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Abstract: Energy redistribution between two subpicosecond laser pulses of 2.5 eV photon
energy is observed and studied in congruent, nominally undoped LiNbO3, aiming to reveal the
underlying coupling mechanisms. The dependences of pulse amplification on intensity, frequency
detuning and pulse duration point to two different contributions of coupling, both based on
self-diffraction from a recorded dynamic grating. The first one is caused by a difference in pulse
intensities (transient energy transfer) while the second one originates from a difference in pulse
frequencies. The latter appears when chirped pulses are mutually delayed in time. A quite high
coupling efficiency has been observed in a 280 µm thin crystal: one order of magnitude energy
amplification of a weak pulse and nearly 10% net energy enhancement of one pulse for the case
of equal input intensities.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The intensity coupling of two light waves that propagate in a nonlinear medium (two-beam
coupling) is one of the basic phenomena of dynamic holography [1]. This type of coupling
has attracted the interest of researchers since the discovery in 1980’s of unidirectional intensity
transfer between two waves that are recording a shifted phase grating in a nonlinear optical crystal
(see, e.g., [2, 3]). A new type of coherent light wave amplification became possible, various
dynamic-grating-based coherent optical oscillators were designed and used as self-starting phase
conjugate mirrors [4].
In the early stage of the dynamic holography, emphasis was put on the intensity coupling of

continuous waves (cw), both in theory and in experiment. Quite quickly the developed approaches
were extended for the description of the interaction of light pulses. The term "two-beam coupling"
was still used to define the interaction of pulses (see, e.g., [5–7]), but it became often replaced
by "pulse energy transfer" [8–12] or "energy exchange" [13]. The researchers dealing with
pump-probe techniques were facing the problem of so called "coherent peaks" [14, 15], which is
a consequence of pump and probe pulse coupling via a dynamic grating, too [16]. It should be
mentioned that the fundamental phenomenon of gain in stimulated Rayleigh-wing scattering had
been treated well before the appearance of femtosecond lasers [17–21], but never in terms of
diffraction from a grating. A comprehensive analysis of pulse coupling is given in the review
article [22] and textbooks [23, 24]. More than a hundred original publications that consider
different aspects of grating-assisted interaction of pulses have been published.

The self-diffraction of the recording pulses themselves, or diffraction of an auxiliary probe pulse
from the developing instantaneous or inertial grating, are still studied nowadays [25]. It has been
used for the characterization of the pulses themselves [26, 27], plasma filament control in air [6]
and nonlinear liquids [11], nonlinear spectroscopy of the materials themselves [7, 13], frequency
conversion [28,29], etc. The subpicosecond pulses even allowed, quite counter-intuitively, for
grating recording with light being strongly nondegenerate in frequency [30]. Both, dynamic
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and permanent gratings were recorded. The recording of static holograms with image bearing
pulses proved to be possible with subpicosecond pulses of different color, with further image
reconstruction by a cw laser beam [30].
Commonly, the description of grating-assisted pulse interaction is based on the solution

of coupled wave equations for a spatial variation of slowly varying complex amplitudes (see,
e.g., [2, 3, 22–24]). While these equations are nearly always the same, the material equations,
which are necessary to calculate the temporal dynamics of interaction, depend on the particular
nonlinear medium and the particular type of nonlinearity involved. The present work is an
experimental study in which the measured dependences are compared with predictions of already
existing theories that describe particular coupling processes. We conduct this study to estimate
the strength of the coupling of subpicosecond pulses in LiNbO3 and to reveal the types of
underlying wave mixing process(es) that is (are) responsible for an energy redistribution between
the interacting pulses. Lithium niobate was the first crystal in which a photorefractive nonlinearity
and grating-assisted intensity redistribution of the recording waves have been discovered [4, 31].
Apart from the instantaneous high-frequency Kerr nonlinearity [32] and two-photon absorption
(TPA) nonlinearity [33], several inertial nonlinear responses have been revealed, too. They include
photoexcitation of free carriers [34,35], and the formation of various kinds of polarons [36]. The
identification of the physical process of nonlinearity that is responsible for the investigated pulse
coupling will be, however, the topic of a separate study.

The structure of the present paper is as follows. After this Introduction, the sectionExperimental
technique presents the description of chirped femtosecond laser pulses, the nonlinear optical
crystal itself, and the experimental setup. The third section, the Experimental results, consists
of four parts, devoted to particular sets of measurements. In subsection 3.1 a small signal
amplification is studied, with a weak probe pulse which interacts with a stronger pump pulse, both
pulses being perfectly matched in time. Subsection 3.2, on the opposite, focuses on the interaction
of pulses of equal energies that become detuned in frequencies being temporally mismatched. In
subsection 3.3 the effect of the pulse duration is analyzed for the interaction of identical pulses.
Finally, in the last subsection 3.4, a possible influence of extended temporal spectra of ultrashort
pulses on their energy coupling is analyzed. In the Discussion section it is shown that the major
contribution to energy transfer between subpicosecond pulses in congruent, nominally undoped
LiNbO3 is due to two different coupling processes: (i) quasi steady-state coupling of waves of
equal intensity with mutually shifted frequencies and (ii) transient, non-steady-state coupling of
waves of different intensities but with identical spectra. The first process was already proven
to be responsible for the interaction of frequency-chirped pulses in gases, plasma and liquids
(see, e.g., [6, 7, 11, 13]). Our study shows that it results in a quite strong pulse interaction in a
solid-state material as well. The second process has never been considered, to the best of our
knowledge, for the interaction of short pulses in spite of the fact that it was revealed long ago for
interactions in photorefractive crystals [37] and media with a thermal nonlinearity [38, 39].

2. Experimental technique

All experiments in this paper are performed with a classical interaction geometry of two-beam
coupling of co-propagating light beams which is also standard for pump-probe techniques.
Figure 1 shows schematically the experimental setup used for our studies. Two ultrashort light
pulses with equal central wavelengths of λ = 488 nm (or λ = 590 nm) impinge upon a LiNbO3
sample with a full crossing angle in air of 2θ < 5◦. A relatively small angle can be set by the use
of a single focusing lens (L) for both pulses to ensure a good spatial overlap of the femtosecond
pulses. An optical delay line (DL) is installed in one of the two beams to adjust a temporal
mismatch ∆t between both pulses of up to several picoseconds.

The main measured characteristic in this paper is the normalized transmission Ti = Wi/W0
i for

each of the two interacting pulses (subscripts pu and pr for pump and probe pulses, respectively).
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Here, Wi denotes the transmitted pulse energy of one pulse in presence of the other pulse, while
W0

i is the energy of the unaffected transmitted pulse, with no other pulse in the sample. The
transmission Ti is measured as a function of different experimental parameters: total intensity
of the two pulses I, pulse intensity ratio R = Ipu/Ipr, temporal delay between the two pulses ∆t,
and FWHM pulse duration τc. These data make it possible to evaluate a weak-probe gain Gwp
(when the probe pulse propagates in presence of a stronger pump pulse) and a strong-probe gain
Gsp (in case of energy transfer between pulses with equal energies), as it is explained in the next
sections. The energies of the incident and transmitted pulses are measured with a laser power
meter (Coherent LabMax) as well as biased silicon detectors (Thorlabs DET10A).
The y-cut sample of congruent, nominally undoped lithium niobate with plane parallel

input/output faces has a thickness of d ≈ 280 µm. At the particular wavelength of λ = 488 nm
the pronounced two-photon absorption and small polaron absorption have been reported [36,40];
the coefficients of two-photon absorption, βTPA ' 5.6mm/GW, and optical Kerr effect, n2 '
5 · 10−20 m2/W, are known from z-scan experiments [40].
The femtosecond pulses are generated by a mode-locked Ti:Sapphire laser (Coherent, Libra)

that feeds two independently tunable Optical Parametric Amplifiers (OPA, Coherent, OPerA-
Solo) [29, 30]. Pulses with central wavelengths of λ = 488 nm and spectral bandwidths of
∆λ = 4.7 nm from only one OPA are used for frequency non-degenerated experiments, unless
otherwise stated. The central wavelength and spectral bandwidth of the interacting pulses are
monitored with a fiber spectrometer (Ocean Optics, USB4000).
To evaluate the peak intensity Ipu,pr of a pulse with an energy W , its spatial and temporal

profiles need to be known. Measurements of the transverse intensity distribution at the sample
input face revealed a Gaussian-like shape of both beams with nearly identical radii of r ≈ 55 µm
at the e−2 level of the peak intensity. The durations τc of the incident pulses are estimated with a
commercial autocorrelator (APE, pulseCheck PD15) assuming a Gaussian temporal intensity
profile with peak value:

I =

√
16 ln(2)
π3

W
r2τc

. (1)

The pulse energies W (and therefore the peak intensities I) of the two pulses were controlled
by using variable neutral density filters (VFs) so that different ratios R = Ipu/Ipr could be
adjusted. The pulse duration could be changed within a range of τc = (80 − 830) fs using a pulse
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Fig. 1. Schematic of the experimental setup: variable neutral density filter (VF), double
grating compressor/stretcher (GCS), glass plate (GP), 50/50 beamsplitter (BS), compensator
plate (CP), optical delay line (DL), mirror (M), D-shaped mirror (DM), λ/2-waveplate,
lenses f = 500mm (L1,2), full crossing angle in air 2θ, lithium niobate sample (LN) with
the polar c-axis normal to the plane of drawing, and silicon detectors (Dref, Dpu and Dpr).
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compressor/stretcher (GCS). A folded double-grating setup allows for introducing a negative
pulse chirp in our experiment. Otherwise, a double prism setup could be used to impose a
positive pulse chirp, profiting from the material dispersion (N-SF11 glass, for example).
The spectral bandwidth ∆ω = 3.7 · 1013 rad/s of the Gaussian shaped pulses defines the

theoretically smallest, Fourier-transform-limited pulse duration of τ0 = 75 fs. For deliberately
stretched pulses the frequency chirp coefficient Ûω depends on the pulse duration τc (cf. [41]):

Ûω = (∆ω/τc)
√

1 − (τ0/τc)2. (2)

The total peak intensity I = Ipu + Ipr never exceeded 640GW/cm2 to avoid laser-induced
damage of the sample. The kHz repetition rate of the pulse train was reduced by an optical
chopper to 12.5Hz. All coupling processes under investigation emerge in a single pulse shot
and no cumulative effects have been observed for repetitive-rate operation. This enabled us to
average data of 200 consecutive pulses to reduce the impact of pulse-to-pulse fluctuations and to
improve accuracy.
Both interacting pulses enter the sample in a plane perpendicular to the axis of spontaneous

polarization c. The light polarization could be adjusted to each beam independently by two λ/2
phase retarders, with care taken to avoid possible changes in the temporal delay ∆t between the
pulses. Usually, the polarization unit vectors are set parallel to the polar axis, e1 ‖ e2 ‖ c, unless
stated otherwise. This particular configuration excludes a possible contribution to pulse coupling
from the space charge field grating because the relevant Pockels tensor components of LiNbO3
are vanishing (see, e.g., [42]).

3. Experimental results

3.1. Coupling of pulses with different energies

We start from the description of experiments with pulses of significantly different energies that
allow to characterize a weak-probe gain Gwp. Figure 2 gives a typical example of the probe
pulse transmission in presence of a pump pulse with the same polarization T‖ as a function
of the temporal delay ∆t between both pulses (black data points). The pulse duration of each
pulse τc ≈ 80 fs is close to the Fourier limit τ0. The transmission T‖(∆t) features a considerable
increase in the vicinity of ∆t = 0 with a maximum value of T ≈ 2.3. An asymmetry of the signal
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Fig. 2. Pulse delay dependence of the normalized probe pulse transmission with parallel
(T‖ , black dots) and orthogonal polarization (T⊥, red squares). The inset shows the gain
G (green squares) evaluated from Eq. (3). The total peak intensity of the two pulses is
I ≈ 635GW/cm2 with a peak intensity ratio of R ≈ 100, pulses duration of τc = (80 ± 5) fs
and beam radii of r = (55 ± 5) µm.
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T‖(∆t) is obvious, with the transmission saturated at T sat
‖ ≈ 0.8 for large positive ∆t. This value

of T sat
‖ below unity can be attributed to the light-induced absorption caused by optically generated

small, strong-coupling polarons [33, 36].
It is noteworthy that the appearance of additional oblique beams behind the sample has been

detected within the ∆t interval where probe amplification occurs (T ≥ 1) . Their angular position
suggests that these are higher orders of diffraction from a grating recorded with the two incident
pulses. The largest overall energy of these higher diffraction orders could approach 10% of the
total transmitted energy.
The transmission of the probe pulse changes dramatically if the polarization of the pump

pulse is turned to 90◦, as depicted by the red data points. Here, the transmission T⊥ shows a
dip in the vicinity of ∆t = 0 that can be attributed to the effect of two-photon absorption [33].
In agreement with this assumption, we found that the temporal width of this dip depends on
the duration τc of the incident pulses, while possible broadening of the dip caused by the group
velocity mismatch can be neglected for the used thin birefringent crystal. The saturation is again
reached at T sat

⊥ ≈ 0.8.
From the comparison of both curves in Fig. 2 one can deduce that in presence of the pump

pulse with the same polarization the probe pulse experiences simultaneously attenuation and gain.
The attenuation is caused by two-photon absorption, polaron absorption, and the appearance of
higher diffraction orders. It is the diffraction of the strong pump pulse into the weak probe which
is responsible for amplification.
A simplified approach can be used to account for all these processes. It represents the

normalized transmission of the probe pulse T(∆t) as a product of two factors A(∆t) and G(∆t)
that describe the fractional changes of transmission which are due to losses and gain, respectively.
As all losses can only decrease the transmission, A should be smaller than unity but should
remain always positive, 0 ≤ A ≤ 1. The gain factor G is always larger than unity but it is limited
by the intensity ratio R of the interacting pulses 1 ≤ G ≤ R + 1, as energy can be transferred to
the probe only from the pump pulse.
For further analysis, the energy gain is introduced as an experimentally measurable quantity

G(∆t) =
T‖(∆t)
T⊥(∆t) =

A(∆t)G(∆t)
A(∆t) , (3)

i.e., the ratio of the transmission with identically polarizedT‖ (gain and losses) and cross-polarized
T⊥ (losses only) pump and probe pulses. According to Eq. (3), the ratio T‖(∆t) / T⊥(∆t) is not
affected by nonlinear absorption A(∆t). Such a treatment is justified under the assumption that
both, the instantaneous losses for TPA as well as losses for residual polaron absorption, exhibit
a negligible polarization dependence [36, 43]. A small difference in A(∆t) for ordinary and
extraordinary pump waves can therefore be neglected. The pulse delay dependence of the gain
G(∆t) extracted in such a way is shown in the inset to Fig. 2; the value of Gmax = (4.4 ± 0.2) is
reached in the vicinity of ∆t = 0.
The gain intensity dependence as well as its intensity ratio dependence are important charac-

teristics for the identification of a particular coupling process. Figure 3 shows the gain Gmax as
a function of peak intensity for the shortest pulses used (τc ' 80 fs) and two different ratios of
the peak intensities R. A nonlinear increase of the gain is observed for intensities I below 300
GW/cm2 for both values of R. Within the quite large error bars the data can be fitted by a I2.5

dependence.
The gray area in Fig. 3 represents the possible range of gain variation only for the black squares

(R ≈ 1000). Both dependences, for R ≈ 1000 and R ≈ 100, show an obvious tendency to
saturation of the gain at high intensities, with saturation level decreasing for R→ 1.

Figure 4 shows the gain G(∆t = 0) as a function of the input pump/probe peak intensity ratio
R while keeping the total peak intensity I constant. The logarithmic plot used here underlines
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Fig. 3. Gain Gmax versus total pulse peak intensity I. Black and red symbols show the
data for the intensity ratios R ≈ 1000 and R ≈ 100, respectively, for pulses with durations
τc = (80 ± 5) fs and beam radii r = (55 ± 5) µm. For intensities below 300GW/cm2 the
measured data can be fitted with Gmax-1 ∝ Im. For R = 1000 such a fit gives m = 2.5 (green
line); the gray shaded area is limited by functions with the exponents 2 < m < 4.
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Fig. 4. Gain G(∆t = 0) versus peak intensity ratio R in a log-log plot. Right and left branches
show the experimentally measured gain for weak probe and weak pump pulses, respectively.
The total peak intensity of two pulses is I ≈ 630GW/cm2 (blue) and I ≈ 380GW/cm2

(green) with pulses duration τc = (80 ± 5) fs and beam radii r = (55 ± 5) µm. Solid and
dashed lines are plotted as a guide to the eye.

that the energy flows always from the strong to the weak pulse. For R ≤ 1 the peak intensity of
the probe pulse becomes larger than that of the pump, and the measured gain G is related here to
the normalized pump pulse transmission. It is obvious that the gain G(∆t = 0) increases with
growing R and vanishes for equal peak intensities R = 1 for a weak probe pulse. Similarly, for
R ≤ 1 the gain of a weak pump pulse increases with R−1. The branches for R ≤ 1 and R ≥ 1
are basically symmetric, with approximately the same absolute exponent for the intensity ratio
dependence G ∝ R±0.3. The fact that the measured values of gain G(∆t = 0) at R = 1 are roughly
10% smaller than unity indicates that additional losses exist besides those already accounted
for TPA and polaron absorption. These losses are due to the light going into higher orders of
diffraction. They become the most significant for a 1 : 1 intensity ratio of the recording pulses.
The measured dependences of gain [Figs. 3 and 4] are typical for transient beam coupling

[37–39] what will be explained in details in section 4, Discussion.
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3.2. Coupling of pulses with equal energies

As it was demonstrated in the previous subsection no energy redistribution occurs between two
perfectly synchronized pulses (∆t = 0) with equal energies [see Fig. 4]. In what follows we
show that even with R = 1 an energy redistribution becomes possible when a temporal mismatch
between two frequency-chirped pulses is introduced. Two pulses with equal energies are chosen
in these experiments to avoid any possible energy flow from a strong to a weak pulse.
It is known that the removal of frequency degeneracy of two recording waves may result in

a strong intensity coupling, both for interactions of continuous waves [2] and sub-picosecond
pulses [13,21,44]. The pulse delay of two otherwise identical pulses with a linear frequency chirp
Ûω [see Eq. (2)] is used in our further experiments to adjust a controllable frequency detuning
Ω. Both pulses, still called pump and probe in a formal way, have time-dependent frequencies
ωpr,pu(t) = ω0 + Ûωt. Thus, for any non-zero ∆t an instantaneous frequency detuning Ω(∆t)
appears that does not depend on time:

Ω(∆t) = ωpr,pu(t − ∆t) − ωpu,pr(t) = − Ûω · ∆t . (4)

Figure 5(a) gives a representative example of the pulse delay dependence of the normalized
transmission Tpr,pu(∆t) for two identical pulses, i.e., with the same peak intensity (R = 1), chirp
coefficient, polarization, pulse duration, beam radius, central wavelength, spectral width and
symmetrical angles of incidence [as shown in Fig. 1]. The labeling of pulses as pump and probe
is a matter of convention here because both pulses are indistinguishable. However, the sign of
the temporal delay is chosen in such a way that for positive values of ∆t, the pump pulse passes
the sample prior to the probe pulse.
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Fig. 5. Pulse delay dependences of (a) normalized transmission T(∆t) for pump and probe
pulses and (b) gain G(δt) evaluated according Eq. (5) (with flipped curve δt = −∆t for the
data Tpu). Each pulse has an energy of W = (5.1 ± 0.1) µJ, a pulse duration of τc ≈ 235 fs
and a bandwidth of ∆ω = 3.7 × 1013 rad/s. The beam radii are r ≈ 160 µm and the sum of
the peak intensities of both pulses is I ≈ 100GW/cm2.

First of all, in Fig. 5(a) a mirror symmetry is obvious for the two curves that define pump and
probe transmission. This symmetry could be expected because the advanced pulse becomes the
delayed pulse (and vice versa) when the pulse temporal mismatch ∆t changes its sign. For this
reason the axis of symmetry can be used to find the position of perfect temporal overlap of the
pulses ∆t = 0. At this particular position the transmission values are nearly the same for both
pulses, thus indicating no energy redistribution. This is in agreement with the data of Fig. 4
for G(∆t = 0) at R = 1, where only additional losses and no energy redistribution have been
detected.
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As distinct from the data of Fig. 2, the maximum of the pulse transmission T is reached now at
a much longer pulse delay; it approaches 1.1 roughly at ∆t ' ±260 fs. The transmission of the
second pulse shows a pronounced dip at the same time, thus indicating that the energy gain of
one pulse is caused by a depletion of the other one.

In this new set of measurements with R = 1 the transmission is measured for both interacting
pulses simultaneously. This allows for estimating the gain G without an additional measurement
of the transmission for orthogonally polarized pulses. New expressions for G are derived instead
of Eq. (3), still maintaining the same definition of the normalized transmission as a product
of loss and gain factors T(∆t) = A(∆t)G(∆t). It is assumed, however, that the pulse delay
dependent loss factors are the same for both pulses Apr(∆t) = Apu(∆t). As a consequence,
the transmission ratio of both pulses appears to be equal to the ratio of the pulse energy gain
Tpr(∆t)/Tpu(∆t) = Gpr(∆t)/Gpu(∆t) = P(∆t) and it becomes possible to quantify the gain factors
as follows:

Gpr(∆t) = 2P(∆t)
1 + P(∆t) , Gpu(∆t) = 2

1 + P(∆t) . (5)

The G values defined by Eq. (5) cannot exceed G = 2 for both interacting pulses, what
corresponds to a total energy transfer from one pulse to the other. Therefore, the "gain" of the
depleted pulse cannot become smaller than G = 0; G = 1 still indicates no pulse amplification.
Because of energy conservation the sum of these two gain parameters should always be constant
Gpr(∆t) + Gpu(∆t) = 2.
Figure 5(b) represents the time delay dependence of the gain G replotted from the data of

Fig. 5(a) according to Eq. (5). A new variable δt is introduced to pin the gain measured for the
delayed pulse always to positive values of δt. Thus, δt coincides with ∆t for the black curve of
Fig. 5(a) and is inverted in its sign for the red data points δt = −∆t. This change of the pulse
delay variable in Fig. 5 does not only underline the similarity of the shown curves, it further
allows for adding a second axis for the frequency detuning Ω as estimated from Eq. (4). The data
of Fig. 5(b) indicate an energy flow from the delayed to the advanced pulse, i.e., from the pulse
with higher frequencies to the pulse with lower frequencies. It should be noted that the coupling
direction is insensitive to the LiNbO3 sample rotation to 180◦ along the z-axis as well as along
the x-axis. The gain extrema are separated by 2∆tmax ≈ 400 fs and the maximum gain reaches
Gmax ≈ 1.4. This pulse delay, that ensures the strongest coupling, corresponds to a certain fixed
frequency detuning of Ωmax = 3.0 × 1013 rad/s.
The assumption Apr(∆t) = Apu(∆t) that has been formulated when deriving Eq. (5) can be

justified as follows: within the area of strong temporal overlap of two pulses, |∆t | ≤ 2τc, the
dominant losses are due to two-photon absorption and diffraction into higher orders, whereas the
contribution of residual absorption from small polarons is much smaller. The latter can only
be seen for large values of |∆t| with transmission values slightly below unity. Because of the
small magnitude of the polaron absorption in comparison to instantaneous losses, its impact on
the gain evaluation should be minor. This estimate is supported by the data of Fig. 5(b), where
the deviation of the gain from unity is hardly detectable for large pulse delays |δt |, and is much
smaller than the maximum gain.

In the measurements presented above, the sign of the chirp coefficient is imposed to be negative
Ûω < 0, resulting from the negative dispersion introduced by the grating compressor. To verify
the sensitivity of the energy transfer direction to the sign of the frequency chirp, the latter was
reversed to become positive Ûω > 0 by profiting from the material dispersion of a double prism
compressor (N-SF11 dense flint glass).
In Fig. 6 the left and right graphs show the time delay dependences of G for pulses with

negative and positive chirp coefficients Ûω, respectively. It is obvious that the flip of the chirp
sign results in a change of the energy flow direction, whereas their extrema still occur roughly at
same detunings Ω. The difference in gain magnitudes in Fig. 6(a) and Fig. 6(b) might be caused
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Fig. 6. Pulse delay dependence of gain G(δt) for (a) pulses with a negative frequency chirp
and energies W = (2.6 ± 0.1) µJ and (b) pulses with a positive frequency chirp and energies
W < 2 µJ. Identical pulses are used, with central wavelengths λ = 590 nm, bandwidths of
∆ω = 4.0 × 1013 rad/s and durations τc ≈ 200 fs. The pulse frequency detuning Ω estimated
according to Eq. (4) is shown as the upper x-axis. Red and green colors mark two interacting
pulses.

by different pulse energies. It should be mentioned that these measurements are performed at
a higher wavelength (λ = 590 nm) than previous measurements. The two-photon absorption
coefficient is smaller for higher wavelength and the residual absorption of photogenerated small
polarons is reduced, too. As a consequence, the deviation of the gain from unity in a range of
large pulse delays becomes basically undetectable.
The position of gain extrema can be used to determine the optimum frequency detuning

for the pulses to ensure the highest energy transfer: Ωmax = 2.4 × 1013 rad/s for Fig. 6(a)
and Ωmax = 2.0 × 1013 rad/s for Fig. 6(b). The measured dependences of gain are obviously
antisymmetric (odd) functions, i.e., the change of the detuning sign results in the inversion of the
energy transfer direction. This leads to the conclusion that in this set of measurements the reason
of the pulse energy coupling is the frequency difference of the two pulses.

3.3. Pulse duration dependence

The pulse-delay dependences of gain, similar to that shown in Fig. 5(b), are collected in the next
set of experiments for negatively chirped pulses of different durations τc. A double grating pulse
stretcher is used to control τc, sketched in Fig. 1. The measured data are used to plot in Fig. 7(a)
the dependence of the largest values of the gain Gmax(τc) versus pulse duration (red dots). In the
same Fig. 7(a) one can see how the temporal mismatch of the interacting pulses ∆tmax(τc), which
is necessary to ensure Gmax, varies with the pulse duration (black squares).
The maximum gain increases with the pulse duration up to τc ≈ 300 fs; for longer pulses it

saturates at Gmax ≈ 1.45. At the same time, the pulse duration dependence of the largest gain
position is linear: ∆tmax = ετc, and can be fitted with a slope of ε ' 0.9.

According to Eq. (2), the chirp coefficient Ûω depends on the chirped pulse duration τc, as it is
shown by the gray shaded curve in Fig.7(b). For long pulses Ûω is inversely proportional to the
pulse duration τc (see hyperbolic asymptote shown with black dots); it decreases, however, in
the vicinity of the Fourier-limited pulse duration τ0 ≈ 75 fs. The measured temporal mismatch,
which is necessary for reaching the maximum gain ∆tmax, can be used for the evaluation of a
corresponding frequency detuning Ωmax = − Ûω∆tmax. The result is plotted with blue squares in
Fig. 7(b) for different pulse durations τc. For long pulses with τc > 300 fs the largest gain is
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Fig. 7. (a) Pulse duration dependences of largest gain Gmax (red dots) and pulse temporal
mismatch that ensures this largest gain ∆tmax (black squares). The red dotted lines are
guiding the eye, while the black dotted line is a linear fit. (b) Pulse duration dependences
of the chirp coefficient Ûω (gray shaded curve) and pulse frequency difference that provides
the maximum gain Ωmax (blue squares), extracted from the data plotted in (a). The blue
dotted line represents Ω̄max, the mean value of data above τc = 300 fs. A hyperbolic
dependence ∝ 1/τc (black dots) shows the asymptotic behavior of the chirp coefficient Ûω for
long pulses. Both pulses have the same central wavelengths λ = 488 nm and bandwidths of
∆ω = 3.7 × 1013 rad/s.

always reached roughly at the same frequency detuning Ω̄max = 3.3 × 1013 rad/s (dotted blue
line); this optimum detuning value decreases for shorter pulses. The same constant value of Ωmax
can be extracted by combining Eq. (2) and Eq. (4):

Ωmax =
∆ω

τc
ετc = ∆ωε . (6)

Furthermore, the ε value close to unity indicates that for a maximum gain the pulses are temporally
separated by almost their FWHM.

Thus, the presented data confirm the conclusion of subsection 3.2 that the reason of the energy
redistribution between two identical pulses nests in their frequency difference. It is shown in
addition that the most efficient coupling occurs always at the same optimum detuning Ω̄max
within a rather wide range of pulse durations.

3.4. Coupling of frequency-shifted pulses with different energies

The results of the previous subsections allow for the conclusion that the energy transfer can
appear either because of a difference in incident pulse energies (subsection 3.1) or a difference in
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frequencies of the two pulses (subsections 3.2 and 3.3). Whereas the origin of energy exchange
for the interaction of delayed chirped pulses of equal energies can be unambiguously attributed
to self-diffraction from the moving grating, caused by the frequency difference of the pulses,
the non-zero gain of temporally matched, nearly Fourier-transform-limited pulses with different
energies requires a more careful analysis.
At first glance, the chirp coefficient is close to zero for Fourier-transform-limited pulses and

one cannot expect the removal of frequency degeneracy within the range of pulse temporal
mismatch of Fig. 2. At the same time we are dealing with pulses that are not monochromatic.
They possess spectra with FWHM (3.7 − 4.0) · 1013 rad/s, that exceed the optimum detuning
Ωmax = (2.0 − 3.3) · 1013 rad/s [see Fig. 6(b)]. Therefore, it is not excluded that a "blue" spectral
slice (with a higher frequency) in one pulse may interact with a "red" slice of lower frequency in
the other pulse, and vice versa. This will not result in energy redistribution for identical pulses
with the same energies because the contradirectional energy flows will fully compensate for each
other. Such compensation becomes, however, only partial if two pulses have different energies;
the direction of the resulting energy flow being always from the strong pulse to the weak one [cf.
Fig. 4].
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Fig. 8. Gain of a weak probe pulse G-1 versus probe-pump pulse frequency detuning
Ω = ωpr − ωpu (black squares). Blue and red solid lines show qualitatively the expected
contributions to the overall gain from transient beam-coupling and coupling from a moving
grating (see text).

To clarify a possible influence of the pulse bandwidth and to identify an interaction process
which is responsible for the coupling between the weak and strong pulses we have performed
an additional experiment with pulses from two independently tunable OPAs. The gain of the
weak probe is studied with pump and probe pulses that are matched in time but have deliberately
detuned central frequencies Ω = ωpr − ωpu.
As it was mentioned above, the enhancement of the "red" component of the weak pulse

spectrum might be larger than the depletion of its "blue" component thus bringing overall
amplification of the weak pulse. Assuming this explanation is valid, one can expect an increase
of the measured gain for probe pulses which are gradually tuned to smaller frequencies until
Ωmax is reached. For increasing probe frequency, on the contrary, the gain is expected to drop
down, becoming even smaller than unity at a certain positive Ω. Thus, one should see a strongly
asymmetric detuning dependence of the gain, that is qualitatively similar to the slightly deformed
dependence shown in Fig. 5(b).

The measured detuning spectrum of G−1 (filled squares) is depicted in Fig. 8. The wavelength
of the pump pulse λpu = 488 nm is fixed, while the probe pulse wavelength λpr is varied. The
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wavelength detuning δ = λpr − λpu is added as the second x-axis on the top.
The detuning dependence of Fig. 8 is only slightly asymmetric, with the maximum shifted to

longer wavelength of the probe pulse (negative frequency detuning). It looks like a superposition
of a dominating bell-shaped (even) and an odd function with a smaller amplitude. These two
functions are shown by blue and red solid lines for guiding the eye, red line being up-shifted to
the maximum of the blue one.

Thus, we can conclude that self-diffraction from a moving grating that is recorded by the "red"
spectral component of the weak pulse and the "blue" spectral component of the strong pulse does
exist and manifests itself in a slight asymmetry of the spectrum shown in Fig. 8. At the same time,
the dominating process responsible for coupling of weak and strong pulses in this experiment
and all experiments described in subsection 3.1 is the transient energy transfer [37, 38].

4. Discussion

All presented results clearly show a net gain of a probe pulse when it is interacting with a pump
pulse within congruent, nominally undoped lithium niobate. This gain cannot be a consequence
of sample bleaching because of a very small linear absorption of the used sample in the blue-green
spectral domain (α488 ≤ 1 cm−1). Moreover, to become clearly visible (T > 1) the gain should
overcome two-photon absorption, which is quite pronounced within the intensity range of the
pulses used in these experiments.
As we mentioned already, we attribute the pulse coupling effects and appearance of higher

diffraction orders to self-diffraction from one and the same dynamic grating. Thus, the measured
efficiency of diffraction into the first non-Bragg order η ≈ 0.01 allows for estimating roughly
the refractive-index modulation ∆n ≥ (√ηλ/π`). With a sample thickness of ` = 280 µm and a
light wavelength of λ ' 0.5 µm we get ∆n on the order of 10−4. Taking into account Gaussian
transverse intensity distribution, a nonuniform distribution within the sample thickness because
of TPA and its nearly Gaussian temporal variation, the peak value of ∆n should be much larger
than 10−4 and quite strong coupling can be expected. At the same time, to ensure an efficient
beam-coupling, the recorded grating should have a component which is π/2 shifted in phase with
respect to the recording fringes [1–3]. The use of various inertial refractive χ(3) nonlinearities
can ensure the necessary phase shift between the grating and the fringes if two interacting waves
differ in temporal frequencies and thus form a moving fringe pattern. The response of the inertial
nonlinear medium is time-delayed. Therefore, the moving fringes produce a grating which
propagates in space with the same speed as the fringes but with the extrema that do not coincide
with the maxima of the intensity.

In lithium niobate, phase and/or amplitude gratings can be recorded by several known
processes when using femtosecond excitation. The two-photon absorption and optical Kerr
effect nonlinearities which have been considered previously as origin of dynamic grating
recording [32,33] are essentially instantaneous. Therefore, self-diffraction from relevant dynamic
gratings cannot result in the intensity coupling of the recording waves. The TPA grating can only
decrease the intensity of the probe beam while an instantaneous refractive index grating from the
optical Kerr effect by definition can never be shifted in space with respect to the light fringes.
Other known nonlinearities of LiNbO3 are caused by photogeneration of excitons, free carrier and
small polarons [29, 32, 35] as also by excitation of optical phonons. All mentioned nonlinearities
are refractive and inertial and therefore can be involved in pulse coupling. Additional studies will
be necessary to identify the origin of the nonlinearity which is responsible for pulse coupling in
our experiments.
The intensity redistribution between two waves which are recording a moving index grating

[2, 3, 6, 11, 13] is a well known phenomenon. It was reported for laser filaments in gases [6, 13]
and in liquids [11] for subpicosecond pulses. Being not qualitatively new, this type of coupling is
revealed now for the first time in a solid-state nonlinear material and shown to be very efficient.
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The quantitative data for pulse coupling in a LiNbO3 sample with an interaction length of only
280 µm are quite impressive: one order of magnitude amplification of the weak probe pulse energy
[Fig. 3] and nearly 10% net enhancement of one of two pulses with same input energies [Fig. 6]
are demonstrated. The energy is transferred from the high frequency pulse to the low frequency
one with an optimum detuning of Ω ≈ 3 × 1013 rad/s. The frequency detuning dependences of
gain G given in Fig. 6 are obviously odd functions, qualitatively similar to

g ∝ g0
Ωτc

1 +Ω2τ2
c

, (7)

predicted by simple models for lossless media [see, e.g., Eq. (129) of [22]]. The gain factor g
defines here the steady-state exponential gain of a weak probe beam, Ipr ' I(0)pr exp(g`). It can be
expressed via G used in this article, g ≈ (G − 1)/`, ` standing for the interaction length. The
deviation of experimental dependences of Fig. 6 from the simple form expressed by Eq. (7) might
be helpful for the identification of the physical origin of nonlinearity, most probably related to
certain crystal lattice resonances.
Let us compare now the manifestations of weak-to-strong pulse coupling in our experiment

with the results of the transient beam-coupling model [37]. Being developed for continuous wave
interaction, this model predicts no intensity coupling in the steady-state and an appearance of
probe wave amplification during a time interval comparable to the grating build-up or decay
time τr . The intensity is always transferred from a strong wave into a weak one. For the initial
stage of recording, t � τr, the gain increases nonlinearly with intensity I, sample thickness ` and
time t. The relationship between the relative changes of the probe intensity Ipr and parameters
mentioned above is as follows [37] :

Ipr − I(0)pr

I(0)pr
= 4Φ2

[ I(0)pu − I(0)pr

I(0)pu + I(0)pr

]
exp

(
− t
τr

) [
1 −

(
t
τr

)
− exp

(
− t
τr

)]
. (8)

Here, Φ = k0∆n`/2 cos θ stands for the light-induced phase modulation in a sample with a
thickness `, k0 = 2π/λ0 is a wavenumber, θ is a half-angle between the interacting beams and all
superscripts (0) indicate the transmitted intensity with no second wave present. In fact, Eq. (8)
gives the expression for the temporal variation of the instantaneous transmission [T(t) − 1] or
instantaneous gain [G(t) − 1].
Several assumptions in the above summarized theories prevent from a more quantitative

description of the nonlinear interactions of ultrashort pulses: (i) the pulses have a particular
temporal envelope which is quite different from a step-like onset in time of the pump intensity,
considered in these theories, (ii) pulses with a Gaussian transverse intensity profile can hardly be
treated in the plane-wave approximation, and (iii) the propagation effects are not considered in
the existing theories. The analysis of the experimental data presented below allows, however, for
confirming their qualitative agreement with the predictions of this simplified model.

First, it should be noted that the relationship of Eq. (8) was derived for photorefractive media
in which ∆n is independent of the light intensity, i.e., the gain is independent of the cw-laser
beams intensity in an appropriate experiment. Taking into account that in the subpicosecond
time domain the most probable processes of nonlinear index variation ∆n(I) in lithium niobate
are caused by free-carriers or polarons generated via two-photon absorption [36] one can expect,
even from Eq. (8), an experimental intensity dependence Im with an exponent larger than 2. The
measured gain of a probe pulse increases, as could be expected, superlinearly with the total peak
intensity with 2 < m < 4 [Fig. 3], showing an impact of the peak intensity ratio. For pulses with
different peak intensities it is always the weak pulse that gains intensity [Fig. 4]. The intensity
coupling disappears completely for equal peak intensities of both pulses Ipr = Ipu or R = 1
[Fig. 4], if the pulses are perfectly matched in time. All these features permit to attribute the
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coupling of the weak and strong pulses to a transient-type nonlinear interaction with an inertial
phase grating involved [37, 38].
We claim, therefore, that two qualitatively different coupling processes are revealed in the

experiments with grating-assisted pulse coupling in LiNbO3, one with a steady-state gain from a
moving grating recorded by pulses with different frequencies and the other with a transient gain
of a weak pulse in presence of a strong pump pulse with the same frequency. The experimental
conditions were selected in a way to inhibit one of these two processes and to study the other
one in more detail. The coupling of pulses with equal energies is, in the first instance, feasible
because of the frequency difference of two temporally mismatched pulses while the transient
beam-coupling can manifest itself in a small-signal amplification of pulses that are perfectly
matched in time.

The physical processes that are responsible for the optical nonlinearities at the origin of grating
recording itself are not yet established. Some qualitative considerations allow for formulating the
requirements for their parameters. In order to observe a transient energy transfer, as it is known,
the decay time of the nonlinearity should be longer compared to the pulse duration. For efficient
coupling of pulses that are non-degenerated in frequency this time should be, on the other hand,
comparable or shorter than the pulse duration. Thus, a good candidate for dominating inertial
nonlinearity is the photoexcitation of electron-hole pairs which are further responsible for the
appearance of (self-trapped) excitons and/or small, strong-coupling polarons. The nonlinearity
which is contributing for coupling from moving gratings might be related to the inherent optical
resonances of the LiNbO3 lattice.

5. Conclusion

The experimental study of the dynamic grating assisted energy transfer between two sub-
picosecond pulses reveals that this process can be quite efficient in LiNbO3. The weak probe
pulse can be amplified more than 10 times and the redistribution of energy between two pulses of
equal intensities might approach 50% of each pulse energy. This efficient coupling is accompanied,
however, by a considerable attenuation of both pulses because of two-photon absorption.
The analysis of the whole scope of experimental data leads to the conclusion that at least

two different coupling processes are strongly involved, both related to self-diffraction from the
recorded dynamic phase grating. The first coupling process results from the appearance of a
moving grating which is shifted with respect to the moving fringe pattern, induced by two pulses
with different frequencies. The frequency shift may either be introduced deliberately by using
pulses from two different OPAs with adjustable wavelengths, or it may appear if the grating is
recorded by two frequency chirped and temporally mismatched pulses from a single OPA. The
second process manifests all characteristic features of the transient energy transfer which was
first reported for cw and is closely related to stimulated Rayleigh-wing scattering. While the
first process ensures an efficient unidirectional coupling between two pulses regardless of their
intensity ratios, the second one always provides an efficient energy flow from the stronger to the
weaker pulse.
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