)
memory access O(p+1™) O(R2p+1)™)
MAR Evaluation 1.0 1.0
Learning effort

Linear parameters O(lp+1™) O(R2p+1)™)
Feature vector O(lp+1)™) O(R2p+1)™M)
memory access O(p+1™) O(2p+1)™)
MAR Learning 1.0 1.0

2.1.8 Wavelets

Wavelets are similar to Fourier Series as they represent another kind
of time-frequency transformation, [39, 134, 71, 101, 34]. They are re-
stricted here to the case of discrete transformation as it is the one that
forms a LIP-Approximation with a defined feature vector. In contrast
to the Fourier Series, the discrete Wavelet transformation preserves in-
formation about time and frequency of the transformed signal, i.e. it
contains information about when certain frequencies apply and what
their amplitude is at that time.

From an approximation perspective, Wavelets are a more flexible
counterpart to the Fourier Series as the continuity of the Wavelet Ap-
proximation is based on the chosen wavelet and inherits its properties.
The wavelet approximation is still compact as the basis functions are
required to form an orthonormal basis. Its scalability is exponential as
the inherent concept of resolution in wavelets is based on hypercubes
and regular input segmentation. The effective and total parameter ra-
tio depends on the support properties of the wavelet used, but at least
one parameter in each resolution layer is necessary.

In general, Wavelets and Fourier Series share the same properties
with respect to expressiveness adaptation, but as Wavelets localize
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their parameters in both domains they can make use of spare repre-
sentations for the feature and parameter vector. As the support of the
wavelet parameters grows with increasing degree in the Daubechies
family and the higher layer parameters are naturally global this spar-
sity argument is limited. But for the expressiveness adaptation these
limitations are relatively mild, because increasing the expressiveness
of a Wavelet approximation is done by adding finer wavelet layers.
These finer layers are inherently more local than the former ones and
thus fit to the sparsity argument. In this line, the Wavelets allow for a
fine-grained adjustment of their expressiveness and as the added pa-
rameters express finer details of the already learned approximation,
the validity of the former parameter vector remains intact.

Characteristics: Wavelets

n : Number of inputs
L : Number of layers

p : Daubechies order

Type: Haar Daubechies
Memory demand 0 (20t=1my @ (20t=1m)
Linear parameters O (2t=1m) o (2t=1m)
Non-linear parameters O O (1)

Evaluation effort

Linear parameters O (1) o p)™)
Feature vector O () o p)m)
Memory access O (1) o p)m)
MAR Evaluation 1.2-=1n p2t-T)n
Learning effort

Linear parameters O (1) op)m)
Feature vector O (1) o (lp)™)
MEemory access O (1) o p)m)
MAR Learning 1.2~ (=0n o q(p/2t=Tyn

2.1.9 Trees

Regression and model trees merge the concepts of a rule base in
TSKFSs and RBFs with the layer hierarchy of wavelets, [121, 142, 93, 12].
The tree structure of the rule set always covers the entire input space
but uses only one input dimension in each node to define a split while
having constant or linear models in the leafs of the tree to perform the
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local approximation. More complex splitting criteria are possible, but
reduce the efficiency of the tree structure as they are computationally
more demanding and require additional memory which may raise
the scalability with respect to dimensionality for each node from con-
stant to linear or even higher. The following discussion assumes the
considered tree structures to be balanced as degenerated trees pro-
vide no benefit over linear search and therefore do not justify further
mentioning.

The overall approximation of trees is discontinuous and separates
the input space into piecewise smooth local models. A powerful lo-
cal model in the leaf nodes may yield a coarse input segmentation
and thus a nearly smooth global approximation, while constant local
models always result in a discontinuous global approximation with
potentially many input segments similar to GLTs.

Due to the strict input segmentation, all basis functions are locally
supported and thus form a sparse feature vector. This yields a low
effective to total parameter ratio. The tree structure has a very special
impact on the scalability regarding dimensionality as this coupling
becomes indirect. The effort for evaluating and learning a model tree
grows logarithmically in the total number of local models. This fact is
related to input dimensionality as the complexity of the target func-
tion potentially scales according to it. Hence, as long as the target
complexity does not scale exponentially regarding input dimension,
a tree representation may find a very cheap approximation in terms of
memory and computational demands. This feature of trees is not fur-
ther discussed here as it relates to dimensionality reduction capabili-
ties inherent to tree representation. Unfortunately, this topic exceeds
the focus of this work as mentioned in the introduction.

The splitting boundaries in the nodes are non-linear parameters
and they are either fixed at design time due to prior knowledge or
induced from statistics about the data stream. The local models pro-
vide the linear parameters for on-line learning and each local model
is trained separately.

The growing of trees is a standard technique in data processing and
in on-line learning the same concepts and problems occur. Axis par-
allel splits like in kd-trees allow for an easy construction strategy but
may yield overly complex trees. Non-linear splits help to limit the
size of the tree at the cost of a more complex construction strategy
which may involve non-linear optimization tasks. In terms of granu-
larity, trees allow for a fine-grained adjustment of their expressiveness
as they apply the standard and mighty divide and conquer paradigm.
This also supports the validity of the parameter vector as at most the
validity of the model which is affected by the split is threatened, but
e.g. for linear models this split is a seamless transition to a more fine
grained representation preserving the validity of the local model.
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The total number of local models is determined by the tree struc-
ture and grows exponentially in the depth of the tree. According to
the potential growth of the target function complexity with increasing
input dimensionality, the number of local models grows accordingly
which results in an approximately linear growth of the depth. This
relationship is partly illustrated in kd-trees as each input dimension
is used for an axis-parallel split in a cyclic manner. Thus, the general
connection between target function complexity and input dimension
potentially renders the total number of local models to grow exponen-
tially. This is no unique feature of the tree structure and again relates
to the curse-of-dimensionality.

The power of the tree structure in this regard is to allow for a com-
pact representation for less complex targets even and especially in
high dimensions. This property equals the fine grained expressive-
ness steering of RBFs and makes the direct comparison to approaches
with a different structure unintuitive. Therefore, here the tree depth
is assumed to have a linear relation to the number of inputs as the
considered trees are always balanced. This way the overall Memory
Access Ratio of trees is assumed to behave like n/r™ where r is an
auxiliary resolution parameter which links to grid-based structures.
In effect, this reflects the overall sparse feature vector of the tree struc-
ture and its potential to build small and efficient representations even
in high dimensional input spaces. In general, the Memory Access Ra-
tio for balanced trees behaves like log(K)/K where K is the number
of local models, but this representation does not allow for a direct
comparison to other approximation structures reviewed here. Hence,
assuming K = r™ only represents the potentially exponential growth
of the target complexity in higher dimensions, but does not affect
properties of the tree structure with respect to Memory Access Ratio.
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Characteristics: Trees

n : Number of inputs

p : Tree depth

Local model: constant linear
Memory demand 02P) O(n-2P)
Linear parameters O@2rP) O(n-2pP)
Non-linear parameters O (2P~1) O (2P~ 1)
Evaluation effort

Linear parameters O () O (n)
Feature vector Op) Op-n)
memory access Op) Op-n
MAR Evaluation p/2P d/24
Learning effort

Linear parameters 0 On)
Feature vector Op) Op-n
memory access Op) Op-n
MAR Learning p/2P p/2P

2.1.10 Nearest Neighbors

One of the most data centric approximation structures is the k-Nearest
Neighbor (kNN) approach of storing past training samples and form
a local model for evaluation based on the k nearest neighbors around
the evaluation point, [200, 136, 10, 172]. For on-line regression on
data streams the nearest neighbor approach faces the problem of a
potentially infinite amount of data that needs to be stored. Thus, in
addition to selecting the correct number of nearest neighbors and an
appropriate interpolation scheme for the local model built from the
nearest neighbors, a selection mechanism is necessary that decides
whether to store or ignore an incoming sample as well as to keep or
delete an already stored one.

The kNN approach scales linearly regarding dimensionality with
respect to learning effort. The same is true for the total amount of
parameters, which here is the total number of stored samples. For
evaluation the situation is different, because in general the scalability
of the interpolation schema for the local models applies. This scales
at least linear with the number of nearest neighbors considered for
each evaluation. Due to the selection mechanism for judging incom-
ing and stored samples, the scalability of learning may be increased
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to a polynomial degree, e.g. by incorporating matrix multiplication
or inversion.

The kNN approach automatically adapts to different data distribu-
tions and allows to steer the expressiveness in a fine grained manner
on parameter-level. The strong data focus of this approach makes
it prone to noise or on the other hand turns noise handling into a
relatively expensive task. Noisy samples require a higher number of
nearest neighbors to be considered in order to reduce the impact of
additive noise, which directly increases the total sample demand ac-
cordingly. The actual nearest neighbor search is the main bottleneck
of this approach as it scales linear in the total number of samples.
Approximate kNN approaches can greatly speed up this search by
indexing and hashing techniques, but this approximation directly af-
fects the approximation properties of the whole kNN approach as an
approximation structure and e.g. may introduce unforeseen disconti-
nuities or other artifacts.

With respect to time-variance, the kNN approach needs to adapt to
both a change in the instance distribution in order to provide the nec-
essary local information where it is required and it needs to adapt
to changes in the target function, which is relatively easy as adapta-
tion in this approximation structure is reduced to storing new and
deleting old samples. This kind of adaptation highlights a fundamen-
tal distinction between the approximation structures reviewed so far
and kNN techniques. Although the concept of a feature vector is ap-
plicable to kNN, there is no concept of linear parameters as the only
thing stored is a set of samples and the linear parameters of the local
models are only calculated for evaluation and discarded afterwards.
Moreover, the stored samples do not form linear parameters as their
output value is fixed due to the stored label. Thus, the kNN approx-
imation structure formally fits to the general model formulation in
equation (1), but is used in a completely different way compared to
polynomials, GLTs or MLPs. The kNN parameters are updated in a dis-
crete way based on storing and discarding certain samples.
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Characteristics: kNN

n : Number of inputs
k : Number of neighbors

S : Number of stored samples

Neighbors: one k
Memory demand Omn-S) OMm-9S)
Linear parameters O(S) 0(S)
Non-linear parameters Om-S) Omn-9S)

Evaluation effort

Linear parameters O (1) O (k)
Feature vector O(S) 0(S)
memory access O(S) O(S)
MAR Evaluation 1.0 1.0
Learning effort
Linear parameters O (1) O(1)
Feature vector O () O(1)
memory access O (1) O(1)
1.0 1.0

MAR Learning

2.1.11  Support Vector Regression

Support Vector Regression (SVR) is another data centric approach
which maintains a set of support vectors in order to form a global
model by solving a constrained quadratic program, [7, 195, 175, 48].
The set of support vectors requires selection mechanisms similar to
NN approaches, but in SVR the sample selection also needs to con-
sider the kernel function for measuring the similarity of different
samples. The shape and nature of this kernel function define the fun-
damental properties of the resulting approximation with respect to
continuity and smoothness as well as the interpolation and extrapo-
lation behavior of the SVR.

The evaluation of this approximation structure is based on mea-
suring the similarity between the evaluation point and the support
vectors in order to form a weighted interpolation of the heights of
the support vectors. The weights of this weighted interpolation are
obtained by solving the quadratic program. The similarity measure is
kernel-based and relies on some distance metric in the feature space
spanned by the kernel. For on-line learning an incremental variant of
the SVR exists that redirects the data stream processing to incremental
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or decremental learning of the support vector set and to an update of
the global model.

The SVR is the data centric global counterpart to kNN with local
models. It possess no linear parameters due to its batch orientated
origin and the quadratic programming. The overall approximation
behavior is determined by the kernel function and allows to span
the full spectrum from smooth to discontinuous functions. The SVR
makes use of the kernel-trick and thus only implicitly uses feature
vectors. Therefore, the concept of a sparse or dense feature vector
does not apply. Nevertheless, the SVR model is global and all sup-
port vectors as well as weight parameters of the model are used for
evaluation and learning.

The scalability of the SVR mainly depends on the number of sup-
port vectors used for the model and thus suffers the same issues as the
NN approach with a better noise reduction due to the global scope
of the model. The On-line SVR is even more demanding as different
sets of support vectors and a number of statistics about the samples
need to be tracked in order to achieve a behavior similar to the batch
SVR. In general, the On-line SVR scale at least quadratic in the num-
ber of support vectors and dimensions, but since this approximation
structure is inherently global its MAR equals one.

Characteristics: SVR

n : Number of inputs

K : Number of support vectors

Memory demand O(n-K)
Linear parameters 0 (K)
Non-linear parameters O (n-K)

Evaluation effort

Linear parameters 0 (K)
Feature vector O (K)
memory access O (K)
MAR Evaluation 1.0
Learning effort

Linear parameters O (K)
Feature vector 0 (K)
memory access O (K)

MAR Learning 1.0
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2.1.12  Summary

Looking at all the approximation structures reviewed above shows
that they cover most aspects of the considered coordinate system.
The two main axes are the MAR and the continuity of the approxi-
mation structure. Figure 1 shows how the reviewed approaches pop-
ulate these two axes. Most approaches are loosely placed according to
a linear dependency between continuity and MAR. An exception here
is the kNN approach which in general needs to look at every element
of the data base to find the actual nearest neighbor but only provides
a piecewise smooth output. The boundary of achieved approxima-
tion properties is highlighted by a dashed line. It includes 1t Order
Simplicial B-Splines and GLTs with flat or smooth interpolation. This
boundary leaves space for further possible approaches which allow
for a higher continuity with reduced MAR. But it is not possible to
achieve a non-trivial continuous output by looking at a single param-
eter for every evaluation. Thus, not every combination of continuity
and MAR is realizable by learning linear parameters only.

A key concept in machine learning which complements the re-
viewed approximation structures is to use ensembles instead of single
approximations. Ensemble techniques group many usually simple hy-
pothesis representations in order to build one globally more complex
representation which exceeds the capabilities of each single ensemble
member. This approach is not reviewed here in line with the other ap-
proximation structures as it is applicable independently from a par-
ticular structure for the ensemble members. More importantly, using
an ensemble neither changes the continuity properties of the over-
all approximation nor its MAR, because the ensemble inherits these
properties from its members and only increases the total memory
and computational demands compared to a single ensemble member.
Nevertheless, each member in an ensemble usually is far less power-
ful with respect to approximation capabilities compared to a single
approximation structure capable of representing the entire ensemble.
Thus, ensembles can help to build compact representations for com-
plex models and allow for a fine-grained expressiveness adaptation
on ensemble member level.

Random Forests [21, 115, 169] are a popular example for highlight-
ing this feature of ensembles and they do so by focusing on a limited
set of samples and input features for building each ensemble member.
Thus, at least indirectly they perform some kind of dimensionality re-
duction as each tree in the forest only considers a certain set of input
dimensions which not necessarily covers all available input elements.
This tackles the curse-of-dimensionality by reducing the sparsity of
the learning samples. But as dimensionality reduction is not inside
the scope of this thesis, these mechanisms are not further detailed.
Nevertheless, ensemble methods provide valuable features for han-
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dling high-dimensional and complex data, but they do not interfere
with the perspectives onto approximation structures in this work, i.e.
scalability and MAR. They also provide some unique features for deal-
ing with non-stationary target functions in on-line learning and thus,
they are reviewed in section 2.3.3 from an adaptive learning perspec-
tive.

Another important aspect in on-line learning settings is the expres-
siveness adaptation of the different approximation structures with
respect to granularity and scalability. The variety of reviewed ap-
proaches covers the full spectrum of possible combinations in these
aspects, but there is a clear tendency towards local approximation
structures for preserving the validity of the learned parameters when
adapting the expressiveness. Wavelets are best in validity preserva-
tion and they bridge between local and global approximation struc-
ture as most of their basis functions are strictly locally supported
and only a small fraction spans the whole input space or larger re-
gions within it. The strength of the Wavelets is the possibility to
combine the relation between individual parameters to local target
function details with a sparse parameter representation. This yields a
fine-grained adjustment of the overall model complexity while newly
introduced parameters only act locally and therefore preserve the va-
lidity of the model in all other input regions. Unfortunately, Wavelets
scale exponentially towards input dimension which also applies to
their expressiveness adaptation.

A sparse representation of the parameter vector and the features
always allows for a fine-grained expressiveness adaptation at the cost
of increased memory demands. Hence, memory access in sparse rep-
resentations is increased, too, and requires to store some index struc-
tures for efficient access. But in high dimensional input spaces the
data distribution naturally tends to be sparse and therefore fosters a
sparse representation by themselves.

In summary, the variety of approximation structures shows all de-
sirable properties with respect to scalability, continuity and granular-
ity but only spread across different approaches and not combined in
one structure. The more specific goal for this thesis with respect to
approximation structures is to define one which has a low MAR, of-
fers user-defined continuity and allows for a fine-grained expressive-
ness adaptation which preserves the validity of the parameter vector.
The envisioned approximation structure combines aspects of 1% Or-
der Simplicial B-Spines in order to yield a good MAR and scalability,
should employ the layer concept of Wavelets in order to preserve the
parameter validity and needs to support a sparse representation fos-
tering a fine-grained expressiveness adaptation.
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Figure 1: Overview of different approximation structures displayed as

points in a coordinate system with respect to their MAR and conti-
nuity respectively. The reviewed approaches cover the top and left
area of the coordinate system. The dashed line marks the bound-
ary between the current approximation structures and the hatched
area of possible further approaches. The gray colored area high-
lights mathematically impossible combinations of MAR and conti-
nuity. The goal of this thesis is to exceed the current boundary by
developing a smooth and scalable approximation structure, thus
heading for the dots the arrows are pointing at.

41



42

RELATED WORK

2.2 ON-LINE LEARNING ALGORITHMS

On-line learning algorithms adapt the linear parameters o of an ap-
proximation structure in order to fit the target function f based on
the sequence of training samples (x¢,y¢). In this section the target
function f is fixed in time and the on-line learning algorithms only
need to reduce the noise in the samples in order to find the best ap-
proximation f*. The extension to the non-stationary or time-variant
setting is handled in section 2.3. Further, the formal consideration is
limited to scalar labels y; as the extension to multiple dimensions
can be achieved by applying the presented algorithms to each output
individually.

The focus on linear parameter adaptation leads to a shift in the per-
spective of scalability of on-line learning algorithms in contrast to the
scalability of approximation structures. For approximation structures
the interesting scalability is the one towards the input dimensional-
ity n while for on-line learning algorithms the natural figures to look
at for scalability are the size and sparsity of the feature vector an
approximation structure provides. Thus, the scalability towards the
number of inputs is only indirectly covered. The sparsity as well as
other properties of the approximation structure like locally supported
basis functions and global continuity constraints are emphasized, be-
cause they support an easy to handle learning problem.

On-line learning algorithms are categorized as first order or second
order algorithms depending on the kind of information they use to
update the parameter vector «. First order algorithms only use the
gradient information e - ¢(x) about the fitness landscape to update
the parameters o, i.e. the first derivative of the fitness landscape. The
gradient stems from the first derivative of the square loss in equation
(3)- Second order algorithms store additional information about the
learning task in order to estimate second order information about the
fitness landscape and thus perform more informed update steps.

A second axis for categorizing on-line learning algorithms is the
kind of update they apply to the parameter vector. There are additive
and multiplicative updates. Additive updates are used to coordinate
many different basis functions in order to form one solution. Multi-
plicative updates favor the selection of one or a few basis functions
from a huge set, i.e. they strive to identify a single expert that per-
forms well for a given task. The idea of multiplicative update does
not fit the approximation structures and the on-line learning setting
stated here and thus, this topic is not further considered in this review.
Especially, time-variance is a fundamental problem for multiplicative
updates as parameters of zero weight need a special treatment to rise
again.

The notation for on-line learning algorithms in this thesis follows
the one in [26] as it provides a common frame for most on-line learn-



2.2 ON-LINE LEARNING ALGORITHMS

ing algorithms and allows for an easy comparison between them. The
common structure for updates in this notation is given in equations
(12) to (13). The update for linear parameters .1 comprises the pas-
sive term p1 - &y and the aggressive term aj - (y¢ —U¢) - St P (x¢). The
two parameters py and a; are the algorithm specific components. The
second order information matrix S¢ becomes the identity when deal-
ing with first order on-line learning algorithms. The update of this
second order information S; follows the structure of the Sherman-
Morrison-Woodbury formula for invertible matrices and has a pas-
sive and aggressive component as well with algorithm specific pa-
rameters p> and a; accordingly.

(11)
vecalphay, 7 = pr1-ac+ar- (Yt —0¢) - Sed(xt) (12)
Sti1 = P2-St+az-Sid(xi) d(xi)St (13)

2.2.1  First Order On-line Learning Algorithms

First order on-line learning algorithms are easy to handle as they
solely rely on the gradient ed(x¢) and do not store additional in-
formation about the learning task at hand. They usually offer a lim-
ited number of additional hyper-parameters to adjust the learning
behavior of the algorithm. This makes them attractive in terms of
computation and memory demands as well as scalability. They treat
every sample the same way regardless of the learning history which
makes them naturally suitable for time-variant data streams as they
will always adapt to a changing target function. The drawback of this
always adaptive property is their poor noise reduction in comparison
to second order algorithms.

The first on-line learning algorithms date back to the perceptron
[158] and the Windrow-Hoff algorithm [197] which perform a direct
gradient update with p; = 1.0 and a; = 1.0 or use a step size pa-
rameter A yielding a; = A. This general concept is also formulated
earlier in [156] and has led to many extensions and generalization
afterwards. A popular and more recent work on the family of on-line
learning algorithms based on gradient descent is presented in [36]
which presents a variety of normalized gradient descent algorithms.
The general structure of normalized gradient descent algorithms is
shown in equation (14). Due to the normalization, the parameter A
becomes a learning rate A € [0, 1] rather than a step size but its ul-
timate effect is the same as it steers the aggressiveness of parameter
updates.

1
d)(Xt)Td?(Xt)
~—_——

Normalization

X1 = og + \7>/ d(xt)et (14)

Learning rate Gradient
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The learning rates or other hyper-parameters in first order learning
are usually global ones and thus result in a constant memory demand
and linear scalability towards the feature vector size. A set of param-
eter specific learning rates is possible, but contradicts the simplicity
argument for choosing a first order algorithm with respect to prior
knowledge demands as well as additional memory and thus memory
access demands. If optimal learning rates for every single parame-
ter or at least for certain blocks of parameters are necessary, detailed
prior knowledge is required or the use of second order learning algo-
rithms is indicated.

Other extensions include regularization terms in order to prevent
overfitting. The well-known Tikhonov regularization [182] uses a L,
regularization and is a standard tool in function approximation. In
[203] a general framework for L; regularized optimization is pre-
sented. In general, the regularization allows to express prior knowl-
edge about the target function which is mostly used to control the
overall complexity of the approximation without restricting it in the
first place by selecting an approximation structure with limited ex-
pressiveness. This is especially highlighted in the case of a L; reg-
ularization as it effectively limits the number of non-zero elements
in the parameter vector o, while the L, regularization only limits its
total weight. Thus, the regularization allows to express the expected
complexity of the target in the chosen representation by limiting the
weight or population of the parameter vector «.

The concept of regularization systematically links to former dis-
cussion about bias-variance-decomposition and sample efficiency. A
complex approximation structure yields a high variance part in the
approximation error, but also grants a high sample efficiency as the
structure is capable to represent sample details due to its expressive-
ness. Regularization helps to limit the variance part contribution with-
out limiting the capabilities of the approximation structure to repre-
sent detail information in principle. The regularization damps the
information gain for processing a single sample, but as long as a suf-
ficient amount of samples contributes to a certain solution the approx-
imation structure will follow. This increases the sample demand, but
this lack in sample efficiency is what helps to limit the variance part
in the approximation error. In essence, regularization allows to trade
sample efficiency for model complexity and therefore long term pre-
diction accuracy. As a design component for on-line learning systems
it allows to follow a start big approach for choosing the approxima-
tion structure. E.g. the frequency spectrum a Fourier Series needs to
cover during operation may be hard to know at design time in detail,
but a rough estimate covering a wide range may perform poorly due
to its complexity. In such a case regularization may come in handy as
it helps to find a solution with limited complexity and reasonable pre-
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diction performance without knowledge about the actual frequency
domain.

Unfortunately, these useful properties of regularization only apply
to global models to full extend as all of their parameters interact with
each other and thus, the overall parameter weight is related to the
target complexity. In local approximation structures the overall target
complexity is already bounded due to the input segmentation defined
by the local models the approximation structure comprises. In this
setting regularization can still be reasonably applied to complex local
models, but is not suited for guiding the model overall interaction as
this affects fundamental properties of the approximation structure.

If regularization is not sufficient to guide the course of the learning
process, constraints can be used to force the current approximation fi
to comply to certain properties like monotony, symmetry or bound-
edness. The work in [35] presents a framework to deal with such
constrained optimization problems. Choosing a different approxima-
tion structure which enforces the desired properties by construction
is a way to avoid the constrained optimization problem, but this may
result in an approximation structure with mainly non-linear parame-
ters or other undesirable properties which affect the learning behav-
ior. Thus, constraining the optimization problem allows to choose the
approximation structure more freely while ensuring the desired prop-
erties of the overall approximation. Following a set of constraints dur-
ing learning in a strict manner is likely to affect the MAR for learning
as the scope of parameters which need to be considered for process-
ing each sample usually widens. Thus, constraining an on-line learn-
ing task tends to increase the MAR for learning without affecting the
one for evaluation.

The formal interface of feature vectors and linear parameters for the
on-line learning algorithms makes it possible to combine any learn-
ing algorithm with any kind of approximation structure. Although
this is theoretically sound and supported by different convergence re-
sults in the case of linear regression, i.e. a linear mapping for the basis
functions, the situation is different for non-linear basis functions. The
actual kind and shape of non-linear basis functions define the hard-
ness of the resulting learning problem. In particular, the condition
of the approximation structure is of major concern as it defines the
inherent error amplification in each parameter update, which is es-
pecially crucial in the beginning of a learning process as there is no
knowledge supported by data that could identify a poor error ampli-
fication. In orthonormal approximation structures and local ones as
well, the guidance of the gradient information towards the optimal
parameter vector is good because the influence of different param-
eters in different situations is clearly separated in the gradient and
allows to adjust the parameter vector & accordingly. In feature spaces
spanned by highly correlated basis functions this guidance is easily
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distracted by noise and less separative in general, which results in a
poor tracking towards the optimal parameter vector.

Another aspect in this context is the magnitude of the basis func-
tions as the gradient is directly affected by this property. This also
relates to the error amplification due to inaccurate parameters which
is inherently different from poorly conditioned parameter updates as
the later one defines a property of the learning process while the for-
mer one applies to single states in this process. The simple gradient
update in equation (12) with p; = 1.0 and a; = 1.0 scales according to
the magnitude of the gradient. One approach to get rid of this impact
of the approximation structure onto the gradient is the Incremental
Risk Minimization Algorithm (IRMA) [27]. IRMA treats all approxima-
tion structures the same way as it takes into account the total change
in the global mapping instead of the change in the parameter vector
for the parameter update. Unfortunately, the IRMA approach scales
quadratic in the total number of parameters of the approximation
structure and is not able to make use of a sparse feature vector. This
is due to the need of the inverse Gram-Matrix A~ that links global
mapping change and parameter vector change. For the definition of
matrix A see equation (15). The IRMA parameters are p; = 1.0 and
ar =A""/(c+P(x¢)TA7 P (x(). The inverse Gram-matrix A~! redi-
rects the gradient and the stiffness parameter o allows to steer the
aggressiveness of the updates.

Ay = L Pi(x)d; (%) dx (15)

2.2.2  Second Order On-line Learning

Second order on-line learning algorithms store additional informa-
tion about the learning task in order to improve their parameter ad-
justments over time and adapt to the data distribution at hand. This
causes increased computational and memory demand as compared
to first order algorithms and offers opportunities for a rich variety
of algorithms that cover different classes of scalability. One central
theme in second order learning is noise reduction or canceling which
is a hard task for first order learning. In general, this is achieved by
decaying parameter-specific learning rates that force a convergence
of the parameter vector and thus yield a noise robust behavior. Differ-
ent second order learning algorithms focus on certain aspects of this
theme or link it to other aspects. Connections between time-variance
and noise reduction are reviewed in section 2.3 as noise reduction
and adaptation are conflicting goals and handling both at the same
time requires another quality of learning.

The basic second order on-line learning algorithm is Recursive Least
Squares (RLS) [17] which solely focuses on canceling the additive
noise in the samples by reformulating the batch least squares prob-
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lem into an iterative approach. In order to do so, RLS keeps track of
the covariance of the incoming instances and weights the labels ac-
cordingly. The covariance of the sample is stored in a matrix S which
results in a quadratic scalability towards the total number of param-
eters and as the scope of RLS is global it is not able to benefit from
sparse feature vectors. The convergence properties of RLS are superior
compared to first order learning algorithms in terms of convergence
rate and robustness against noise.

Other recursive algorithms with subtle differences to RLS are re-
viewed in [91]. Worth mentioning here is the Recursive Instrumental
Variables (RIV) version as it weakens the assumption in RLS of noise
and instances being uncorrelated. The other variants in [91] pose no
real alternatives to RLS in the on-line learning setting as they handle
certain aspects of system identification rather than function approxi-
mation.

A second order algorithm similar to RLS but for classification is
Adaptive Regularization Of Weights (AROW) [37] which interprets the
second order information as a regularization matrix that measures the
uncertainty about the parameters. This uncertainty measure is forced
to decay due to the learning samples which results in an update close
to the one of RLS. In [186] the AROW approach is extended to regres-
sion, i.e. Adaptive Regularization Of Weights for Regression (AROWR).
An additional handling for non-stationary targets is also introduced
in [186] which is further categorized and discussed in subsection 2.3.

Gaussian Herding (GH) [38] shares the covariance interpretation of
the second order information of RLS and introduces additional con-
straints about the development of the shape of the resulting ellipsoid
of preferred parameter adaptation directions. There are also variants
for GH that project the second order information to a vector and thus
allow for a linear scalability regarding the number of parameters and
even allow to make use of a sparse feature vector.

Other second order algorithms with linear scalability are more sim-
ilar to first order algorithms like the local variant of RLS, i.e. Local
Recursive Least Squares (LRLS), for the learning of local models, [127,
122]. In the extreme case of locally constant models the LRLS becomes
a mean filter with growing window or a gradient descent algorithm
with decaying learning rate, respectively. The LRLS scales quadratic
in the number of local model parameters but is linear with respect
to the total number of models and thus, can exploit a sparse feature
vector due to local model interpolation.

The issues of approximation structure specific learning behavior,
e.g. condition, locality, basis function magnitude, apply to second or-
der algorithms to some degree as well and thus motivated a second
order variant of IRMA called Second order Incremental Risk Minimiza-
tion Algorithm (SIRMA) both published in [27]. SIRMA stores the sec-
ond order information in a set of matrices and scales cubic in the num-
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ber of model parameters. It also links the noise reduction properties
of other second order learning algorithms with the always adaptive
property of first order algorithms. The parameter adaptation uses a
stiffness concept that makes parameter less likely to be changed by in-
creasing their stiffness parameter. This parameter is increased based
on the instances x; and thus acts like an inverse learning rate, but the
stiffness is capped to some maximum value which allows for a little
amount of constant adaptation.

The noise reduction capabilities of the algorithms reviewed above
are limited to mean-free noise, i.e. they are not able to handle im-
pulsive noise or outliers. One way to counteract on outliers is to use
parameter adaptation which focuses on quantiles rather than statis-
tical moments. Recursive Least M-Estimates in [205] are one way to
realize such a behavior in on-line learning. The incoming samples are
first categorized according to the prediction error they produce and
rated accordingly. Samples yielding an unexpectedly high prediction
error are fully ignored which results in an outlier-robust learning
behavior. The issue of detecting outliers and their correct handling
is getting even harder in time-variant settings, but this topic is not
further considered in this work as adaptive learning algorithms in-
herently mitigate the influence of outliers.

2.3 ADAPTIVE LEARNING ALGORITHMS

Adaptive Learning algorithms are a special kind of on-line learning
algorithms which tackle the problem of tracking time-variant target
functions from noisy samples. Although time-variance arises natu-
rally in on-line learning the resulting stability-plasticity dilemma re-
quires to balance the noise reduction properties of second order learn-
ing and the steady adaptation of first order learning. The two cat-
egories of time variant behavior, i.e. drift and shift [184], are mir-
rored by two kinds of approaches for handling them, namely implicit
and explicit approaches. Another quality of adaptive learning is in-
troduced by ensemble methods which are inherently able to combine
implicit and explicit aspects by updating or replacing ensemble mem-
bers.

Implicit approaches focus on the always adaptive property of first
order algorithms in order to keep track of a drifting target function.
In contrast to that, explicit approaches handle shifts by treating them
as singular events in the time line. When detecting such a shift event
a proper reaction for adapting the current hypothesis is taken, e.g. a
full or partial restart of an accompanying second order learning algo-
rithm. These two categories are not strict and there are approaches
that combine different detection and adaptation methods in order
to cover all aspects of time-variance, e.g. [162] combines exponential
forgetting and resting components. In [102] sample weighting and
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selection mechanisms are combined. These two examples highlight
another aspect for categorizing adaptive learning algorithms. There
are algorithms like [102] which consider a window of past and po-
tentially weighted examples to form and update a hypothesis. On
the other hand, approaches like the one in [162] rather keep track
of the validity of the hypothesis by means of second order informa-
tion. Explicit approaches behave fundamentally different with respect
to these sample-based and hypothesis-based categories. Detecting a
shift in a sample-based approach means to instantly discard all out-
dated samples and update the current hypothesis accordingly. Rest-
ing the second order information in a hypothesis-based approach has
a different effect, as it does not directly change the related hypothesis
but enforces its adaptation to future samples.

Ensemble approaches complete the picture of different methods for
handling time-variance as they are free to take actions on different lev-
els. The combination of ensemble members may change gradually or
abruptly, the single ensemble members can be updated, reset or even
get replaced. This allows to incorporate different time-variance han-
dling mechanisms accounting for the full spectrum of time-variant
behavior and even allows to explicitly handle reoccurrence of former
behaviors by muting currently irrelevant members rather than eras-
ing them. All of these adaptive learning concepts are rather forgetting
mechanisms than learning algorithms. Thus, adaptive learning is in-
herently connected to forgetting as some part of the learned hypoth-
esis get invalid over time and needs to be replaced by new informa-
tion. The different kinds of forgetting mechanisms line up with the
sample-based and hypothesis-based approaches. In general, implicit
adaptive learning is related to a gradual forgetting either based on a
windowing or exponential weighting method.

As mentioned above, the situation for explicit approaches is dif-
ferent because sample-based approaches indeed forget by discarding
samples. Hypothesis-based approaches rather mark the current hy-
pothesis as worth forgetting either partly or in total which does not
immediately discard any information unless new samples actually
contradict the current hypothesis. Ensemble algorithms offer a third
category of neither using nor actually forgetting a particular hypoth-
esis but just ignoring it in the combination of ensemble members.
These general considerations are further detailed in the following sec-
tions and linked to particular approaches in the literature.

2.3.1  Implicit Time-variance Handling

Implicit adaptive learning algorithms stick to the always adaptive
property of first order learning algorithms but strive for a better noise
reduction. One of the easiest ways to do so is to make the gradient, a
first order algorithm follows, more robust against noise by calculating
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it on a window of past learning samples. This windowing approach
is used together with gradient descent in [19] with a focus similar to
this work as it points out the benefits of the window approach com-
pared to RLS in terms of computational and memory demand, which
is true as long as the effort for queuing the samples is smaller than
the memory demand of the total number of parameters introduced
by RLS. The main design parameter of this approach is the window
length, which essentially balances between noise reduction and time-
variance adaptation. A short window favors adaptation while a long
window helps to reduce noise. This basic windowing approach and
common extensions are reviewed in [171, 72, 42].

A very similar approach is presented in [187] where the windowing
is combined with RLS and uses an exponentially weighting of the sam-
ples in order to promote recent samples and limit the impact of older
ones. But the main issue when dealing with windowing approaches
is the window length, which has led to different approaches that in-
troduce an adaptive window length [104]. A more general perspective
in handling windows is introduced in [130] as here single examples
from a set of representatives are discarded. This allows for a more
flexible adaptation to reoccurring concepts and helps to reduce the
total number of stored samples as newly arriving samples are only
added on demand, i.e. if they are necessary to correctly represent the
current hypothesis.

The same basic idea is present in [58] by taking into account novelty
and similarity measures between the already stored and newly arriv-
ing samples. In the more general setting of random sampling this
procedure is handled in [190]. Random sampling is closely related to
windowing approaches as both head for a representative random sub-
set of a potentially much larger set of samples and in on-line learning
this larger set may even be infinite.

Adaptive windowing approaches are also possible without storing
a sequence of samples. Combining the RLS algorithms with resetting
mechanisms for the second order information allows to implicitly
deal with windows of past samples while ensuring fixed and limited
memory demand. Simple resetting mechanisms perform a reset of the
covariance matrix at certain points in time [73, 138]. The time span be-
tween each reset may be constant yielding a periodic reset behavior
or may follow a more complex user-defined schedule. A more data-
centric approach is to reset the covariance matrix based on its spectral
properties [138, 162], e.g. a lower bound for the smallest eigenvalue.
Resetting the covariance matrix this way takes into account local hot
spots in the data distribution and prevents the learning system from
losing track of time-variant behavior in such regions.

RLS with forgetting introduces an exponential weighting scheme to
forget old samples and thus allows to balance between the noise ro-
bust RLS behavior and a strong focus on recent samples like for first or-
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der learning algorithms. A general consideration of this topic is done
in [120, 152, 151]. Different versions of the standard RLS algorithm
with forgetting have gained much attention in system identification
and signal processing in the past decades.

Variable forgetting factors are considered in [60, 183, 29, 112] in or-
der to improve the tracking capabilities of the parameter estimation
while avoiding a steadily growing covariance matrix. Stability issues
introduced by a forgetting factor are handled in [147] and a robust
version of RLS with forgetting is presented. As robustness and numer-
ical stability are crucial for any application, there are further robust
versions of RLS as presented in [204, 163, 9].

More elaborate forgetting schemes like the ones in [150, 185] intro-
duce forgetting factors for individual parameters or groups of param-
eters. This is another means to avoid a steadily growing covariance
matrix and thus enhances the stability of the parameter estimation.
The concept of parameter-specific forgetting factors is automated us-
ing a Bayesian estimator in [174] which lifts the problem of forgetting
factor tuning to choosing an appropriate prior for the Bayesian esti-
mation.

In [192] the forgetting factor is adapted according to the magni-
tude of the squared prediction error. As the squared prediction error
increases, the forgetting factor decreases and vice versa. This allows
the estimation to balance its tracking and noise reduction capabilities
on demand. The overall variety of RLS versions also fostered the anal-
ysis of convergence, performance and tracking properties like those
handled in[55, 52, 76, 44].

2.3.2  Explicit Time-variance Handling

The goal of explicit approaches for time-variance handling is to de-
tect changes in the processed data stream at discrete points in time
[8]. The observed behavior in the resulting chunks of data between
the identified points is assumed to be stationary. This allows to de-
couple the time-variance handling and the on-line parameter estima-
tion. Hence, in principle even mechanisms from the field of anomaly,
novelty or fault detection [69, 33, 32, 131, 132] are within the scope
of this review, but the focus is on supervised on-line learning and
especially regression. Another related field which is only indirectly
covered here is change point detection in statistics [23]. A perspective
most familiar with the one in this work is adaptive filtering [78]. The
particular approaches reviewed next are meant to span and populate
the different categories of explicit time-variance handling but they
can hardly cover all individual approaches published in the rich liter-
ature for this topic.

The natural domain of time-variant effects for explicit approaches
are shifts, i.e. abrupt changes in the behavior of the target function or
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the observed system. Window-based approaches like in [167, 103, 11]
find the best split in a window of past samples based on statistics
about the performance of models which are built from different parts
of the window. Various statistical hypothesis tests can be applied
in the detection mechanism, like Page-Hinkley test [146, 139, 2, 51],
Bayes test [170], t-test [177], Kolmogorov-Smirnov-Test [133, 97, 194],
etc. or the according concentration inequalities or combinations like
in [109]. Which test to select depends on prior knowledge about the
involved probability distributions, expected sample sizes and other
application related issues. Despite the pure change detection, there is
also work on quantifying the detected change in a meaningful way as
in [100]. This gives valuable feedback in monitoring applications as it
allows to separate small and large changes, but the resulting actions
taken in explicit approaches are always the same.

In [66] the performance of an on-line learning system is observed in
order to define warning and drifting states in time. Once the perfor-
mance of the on-line learning system decreases to the warning level
all following samples are stored in a window. At some later point in
time the on-line learning system may cross the drifting performance
level which leads to a retraining based on the windowed data which
date back to the last warning level appearance. This helps to mini-
mize the memory demand as the window is only maintained during
the change detection and handling.

The focus of explicit approaches on detecting shifts in the data
makes them less sensitive for drift detection as drifts induce only
little change in each time step but over a long period of time. This
problem is tackled in [6] by extending the detection method in [66]
to a sequence aware version which not only considers the amount of
performance drop but also the distribution of erroneous predictions
on the time line.

When dealing with shifts, it is quite natural to look for reappear-
ing behaviors as in [196]. Discovering the reappearance of a former
behavior requires to store outdated models and choosing the correct
one in case of a shift detection. This approach also bridges to en-
semble methods as there is a set of stored models. These models are
combined based on a the winner takes it all rule, but it is also possible
to build a completely new model which might lead to discarding an
old one following a least recently used scheme.

The tracking of multiple different models is even more efficient
when using regression trees as shown in [93], because it is possible
to replace only parts of the model. This allows to react to shifts at
different scales by replacing the whole tree, a single node or only one
leaf depending on the impact of the shift. Another feature of this re-
gression tree which again links to ensemble methods is the so called
option tree. This kind of tree may refuse to use a single splitting cri-
terion when growing new nodes by keeping track of multiple nodes
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with different splitting criteria and independent subtrees related to
them. This enables a compact representation and easy handling of
different regression trees which only differ in certain aspects. With
respect to the growing strategy, the option trees allow to start small
while growing potentially overly big due to the option nodes, but
each option node usually converges to a regular node in the long run
yielding a standard tree structure.

2.3.3 Ensemble Methods

The general features of ensemble methods and why they are able to
outperform single approximation approaches are illustrated in [43]
and [107] provides a recent survey on different on-line learning en-
semble techniques. Here the focus is on the potential of ensemble
methods for handling time-variant behavior in data streams. The
power of ensemble methods in handling time-variant behavior stems
from the additional architectural layer of combining different mod-
els to one ensemble output. The two standard ensemble methods in
machine learning, i.e. bagging and boosting, originate from classifica-
tion and batch methods, but they have been adopted to data stream
analysis as well [145, 144, 143].

BASIC CONCEPTS

The basic idea in bagging is to start with a single data set and to
produce multiple versions of this original set by random resampling
with replacement. The ensemble build from this variety of resampled
data sets consists of members all trained using one individual version
of the data sets. This way all ensemble members can be generated in
parallel and they are using their own data. The on-line adaptation
of bagging for data stream analysis distributes the incoming samples
to all ensemble members according to a Poisson distribution. This
simulates a random resampling as some ensemble members get no
access to the current sample while others may receive it once or even
multiple times. On-line bagging still allows to handle all ensemble
members in parallel and independently from each other. In addition
to that the data distribution is as independent as in batch operation
because each ensemble member listens to the data stream according
to its own Poisson distribution and needs no interaction or synchro-
nization with its peers.

Boosting methods for batch processing build a sequence of mod-
els by weighting the individual samples in the data set according to
the difficulty the former models face in predicting them, i.e. they are
weighted according to the squared prediction error of the ensemble.
Newly built models focus on the samples which are hard to predict
and thus help to increase the overall prediction performance of the
ensemble. The sample weights may be directly used in the learning
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algorithm which generates the model or may effect a resampling of
the original data. The on-line version of boosting is similar to on-line
bagging as it uses a Poisson distribution in order to simulate random
resampling. However, the models in on-line boosting are still trained
sequentially and the parameter of the Poisson distribution increases
or decreases for each subsequently trained model according to the
prediction performance of the currently trained model. This way, a
sample correctly predicted by most of the models is less likely to be
presented again, while incorrectly predicted samples are distributed
more frequently as long as they appear to be hard to predict.

The main draw-back of the basic on-line bagging and boosting
methods is their lack in handling time-variant behavior. There are sev-
eral different approaches tackling this issue by introducing forgetting
schemes similar to the methods review for implicit and explicit time-
variance handling. A common feature of these approaches is to track
the prediction performance of each ensemble member based on the
most recent samples. The ensemble output is formed as the weighted
combination of all ensemble members and poorly performing mem-
bers are assigned a low weight while well performing ones are pro-
moted by high weight. Another common issue in learning ensembles
on-line is to guarantee the diversity of the ensemble members. On-
line bagging and boosting contribute to this beneficial property by
means of the Poisson distribution for sample selection, but there are
further approaches for supporting ensemble diversity.

2.3.3.1 Resetting and Replacement Schemes

In [13] an ensemble of Hoeffding tree classifiers with limited sizes is
proposed. The maximal size for the n-th ensemble member is 2™ and
thus equally distributed on a logarithmic scale. Each tree may grow
as it consumes the incoming samples but its maximal size in terms
of number of nodes is fixed. Once a tree exceeds it maximal size it
is either rigorously pruned or fully reset. As the frequency of this re-
setting mechanism scales inversely with the maximal size of the tree,
the whole ensemble acts as a multi-scale sliding window approach.
Therefore, it is inherently implicit with respect to its time-variance
handling. The smaller trees adapt fast and they are able to keep track
of changes while the larger trees perform better in stationary periods.
This way, the ensemble ensures to contain at least some members
suitable for the learning task at any time. The performance-based
weight assignment is inversely proportional to the exponentially fil-
tered squared prediction error.

The resetting mechanism for replacing ensemble members in [13]
is time-based. A performance-based variant for random forests is pre-
sented in [161], where the worst performing ensemble members are
regularly replaced by growing new trees. In general, [161] performs
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on-line bagging on an Extremely Randomized Forest [70], i.e. a set
of test functions and thresholds in each splitting node is chosen ran-
domly and on-line statistics about their performance refine the sets
to single decisions. The performance-based replacement of ensemble
members also takes into account the age of each ensemble member,
as the candidates for replacement are selected accordingly. In a sec-
ond step these candidates are randomly replaced and the probabil-
ity of replacement increases according to their prediction error. In
this scheme, older ensemble members are tested more frequently and
among those even well performing ones are at risk of being deleted
as the replacement test is stochastic in nature.

2.3.3.2 Reoccuring Behavior detection

The batch-incremental algorithm for classification in [53] handles an
ensemble of equal members where each member is trained on a chunk
of consecutive samples. Its most outstanding feature is the ability to
detect and react on reoccurring behaviors, i.e. it may temporarily dis-
card members from the ensemble by assigning it very little or no
weight at all. In order to actually react to reappearing behaviors, the
ensemble stores all the models it creates during learning. The authors
explicitly recommend not to use any pruning of the ensemble mem-
ber due age or performance in order to preserve the overall memory
of the system for detecting reappearing behavior. A similar concept is
proposed in [105] for segmentation and identification of time series.
The approach keeps track of a sliding window in order to segment
and classify based on the distribution of the windowed data. The clas-
sification in this approach is done in an unsupervised manner and
thus, acts like a clustering algorithm. The fundamental distinction is
the actual classification of each time series segment in contrast to the
weighted combination in [53].

2.3.3.3 Hybrid Approaches

A more explicit time-variance handling for the ensemble members
is proposed in [50]. The ensemble consists of Adaptive Model Rules
(AMRules) and each such member uses a Page-Hinkely test on its in-
dividual prediction error in order to detect and delete outdated rules.
The used test allows for an adjustable rate of change and thus is igno-
rant to slow drifts, but detects significant shifts. The approach exem-
plarily demonstrates the power of ensemble methods in handling dif-
ferent kinds of time-variant effects by delegating them to individual
parts of the ensemble architecture. Here, the replacement of ensemble
members takes care of adapting to shifts and the adaptation of each
ensemble member as well as the ensemble combination rule allow to
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keep track of drifts. A similar concept is presented in [25] with the
explicit focus on handling different kinds of time-variant behavior.
Also very similar is [176] as it follows the same general structure, but
measures the performance on a sliding window instead of using an
exponential filter.

The replacement strategy in [50] already allows to detect changes
in single rules and is able to act accordingly precise with respect to
the knowledge which needs to be preserved as it is unaffected by
time-variant behavior. This fine-grained information forgetting is also
used in [93] for regression trees and accompanied by Option Trees
which allow to efficiently handle ensembles of similar trees by track-
ing multiple splitting options and the corresponding subtrees in each
splitting node.

The ensemble size is a crucial design parameter as long as the en-
semble is not allowed to steadily grow like in [53]. The issue of adapt-
ing the ensemble size on-line is handled in [153]. The addition of new
ensemble members is mapped to a statistical test which guarantees
the overall accuracy improvement when including new members up
to some confidence level. The same statistical argument applies for
the removal of certain members and together these tests make up
the automatic size adjustment for the ensemble. Due to the computa-
tional costs for evaluating the involved test statistics, they are checked
regularly, but not in every single learning step. This computational
burden of evaluating the most interesting statistics is a fundamental
issue in on-line learning and also present in e.g. [93] with respect to
the growing and replacement strategy. The overall effect of this reg-
ular checking is a latency introduced in the adaptation mechanisms
of the algorithm which usually can be tuned to be negligible by in-
creasing the computational demands or relying on prior knowledge
about the expected rate of change with respect to sample generation
frequency.

Another important aspect in maintaining the members of an en-
semble is to preserve their dissimilarity. This aspect is easy to handle
while creating new ensemble members, but it is difficult to ensure a
certain degree of dissimilarity while training existing ensemble mem-
bers. Every single ensemble member adapts to the same overall target
function and thus all members inherently tend to become similar to
each other during the learning process.

The whole field of ensemble methods is much broader than the
thin slice of approaches related to time-variance handling which are
reviewed here. Unfortunately, this interesting part of machine learn-
ing cannot be considered any further in this work, because it only
touches the scope of this thesis due to its relation to learning in non-
stationary environments.
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2.4 ON-LINE AND INCREMENTAL LEARNING SYSTEMS

The methods and approaches reviewed so far already cover most of
the building blocks of an on-line learning system, which essentially
comprises an approximation structure and an on-line learning algo-
rithm. The combination of these parts to a complete learning sys-
tems is reviewed here focusing on the mechanisms used to handle
the non-linear parameter adaptation necessary in many approxima-
tion structures. Especially, the mechanisms to increase and decrease
the expressiveness of the used approximation structure is concerned
as these features are essential in non-stationary environments. The
reviewed approaches are grouped according to the approximation
structure they belong to and roughly follow the ordering in section
2.1. The selected literature barely covers the full variety of papers in
the field, but points out the basic strategies associated with different
approximation structures.

2.4.1 Rigid Structure Approaches

All approximation structures which suffer from the curse of dimen-
sionality inherently form more or less rigid structures. This includes
polynomials, grid-based look-up tables, B-Splines, Fourier Series and
Wavelets as they either inherently make use of a grid for approxima-
tion or follow the tensor expansion. Nevertheless, all of these approx-
imation structures contribute to the field of on-line learning systems
and therefore are at least briefly mentioned here.

Although the approximation structures listed above lack in scala-
bility, they contribute to low dimensional problems with limited re-
sources in terms of computational and memory demands as in adap-
tive filter using polynomials [96] or B-splines [164]. Using adaptive fil-
ters as a standard tool for a wide range of problems with limited prior
knowledge requires to use a flexible internal approximation structure.
Polynomials provide such a structure and are fast to evaluate and ef-
ficient to store at the same time. Nevertheless, the polynomial degree
as the main design parameter is hard to define.

A soft pruning of a polynomial model is achieved in [30] using
Least Absolute Shrinkage and Selection Operator (LASSO) (compare
[181]) regularization. This regularization forces the parameter vector
to be sparse and thus, the most important basis functions are selected
in order to build the approximation. This is similar to the weighted
combination in ensembles and the LASSO approach has been further
developed to handle groups of parameters [202] and sparse groups
of parameters [64]. This regularization facilitates the choice of the
polynomial degree as a design parameter because the system inher-
ently aims at minimizing its expressiveness while balancing this goal
against its prediction performance.
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In [140] the great impact of grid-based look-up tables in the con-
text of combustion engines is reviewed and linked to their usage as
non-linear models and controllers. The merit of using grid-based ap-
proaches here is twofold. On the one hand, the evaluation of such
systems is fast and learning is simplified due to a-priori fixed and
optimized non-linear parameters f3, i.e. the input segmentation con-
tributes to reduce the learning problem complexity.

The time-frequency transformation approaches of Fourier Series
[106] and Wavelets [18] suffer from the same issues as the other highly
structured approaches like polynomials, GLTs and Spline, namely the
curse of dimensionality. Thus, despite the fact that they offer powerful
and unique features for approximation, their expressiveness adapta-
tion capabilities are limited.

2.4.2 RBF and Fuzzy Approaches

RBF approaches and also Fuzzy Systems which make use of them in
their antecedents offer a great variety of expressiveness adaptation
methods. One system that needs to be mentioned here for its pioneer-
ing work is the Adaptive Neural Fuzzy Inference System (ANFIS) [94].
ANFIS has a fixed number of rules whose antecedents and consequent
parts are updated simultaneously using gradient descent. This learn-
ing scheme highlights the strong connection between RBF, Fuzzy and
neural network approaches, but it is only a historical starting point
for the approaches considered here, as ANFIS does not change its over-
all expressiveness over time. The adaptation of the antecedents rather
shifts the fixed amount of expressiveness locally on demand like poly-
nomial approaches do. This kind of expressiveness adaptation is nec-
essary for handling time-variant behavior, but it is not sufficient as
it does not allow to react to overfitting or biased approximations in
case of a changing target complexity. Therefore, the focus here is on
techniques which change the overall expressiveness over time.

In general, these approaches decouple the handling of non-linear
parameters of the RBF, i.e. position and span of the local representa-
tions, and the linear parameters of the local models. The non-linear
parameters are estimated based on unsupervised learning techniques
like clustering and density estimation. On a conceptual level, RBF net-
works are dealing with questions like when to add a new local model,
how to merge two similar models and how to detect obsolete models
in order to remove them. The removal of a model may be due to its
age and long inactivity or due to low prediction performance. In the
latter case the model is rather replaced by a new model or split into
two than actually being removed.

The easiest way of deciding when to create a new local model is
by testing the contribution of all other models to the current instance
x¢. If no model is activated by more than a threshold parameter, a
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new model is created at the instance x; with standard parameters for
its shape. This technique is used in approaches like [98, 165, 99, 5, 3,
189, 128] with variations according to the used RBF kernels and the
update of their non-linear parameters. In [201] the test for creating
new local models also requires a sufficiently large prediction error
for the current example.

The issue of scalability towards input dimensionality is highlighted
in [189] in a perspective similar to the one in this work. It makes use
of dimensionality reduction methods in order to build simple local
models and even proposes an efficient indexing of the local models
for handling trajectory based learning tasks. The other approaches
differ in the way how they represent and treat the receptive fields of
the local models. These representation issues lead to different further
approaches like [155, 125] which more or less focus on dimensionality
reduction and compact representations in order to keep the overall
complexity of the approximation low. Merging two models requires
them to have sufficient overlap with respect to their receptive fields
and they need to be sufficiently similar with respect to their output.

A structured view on merging of local models is presented in [124].
Merging two models raises the issue of shaping the common recep-
tive field of the involved local models according to the amount of
samples each single model represents. The removal of local models
is not only related to overfitting and complexity issues, but especially
to forgetting in non-stationary environments as in [123]. These forget-
ting mechanisms comprise features based on age, contribution and
performance of local models and include the concepts reviewed in
adaptive learning algorithms and ensemble methods. Altogether, the
merging and pruning or forgetting mechanisms help to prevent the
on-line learning system from overfitting and support its ability to han-
dle non-stationary environments. The most important design aspect
of these kinds of systems is how they generate new models and what
user-defined parameters, e.g. a contribution threshold, this growing
strategy provides.

In general, a growing strategy which is eager for building new mod-
els may yield to complex merging and forgetting tasks and an overall
increased computational and memory demand. On the other hand,
a restrictive growing strategy inherently produces more biased ap-
proximations which usually threatens prediction performance. This
tradeoff becomes even harder to balance in high dimensions due to
the distribution aspect of the curse of dimensionality as the available
samples become exponentially less dense and tends to populate only
the boundary of some high-dimensional manifold.
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2.4.3 Neural Network Approaches

The issues about high-dimensional problems are uniquely tackled by
Extreme Learning Machines (ELM) [89, 9o], which are a special vari-
ant of single layer MLPs with randomly initialized input weights. The
random initialization of these non-linear parameters is fixed and thus
excluded from learning. The resulting random features in the hidden
layer are kernelized and based on random one-dimensional projec-
tions of the inputs. The on-line variants of ELMs [114, 87, 157, 116]
stick to the random and fixed initialization of the input weights and
adapt the linear output parameters using standard on-line learning
algorithms like gradient descent and recursive least squares. The ran-
dom feature generation is a statistically supported countermeasure
for the curse of dimensionality, but it only yields the chance to find
an appropriate set of features, which allows to learn well perform-
ing output weights. This raises the same conflict between prediction
performance and overall computational and memory demands as for
any other on-line learning system, but with a random sampling per-
spective onto the feature vector. The principle of the more, the better
does not apply here due to universal approximation properties or in
the sense of a Taylor Series approximation, but rather due to an in-
creased probability of hitting valuable features. So, there is no guaran-
teed monotone increase in performance when adding more features,
but it is likely. The random features also help to mitigate overfitting is-
sues. As there is no systematic way of generating new features, there
is little chance to hallucinate any structure in the learned samples
due to noise. However, overfitting due to low sampling density in the
beginning of the learning is still possible. One way to deal with this is
to increase the number of features on-line as in [75], see [57] for batch
operation. Another option is to make use of ensembles as in [110]
with all related issues like performance and contribution tracking. A
remarkable feature of ensembles of ELMs is the diversity of their mem-
bers. Due to the random feature generation they rely on, this property
nearly comes for free, even without on-line bagging or boosting. This
beneficial property for an ensemble can even be pushed further by
conditioning the probability distribution of the newly generated fea-
tures based on the existing ones in the ensemble, which would yield
some kind of random tabu search. For further readings about ELMs
refer to [88, 28, 45, 86, 46].

2.4.4 Tree-based Approaches

The growing of trees is a standard technique which is shared by
both batch and on-line learning. The popular Hoeffding trees [47]
are made for classification with enhancements towards incremental
forests in [67], but have already been adopted to regression as well,
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[92, 2, 93]. The growing mechanisms in trees are a second mean to
tackle the curse of dimensionality as every splitting node only consid-
ers a binary decision. The resulting tree takes a limited sequence of
these binary decisions in order to select one model to answer a query.
This yields an information compression or reduction similar to the
random features of the ELM but carries much more structure due to
the hierarchy of the decisions. The corresponding models are located
in this hierarchy of decisions, but they do not comply to a hierarchy
themselves. When growing the tree, a model is replaced by a splitting
node whose children are new models which are initialized using the
former model. Thus, the models are refined with respect to the tree
structure, but as the split model is removed from the tree, they do not
carry the same hierarchy as the splitting decisions do. The split crite-
rion is the fundamental design issue in growing model trees, similar
to the local model generation in evolving fuzzy systems.

The unique feature of the tree structure is its hierarchy which al-
lows to build statistics about the best local split for every model
and to check whether a split actually improves the prediction per-
formance. Tracking these statistics in high dimensions is one of the
most challenging parts in learning a model tree on-line. According
to the standard kd-tree structure, each splitting node needs to select
an input dimension to use for the split and the actual splitting point
in that input dimension. The necessary statistics to choose a valu-
able splitting criterion require a sufficiently large amount of samples
and are computationally cumbersome. This is why they are evalu-
ated only once in a dozen of learning steps or even less often, see
[93]. Choosing a wrong splitting criterion either requires to prune the
tree as the mistake becomes obvious or the resulting tree grows un-
necessarily big, which increases sample, memory and computational
demands. Thus, there is reason not to rush into splitting decisions,
but this also slows down the growing of the tree and fosters biased
approximations during the growing period. A calm growing strategy
is a good countermeasure against overfitting as it is not likely for the
involved statistics to be fooled by noise. The pruning of models in
a tree roughly follows the same line as in evolving fuzzy systems.
Replacements can be made at any stage of the tree and thus at any
model granularity, while the merging of models is limited to siblings.

2.4.5 Nearest Neighbor Approaches

The data base management in nearest neighbor approaches is similar
to member handling in ensembles. The fundamental questions are
whether to include a new sample and how to detect obsolete samples
in the data base. While the age of the samples is easy to track, their in-
dividual performance is less obvious to measure. The diversity of the
data base is even more severe in nearest neighbor methods as for en-
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sembles, as it represents the current hypothesis. In [172] these issues
are grouped to three indicators for the usefulness of a sample, namely
spatial relevance, temporal relevance and consistency. Together, these
indicators keep the data base up to date with diverse and represen-
tative samples. The unique feature of nearest neighbor approaches is
their ability to flexibly build local models which can even be selected
using cross-validation. In [15] this winner-takes-all selection is further
developed into a performance-based weighted average of local lin-
ear models. There are also approaches which deploy non-linear local
models as in [95] for a soft sensor application.

The approximation power of nearest neighbor approaches stems
from their flexibility to choose both the number of considered neigh-
bors and the complexity of the local model and they are able to val-
idate both on a second set of samples independent from the one for
training the local model. In this regard, nearest neighbor techniques
link on-line and batch processing by selecting a small subset of the
streaming data for applying a standard or adopted batch process-
ing method. But this flexibility in answering queries is only a true
strength when operating on an actually representative data base.

2.4.6  Support Vector Approaches

While nearest neighbor approaches and on-line support vector regres-
sion share many aspects due to their sample-based learning nature,
the situation for integrating samples in on-line SVR is more complex
due to the underlying non-linear constrained optimization problem.
The bookkeeping procedure in on-line SVR approaches like [129] is
based on the incremental learning algorithm for classification in [31].
It keeps track of three different sets of vectors. The margin support
vector set contains all vectors on the margin of the current approxi-
mation, the error support vector set gathers all vectors exceeding the
margin and all vectors within the margin build the remaining set of
ignored vectors. So, every new sample needs to be delivered to one of
these sets. This may trigger additional movements between the sets
depending on its actual target set in order to meet the Karush-Kuhn-
Tucker condition. The resulting on-line learning behavior is similar
to RLS with respect to robustness and noise reduction, thus for deal-
ing with time-variant behavior additional relearning mechanics are
required like in [118]. This relearning is triggered by a constantly de-
creasing prediction performance and replaces the whole model by a
new one which is trained based on the most recent samples. There are
also SVR-based ensembles methods [119] which focus on time-variant
behavior and make use of a weighted combination with performance
based weight estimation.
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The approach this thesis presents in order to achieve the goal for-
mulated in section 1.4 features a layered approximation structure by
means of a multi resolution approximation. Each layer consists of a
symmetric simplicial input segmentation equipped with a smooth in-
terpolation scheme and an adaptive learning algorithm. The different
layers of the approximation structure form a refinement hierarchy
which relates this approach to multi resolution analysis methods like
Fourier Series and Wavelets, but the presented approach here intro-
duces a learning architecture which adapts the refinement layers one
after another in an incremental fashion. Thus, each sample the result-
ing on-line learning system consumes is processed in an incremental
manner with respect to the data stream it originates from and the in-
formation granularity extracted by learning. This chapter introduces
the single parts of the approach and shows how they interfere in or-
der to provide a full on-line learning system capable of dealing with
evolving data streams while scaling linearly in regards to input di-
mensionality.

3.1 SCALABLE AND SMOOTH INTERPOLATION ON SYMMETRIC
SIMPLEX-STRUCTURES

The overview of different approximation structures shows that a GLT
with a smooth interpolation (GLT smooth) limits the scalability of cur-
rent smooth approximation structures. On the other hand, 1% Order
Simplicial B-Splines offer the best scalability for a continuous approx-
imation. The approximation structure presented in this section com-
bines both aspects in order to be scalable and smooth at the same time.
This is achieved by combining a symmetric simplicial input segmen-
tation with a special interpolation scheme which allows for a smooth
transition between the heights associated with the vertexes of each
simplex.

3.1.1  Symmetric Simplicial Input Segmentation

The input segmentation used here as a basis for the approximation
structure is a symmetric variant of the Freudenthal Triangulation on a
regular grid which dates back to [62] and has been used and even
been independently rediscovered by many others, e.g. [108, 137]. The
Freudenthal Triangulation is useful as it essentially defines a subdivi-
sion of an n-dimensional hypercube into n! simplexes and the hy-
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Figure 2: Schematic view of the symmetric simplicial input segmentation on
a 8-by-4 grid in two dimensions.

X2

X1

Figure 3: The symmetric simplicial input segmentation with highlighted hy-
percubic complexes and base nodes. The simplexes belonging to
one complex are framed by a thick line and share the same gray
tone. Each complex has a central base node marked by a dot. The
complexes form a coarse hypercubical 4-b-2 gird over the underly-
ing simplicial 8-by-4 grid.

percube is the only known regular geometric structure for covering
the R™ with n > 4. Hence, in combination the simplicial subdivision
of a regular grid in R™ yields a structured triangulation of R™ with
simplexes of equal hyper-volume and similar shape. A schematic pre-
sentation of this triangulation in two dimensions is shown in Figure 2.

The main benefit of a symmetric triangulation is the possibility
to restrict the considerations for finding a reasonable interpolation
scheme to a single hypercube as all of the interpolation properties
defined there extend directly to the whole grid by using appropri-
ate symmetry operators, i.e. reflections at hypercube boundaries. This
perspective naturally results in hypercubic complexes centered around
one base node as shown in Figure 3.

The hypercubic complex structure allows for an easy indexing of
the complexes and the simplexes within by relating them to their
common base node. The base nodes are indexed by their grid coor-
dinates. The simplexes are indexed using the grid nodes that belong
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to the simplex. These form a shortest path from the center of a com-
plex to its outer vertexes along the edges of the hypercubes. This path
can be uniquely defined by the integer sequence of the input dimen-
sions on which the points on the path differ and the direction of the
path. Figure 4 illustrates the indexing of the simplexes inside each
complex and highlights the connection between the nodes that define
the simplex and the integer sequence for indexing it. For all further
considerations the hypercube with strictly positive indexes is used
as it allows the same insights like every other hypercube due to the
symmetry of the triangulation. Moreover, it is useful to look at three
equivalent representations for the simplexes in the considered hyper-
cube as illustrated in Figure 5 for the two dimensional case, namely:

1. Drawing in a coordinate system
2. Path in the edge-graph of a hypercube
3. Ordering of coordinate values

The first and visual representation is best for building intuition about
the geometry in the symmetric simplicial triangulation, but it is lim-
ited to low dimensional cases. The second, graph-based representa-
tion allows a more topology orientated perspective onto the trian-
gulation and slightly exceeds the dimensionality limitations of the
drawing representation. Only the last and completely formal repre-
sentation allows to handle issues in high dimensional spaces. Never-
theless, each representation has its own merits to demonstrate certain
aspects of the interpolation considered in this section.

3.1.2  Smooth Interpolation on Symmetric Simplicial Structures

In one dimension there are many smooth interpolation methods for
interpolating between two neighboring points, but expanding them
to higher dimensions using the tensor product of many one dimen-
sional interpolation functions leads to an exponential growth of the
computational and memory demands for operating such an interpola-
tion. The simplicial input segmentation introduced in section 3.1.1 of-
fers the opportunity for an interpolation scheme which scales linearly
regarding input dimensionality. The 1% Order Simplicial B-Splines de-
fine such an interpolation scheme as they linearly blend between the
heights of the nodes of the simplex. In a n-dimensional space R™
there are only (n+1) nodes which define the simplex. This yields a
simple simplex-related indexing of the basis functions ¢; that carry
the interpolation scheme as shown in Figure 6. The indexing is easy
to grasp using the path representation as every basis function of each
simplex is indexed by their distance to the base node. Since every ba-
sis function ¢; belongs to a node, the position p(i) € [0,1]™ of each
such node is indexed accordingly.
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(a) (b)
index: (?2,}\) 1) (0,1) (1,1
Tot: —|—:2 DN 2nd: X7 (2,-1) (2,1)
(o,n] (1,1
(0,0)

Figure 4: Illustration of the simplex indexing relative to the common base
node centered at the origin (0,0) in the local coordinate system.
Part (a) of the figure shows how the path marked in bold relates
to the indexing. Each edge passed along the path follows one co-
ordinate direction and the index gathers these signed directions
ordered along the path. Part (b) of the figure shows all simplexes
of a two dimensional hypercubic complex and their corresponding
indexes.
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Drawing:
X2
1+ - |
0+- l
o 1 X
Path:
Ordering;:
X2 2 Xq X1 2 X2
Index: (2,1) Index: (1,2)

Figure 5: Here, the three representations of a simplex used in this work are
illustrated for each kind of simplex in the two dimensional case.
The scope is limited to the hypercube with strictly positive index-
ing without loss of generality. The different representations of the
two simplexes indexed by (2,1) and (1,2) are ordered from top to
bottom and show each simplex as a drawing, a path in a graph
and an ordering of coordinate values.
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Figure 6: Illustration of the simplex-related indexing of the basis functions
¢; in the two graphical representations. The basis function ¢ al-
ways belongs to the base node. The index i of the other basis func-
tions ¢; equals the L;- or Manhattan distance to the base node.
In the graph representation in part (c), each kind of basis function
¢i belongs to one layer of the graph. The different layers of the
graph are separated by dashed lines and each layer groups nodes
of equal distance to the base node which is marked by a double
circle.

The main drawback of the 1%t Order Simplicial B-Spline approxima-
tion is its continuous but not smooth interpolation on a global scale
as potentially every transition from one simplex to a neighboring one
is not differentiable. This yields a widely sharp-edged approximation,
especially in high dimensions. In order to obtain a smooth interpola-
tion scheme, that still scales linearly with the dimension, the structure
of the simplicial input segmentation needs to be considered to ensure
a smooth transition between neighboring simplexes.

The development of this interpolation starts with the two dimen-
sional case in the following subsection as it allows to visualize im-
portant properties and keeps the mathematical formulation simple.
The insights of the two dimensional case are lifted to the general
case of n-dimensional inputs and yield the Simplicial Tensor Product
described in subsection 3.1.2.1 as well as the Simplicial Norm-Based
Aggregation developed in subsection 3.1.2.2.

2-Dimensional Case

A smooth interpolation scheme defines basis functions ¢; for every
node in the grid which weight the height of each corresponding node
to form the approximation. These basis functions ¢; need to form
a partition of unity over the whole input space, i.e. at each point in
the input space they sum up to one, } ; di(x) = 1vx € X C R™.
Moreover, the value of the basis functions ¢; needs to equal one at
the node they belong to, it needs to vanish outside the simplexes that
touch this node and all derivatives up to order d at the node and the
boundary of the touching simplexes need to vanish, too. In order to
meet these requirements it is important to look at the geometry of the
support of each basis function ¢;.
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bo ¢1 b2

X2 X2 X2

X1 X1 X1

Figure 7: The figure shows the shape of the support of three basis functions
of 2D Simplex highlighted in gray shades. The base node to which
these basis functions refer is marked by a bold dot, the correspond-
ing hypercubical complex is indicated by a dashed line and the
considered hypercube is framed in bold. A smaller dot centered in
the shaded areas marks the node the basis function belongs to.

Figure 7 shows the shape of the three basis functions of one sim-
plex in two dimensions and highlights the hypercube for further con-
sideration by a bold solid line. Over the whole grid, all basis func-
tions show a squared support, two with axis-aligned squares and one
with a diagonal-aligned square. Within the considered hypercube the
shapes are actually different as the diagonal-aligned square becomes
a triangle.

Without loss of generality, the considered hypercube is assumed to
be the unit square [0, 1]2. For a specific and easy example in two di-
mensions, it is further assumed to head for a global continuity of cl,
i.e. a continuously differentiable approximation. A one dimensional
basis function yielding a globally C' behavior is given in equation
(16). This function equals one at the origin with a vanishing slope
and vanishes at one with a vanishing slope. The goal is to lift the
properties of this simple polynomial function g(x) to the two dimen-
sional case while fitting the shape of each individual basis function

phii(x1,x2).

glx) = 2% —3x% 41 (16)

In order to achieve this goal it is necessary to formalize the require-
ments for the basis functions ¢; from above into boundary conditions
in the unit square. For the basis function ¢ that belongs to the base
node this is done in equations (17) to (20).
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$o(0,0) = 1 (17)
do(1,x2) = bo(x1,1) = 0 (18)
9o _ 9%o
6;;7X]:O-_ aX] x1=1 ° (19)
9o _ %o
E x2=0 B aX2 x2=1 ° (20)

This kind of basis function is easy to handle as the square shape
of its support fits to the geometry of the tensor expansion and allows
the standard product of one dimensional basis functions in order to
form the two dimensional extension, see equation (21).

dolx1,x2) = glx1)g(x2) (21)

Equally simple to handle is the basis function ¢,. It shares the
same shape of the support as the basis function ¢y and has similar
boundary conditions as shown in equations (22) to (25).

$2(1,1) = 1 (22)
$2(0,%x2) = d2(x7,0) = 0 (23)
GJop] 02 -
ilyo W ly 24
002 _ 0% _
Egzixzzo aXZ x2=1 =0 (25)

The resulting tensor product for this basis function is shown in equa-
tion (26). It is very similar to the basis function ¢ but uses mirrored
coordinate variables.

dolx1,x2) = g(1—x1)g(1—x2) (26)

The appropriate extension for the basis function ¢ with a triangu-
larly shaped support is less obvious as it needs to fit to the non-axis-
parallel constraints shown in equations (27) to (30). The approach
to meet these constraints is geometrically motivated as the problem
stems from the geometry of the support of ¢1. The aim is to form
an interpolation scheme similar to the tensor expansion ¢(x1)d(x2)
by projecting its resulting square shape to a triangle. This projection
can be done by either mapping the x, = 0 edge to the main diago-
nal or the x; = 1 edge. The schematics of these two projections are
illustrated in Figure 8 and they yield the two interpolation formulas
O((T—x%x1)/(1 —x%x2))db(x2) and (1 —x1)Pp(x2/x1). None of both for-
mulas meets the requirements as they either fail to ensure a vanishing
derivative along x7 at x; =0 or along x; at x; = 1.
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(a) (b)
(x1)d(x2) ®(
X2 X2
X1 X1
(d)
Equation (31)
X2
X1 X1

Figure 8: Part (a) of the figure shows the regular tensor product and the cor-
responding square geometry. Parts (b) to (d) illustrate the principle
behavior of different projections from the square to a triangle. The
arrows show the direction of the projection. In parts (b) and (c) the
projection is axis parallel. The solid arrows also point to the edge
that does not fit the boundary conditions required for a globally
smooth interpolation. Part (d) shows the change of the projection
direction depending on the position inside the square. This vary-
ing projection direction allows for a globally smooth interpolation.

$1(0,1) = 1 (27)
P1ly,—x, = O (28)
acbtri _ a(btri - 0 (29)
0x1 x1=0 0x1 X1=X2
a(bt'ri _ ad)tri - 0 (30)
axz X2:1 axz X1=X2

Combining both projections as shown in equation (31) yields a
blending from one projection to the other smoothed by the one di-
mensional interpolation function, here g(x). This way, each projection
is active only for the one part of the boundary where the correspond-
ing derivative actually vanishes. Due to the reuse of the interpolation
function g(x) in the blending scheme of ¢, the basis function inherits
the smoothness properties of the one dimensional function g(x). The
formula for ¢ is not defined in (0, T) but can be smoothly continued
by ¢1(0,1) = 1. Thus, it lifts the properties of the one dimensional
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basis function to the two dimensional case, like the tensor product,
and fits the triangular shape of the support of the basis function.

_ g(x1) T—x2
$1(x1,x2) = 9G] + 901 —x2) '9(X1)9<]_X1> (31)
g(l—x2)  (x1 B
g(x1)+g(1—x3) <X2> S
Blending Projection

Unlike the tensor product, the interpolation in equation (31) in-
volves a sum over multiple products and thus, it is not obvious if
or how it scales to higher dimensions. But this blending and pro-
jection structure is essential for the envisioned interpolation scheme
and builds the backbone for the multidimensional generalization. The
simple two dimensional example allows to illustrate certain aspects
graphically and already carries all concepts necessary for the general
n-dimensional case. However, this general situation requires a more
formal consideration as described in the following subsection.

3.1.2.1  Simplicial Tensor Product Aggregation

The interpolation scheme in equation (31) is based on the knowledge
about the shape of the basis function ¢, which is easy to grasp vi-
sually in two dimensions. For the general n-dimensional case, it is
important to develop a formal representation for the shape of the ba-
sis functions. The support of each basis function is formed by the
union of the simplexes touching the node this basis function belongs
to. Again, it is sufficient to look at a single hypercube and consider
the simplexes in there as the rest of the geometry is formed by sym-
metry operations.

Fortunately, there are only [(n + 1)/2] different shapes for the sup-
port of the basis functions ¢; in n dimensions. The layer perspective
onto the hypercubical edge-graph in Figure 4 for the simplex index-
ing already shows that all basis functions in the same layer share the
same shape and index. The shapes are symmetric with respect to the
middle of the graph, i.e. ¢o always has the same shape as ¢, P1
the same as ¢n_7 and so on. This is due to the symmetry of the
triangulation.

The simplexes belonging to the support of a basis function ¢; are
the ones that touch its corresponding node. In the path representation
these are all paths that touch or pass this node. This perspective is
shown in Figure 9 for a four dimensional hypercube and the node
1001 as an illustrating example. The corresponding orderings of the
path highlighted in the figure are depicted in equations (32) to (35).
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Figure 9: This graph represents the edge connections of a four dimensional
hypercube. One node is picked in order to highlight all paths pass-
ing through this node. The picked node 1001 is marked in gray
and by a bold ellipse. All paths passing this node are marked by a
bold lines; All other connections are represented by dashed lines.
Other nodes visited by the highlighted paths are marked in bold
as well.

X4 2 X1 2 X3 = X2 (32)
Xa = X1 = X2 > X3 (33)
X1 2 X4 2 X3 2 X2 (34)
X1 > X4 = X2 = X3 (35)

The shape of the support of the basis function that belongs to the
node 1001 is defined by the union of the simplexes defined in equa-
tions (32) to (35) and due to the inner structure of this set of inequal-
ities their union can be condensed into one inequality as shown in
equation (36).

min(x,x4) > max(x2,x3) (36)

The inequality in equation (36) directly applies for higher dimen-
sion as it essentially states that the minimum of one group of co-
ordinate values needs to be greater or equal to the remaining ones.
One of these groups may be empty which yields the unconstrained
case which corresponds to the square geometry. The most remark-
able thing about the geometry of the different basis functions ¢; is
their generalized triangular shape inside the hypercube. This general-
ized triangle is rectangular with hypercubical cathetes and the dimen-
sions of the hypercubical cathetus sum up to the input dimensional-
ity. The generalization of equation (36) to n-dimensions is shown in
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equation (37), where A; is the basis function specific index set which
contains all coordinate indexes with non-zero node position values,
ie. Ay ={ke{l,..,nlpi) =1}

min{xi|k € A;} > max{xgk & A;} (37)

The above geometrical consideration focuses the whole hypercube.
In order to define the basis functions ¢g, ¢1, ..., dn in n-dimensions
the situation is even simpler as it is sufficient to focus on the single
simplex the current evaluation point x; belongs to. Within this sim-
plex it is only important to determine which facet of the simplex is
constrained and what constraints to apply there. Every facet of this
simplex leading to another simplex within the support of the same
basis function poses no boundary conditions as it is no boundary of
the support. Facets of the simplex that belong to the boundary of the
support can either belong to the hypercubical shape or a triangular
one. The part of the boundary which belongs to a hypercubical shape
allows for a tensor product, while the triangular shaped part of the
support requires a blending similar to equation (31), but there is at
most one such facet for every simplex. Hence, it is sufficient to find
this facet in order to respect the full geometry of the basis function
while focusing on one simplex.

Fortunately, this facet is easy to find in the ordering representation
of a simplex. In general, the constraints imposed by every ordering
7 € S(n) has the structure shown in equation (38) and each ordering
7 uniquely defines a simplex A C [0, 1]™.

Xre(1) 2 Xpr(2) 2 o 2 Xpr(n) (38)

As observed in the two dimensional example, the basis functions
do = H?:1 g(x;j) and pn = Hj“:] g(1—x;) have square support with-
out any triangular constraints and follow the pure tensor expansion.
For every other basis function ¢; with i = 2,...,n — 1 the min-max-
structure in equation (36) reduces to a single inequality for each sim-
plex A, as shown in equation (39) and the resulting generalized in-
terpolation scheme in equation (40).

(i) = 7t(i+1)
X Z X (39)

di(x) (40)

T—x
= g(xﬂ Hg Xre(j H g(ﬂ)

g(XTt )+9 ]_X’T( i+1) =it ]_X’T[(l)

i

n g(1— X7'[(1+])) ) H H g ]—Xﬂ

g(xr(i)) + 91 —Xr(ig1) Jo 1) 52
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This Simplicial Tensor Product interpolation scheme is one central
result in this thesis as it allows to lift the properties of one dimen-
sional interpolation functions like g(x) to the n-dimensional case in
a symmetric simplicial input segmentation. It scales linearly with re-
spect to the number of parameters necessary for its evaluation due to
the geometry of the simplex it refers to. The only drawback of this
interpolation is the computational demand for calculating all basis
functions ¢; as this demand scales quadratic in the number of input
dimensions.

Another issue of the Simplicial Tensor Product is the partition of
unity as this constraint is not fulfilled globally in dimensions greater
than one, n > 1. One direct countermeasure is to normalize the basis
functions ¢; as in equation (41).

$i(x)

bnorm,i(x) ST byx) (41)
The reason for this lack of partition of unity is the use of the tensor
product to handle the unconstrained input dimension. The square ge-
ometry of this tensor product conflicts with the overall generalized
triangular shape of the basis functions and covers some regions in
the input space only incompletely. The normalization fills these re-
gions but makes the formal analysis of the resulting approximation
cumbersome. Nevertheless, the interpolation scheme in equation (40)
has its merits as the tensor product potentially allows to define a de-
sired continuity along every single input dimension separately. But
this requires profound prior knowledge. Another way to get the par-
tition of unity is to replace the tensor product by a more appropriate

aggregation as worked out in the following subsection.

3.1.2.2  Simplicial Norm-Based Aggregation

The tensor product is one way to aggregate the unconstrained input
dimensions in each of the two groups of indexes in equation (37) and
it fails to form a partition of unity as the value of the corresponding
basis functions ¢; rapidly decays along diagonal direction while fol-
lowing the desired interpolation g(x) along each coordinate axis. Ra-
dial Basis Functions do not distinguish between different directions
as they reduce multiple input dimensions to one scalar value using
an appropriate similarity measure. Sophisticated similarity measures
may treat every input dimension in its own right, but in general the
reduction idea is able to be ignorant of directions and thus mitigate
the shortcomings of the tensor product.

The goal here is to define a similarity measure, i.e. a reduction, that
respects the geometry of the already know basis function support
and allows for a smooth interpolation by lifting the properties of a
one dimensional function g(x) to the n-dimensional case. The basis

75



76

APPROACH

for this development is a different representation of equation (37) as
shown in equation (42). It highlights the triangular constraint rather
than the ordering of the coordinate values and the right side of the
inequality provides a direct distance measure between the center of
the basis function ¢; and an evaluation point x.

1 > max{(1—xy): k€ Ai}+max{xk:k & A} (42)

For a more compact and thus clear representation, it is useful to
define individual vectors that contain the parts of the complete eval-
uation point x which belong to A, ie. a; = (v € x : i € Ay), and
those which are not in Ay, i.e. @y = (vi € x : 1 ¢ Ay). This notation al-
lows for the norm-based representation of the generalized triangular
constraint shown in equation (43). Like in the two dimensional case,
this inequality is related to the structure of the interpolation scheme
defined in equation (31) which comprises of blending and projecting.

1 2 1= aille + [[@ille (43)

Here, the two norms ||T — aille and |[@illc correspond to the single
input variable x; and x; from the two dimensional example. But the
infinity norm is not suited for smooth interpolation schemes as it sim-
ply reproduces the square shape that is related to the unconstrained
input coordinates. This square shape results in edged contour lines
of the corresponding basis functions ¢;, but a smooth interpolation
scheme requires smooth contour lines of its basis functions.

Hence, the contour lines of the basis functions ¢ need to be smooth,
respect the non-smooth boundary and form a smooth transition from
the boundary to the center. One way to meet these requirements is
to use the variable norm ||.[|, defined in equation (44). This norm
yields the Euclidean norm if the maximum norm of x equals zero
and smoothly transits to the maximum norm as the maximum norm
of x approaches one. If the maximum norm of x equals one, the cor-
responding basis function has no influence at all and the overall ap-
proximation is well defined.

el = Iixll___2 (44)
(1-lixllo0)?

The contour lines this variable norm produces follow the well-
known shapes of circles in different L, norms. They start with the
actual euclidean circle and approach the square shape of the maxi-
mum norm. Using this variable norm to aggregate the unconstrained
coordinate values yields the interpolation scheme defined in equa-

tions (45) to (47).



3.2 SIMPLICIAL REFINEMENT LAYERS

do = gllxlly) (45)
on = gl —xl) (46)
for i=2,..,n—1:
oix) = (1—v)~9(||a-||)g(“_c“””> 47)
1 M9 { T,

+y- gl —ailb) g <M>

1—11—ailly

9(1 =11 —aillv)
9(1 —llailv) +g(1 =1 — ailly)

’y =

This Simplicial Norm-based Aggregation uses a variable norm to
define smooth contour lines and respects the geometry of the sup-
port of the basis functions. It yields a partition of unity and produces
the same principle interpolation behavior along coordinate axes and
diagonals. This behavior is defined by the underlying interpolation
function g(x) whose properties are lifted to the n-dimensional case in
a uniform way compared to the shaped approximation of the Simpli-
cial Tensor Product Expansion. But this norm based approach does
not allow to treat individual input dimensions differently with re-
spect to their continuity. It is computationally more demanding than
the Simplicial Tensor Product Aggregation as the norm calculation of
arbitrary L,-norm is costly and not as well supported by hardware in
common CPUs as pure multiplication. It also scales quadratic in the
computational demand with respect to the number of input dimen-
sions. Thus, both interpolation schemes are very similar to each other
with respect to lifting one-dimensional functions to high-dimensional
simplicial grids, but differ in central aspects like partition of unity and
computational demands.

3.2 SIMPLICIAL REFINEMENT LAYERS

The approximation structure developed in section 3.1 builds upon
a symmetric simplicial input segmentation which is equipped with
two different interpolation schemes, the Simplicial Tensor Product
Aggregation and the Simplicial Norm-Based Aggregation. Both in-
terpolation schemes lift the properties of a chosen one dimensional
interpolation function g(x) to the n-dimensional case. In terms of ap-
proximation properties this structure suffers from all issues the GLT is
prone to, despite the exponential scalability as it offers a linear scaling
for the memory access and a quadratic scaling for the computational
demand.

The problem of approximation artifacts in high resolution grids
due to the forced vanishing slopes at the grid nodes and the bound-
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Figure 10: Illustration of the approximation artifacts due to the vanishing
slope at grid nodes, here in one dimension. The interpolation
uses the polynomial function g(x) from equation (16). The grid
resolution increases from two nodes in the top left plot to seven
nodes in the bottom right one.

ary of the support of each basis function is even more severe, because
it even affects the simplex boundaries and the input segmentation di-
vides each hypercube into n! simplexes. In Figure 10 the problem of
approximation artifacts is illustrated in the one dimensional case for
different grid resolutions. For low resolution grids the approximation
is biased but in general smooth. By increasing the grid resolution, the
approximation gets less biased, but starts to oscillate around the tar-
get function while forming a stair-like overall shape. This stair-like
behavior does not affect the formal smoothness properties of the ap-
proximation structure, but contradicts the original purpose of build-
ing smooth approximations as the learned derivatives become less
and less meaningful. An option to get back to reasonable derivatives
is to introduce local linear models, i.e. preventing the derivatives from
vanishing at nodes and boundaries. Although this approach is feasi-
ble in general, it is not further considered here as it affects the MAR of
the whole system and would increase the MAR to quadratic scalability
which contradicts the goal of this thesis.

The pesky approximation artifacts for high resolution grids and
the poor approximation capabilities of low resolution grids give rise
to the idea of a multi resolution approach in order to combine the
strengths of both while canceling their shortcomings. This requires a
cooperation of different layers in the multi resolution approach such
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Figure 11: [llustration of the proposed learning architecture for the refine-
ment layers 1, and the resulting information propagation across
different layers. The learning starts by updating the base layer 1
and calculating the residual 4. All subsequent layers 1, use the
residual &,_7 of their preceding layer 1, as learning target. The
actual learning of each layer 1, is indicated by solid lines and the
information propagation across the layers is highlighted using
dashed lines.

that the higher layers mitigate the approximation artifacts of the lower
ones, while the lower layers account for the missing approximation
capabilities of the higher ones.

This section develops the layer structure which embeds the simpli-
cial approximation from section 3.1 in order to reduce its approxima-
tion artifacts while preserving its scalability properties. The develop-
ment starts in the following subsection 3.2.1 by introducing the learn-
ing architecture for handling the different layers. It proceeds in sub-
section 3.2.2 by introducing refinement strategies which contribute
to the artifact mitigation and finally handles the information propa-
gation across the layers in subsection 3.2.3. The learning architecture
perspective here is focused on the additive composition of simplicial
approximation structures, for a more general perspective onto addi-
tive models please refer to [79].

3.2.1 Learning Architecture

The basic idea of cooperation between layers of different resolution
is present in Wavelets. Fourier Series and Tschebyschow Polynomials
employ similar refinement approaches, but do not provide a local ap-
proximation in high resolution components. In all of these approxima-
tion structures, the cooperation of different resolution components is
widely transparent to on-line learning algorithms as the correspond-
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ing basis functions in each structure are orthonormal to each other.
Nevertheless, even in Wavelets an explicit coordination between the
different layers is essential as changes in a higher layer have a wide
or even global impact onto the approximation. This can easily de-
stroy already learned knowledge and thus, delay or even threaten the
convergence of learning at all. Moreover, the interpolation schemes
defined in this thesis for the symmetrical simplicial input segmenta-
tion in general do not form an orthonormal basis and thus require
an explicit handling of the cooperation across multiple layers to some
degree, because a non-orthonormal set of basis functions yields sub-
optimally conditioned parameter updates. This requires explicit han-
dling by means of a learning architecture in order to avoid poor pa-
rameter updates during learning due to error amplification and fatal
forgetting.

In general, the envisioned layer structure is linear in the parameters
like the underlying simplicial approximation structure. Therefore, the
different layers conceptually only group certain basis functions in or-
der to form reasonable abstractions. The overall approximation struc-
ture of the layer architecture is depicted in equation (48) with each
layer 1, having its own set of basis functions ¢, ; and parameters o, i,
distinguished by the layer index .

kmClX

L) =Y L (48)
r=0

The learning architecture for this layer structure needs to respect
and ensure the refinement property of consecutive approximation
layers. In order to do so, it follows a top-down approach for the in-
formation propagation across subsequent layers. The base layer 1y is
the only one to receive the actual learning samples (x,y¢). All subse-
quent layers learn the residuals of their predecessor. The whole learn-
ing architecture is illustrated in Figure 11. The main benefit of this
kind of learning architecture is a forced decoupling in terms of de-
tail approximation between the different layers. Subsequent layers are
trained to eliminate the flaws of their predecessors no matter whether
they are caused by a biased approximation due to low expressiveness
or by an approximation artifact. This ensures a differential encoding
of the target function over all layers whose combination fits to the
additive layer structure in equation (48).

The fundamental issue of this learning architecture originates from
the samples (x, ) which interface subsequent refinement layers 1, 1.
The target functions represented by these samples are inherently non-
stationary as any change in a higher layer affects the residuals a sub-
sequent layer produces. Thus, the corresponding residual target func-
tions interfacing subsequent layers are inherently time-variant. This
results in a strictly sequential convergence of the single layers, which
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drastically increases the necessary amount of training data and thus
delays the overall convergence. Even worse is the expected poor ap-
proximation quality while converging to a stationary solution due
to rare meaningful samples in the lower layers. All in all, the addi-
tive layer structure and the corresponding learning architecture are
superior with respect to artifact mitigation as well as layer cooper-
ation and also provide useful insides about the decomposition of
the target function, but they also render the learning widely infea-
sible as the actual cooperation of the refinement layers is hindered by
time-variant residual targets which continuously render the already
learned knowledge invalid as the output of a preceding layer changes.

All of this makes an appropriate information propagation about the
adaptation of each layer inevitable. This way, the target functions for
the non-base layers become stationary again and all layers converge
concurrently. Hence, one additional requirement for the refinement
strategy of the layer architecture is to support an information propa-
gation that allows for a decoupling in terms of approximation details
while keeping the target functions of the lower levels stationary.

Unfortunately, this additional requirement for the refinement strat-
egy conflicts with the goal of mitigating the approximation artifacts
by using a layer architecture. For a good mitigation of the approxima-
tion artifacts all nodes across all layers need to have unique positions
as this way no vanishing slope of a single node has a strong influence
on the resulting approximation. The information propagation is best
supported by aligned grids which share as many node positions as
possible because the alignment yields a strong connection between
nodes in subsequent layers and thus fosters an easy and efficient ad-
justment propagation across the layers, i.e. all nodes which share the
same position as their corresponding nodes in the preceding layer
only need to refer to this single node.

As the conflict between these two requirements is fundamental,
two different refinement strategies are presented next. An aligned
one which fosters information propagation across subsequent layers
and a shifted one which focuses on mitigating the approximation
artifacts of each layer in the overall approximation. These two refine-
ment strategies give rise to individual approximation structures and
further allow to combine them as a third option.

3.2.2  Refinement Strategies

A refinement strategy for the layered learning architecture has to
meet three main requirements. These start by an increased expressive-
ness in subsequent layers, cover the information propagation across
different layers as well as the mitigation of approximation artifacts
and even touch the Memory Access Ratio as the refinement strategy
should induce as little additional memory access as possible. In terms
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of a general target function decomposition into different detail lev-
els, each layer should provide its expressiveness equally distributed
across the whole input space.

The refinement strategies presented here perform a doubling of
the grid resolution in subsequent layers. This is a compromise be-
tween a reasonable decomposition into sufficiently dissimilar approx-
imation parts and the total number of layers. A more slowly increas-
ing grid resolution would yield a finer decomposition spectrum at
the cost of maintaining, evaluating and learning additional layers. A
faster growth of the expressiveness, e.g. by tripling the grid resolu-
tion in each layer, would reduce the total number of layers which are
necessary to approximate a certain functions with a given accuracy.
But it would also skip certain decomposition components and thus,
yield a less informative approximation spectrum. A reasonably scaled
spectral decomposition yields strong features for detecting irrelevant
parts of the approximation and helps to separate signal from noise.

Doubling the grid resolution affects all input dimensions equally
and in a global manner. This assumes an equal relevance and span
of all input variables x;. The span of each input variable x; is either
given by prior knowledge or the input is normalized according to
statistics about its mean and standard deviation. There are further op-
tions for handling dissimilar inputs with unknown span by exploiting
the geometry of the refinement layers, but these are not considered
here in order to focus on the refinement strategy.

The central refinement strategy introduced here combines two sim-
plicial input segmentations which are shifted relatively to each other.
This combined refinement strategy is described in subsection 3.2.2.3
and decomposes into an aligned and a shifted part which are intro-
duced separately in the subsequent subsections. The fundamentals of
these two refinement strategies directly apply to the combined one.
Further, each partial refinement strategy allows for on-line learning
systems on its own. The aligned and shifted refinement strategies are
simpler than the combine one which comprises both. This allows the
partial strategies to trade restricted expressiveness for reduced com-
putational and memory demands.

All refinement strategies are related to different information prop-
agations and encodings, respectively. They share the same principles,
but differ with respect to effort and effectiveness. Subsection 3.2.3
presents the information propagation and encoding for refinement
strategies which are introduced in the following subsections.

3.2.2.1  Aligned Refinement Strategy

The aligned refinement strategy presented in this subsection fo-
cuses on the information propagation across subsequent layers. Its
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Figure 12: Illustration of the principle structure of the aligned refinement
strategy and the resulting layers 1, in dimensions one and two.
The nodes in each layer form a regular grid. Every node from an
upper layer is replicated in the lower layers and is accompanied
by additional nodes for building a grid with doubled resolution.
The indexing of the node positions p, ; is shown exemplarily in
the one dimensional case.

structure is regular in order to minimize the memory access and to
yield a uniform distribution of the approximation capabilities. The fo-
cus on a proper information propagation fosters stationary residual
target functions and thus, the data efficiency of the whole layer struc-
ture as an on-line learning system. The resulting aligned refinement
structure for on-line learning follows the corresponding strategy in
order to build refinement layers during the learning progress.

The basic principle of the aligned refinement strategy is illustrated
in Figure 12. It starts with a single node for the base layer 1o and con-
tinues with a first refinement layer 1y which covers the entire input
space with a single hypercube and the corresponding simplicial seg-
mentation. Each subsequent refinement layer 1,,..., 1, doubles the grid
resolution of its predecessor by replicating the nodes of the preceding
layer and adding new ones centered between the nodes of the former
one in order to fill the finer regular grid. This way, most positions of
nodes in subsequent layers coincide and the different grids across the
layers are aligned to each other.

The refinement strategy assumes the input space X € R™ to be
a hyperrectangle. In one dimension, i.e. n = 1, this is an interval
X = [Xmin,Xmax] and in higher dimensions this generalizes to X =
X{L:1 [Xmin,i, Xmax,il.- Without loss of generality the input space here
is considered to be a hypercube in order to define the refinement strat-
egy in a principle manner. The one dimensional position p,; of each
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Figure 13: Illustration of the relation between parameter structure, layer ap-
proximation and overall approximation in one dimension for a
non-linear target function in the aligned refinement structure.
The parameter structure is shown in the left column by attaching
the parameter heights to the aligned refinement structure. The
corresponding approximation in each layer is plotted in the mid-
dle column. Here, the blue dash-dotted line marks the layer spe-
cific residual target function due to the learning architecture and
the red solid line shows the approximation of each of these tar-
gets. The right column shows the resulting overall approximation.
The blue dashed lines mark the target function and the red solid
lines the approximation.

node in every layer 1, > 1 is formalized in equation (49). The exten-
sion to higher dimensions uses a multi-index p,,, with v = (j1,...,jn),
i.e. one index for each input, which encodes the corresponding posi-
tion along this dimension.

Prj = Xmin + (Xmax - xmin)zgﬁ 0< ] < z'r—l (49)
The most important feature of the newly added nodes in each re-
finement layer is their connection to the simplicial input segmenta-
tion as every added node coincides with the center of an edge in
the coarser segmentation. This strengthens the connection between
subsequent layers and features the information propagation across
them, as every node only relates to the adjustments of its one or two



3.2 SIMPLICIAL REFINEMENT LAYERS

corresponding predecessors. The locations of these predecessors are
perfectly aligned which allows for an easy and effective information
propagation of the local adjustments.

The regularity of the aligned refinement strategy yields the desired
equally distributed expressiveness and favors little memory access as
all information about the node placement of the lower layers is en-
coded in the first refinement layer. The only drawback of the layer
alignment is the similarity of different layers in terms of approxima-
tion properties and especially approximation artifacts. These artifacts
appear at the center and boundary of every basis function ¢; and can-
not be mitigated at points where all node positions and boundaries
coincide, i.e. at the boundary of the input space. Thus, the aligned
refinement strategy is best suited for approximating target functions
with a vanishing slope at the boundary of the input space.

Figure 13 shows the resulting approximation of this refinement
strategy in combination with the simple exemplary interpolation func-
tion from equation (16). The figure also highlights the relation be-
tween parameter structure, layer approximation and the overall ap-
proximation. This shows how a non-linear target function is decom-
posed into different approximation parts which follow the differential
encoding scheme across the layers imposed by the learning architec-
ture.

The situation shown in Figure 13 is the stationary best approxima-
tion of the non-linear target function. Hence, it shows the goal for
learning when using this refinement strategy. But the residual tar-
get functions plotted in the middle column are not stationary during
learning without the correct information propagation across subse-
quent layers. Thus, the central goal of the envisioned information
propagation is to realize these residuals as stationary target func-
tions. The necessary efficiency for keeping the memory access low
forces the information propagation to comply with the learning ar-
chitecture and the refinement strategy. This information propagation
is introduced in subsection 3.2.3.

3.2.2.2  Shifted Refinement Strategy

The aligned refinement strategy is suited for representing functions
with vanishing slope at the boundary of the input space. Thus, one
goal of the shifted refinement strategy is to form a counterpart to the
aligned refinement strategy with non-vanishing slope at the bound-
ary. This allows to easily represent target functions which match
this property and thus complements the class of target functions of
the aligned refinement strategy. It shares the same regularity as the
aligned refinement structure for memory access efficiency and uni-
form expressiveness, but is less focused on information propagation.
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Figure 14: Illustration of the principle structure of the shifted refinement
strategy and the resulting layers 1, in dimensions one and two.
The nodes in each layer form a regular grid. Every node in each
layer has a unique position in the layer architecture. The grids of
subsequent layers are shifted relatively to each other by exponen-
tially decaying amounts. The indexing of the node positions p;
is shown exemplarily in the one dimensional case.

This yields a less stationary behavior of the residual target functions
and lowers the data efficiency as a cost for the flat-spot-free overall
approximation.

The mitigation of the approximation artifacts in each layer requires
to define unique positions for all nodes in all layers. This way, the ap-
proximation artifacts of the nodes in any layer are balanced by all oth-
ers. Preceding layers support the mitigation indirectly by smoothly
filtering out the coarser behavior of the target function. This results
in a reasonable initialization for the learning in the considered layer.
Subsequent layers directly compensate the approximation artifacts as
they are part of the residual target they deal with.

The principle structure of the shifted refinement structure is illus-
trated in Figure 14 for layers in dimensions one and two. The base
layer consists of a single node placed at the origin of the input space.
The first refinement layer covers the whole input space with a hy-
percubical complex of 2™ hypercubes grouped around a base node
centered in the input space. This base node is the only node of the
first refinement layer lying inside the input space, all other nodes are
placed outside as each single hypercube of the complex fits the size
of the whole input space. The subsequent refinement layers partly ex-
ceed the input space as well and are shifted relatively to each other
by a displacement that is halved in each subsequent layer. The posi-
tions p,; of the nodes in one dimension are defined in equations (50)
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Figure 15: Illustration of the relation between parameter structure, layer ap-
proximation and overall approximation in one dimension for a
non-linear target function in the shifted refinement structure. The
parameter structure is shown in the left column by attaching the
parameter heights to the shifted refinement structure. The corre-
sponding approximation in each layer is plotted in the middle
column with blue dash-dotted lines marking the layer specific
residual target function and the red solid lines showing the ap-
proximation of these targets. The right column shows the result-
ing overall approximation. Here the blue dashed lines mark the
target function and the red solid lines the approximation.
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to (51) and the multi-dimensional extension is the same as for the
aligned refinement strategy.

P0o,0 = Xmin (50)

Xmax — Xmin Xmax — Xmin

Prj = Xmin— or +) 1 (51)

The refinement layer grids, which exceed the input space, allow for
a unique positioning of every node in the whole layer architecture
while providing the necessary uniformly distributed expressiveness.
These unique positions foster the non-zero slope at the boundary of
the input space and avoid the flat-spot artifacts of the aligned refine-
ment strategy. But as no node in subsequent layers is placed with
respect to any input segmentation in other layers, there is no one-to-
one or one-to-two correspondence between the nodes in a coarser and
finer layer. This limits the quality and effectiveness of an information
propagation as relations between the nodes in subsequent layers are
more complex and handling them in an easy way ignores certain re-
lation aspects. The resulting approximation and layer encoding of the
shifted refinement strategy is shown in Figure 15.

3.2.2.3 Combined Refinement Strategy

The combined refinement strategy uses two different input segmen-
tations in each refinement layer. One follows the aligned refinement
strategy and the other one the shifted refinement strategy. The two
resulting grids in each layer are shifted relatively to each other. This
way, the approximation capabilities of both underlying refinement
strategies are combined and their restrictions towards boundary con-
ditions are canceled.

The whole combined refinement strategy separates into an aligned
and a shifted part. Only in terms of information propagation for eval-
uation and learning a unified view is necessary. The single parts
are the refinement strategies introduced above and they only share
a common base layer with a single node. All subsequent combined
refinement layers are a combination of one aligned and one shifted
refinement layer. Figure 16 illustrates the principle structure of the
refinement layers and highlights the aligned and shifted parts us-
ing points and crosses, respectively, to mark the node positions in
one dimension. The extension to higher dimensions follows the stan-
dard tensor-based grid construction as indicated for the aligned and
shifted refinement strategy.

The parameters axp and «s, the indexing pa and ps and the basis
functions ¢ o and ¢ are handled separately for the two parts of this
refinement strategy. This allows to directly reuse the corresponding
elements of the simple refinement strategies. In order to let the ba-
sis functions of the combined refinement strategy form a partition of
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Figure 16: Illustration of the principle structure of the combined refinement
strategy and the resulting layers 1 in one dimension. The base
layer contains only one node. Each refinement layer consists of
two regular grids, an aligned one and a shifted one. Nodes be-
longing to the aligned grid are marked as points and the ones
belonging to the shifted grid by crosses. The indexing of the node
positions separates into aligned nodes p A ; ; and the shifted node
Ps,rj, respectively, as shown exemplarily for some nodes in dif-
ferent layers.
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unity, their basis functions are calculated according to equation (52).
The reuse of the indexing relates the aligned node positions pa to
equation 49 while the shifted nodes ps are governed by equation 51.
The parameters and basis functions of the individual parts are in-
dexed accordingly. Of course, this doubles the effort in terms of com-
putational and memory demands compared to the simple refinement
strategies, but the scalability is the same, especially with respect to
Memory Access Ratio.

pix) = $a) sl )

By doubling the effort, this refinement strategy is not only able
to adequately represent target functions which fit to the aligned or
the shifted refinement strategy, but also the full spectrum in between.
This turns every single refinement layer into a more powerful approx-
imation, but the different layers remain sufficiently dissimilar with
respect to approximation capabilities as the approximation capability
of every layer is effected the same way and the learning architecture
takes care to fully exploit the capabilities of each layer while passing
the not representable details to subsequent layers. The increased ex-
pressiveness of every single layer also increases the necessary amount
of samples in order to adequately learn the parameters. Thus, the
combined refinement strategy trades reduced prior knowledge de-
mands about principle target function properties for an increased
learning sample demand.

The whole structure of the combined refinement strategy is similar
to the Fourier Series. Both share a single global mean parameter, the
sine terms of the Fourier Series correspond to the shifted part and
the cosine terms to the aligned part. The strongest difference is the
expressiveness in each refinement layer and the growth of the expres-
siveness in subsequent layers. Each refinement layer has a higher ex-
pressiveness compared to the corresponding frequency in the Fourier
Series. The expressiveness of the layers grows exponentially while
the frequencies in the Fourier Series grow linearly. This exponential
growth of the expressiveness is present in Wavelets, as well. Thus, the
combined refinement mixes elements of both approximation struc-
tures which are based on time-frequency transformations and yields
a linearly scalable third variant.

3.2.3 Information Propagation and Encoding

The necessary information to propagate along subsequent layers is
the adjustment of the higher layer in order to make the target func-
tions of the subsequent layers stationary. A direct adaptation of all
nodes in every layer would result in an exponential growth in the
number of handled parameters with respect to the layer depth and
thus, would yield a Memory Access Ratio of one. An efficient way
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of propagating the information is to represent the parameters o in
such a way that the adjustments in preceding layers become transpar-
ent for evaluation as well as learning, i.e. the learning architecture
remains unaffected by the representation. In effect, the information
propagates through subsequent layers in an indirect way.

Although it is necessary to propagate the adjustment information
along subsequent refinement layers, the goal of the information prop-
agation is not to fully compensate this adjustment. A match between
the change of the approximation in a coarser layer and the induced
adjustment in the finer layer would mean to restrict the expressive-
ness of the whole layer architecture to the capabilities of the bottom
layer. This would render the original motivation to use a layer archi-
tecture in order to mitigate the approximation artifacts of high resolu-
tion grids invalid. Thus, the information propagation aims at balanc-
ing artifact mitigation and adjustment propagation in order to yield
widely stationary residual target functions interfacing subsequent re-
finement layers which still allow for cooperation across all layers with
respect to approximation capabilities.

The additive layer architecture in equation (48) states a differential
encoding with respect to the refinement layers as every layer defines
its approximation details relatively to its predecessor. This way the pa-
rameters in the refinement layer are usually globally mean-free and
decay in magnitude from top to bottom. However, a direct represen-
tation of these parameters as in the left column in Figure 13 yields
the problems mentioned above.

In order to achieve the desired indirect information propagation it
is necessary to represent the parameters of the refinement layers as
differences. This way, all necessary information is propagated on de-
mand and the additional effort is minimal. The parameters «; in each
refinement layer are encoded as the difference between the parame-
ter representation w; and its corresponding reference value p; in the
preceding layer as formalized in equation (53).

oy = Wi —Pi (53)

The parameter representation w and the resulting information prop-
agation are visualized exemplarily in Figure 17 for the aligned re-
finement strategy. The values of the parameters «; in the left column
are the same as in Figure 13 and thus, directly correspond to the
approximation of each single layer. The parameter representations
wj in the middle column of Figure 53 rather correspond to the over-
all approximation shown in the right column of Figure 13, but there
is no one-to-one correspondence between the parameter representa-
tions in each layer and the according overall approximation because
the overall approximation is influenced by the layer structure and the
parameter representations.

In terms of Memory Access Ratio the parameter difference encod-
ing is optimal as it only implies connections between parameters al-
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ready used for evaluating each layer and thus only requires addi-
tional access to this very same set of parameters. This reuse of already
considered parameters is optimally supported by modern caching
technologies. All in all, the amount of information propagated across
subsequent layers comprises the residual value due to the learning
architecture and the parameter representations w,; of all nodes re-
sponsible for the current evaluation or learning step.

This way, all parameter adjustments due to learning can be done lo-
cally and the changed information is propagated indirectly and on de-
mand to the nodes requiring it. The adaptation of the parameters «;
due to learning only affects them indirectly. The learning adjusts the
parameter representations p; which are the only stored values. Thus,
the parameter representation w; is fully transparent to the learning
algorithm although it gets directly adjusted. In each learning or evalu-
ation step, every parameter «, ; is only calculated once and instantly
discarded after completing the learning or evaluation.

These two differential encodings, one over the refinement layers
and one for all parameters inside each refinement layer, balance each
other, but they intentionally do not fully annihilate. The indirect infor-
mation propagation in the difference encoding of the parameter rep-
resentations adjusts the finer layer in order to compensate the change
in the coarser layer. This adjustment ignores the non-linear interpola-
tion and therefore fosters the cooperation of all layers with respect to
the non-linear shape of the target function.

In addition to that, the induced adjustment onto the finer layer is
not suited to perfectly fit the change of the coarser layer as the ap-
proximation capabilities of the finer layer are limited. The mismatch
between the change in the coarser layer and the induced adjustment
of the finer layer gives rise to a change in the target function for the
finer layer and thus, yields a time-variant behavior of this target func-
tion as long as the coarser layer has not converged to a static function.
This matches the main goal of the information propagation to balance
this mismatch and the resulting non-stationary target function behav-
ior against the cooperation across the refinement layers in terms of
approximation artifact mitigation. This balancing is further limited
as the information propagation needs to define a fixed propagation
scheme which only makes use of the active nodes in order to preserve
the Memory Access Ratio of the whole approach.

The differential encoding of the parameters o; applies to all refine-
ment strategies the same way. Only the calculation of the reference
values pj is specific for the individual refinement strategies and thus,
defines the actual information propagation. These information propa-
gations and reference values calculations are described in the follow-
ing paragraphs.
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Figure 17: The three columns of this figure show from left to right the pa-
rameters « of the aligned refinement strategy from the example
in Figure 13, the representation w of these parameters in differ-
ential encoding and the path of the information propagation in a
weighted directed graph. The reference value p for each parame-
ter representation w; ; is the weighted sum of its predecessors in
this propagation graph.
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3.2.3.1 Aligned Refinement Strategy

Information propagation in the aligned refinement strategy exploits
the strong coupling between subsequent layers. The reference value
pi for the nodes in a finer layer, that share the same position as the
corresponding ones in the coarser layer, is just the parameter repre-
sentation w; of the corresponding node in the coarser layer. An ex-
ample for this kind of relation is the parameter representation w1 ;
in Figure 17. All other nodes in the finer layer relate to the center of
an edge and each edge connects two nodes irrespective of the input
dimension. Therefore, the canonical reference value for these kind
of nodes is the mean of the parameter representation values of the
nodes the corresponding edge connects. The parameter representa-
tion « > in Figure 17 is an example for such an edge-centered node
and it receives its reference value from the mean of the parameter
representations wj and wi2.

In general, the calculation of reference values in the aligned refine-
ment strategy follows equation (54). Nodes with an even index share
the same position as their corresponding node in the preceding layer
and map to the same value using floor and ceil operation. Odd in-
dexes map to the two corresponding nodes in the preceding layer
and are averaged. This simple indexing directly applies to multidi-
mensional inputs by using multi-indexes and handling each single
index according to equation (54).

Wr_1,5/2] T Wr_1,[5/2
pr,j — i/2] 5 [J/ 1 (54)

Although the formula in equation (54) is correct for the common
cases, it does not cover special cases where one of the referred pre-
decessors is missing, e.g. the parameter representation w1,; from Fig-
ure 17 would refer to wp o and wyp, 1, but the latter does not exist.
Whenever one of the referred predecessors is missing, the remaining
one becomes the reference value. This also ensures that the weighting
of the predecessor forms a partition of unity.

3.2.3.2 Shifted Refinement Strategy

The shifted refinement strategy allows for an easier information prop-
agation compared to the aligned one. Every node has one unique
predecessor it relates to and its reference value p is the parameter
representation w of this predecessor. Figure 18 illustrates the param-
eter representation and information propagation for the shifted re-
finement strategy by reusing the example from Figure 15. Here the
information flow forms a tree with the base layer node as root. All
nodes in the subsequent refinement layers build the nodes and leafs
of this tree. The calculation of the reference value p, ; is formalized
in equation (55).

Prj = Wr_1,[(j+1)/2] (55)
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Figure 18: The three columns of this figure show from left to right the pa-
rameters o of the shifted refinement strategy from the example
in Figure 15, the representation of these parameters w in differ-
ence encoding and the path of the information propagation in
a weighted directed graph. The reference value p for each pa-
rameter representation wy. ; is its predecessor in this propagation
graph.
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The extension to multidimensional inputs is the same as for the in-
formation propagation in the aligned refinement strategy. Due to the
simplicity of this information propagation, equation (55) covers all
possible cases and no explicit handling of special cases is necessary.

This information propagation suffers from the restriction to only
make use of nodes which are surely activated together in subsequent
layer, i.e. the support of a basis function which corresponds to a node
in a finer layer has to be a subset of the support of the corresponding
node in the coarser layer. In the shifted refinement strategy the sup-
ports are not aligned to each other and thus a change in the coarser
layer affects nodes in the finer layer which do not receive information
about that change. An example for this case is the parameter repre-
sentation wy in Figure 18. The layer output at the corresponding
node position is influenced by the parameter representation wj 7, but
there is no information propagation between them as they are not
surely activated concurrently. This limits the quality of the informa-
tion propagation in terms of a minimal mismatch between the change
in the coarser layer and the induced adjustment in the finer layer.

The concept of sure concurrent activation is of special importance
for the combined refinement strategy as the information propagation
there needs to handle nodes from different grids which are shifted
relatively to each other.

COMBINED REFINEMENT STRATEGY

The information propagation in the combined refinement strategy
uses parts of the aligned and shifted ones. Similar to the refinement
strategy, the corresponding information propagation splits into two
parts for the aligned nodes and the shifted ones. The reference val-
ues for the aligned nodes pa ;; are composed of two parts. The first
one is the reference value from the aligned refinement strategy in
equation (54) including the handling of the special cases not directly
covered by this formula, here referred to as 14 . ; for highlighting the
internal information propagation inside the aligned part of the com-
bined refinement strategy. The second part Cs,; contains the cross-
grid information. It has a similar structure but relates to the shifted
grid in the preceding layer with the same special cases handling. The
combination of both parts is formalized in equation (56).

1

PAr; = E (IA,r,j + CS,r,j) (56)
WA r—1,[j/2] TWAr—1,[j/2]

IAr; = >

Wsr—1,1(G+1)/2) T WS +—1,[(j+1)/2]
2

Csry =

The structure of the reference values ps . ; in the combined refinement
structure follows the same principles as for the aligned ones. The grid-
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Figure 19: Principle representation of the information propagation in the
combined refinement strategy. As the combined strategy com-
prises an aligned and a shifted part, the corresponding nodes
are marked by dots and crosses, respectively. The actual infor-
mation propagation by means of reference values is indicated by
dashed and dotted arrows which represent weighing factors of
0.5 and 0.25, respectively. The base node is shared by all nodes in
the first refinement layer. In general, each aligned node in a com-
bined refinement layer gains information from three nodes in the
preceding layer while the shifted ones only connect to two such

nodes.
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internal information propagation is accompanied by a cross-grid term
as formalized in equation (57).

1
Psrj = 5 (Isyj+Canrj) (57)

Is v WA r—1,[(G+1)/2]

Carj Ws,r—1,1()/2]

The whole structure of this information propagation for the combined
refinement strategy is visualized in Figure 19. The weight of the differ-
ent edges is encoded in the line style. All nodes in the first refinement
layer only relate to the common base node. Nodes in the subsequent
layers relate to two or three different nodes from a preceding layer.

3.3 LOCAL ADAPTIVE LEARNING

The learning architecture and the information propagation introduced
in the previous sections form a divide and conquer scheme for learn-
ing the whole layer architecture as they allow for a separate treatment
of every single layer l,. The only restriction for choosing an on-line
learning algorithm for the single layers is its potential to handle time-
variant target functions as the principally time-variant residual target
functions the learning architecture imposes are not rendered fully
stationary by the introduced information propagation in order to fos-
ter the cooperation of the layers. Thus, the desired on-line learning
algorithm needs to combine great noise reduction with slight time-
variance handling while scaling linearly in the number of handled
parameters and fitting to the sparsity of the feature vector.

The great variety of adaptive learning algorithms reviewed in sec-
tion 2.3 offers many candidates meeting one or two of the require-
ments listed above. The preferred approach used here is the local
variant of RLS or AROWR, respectively, combined with the window es-
timation technique from [166] in order to determine the forgetting
horizon. The resulting adaptive learning algorithm from this com-
bination of concepts is detailed in the next paragraph. It is funda-
mentally devoted to time-variance adaptation and thus, in contrast
to other adaptive learning algorithms, needs a mechanism to ensure
a sufficient noise reduction, which is introduced in the subsequent
paragraph.

3.3.0.1 Variance-based Local Recursive Least Squares

The LRLS update is a parameter-specific exponential smoothing fil-
ter with growing window size. As the development of the parameter
vector o is focused in this section, the indexing used to distinguish
different versions of the parameter vector in subsequent time steps
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is ¢ and «4; refers to the i-th component of the parameter vector
in time step t. A layer-specific indexing is omitted here, as all layers
are learned subsequently and independently from each other with
respect to the used on-line learning algorithm.

The parameter deviation d for the parameter vector «; given the
current sample (x¢,y¢) is a normalized gradient as shown in equa-
tion (58). The update for the parameter vector o using this deviation
d. is depict in equation (59) with vy, being the time variant vector of
parameter-specific learning rates.

_ T b (x4)
di = (yt X (b(xt)) —d)T(Xt)(b(Xt) (58)
r1i = (T—=vei) i+ (vei) - dei (59)
1
Yi+1,4 (60)

v%,i+¢i(xt)

The key factor in this update scheme is the learning rate vector ;.
A value of y¢; = 1 forces instant total forgetting by fully adapting
to the current target di;. A trade-off between noise reduction and
time-variance adaptation can be achieved by a low constant value of
0 < vt,i < 1. If the value of y; decays over time as shown in equa-
tion (60), the envisioned LRLS behavior is achieved. The learning rate
decays according to the activation of the local model represented by
¢i(x¢). Each single learning rate vy ; represents the inverse forgetting
horizon T ; of the local exponential filter as depict in equation (61).

1
Yti

Tti — (61)
VARIANCE-BASED WINDOW ADAPTATION

The update equations (58) to (60) represent the basic LRLS behav-
ior. They perform parameter-specific noise reduction but are unable
to track time-variant behavior. The incorporation of the windowing
scheme from [166] modifies the update of the learning rate v ; in or-
der to adjust the forgetting horizon and for limiting it to the currently
relevant data.

The modification of the forgetting horizon is based on two statistics
about the gradient information in d; i, namely its mean Ht,i and the
mean of its squared value gt,i- The updates for these statistics are
shown in equations (62) and (63), respectively.

at+1,i = (T—vi) 'at,i +Yti-dei (62)
d2ei1p = (T—vea) - d2ei+vei- d%,i (63)

In the stationary case, the mean of the gradient d. approaches zero
and the mean of its square d?, reflects the noise level. In this case a
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shortening of the forgetting horizon T is not necessary and it may
grow as put in equation (60). A time-variant behavior of the target
function causes a non-zero mean d of the gradient d and the mag-
nitude of this mean d; in relation to the mean of the squared gradient
d?; measures the impact of the time-variance. This yields the update
for the forgetting horizon T in equation (64).

. : (deqi)? N
Tt+1,4 = MIN — 7(12 “Tei+ dilxe), 1 (64)

t,i

This adaptation of the forgetting horizon T yields the regular LRLS
behavior as long as d is small. The forgetting horizon rapidly shrinks
as the squared value of the mean is similar to the mean of the squares

(d¢)? ~ d?%, e.g. due to a shift in the target function. Each forgetting
horizon ¢, is limited from below by t¢; > 1 as indicated by the
min-operator in equation (64). This ensures plausible learning rates
and rests the learning rate vy, 1, to one in case of a shift detection
indicated by (d;)? = d2;.

This kind of shift detection and the resulting total forgetting is use-
ful for a fast and appropriate tracking of time-variant target func-
tions, but the algorithm cannot recover from this one step forgetting
horizon t¢; = 1 as the statistics which determine the shrinking of
the forgetting horizon are estimated using the same horizon. This
even prevents starting the algorithm from scratch with initial values
T¢,i = 1. The necessary shift recovery for this Variance-based Local Re-
cursive Least Squares (VL-RLS) algorithm is presented in the following
paragraph.

3.3.0.2 Cold-Start and Shift Recovery

The adaptation of the forgetting horizon T needs careful handling
as it directly effects the learning rate vy, and thus the overall behavior
of the learning algorithm. If a shift occurs and the fraction (d¢)?/d2,
equals one it is reasonable to reduce the forgetting horizon and adapt
to the new data. But this fraction may reach a value of one indepen-
dent of any time-variant event due to noise especially in the early
stages of learning when the forgetting horizon is short by default.
Thus, a suitable shift recovery mechanism not only has to enable the
estimation of meaningful statistics d; and d2; but also needs to pre-
vent the algorithm from rapidly reentering the shift detection in case
of noisy learning samples.

An easy way to achieve the desired shift recovery is to introduce
a minimal forgetting horizon T;in > 1 and to disable the shrink-
ing of each forgetting horizon 1 as long as it is smaller than the
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minimal one, i.e. T¢; < Tmin. This ensures the noise canceling LRLS
behavior until the minimal forgetting horizon is reached and allows
time-variance adaptation afterwards. The minimal forgetting horizon
can be defined globally T in, for each layer Tyinx or for each pa-
rameter Tmin,i depending on the available prior knowledge about
the expected time horizons. Nevertheless, this design parameter may
have a significant influence on the learning behavior of the algorithm
if a parameter-specific tuning is necessary but the prior knowledge
only allows to set a global parameter, especially in high dimensions
with potentially many parameters.

An adaptive shift recovery reduces the prior knowledge demands
by estimating parameter-specific minimal forgetting horizons. The
simple estimation scheme presented here starts by initializing each
minimal forgetting horizon Tmin,i = 2. As long as the current for-
getting horizon is smaller than the minimal forgetting horizon t¢; <
Tmin,i, the shrinking of the forgetting horizon is deactivated. Concur-
rently, as shown in equation (65), the accumulated activation cy; is
tracked in order to rate the current forgetting horizon.

Ct41i = Cei+ dilxyt) (65)

If a shift is detected before the accumulated activation c; has
reached the double minimal forgetting horizon Tmin,i, this detection
is handled as a noise related shift but not as a false positive error.
Like in a regular shift detection, it results in a reset of the forgetting
horizon T ; = 1 and the accumulated activation c¢; = 0. In addition
to that, the minimal forgetting horizon T in: is doubled in order to
make the learning behavior more robust against noise. Any shift de-
tection that happens beyond the doubled minimal forgetting horizon
is handled normally without altering the minimal forgetting horizon.
This way, the shift recovery has minimal influence on the global learn-
ing while ensuring a reasonable robustness against noise and allows
starting the algorithm from scratch without prior knowledge about
the necessary statistics and time horizons.

The complete on-line learning algorithm combining the VL-RLS and
this adaptive shift recovery is shown as pseudo-code in Algorithm 1.
In this algorithm, every parameter «; is accompanied by statistics
about the gradient and the forgetting horizon. All in all, there are
five additional values which need to be stored together with each pa-
rameter «;. They increase the total memory access but do not change
the complexity class of the underlying approximation structure. By
discarding some adaptive features of the algorithm the number of ad-
ditional values can be reduces, but this replaces computational and
memory demands by prior knowledge demands.

This adaptive learning algorithm completes the layer architecture
to form a full on-line learning system capable of learning incremen-
tally from data streams. The central design parameter in this learning
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system is the number of layers used for the approximation. Due to the
multi resolution approximation, there are strong features embedded
in the approach which allow an adaptation of the layer resolution.
This layer adaptation is presented in the next section.

3.4 ADAPTIVE SIMPLICIAL MULTI RESOLUTION APPROXIMATION

The on-line learning system and its components developed in the
previous sections already provide valuable properties for handling
incremental learning problems on data streams. The central design
parameter of the layer architecture is its depth, i.e. the number of
layers. This parameter defines the learning behavior of the AS-MRA
and thus requires tuning in order to optimize the performance of the
incremental learning system. This tuning can be part of designing
the incremental learning system or it can be estimated on-line. This
section introduces two approaches for estimating the optimal layer
depth on-line following different principles.

The introduced growing strategy focuses on minimal memory de-
mands and precise control of the overall expressiveness of the AS-MRA
in a fine grained manner. In contrast to that, the accordingly proposed
ensemble evaluation approach uses a layer structure of fixed depth,
but handles the evaluations of subsequent layers as individual en-
semble members in order to choose the best performing one for the
overall output. This way, the ensemble approach virtually decouples
the layer structure for learning and evaluation as the layer depth for
learning is fixed all the time and therefore guarantees a certain infor-
mation exploitation of the incoming learning samples. Selecting the
layer depth for evaluation based on the prediction performance - like
in ensembles - allows to balance bias and variance components of the
prediction error in order to optimize the overall performance.

3.4.1  Growing Strategy

The growing strategy represents a start small approach and allows
for a fine grained expressiveness adjustment of the AS-MRA. The goal
of the growing strategy is to shape the layer depth locally in order to
accurately fit the target function while avoiding unnecessary memory
demands. This section introduces the mechanisms and parameters of
the growing strategy for building new nodes and layers on-line in an
adaptive manner. This strategy allows to replace the layer depth as a
global design parameter by more application related entities. These
entities are meant to incorporate different kinds of prior knowledge
without being mandatory. Thus, they allow for a trade-off between
prior knowledge and learning sample demands.

The goal is to develop a set of optional user-defined parameters
which allow to steer the behavior of the on-line learning system in
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a way similar to standard non-linear black-box optimization tools.
These tools provide parameters to define the desired quality of the
result in term of accuracy and resolution. Both measures can be de-
fined either as absolute or relative values and mark stopping criteria
for the overall optimization. Other parameters allow to restrict the
effort in terms of iterations and function evaluations and thus, limit
the runtime of the optimization. The same ideas apply to the layered
approximation structure in on-line learning. But instead of limiting
the computational effort, the focus in on-line learning is to limit the
memory demand.

A growing strategy for the layered approximation structure is nec-
essary in order to flexibly adapt to the data and target at hand while
sticking to the constraints induced by the user-defined parameters.
The growing strategy needs to allow for learning from scratch while
building as many nodes and layers as necessary in order to meet the
defined quality constraints and as little nodes and layers as possible
in order to keep the memory effort low. The overall memory demand
can easily be limited by defining a maximum layer depth and maxi-
mum number of nodes. Identifying the least important nodes when
hitting the node limit is a non-trivial task within a global optimiza-
tion scope and is not part of this work as it connects to central issues
in compression techniques.

The quality and memory constraints follow a strict hierarchy as
stopping criteria for the growing strategy. But all of them are dom-
inated by a simple passing criterion, i.e. the minimal layer depth.
Building a refinement structure from scratch with a restricted grow-
ing strategy means to start with a coarse input segmentation which
refines as more data becomes available. This way, the information of
each learning sample is handled as coarse as the input segmentation
is at that time and details about the location of the sample are lost.
Using a minimal layer depth ensures to handle the local information
of each learning sample at least in the defined resolution. This yields
a better sample exploitation compared to a restricted growing strat-
egy at the cost of higher computational and memory demands in the
beginning of the learning process.

The first and most natural stopping criterion for the growing strat-
egy is the avoidance of nodes with vanishing parameters. Those only
carry information about the location of the learning samples and do
not alter the actual approximation. This ensures that in each learning
step the number of layers at the most increases by one as any newly
built layer fully adapts to the learning sample at hand, i.e. all sub-
sequent residuals vanish. All other stopping criteria and the learning
aspects they refer to are handled in the following paragraphs ordered
according to their priority.

MEMORY LIMITATION
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The memory limitation is one of the most fundamental user-defined
restrictions. It is easy to test by counting the nodes and equally easy
to guarantee by stopping the growing of new nodes and layers ac-
cordingly. Limiting the total number of nodes yields the most precise
limit for the overall memory demand of the whole layered architec-
ture. But this limit alone is not suitable for guiding the growing strat-
egy towards a reasonable solution as the nodes would populate the
input space according to the data density rather than approximation
demands.

A less precise way of limiting the memory demand is to define a
maximum layer depth. This also limits the maximal computational
demands and the response time of the learning system for both eval-
uation and learning. The memory limit induced by the maximum
layer depth is very rough as the number of parameters grows expo-
nentially in the layer depth. Limiting the maximal layer depth auto-
matically limits the input resolution as well, because the input res-
olution is doubled in each successive refinement layer, i.e. it scales
exponentially with the layer depth.

Combining these two limitations allows to precisely control the
memory demand of the layered approximation structure and the com-
putational effort for evaluation and learning. With respect to learning
behavior, this combination still guides the growing strategy based on
the data distribution, but with the limited input resolution. Thus, in-
put regions with high sample density not necessarily dominate the
whole learning system.

When defining no memory limitations at all the learning system
potentially makes use of all available memory and only stops build-
ing new nodes as the remaining memory is not sufficient for a new
node and all tracked statistics accompanying it.

RESOLUTION LIMITATION

The maximal layer depth already acts like a resolution limitation as
long as the span of the input space is fixed and known beforehand. If
this prior knowledge is not available, the estimated span of the input
space and the resulting input segmentation may change during the
learning process. The handling of unknown input spans is based on
input normalization using the 30 formula in equation (66).

Xi—Xi
30k,

Xnorm,i = (66)

The involved statistics for normalization are estimated incremen-
tally following a similar procedure as the overall on-line learning,
but without an adaptive time horizon as in the adaptive learning
algorithm. Therefore, there is no direct connection between input res-
olution and layer depth as long as the normalization statistics are yet
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to converge. Once, the mean and standard deviation have converged,
the layer depth uniquely maps to a corresponding input resolution.

Combining the input normalization with the regular input segmen-
tation in the refinement layers yields an equal relative input resolu-
tion for all inputs. This is usually inappropriate as not all inputs re-
quire the same resolution, but this issue is not further detailed here
as there are many other options for handling dissimilar inputs and
the whole topic inherently links to dimensionality reduction as the
dissimilarity between different inputs is not limited to affecting their
span but also their relevance. So, for the sake of simplicity and a fo-
cused discussion of the core concepts of the introduced on-line learn-
ing system, the handling of dissimilar inputs is only considered by
normalizing all inputs.

All in all, the resolution limitation allows to steer the layer growing
in cases of lacking prior knowledge about input spans or if those
are time-variant. It is widely transparent to the input span estimation
and only connects to the maximal layer depth as the normalization
statistics converge.

ACCURACY LIMITATION

Conceptually, the accuracy limitation is the most powerful parame-
ter for the user to steer the learning behavior as it defines a goal
state of reasonable approximation quality. Unfortunately, the actual
approximation quality and accuracy of an on-line learning system is
generally unknown and can only be estimated by statistical means, es-
pecially when dealing with time-variance. This necessity to estimate
the current accuracy of the learning system turns the corresponding
limitation into an approximate one. Hence, the accuracy estimation
is inherently delayed and requires a reasonable amount of learning
samples before yielding sufficiently accurate estimations.

The accuracy estimation @, reuses the statistics already tracked by
the VL-RLS adaptive learning algorithm. The variance estimation of
the parameters is mapped to an approximation error in order to esti-
mate the accuracy. This way, the accuracy estimation is performed on
the same time horizon T as the rest of the learning and thus, automat-
ically adapts to time-variance. The validity of the accuracy estimation
varies depending on the time horizon used for its estimation.

The influence of noise in the learning samples is not explicitly han-
dled in this procedure, because the effect of noise on the approxima-
tion accuracy is indistinguishable from insufficient approximation ca-
pabilities. This becomes obvious in the bias-variance decomposition
of the expected mean squared approximation error E [(e)?] using the
standard additive error model for the label generation, compare equa-
tions (69) to (72). When tracking these terms in learning curves over
the number of learning samples, the variance part in this decompo-
sition vanishes for a fixed approximation structure and an infinite
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amount of training data, but the bias and noise parts remain. Thus,
when limiting the desired accuracy using an absolute value, the effect
of noise needs to be considered, too.

e = y—f(x) (67)

= () +€ (68)

E[(e)’] = E[(e)’]—Elel*+Elel (69)
= Var(e) + Bias(e)? (70)
Var(f(x) — f(x) + €) + Bias(f(x) — f(x) + )2 (71)

= Var(f(x) — f(x)) + Var(e) + Bias(f(x) — f(x))? (72)

A remarkable feature of the layer approximation structure is its
ability to support relative accuracy limits by comparing subsequent
refinement layers. This procedure does not fully cancel the influence
of noise to the accuracy estimation, but it allows to define the desired
accuracy relatively to the noise level. The noise level is the same in all
layers as they all receive shifted versions of the original learning sam-
ple. The bias component shrinks in subsequent layers as the expres-
siveness grows exponentially. Hence, a reasonable accuracy estima-
tion @, in all layers 1, allows to steer the growing strategy according
to the bias reduction relative to the accuracy estimation.

ar b%+02
= T <(1-5
b2 +0? b g +0?
& <=8
b2 | +02 b2 1+02 74)
br 1 b%
< T > b (75)

The fundamental drawback of the absolute and relative accuracy lim-
itation is their relation to the approximate accuracy estimation. This
limits all theoretically sound observations with respect to their valid-
ity in any application as the accuracy estimation is affected by the ac-
tual approximation bias b2, the sample noise 0 and the time horizon
7. The time horizons in different layers are usually not the same and
decay in subsequent layers according to the sample density and time-
variant effects. This makes the accuracy estimations in lower layers
appear worse compared to the ones in higher layers. For the absolute
accuracy limitation this potentially leads to unnecessarily built nodes
in lower layers, which are detected as obsolete as the time horizon
allows for a more realistic accuracy estimation. The relative accuracy
limitation is affected the other way round as an increased accuracy es-
timation in a lower layer potentially cancels the effects of the reduced
bias and thus, would prevent the growing strategy from building new
nodes. This different behavior of the absolute and relative accuracy
limitation allows to purposely steer the tendency of the growing strat-
egy of being liberal or restrictive.
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3.4.1.1  Ovetfitting Detection

All of the user-defined parameters introduced above are optional
ones, leaving the available amount of memory as the only hard con-
straint. Another natural constraint for the growing strategy is not to
build nodes with vanishing parameters ;. But these two alone are
not suited for a proper guidance of the growing strategy without any
further restrictions as the approximation error is unlikely to vanish
on the long run.

The layer architecture provides many valuable features for an over-
fitting detection which does not involve user interaction. Overfitting
in this layer architecture means to use too many layers in order to
approximate the target function. Thus, the lower layers all just try to
learn the noise as there are no more function details left to approxi-
mate for them. So, in the limit of infinite learning samples these lower
layers all have zero mean and their accuracy estimation d, equals the
noise level 0. For any sufficiently large finite amount of learning
samples their accuracy estimations are at least similar. In case of a
small amount of learning samples overfitting is hard to detect as the
necessary statistics are not meaningful.

The actual distribution of the accuracy estimations over the differ-
ent layers depends on the whole learning process, but this distribu-
tion tends to be flat tailed. The overfitting detection limits the length
of the flat-spot to three layers by comparing its mean and variance to
the rest of the distribution. Any distribution which increases in the
last three layers is treated as overfitting as well.

Overfitting in this layer architecture is only a problem for on-line
applications. Any data analysis task with a fixed amount of learn-
ing samples is free to use more layers than necessary as the sparsely
populated layers can easily be ignored in the off-line analysis. In con-
tinuously running applications overfitting reduces the performance
and wastes computational and memory resources. This simple over-
fitting detection is meant to complement the optional parameters in
situations where their stopping criteria are not met, but a further re-
finement is not indicated. It is also an additional learning guidance in
case of missing user-defined parameters and therefore, builds some
kind of inherent limitation for the memory and computational de-
mands with respect to the learning behavior.

PARAMETER OVERVIEW

All the parameters introduced in the above paragraphs connect to
certain aspects of the learning process in order to incorporate prior
knowledge accordingly. Although there are no mandatory parame-
ters, it is important to keep in mind the overfitting detection as it
always has the potential to affect the learning behavior. All optional
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parameters mark either passing or stopping criteria. The following
list reviews them ordered according to their priority.

1. Maximal number of nodes
2. Maximum layer depth

. Minimal layer depth

3

4. Maximal input resolution
5. Maximal absolute accuracy
6

. Minimal relative accuracy gain

These six parameters allow to steer the behavior of the growing strat-
egy and thus, of the whole learning system in a way similar to stan-
dard non-linear optimization tools. The actual behavior depends on
the data at hand and the given accuracy limits may never be reached.
But once they are hit, the learning converges to a fixed structure while
every parameter heads to its optimal value with respect to all the data
accumulated in its corresponding time horizon.

3.4.2 Ensemble Evaluation

The learning architecture of the AS-MRA decomposes the target func-
tion into a sequence of independent additive refinement components.
This sequence allows to easily evaluate a given AS-MRA learning sys-
tem at different layers. The ensemble evaluation makes use of this

additive decoupling of an AS-MRA approximation in order to define in-
dependent layer depths for learning and evaluation. The layer depth

for learning is fixed and represents a mandatory design parameter.
The evaluation employs an adaptive layer depth by selecting the best

performing layer of the fixed structure as the overall output of the

AS-MRA. The performance is measured by estimating the mean squared
prediction error of the output of all layers individually. This way, the

learning is always performed in a fixed and predefined structure

which ensures a certain information extraction from each learning

sample. The evaluation treats the outputs of each subsequent refine-
ment layer as originating from individual ensemble members and

selects the best performing member for defining the overall ensem-
ble output. This allows to have the overall output governed by lay-
ers which are sufficiently populated by learning samples in order to

yield reasonable generalizations. The AS-MRA defines no actual en-
semble as the different layers are not independent from each other

due to the differential parameter encoding and the target function de-
composition, but this decomposition also allows to treat the resulting

subsequent refinement outputs as being independent.

The performance estimation is performed layer-wise with a single
global parameter for each layer and uses the same time horizon as the
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root node of the corresponding AS-MRA. This improves the robustness
of the ensemble evaluation towards noise while preserving its ability
to adapt to non-stationary target functions in general.

The memory limitation parameters introduced in the growing strat-
egy also apply for the ensemble evaluation. The layer depth and node
count are controlled the same way as in the growing strategy. Here,
the layer depth is a fundamental and mandatory design parameter
for using the ensemble evaluation while the node limitation remains
optional.

The introduction of a mandatory design parameter by the ensemble
evaluation requires no fine grained tuning with respect to prediction
performance in the targeted application. The ensemble evaluation au-
tomatically optimizes the prediction performance. Thus, guidelines
for choosing the layer depth are simpler to state for the ensemble
evaluation as this technique decouples the learning behavior and the
layer design as long as the layer depth is sufficiently large. This al-
lows to set the layer depth according to computational and memory
demands rather than target function properties and setting the layer
depth too large does not harm the prediction performance. Although
there is no actual expressiveness adaptation in using the ensemble
evaluation, this strategy follows a start big approach in contrast to
the growing strategy described in the previous section.
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Algorithm 1 : Variance-based local recursive least squares
with adaptive shift recovery.

input :Sequence of learning samples (x,y¢)
output : Adjusted parameters o

Initialize:

a=0 T=1, c=0,

d=0, d*°=0, Tmin=2
fort=1,2,3,..do
Receive learning sample (x¢,y¢)
Calculate activation ¢ (x¢)
Calculate gradient d
Initialize parameter adjustment Aax = 0
fori=0,1,..,ndo

i o~ /1
di  +« (I—vy)di + vidg
d2;  « (1—vyyd% + vidZ

Ay —  vidi
if 1y < Tmin,i then
| T T+ dilxe)
else
a)’
Ti < (1 - (?)i ) Ti + di(x¢)
if Ty < 1 then
| 11« 1.0
end
if ((a-l)z == ¥i> then
if (ci <2-Tminsi) then
‘ Tmin,i — 2. Tmin,i
end

Ci < 0.0
end

end
ci < ci+ dilxt)
end

x<— o+ Ax
end




INVESTIGATIONS

The introduced AS-MRA requires investigations concerning the differ-
ent parts it consists of and the learning challenges it is designed for.
These two categories shape the structure of the investigations and the
first part of it focuses on the individual parts of the AS-MRA structure
like input segmentation, interpolation and layer structure. The learn-
ing architecture links to the behavior of the ASMRA as an on-line
learning system in different settings and covers issues like predic-
tion performance, time variance tracking and noise reduction. Most
of these aspects apply to all investigations as any particular learn-
ing behavior can be mapped to the AS-MRA parts responsible for it,
but it allows to start the investigations on simple components in easy
to grasp learning settings while heading for more complex and ag-
gregated measures with respect to the learning behavior. The third
and last part of the investigations covers the proposed expressiveness
adaptation strategies and the effects of the user-defined parameters
these strategies introduce.

The approximation structure and the learning algorithm used in
AS-MRA allow for a reasonable comparison to other state of the art
methods of their kind using common experimental settings. The ex-
pressiveness adaptation strategies are designed for the layer architec-
ture and thus only allow for a comparison to other approaches which
involve a similar concept. But as these strategies focus on non-linear
parameter estimation, they are inherently bound to a specific approx-
imation structure. Hence, the results of the corresponding compar-
isons do not provide the same clarity and precision of insights about
the approach as the comparison of the other parts because effects
introduced by the strategy cannot be isolated.

Despite these algorithm related considerations, there are also task
related issues like input space dimensionality, target function com-
plexity, time-variance and noise, which complete the spectrum of the
investigations with respect to the requirements defined in section 1.3.
The only requirement not handled explicitly in the investigations
is the usability as this aspect is completely different in nature and
widely handled in the design of the approach by avoiding mandatory
parameters.

The whole set of investigation issues groups into algorithm related
and task related ones. Covering all of these aspects and all of their
possible interactions exhaustively would extend the volume of this
work in an inappropriate way, thus the focus is on the key aspects
and the necessary interactions which are related to general theoretical
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aspects as well as to severe practical issues like the stability-plasticity
dilemma, bias-variance decomposition and target function complex-
ity.

The experiments performed to investigate the different aspects of
the introduced learning system and to compare it to other approaches
start by looking at easy to grasp measures of performance and pro-
ceed to more elaborate and complex ones, which condense the essence
of multiple experiments in a structured way. The different metrics
also give rise to different perspectives onto the learning process as
they highlight certain properties of the learning system or how one
of these properties connects to the task at hand.

4.1 PERFORMANCE MEASURES

This section introduces the four basic performance measures used in
the investigations and how they relate to different aspects of learn-
ing. The ultimate measure to rate on-line learning systems is their
prediction performance with respect to a particular application as the
expected gain in applying on-line learning is to improve the overall
performance of the application while reducing the design effort. This
prediction performance gives rise to the cumulative squared predic-
tion error or CL as formalized in general in equation (2) and more
precisely using the square loss in equation (76). The CL essentially
sums up the squared prediction errors (y; — fi(x())? over time which
yields a reasonable measure for the overall prediction performance
of the on-line learning system. As mentioned in the introduction 1.2,
there are alternatives to using the squared prediction error, but the
general concept of the CL of summing up prediction errors is univer-
sally applicable.

-
Z ye — fie(xi)) (76)

While the CL is good at reflecting the actual performance of the learn-
ing system in the application, it only indirectly measures the ability
of the learning system to approximate the target function f as the
labels y¢ may be corrupted by noise. Measuring the Cumulative Tar-
get Loss (CTL) is only possible in experimental settings with defined
targets. Compared to the CL, the CTL better reflects the ability of a
learning system to generalize its approximation to the target function
independent of noisy labels. The formal definition of the CTL is given
in equations (77).

CTL(T) = ) (f(x)—filx))? (77)

t=0
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When focusing on the generalization properties in experimental set-
tings, the CTL keeps track of the whole learning history, condensed
into one measure which is sparse in time and space as it only han-
dles the instances used for learning. A more global view onto the
generalization properties of an on-line learning system is obtained by
using a different set of instances Gx = {xg,1, ..., Xg,Ng} C X in order to
estimate the Ground truth Loss (GL) of the current approximation fi
as shown in equation (78). The GL calculates the mean squared error
between the target function and the current approximation on a set of
test instances Gx for every time step t. Depending on the distribution
of the instance set Gx, the GL allows for a global analysis of the ap-
proximation quality independent of the learning sample distribution.

RS

GL(t) = Ne D (flxg) —frlxg,i))? (78)
i=1

The GL is only measurable in experimental settings with given target
functions. A more widely applicable measure is the Data Loss (DL)
which concentrates on the ability of the learning system to memo-
rize learning samples as formalized in equation (79). Although the
DL does not provide the same insights about the generalization prop-
erties of the learning system as the GL, it still yields valuable informa-
tion. A vanishing DL combined with a linearly growing CL is a strong
indicator for overfitting, as the learning system simply stores all sam-
ples without generalizing to the target function. On the other hand, a
huge DL indicates a lack of expressiveness of the learning system in
order to approximate the target function. The DL automatically mea-
sures the prediction performance of the learning system with respect
to the instance distribution and its applicability is limited to station-
ary targets as for a time-variant target past learning samples become
invalid and thus, would bias the performance measure.

.
Z ye — frixe))? (79)

These four kinds of measures allow to estimate the fundamental prop-
erties of on-line learning systems, i.e. prediction performance and
generalization power. Other aspects like convergence rate and time-
variance handling are indirectly covered by observing these measures
over time. The only kind of measure that is used in all experiments
as it is always applicable and meaningful is the CL. To some extent, it
also reflects the aspects the other measures focus on, but not in such
a pure manner. The connections between the different measures are
highlighted in an exemplary learning task where the cosine function
is to be learned using an aligned layer architecture of depth three.
The results of this initial experiment are shown in Figure 20.
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Figure 20: The four plots show the progress of the different performance
measures in an exemplary learning task. The task is to learn the
cosine function using an aligned As-MRA with fixed depth of three
layers. One trial of the experiment spans 60 samples whose in-
stances are drawn according to a uniform distribution and there
are 1301 trail repetitions. The results are presented by plotting
the course of each measure using its mean value (blue solid line)
with standard deviation (dashed red line) and the respective min-
imum and maximum (black dotted line) of all repetitions in every
time step.

With respect to their nature, all four considered measures show
a similar course over time. The mean values of the two cumulative
measures rapidly saturate at a height about five while the other two
measures decay to zero by the same time. Thus, the mean value pre-
serves nearly the same information about the learning behavior in
every measure, but the distribution of the performance is better re-
flected by the cumulative ones, because the non-cumulative measures
and their whole distribution across repeated experiments with differ-
ent random seeds converge to zero. While this is encouraging with
respect to the convergence properties of the learning process as such,
it is less informative in terms of learning process observation. The
variety of different learning behavior due to random experimental
settings is not reflected in the final distribution DL(60) and GL(60).
So, all of the measures capture the behavior of the learning process
and its convergence, but only the cumulative measures reflect the full
variety of the behavior over the whole course of learning. Thus, the
following experiments will only use the cumulative measures.
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4.2 GENERAL SETTING

Although the experiments documented in this chapter investigate a
variety of on-line learning aspects, there are some common elements
which are shared across all experiments if not stated explicitly in the
detailed description. These elements form the general setting for ex-
periments and are described here. Following up the findings in sec-
tion 4.1 all results are reported as mean CL over 1301 experiment
trials. Additional statistical figures about the trials are presented on
demand. The parameter vector « of all approximation structures used
in any learning setting is initialized to zero, i.e. at—o = 0.

The instance x for learning and target noise e are both drawn ac-
cording to a uniform distribution. The domains for such distributions
are highly experiment specific and therefore not covered here, but the
target noise is always mean-free. When comparing different on-line
learning systems all of them receive the exact same learning samples
in all trails and all trails are fully independent of each other.

If not stated otherwise the considered target functions are station-
ary. Experiments on time-variant targets are explicitly stated as such.
The number of samples in each experimental trail is highly specific
for each individual setting and in general is set to suffice a conver-
gence of the on-line learning system towards a stable approximation.
Most of the considered target functions tend to be mean-free. There-
fore, the initial parameter vector ot—op = 0 comprises some kind of
prior knowledge about the target, but only to the least possible ex-
tend without explicitly treating the complex topic of prior knowledge
incorporation.

4.3 APPROXIMATION STRUCTURE PROPERTIES

The first section of investigations is about general approximation
properties of the layer architecture and the simplicial input segmen-
tation it stems from. The experiments here are restricted to one di-
mensional problems in order to allow for a plain visualization and to
connect the learning behavior to the performance measures and vice
versa. The intuition stemming from these simple experiments forms
the foundation to grasp the abstraction condensed in the more com-
plex experimental settings.

The layer architecture comes in three different variants due to the
refinement strategies and the resulting input segmentations. These
variants are compared to similar model-based approximation struc-
tures from the review in section 2.1, namely polynomials, B-Splines,
GLTs and Fourier Series. Polynomials, B-Splines and GLTs are exam-
ples for global, regional and local models and thus allow to rate the
behavior of the layer architecture with respect to the locality of the
model. The Fourier Series decomposes the target function into or-

115



116

INVESTIGATIONS

thonormal parts similar to the layered approximation structure, but
without an explicit information propagation or an enhanced learn-
ing architecture. All in all, the chosen approximation structures for
comparison share one or another feature of the layer architecture and
thus, allow to rate their performance to state of the art approaches
with fixed structure.

4.3.1 Target Function Properties

Fundamental target function properties like continuity, monotonicity
and non-linearity allow to categorize different target functions. They
also partly determine how difficult they are to learn for a given on-
line learning system. Target functions which share many properties
of the approximation structure used in the learning system are eas-
ier to learn because they can be described by fewer parameters and
thus require less learning samples for parameter adaptation. If the
target function and approximation structure properties are very dis-
similar a huge number of parameters many be necessary to realize a
reasonable approximation with a learning sample demand increased
according to the number of parameters. This section is to identify
properties which the input segmentation and the layer architecture
share with certain target functions in order to categorize the approach
on a qualitative level. Further, this categorization allows to compare
the investigated approach to standard approximation structures from
related work.

For an easy to grasp start, here a set of test functions is considered
where each function focuses on one property or combines several
of them. This builds the foundation for a more general perspective
of target function complexity in the next subsection. The full list of
considered target functions and the properties they relate to is given
in Table 1.

The selected target functions span a wide spectrum of properties
but do not form a dense population within the frame of scope. The
results for learning each target function with different compared ap-
proaches are presented as mean values over 1301 trails. These values
strongly vary with respect to the considered target function. There-
fore, the presented mean loss values in Table 2 are normalized with
respect to the best and worst performing approach for each individ-
ual target, i.e. the best performing approach is mapped to zero and
the worst performing one to one. The original absolute values are
given in Table 7 in the appendix.

The common frame over all target functions with respect to learn-
ing setting comprises 300 samples which are drawn according to a
uniform distribution over the unit interval [0, 1]. This amount of sam-
ples almost surely allows all approximation structures to converge
while balancing the impact of the initial learning phase and the sta-
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Table 1: List of simple target functions, their properties and pictographs.
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Table 2: Normalized Mean Cumulative Squared Loss results for different
approximation structures and target functions. The normalized per-
formance results for each target function are further aggregated to
an average performance of each on-line leaning system as shown in
the bottom line of the table.
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g 5 £ . 2
E 5 B &B|g¢ 3 =
5 6 % 3| 2& £ &
Target function | O o — g | < & O
Step function 068 o 1 091 | 088 0.38 03
Linear step 0.19 0.07 0.3 o |036 1 014
Parallel lines 0.4 o 058 093| 1 033 oO0.11
Kink rise 001 O 002 1 |004 0.3 0.02

Absolute value 0 005 0.06 002|007 1 0.08

Kink saturation | .ot 0o 0.02 1 |0.04 0.09 0.02

Linear 001 O 002 1 |0.04 001 0.02
Quadratic 0 006 005 007|038 1 026
Cubic 0O 003 O 1 0.32 0.05 0.06
Hyperbolic 0.05 0.11 O 1 03 0.08 o0.12
Gauss 004 O 003 1 |022 039 0.07
Sigmoid 008 o 015 1 |o0.51 028 o0.21
Cosine 001 O 004 002|004 1 0.06
Mexican hat 003 O 0.04 0.67]|0.53 1 0.15
Sine 0 002 003 002 1 0.2 0.17
Average 0.1 0.02 0.16 0.64 | 038 047 o0.12

tionary approximation performance in the cumulative loss. In this
basic investigation there are neither noisy labels nor time-variant ef-
fects, the focus is purely on target function properties. The formal
definitions of the targets are given in Table g in the appendix.

The layer depth for all AS-MRA variants is fixed to three. This results
in a total number of parameters of six, eight and thirteen for the
aligned, shifted and combined AS-MRA, respectively. The number of
parameters for the other approximation structures is fixed to seven.

The bottom line in Table 2 also states the average normalized cumu-
lative loss as an overall rank for each approximation structure. In this
ranking the second order B-Spline approach performs best followed
by the GLT with linear interpolation. The combined AS-MRA achieves
third rank but only performs slightly better than the Legendre Poly-
nomials which are ranked fourth. The other variants of the AS-MRA
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and the Fourier Series perform much worse and form the bottom of
the ranking.

The dominance of the local learning approaches in the general rank-
ing is even more remarkable when looking into the details for the Sine
and Cosine target functions. The Fourier Series allows for a perfect
approximation of these target functions, but is not as well-performing
as the local approaches in terms of CL. The only instance the Fourier
Series performs best is the non-steady Linear step target function.
The comparison of the local approaches to the Legendre Polynomial
heads in the same direction, but there is no such clear dominance as
the polynomials manage to be on par for the cubic target and are very
similar in the linear and quadratic case.

The overall ranking already shows that the combined AS-MRA ap-
proach is superior to the variants it is composed of. Looking into
the details of the different target functions reveals two principle cases
which lead to this effect. In the first case, one of the components of the
combined AS-MRA already performs quite well on a particular target
function and the other one performs much worse. This is true for the
target functions kink rise, absolute value, linear, cubic, hyperbolic and
cosine. In these cases the combined AS-MRA performs slightly worse
than the best performing single component due to the additional pa-
rameter overhead. However, the performance of the combined ver-
sion is still much better than the one of the worst performing single
component.

In the second case, both single components perform rather poor on
the considered target function and the combined version outperforms
them due to its increased expressiveness compared to the single ver-
sions. This is true for all other case, i.e. the ones not listed above.
Thus, even in the worst case the combined version performs nearly
as good as the performance of one of its components would be and
in the best case the combination of the two subparts greatly improves
the overall performance.

All in all, the third rank of the combined AS-MRA with respect to
the average normalized CL bridges the performance of the local and
global approaches. This reflects a fundamental property of the lay-
ered approximation structure. The top layers are global ones and are
only as useful as their generalization quality. If the approximation
capabilities of the top layers do not fit the target function properties,
most of learning needs to be handled by the more local bottom layers.
In such a case, the generalization of the top layers does not support
the prediction performance of the overall system which yields a high
CL.

The combined AS-MRA has increased expressiveness in each layer
and especially in the top ones which fosters the generalization qual-
ity. From a theoretical perspective the increased expressiveness comes
at the cost of additional parameters and thus basically hinders gener-
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Table 3: Normalized Mean Cumulative Loss results for different approxi-
mation structures and target functions with layer depth equal to

four.
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alization due to an increased sample demand. In this case, the com-
bination of aligned and shifted subparts frees the combined AS-MRA
from being bound to certain target function properties like evenness
or oddness which becomes obvious from comparing the performance
for Sine and Cosine target function.

The aligned and shifted version are only able to handle one of these
target functions where the combined versions successfully approxi-
mates both. Hence, the aligned and shifted subparts of the combined
AS-MRA behave like the Sine and Cosine subparts of the Fourier Se-
ries. Each single part is bound to certain target function properties,
but these bounds are released by combining both which yields a more
flexible approximation structure. This enhanced flexibility mostly out-
weighs the drawbacks from the increased number of parameters.

Setting the layer depth to three balances the total number of param-
eters between the aligned and shifted AS-MRA and the non-layered
approximation structures. The dominance of the local approximation



4.3 APPROXIMATION STRUCTURE PROPERTIES

structures indicates that the governing factor for a fair comparison be-
tween the local approaches and the layered approximation structures
is the input resolution rather than the total number of parameters.

Repeating the experiments with a layer depth of four balances the
input resolution between the local approximation structures and the
layered ones but nearly doubles the number of parameters in each
AS-MRA approach. The normalized measures for the experiment with
layer depth four are given in Table 3, the corresponding raw values
are depict in the appendix in Table 8. Again, the bottom line in Table 3
shows the average normalized CL and this time the combined AS-MRA
performs best, followed by the B-Spline and GLT approaches. The
other findings about the relationship between the aligned or shifted
AS-MRA to the combined version still hold true. In fact, by having
a layer depth of four there is no single component which performs
better than the combined version. So, the benefits of combining the
aligned and shifted AS-MRA increase compared to the approximation
using three layers.

This relationship between the layer depth and the approximation
power is further investigated within the experiments of the next sec-
tion. The results from this section show how the combined AS-MRA
benefits from the enhanced approximation power compared to its
single subparts and how this allows to approximate target functions
with different properties more flexibly without suffering too much
from the increased number of parameters.

4.3.2 Target Function Complexity

The complexity of approximation structures defining a certain class of
functions is easy to measure for the on-line learning task considered
here as the focus is on approximation structures which are Linear
In the Parameters (LIP). Thus, the dimension of the parameter space
yields a valid measure of complexity and this also applies to target
functions as long as they belong to a certain class of LIP approxima-
tion structures.

Although the AS-MRA as an approximation structure is built from
LIP approximations in each layer, the overall layer structure behaves
slightly different as not all of the parameters in each layer fully con-
tribute to the overall expressiveness of the AS-MRA. E.g. the base node
represents the global mean of the target function, but the effect of
this parameter to the output is fully suppressed by the differential
encoding as long as the first refinement layer is densely populated by
learning samples. The characteristic feature of the base node which
triggers this effect is its flat output, i.e. all derivatives vanish and the
output is a constant function irrespective of the input. Therefore, any
subregion in a refinement layer which forms a flat region takes no
effect on the overall output as long as there are further refinement
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layers for this particular region. This aspect of the AS-MRA fosters the
layer depth as a more suitable measure for complexity because it al-
lows to reflect the overall complexity without the need to count the
actually relevant amount of parameters in a particular approxima-
tion.

The performance measures from section 4.1 are not only influenced
by the complexity of the target function and approximation structure
used for a particular learning scenario as further aspects like data dis-
tribution, noise and time variance also greatly impact these measures.
Therefore, the experimental setting considered here is reduced to the
simplest case for clear and focused results. The type of target func-
tion is stationary and restricted to randomly parameterized Legendre
Polynomials with normalized coefficient vectors. The accompanying
complexity measure is the polynomial degree. The approximation is
built by the AS-MRA and only provides the layer depth as a rough
complexity measure. In order to keep the learning process as simple
as possible, the input space is one dimensional, the instances x are
drawn according to a uniform distribution over [0, 1], i.e. x ~ U(0, 1),
and the labels are generated without noise.

The whole learning process is limited to 1000 samples irrespective
of the target and approximation complexity. Hence, for simple tar-
gets the impact of the convergence phase onto the CL is dominant
while for more complex targets this relationship gets more and more
reverted, i.e. for complex targets the CL tends to reflect the initial
learning phase which accounts for the variance part of the approxi-
mation error. All in all, this allows to compare the different learning
settings on a common basis.

All results are compared to the performance of the zero predic-
tion, i.e. an approximation which always outputs zero for every in-
stance. This base line defines a worst case performance and allows
to judge whether a learning system is capable of handling a certain
target complexity or behaves like a non-learning system. The effects
of randomly generated target functions and instances are mitigated
using averaged values over 1301 trails for each combination of target
complexity and layer depth. Results for the three different AS-MRA
variants are shown in figures 23 to 24 in logarithmic scaling with re-
spect to the performance axis as these values span about two orders
of magnitude.

The zero prediction marks the worst case performance. In order
to have a best case performance as well, the experiments are also
conducted using a polynomial approximation structure instead of the
AS-MRA. The degree of the polynomial approximation is varied the
same way as the target function complexity as shown in Figure 21.
The surface plotted in Figure 21 shows all properties of typical on-
line learning behavior. First of all there is a sharp edge along the main
diagonal between approximation and target degree which marks the
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Approximation degree Target degree

Figure 21: Prediction performance of Legendre-Polynomials as an approxi-
mation for random polynomial target functions. The performance
is measured by means of the CL and is presented in logarith-
mic scaling. The degree of the random target polynomials and
of the Legendre approximation, respectively, are varied from o to
31 yielding the shown mesh with dots colored according to the
achieved CL.

best possible performance for each target complexity because there
is no more appropriate approximation to a polynomial of a certain
degree than using a polynomial of the same degree. This diagonal
divides the whole surface into two monotony regions.

In the upper region with high CL values and thus poor perfor-
mance, the approximation degree is lower than the target degree, i.e.
the approximation is not able to fully represent the target function. In
this case the worst observed performance is achieved when approx-
imating a quadratic function by a linear one. The performance mea-
sure in this region is monotonically decreasing from this point in both
directions, i.e. towards approximation degree and target degree. The
monotony towards the approximation degree is due to the increasing
expressiveness of the learning system and follows the simple rule of
more is better as long as the approximation degree is smaller than the
target degree.

The monotony towards the target degree is less obvious as it is
counterintuitive that a high degree polynomial is easier to learn us-
ing a constant or linear function than a low degree polynomial. The
reason for this monotony is the general shape of the randomly gen-
erated polynomial target functions. These tend to make full use of
their expressiveness in terms of monotony changes and thus slightly
wave around a global mean. This waving increases as the target de-
gree increases and thus the mean prediction becomes more accurate
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in the CL measure. So, this monotony rather highlights a property of
the randomly generated Legendre Polynomials and the CL measure
than an actual learning issue.

The monotony region below the main diagonal is similar to the
upper one but has partly reversed monotony. Here the monotony
is increasing towards approximation degree and mainly decreasing
towards target degree. The best performance is achieved for approxi-
mating a constant function by a constant function. The monotony to-
wards the approximation degree is due to overhead parameters which
are not necessary for the target but require additional learning data
in order to be identified as irrelevant. Overly expressive approxima-
tion structures foster overfitting and produce poor generalizations.
This effect is especially visible for the zero degree target which also
breaks the monotonic decrease towards target degree. From target de-
gree two on the performance is monotonically decreasing to the main
diagonal.

The lower performance of the zero degree target is due to the over-
all learning setting. For approximating a zero degree target only one
of the parameters of the approximation structure needs to be non-
zero. This constant parameters is dominant in the feature vector as
the input space of the experiment is limited to the unit interval. So,
the constant parameter always has a weight of one according to the
feature vector while all other parameters are assigned a value of at
most one. This supports the correct identification of the single rele-
vant parameter as it is highlighted by the combination of input space
and feature vector calculation. The importance of all other parameters
with respect to the feature vector actually depends on the position of
each instant x; in the input space and thus, they behave similar to
each other.

The monotonic decrease of the performance towards target degree
is far less obvious than all other monotonies in this surface and thus
nearly negligible. It is due to the same reason as the increase along
the approximation degree axis. The overhead parameters provide a
poor generalization due to the excitation of not needed parameters
during learning and additional learning data is required to tame the
unnecessary expressiveness.

All findings for the plot about polynomials in Figure 21 represent
typical learning behavior for an approximation structure with fixed
expressiveness and recursive least squares based learning algorithm.
Comparing this behavior to the ones using the AS-MRA variants fo-
cuses on the monotonies rather than comparing absolute values as it
is hard to directly compare the expressiveness of two fundamentally
different approaches. The results for the three AS-MRA with different
but fixed layer depth are shown in Figures 22 to 24. In all of these
experiments the target degree ranges from zero to 32 but the layer
depth only covers one to seven layers.
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Layer depth 70

Target degree
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Figure 22: Prediction performance of aligned AS-MRA as an approximation
for random polynomial target functions. The performance is mea-
sured by means of the CL and is presented in logarithmic scaling.
The degree of the random target polynomials is varied from o
to 31 while the layer depth of the AS-MRA is varied from 1 to
7. This yields the shown set of lines which are plotted in three-
dimensional axes similar to the mesh in Figure 21.
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Layer depth 7 0
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Figure 23: Prediction performance of shifted AS-MRA as an approximation
for random polynomial target functions. The performance is mea-
sured by means of the CL and is presented in logarithmic scaling.
The degree of the random target polynomials is varied from o
to 31 while the layer depth of the AS-MRA is varied from 1 to
7. This yields the shown set of lines which are plotted in three-
dimensional axes similar to the mesh in Figure 21.
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Layer depth 70
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Figure 24: Prediction performance of combined AS-MRA as an approxima-
tion for random polynomial target functions. The performance
is measured by means of the CL and is presented in logarithmic
scaling. The degree of the random target polynomials is varied
from o to 31 while the layer depth of the AS-MRA is varied from
1 to 7. This yields the shown set of lines which are plotted in
three-dimensional axes similar to the mesh in Figure 21.
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The most important observation here is about monotony as there
is only one monotony in all three plots, which shows an outstanding
property of all AS-MRA variants. The performance monotonically in-
creases towards the layer depth, i.e. there is no overfitting or draw-
back from overhead parameters as for the polynomial approxima-
tion case. This is true for all three AS-MRA versions and all target
degrees. The reason for this remarkable effect is the learning archi-
tecture which always starts with a simple constant approximation
and makes use of the refinement layers only when necessary. For the
overall expressiveness of the approximation, this acts as a regulariza-
tion towards zero for all unnecessary layers, thus their parameters are
never changed. Of course, this observation is limited to this noise-free
setting, but even in a noisy environment the AS-MRA does not suffer
from inherent overfitting due to obsolete parameters.

The learning architecture of the layered approximation resembles
the group version of LASSO [64] approach with groups that are specific
for the approximation structure. This does not represent any kind of
prior knowledge about a potential target function, but fosters the prin-
ciple of minimal curvature during learning. High frequent monotony
changes and complex approximation shapes are only possible using
the expressiveness of the bottom layers, but these are only used on de-
mand. This also supports the generalization quality of the top layers
as they consume most or even all of the learning samples in a rather
restricted approximation which fosters plausible extrapolation. The
realm of this extrapolation is actually twofold as it covers the input
space in the way described in the introduction 1.3. Further, the extrap-
olation acts as an initialization for all subsequent layers and therefore,
also covers the resolution axis.

Although there is no clear monotony towards the target degree,
the performance values monotonically converge towards the perfor-
mance of the zero prediction. Hence, this AS-MRA learning system
never performs worse than a trivial non-learning one with limited
prior knowledge. This is partly due to the fact that there is no label
noise. The sharp edge along the main diagonal for the polynomial
approximation is not present for the AS-MRA variants, but at least for
a low layer depth, i.e. up to four, there is a certain slope towards
the performance of the zero prediction or even a jump. This jump is
present to its greatest extend in all approximation variants with one
layer and gets eroded to a steady slope with increasing layer depth.
This makes it hard to precisely state a maximal target degree for each
layer depth of the three AS-MRA variants.

The monotonic convergence of the CL towards the zero prediction
along the target degree is partly contradicted in the aligned and
shifted AS-MRA variants, e.g. at target degree six and layer depth four
in Figure 24 there is a slight decrease of the CL. The same kind of find-
ing applies to Figure23 at target degree five and layer depth four. This
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Figure 25: Comparison of the prediction performance of the combined
AS-MRA with seven layers and the best approximation results of
Legendre Polynomials from Figure 21. The mean CL is presented
as a red or blue solid line, respectively. The accordingly colored
regions indicate the corresponding minimal and maximal CL over
all 1301 trails.

is due to the fitting of approximation and target function properties
with respect to evenness and oddness as well as the average distribu-
tion of local minima and maxima. These effects do not appear in the
combined AS-MRA which again underlines its potential to flexibly
adapt to different target function properties.

The results from Figure 21 about polynomials allow for a more
challenging comparison between the AS-MRA and a fixed polynomial
approximation structure. The values along the main diagonal in Fig-
ure 21 mark the best possible prediction performance due to a perfect
matching between target function type and approximation structure.
In Figure 25 these best approximation results are compared to the CL
performance of the combined AS-MRA with layer depth 7. The bold
lines in blue and red show the mean CL performance for the best
approximation and the AS-MRA variant, respectively. The accordingly
colored areas highlight the minimal and maximal CL performance
over all experiment repetitions. Thus, they show the steadiness of the
learning success as well as best and worst case performance. A low
maximal CL value indicates a robust learning and prediction perfor-
mance. The explanatory power of the minimal CL alone is limited
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as it is related to single best shots in the conducted repetitions. But
comparing all three curves reveals whether the average performance
more resembles the worst or best case performance behavior.

The course of the two bold lines representing the mean CL perfor-
mance is very similar, but there is a near constant gap between them.
Only for target degrees of zero and one, the two lines nearly coin-
cide. Thus, the prediction performance of the AS-MRA nearly behaves
the same way as the best possible approximation. The relative differ-
ence between the measured CL values is huge as the CL of the AS-MRA
is roughly twice the best approximation performance, but the abso-
lute difference is small especially compared to the performance of the
zero prediction. Moreover, the minimal CL values in this comparison
are very similar and nearly coincide in the target degree range from
10 to 24. Great differences occur in the maximal CL values where the
best approximation is rather steady and robust compared to the high
and strongly varying values for the AS-MRA. However, the shape of
the maximal CL does not resemble the mean performance line and
therefore is related to single bad shots.

When looking at the development of the prediction performance
of the combined AS-MRA with respect to layer depth as shown in
Figure 24, there is a monotony in decreasing CL as the layer depth
increases, but this decrease is limited and thus shows strong signs of
convergence, i.e. additional refinement layers are unlikely to further
improve the prediction performance. This is highlighted in Figure 26
which shows a projection of the content of Figure 24 onto CL and
target degree. Hence, the performance of all different layer depths
is shown and further compared to the best polynomial prediction as
well as the zero prediction performance.

In summary, this comparison between combined AS-MRA and the
best possible prediction performance due to fitting target and approx-
imation structures shows that the AS-MRA performs remarkably well
and even is on par with respect to the best case performance. The ro-
bustness of the best polynomial performance is much better than the
one of AS-MRA, but even the worst case CL values of the AS-MRA are
small compared to the ones of the zero prediction. Thus, the AS-MRA
can learn nearly as fast and accurately as a perfectly designed ap-
proximation structure. It does not suffer from overfitting issues and
its prediction performance in case of underfitting is limited from be-
low by the performance of a non-learning system with rough prior
knowledge about the mean of the target function.

4.3.3 Scalability of Computational Demands

This section investigates the actual scalability of the computational
demands with respect to input dimensionality and layer depth of the
used AS-MRA approximation structure. The overall learning scenario
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Figure 26: This is a projection of the results in Figure 24. The mean CL
for different layer depths is shown as a set of colored solid lines.
The color gradient from blue to black follows the layer depth
from one to seven. The blue dashed line represents the worst case
performance of the zero prediction while the black dashed line
marks the best CL achieved by Legendre Polynomials of fitting
target degree.
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is kept as simple as possible in order to focus on the computational
demands and their scalability. The input dimensionality of the learn-
ing task is varied using the rational normal curve RNC,, (a) as formal-
ized in equation (81). The parameter n allows to define the dimension
of the instances x;. As the whole curve originates from only one pa-
rameter a, the underlying learning task stems from a one dimensional
manifold, but is represented as a non-flat n-dimensional curve to the
learning system.

The usage of the rational normal curve avoids beneficial interac-
tions between the geometry of the simplicial approximation structure
within each AS-MRA and the data distribution, because there is no lin-
ear subspace of lower dimension which can accurately reflect the data.
This helps to generate instances x; which populate inner regions of
the involved simplexes and therefore require full memory access for
evaluation and learning.

This setting further allows to test the computational demands with-
out stressing the memory consumption. The necessary and available
amount of memory depends on the task at hand and the hardware
to tackle it. It is within the responsibility of the hardware to provide
equally fast access to all resources, while the considered scalability
in this experiment depends on the algorithms which operate on that
hardware.

RNCph(a): R — R" (80)
a — {a,ad%.,a%ael01] (81)
x¢ ~ RNCL(U(0,1)) (82)

The plots in Figure 27 show the results on scalability measurements
and all confirm the linear scalability of the proposed approach with
respect to input dimension and layer depth. Only the scalability of
the approximation structures with one layer do not scale towards di-
mension as the evaluation and learning of a single parameter always
takes the same amount of time. The experiments were conducted on a
i5-3400 with 16 GB RAM, but the absolute values are not as important
as their relation to each other which reveals the linear scaling.

Moreover, the effort for handling the shifted AS-MRA is slightly
higher than for the aligned one and the combined AS-MRA is as de-
manding as the sum of its single parts. So, there is no computational
overhead in operating the combined AS-MRA compared to its single
parts. The linear scaling regarding the layer depth also meets the
expectations. With respect to the prediction performance observed
in approximating randomly generated polynomial target functions,
this linear scalability makes deep layer architecture of the aligned
or shifted AS-MRA appear appealing compared to the doubled effort
of the combined AS-MRA. Doubling the layer depth of an aligned or
shifted AS-MRA has the potential to outperform a combined AS-MRA,
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but only if the properties of the target function match those of the
chosen approach which requires a certain amount of prior knowl-
edge about the problem at hand. On the other hand, the number of
parameters is only doubled when comparing aligned or shifted and
combined versions of the AS-MRA of equal depth, but doubling the
layer depth causes an exponential growth of the available parame-
ters.

The learning architecture takes care to regularize the parameters as
strongly as possible, but this does not guarantee a reasonable general-
ization in the top layers and may result in an increased learning sam-
ple demand for the bottom layers. All in all, when focusing only on
computational demands it is possible to exchange a combined AS-MRA
approximation to a different version of the AS-MRA with doubled layer
depth without changing the evaluation or learning time, but this will
also affect the learning behavior in a way that highly depends on
overall learning scenario and especially on the target function. Hence,
computational demands, expected prediction performance and worst
case memory demand can be traded for one and another in designing
an AS-MRA learning system, but this trade-off needs to be supported
by prior knowledge about the target function.

4.4 LEARNING BEHAVIOR: NOISE REDUCTION VS TIME VARIANCE
ADAPTATION

The learning behavior of an incremental learning system mainly refers
to its ability to handle noisy samples and a time variant target func-
tion. As stated in the introduction, these goals are mutually exclusive
and a learning system needs to decide whether to follow a certain
sample or to treat it as noise and thus remain stable. The perspective
in this experiment directly focuses the stability-plasticity-dilemma
and how the proposed VL-RLS algorithm with an adaptive time hori-
zon positions itself in the field of tension between noise reduction
and time variance tracking. In order to rate the performance of the
proposed algorithms it is compared to standard on-line learning al-
gorithms which mark the extreme cases along this axis. The Passive
Aggressive (PA) on-line learning algorithm [36] continuously keeps
track of time varying target functions while sacrificing its ability for
noise reduction. The pure RLS contrasts this behavior by strictly con-
verging to mean values indicated by the observed samples, thus fil-
tering out the noise but also ignoring time variant effects.

The inherent regularization of the layer architecture also influences
the learning behavior but in a rather passive way compared to the
actual parameter adjustments taken by the learning algorithm. The
general setting for testing the behavior of the three learning algo-
rithms PA, RLS and VL-RLS is to learn the cosine over one period using
a combined AS-MRA of depth three. This setting minimizes the influ-
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Figure 27: These six plots show the timing measurements for aligned,
shifted and combined AS-MRA for evaluation and learning. Each
plot shows the dependency of evaluation or learning time, respec-
tively, on AS-MRA layer depth and input dimension. All results
cover a span of layer depths ranging from one to five and input
dimensions ranging from one to 15.
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ence of structural effects like insufficient expressiveness or overfitting
due to overly expressive approximation structures. In order to sys-
tematically investigate the relationship between noise reduction and
time variance tracking, the impact of both components, noise and
time variance, is linearly varied from zero to one. This affects the
additive noise by adjusting the width of the uniformly distributed
mean-free noise. The time variance is realized as a drift in the off-
set of the target function. The whole experiment spans 1200 samples
drawn according to a uniform distribution. The first 400 samples orig-
inate from a stationary cosine function without any offset. During the
next 400 samples the offset linearly rises to a configurable value and
is stationary again for 400 samples. The configurable overall height
of the offset allows to gradually steer the impact of the time variance
similar to adjusting the noise level. For each such parameterized ex-
periment the root mean values of the CL over 1301 repetitions with
different random seeds are gathered in a grid where the noise and
time variance levels are varied from zero to one in steps of 0.1. Here
the Root Cumulative square Loss (RCL) is considered in order not to
distort a potentially linear impact of the noise or time variance level
while preserving the error weighting of the CL.

The results of these three experiments for PA, RLS and VL-RLS are
visualized in Figure 28 using six different plots. The top row in Fig-
ure 28 shows the RCL of the PA and RLS algorithm as reference points
for the learning behavior in case of noise and time variance. The RCL
of PA linearly increases according to the noise level but is flat along
the time variance axis. The RCL for the RLS algorithm also increases
linearly according to the noise level but at a low slope which shows
the noise reduction capability of RLS. However, the slope of the RCL
for RLS also increases along the time variance axis which states the
height of the offset. Thus, the noise reduction of RLS manifests in a re-
duced slope along the noise axis while it suffers from time variance as
shown by the non-vanishing slope along the time variance axis. The
middle row in Figure 28 shows the virtual best and worst case perfor-
mance of the reference learning algorithms by taking their minimum
and maximum performance measures, respectively. The best case per-
formance shows a vanishing slope along the time variance axis and a
reduced slope along the noise axis while the worst case performance
combines the drawbacks of PA and RLS. The bottom row in Figure 28
shows the RCL performance of the VL-RLS algorithm and its gain com-
pared to the virtual best performance for the ideal combination of
PA and RLS. In general the shape of the RCL for VL-RLS resembles the
one of the virtual best performance. It shows a reduced slope along
the noise axis compared to PA and is still flat along the time variance
axis. But the performance is not as good as the one of the reference
algorithms in the extreme cases of dealing either with noise or time
variance only. The difference between the RCL of the virtual best per-
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Figure 28: The plots (a), (b) and (e) show the prediction performance of a
combined AS-MRA using different learning algorithms, namely PA,
RLS and VL-RLS. The performance is reported as RCL, i.e. the square
root of the standard CL. Further, the performance is measured for
different noise levels and time-variant effects and presented as a
mesh plot accordingly. Plots (c) and (d) represent the virtual best
and worst performance results when combining the results from
(a) and (b). Plot (f) shows the difference between the RCL perfor-
mance of the virtual best result in (c) and the actual performance
of VL-RLS in (e).
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formance and the actual VL-RLS on the right side of the bottom row
highlights in which cases there is a gain in using VL-RLS. The VL-RLS
algorithm is best for handling samples with low or moderate noise
which may originate from a target function showing highly time vari-
ant behavior.

4.5 GROWING STRATEGY

The layered learning architecture of the AS-MRA approximation struc-
ture is inherently self-regularized as shown in the experiments con-
cerning the layer depth and target function complexity in section 4.3.2.
Therefore, the growing strategy of the AS-MRA is not essential for
learning purposes. It rather supports building a compact approxima-
tion with respect to memory demands. The scope of this section is
to investigate the impact of the convergence related parameters for
absolute and relative tolerance onto the resulting layer depth.

In addition to that, the layered growing strategy is compared to two
other incremental learning approaches, namely FLEXible Fuzzy Infer-
ence Systems (FLEXFIS) [128] and Fast Incremental Model Trees with
Drift Detection (FIMTDD) [93]. FLEXFIS is an evolving fuzzy systems
approach and follows a bottom up strategy for building and growing
fuzzy rules based on incremental clustering. This makes the FLEXFIS
approach similar to instance based learning approaches while the out-
put of each fuzzy rule is learned using RLS and thus allows FLEXFIS
to be robust against noise. FLEXFIS is also chosen for comparison here
due to its linear scalability with respect to the clustered fuzzy rules,
so the overall complexity of FLEXFIS is similar to the one of AS-MRA.

FIMTDD represents a complementary growing approach compared
to FLEXFIS as it builds a tree top down starting from a single root node.
This strategy fosters generalization rather than memorization com-
pared to the clustering of local information in FLEXFIS. So, FLEXFIS and
FIMTDD are chosen the same way as PA and RLS for rating the learning
behavior, i.e. in order to cover the principle cases, here for growing
strategies. Both approaches FLEXFIS and FIMTDD inherently perform
some kind of dimensionality reduction. FLEXFIS due to its local clus-
tering which allows for representing a non-linear sub-manifold in the
data distribution and FIMTDD due to its capability of detecting and
ignoring irrelevant inputs. As dimensionality reduction is not within
the scope of this work, the experimental settings for comparing the
different methods will neither include a sub-manifold in the data dis-
tribution nor irrelevant inputs.

4.5.1 Adaptive Layer Depth

Adapting the layer depth according to user-defined convergence pa-
rameters allows the learning system to flexibly adjust the memory
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demands to the complexity of the target function at hand. The ex-
periment considered here investigates how the layer depth shapes
according to tolerance parameters for the relative and absolute ap-
proximation quality. The focus is not to give design guidelines how
to choose these parameters as this is highly application specific but
rather to show how they act in the context of the layered learning
architecture.

The refinement layers build upon a global approximation and be-
come more local as the layer depth increases. Thus, it is not obvious
whether the convergence across the layers is global as indicated by
layered decomposition of the target function or whether the local na-
ture of each individual layer fosters a local convergence. In case of
a global convergence, the layer depth would be the same over the
entire input space. For a local convergence, the layer depth would at
least loosely resemble the shape of the target function with respect to
local complexity in terms of monotony changes or highly non-linear
regions.

The setting to test this property of the AS-MRA uses the combined
version of the approach for approximating the target function shown
in the top of Figure 29 over the unit interval as input space. The tar-
get is a constant zero below 0.5 and performs a half-period of a nor-
malized cosine function above o.5. This target strictly separates the
input space into a flat and a structured region which allows to detect
global or local convergence behavior of the AS-MRA for different toler-
ance parameters at least on a coarse scale. The parameters for relative
and absolute tolerance are varied on a logarithmic scale spanning two
orders of magnitude. The overall layer depth for each experiment is
limited to ten layers and its duration is fixed to 125664 samples in
order to yield convergence even for high accuracy demands. At the
end of each experiment the resulting layer depth is measured at 51
points distributed uniformly across the input space.

As the experiments for each parameter type and value are repeated
1301 times the mean layer depth of these repetitions is reported as one
line for each parameter value. The resulting surfaces for varying ab-
solute and relative tolerance parameters are depict in Figure 29 (b)
and (c), respectively. The surfaces for each parameter type plotted
there show the layer depth over the whole input space for different
parameter values. The variance of these surfaces with respect to layer
depth vanishes for the considered repetitions. Hence, the layer depth
here appears as an deterministic function of target complexity and
required approximation quality. This is in line with standard conver-
gence properties of multi resolution approximation in general, but
such results do not apply here in form of a formal proof as the inter-
action of subsequent layers is inherently time variant.

The effect of the absolute tolerance parameter is easy to grasp as
it allows the creation of additional refinement layers as long as the
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Figure 29: Plot (a) shows the target function used in this experiment. Plots
(b) and (c) show the resulting layer depth over the whole input
space for different absolute and relative tolerance parameters, re-
spectively. The output range of the target functions allows all tol-
erance parameters to range from one to 0.01. The parameter axis
is in logarithmic scaling as the actual parameter values are loga-
rithmically distributed.
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estimated prediction performance exceeds the user-defined tolerance
parameter. The corresponding surface in Figure 29 (b) shows a mono-
tonically increasing layer depth with respect to tighter convergence
bounds due to smaller tolerance parameters. Considering the coarse
discretization of the layer depth to integer values the surface nearly
resembles a plane, but as the tolerance parameter axis is scaled log-
arithmically this implies an exponential dependency between layer
depth and tolerance parameters. In fact, a certain layer depth always
achieves the same prediction performance on the long run and there-
fore covers a certain range of tolerance parameters. This is reflected
in the surface by regions which are flat along the parameter axis, e.g.
a layer depth of four covers tolerance parameters ranging from o.1 to
about 0.04. This also shows that for this particular target function the
fourth layer greatly improves the prediction performance.

Moreover, the shape of the layer depth is flat for large absolute toler-
ance parameters which already detect convergence for a rather rough
approximation. This flatness dominates the whole surface except for
the smallest tolerance parameters where local peaks in the upper half
of the input space and the origin appear. Another exception to the
overall flatness are two steps which are present in the fourth and fifth
layer depth line. For these parameters the layer depth tends to fol-
low the local complexity of the target function, but the difference is
limited to a single layer.

In general, the global convergence of the layered learning archi-
tecture dominates the properties of the local approximations in the
refinement layers. Only for high accuracy demands indicated by low
tolerance parameters, the local nature of the refinement layer becomes
relevant for the convergence and thus increases the layer depth locally
on demand. The actual layer depth of an AS-MRA in any learning sce-
nario also depends on the instance distribution as a single learning
sample cannot increase the layer depth by more than one and a newly
created layer is likely to perform well enough to trigger the conver-
gence detection.

The surface for relative tolerance parameters in Figure 29 (c) is fun-
damentally different from the one for absolute tolerance parameters
in Figure 29 (b) as it is mostly flat across the input space and espe-
cially for different relative tolerance parameter vales. A relative toler-
ance parameter of one triggers convergence detection as long as the
estimated performance in subsequent layers increases. For a parame-
ter value of o.1 the relative performance increase needs to be smaller
than 10% for detecting convergence. Thus, the smaller the relative
tolerance values the tighter the convergence band which essentially
fosters higher layer depth.

As the relative tolerance needs to compare two subsequent layers,
the minimal layer depth using this convergence criterion is two and
this layer depth is achieved using a tolerance parameter of one. Start-
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ing from this baseline the layer depth widely remains on this min-
imum level for the first non-blocking parameter value of about 0.6
and instantly increases to the dominant layer depth of five for all
smaller relative tolerance parameters.

There are two local structures in the otherwise flat step surface.
One appears at the lower boundary of the input space between 0.0
and o.2. It softens the step in the surface from a layer depth of two
to five by stretching this transition across a wider range of tolerance
parameters up to 0.1, but the overall sharp edge for approaching a
layer depth of five is dominant.

The second local structure appears in the input space between 0.7
and 1.0. It shows a layer depth increased to six for tolerance param-
eters smaller than about 0.1. This local structure is the only sign of
local convergence in the layer structure in an otherwise uniform and
globally flat layer structure. The reason for this dominant layer depth
of five becomes obvious from the wide range of absolute tolerance pa-
rameters the layer depth of four spans and the corresponding increase
of the prediction performance. This gain is huge especially compared
to the improvements introduced by the preceding layers, but the gain
of adding a fifth layer is relatively small and hence convergence is
detected and no further refinement layers are added.

This is remarkable as it clearly points out the fundamental differ-
ence between absolute and relative tolerance parameters with respect
to learning behavior and design strategies. Defining an absolute tol-
erance parameter will always yield a layer structure which meets this
requirement as long as there are enough samples to build the refine-
ment layers and the detection mechanism just keeps adding layers
as long as the estimated prediction performance appears insufficient.
The resulting layer depth is likely to roughly resemble the local com-
plexity of the target function with inherent limitations due to global
target decomposition in the learning architecture, the global nature
of the top layers and the coarse discretization of the layer depth at all.

The learning behavior induced by using the relative tolerance pa-
rameter is different as it is more focused on stopping at performance
walls, i.e. if introducing an additional refinement layer increases the
prediction performance only slightly, the growing stops and relative
convergence is detected. This fosters a more uniform and global con-
vergence as it is guided by the target decomposition and is less fo-
cused on local target complexity. Therefore, it yields a layer structure
which represents the boundary at which the further performance im-
provement due to additional layers gets harder. In essence, the abso-
lute tolerance parameter is best suited to force the layer structure to
meet precisely defined accuracy requirements while the relative tol-
erance parameter allows a more agile behavior in cases where such
precise requirements and thus prior knowledge is not available.
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4.5.2  Strategy Comparison

The strategy comparison considers three methods, namely FLEXFIS,
FIMTDD and AS-MRA. In this setting, AS-MRA is only used in its com-
bined version in favor of focusing on the growing strategy and the
ensemble evaluation, both using a maximal or fixed layer depth of
six, respectively. The growing strategy for AS-MRA only follows the
overfitting avoidance mechanism and thus there is no user-defined
prior knowledge about desired approximation quality in terms of rel-
ative or absolute tolerance. The two AS-MRA strategies are further com-
pared to different AS-MRA structures with fixed layer depth without
ensemble evaluation.

So, there are four incremental learning systems using different ex-
pressiveness adaptation strategies and a set of combined AS-MRA ap-
proximations with fixed layer depths. The learning scenario makes
use of randomly initialized Legendre Polynomials again, but this time
their degree is fixed to four and the dimension of the input space is
varied from one up to six. The number of samples is always fixed
to 10000 and thus gets exponentially sparse with increasing input
dimension. These samples are drawn according to a uniform distri-
bution over the input space [—1,1]™ with n being the parameterized
input dimension. The target function fy (x) for the different input di-
mensions is the signed geometric mean of randomly initialized one
dimensional Legendre Polynomials P4(x) of degree four, see equa-
tion (89). The product inside the geometric mean ensures to yield rea-
sonably complex target functions for LIP! (LIP!) approximation struc-
tures while the n-th root prevents the product of the Legendre Poly-
nomials to quickly converge towards zero. The sign term cancels the
absolute vales which are required in the geometric mean in order to
ensure valid root values irrespective of the input dimension and the
output of the random Legendre Polynomials.

Po(x) = 1 (83)
Pi(x) = x (84)
Pal) = 53¢ -1) )
P3(x) = %(5x3—3x) (86)
Pa(x) = %(35x4—30x2+3) (87)

4

Pax) = ) aiPi(x), ai~U(11),stlal=1  (88)
i=0

1

fn(x) = []sign(Pa(x:)) (H\f%(xi)\) (89)
i1

i=1
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The samples are labeled according to the parameterized target func-
tion f,(x) and they are further disturbed by a mean-free uniformly
distributed additive noise of width 0.1. In this experiment, there is no
time variance influence as the scope is to identify how the different
growing strategies handle different input dimensions with a limited
amount of learning samples. This requires fast adaptation while tack-
ling moderate noise. Introducing time variant effects into this setting
would require to cover two convergence phases for each compared
method which would increase the sample amount in high dimensions
drastically. So, the focus here is only on fast adaptation in different
dimensions.

Varying the dimension provides valuable insights about the algo-
rithms as different strategies face different challenges depending on
the input dimension. For FIMTDD the one dimensional case is the easi-
est one because for each split in the tree it only needs to decide where
to split and not along which dimension. This becomes harder as the
input dimension grows because for each input the question raises of
whether this is the best input to split and where to split along this
input. Even more severe is the effect of wrong decisions with respect
to the chosen input dimension as new samples are required to make a
better decision. This is at least partly wasteful with respect to sample
efficiency and limits the prediction performance in the beginning of
the learning process. The full FIMTDD approach tackles this issue by
handling ensembles of trees with on-line bagging, but this ensemble
extension to the general tree growing strategy is not considered here
as ensemble learning is a meta learning model which applies to all
on-line learning system approaches. So, FIMTDD here only represents
the growing strategy for a single tree.

FLEXFIS is not as directly affected by a growing input dimension
as FIMTDD but faces some fundamental geometry issues because the
meaning of concepts like neighborhood and distance change in high
dimensions. In the Euclidean metric most points in high dimensions
are far away from each other and tend to be located near the bound-
ary of the input space. There are more elaborate approaches in the
evolving fuzzy domain which tackle this problem, but they do not
scale linearly with respect to the fuzzy rule clustering. This geometry
issue also affects the interpolation between the fuzzy rules as the out-
put around the center of a fuzzy rule is dominated by the attached
local linear model and the transition between neighboring fuzzy rules
tends to become a sigmoid and step shape. All of these aspects ren-
der the clustering in higher dimensions more challenging especially
compared to the learning of the local linear models attached to each
cluster.

The AS-MRA growing strategy is most similar to the tree growing
as it starts at coarse global approximation and takes refinement steps
by introducing additional layers on demand. The fundamental differ-
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ence between FIMTDD and AS-MRA with respect to these refinements is
the predefined splitting selection as the AS-MRA splits along all input
dimensions and at a priori defined positions when adding a refine-
ment layer. This way the AS-MRA is not threatened by wrong splitting
decisions but it is bound to a fixed input segmentation which may be
suboptimal for a particular target function which requires additional
refinement layers to achieve the same prediction performance as the
corresponding target specific tree structure.

The AS-MRA also shares some properties of FLEXFIS as the norm-
based interpolation scheme for the simplicial input segmentation de-
fines an RBF structure comprising constant models with strictly local
support. The simplicial input segmentation is locally biased as it puts
special emphasis on the main diagonals of the input space with re-
spect to the hypercubical segmentation. This bias affects the concepts
of distance with respect to the interpolation as connectivity between
vertexes strongly varies depending on the position in the input space.
Vertexes which are far away from each other contribute to the same
interpolation as long as they are connected by a main diagonal while
other vertexes with the same Euclidean distance never directly coop-
erate.

The variety of different connectivity patterns for the vertexes in-
creases as the input dimension grows. In essence, the more the AS-MRA
layer structure grows, the more local it becomes and therefore po-
tentially begins to resemble the FLEXFIS behavior, but with different
geometric issues concerning the interpolation.

So, the focus in this experiment is on how different interpolation
and growing strategies perform depending on the dimension of the
input space and the AS-MRA growing strategy is also compared to
an AS-MRA with fixed layer depth. This allows to roughly rate the
AS-MRA growing strategy as a top down or bottom up approach and
to determine whether the growing strategy only helps to minimize
memory and storage demands or also affects the performance of the
learning system.

The results for this experiment report the CL for each considered
learning system and input dimension in Table 4. A priori, the devel-
opment of the CL according to the input dimension follows no obvi-
ous monotony because the approximation becomes inherently more
complex as the input dimension increases and the overall complex-
ity of the target function increases as well. On the other hand, the
increased target complexity in terms of number of parameters also
affects the output distribution of the target function as the product
fosters concentration towards zero and the signed n-th root pushes
the normalized values toward —1 and 1.

The prediction performance of the constant zero prediction is used
to rate the overall performance of the compared methods. This ref-
erence allows to rate the prediction performance across different in-



Table 4: Mean Cumulative Loss results for different learning systems and
input dimensions for learning random polynomial target functions.
The prediction performance of the learning systems is further com-
pared to a zero prediction as worst case performance. The best re-

4.5 GROWING STRATEGY

sults for each input dimension are marked in bold.
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1 122.1  72.2 | 38.3 402.1 | 1480.2
2 2117 578.1 | 102.8 581.3 | 1031.8
3 357.0 748.5 | 213.6 664.8 | 865.4
4 5354 805.6 | 476.4 714.1 | 785.3
5 659.5 786.6 | 650.6 866.4 | 706.7
6 682.3 794.4 | 674.8 879.7 | 684.9

Table 5: Mean Cumulative Loss results for different layer depths of a com-
bined As-MRA and input dimensions. The best results for each input

dimension are marked in bold.

Layer Input dimension n

Depth 1 2 3 4 5 6
1 914.1 876.8 819.2 772.1 708.8 683.2
2 282.6 481.5 583.8 658.8 679.5 698.1
3 55.7 298.1 474.4 619.0 680.6 777.4
4 41.2 144.4 2759 477.5 706.2 822.2
5 38.3 104.6 216.7 489.9 713.2 828.1
6 38.7 103.9 252.7 5164 714.6 828.1
7 39.8 113.7 276.3 5172 714.6 828.1
8 41.4 127.8 278.0 517.2 714.6 828.1
9 43.1 137.7 278.0 517.2 714.6 828.1
10 47.0 139.3 278.0 517.2 714.6 828.1
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put dimensions and reflects how the shape of the target functions
behaves with respect to output distribution, because the more the
product inside the geometric mean forces the output of the target to
zero, the better the zero prediction becomes. The decreasing trend of
the zero prediction CL in Table 4 reflects this dominance of the prod-
uct term. So, the target function becomes more complex as the input
dimension increases, but the more complex structures tend to define
smaller details around a generally vanishing output. This makes it
even harder for the compared incremental learning systems to out-
perform the zero prediction CL.

Comparing the results for the learning systems in Table 4 reveals
one dominant approach, i.e. the Ensemble AS-MRA. For the one dimen-
sional target function FIMTDD performs second best and for higher in-
put dimensions FLEXFIS is second best. The performance of the Grow-
ing AS-MRA is worst for one and two dimensional targets and only
slightly outperforms FIMTDD for higher input dimensions. FIMTDD
even fails to outperform the CL of the zero prediction at input di-
mension four, where the performance of FLEXFIS and the Ensemble
AS-MRA begin to resemble each other.

Looking at the individual performance development of the differ-
ent approaches with respect to a growing input dimension reveals
some interesting findings. The CL of all considered approaches in-
creases monotonically as the input dimension increases. The perfor-
mance of FIMTDD strongly drops when increasing the dimension from
one to two which renders the growing process for trees inherently
more complex. The performance of FLEXFIS decreases more steadily,
similar to the one of the Ensemble AS-MRA. The performance of the
Growing AS-MRA also decreases slowly, but at a much lower level due
to the high CL values which nearly match the zero prediction perfor-
mance as the input dimension increases.

All in all, no growing strategy is able to outperform the Ensem-
ble AS-MRA in this setting and the behavior of the Growing AS-MRA
more resembles the FIMTDD performance than the one of FLEXFIS. This
finding also explains the overall poor prediction performance of the
Growing AS-MRA as it requires a certain amount of samples to build
a layer structure which is capable of representing the target function
at least roughly. This initial amount of samples is mostly wasted as
its information content is only exploited in a shallow layer structure
which ignores target details.

The Ensemble AS-MRA exploits all learning samples the same way
right from the start. In summary, the growing strategy of the AS-MRA
resembles the growing of trees with similar poor performance, while
the Ensemble AS-MRA is superior not only because it does not need to
decide about structural components, but also due to its full exploita-
tion of the information content of each learning sample. Its perfor-
mance becomes similar to the one of FLEXFIS and thus, resembles a



46 ON-LINE SYSTEM IDENTIFICATION 147

bottom up growing strategy without actually altering the layer struc-
ture and only relying on the inherent regularization of the learning
architecture.

46 ON-LINE SYSTEM IDENTIFICATION

The investigations considered so far cover nearly all aspects of the
AS-MRA as an incremental on-line learning system. This section con-
siders the performance of the combined AS-MRA for on-line identi-
fication of several benchmark dynamic systems from [141] and the
design effort for using AS-MRA as a model learning tool. The grow-
ing and fixed size AS-MRA variants are compared as they differ with
respect to design effort and prediction performance. The modeling
aspect in system identification is crucial in many domains and es-
pecially in engineering and embedded systems contexts because the
resulting models allow filters to distinguish noise and actual system
dynamics. Controllers benefit the same way because they can take
their acts according to the system dynamics in order to achieve their
goals faster and more efficiently. However these additional topics re-
lated to on-line system identification are not considered here as the
focus is on incremental learning systems.

The learning scenario in system identification is inherently differ-
ent from all other tasks considered here before because the observed
and modeled dynamic system always follows a path through its state
space. The learning samples originate from this very same trajectory
through the input space and therefore, the samples are not indepen-
dently identically distributed (i.i.d.). The sample distribution always
and inherently impacts the behavior of any incremental learning sys-
tem, but considering a setting without i.i.d. samples is special because
the ii.d. assumption is key to many convergence proves in order to
generalize from one learning step to the whole sequence.

Moreover, [56] coins the term persistence of excitation which also re-
lates to the sample distribution for modeling dynamic systems in
an on-line learning setting. Basically, the concept requires the sam-
ple distribution to sufficiently cover the state space such that the
learned model accurately fits the system dynamics and not only mem-
orizes and represents the learning samples. The persistence of excitation
points to a conflict in applying on-line system identification which
is as fundamental as the stability-plasticity-dilemma. This conflict is
easily illustrated considering an embedded system which employs
an adaptive controller by means of on-line system identification. The
controller has the goal to stabilize the system in a well-defined state.
In order to get there it requires an accurate or at least plausible system
model.

The on-line system identification requires highly representative sam-
ples about the system dynamics in order to build a plausible and accu-
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rate model. This goal becomes conflicting once the model is accurate
enough for the controller to stabilize the system, because a stable sys-
tem only produces samples around one state and even high amounts
of such samples contain no further information for the system identi-
fication. In such a case, the model is only accurate in a close vicinity
around the stabilized state but not across the whole state or input
space.

The conflicting goals of the controller and system identification rep-
resent one instance of the exploration-exploitation-dilemma. A stan-
dard solution for the system identification perspective is to use test
signals which excite most or even all dynamics of the observed sys-
tem before employing the actual controller. This test signal setting
is also used here for identifying the benchmark systems. Like in the
previous experiment, there is an inherent reference for rating the pre-
diction performance of the learned model, i.e. the steady prediction
which always outputs the last observed state of the system as a pre-
diction for the next state. This steady prediction is very simple as it
ignores the dynamics of the system. However, even if this assumption
imposes a serious simplification, its prediction performance is usually
remarkably accurate and therefore challenging to bet by learning sys-
tems on the short run.

System 1: uy ~U(-1,1)
St41 = 0.3sy 4+ 0.6s¢_1 + 0.6sin(mmuy) (90)
+0.3sin(37u ) + 0.1 sin(57wy )
System 2: uy ~U(-2,2)

S _ StSt (st +2.5) u (01)
t“ T+s2+s2,

System 3: uy ~U(-2,2)

St 3
S = +u 2
t+1 1 +S% t (9 )

System 4: ug ~U(—1,1)

Seay = SeSt—15t—2Wt—1(St—2 — 1) +ue 93)
t+ - 2 2
T+si 1+s1 5

System 5: uie ~U-1,1),i=1,2

S1t
T+s3 Ut
St41 = siesre | T ( (94)
1+s3, Uzt

System 6: ug ~U(-1,1)

str1 = 0.8s¢+ (ue —0.8)u(uy +0.5) (95)
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Figure 30: These six plots show the course of the CL for learning the be-

havior of the corresponding dynamic systems in [141] using two
variants of the combined AS-MRA together with the CL perfor-
mance of the steady prediction as a base line reference. Each plot
shows the result of the steady prediction as a blue line and the
prediction performance of the growing and fixed AS-MRA as a red
and black line, respectively.
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The benchmark system definitions in [141] include test signals for
each system. The complete definitions are summarized in equations
(90) to (95) as an overview. These systems and their corresponding
test signals are used here to generate learning tasks comprising 10000
samples. The instances x; always represent the full state of the sys-
tem s together with the exciting test signal u. In addition to that,
delayed versions of states sy_x and signals u¢_y are included if they
are necessary to represent the actual system dynamic according to
the definitions in equations (90) to (95).

The corresponding label y; is the resulting next state s{,; dis-
turbed by a small uniformly distributed noise of width 0.02. The
learning samples here are nearly perfect in order to focus on their
trajectory nature. As the focus here is on design effort two versions
of the combined AS-MRA rival each other and the steady prediction in
these experiments. There is an AS-MRA with a fixed layer depth of ten
using the ensemble evaluation approach as the first learning system
henceforth referred to as Ensemble AS-MRA. The other AS-MRA version
follows the growing strategy without further prior knowledge about
tolerance parameters or other guiding parameters. This second ver-
sion is referred to as Growing AS-MRA and this version represents the
out-of-the-box prediction of the AS-MRA approach. The results over
the whole course of the experiments are displayed in Figure 30 as
mean values over 1301 repetitions. In addition to that, table 6 shows
the final CL results together with their standard deviation.

The values in each column in table 6 span three orders of magni-
tude for the different systems. This reflects that each system behaves
in its own way with respect to dynamics and learning complexity. In
general, the dynamics of the systems are represented by the steady
prediction results while the CL values for the learning systems relate
to the learning complexity.

Comparing the results for the three approaches shows that the
learning systems outperform the steady prediction, but looking at
the course of the CL in Figure 30 the necessary amount of training
samples varies. Figure 31 highlights the relevant details for each sys-
tem by focusing on sample demand which is required to outperform
the steady prediction. Looking at the performance of the two learning
systems the ensemble variant clearly performs better than the grow-
ing approach although the difference is relatively small for systems 4
and 5.

Another remarkable detail here is the difference in CL ordering be-
tween steady prediction, Growing AS-MRA and Ensemble AS-MRA. The
results for the steady prediction correspond to the inner dynamics of
each system while values for the learning variants rather reflect the
learning complexity. Systems 3,4 and 6 show a consistent ranking
across all considered approaches. The two AS-MRA variants only dif-
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Table 6
System Steady Pred. Growing ASMRA Ensemble AS-MRA
1 1536 £ 46.53 358 +33.95 138 +£18.03
2 18546+ 4135 126441246 807 +58.66
3 61440 £20907 2610+ 3437 1888 £2117
4 1215+ 4432 102+14.92 88+12.52
5 (s1) 4037+ 1074  290+34.24 250+£25.55
5(s2) 19887+ 5396  254+38.33 232+£29.54
6 401+ 25.71 75+14.01 52+10.61

fer in ranking of system 1 while the steady prediction also varies with
respect to ranking of system 2.

The different ranking of system 2 does not allow particular insights
about the compared approaches but rather points to a general issue
in learning dynamic systems. Generating learning samples by observ-
ing dynamic systems yields an inherently biased sample distribution
due to the system trajectory and attractive steady states which are
overrepresented in the samples. Thus, relevant parts of the dynamics
are likely to be underrepresented in the samples. This is especially
crucial with respect to learning if the behavior of the system near
steady states is simple compared to the underrepresented regions of
the state space. In such a case the learned model tends to follow the
simple steady state dynamics while ignoring the rarely seen complex
parts.

The difference between the ranking of system 1 and 5 actually re-
lates to the different approaches represented by Growing AS-MRA and
Ensemble AS-MRA. System 1 follows a more complex non-linear be-
havior with respect to the input u; compared to system 5 which is lin-
ear in u¢. According to the ranking of the CL values, Growing AS-MRA
performs better on system 5. This finding is in line with the overall
capabilities of AS-MRA structures with limited layer depth as inves-
tigated in section 4.3.2. The non-linear dynamics require a certain
layer depth to be properly representable. This necessary layer depth
is available in Ensemble AS-MRA right from the start while Growing
AS-MRA needs to consume samples to build these layers and fine tune
their output. Thus, in principle both approaches can represent the
non-linear dynamics on the long run, but Ensemble AS-MRA is more
sample-efficient and therefore not only outperforms Growing AS-MRA
in general, but also handles non-linear system behavior right from the
start of learning.

In this on-line system identification scenario the learning sample
demand directly maps to learning time and model accuracy develop-
ment over time. One extreme case in this trade-off is a non-learning
expert system entirely build from prior knowledge which does not
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require any learning, but demands huge design effort. On the other
hand, a learning system with literally no prior knowledge like the
Growing AS-MRA faces a huge sample demand in order to find an
accurate model. The Ensemble AS-MRA introduces only one design
parameter, i.e. the layer depth and shows a much higher sample effi-
ciency compared to Growing AS-MRA. Most realistic use cases allow
to guide the learning by some form of rough prior knowledge about
expected complexity or necessary accuracy, thus the sample demand
can be reduced by fixing the layer depth and defining accuracy re-
lated convergence conditions.

All in all, both AS-MRA variants require only a very limited amount
of samples in order to come up with a model that predicts the sys-
tem behavior more accurately than the steady prediction. This initial
learning phase is detailed in Figure 31 using individual time lines for
each benchmark system. Moreover, comparing the learning behavior
of Growing AS-MRA and Ensemble AS-MRA allows to learn about the
impact of prior knowledge on a general and abstract design level and
directly visualizes the tradeoff between prior knowledge and sample
demand, i.e. learning time.

For systems 2 and 3 the learning behavior of both AS-MRA is very
similar with respect to their prediction performance compared to the
steady prediction. In system 2 both variants perform better right from
the start and for system 3 both variants require about 20 samples to
outperform the steady prediction CL. Slight differences in learning
behavior between Growing AS-MRA and Ensemble AS-MRA can be ob-
served for systems 4 and 5 where the Ensemble AS-MRA variant only
requires about 30 or 40 samples to outperform the steady prediction,
respectively. On the other hand, Growing AS-MRA requires about 45 or
7o samples to do so, respectively. This difference in sample demand
to outperform the steady prediction is even more obvious in system
1 where Ensemble AS-MRA only needs about 30 samples while Grow-
ing AS-MRA needs more than 100 samples. This absolute difference in
sample demand is even higher in system 6 where Ensemble AS-MRA
requires around 190 samples while Growing AS-MRA requires 550.

The differences in sample demand illustrate the collaboration across
refinement layers in the Ensemble AS-MRA approach and the corre-
sponding sample exploitation. In order to do so, Ensemble AS-MRA
requires a fixed layer depth as prior knowledge. Therefore, to some
degree this comparison also illustrates the power of prior knowledge
to reduce sample demand even if such prior knowledge is stated on
an abstract level and does not directly relate to actual system behav-
ior. This kind of prior knowledge rather allows to select a certain
approach which allows for higher sample efficiency than to actually
reduce sample demand by introducing pre-modeled system behav-
ior. This aspect of sample efficiency is especially important in non-
stationary learning tasks as there is an inherent lack of prior knowl-
edge about system behavior.
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Figure 31: These six plots show individual parts of the development of the
CL for learning the behavior of the corresponding dynamic sys-
tems in [141] using two variants of the combined AS-MRA together
with the CL performance of the steady prediction as a base line
reference. Each plot shows the result of the steady prediction as
a blue line and the prediction performance of the Growing and
Ensemble AS-MRA as a red and black line, respectively.

153






CONCLUSION

5.1 DISCUSSION

A linear discussion of the AS-MRA is inherently difficult as the whole
approach consists of three parts which all need to come together,
namely the input segmentation and interpolation, the learning ar-
chitecture and the differential parameter encoding. The used on-line
learning algorithm is also important and needs to be able to handle
time-variant target functions, but there are different variants for this
task and the VL-RLS algorithm presented here is only one of them.
These four parts contribute to the AS-MRA and only some of them are
applicable in different settings. The most specific part of the AS-MRA
is the differential parameter encoding across subsequent layers, but it
is essentially bound to the used learning architecture. In principle, the
differential encoding is applicable in other contexts as well, but only
in combination with the additive layer structure and learning archi-
tecture it unfolds its potential to convert the inherently time-variant
intermediate target functions which interface subsequent layers into
widely stationary targets for each layer. The used learning architec-
ture is rather general as it only states additive refinement layers and
defines the residual of each layer as the target for its successor.

As already mentioned, the differential encoding allows to use this
learning architecture without dealing with time-variant residual tar-
get functions, but this is only possible in an efficient way due to the
simplicial input segmentation of each layer. The strictly local influ-
ence of each parameter in every layer allows to limit the number
of references between the parameters of subsequent layers. The sim-
plicial input segmentation allows referring to at most three parame-
ters from a preceding layer for the combined AS-MRA, for the aligned
AS-MRA the limit is two and one for the shifted AS-MRA. This way the
differential encoding is fast to evaluate and sticks to the structure of
the refinement layers, which provides stationary targets for learning
without affecting the scalability of the approximation structure.

The most general part of the AS-MRA is the simplicial input segmen-
tation combined with the smooth interpolation scheme. This approx-
imation structure is linear in the parameters and can be combined
with standard on-line learning algorithms to form an on-line learn-
ing system. And still, the gain of having a smooth local approxima-
tion structure is very little in high resolution grids due to approxi-
mation artifacts, e.g. a poorly modeled derivative at each node. The
additive layer architecture mitigates these artifacts. So, the differential
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parameter encoding supports the learning architecture, but is only ef-
ficient due to the input segmentation, the input segmentation requires
the layer architecture for artifact mitigation and the layer architecture
would not be necessary without the input segmentation but would
also be infeasible without the differential encoding.

The novel and unique aspect of theAS-MRA is that these three com-
ponents come together in harmony and allow for additive function
decomposition in on-line learning scenarios even when facing time
variance. Compared to the close union these parts form, the used on-
line learning algorithm and the radial basis function for the simplicial
interpolation scheme are only loosely coupled details. However, any
on-line learning algorithm used in combination with AS-MRA needs to
be able to handle non-stationary targets as the differential encoding is
not perfect with respect to the smooth interpolation and the radial ba-
sis function governing this interpolation needs to meet certain bound-
ary conditions. The rest of the discussion relates the AS-MRA approach
to the design and performance aspects stated in the introduction and
also includes the findings of the investigations. This short overview of
the core components of the AS-MRA frames further discussion topics.
Key features of the AS-MRA relate to individual components, but this
does not imply that they are more important for the overall approach
than others.

5.1.1 Design effort

The overall goal of on-line learning systems is to enhance the design
of intelligent systems while reducing the demands for designing and
developing them. The fundamental metrics in every design process
are effort and outcome. The outcome inherently depends on the pre-
diction performance of the chosen learning approach and thus, its
ability to learn an unknown target from sequential learning samples.
This is especially true for learning and tracking non-stationary targets,
but here the learning can only balance between tracking performance
and noise reduction which need to be prioritized by application spe-
cific requirements. The design effort depends on different indepen-
dent categories.

Firstly, there is an effort in specifying the learning scenario for the
particular application which comprises the number and kind of in-
puts and targets for the on-line learning system. The whole field of
dimensionality reduction is dedicated to support and mitigate this
kind of design effort, but since this topic is not part of this work, the
second best option is to have an on-line learning system which scales
linear towards input dimensionality with respect to computational
demands as this relaxes design decisions which affect the number
of inputs. The next aspect of design effort is the configuration and
tuning of the chosen on-line learning approach for the selected sce-
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nario. This task gets increasingly complex as the involved parameters
which are to tune are very specific for the selected approach and only
indirectly relate to the underlying problem defined by the learning
scenario.

The computational demands of the fully specified and configured
approach directly link to the hardware effort for actually employing
the designed solution. The hardware effort may be considered low
if the approach can reasonably perform on standard hardware com-
ponents, but there are learning approaches which only operate effi-
ciently, especially with respect to energy consumption, on specially
designed hardware which greatly increases the design effort.

Another aspect of design effort is the integration of prior knowl-
edge into the chosen approach. The key questions here are whether
the prior knowledge is representable in the approach at all and how
difficult it is to map prior knowledge to the concepts and parameters
the approach offers. The presented AS-MRA approach adds unique
features to some of these design issues and contributes to all of them.
The computational demands of the AS-MRA scale linearly regarding
input dimension and layer depth, by design and as measured in Fig-
ure 27. This feature is unique as the approximation of the AS-MRA is
globally smooth and linear in the parameters at the same time.

Hence, the AS-MRA provides a smooth on-line learning system with
linear scalability as targeted in the goal definition from the introduc-
tion. Moreover, there are no mandatory design parameters which re-
quire prior knowledge about the application or certain target function
properties. When using the growing strategy for the AS-MRA the only
implicit assumption taken by the approach is to detect overfitting as
an increasing prediction error in the last three layers. Thus, there is
virtually no design effort for tuning the AS-MRA and selecting a learn-
ing scenario is comfortable due to the linear scalability.

In fact, the AS-MRA provides a number of optional design parame-
ters which allow to restrict the resource consumption of the AS-MRA
with respect to computational and memory demands. But there are
also optional parameters which are directly related to the expected
prediction accuracy and thus, the performance for the application.
These kinds of parameters are not unique as FIMTDD and other tree-
based methods provide similar capabilities, but only the AS-MRA real-
izes these parameters due to a layered learning architecture which al-
lows to learn at different scales simultaneously and therefore enables
a fast and instantaneous refinement, if necessary. And this without
the need to deduce optimal split boundaries.

Hence, the learning within AS-MRA is performance orientated as in
tree-based approaches, but without the structure identification which
needs to estimate non-linear parameters of the approximation struc-
ture. The only structural non-linear parameter the AS-MRA provides is
the layer depth which can be flexibly adjusted while safely detecting
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overfitting. However, the overfitting detection mechanism also pre-
vents the AS-MRA to escape from underfitting if the structures of the
target function skips three orders of magnitude in binary refinement.

The unique feature the AS-MRA provides with respect to design pa-
rameters is the relative tolerance for convergence detection. Compar-
ing the prediction performance of approximations with different in-
put resolutions is only possible in a layered learning architecture as
even tree-based approximation structures handle their models in leaf
nodes only. A similar approach would be to run multiple instances
of the same learning system with different input resolutions in an en-
semble, but in such a case the fine grained input resolutions would
not benefit from the generalization power of the coarser ones.

This directly relates to the bias-variance-dilemma as the prediction
performance of the individual ensemble members is much harder to
compare due to their different expressiveness. In addition to that, the
fine grained resolution members would suffer from approximation
artifacts due to local interpolation or an increased scalability when
using local linear models. So, the connection and cooperation of the
refinement layers in AS-MRA allows for a valid comparison of the pre-
diction performances of all layers. The cooperation of layers in the
learning architecture also gives rise to the central properties of the
learning behavior of the AS-MRA which are discussed in the next sec-
tion.

5.1.2 Learning Properties

The learning properties of the AS-MRA mainly originate from the lay-
ered learning architecture which inherently acts as a regularization
for unnecessary expressiveness in the layer structure. This property
stems from the propagation of residuals to subsequent refinement
layers which naturally vanish as the approximation becomes accu-
rate. But the learning architecture also affects the generalization in
terms of extrapolation and interpolation and how a single learning
sample is stored and represented in the layer structure.

The generalization in AS-MRA is as complex as the depth of the layer
structure and therefore there are two fundamentally different cases to
look at, the one with a fixed layer depth and the one using a grow-
ing strategy for the layer structure. Although both approaches use
the same AS-MRA structure, their behavior is fundamentally different
with respect to how they treat and handle learning samples. Using
the terms lazy and eager learning here would be misleading, because
those refer to well-defined concepts in machine learning which do not
directly apply here. However, with respect to the original meaning of
lazy and eager learning in machine learning, the AS-MRA is an eager
learning approach in all its variants and irrespective of the potential
use of growing strategy. The difference in handling a single learning
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sample in a fixed or growing layer structure boils down to the ques-
tion of how much information from a sample needs to be stored and
how much can be stored.

The fixed layer structure is truly eager even in this regard as it al-
ways processes and learns each sample in all layers. This way, each
learning sample contributes to the overall output on all input reso-
lutions, i.e. the impact of the sample is considered on a fully global
scale as well as in a maximally local vicinity. This fully exploits the
information gain in each sample on all user-defined scales.

In contrast to that, the growing strategy is rather conservative as it
always asks for the relevance of considering an additional refinement
layer while learning form a particular sample. So, the growing strat-
egy stops exploiting the information gain from a sample by the time
it is convinced to meet a convergence criterion. This is a reasonable
approach on the long run, but it ignores valuable information from
samples during the initial learning phase. In this phase the layer struc-
ture has not reach an appropriate depth and therefore is not capable
of following certain details represented by the samples. This is also
crucial facing a shift in the target function which increases the target
complexity.

The restrictive information exploitation of growing layer structures
in principle helps to become robust against noise, but judging sig-
nal from noise is only possible retrospectively and with having a
sufficient amount of samples. Further, the learning architecture al-
ready fosters noise reduction by means of regularization. On the long
run fixed and growing layer structures become the same due to self-
regularization, growing and pruning. So, the further discussion con-
cerning learning properties will focus on layer structures of fixed size.

The already mentioned multi resolution storage of learning sam-
ples in the layer architecture also affects its generalization properties.
The top layers have only limited expressiveness but global influence
and therefore are able to provide plausible extrapolation from a lim-
ited number of samples. For this very reason information from the
very first samples and especially the single first sample is extrapo-
lated across the entire input space. The global extrapolation is risky
when dealing with noisy data, but since all samples contribute to the
single parameter in the base layer this parameter converges as fast as
possible to the global mean. So, the simplicity of the top layers allows
them to perform plausible extrapolations while converging rapidly
and thus canceling out noise which fortifies their extrapolation and
supports subsequent layers.

In addition to that, each layer extrapolates its whole output to its
successor as a prior initialization due to the residual propagation in
the learning architecture. Thus, the extrapolation from the top layers
is horizontally across the input space and vertically across the refine-
ment layers. On the other hand, the usage of the extrapolation of the
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top layers is avoided whenever possible, because the refinement lay-
ers override the output of the preceding layers and the bottom layer
rules the output. Hence, the layer structure always makes use of the
most local information that is available while assuming it to be most
relevant for the query instance x;.

This procedure relies on the sparse parameter representation in
the AS-MRA which only creates a parameter in memory if there is a
learning sample contributing to it. The resulting evaluation routine
automatically stops if there are no more parameters in the subse-
quent layer and therefore the output is governed by as much top
layer extrapolation as necessary and as much relevant local infor-
mation from refinement layers as possible. Further, this connects to
the bias-variance decomposition as the top layers tend to suffer from
bias while the bottom layers suffer from variance. Balancing both for
the evaluation aims at minimizing the approximation error and the
AS-MRA offers unique capabilities in doing so by combining coopera-
tively generated approximation on different layers.

The counterpart to extrapolation is interpolation, but for the AS-MRA
this aspect is more related to properties of the approximation struc-
ture than to learning, because interpolation in local approximation
structures with RLS-based learning is very similar for all local ap-
proximation structures. The strength of a local approximation struc-
ture is to protect locally acquired knowledge from being disturbed
from noise or time-variance which applies to distant regions of the
input space. The fundamental drawback is the limited extrapolation
power.

The learning architecture of the AS-MRA allows to benefit from the
strength of a local learning architecture without suffering from its
drawbacks. But there is a slight restriction to the protection of local
knowledge as the differential encoding is intentionally not perfect.
Therefore, changes in higher layers partly affect the output of lower
layers. But the changes are minimal and the affected layer can adapt
to them as they are trained sequentially, so the subsequent layers can
compensate the structurally induced changes according to the current
learning sample.

As mentioned above, further details concerning the interpolation
are related to approximation structure properties and thus, handled
in the following subsection.

5.1.3 Approximation structure properties

The layer architecture of the AS-MRA stems from a local approxima-
tion structure for each layer and originates from a geometrical moti-
vation to circumvent the scalability issues grid-based local approxi-
mation structures usually suffer from. The interpolation in AS-MRA in
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principle is the same as in other local approximation structures and
combines certain aspects of RBF functions and Simplicial B-Splines.

The whole interpolation scheme comprises the simplicial input seg-
mentation and the smooth radial basis functions which need to de-
crease from one to zero along the unit interval. The exact shape of
the interpolation function is basically user-defined, but the vanishing
derivatives of this function at the boundary define the overall de-
gree of smoothness the interpolation scheme achieves and therefore
at least the first derivatives should vanish. The used polynomial in-
terpolation function g(x) in equation (16) only fulfills these minimal
requirement.

This function is used as a radial basis function on a variable norm
which is specially tailored for the used symmetric simplicial input
segmentation. Without the symmetry of the input segmentation, there
would not exists such a norm as it exploits the geometry of the sup-
port of the corresponding basis functions in the input segmentation.
Thus, the whole AS-MRA approach is inherently geometrical as only
the highly symmetric geometry of the input segmentation allows the
definition of a globally smooth interpolation on a simplicial grid. And
the smoothness of the underlying approximation structure gives rise
to the whole AS-MRA including the learning architecture and the dif-
ferential encoding.

The simplicial geometry of the input segmentation is what brings
everything else together and especially ensures the linear scalability
of the approach. So, the contribution of this thesis with respect to in-
terpolation is the definition of the norm which allows to use radial
basis functions with limited support for a strictly local interpolation
and the blending between two such norm-based terms in order to
fully respect the geometry of the simplicial interpolation. The result-
ing smooth basis functions with strictly local support are the founda-
tion for the layer architecture built on top.

The layer structure of the AS-MRA combines aspects of Fourier Se-
ries and Wavelets without requiring the basis functions ¢; to form
an orthonormal basis. The aligned and shifted variants of the AS-MRA
resemble the cosine and sine parts of the Fourier Series. They form
fully functional approximation structures on their own, but their full
potential is only revealed when combining them in one approxima-
tion structure. The similarity to the Wavelets is present in the growth
of expressiveness in Wavelet and refinement layers, but the admirable
mathematical properties of the Wavelets are not present in the AS-MRA.
The principle structure of the Wavelets also motivated the layer ar-
chitecture and the differential encoding is an approach to migrate
the layer structure of the wavelets to a local approximation structure
equipped with basis functions that form a partition of unit.

So, layer architecture and differential encoding imitate the princi-
ple approximation concept of wavelets without meeting their formal
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properties. The overall approximation structure of an AS-MRA vari-
ant is formally a global one as the basis functions in the top layers
span the whole input space or at least wide parts of it. So, judging
from the categories and metrics defined in chapter 2 the AS-MRA is a
global, smooth and linear in the parameters approximation structure.
Using the Simplicial tensor product yields no partition of unity, but
the variable norm-base aggregation does. Further, its computational
demands scale linearly to input dimension and its storage demand
scales exponentially towards input dimension.

Being linear in the parameters here does not allow to directly refer
to convergence proofs, because the learning architecture and differen-
tial encoding need to be considered, too. Nevertheless, the learning
in each layer is strictly linear in the parameters and therefore allows
to employ standard on-line learning algorithms. I.e. standard conver-
gence results apply to each layer and therefore, the learning architec-
ture at least allows for a convergence of the overall layer structure in
a layer-by-layer manner.

With respect to the growing strategy the approximation structure
is also related to tree-based approaches and evolving fuzzy systems.
When starting from a single base layer the initial situation for the
AS-MRA is similar to the one of a tree-based approach, but the AS-MRA
has the advantage to virtually split along all input dimensions at once
and thus, only needs to consider whether to introduce an additional
layer or not. An AS-MRA of fixed size rather resembles the growing
procedure in evolving fuzzy systems which start from usually small
local clusters and uses the incoming samples to enlarge the clusters
in size and number while applying pruning and merging strategies
in order to limit the total number of clusters.

In the AS-MRA this perspective maps to first represent the sam-
ples in the bottom layer and let the learning architecture erase local
structures as they become obsolete due to accurate predictions in the
layer above. This self-regularization of the AS-MRA resembles struc-
ture adaptation strategies of evolving fuzzy systems starting from
small local clusters. But unlike structure adaptation in evolving fuzzy
systems which is related to the estimation of non-linear parameters,
the self-regularization only affects linear parameters due to residual
propagation in the learning architecture.

5.1.4 Time-variance

Time-variance is an important and fundamental aspect in on-line
learning, but it is essential for AS-MRA and inherently connected to
it due to the differential encoding which requires the learning archi-
tecture to employ an on-line learning algorithm capable of tracking
non-stationary target functions. The reason to this is the need for
cooperation across subsequent layers in order to mitigate the approx-
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imation artifacts of the finer layers. A perfect differential encoding
would fully decouple the individual layers and thus, only the output
of the bottom layer would be effective. The resulting overall output
would contain many approximation artifacts due to the vanishing
slope at the nodes of the local approximation structure. The cooper-
ation is achieved by relating the local parameters of subsequent lay-
ers, but this partly ignores the nonlinear interpolation function which
shapes the basis functions ¢;.

This nonlinearity is not reflected in the differential encoding of the
parameters and allows the different layers to cooperate with respect
to the slope at the nodes of the finer layers. The corresponding deriva-
tive is defined by the combined output of all former layers. Therefore,
the overall output can have non-vanishing slopes even at the nodes
of the bottom layer. This successfully mitigates approximation arti-
facts and allows for representing a reasonable derivative of the target
function. All of this is related to time-variance, because the resulting
combination of differential encoding and learning architecture results
in slightly non-stationary intermediate targets due to the cooperation
of subsequent layers. This hinders a fast learning to some degree as
time-variance inherently increases the necessary amount of learning
samples to accurately learn a target function.

Coined as a feature, the AS-MRA is inherently capable of handling
non-stationary target functions because it already deals with them as
residual targets interfacing subsequent layers in the learning architec-
ture. The VL-RLS algorithm used in AS-MRA is at most only a small
contribution to the family of adaptive learning algorithms, because it
only applies standard concepts to the vSGD algorithm from [166] and
adds a heuristic for learning from scratch. The time horizon estima-
tion from [166] is the core algorithmic component for time-variance
handling and it yields an algorithm with acceptable noise reduction
and good time-variance tracking as observed in Figure 28 when sys-
tematically comparing the impact of noise and time-variance onto the
prediction performance. The VL-RLS is neither as fast as PA in terms
of time-variance tracking nor is it as robust against noise as the stan-
dard RLS is, but it has its merits when dealing with time-variant data
which is corrupted by moderate noise.

The time-variance handling of the AS-MRA is limited to each single
layer and there is no propagation of estimated time horizon infor-
mation across the layer structure. Introducing such a layer-wide time
horizon estimation and propagation requires careful balancing of pre-
serving valuable local knowledge in lower layers and fast adaptation
in higher layers for plausible extrapolation to changing targets. The
good time-variance tracking of the VL-RLS and especially its potential
to rapidly shrink the estimated time horizon render the whole AS-MRA
flexible enough to handle non-stationary target functions even with-
out a coordinated time-horizon estimation. This strategy prefers the
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preservation of local knowledge because time-variant effects with
only local impact always affect to top layers but this should not harm
the knowledge in stationary regions of the input space.

5.2 SUMMARY

In this thesis on-line learning for regression on evolving data streams
is considered and a new incremental learning system called Adaptive
Simplicial Multi Resolution Approximation (AS-MRA) is introduced.
The motivation for tackling this problem stems from practical design
issues and also includes connections on a theoretical level to other
fundamental problems in machine learning like classification and re-
inforcement learning. The related work covers common approxima-
tion structures with a focus on Linear In the Paramaters (LIP!) ones
as those are most relevant in on-line learning due to the convex op-
timization problem they allow to face. The considered structures are
grouped and ranked according to general properties like forming lo-
cal or global approximations and the kind and number of nonlin-
ear parameters in each approximation structure, but the focus is on
scalability and smoothness, because the overview of all considered
approximation structures reveals an uncovered region for smooth ap-
proximations whose memory access ratio shrinks exponentially with
respect to input dimension. For a particular approximation structure,
the Memory Access Ratio (MAR) compares the number of parameters
which are necessary for learning and evaluation with the total num-
ber of parameters, because each parameter access is directed to mem-
ory and therefore potentially slow compared to calculations within a
CPU.

The main body of the thesis is dedicated to the development of the
envisioned approximation structure and the approach to get there is
geometrically motivated from interpolation in simplexes, because the
number of vertexes in a simplex grows linearly with respect to its
dimension and therefore allows to restrict the number of necessary
parameters to look at for evaluation and learning accordingly. The
description of the approach starts by introducing a symmetric simpli-
cial input segmentation and defining a smooth interpolation scheme
for this segmentation.

The resulting approximation structure meets the formal smooth-
ness and scalability requirements, but suffers from standard approx-
imation artifacts in high resolution grid-based structures. The intro-
duction of a layer structure and a corresponding learning architec-
ture mitigates the approximation artifacts at the cost of non-stationary
residual target functions in the learning architecture. The accordingly
introduced differential encoding for the parameters of sequential re-
finement layers intentionally solves the time-variance problems only
partly in order to preserve the desired cooperation between the layers.
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The resulting smooth layer approximation structure is equipped with
a variant of the RLS algorithm capable of handling non-stationary tar-
gets and completes the development of the AS-MRA as an on-line learn-
ing system. The AS-MRA is further equipped with a growing strategy
for adapting the layer structure on demand and with respect to pre-
diction performance related convergence detection. In order to avoid
mandatory design parameters in using the growing strategy, there is
a fixed build in overfitting detection which stops the growing of new
layers if the estimated prediction error is non-decreasing in three sub-
sequent layers.

The investigations on the AS-MRA and its individual parts start by
comparing its performance to standard approximation structures of
fixed size with respect to various target function properties and sys-
tematically consider the relation between target function complex-
ity and prediction performance of AS-MRA variants with fixed layer
depth. The experiments on target complexity already point out the
inherent self-regularization of the learning architecture and the re-
sulting overfitting suppression. The scalability of the computational
demands is theoretically founded and empirically shown and the
VL-RLS adaptive learning algorithm shows its merits for handling
time-variance in moderately noisy samples.

The growing strategy and especially the prediction performance
related tolerance parameter for convergence detection reveal the uni-
form convergence in the layered learning architecture which only
loosely resembles the local structure of the target function complexity.
Comparing different growing strategies from related approaches and
an AS-MRA with fixed size again points to the potential of the learn-
ing architecture to cope with different targets and noise while fully
exploiting the information content of each learning sample. This is
also confirmed in on-line system identification experiments on bench-
mark dynamic systems and also underpins the minimal design effort
for employing AS-MRA in an application.

In summary, the presented AS-MRA combines low design effort and
high learning performance in a smooth and scalable approach. The
main contributions of this thesis include the smooth interpolation
scheme for symmetric simplicial input segmentations, the learning
architecture for local refinement layers and the differential parame-
ter encoding which mitigates time-variance for the residual targets in
the learning architecture. The combination of these parts allows to in-
clude user-defined performance requirements in the growing strategy
of the AS-MRA, while it is best to use a layer structure of fixed depth in
order to fully exploit the information content in each learning sample.
This allows to focus the design of the AS-MRA as an on-line learning
system on available hardware resources rather than expected target
function properties.
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5.3 OUTLOOK

Although the presented AS-MRA is a fully operational on-line learning
system there are some unconnected links to other parts of machine
learning and possible extension to further increase the flexibility and
performance of the approach. The most important link which is al-
ready addressed in the thesis at various points is the issue of dimen-
sionality reduction. This topic is not inherently bound to AS-MRA, but
the curse-of-dimensionality with respect to learning sample demands
in high dimensions strongly requires to consider dimensionality re-
duction techniques. Since the resulting lower dimensional projection
spaces originating from a dimensionality reduction are aimed to be
densely covered by samples, the highly structured and grid-based
AS-MRA comes in handy as it inherently performs no kind of dimen-
sionality reduction and therefore is best suited for a modular design
which connects reduction and learning methods. So, dimensionality
reduction not necessarily needs to become a part of AS-MRA, but it can
be beneficial to combine both, especially when adapting the learning
architecture to dimensionality reduction algorithms.

A fully uncovered topic is to further exploit the layer structure in or-
der to enhance the growing strategy by means of layer-specific mean
parameter values and the parameter distribution in order to rate the
magnitude of single parameters and to build further noise and over-
fitting detection mechanisms. The same is true for the time horizon
estimation performed in the VL-RLS algorithm. But all of this needs to
be handled carefully in order to avoid fatal forgetting.

The presented structure internally handles prediction error estima-
tions as a sliding mean over the prediction error on incoming learn-
ing samples on the estimated time horizon. These parameters can be
used to lift the current point prediction to interval outputs which
reflect the estimated uncertainty about the prediction with respect
to noise. A further integration of Hoeffding bounds would also in-
clude a mapping for ignorance based uncertainty, but this requires to
adapt the standard counting based Hoeffding bounds to real-valued
time horizon estimations. The combination of conflict and ignorance
based uncertainty estimations allows to improve the evaluation of the
AS-MRA to choose the most reliable output across all layers.

A more ambitious task would be to extend the AS-MRA to enable
incremental learning not only for samples but also with respect to
input dimensions. The highly structured input segmentation in com-
bination with the linear scalability renders the AS-MRA a viable candi-
date for such an approach. This would further increase the flexibility
with respect to design effort and the cooperation with dimensionality
reduction techniques. For the same reason it would be reasonable to
extend the AS-MRA to be able to detect irrelevant inputs which sup-
ports both dimensionality reduction and input incremental learning
issues.
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tures and target functions.

Target function
Step function
Linear step
Parallel lines
Kink rise
Absolute value
Kink saturation
Linear
Quadratic
Cubic
Hyperbolic
Gauss

Sigmoid
Cosine
Mexican hat

Sine

£

&

= =

3 G
60.221  43.749
16.030 13.028
57.507 41.755
3423  3.114
2.284  4.166
2.395  2.017
2.048  1.654
3.011  4.686
1.416  2.444
4.085  5.749
4.385  3.048
7171 4.342
3.780  2.814
3.286  2.372
2.954  3.639

Legendre

67.807
19.054
64.772
3.825
4-980
2.669
2.288
4.307
1.478
2.532
4.040
9-443
5.411
3.580
4.116

Fourier

65.706
11.060
78.773
37794
3.112
36.478
36.027
4.714
33-451
32.668
39.726
38.211
4.000
20.326

4.000

Aligned

64.942
20.620
81.624
4.500
5.030
3-390
3.026
12.902
11.664
11.487
10.977
21.698
5.564
16.614
48.167

Table 7: Mean Cumulative Loss results for different approximation struc-

Shifted

52.971
37742
54.823
13.498
44.089
4.977
2.150
28.973
2.909
4.861
17.288
13.779
71.885
29.288

11.930

Combined

50.924
14.882
46.282
3.906
5.672
2.641
2.225
9.642
3335
6.219
5-445
11.616
6.748
6.379
10.550
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Table 8: Mean Cumulative Loss results for different approximation struc-
tures and target functions with layer depth equal to four.

<]
5
[
— UP o
o] M )
g 5 5 ge £
= 8 B 8|2 3 =
5 O & 3 | » £ g
. = . Q o = < °
Target function O o — = < ) o
Step function 60.22 43.75 67.81 65.71 | 55.51 33.37 31.74
Linear step 16.03 13.03 19.05 11.06 | 15.84 15.53 9.34
Parallel lines 57.51 41.76 64.77 78.77 | 54.73 30.03 29.28
Kink rise 342 311 383 3779 | 329 6.01 3.13
Absolute value | 2.28 417 498 3.11 | 441 1430 3.80
Kink saturation | 2.40 2.02 2.67 3648 | 2.29 3.21 2.23
Linear 2.05 1.65 229 36.03| 1.95 224 1.93
Quadratic 3.01  4.69 431 471 | 573 10.35 4.81
Cubic 1.42 244 148 3345 | 1.97 275 1.74
Hyperbolic 409 575 253 3267 | 453 478  3.46
Gauss 439 305 404 39.73 | 425 506  3.49
Sigmoid 717 434 944 3821 | 13.39 6.06 542
Cosine 3.78 281 541 4.00 | 494 14.04 4.84
Mexican hat 3.29 237 358 2033 538 5.90 3.23
Sine 295 3.64 412 4.00 | 7.08 8.06 4.85
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Table 9: List of the formal definitions of the simple target functions used in
section 4.3.1. All function f(x) map from the unit interval [0, 1] to
[—1,1],ie. f:10,1] — [-1,1].

Target function Formal definition Pictograph
Step function 2-My~05—1 o
Linear step (1—4x) +1yx>05 - (6x —2) N
Parallel lines (1—4x) +2-1y=05 NN
Kink rise (4x —3)1y=05 — 1 7
Absolute value 4ix —0.5]—1 7
Kink saturation 3x—1—1y>05-(2x—1) e
Linear 2x —1 _—
Quadratic 8(x —0.5)2 —1 N4
Cubic 8(x —0.5)3 —
Hyperbolic XzJ'rzoﬂ +1 -
Gauss 2exp(—16x%) —1 AN
Sigmoid tanh(10(x —0.5)) _/
Cosine cos(27x) A4
Mexican hat 1—22.08x? exp(—8x2) N~
Sine sin(27tx) A\




Bibliography

[1] C. C. Aggarwal. Data streams: models and algorithms, volume 31.

[2]

[10]

[11]

[12]

Springer Science & Business Media, 2007.

E. Almeida, C. Ferreira, and J. Gama. Adaptive model rules
from data streams. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 480-492.
Springer, 2013.

P. Angelov. An approach for fuzzy rule-base adaptation using
on-line clustering. International Journal of Approximate Reasoning,

35(3):275-289, 2004.

P. Angelov and D. Filev. Simpl_ets: A simplified method for
learning evolving takagi-sugeno fuzzy models. In Fuzzy Sys-
tems, 2005. FUZZ 05. The 14th IEEE International Conference on,
pages 1068-1073. IEEE, 2005.

P. P. Angelov and D. P. Filev. An approach to online identi-
fication of takagi-sugeno fuzzy models. I[EEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1):484—498,
2004.

M. Baena-Garcia, J. del Campo-Avila, R. Fidalgo, A. Bifet,
R. Gavalda, and R. Morales-Bueno. Early drift detection
method. 2006.

D. Basak, S. Pal, and D. C. Patranabis. Support vector re-
gression.  Neural Information Processing-Letters and Reviews,
11(10):203—224, 2007.

M. Basseville, I. V. Nikiforov, et al. Detection of abrupt changes:
theory and application, volume 104. Prentice Hall Englewood
Cliffs, 1993.

M. Z. A. Bhotto and A. Antoniou. Robust recursive least-
squares adaptive-filtering algorithm for impulsive-noise envi-
ronments. [EEE Signal processing letters, 18(3):185-188, 2011.

G. Biau, L. Devroye, V. Dujmovi¢, and A. Krzyzak. An affine
invariant k-nearest neighbor regression estimate. Journal of Mul-
tivariate Analysis, 112:24—34, 2012.

A. Bifet and R. Gavalda. Learning from time-changing data
with adaptive windowing. In Proceedings of the 2007 SIAM Inter-
national Conference on Data Mining, pages 443—448. SIAM, 2007.

A. Bifet, G. Holmes, B. Pfahringer, and E. Frank. Fast percep-
tron decision tree learning from evolving data streams. Ad-
vances in knowledge discovery and data mining, pages 299—-310,
2010.

171



172

Bibliography

[13] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavalda.
New ensemble methods for evolving data streams. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 139-148. ACM, 2009.

[14] P. Binev, A. Cohen, W. Dahmen, R. DeVore, and V. Temlyakov.
Universal algorithms for learning theory part i: piecewise
constant functions.  Journal of Machine Learning Research,
6(Sep):1297-1321, 2005.

[15] M. Birattari, G. Bontempi, and H. Bersini. Lazy learning meets
the recursive least squares algorithm. In Advances in neural in-
formation processing systems, pages 375-381, 1999.

[16] P. Bloomfield. Fourier analysis of time series: an introduction. John
Wiley & Sons, 2004.

[17] M. Blum. Fixed memory least squares filters using recursion
methods. IRE Transactions on Information Theory, 3(3):178-182,

1957.

[18] Y. Bodyanskiy, N. Lamonova, I. Pliss, and O. Vynokurova. An
adaptive learning algorithm for a wavelet neural network. Ex-
pert Systems, 22(5):235-240, 2005.

[19] G. K. Boray and M. D. Srinath. Conjugate gradient techniques
for adaptive filtering. IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, 39(1):1-10, 1992.

[20] O. Bousquet and L. Bottou. The tradeoffs of large scale learning.
In Advances in neural information processing systems, pages 161—
168, 2008.

[21] L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

[22] W. L. Briggs and V. E. Henson. The DFT: an owner’s manual for
the discrete Fourier transform. SIAM, 1995.

[23] E. Brodsky and B. S. Darkhovsky. Nonparametric methods in
change point problems, volume 243. Springer Science & Business
Media, 2013.

[24] D. S. Broomhead and D. Lowe. Radial basis functions, multi-
variable functional interpolation and adaptive networks. Tech-
nical report, Royal Signals and Radar Establishment Malvern
(United Kingdom), 1988.

[25] D. Brzezinski and J. Stefanowski. Reacting to different types of
concept drift: The accuracy updated ensemble algorithm. IEEE
Transactions on Neural Networks and Learning Systems, 25(1):81—

94, 2014.



Bibliography

[26] A. Buschermohle. Reliable on-line machine learning for regres-
sion tasks in presence of uncertainties. 2014.

[27] A. Buschermohle and W. Brockmann. On-line learning with
minimized change of the global mapping. Ewvolving Systems,
6(2):131-151, 2015.

[28] E. Cambria, G.-B. Huang, L. L. C. Kasun, H. Zhou, C. M. Vong,
J. Lin, J. Yin, Z. Cai, Q. Liu, K. Li, et al. Extreme learning
machines [trends & controversies]. IEEE Intelligent Systems,
28(6):30-59, 2013.

[29] R. M. Canetti and M. D. Espafia. Convergence analysis of the
least-squares identification algorithm with a variable forgetting
factor for time-varying linear systems. Automatica, 25(4):609—
612, 1989.

[30] C. Cantelmo and L. Piroddi. Adaptive model selection for poly-
nomial narx models. IET control theory & applications, 4(12):2693—
2706, 2010.

[31] G. Cauwenberghs and T. Poggio. Incremental and decremental
support vector machine learning. In Advances in neural informa-
tion processing systems, pages 409—415, 2001.

[32] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[33] J. Chen and R. ]J. Patton. Robust model-based fault diagnosis for
dynamic systems, volume 3. Springer Science & Business Media,
2012.

[34] C. K. Chui. An introduction to wavelets. Elsevier, 2016.

[35] A. Cotter, M. Gupta, and ]. Pfeifer. A light touch for heavily
constrained sgd. In Conference on Learning Theory, pages 729—
771, 2016.

[36] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer. Online passive-aggressive algorithms. Journal of Ma-
chine Learning Research, 7(Mar):551-585, 2006.

[37] K. Crammer, A. Kulesza, and M. Dredze. Adaptive regulariza-
tion of weight vectors. In Advances in neural information process-
ing systems, pages 414—422, 2009.

[38] K. Crammer and D. D. Lee. Learning via gaussian herding. In
Advances in neural information processing systems, pages 451—459,
2010.

173



174

Bibliography

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

I. Daubechies. Orthonormal bases of compactly supported
wavelets.  Communications on pure and applied mathematics,

41(7):909-996, 1988.

C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and
C. De Boor. A practical guide to splines, volume 27. Springer-
Verlag New York, 1978.

C. de Boor and R. DeVore. Approximation by smooth multi-
variate splines. Transactions of the American Mathematical Society,

276(2):775-788, 1983.

T. G. Dietterich. Machine learning for sequential data: A re-
view. In Joint IAPR International Workshops on Statistical Tech-
niques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR), pages 15—30. Springer, 2002.

T. G. Dietterich et al. Ensemble methods in machine learning.
Multiple classifier systems, 1857:1-15, 2000.

F. Ding and T. Chen. Performance bounds of forgetting factor
least-squares algorithms for time-varying systems with finite
measurement data. IEEE Transactions on Circuits and Systems I:
Regular Papers, 52(3):555-566, 2005.

S. Ding, X. Xu, and R. Nie. Extreme learning machine and its
applications. Neural Computing and Applications, 25(3-4):549-556,
2014.

S. Ding, H. Zhao, Y. Zhang, X. Xu, and R. Nie. Extreme learn-
ing machine: algorithm, theory and applications. Artificial Intel-
ligence Review, 44(1):103-115, 2015.

P. Domingos and G. Hulten. Mining high-speed data streams.
In Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 71-80. ACM, 2000.

H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vap-
nik. Support vector regression machines. In Advances in neural
information processing systems, pages 155-161, 1997.

K.-L. Du and M. Swamy. Radial basis function networks. In
Neural Networks and Statistical Learning, pages 299—335. Springer,
2014.

J. Duarte and J. Gama. Ensembles of adaptive model rules from
high-speed data streams. In Proceedings of the 3rd International
Conference on Big Data, Streams and Heterogeneous Source Min-
ing: Algorithms, Systems, Programming Models and Applications-
Volume 36, pages 198-213. JMLR. org, 2014.



Bibliography

[51] J. Duarte, J. Gama, and A. Bifet. Adaptive model rules from
high-speed data streams. ACM Transactions on Knowledge Dis-
covery from Data (TKDD), 10(3):30, 2016.

[52] E. Eleftheriou and D. Falconer. Tracking properties and steady-
state performance of rls adaptive filter algorithms. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 34(5):1097-1110,
1986.

[53] R. Elwell and R. Polikar. Incremental learning of concept drift
in nonstationary environments. IEEE Transactions on Neural Net-
works, 22(10):1517-1531, 2011.

[54] K. Eriksson, D. Estep, and C. Johnson. Piecewise linear approx-
imation. In Applied Mathematics: Body and Soul, pages 741-753.
Springer, 2004.

[55] E. Eweda and O. Macchi. Convergence of the rls and Ims adap-
tive filters. IEEE Transactions on Circuits and Systems, 34(7):799—
803, 1987.

[56] J. A. Farrell and M. M. Polycarpou. Adaptive approximation based
control: unifying neural, fuzzy and traditional adaptive approxima-
tion approaches, volume 48. John Wiley & Sons, 2006.

[57] G. Feng, G.-B. Huang, Q. Lin, and R. Gay. Error minimized
extreme learning machine with growth of hidden nodes and
incremental learning. IEEE Transactions on Neural Networks,

20(8):1352—-1357, 2009.

[58] P. M. Ferreira and A. E. Ruano. Online sliding-window meth-
ods for process model adaptation. IEEE transactions on instru-
mentation and Measurement, 58(9):3012—3020, 2009.

[59] M. Forray. Approximation theory and methods, 1981.

[60] T. Fortescue, L. S. Kershenbaum, and B. E. Ydstie. Implemen-
tation of self-tuning regulators with variable forgetting factors.
Automatica, 17(6):831-835, 1981.

[61] G. Freud. Orthogonal polynomials. Elsevier, 2014.

[62] H. Freudenthal. Simplizialzerlegungen von beschrankter flach-
heit. Annals of Mathematics, pages 580-582, 1942.

[63] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statis-
tical learning, volume 1. Springer series in statistics New York,
2001.

[64] ]J. Friedman, T. Hastie, and R. Tibshirani. A note on the group
lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736,
2010.

175



176

Bibliography

[65] J. Gama and M. M. Gaber. Learning from data streams: processing
techniques in sensor networks. Springer, 2007.

[66] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with
drift detection. In Brazilian Symposium on Artificial Intelligence,
pages 286—295. Springer, 2004.

[67] J. Gama, P. Medas, and R. Rocha. Forest trees for on-line data.
In Proceedings of the 2004 ACM symposium on Applied computing,
pages 632-636. ACM, 2004.

[68] W. Gao, R. Jin, S. Zhu, and Z.-H. Zhou. One-pass auc opti-
mization. In International Conference on Machine Learning, pages
906—914, 2013.

[69] J. Gertler. Fault Detection and Diagnosis. Springer, 2015.

[70] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized
trees. Machine learning, 63(1):3—42, 2006.

[71] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss.
One-pass wavelet decompositions of data streams. IEEE Trans-
actions on knowledge and data engineering, 15(3):541-554, 2003.

[72] G.-O. Glentis, K. Berberidis, and S. Theodoridis. Efficient least
squares adaptive algorithms for fir transversal filtering. IEEE
signal processing magazine, 16(4):13—41, 1999.

[73] G. Goodwin, E. Teoh, and H. Elliott. Deterministic convergence
of a self-tuning regulator with covariance resetting. In IEE Pro-
ceedings D-Control Theory and Applications, volume 130, pages
6-8. IET, 1983.

[74] G. C. Goodwin and K. S. Sin. Adaptive filtering prediction and
control. Courier Corporation, 2014.

[75] L. Guo, J.-H. Hao, and M. Liu. An incremental extreme learning
machine for online sequential learning problems. Neurocomput-
ing, 128:50-58, 2014.

[76] L. Guo, L. Ljung, and P. Priouret. Performance analysis of the
forgetting factor rls algorithm. International journal of adaptive
control and signal processing, 7(6):525-537, 1993.

[77]1 M. Gupta, A. Cotter, ]. Pfeifer, K. Voevodski, K. Canini,
A. Mangylov, W. Moczydlowski, and A. Van Esbroeck. Mono-
tonic calibrated interpolated look-up tables. The Journal of Ma-
chine Learning Research, 17(1):3790-3836, 2016.

[78] E. Gustafsson and F. Gustafsson. Adaptive filtering and change
detection, volume 1. Wiley New York, 2000.



Bibliography

[79] T. Hastie and R. Tibshirani. Generalized additive models. Wiley
Online Library, 1990.

[80] S.S.Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin. Neural
networks and learning machines, volume 3. Pearson Upper Saddle
River, NJ, USA:, 2009.

[81] H. Hellendoorn and D. Driankov. Fuzzy model identification: se-
lected approaches. Springer Science & Business Media, 2012.

[82] J. L. Hennessy and D. A. Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

[83] T. M. Heskes and B. Kappen. On-line learning processes in
artificial neural networks. North-Holland Mathematical Library,

51:199-233, 1993.

[84] R.]J. Howlett and L. C. Jain. Radial basis function networks 1: re-
cent developments in theory and applications, volume 66. Springer
Science & Business Media, 2001.

[85] R.]J. Howlett and L. C. Jain. Radial basis function networks 2: new
advances in design, volume 67. Physica, 2013.

[86] G.Huang, G.-B. Huang, S. Song, and K. You. Trends in extreme
learning machines: A review. Neural Networks, 61:32—48, 2015.

[87] G.-B. Huang and L. Chen. Convex incremental extreme learn-
ing machine. Neurocomputing, 70(16):3056—3062, 2007.

[88] G.-B. Huang, D. H. Wang, and Y. Lan. Extreme learning ma-
chines: a survey. International journal of machine learning and cy-
bernetics, 2(2):107-122, 2011.

[89] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning ma-
chine: a new learning scheme of feedforward neural networks.
In Neural Networks, 2004. Proceedings. 2004 IEEE International
Joint Conference on, volume 2, pages 985-990. IEEE, 2004.

[90] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning ma-
chine: theory and applications. Neurocomputing, 70(1):489—501,
2006.

[91] K. J. Hunt. A survey of recursive identification algorithms.
Transactions of the Institute of Measurement and Control, 8(5):273—
278, 1986.

[92] E. Ikonomovska, J. Gama, and S. DZeroski. Learning model
trees from evolving data streams. Data mining and knowledge
discovery, 23(1):128-168, 2011.

177



178

Bibliography

[93] E. Ikonomovska, J. Gama, and S. DzZeroski. Online tree-based
ensembles and option trees for regression on evolving data
streams. Neurocomputing, 150:458-470, 2015.

[94] J.-S. Jang. Anfis: adaptive-network-based fuzzy inference sys-
tem. IEEE transactions on systems, man, and cybernetics, 23(3):665—

685, 1993.

[95] H. Jin, X. Chen, J. Yang, and L. Wu. Adaptive soft sensor mod-
eling framework based on just-in-time learning and kernel par-
tial least squares regression for nonlinear multiphase batch pro-
cesses. Computers & Chemical Engineering, 71:77-93, 2014.

[96] V. John. Adaptive polynomial filters. Circuits and Systems Tuto-
rials, page 59, 1996.

[97] A. Justel, D. Pefia, and R. Zamar. A multivariate kolmogorov-
smirnov test of goodness of fit. Statistics & Probability Letters,

35(3):251-259, 1997.

[98] N. Kasabov. Evolving fuzzy neural networks-algorithms, ap-
plications and biological motivation. Methodologies for the con-
ception, design and application of soft computing, World Scientific,

1:271-274, 1998.

[99] N. K. Kasabov and Q. Song. Denfis: dynamic evolving neural-
fuzzy inference system and its application for time-series pre-
diction. IEEE transactions on Fuzzy Systems, 10(2):144—154, 2002.

[100] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data
streams. In Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30, pages 180-191. VLDB Endow-
ment, 2004.

[101] O. Kisi. Wavelet regression model as an alternative to neural
networks for river stage forecasting. Water resources management,
25(2):579—600, 2011.

[102] R. Klinkenberg. Learning drifting concepts: Example selection
vs. example weighting. Intelligent Data Analysis, 8(3):281-300,
2004.

[103] R. Klinkenberg and T. Joachims. Detecting concept drift with
support vector machines. In ICML, pages 487-494, 2000.

[104] R. Klinkenberg and I. Renz. Adaptive information filtering:
Learning drifting concepts. In Proc. of AAAI-98/ICML-98 work-
shop Learning for Text Categorization, pages 33—40. Citeseer, 1998.

[105] J. Kohlmorgen and S. Lemm. An on-line method for segmenta-
tion and identification of non-stationary time series. In Neural



Bibliography

Networks for Signal Processing X1, 2001. Proceedings of the 2001
IEEE Signal Processing Society Workshop, pages 113-122. IEEE,
2001.

[106] G. Konidaris, S. Osentoski, and P. S. Thomas. Value function
approximation in reinforcement learning using the fourier ba-
sis. In AAAI, volume 6, page 7, 2011.

[107] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woz-
niak. Ensemble learning for data stream analysis: a survey. In-
formation Fusion, 37:132-156, 2017.

[108] H. W. Kuhn. Some combinatorial lemmas in topology. IBM
Journal of research and development, 4(5):518-524, 1960.

[109] L. I. Kuncheva. Change detection in streaming multivariate
data using likelihood detectors. IEEE Transactions on Knowledge
and Data Engineering, 25(5):1175-1180, 2013.

[110] Y. Lan, Y. C. Soh, and G.-B. Huang. Ensemble of online sequen-
tial extreme learning machine. Neurocomputing, 72(13):3391—

3395, 2009.

[111] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer
feedforward networks with a nonpolynomial activation func-
tion can approximate any function. Neural networks, 6(6):861—

867, 1993.

[112] S.-H. Leung and C. So. Gradient-based variable forgetting fac-
tor rls algorithm in time-varying environments. IEEE Transac-
tions on Signal Processing, 53(8):3141-3150, 2005.

[113] L. Li, M. L. Littman, and T. J. Walsh. Knows what it knows:
a framework for self-aware learning. In Proceedings of the 25th
international conference on Machine learning, pages 568-575. ACM,
2008.

[114] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundarara-
jan. A fast and accurate online sequential learning algorithm
for feedforward networks. IEEE Transactions on neural networks,
17(6):1411-1423, 2006.

[115] A. Liaw, M. Wiener, et al. Classification and regression by ran-
domforest. R news, 2(3):18-22, 2002.

[116] ]J.-s. Lim, S. Lee, and H.-S. Pang. Low complexity adaptive for-
getting factor for online sequential extreme learning machine
(os-elm) for application to nonstationary system estimations.
Neural Computing and Applications, 22(3-4):569-576, 2013.

[117] T. Lim and M. Macleod. On-line interpolation using spline func-
tions. IEEE Signal Processing Letters, 3(5):144—146, 1996.

179



180

Bibliography

[118] J. Liu and E. Zio. An adaptive online learning approach for
support vector regression: Online-svr-fid. Mechanical Systems
and Signal Processing, 76:796-809, 2016.

[119] J. Liu and E. Zio. A svr-based ensemble approach for drifting
data streams with recurring patterns. Applied Soft Computing,

47:553-564, 2016.

[120] L. Ljung and S. Gunnarsson. Adaptation and tracking in system
identification—a survey. Automatica, 26(1):7-21, 1990.

[121] W.-Y. Loh. Classification and regression trees. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 1(1):14—23,
2011.

[122] E. Lughofer. Evolving fuzzy systems-methodologies, advanced con-
cepts and applications, volume 53. Springer, 2011.

[123] E. Lughofer and P. Angelov. Handling drifts and shifts in on-
line data streams with evolving fuzzy systems. Applied Soft
Computing, 11(2):2057-2068, 2011.

[124] E. Lughofer, J.-L. Bouchot, and A. Shaker. On-line elimination
of local redundancies in evolving fuzzy systems. Evolving Sys-
tems, 2(3):165-187, 2011.

[125] E. Lughofer, C. Cernuda, S. Kindermann, and M. Pratama.
Generalized smart evolving fuzzy systems. Evolving Systems,
6(4):269—-292, 2015.

[126] E. Lughofer, E. Hiillermeier, and E.-P. Klement. Improving
the interpretability of data-driven evolving fuzzy systems. In
EUSFLAT Conf., pages 28-33, 2005.

[127] E. Lughofer and E.-P. Klement. Flexfis: A variant for incremen-
tal learning of takagi-sugeno fuzzy systems. In Fuzzy Systems,
2005. FUZZ'05. The 14th IEEE International Conference on, pages
915—920. IEEE, 2005.

[128] E. D. Lughofer. Flexfis: A robust incremental learning approach
for evolving takagi—-sugeno fuzzy models. IEEE Transactions on
fuzzy systems, 16(6):1393—-1410, 2008.

[129] J. Ma, ]. Theiler, and S. Perkins. Accurate on-line support vector
regression. Neural computation, 15(11):2683—27703, 2003.

[130] M. A. Maloof and R. S. Michalski. Learning evolving concepts
using partial-memory approach. In Notes of the 1995 AAAI Fall
Symposium on Active Learning, 1995.

[131] M. Markou and S. Singh. Novelty detection: a review—part 1:
statistical approaches. Signal processing, 83(12):2481-2497, 2003.



Bibliography

[132] M. Markou and S. Singh. Novelty detection: a review—part
2: neural network based approaches.  Signal processing,

83(12):2499—2521, 2003.

[133] F.J. Massey Jr. The kolmogorov-smirnov test for goodness of fit.
Journal of the American statistical Association, 46(253):68—78, 1951.

[134] Y. Meyer. Orthonormal wavelets. In Wavelets, pages 21-37.
Springer, 1990.

[135] T. Mitchell. Machine Learning. McGraw-Hill International Edi-
tions. McGraw-Hill, 1997.

[136] B. Mizrach. Multivariate nearest-neighbour forecasts of ems
exchange rates. Journal of Applied Econometrics, 7(51), 1992.

[137] D. W. Moore. Simplical mesh generation with applications.
Technical report, Cornell University, 1992.

[138] E. Moroshko, N. Vaits, and K. Crammer. Second-order non-
stationary online learning for regression. Journal of Machine
Learning Research, 16:1481-1517, 2015.

[139] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi. Test of page-
hinckley, an approach for fault detection in an agro-alimentary
production system. In Control Conference, 2004. 5th Asian, vol-
ume 2, pages 815-818. IEEE, 2004.

[140] N. Miiller and R. Isermann. On-line adaptation of grid-based
look-up tables using a fast linear regression technique. 2004.

[141] K. S. Narendra and K. Parthasarathy. Identification and control
of dynamical systems using neural networks. IEEE Transactions
on neural networks, 1(1):4—27, 1990.

[142] O. Nelles. Orthonormal basis functions for nonlinear system
identification with local linear model trees (lolimot). IFAC Pro-
ceedings Volumes, 30(11):639-644, 1997.

[143] N. C. Oza. Online bagging and boosting. In Systems, man and
cybernetics, 2005 IEEE international conference on, volume 3, pages
2340-2345. IEEE, 2005.

[144] N. C. Oza and S. Russell. Experimental comparisons of online
and batch versions of bagging and boosting. In Proceedings of
the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 359—364. ACM, 2001.

[145] N. C. Oza and S. Russell. Online ensemble learning. University
of California, Berkeley, 2001.

181



182

Bibliography

[146] E. S. Page. Continuous inspection schemes.  Biometrika,
& p
41(1/2):100-115, 1954.

[147] C. Paleologu, J. Benesty, and S. Ciochina. A robust variable
forgetting factor recursive least-squares algorithm for system
identification. IEEE Signal Processing Letters, 15:597—600, 2008.

[148] J. Park and I. W. Sandberg. Universal approximation using
radial-basis-function networks. Neural computation, 3(2):246—

257, 1991.

[149] J. Park and I. W. Sandberg. Approximation and radial-basis-
function networks. Neural computation, 5(2):305-316, 1993.

[150] ]J. Parkum, N. K. Poulsen, and J. Holst. Selective forgetting in
adaptive procedures. IFAC Proceedings Volumes, 23(8):137-142,

1990.

[151] J. Parkum, N. K. Poulsen, and ]J. Holst. Recursive forgetting
algorithms. International Journal of Control, 55(1):109—-128, 1992.

[152] J. E. Parkum. Recursive identification of time-varying systems,
1992. Supervised by Niels K. Poulsen, and Henrik Spliid, DTU
Informatics, http:/ /www.imm.dtu.dk.

[153] L. Pietruczuk, L. Rutkowski, M. Jaworski, and P. Duda. A
method for automatic adjustment of ensemble size in stream
data mining. In Neural Networks (I[JCNN), 2016 International Joint
Conference on, pages 9-15. IEEE, 2016.

[154] M. J. D. Powell. Approximation theory and methods. Cambridge
university press, 1981.

[155] M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer. Pan-
fis: A novel incremental learning machine. IEEE Transactions on
Neural Networks and Learning Systems, 25(1):55-68, 2014.

[156] H. Robbins and S. Monro. A stochastic approximation method.
The annals of mathematical statistics, pages 400407, 1951.

[157] H.-J. Rong, G.-B. Huang, N. Sundararajan, and P. Saratchan-
dran. Online sequential fuzzy extreme learning machine for
function approximation and classification problems. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics),

39(4):1067-1072, 2009.

[158] F. Rosenblatt. The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychological re-
view, 65(6):386, 1958.

[159] D. Saad. On-line learning in neural networks, volume 17. Cam-
bridge University Press, 2009.



Bibliography

[160] D. Saad and S. A. Solla. Exact solution for on-line learning in
multilayer neural networks. Physical Review Letters, 74(21):4337,

1995.

[161] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-
line random forests. In Computer Vision Workshops (ICCV Work-
shops), 2009 IEEE 12th International Conference on, pages 1393—
1400. IEEE, 2009.

[162] M. E. Salgado, G. C. Goodwin, and R. H. Middleton. Modified
least squares algorithm incorporating exponential resetting and
forgetting. International Journal of Control, 47(2):477-491, 1988.

[163] T. Sato and K. Takei. Real-time robust identification algorithm
for structural systems with time-varying dynamic characteris-
tics. In Smart Structures and Materials’ 97, pages 393—404. Inter-
national Society for Optics and Photonics, 1997.

[164] M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini. Non-
linear spline adaptive filtering. Signal Processing, 93(4):772—783,
2013.

[165] S. Schaal and C. G. Atkeson. Constructive incremental learn-
ing from only local information. Neural computation, 10(8):2047-
2084, 1998.

[166] T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning
rates. ICML (3), 28:343-351, 2013.

[167] J. C. Schlimmer and R. H. Granger Jr. Beyond incremental
processing: tracking concept drift. In Proceedings of the Fifth
AAAI National Conference on Artificial Intelligence, pages 502—507.
AAAI Press, 1986.

[168] L. Schumaker. Spline functions: basic theory. Cambridge Univer-
sity Press, 2007.

[169] M. R. Segal. Machine learning benchmarks and random for-
est regression. Center for Bioinformatics & Molecular Biostatistics,
2004-.

[170] A. Sen and M. S. Srivastava. On tests for detecting change in
mean. The Annals of statistics, pages 98-108, 1975.

[171] W. A. Sethares. The least mean square family. Adaptive system
identification and signal processing algorithms, pages 84—122, 1993.

[172] A.Shaker and E. Hiillermeier. Iblstreams: a system for instance-
based classification and regression on data streams. Evolving
Systems, 3(4):235-249, 2012.

183



184

Bibliography

[173] O. Sigaud, C. Salaiin, and V. Padois. On-line regression al-
gorithms for learning mechanical models of robots: a survey.
Robotics and Autonomous Systems, 59(12):1115-1129, 2011.

[174] V. Smidl and F. Gustafsson. Bayesian estimation of forgetting
factor in adaptive filtering and change detection. In Statisti-
cal Signal Processing Workshop (SSP), 2012 IEEE, pages 197—200.
IEEE, 2012.

[175] A. ]J. Smola and B. Scholkopf. A tutorial on support vector
regression. Statistics and computing, 14(3):199—222, 2004.

[176] S. G. Soares and R. Aratjo. A dynamic and on-line ensemble
regression for changing environments. Expert Systems with Ap-
plications, 42(6):2935-2948, 2015.

[177] Student. The probable error of a mean. Biometrika, pages 1-25,
1908.

[178] G. Szeg. Orthogonal polynomials, volume 23. American Mathe-
matical Soc., 1939.

[179] T. Takagi and M. Sugeno. Fuzzy identification of systems and
its applications to modeling and control. IEEE transactions on
systems, man, and cybernetics, (1):116-132, 1985.

[180] P. T. P. Tang. Table-lookup algorithms for elementary functions
and their error analysis. In Computer Arithmetic, 1991. Proceed-
ings., 10th IEEE Symposium on, pages 232—236. IEEE, 1991.

[181] R. Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
pages 267288, 1996.

[182] A. N. Tikhonov. On the stability of the functional optimiza-
tion problem. USSR Computational Mathematics and Mathematical
Physics, 6(4):28-33, 1966.

[183] B. Toplis and S. Pasupathy. Tracking improvements in fast rls
algorithms using a variable forgetting factor. IEEE Transactions
on acoustics, speech, and signal processing, 36(2):206—227, 1988.

[184] A. Tsymbal. The problem of concept drift: definitions and re-
lated work. 2004.

[185] K. Uosaki and M. Yotsuya. Adaptive identification with multi-
ple forgetting factors. Transactions of the Society of Instrument and
Control Engineers, 28(9):1046—-1051, 1992.

[186] N. Vaits and K. Crammer. Re-adapting the regularization of
weights for non-stationary regression. In International Confer-
ence on Algorithmic Learning Theory, pages 114-128. Springer,
2011.



Bibliography

[187] S. Van Vaerenbergh, J. Via, and I. Santamaria. A sliding-window
kernel rls algorithm and its application to nonlinear channel
identification. In Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International Conference on,
volume 5, pages V-V. IEEE, 2006.

[188] V. Vapnik. The nature of statistical learning theory. Springer sci-
ence & business media, 2013.

[189] S. Vijayakumar, A. D'Souza, and S. Schaal. Lwpr: A scalable
method for incremental online learning in high dimensions.
2005.

[190] J. S. Vitter. Random sampling with a reservoir. ACM Transac-
tions on Mathematical Software (TOMS), 11(1):37-57, 1985.

[191] M. VOGT, N. MULLER, and R. ISERMANN. On-line adapta-
tion of grid-based look-up tables using a fast linear regression
technique. Journal of dynamic systems, measurement, and control,

126(4):732-739, 2004.

[192] L. Wang and R. Langari. A variable forgetting factor rls algo-
rithm with application to fuzzy time-varying systems identifica-
tion. International journal of systems science, 27(2):205-214, 1996.

[193] L.-X. Wang and J. M. Mendel. Fuzzy basis functions, univer-
sal approximation, and orthogonal least-squares learning. IEEE
transactions on Neural Networks, 3(5):807-814, 1992.

[194] X. Wang and V. Makis. Autoregressive model-based gear shaft
fault diagnosis using the kolmogorov—smirnov test. Journal of
Sound and Vibration, 327(3):413—423, 2009.

[195] M. Welling. Support vector regression. Department of Computer
Science, University of Toronto, Toronto (Kanada), 2004.

[196] G. Widmer and M. Kubat. Learning in the presence of concept
drift and hidden contexts. Machine learning, 23(1):69-101, 1996.

[197] B. Widrow, M. E. Hoff, et al. Adaptive switching circuits. In
IRE WESCON convention record, volume 4, pages 96—104. New
York, 1960.

[198] N. Wiener. Extrapolation, interpolation, and smoothing of stationary
time series, volume 7. MIT press Cambridge, MA, 1949.

[199] F. Xhafa, L. Barolli, A. Barolli, and P. Papajorgji. Modeling and
processing for next-generation big-data technologies. Cham:
Springer International Publishing, 2015.

[200] S. Yakowitz. Nearest-neighbour methods for time series analy-
sis. Journal of time series analysis, 8(2):235-247, 1987.

185



186

Bibliography

[201] L. Yingwei, N. Sundararajan, and P. Saratchandran. A sequen-
tial learning scheme for function approximation using mini-
mal radial basis function neural networks. Neural computation,

9(2):461—478, 1997.

[202] M. Yuan and Y. Lin. Model selection and estimation in regres-
sion with grouped variables. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 68(1):49—67, 2006.

[203] S. Yun and K.-C. Toh. A coordinate gradient descent method
for 1 1-regularized convex minimization. Computational Opti-
mization and Applications, 48(2):273-307, 2011.

[204] W. Yung and K. Man. Optimal selected forgetting factor for rls
estimation. IFAC Proceedings Volumes, 26(2):331-334, 1993.

[205] Y. Zhou, S. Chan, and K. Ho. A new variable forgetting factor
qr-based recursive least m-estimate algorithm for robust adap-
tive filtering in impulsive noise environment. In Signal Process-
ing Conference, 2006 14th European, pages 1—5. IEEE, 2006.



	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	Acronyms
	Symbols
	1 Introduction
	1.1 Motivation
	1.2 The Incremental Learning Problem
	1.3 Requirements
	1.4 Goal and Outline of the Thesis

	2 Related Work
	2.1 Approximation Structures
	2.1.1 Polynomials
	2.1.2 Grid-based Look-up Tables
	2.1.3 Splines
	2.1.4 Radial Basis Function Networks
	2.1.5 Takagi-Sugeno-Kang Fuzzy Systems
	2.1.6 Multi Layer Perceptrons
	2.1.7 Fourier Series
	2.1.8 Wavelets
	2.1.9 Trees
	2.1.10 Nearest Neighbors
	2.1.11 Support Vector Regression
	2.1.12 Summary

	2.2 On-line Learning Algorithms
	2.2.1 First Order On-line Learning Algorithms
	2.2.2 Second Order On-line Learning

	2.3 Adaptive Learning Algorithms
	2.3.1 Implicit Time-variance Handling
	2.3.2 Explicit Time-variance Handling
	2.3.3 Ensemble Methods

	2.4 On-line and Incremental Learning Systems
	2.4.1 Rigid Structure Approaches
	2.4.2 RBF and Fuzzy Approaches
	2.4.3 Neural Network Approaches
	2.4.4 Tree-based Approaches
	2.4.5 Nearest Neighbor Approaches
	2.4.6 Support Vector Approaches


	3 Approach
	3.1 Scalable and Smooth Interpolation on Symmetric Simplex-Structures
	3.1.1 Symmetric Simplicial Input Segmentation
	3.1.2 Smooth Interpolation on Symmetric Simplicial Structures

	3.2 Simplicial Refinement Layers
	3.2.1 Learning Architecture
	3.2.2 Refinement Strategies
	3.2.3 Information Propagation and Encoding

	3.3 Local Adaptive Learning
	3.4 Adaptive Simplicial Multi Resolution Approximation
	3.4.1 Growing Strategy
	3.4.2 Ensemble Evaluation


	4 Investigations
	4.1 Performance Measures
	4.2 General Setting
	4.3 Approximation Structure Properties
	4.3.1 Target Function Properties
	4.3.2 Target Function Complexity
	4.3.3 Scalability of Computational Demands

	4.4 Learning Behavior: Noise Reduction Vs Time Variance Adaptation
	4.5 Growing strategy
	4.5.1 Adaptive Layer Depth
	4.5.2 Strategy Comparison

	4.6 On-line System Identification

	5 Conclusion
	5.1 Discussion
	5.1.1 Design effort
	5.1.2 Learning Properties
	5.1.3 Approximation structure properties
	5.1.4 Time-variance

	5.2 Summary
	5.3 Outlook

	A Appendix

