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ABSTRACT

Every year, the number of applications relying on information extracted from high-resolution
satellite imagery increases. In particular, the combined use of different data sources is rising
steadily, for example to create high-resolution maps, to detect changes over time or to conduct
image classification. In order to correctly fuse information from multiple data sources, the
utilized images have to be precisely geometrically registered and have to exhibit a high
absolute geo-localization accuracy. Due to the image acquisition process, optical satellite
images commonly have an absolute geo-localization accuracy in the order of meters or tens of
meters only. On the other hand, images captured by the high-resolution synthetic aperture
radar satellite TerraSAR-X can achieve an absolute geo-localization accuracy within a few
decimeters and therefore represent a reliable source for absolute geo-localization accuracy
improvement of optical data. The main objective of this thesis is to address the challenge of
image matching between high resolution optical and synthetic aperture radar (SAR) satellite
imagery in order to improve the absolute geo-localization accuracy of the optical images.

The different imaging properties of optical and SAR data pose a substantial challenge for a
precise and accurate image matching, in particular for the handcrafted feature extraction
stage common for traditional optical and SAR image matching methods. Therefore, a concept
is required which is carefully tailored to the characteristics of optical and SAR imagery and
is able to learn the identification and extraction of relevant features. Inspired by recent
breakthroughs in the training of neural networks through deep learning techniques and the
subsequent developments for automatic feature extraction and matching methods of single
sensor images, two novel optical and SAR image matching methods are developed. Both
methods pursue the goal of generating accurate and precise tie points by matching optical and
SAR image patches. The foundation of these frameworks is a semi-automatic matching area
selection method creating an optimal initialization for the matching approaches, by limiting
the geometric differences of optical and SAR image pairs. The idea of the first approach
is to eliminate the radiometric differences between the images trough an image-to-image
translation with the help of generative adversarial networks and to realize the subsequent
image matching through traditional algorithms. The second approach is an end-to-end
method in which a Siamese neural network learns to automatically create tie points between
image pairs through a targeted training. The geo-localization accuracy improvement of
optical images is ultimately achieved by adjusting the corresponding optical sensor model
parameters through the generated set of tie points.

The quality of the proposed methods is verified using an independent set of optical and SAR
image pairs spread over Europe. Thereby, the focus is set on a quantitative and qualitative
evaluation of the two tie point generation methods and their ability to generate reliable
and accurate tie points. The results prove the potential of the developed concepts, but also
reveal weaknesses such as the limited number of training and test data acquired by only one
combination of optical and SAR sensor systems. Overall, the tie points generated by both
deep learning-based concepts enable an absolute geo-localization improvement of optical
images, outperforming state-of-the-art methods.
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ZUSAMMENFASSUNG

Aufgrund der steigenden Zahl an Anwendungen, die sich auf hochauflésenden Satellitendaten
stiitzen, gewinnt auch die kombinierte Nutzung mehrerer Datenquellen immer mehr an Be-
deutung. Beispielsweise konnen mit der Fusion mehrerer Datenquellen hochauflésende Karten
erstellt oder Bildklassifikationen durchgefiihrt werden. Voraussetzung fiir eine korrekte Fu-
sion von Informationen aus mehreren Datenquellen ist eine prézise Registrierung aller Bilder
verbunden mit einer hohen Lagegenauigkeit der einzelnen Datenquellen. Aufgrund ihres
Bildaufnahme-Verfahrens weisen optische Satellitenbilder in der Regel jedoch eine geringere
Lagegenauigkeit im zweistelligen Meterbereich auf. Dagegen kénnen Bilder des hochau-
flésenden Radarsatelliten TerraSAR-X eine absolute Lagegenauigkeit innerhalb weniger
Dezimeter erreichen und stellen somit eine zuverldssige Quelle zur Verbesserung der absoluten
Lagegenauigkeit dar. Das Hauptziel dieser Arbeit ist die Verbesserung des Bild-Matchings
zwischen hochauflésenden optischen und Synthetic Aperture Radar (SAR) Satellitenbildern,
um damit die absolute Lagegenauigkeit von optischen Bildern zu verbessern.

Die unterschiedlichen Abbildungseigenschaften von optischen und SAR-Bildern stellen fiir
die gingigen Methoden zur Bildregistrierung eine groie Herausforderung dar, insbesondere
fiir den Schritt der Merkmalsextraktion. Aus diesem Grund ist ein Verfahren erforder-
lich, das auf die speziellen Eigenschaften von optischen und SAR-Bildern zugeschnitten
ist und die Identifizierung und Extraktion von relevanten Merkmalen erlernen kann. In-
spiriert durch die jiingsten Durchbriiche beim Training neuronaler Netze mit Hilfe von
Deep Learning Techniken und den resultierenden Entwicklungen bei der automatischen
Bild-Merkmalsextraktion und beim Bild-Matching, werden in dieser Arbeit zwei neuartige
Verfahren fiir die Erzeugung von Verkniipfungspunkten zwischen optischen und SAR-Bildern
vorgestellt. Das Ziel beider Bild-Matching Verfahren ist die Erzeugung préziser Verkniip-
fungspunkte zwischen optischen und SAR-Bildpaaren. Fiir eine optimale Ausgangssituation
des Bild-Matchings sorgt ein halbautomatisches Verfahren zur Auswahl der Matching-Gebiete.
Hierdurch werden die geometrischen Unterschiede zwischen optischen und SAR-Bildpaaren
auf ein Minimum reduziert. Die Idee der ersten Methode besteht darin, die radiometrischen
Unterschiede zwischen den Bildpaaren durch Anwendung einer Bild-zu-Bild Transformation
durch sogenannte ,, generative adversarial networks“ zu beseitigen und danach das eigentliche
Bild-Matching durch traditionelle Methoden zu realisieren. Die zweite Methode ist ein ,,end-
to-end“ Ansatz, bei dem ein siamesisches neuronales Netzwerk durch ein gezieltes Training
lernt, automatisch Verkniipfungspunkte zwischen Bildpaaren zu erzeugen. Schliellich werden
mit Hilfe der generierten Punkte die optischen Sensormodellparameter angepasst und somit
die Lagegenauigkeiten der optischen Bilder verbessert.

Die Qualitat der vorgeschlagenen Verfahren zur Bildregistrierung wird anhand voneinander
unabhéngiger und iiber ganz Europa verteilter optischer und SAR-Bildpaaren ausgewertet.
Dabei liegt der Fokus auf einer sowohl quantitativen als auch qualitativen Auswertung der
beiden Verfahren zur Generierung von Verkniipfungspunkten. Die Ergebnisse belegen das
Potenzial der entwickelten Methoden, zeigen aber auch Schwéchen wie beispielsweise die
begrenzte Anzahl von Trainings- und Testdaten, erstellt aus den Bildern eines optischen bzw.
SAR Sensors. Insgesamt erméglichen die von beiden Verfahren erzeugten Verkniipfungspunkte
eine Verbesserung der absoluten Lagegenauigkeit optischer Bilder und sind dabei genauer als
State-of-the-Art Methoden.
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2 1. Introduction

1.1 Motivation and Scope

In the last years, the technical advances in sensors systems and the increasing number of
national and international space programs led to a strongly growing volume of remote sensing
data. At the same time, the increased processing power and the development of new tools
and algorithms boosted the applications of these data in terms of efficiency, reliability and
robustness. In particular, the joint use of multi-modal data such as optical and synthetic
aperture radar (SAR) images contain complementary information on objects on the Earth
surface, which enriches the information conveyed by an object for several applications such
as the generation of high-resolution maps for autonomous driving, the monitoring and
modeling of changes over time for precision farming and urban planning. Despite the latest
developments and technological advances, an accurate geo-referencing and co-registration
step is still a prerequisite for the successful joint use of images acquired from different data
sources. Very often, such steps are difficult to carry out with satisfactory precision in an
unsupervised way, due to the intrinsic limitations in the sensors’ specific acquisition modes.

The goal of this thesis is performing multi-modal image registration of high-resolution optical
and SAR satellite images in order to enhance the absolute geo-localization accuracy of the
former. To this end, deep learning techniques are utilized to develop two novel tie point
generation methods, which enable an enhanced registration of optical and SAR image pairs
and therefore a highly improved orthorectification of optical image data.

1.2 Scientific Relevance of the Topic

The collection of complementary information from aligned multi-modal image data enables
a more detailed and more robust understanding of an image scene or specific object, and
is important for several applications in the fields of medical imaging, computer vision or
remote sensing [1-4]. In the particular case of optical and SAR satellites, the images acquired
by these sensors exhibit different behavior (see example illustrated in Figure 1.1). These
different and often complementary characteristics have been proven to be conducive for
diverse applications in the field of remote sensing. More specific, several research studies
investigated possibilities of their combined usage for tasks such as earthquake damage
assessment of buildings [5], road network extraction [6], land cover classification [7], change
detection [8], urban surface model generation [9-12] and stereogrammetric 3D analysis of
urban areas [13]. However, optical and SAR satellite images are affected by acquisition
related influences leading to local or global distortions, which lower the accuracy of the
extracted information affecting in particular the absolute geo-localization accuracy of the
optical images, thus hindering the use of optical images in any data fusion application.

To overcome this fusion problem, the absolute geo-localization accuracy of optical images
has to be improved beforehand. A common approach is the use of ground control points
(GCPs) obtained from tedious in-situ GPS measurements or from very exact maps. The
generation of GCPs is time consuming and expensive and therefore only available in a
minority of cases. Another possibility is to align optical images to an image with a high
absolute geo-localization accuracy. As images captured by the high-resolution SAR satellite
TerraSAR-X can reach an absolute geo-localization accuracy within a few decimeters, or
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Figure 1.1: Illustration of an optical (top) and SAR image (bottom) covering the same area. Both
images have a ground sampling distance of 1.25 m.

centimeters for specific targets [14], they represent a reliable source for the geo-localization
accuracy improvement of optical images. Over the last years, different research studies
investigated the geo-localization accuracy improvement of optical satellite images based
on SAR reference data, achieving promising results [15-19]. These works rely on suitable
image registration techniques, which are tailored to the problem of optical and SAR images
matching. Due to the different acquisition concepts it is difficult to find identical features in
both image modalities or reliable similarity measures. More precisely, the sideways-looking
acquisition of SAR sensors causes typical geometric distortion effects (layover, foreshortening)
and shadowing for 3D objects such as buildings or trees. These effects have a strong influence
on the appearance of all objects above ground level. As a consequence, the boundary of an
elevated object in a SAR image does not match the object boundary in the optical image,
even if the imaging perspective is the same for both sensors. Additionally, the different
wavelengths measured by the two sensors lead to different radiometric properties in the
optical and SAR images. This is due to the fact that the response of an object depends on the
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signal properties (wavelength, polarization), the surface properties (roughness, randomness
of local reflectors and reflectance properties) and sensor perspective. The same object may
therefore appear with high intensity for one sensor and with low intensity in another. The
multiplicative noise in SAR images (speckle) further complicates the human and automatic
interpretation of SAR images and, hence, the matching of optical and SAR images. As an
example, Figure 1.1 shows the difference between an optical and a high-resolution SAR image
(e.g. the different intensity of streets), which are acquired over the same area containing
man-made structures and vegetation. As a consequence, a suitable registration approach
has to be carefully developed or adapted in order to fulfill the particular characteristics of
optical and SAR image matching.

Several methods have been developed over the years to find a solution to the problem of
optical and SAR image registration. The so-called intensity- or area-based approaches mainly
utilize similarity measures like the cluster reward algorithm [20, 21], mutual information
[20, 22-24] and the cross-cumulative residual entropy [25] and are often computationally
expensive and sensitive to multiplicative noise in the SAR image. As they mainly infer
image correspondences on the basis of pixel intensity values they are hindered by the
different radiometric properties of optical and SAR images. On the other hand, feature-
based approaches are focusing on the detection, extraction and matching of image features
such as lines [26-29], contours [30, 31] or regions [32], or utilize point feature detector and
descriptor methods such as the scale-invariant feature transform (SIFT) [33-35]. Due to
their higher robustness to radiometric changes and geometric inconsistencies between the
images, feature-based approaches often outperform intensity-based algorithm. However, even
by combining feature- and intensity-based approaches, the development of a single approach,
which is not tailored to one particular kind of image feature or a certain image scene, and
therefore able to reliable co-register optical and SAR image pairs in a general way, is still an
open problem.

1.3 Our Contributions and Focus of the Thesis

In this thesis we present a novel and automatic framework for the improvement of the
absolute geo-localization accuracy of optical satellite images via tie points generated from
high-resolution TerraSAR-X images. For the first time, this problem is tackled with the help of
neural networks and deep learning techniques in order to avoid problems frequently occurring
in former approaches. Neural networks in combination with deep learning techniques have
demonstrated their potential through a variety of successful applications in research fields,
such as medicine, biology, computer vision and remote sensing. Due to the daily increase
of remote sensing data, this research field is becoming suitable for the application of deep
learning techniques, since the training of deep neural networks requires are large amount
of training data. Furthermore, the progression of deep learning algorithms enabled the
modeling and solving of more and more complex problems. Our proposed concept is divided
in the following three parts: 1) The identification and extraction of suitable image areas, 2)
the generation of reliable and accurate tie points through deep learning boosted matching,
and 3) the adjustment of the optical sensor model. The focus of our investigation is on the



1. Introduction 5

first two steps, whereas for the third step we utilize an already well-proven concept without
making any adjustments.

The first step of the framework forms the basis for a successful and accurate tie point
generation. It is important to take into account the different radiometric and geometric
properties of optical and SAR images, while developing a matching method. We present two
concepts for the pre-selection of suitable matching areas, both pursuing the goal of identifying
areas that only contain salient objects or features that exhibit the same geometrical properties
in both images. The semi-automatic algorithm is mainly based on the usage of the CORINE
land cover layer and a manual refinement. The developed automatic concept is based on the
usage of existing road network information from OpenStreetMap data in combination with a
deep learning-based method for the automatic segmentation of road networks in SAR images.
Note that only the semi-automatic method is used in later steps. However, the automatic
approach was developed to overcome the problem of the time consuming manual refinement
needed, and hence to open up new possibilities for further developments.

The main part of our work concentrates on step two, consisting of two novel deep learning-
based concepts, which pursue the same goal of an accurate and reliable tie point generation.
They are tailored to overcome different problems of common optical and SAR registration
frameworks. The first approach tackles the problem of the different radiometric properties
between optical and SAR images. The possibilities provided by a new machine learning
architecture, called generative adversarial networks, for the task of image-to-image translation
enable the creation of a novel strategy for the reduction of radiometric differences between
the images to a minimum. As a result, traditional algorithms for the matching can be applied,
and hence the creation of tie points between artificially generated images and corresponding
target images become feasible. The second approach pursues the idea of an end-to-end tie
point generation, which does not require any handcrafted feature detection and extraction.
Siamese neural networks have already proven their potential for the matching of single sensor
image pairs. In this work, they are adapted in order to achieve an accurate and reliable
tie point generation method for optical and SAR image pairs, through a careful adaption
of the network architecture towards the particular characteristics of these images and the
development of a target-oriented training procedure. The two methods are trained on a set
of training images, the hyperparameters of the neural networks tuned on a set of validation
images and subsequently, the set of generated tie points validated on an independent set of test
images, where their accuracies and precisions are compared to state-of-the-art techniques.

In order to complete our image registration framework, we utilized an already existing
technique for the sensor model adjustment of optical images through the generated sets of tie
points. Since this has already proven its effectiveness, we apply it without conducting any
changes. Using the adjusted sensor models for the geo-referencing of the optical images lead to
the pursued goal of an improvement in the absolute geo-localization accuracy. Summarizing,
our framework reduces the effort for handcrafted processing steps to a minimum, is applicable
to generic optical and SAR image pairs, and outperforms state-of-the-art approaches.
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1.4 Organization of the Thesis

The thesis is divided in six chapters. In Chapter 1, the topic of this thesis is introduced, its
scientific relevance discussed and the focus and our contributions outlined. The theoretical
background of optical and SAR sensors and a comparison between the different imaging
properties of both sensors are provided in Chapter 2. In addition, this chapter also contains a
detailed introduction on supervised machine learning principles, focusing on artificial neural
networks and generative adversarial networks. The basic principle of image registration
techniques, state-of-the-art optical and SAR image registration methods and an overview
on recently developed deep learning-based image registration frameworks are described in
detail, and research gaps are discussed in Chapter 3. Chapter 4 covers the methodological
contribution of our work, which includes an image registration framework and two novel tie
point generation approaches based on conditional adversarial networks and Siamese neural
networks, respectively. Then, the results of both tie point generation approaches and their
potential for a precise optical and SAR image registration are evaluated and discussed in
Chapter 5. At last, the overall results and findings of this thesis and on outlook on future
work are summarized in Chapter 6.



THEORETICAL BACKGROUND

This chapter provides the theoretical foundations of the developed concepts, which are presented
in later chapters of this thesis. In the first part, the basic concepts of optical and SAR sensors
are introduced. Additionally, a comparison of the different imaging properties between optical
and SAR sensors is outlined. In the second part, the principles concepts and required terms of
supervised machine learning are introduced. The theory about convolutional neural networks
and conditional adversarial networks represents here the fundamental frameworks of the later
developed multi-modal image registration concepts.

Contents
2.1 Optical and Synthetic Aperture Radar Satellite Imagery . . . . . . . . . 8
2.2 Principles of Supervised Machine Learning . . . . . . . . ... ... ... 14

2.3 SUMMATY . . . . . o o e e e e e e e e e e e e e e e e e e e e e e 35




8 2. Theoretical Background

2.1 Optical and Synthetic Aperture Radar Satellite Imagery

In the field of remote sensing different sensors are utilized in order to acquire spatial, spectral,
and temporal information on objects or areas. In this thesis, images of two sensors are
utilized, namely optical (passive) and SAR (active). Each of these sensors follows a particular
acquisition process and comes with specific advantages and disadvantages. As outlined in
Chapter 1, the pursued aim of this thesis is to improve the absolute geo-localization accuracy
of optical images through the use of high-resolution SAR data. To understanding why this
undertaking is necessary and possible, but on the other hand difficult, the principles of optical
and SAR image acquisition and relevant image properties are presented in the remainder of
this section.

2.1.1 Principles of Optical and SAR Sensors

In this subsection the relevant principles of optical and SAR sensors will be shortly introduced.
For a detailed summary of remote sensing principles (including optical and SAR images) we
refer to [37, 38] and for a detailed overview on the foundations of SAR data to [39].

Optical sensors: Optical satellite sensors are passive systems that measure the sunlight
reflected from ground objects with a strong dependence on atmospheric and local weather
conditions such as cloud and haze. More precisely, they detect the reflected or emitted
electromagnetic radiation from objects on the ground in the visible and infrared (near
infrared, intermediate infrared, thermal infrared) range of the electromagnetic spectrum
(see Figure 2.2). Each object on ground reflects and absorbs thereby a specific part of
the spectrum, and hence shows a specific spectral reflectance signature in the generated
images. Depending on the number of spectral bands used in the imaging process, optical
sensors can be classified into panchromatic, multispectral and hyperspectral sensors. In this
thesis, we utilize images acquired with the high-resolution panchromatic sensor called PRISM
mounted on the Earth observing satellite ALOS. Panchromatic sensors acquire images with
single wide spectral band usually in the range of 400-900 nm. The nadir optical system of
PRISM operates in the range of 520-770 nm and provides images with a spatial resolution

Short wavelength Long wavelength

10°nm 1072 nm 1nm 10°nm 10° nm 1m 10°m
— 1 1 | L 1 1 1

Gamma rays X rays Ultraviolet Infrared Microwaves Radio waves

T T T T T T T T T T T
10**Hz  102Hz  10°Hz 10"%Hz 10'°Hz Visible light 10'2Hz 10" Hz 10° Hz 10%Hz 10*Hz 10°Hz
High frequency Low frequency
e —— + >
optical sensors radar sensors

Figure 2.1: The electromagnetic spectrum and the operation ranges of optical and radar sensors
(image source: [36]).
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ground frack

*' footprint

swath width

N

Figure 2.2: Comparison of the different acquisition geometries between optical and SAR sensors
(source of the right image: [41]).

of 2.5m and a swath width of 35km. The images are thereby generated through the use
of a pushbroom scanner consisting of a linear array of 14,000 detector elements, which are
arranged perpendicular to the flight direction of the satellite and simultaneously receive
information from the ground [40]. In contrast to full-frame photography, where the whole
image is captured at the same time, such scanner systems scan and record the ground line
by line [37]. The particular acquisition geometry of an optical satellite equipped with a
nadir looking pushbroom sensor is illustrated on the left side of Figure 2.2. In the later
Subsection 4.4.1 more details about the image generation process through a pushbroom
scanner system and the used physical sensor model (sets the geometric relation between
images and their corresponding ground coordinates) will be presented.

Radar sensors: In contrast to optical satellites, radar satellites have an active sensor on
board, which emits electromagnetic signals and measures the strength and time delay of the
returned signal backscattered from the objects on ground. During image acquisition the
range, magnitude and Doppler shift of the reflected signal is collected by an antenna and
later processed to a two-dimensional image of the surface. Due to the active emitting of a
signal and usage of longer wavelength compared to optical sensors, images can by captured
day and night and almost independently from local weather conditions. The term radar
stands thereby for radio detection and ranging, which denotes the technique to measure the
distance between a target and the sensor by exploiting the electromagnetic radiation-matter
interaction. Conventional radar satellites apply the principle of SAR in order to enable the
acquisition of radar images from space. The idea behind the concept of SAR is to synthesize a
very long antenna by moving a shorter one along the flight path. Thereby, the backscattered
signal energy for ground objects along the sensor flight path is integrated and the signal
energy compressed in post-processing for a significant increase of the spatial resolution [39].
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Here, the data post-processing forms the essential part of the image generation process. In
order to avoid ambiguities in azimuth (flight direction) related to the targets on ground, a
SAR sensor looks sideways. The look angle of the sensor to an object on ground is called
incident angle. The image acquisition geometry of a satellite equipped with a radar sensor
on board is illustrated on the right side of Figure 2.2. The commonly used SAR systems
use wavelength in the range of 2.4 cm to 20 cm, an incident angle between 20° to 60° (with
respect to nadir direction) and can operate in three modes: stripmap, spotlight and scanSAR.
In this thesis, stripmap images from the SAR satellite TerraSAR-X with a resolution of
1.25m are used. In stripmap mode the antenna is pointing along a fixed direction broadside
to the platform track. TerraSAR-X is operating with a wavelength of 3.1 cm, an antenna
size of 4.8 x 0.8 m?, a swath width of 5km to 10km (in spotlight mode), and an incident
angle between 22° and 55°.

2.1.2 Characteristics of Optical and SAR Imagery

In the case of optical and SAR satellites, the images acquired by both sensors exhibit quite
different properties that characterize the images. In particular, the specific acquisition
principle of a radar sensor and the resulting image effects make the visual interpretation
and usage of SAR images a challenging task [42]. The particular characteristics of both
sensors have to be taken into account while analyzing the images or, in our case, to develop
an optimal image registration strategy. Therefore, the relevant image properties of optical
and SAR image are discussed and compared in the following paragraphs.

Radiometric Properties: The different wavelengths measured and utilized by optical and
SAR sensors lead to different radiometric properties in the images. This is due to the fact
that the response of an object depends on the signal properties (wavelength, polarization),
the surface properties (roughness, randomness of local reflectors and reflectance properties)
and sensor perspective. Here, optical sensors measure the reflected radiation in the visible
and near-infrared region of the electromagnetic spectrum in order to generate an image. This
particular part of the spectrum enables the collection of information about the chemical
structure of an object on ground. The pixel intensity values of optical images therefore
contain information about the chemical characteristics of an observed area. SAR sensors, in
contrast, utilize electromagnetic signals with a much lower frequency and energy. Therefore,
the obtained images mainly capture physical and geometrical properties of the objects
on ground, where the pixel intensity values contain information about the roughness, the
electrical conductivity and the orientation of an object to the sensor [38]. As a consequence,
the same object in an optical and SAR image may appear with high intensity for one sensor
and with low intensity for the other. Another effect in SAR images is called speckle, which
further complicates the human and automatic interpretation of the images. Speckle is due to
the coherent interference of waves that are reflected from many scatterers in each resolution
cell. As a consequence, neighboring pixels may show a high variation in their pixel intensity
values. An example showing the different radiometric properties is provided in Figure 1.1.
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Geometric Properties: Due to the different acquisition principles of optical and SAR
satellites (measuring signal travel time vs. angles), the corresponding images further exhibit
quite different geometric properties for all objects above the ground. The optical images used
in the thesis are acquired through the use of a scanner system. For these kind of systems,
above ground objects located perpendicular to the direction of flight get projected away from
the sensor in the image plane. The opposite is the case for radar systems, where the image
geometry is derived through the traveling time of the backscattered signal. Therefore, above
ground objects get projected towards the sensor in the image plane [37]. An illustration of the
different image geometries between optical and SAR images is shown in Figure 2.4. Here, the
different projection (towards and away from the sensor) can be seen for the point ¢ located
on the roof of the house. SAR images further shows three typical distortion effects called
foreshortening, layover and shadowing. These effects occur along objects above the ground
level and have a strong influence on their visual appearance within the image. Foreshortening
denotes the shortening of a distance between two points during the projection in the image
plan. This effect occurs if a slope is facing the sensor and has an angle o smaller than the
incident angle 6 of the SAR sensor or if a slope is facing away from the sensor with an angle
smaller than 90° — . Layover appears if a slope is facing the sensor and has an angle higher
than the incident angle of the SAR sensor. This effect is particularly common in urban and
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Figure 2.3: Comparison of optical and SAR imaging. The green (blue) marked lines illustrate the
projection of the four points a to d on the Earth surface into the optical (SAR) image plane. Elevated
points such as point ¢ are shifted away from the sensor in the optical image plane and towards the
sensor in the SAR image plane. The point e is neither seen by the optical nor SAR sensor, and hence
not present in the acquired images.
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Figure 2.4: Tllustration of the geometric distortion effects layover (marked blue), foreshortening
(marked dark red) and shadowing (marked green) for SAR images. Layover: an observed object
appears upside down in the image plan; Foreshortening: an observed object or ground segment
appears shortened in the image plan; Shadow: non-visible regions appear as dark areas in the image.

mountainous areas. As a consequence, areas affected by overlay appear relatively bright (due
to the overlay of the signal response) and buildings and steep mountains can appear upside
down in SAR images. Shadowing on the other hand appears, if a terrain slope is oriented
away from the sensor and at an angle higher than the incident angles of the sensor. Since
no information can be gained from these shadowed regions, these appear as dark areas in
the images. Note that all introduced radar effects depend on the viewing direction of the
sensor and the geometry of the targeted object on ground. A visualization of the layover,
foreshortening and shadowing effect of SAR sensors is provided in Figure 2.4.

Positioning Accuracy: Furthermore, the different acquisition modes have also an effect on
the geo-referencing process. The location accuracy of optical satellites depends on a precise
knowledge of the satellite orientation in space in order to determine the satellite-viewing
direction to ground objects. The required measurements of the attitude angles in space often
suffers from insufficient accuracies of the measurements, and are the main reason for a lower
geo-localization accuracy of optical satellite data. For example, the absolute geo-localization
accuracy of images for optical satellites like PRISM, Worldview-2, or QuickBird ranges
from 4m to 30 m. Images captured by high-resolution SAR satellites on the other hand,
exhibit a much higher geo-localization accuracy, mainly due to the availability of precise
orbit information and the recent developments in SAR geodesy. More precisely, SAR sensors
determine the distance to ground object via the signal traveling time, which can be measured
precisely if also atmospheric effects are taken into account, and lead to images with high
geo-localization accuracy. The SAR images used in this thesis are acquired by the satellite
TerraSAR-X [43] and exhibit an absolute geo-localization accuracy in the range of a few
decimeters or centimeters for specific targets [14]. An example of the differences in the
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(a) Digital Orthophoto (GSD=0.2m) (b) TerraSAR-X image (GSD=0.5m)

(c) WordView-2 image (GSD=0.5m) (d) QuickBird image (GSD=0.6m)

Figure 2.5: Visualization of the absolute geo-localization accuracy of different sensors. The red
marked dots and lines represent GPS measurements.

positioning accuracies of optical and SAR satellite images is provided in Figure 2.5. The red
dots are GPS measurements along the inner circle of the roundabout and represent with
an absolute geometric accuracy within a few centimeters the ground truth. Figure 2.5(a)
shows a digital orthophoto (DOP), which is accurately geo-referenced and almost perfectly
aligned with the GPS measurements. A similar situation can be seen in Figure 2.5(b). Here,
a TerraSAR-X image of the same scene overlaid with the GPS measurements and the street
extracted from the DOP is displayed. Figure 2.5(b) and (d) show the same information but
underlaid with a WordView-2 and QuickBird image, respectively. The geo-localization error
of both optical images is clearly visible. Furthermore, this error depends on the underlying
sensor model and varies between images acquired from different satellites.

Based on the discussed optical and SAR sensor principles and the resulting different image
properties, two novel methods for the matching of optical and SAR images will be introduced
in Chapter 4. In particular, the different radiometric and geometric properties are thereby
taken into account in order to enable the exploitation of the high positioning accuracy of
SAR data for the positioning improvement of the optical images. In the following Section 2.2,
the principles of supervised machine learning are presented. The theoretic concepts discussed
here form the basis of our later presented optical and SAR image matching methods.
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2.2 Principles of Supervised Machine Learning

In 1959, Arthur Samuel coined the term machine learning and defined it as "a field of study
that gives computers the ability to learn without being explicitly programmed" [44]. A more
formal definition of machine learning, which mentions the term "learning", was given by
Tom Mitshell in 1997: "A computer program is said to learn from experience E with respect
to some class of tasks T" and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E" [45]. The experience E is a dataset (a collection
of many examples), the task 7" defines the actually goal of the training, e.g. image denoising
or classification, and the performance measure P is usually tailored to the task 7" with the
aim of evaluating the performance of the algorithm, e.g. accuracy measure of a classification
problem. The term learning in both definitions refers to the process of attaining the ability
to perform a task on the basis of given data or past experience.

The type of learning depends on the kind of given experience and broadly divides machine
learning algorithms into three categories. The first class, supervised learning, tries to learn
the mapping from input data X to a set of corresponding labels Y (labeled data) and is
commonly applied on regression or classification problems. The second class, unsupervised
learning, deals in contrast with the problem of analyzing and learning the structure of
the input data X without corresponding labels (unlabeled data), e.g. clustering or density
estimation. The last class, reinforcement learning, handles the problem of finding suitable
actions in a given situation to maximize a reward. The reward is defined by the quality of
the action and the learning is realized through a trial and error process (the algorithm is not
provided with the optimal actions). The diagram in Figure 2.6 comprises an overview and
the general ideas of the three learning types.

The structure of any machine learning algorithm has to be carefully designed before the
learning step in order to fulfill the needs and requirements of a particular task. The key
of each machine learning algorithm are trainable parameters, often called weights, which
are optimized during the learning process. Applying a machine learning algorithm to solve
a specific task, commonly involves the following three phases: (1) the learning or training

learning
unsupervised supervised reinforcement
learning learning learning
Analyze and learn the structure of Learn the mapping from input Find suitable actions in a given
input data X without corresponding data X to a set of corresponding situation to maximize the reward
labels (unlabled data) labels Y (quality of an action)

Figure 2.6: Overview and general idea of the three types of learning: unsupervised, supervised and
reinforcement learning.
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phase, (2) the validation phase and (3) the test or inference phase. In the following, we
will discuss the aim and process of these phases in the context of supervised learning. More
information about unsupervised learning can be found in [46-48] and about reinforcement
learning in [47, 49].

Supervised Learning - the General Goal

The goal of a supervised learning algorithm is to learn a function
f:X—=Y, (2.1)

when a set of input data X and a set of corresponding labels Y are given. The function
f assigns every input & € X to an output y € Y given a set of labeled input-output pairs
D= {(m("),y(”)> In=1,...,Nand N € N}. The variables & and y can be scalars, vectors
or matrices. If the elements of y are continuous, it is called a regression problem, and if the
elements are discrete, it is called a classification problems. The function f is often referred
to as the model and is defined by the set of trainable parameters 8. The assigned values
y = f(x,0) are commonly called the predictions of the model. Before starting the actual
learning process, the set of given input output pairs D is partitioned into three subsets, a
training Dyrqin, validation D,y and test set Dyegt-

Training Phase: The aim of the training phase is to find the optimal parameters @ based
on the given training data. In order to find an optimal approximation f (5) of the true but
unknown function f* (given Dyqin) the quality of the model has to be evaluated. In the
case of supervised learning the quality of a model can be measured by regarding the error in
the model predictions g™ = f(x(™, é) This measure is often called the loss, error or cost
function and is defined as

i 0 if g = ¢
Ly™, gy = _ . (2.2)
> (0 otherwise

The loss function enables to penalize incorrect model predictions (:lj(”) #* y(”)) during the
training process. The optimal model parameters 8* are computed by minimizing the overall
error, which gradually increases the quality of the learned model

N
* i (n) (n)
0" = arg mglnnz::l L(y"™, yg'"™). (2.3)

This procedure will lead to a model, which is able to provide accurate predictions for input
values from the training set, but not necessary for unseen data. In order to find a model
which further provides accurate predictions for unseen data and, hence, is applicable to a
real world task, the networks ability to generalize has to be monitored during the training.

Validation Phase: The validation phase pursues the goal of estimating the generalization
performance of the trained model. Therefore, the performance of the model is measured by
evaluating the loss function £ on the validation dataset. The training and validation phase
can be executed alternately till the best model is found. Commonly, the model showing the
best performance on the validation set is picked as the best and final model. A second purpose
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learning
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learning
discriminant discriminative generative
function model model
learns directly a function learn the mapping from input learn the mapping from input
which mans input ’ z to labels y;, by estimating x to labels y;, by estimating
i lpb lp the conditional probability the joint probability
aife & 19 Laells iy distributions p(y|z) distributions p(x, yx)

Figure 2.7: Overview and general idea of the three branches of supervised learning: discriminant
functions, discriminative models and generative models.

of the validation phase is to tune the hyperparameters of the model. Hyperparameters are
model configurations, which are set before the actual learning is realized and cannot be
directly learned during the training phase. In order to tune them, algorithms like grid search
or random search are often used.

Test Phase: The aim of the last phase, called test phase, is to evaluate the performance of
the final model on an independent test dataset. As in the training and validation phase, the
performance is measured by utilizing the loss function £. Since the test set contains only
unseen data (not used for the training or validation phase), this step reveals the ability of
the model to generalize to unseen data and its quality to perform on the desired task.

The quality of the final model depends next to the chosen type and complexity of the
algorithm, the set of hyperparameters, the loss function and the optimization procedure also
on the quality and amount of the given training data. It is important that the selection of
the set of data pairs (X,Y") represents the real task and that the distribution of the data is
a good approximation of the real data distribution. Furthermore, the right balance between
the complexity of the model and the amount of training data with respect to the actual
task has to be found to limit the generalization error. In this context terms like under- or
overfitting a commonly used, which will be thematized in Subsection 2.2.1.

Supervised Learning - the Types of Learning

Supervised learning algorithms can be further divided into three subcategories depending
on how the mapping from X to Y is actually learned during the training phases (shown
in Figure 2.7). The first category comprises discriminant functions, which define a class of
algorithms that try to find directly a function which maps an input value x to an output
label y (non-probabilistic algorithms). The learned model does not provide any confidence
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or a probability for an output label y. If we consider a simple classification problem (such as
illustrated in Figure 2.8), where X is a set of images (represented as colored dotes) and Y a
set of kinds of animals shown in the image (cat, dog or elephant), a discriminant function
will try to learn the decision boundaries between the classes, which divide the feature space
into separate areas. Depending on the learned decision boundaries, new images would be
assigned to a label without providing the uncertainty of the model.

Figure 2.8: Illustration of a simple classification problem with three classes (red, yellow and green
dots) and the corresponding decision boundaries (black lines). The gray line marks a possible
non-optimal decision boundary during the training phase of the discriminant function.

The second class are discriminative models, which define a class of algorithms that try to
learn a statistical model to estimate the conditional (posterior) probability distributions
p(ylz) from input data € X to labels y € Y (probabilistic algorithms). The distributions
p(y|x) provide the probabilities of each label y given a fixed input value . The goal of
assigning or predicting a label to each input value « is realized by evaluating the function

f(x) = arg glg;cp(yliv) : (2.4)

Discriminative models learn p(y|x) directly from the data and do not consider the underlying
data distribution. In contrast to discriminant functions, discriminative models provide next
to the predicted label for a given input data also the corresponding conditional probabilities.
This additional information helps to evaluate the confidence of the model regarding a certain
prediction.

The last class, generative models try to learn the joint probability distributions p(x,yx), or
in other words, they try to explicitly model the distribution behind the data. In the case of
generative models the predicted label of an input value x is determined by evaluating the
function

f(z) = argmaxp(x, y). (25)

The example in Figure 2.9 shows the same classification example as in Figure 2.8, but this
time handled via a generative model. A generative model tries to learn the joint probability
distributions p(x,y1), p(x,y2) and p(x,ys) of input data & and the tree classes labels y,
yo and y3. The red green and yellow area in Figure 2.9 mark the areas in the image space,
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which contain (with a high probability) real images showing cats, dogs or elephants. The
goal of the training procedure is to minimize the distance to the true data distribution. To
measure the distance to the true data distribution a measure such as the Kullback—Leibler
divergence can be applied.

The choice of the optimal learning type heavily depends on the actual problem. Generative
models are more expensive to compute and learning p(x,y) is generally more difficult than
learning p(y|x) or directly learning the mapping from X to Y. On the other hand, generative
models perform in principle better when larger training sets are given and are richer in the
sense that they implicitly model p(y|x) and p(x) through p(x,y), which is given through
the following equation

p(x,y) = p(x) - p(y|x) (Bayes” Theorem). (2.6)

Generative models further provide the possibility of sample new data pairs (x,y) from
p(x,y). If we consider the animal image classification example with the three possible classes
(cat, dog or elephant) a generative model is able not only to predict a label for a new input
image, but also to produce synthetic images (data points) belonging to one of the three
classes. However, discriminative models are mostly more robust w.r.t. modeling errors and
blunders and regarding a classification problem, where only a decision boundary is needed
to separate the classes, a discriminant function or a discriminative model generally perform
better.

In the following two subsections, we will introduce the concepts and provide insights of
a discriminative model, neural networks, and a generative model, generative adversarial
networks (GANs). For more information about discriminant functions and discriminative
and generative models we refer to [46, 47] and for a detailed discussion about discriminative
and generative classifiers to [50].

Figure 2.9: Illustration of a simple classification problem with three classes (red, yellow and green
dots) and the corresponding joint probability distributions p(x,y:1), p(x,y2) and p(x,ys). The gray
dashed lines illustrate possible (non-optimal) joint probability distributions p(«,y:1), p(x, y2) and
p(x,y3) during the training phase of the generative model.
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2.2.1 Artificial Neural Networks

The origin of artificial neural networks (ANNs) dates back to the early 1940s where McCulloch
and Pitts [51] developed the first concepts of the functional principles of biological learning
system such as the brain. Inspired by this work, Rosenblatt developed the concept of
perceptrons [52] in the late 1950s. A perceptron, often called artificial neuron, is a model of
a biological neuron and can be understood as a computational unit which produces a single
output y given some input x. The output y is given through the following equation

y=o0 (2”: w;iT; + b) =0 (WTCC + b) , (2.7)

=1

where the values x; (i = 1,...,n) are the input elements, w; the learnable weights, b
the learnable bias and o(-) the activation or transfer function. The weights represent the
importance of the corresponding input value and are adjusted during the training phase. The
activation functions serves as a threshold, which divides the input space into two partitions.
Commonly, non-linear activation functions are applied in order to introduce non-linearities
into the perceptron and later to the network (otherwise only linear functions can be modeled).
The optimal bias is learned during training and enables a shift of the activation function
in the image space in order to find the optimal partition of the input data. An illustration
of a perceptron and the comparison with the biological neuron counterpart is shown in
Figure 2.10.

In the original work [52], Rosenblatt proposed the application of a step function as activation
function, whereas nowadays non-linear functions such as the sigmoid, the hyperbolic tangent
or rectified linear functions are usually applied (see Figure 2.11). This development can
be traced back to an unstable behavior caused by a step function: small changes in the
input values can lead to huge changes in the output value, which complicates a gradually
adjustment of the weights, and hence complicates the training procedure.

A single perceptron is only capable of learning a linear separation of the input data, heavily
limiting the number of application cases. This drawback can be overcome by composing
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(a) perceptron (artificial neuron) (b) biological neuron (image source: [53])

Figure 2.10: Illustration and comparison of a: (a) perceptron (artificial neuron) and (b) biological
neuron model. The values (z1,...,z,) are the input values, (w1, ...,w,) the corresponding weights
and b the bias of the perceptron.
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Figure 2.11: Example of four non-linear activation functions: (a) a step function, (b) the sigmoid
function, (c) the hyperbolic tangent and (d) a rectified linear function.

several perceptrons (artificial neurons) and connecting them to a directed acyclic graph!,
called an artificial neural network or sometimes a multi-layer perceptron (MLP). Figure 2.12
shows a simple representation of a neural network. The nodes of the graph are usually
called units and represent artificial neurons. Commonly, a neural network is built of distinct
layers, where the first layer is called the input layer and the last one the output layer. All
layers in between are called hidden layers. In the shown example the neurons within one
layer share no connections but between two adjacent layers the neurons are fully pairwise
connected. Such a layer structure is called fully-connected. If the information is only fed
forward through the network (only the output from previous layers is fed as input to the
later layer), it is called a feedforward neural network.

The network architecture can vary in the number of input, hidden and output units, the
number of hidden layers and the type of layers (overview of different layer types follows
below). A network with only one hidden layer is called a shallow neural network and with
more than two layers a deep neural network. The task of the layers is to extract information
(features) from the input data. The complexity of the features extracted by the layers
increases along with the depth, where early layers commonly detect simpler features, such as
edges or corners, and later layers more complex features, such as parts of a human face.

idirected acyclic graph: a directed graph without cycles
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hidden layers

input layer

Figure 2.12: Example of an artificial neural network with four layers (the input layer Iy, two hidden
layers Il and I3 and the output layer l;), which maps the input & = (x1,x9,x3) to the output
y = (y1,y2). Each circle represents a unit in the network and the arrows the connections between the
units of adjacent layers. The unit marked with 41 represents the bias unit of the corresponding layer.
The matrix W contains the weights between layer ¢ and t 4+ 1 and the vector b the biases from
layer t to t + 1.

Neural Networks - The Training Process

In order to train the network to learn meaningful features for solving a specific task, a
loss function has to be defined. Since we are still assuming a supervised learning problem,
the initial situation is the same as described in Subsection 2.2. The goal is to learn a
model that predicts an output y given and input x on the basis of a training dataset
Dirain = {(az("),y(”)> In=1,...,Nand N € N}. Utilizing the mean square error (MSE)
to measure the error in the predictions, the loss function for one training example can be
expressed as

(0w (o) = w (o)~ 2

where W is a matrix containing all weights and b a vector containing the biases of the
network. The overall set of learnable parameters is given by @ = (W, b). The predictions
g = fwob (:B(")) are obtain by computing a forward pass through the network (forward
propagation) and can be computed by evaluating a chain of function (vectorized notation)

fwb (CC(”)) —al) with atth =4 (h(“rl))

2.9
ht) = wha® L p® (=1, L-1). 29

Here, L denotes the total number of layers, a® is a vector containing the so called activation
(t)

, of unit 7 in layer ¢ with a® =z 11 ig a vector containing the values hgt) of

(®)

] between
()
(A

values a

unit ¢ in layer ¢ (hidden values), W is a matrix containing all the weights w
unit 7 in layer ¢ and unit j in layer ¢ 4+ 1, and b®) is a vector containing the biases b\” from

layer ¢ to unit ¢ in layer t 4+ 1. A visual example of the terms is illustrated in Figure 2.13
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and the detailed expression of h**1) is given by the following equation

t t t t t
S T
t t
O T Y 2l a0
t t t t t
w7(1t)+1,1 wﬁlz)+172 wgt)+lvnt ’glt)ﬂ b%t)Jrl
—_—
w®) a(t) b®

where n; is the number of units in layer t. The overall error £(W,b) is given by the sum
overall training examples in Dy;ain. The goal of the training phase is to find the optimal set
of parameters @ = (W, b), which minimize the overall error. This optimization problem can
be stated as follows

(W.5) =g 3= (4, s (=) 2.1

=£(W,b)

Before applying an optimization algorithm the parameters 6 of the network have to be
initialized. The weights are commonly initialized by small random values, or a specific
initialization scheme such as proposed in [54], or with weights from a pre-trained network
and the biases set to zero. If all weights would be initialized with the same value, every

activation agt) would be the same and, hence, every neuron would learn the same. For a
detailed overview of parameter initialization strategies and its advantages and disadvantages

we refer to [48] and for the specific ones used in this thesis to Subsections 5.3.1 and 5.2.1.

Figure 2.13: Illustration of the forward propagation for one unit in a neural network and the

computation of the term hé?’) and the activation value ags) of the second unit in layer 3. The values

al(?) are the activations of the i-th unit in layer 2, wézj) are the weights between the j-th unit in layer

2 and the second unit in layer 3 and bg) the bias from layer 2 to the second unit in layer 3.
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Figure 2.14: Influence of the learning rate on the error over the training time.

After the initialization of the parameters, an optimization algorithm such as gradient descent
is applied to minimize the overall loss w.r.t. to the parameters. The idea of gradient descent
is to learn the optimal parameters by updating the weights and biases in an iterative way

(1)

1,]

) 9E(W.b)
& ow®
27‘7
DE(W,b)
op

w,

(2.12)
b — b — A

(2 7 9

where the parameter X is called learning rate and determines the speed of the parameter
updates. The learning rate has often a significant influence on the success of the learning
and represents a hyperparameter, which has to be determined before the learning phase and
tuned by utilizing the validation phase. Figure 2.14 exemplifies the influence of the learning
rate on the overall error during training. A too small learning rate lead to a slow convergence
of the loss function, whereas a too high learning rate can lead the loss to oscillate around
the minimum or to diverge.

So, far the total error £(W,b) is computed by summing up the loss function over the
whole training set Dipain in one iteration of gradient descent. A common approach for the
training of a neural networks is to evaluate the error only over a small subset of Diain,
called (mini-)batch. The batches can be chosen randomly from Dy, in each iteration
or generated beforehand by partition the set Dyain into several batches. An advantage of
this strategy is that it is computationally faster (in the case of a larger training set Diyain)-
Furthermore, it converges faster, while providing a reasonable approximation of the total
error due to redundant information in most datasets. This extension of gradient descent

is called (mini-batch) stochastic gradient descent (SGD), where the key step of SGD is to
9E(W.b) 1 OE(W.b)

compute the partial derivatives
P P PO g

In 1986, Rumelhart et al. [55] proposed an algorithm for the computation of these derivatives,
which enabled the efficient training of neural networks. The algorithm is called back-
propagation and is based on the idea of propagating the error backwards through the network
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by applying the chain rule

df(g(x)) _ 9f(g(x)) 9g(x)
oz dg(z) Oz (2.13)

We will introduce the idea of back-propagation in the following and simplify the notations
without loss of generality by exploiting the following rule

Ny
0 L W, b7 :IB(n), (n) n n
OE(W,b) _ P ( y™) _ % oL (W, b, 2, y(™) 214
Owg} 8w§3 n=1 8wl(tj)

and consider only the error caused by one training example (:B("), y(”)) and the corresponding
OL(Wb) ._ IL(Wbay™) 4 0L(W.b) ._ 9L(W.ba()y(m)
o = @ an o = ®
Bwi’j awi‘j ab; ob,
equation the term NN, denotes the size of the batch.

. In the above stated

derivatives

The output of the network is computed through the forward propagation and is defined by

a chain of functions (see Equation 2.9). Therefore, the chain rule can be applied and the
()

derivative of £(W,b) with respect to a single weight w; ; between unit ¢ in layer ¢ and unit

j in layer t + 1 can be rewritten as
OL(W.,b) _ OL(W,b) 0h{"™) _ 9L(W,b) dalt) on{™"
ow® oY 8w 8aMY an{ttY) 9w
%,] 7 1,5 4 i i,
_ (”Z“ OL(W,b) 8h§j+2>> Bal) gpt+D)
= o™ 8alV ) onY ow!)
S 9L(W,b) (t+1) (t+1)\ (¢)
:<Z iy Wk U/(hi )aj ;
k=1 ahk

9L(W,b)
8h§t+1)

|~

(2.15)

N

where n;,9 denotes the number of units in layer t+2. For an efficient computation of the

)

derivatives the error term (5? is introduced and recursively defined for ¢t = 1,...,L—1 as

follows

IL(W,b i
s = (;h(t) ) _ (Z 5,?“%,&;“”) o (h) (2.16)
3 k=1

where the first values of 5§L) (error term of the output layer) are given by

(L)
5@@) _ 35(‘7(\2,)13) _ 8E(‘7(\23b) 3@2@) _ 85(‘7(\2,)]3) o (hEL)) . (2.17)
Oh; da; oh; Oa;
T (A T T
(F)—y)

The error term 51@ measures the error of each neuron ¢ in layer ¢ and starting from 5§L) the
error can be propagate backwards through the network (backpropagation). An illustration

of the computation of the error term for a single neuron is illustrated in Figure 2.15.
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la

Figure 2.15: Illustration of the backward propagation for one unit in a neural network and the

) and the error term (552) of the second unit in layer 2. The values 51(3)

are the error terms of the i-th unit in layer 3, w1(22) are the weights between the second unit in layer 2

and the ¢-th unit in layer 3.

computation of the term th

Utilizing the concept of the error term and its definition from Equation 2.16 we can rewrite

(t)

the partial derivatives of £L(W,b) with respect to a single weight w,”; from Equation 2.15 as

1,J
follows
L(W,b) 5 0 (2.18)
PG j
0.
and the partial derivatives of £L(W,b) with respect to the bias bgt) as
OL(W,b)  AL(W,b) onl™ 1y
— =5 . (2.19)
b on{tt o)
K3 (2 (2

=1

The final algorithm can be briefly summarized into the following five steps:

1. Initialize the parameters of the network, e.g. set weights to small random values and
the biases to zero.

2. Compute the forward propagation as stated in Equation 2.9 by calculating a*+1) and
h*+1 for each neuron of every layer and store the results for the later backpropagation
of the error.

(®)

3. Compute the error terms 6, * for each neuron of every layer according to Equations 2.16

and 2.17.
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4. Compute the derivative of £(W,b) with respect to the weights and biases according
to Equations 2.18, 2.19 and 2.14.

5. Update the parameters according to Equation 2.12 and start the next iteration with
step 2.

The error function stated in Equation 2.11 is non-convex and, hence, it is not guaranteed
for the described algorithm to find the global minimum. However, Choromanska et al. [56]
showed that in practice the local minima, which can be found by the algorithm, tend to be
very similar to the global one.

The training of a deep and large neural network is often difficult even through the application
of the back-propagation algorithm and SGD. Several research studies have proposed specific
techniques for the training of such networks, commonly known as deep learning. These
techniques include the developments of optimal initialization schemes for the network
parameters [54, 57|, strategies for tuning the hyperparameters [58, 59], faster and better
optimization algorithms [60—-63] or optimal data pre-processing approaches [57]. However,
one of the major research efforts were and are still spent on the development of techniques to
increase the ability of the network to generalize (providing reasonable predictions to unseen
data).

In 1991, Hornik [64] demonstrated that a neural network with only one hidden layer can
approximate any function. More precisely, by training a shallow neural network an optimal
model can be found, which fits perfectly to the training data. However, it is not guaranteed
that this (optimal) model performs reasonable on an unseen datasets or is able to learn
features at various levels like a deep neural network. The problem, where a model shows a
low error on the training set, but has not learned to generalize (high error on the test set) is
called overfitting. Especially deep neural networks with a large number of parameters are
vulnerable to this problem. The illustration in Figure 2.16 shows the effects of overfitting on
the training and validation set error.

During the training phase the complexity of the learned model increases successively. As a
consequence, the model fits better and better to the training data, which leads to a reduction
in the training error (illustrated by the blue curve). The period, where the complexity of
the model is too low to fit to the data and, hence, the training and generalization error
(computed over the validation set) are high, is called underfitting. At the beginning of the
training, the generalization error shows a similar behavior to the training error and decreases
over time. The moment the model starts overfitting to the training data, the validation error
starts to increase. If the training will be continued after this point, the model ability to
generalize will successively decrease. By monitoring the loss function of the training and
validation set over the training time the occurrence of overfitting can be identified and the
training procedure can be stopped the moment the validation error starts to increase (early
stopping). In the following further techniques to prevent the network from overfitting will
be introduced.
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Figure 2.16: Illustration of the overfitting problem of neural networks. The blue and red curves
show the training and generalization error (computed over the validation set) of the network over
the training time and with respect to the learned model complexity. The gray framed images show
examples of learned models during the training given some training data (blue points). The longer
the training, the higher the model complexity and its ability to fit to the training data, but the higher
the generalization error on a validation set (red points).

Neural Networks - Types of Regularization

All techniques with the goal of preventing the network from overfitting are summarized in
general under the term of regularization. One way of regularization is to increase the size
of the training dataset. This can be achieved by adding new data to the training set or by
generating new data from the existing data (data augmentation). Commonly used forms of
data augmentations are the addition of noise or the application of transformations, such as
shifting, rotation or scaling on the existing data.

A further way of regularization is to put constraints to the parameters of the network. A
common approach is to extend the loss function by an additional regularization term R,
which lead to the modified loss function

£ o () = () - e mW. 2

The value p is called the regularization parameter and defines the influence of the regulariza-
tion term. It represents also another hyperparameter, which as to be adjusted with the help
of the validation set. The idea of R is to restrict the values of the weights by penalizing too
large weights. In practice, the L;- and Lo-norm are commonly utilized, where R is given as
R=|W|;orR=1 W3, respectively.

Another form of regularization is to reduce the number of parameters and, hence, limit the
model complexity. This can be achieved by changing the network architecture through the
reducing the number of hidden layers or the number of units per layer. However, in practice
it has been proven that deeper networks in combination with regularization techniques, which
keep the basic network structure fixed, perform better. One of these techniques is called
dropout [65]. Dropout is a technique, which tries to prevent the network from adapting too
much to the training data by randomly dropping units and their corresponding connections
during the training. As a result, a slightly different network is trained at each step of the
training procedure.
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Figure 2.17: Illustration of convolutional layers with filters of size 3 x 3. The filter between layer

1 and [y is represented by the red marked square and the filter between layer Il and I3 by the blue

(2) (3)
1

marked square. a;”’ and a;”’ denote the feature maps of layer /3 and I3, respectively. The blue dashed

line in the input image I illustrates the receptive field of the point (pixel) ¢ in the feature map ffg).

The number of parameters can further be reduced by decreasing the number of connections
between layers (sparse connections) or by sharing parameters between units. A possible way
to achieve this is to consider prior knowledge about dependencies between input units or
model parameters, and thereby adjust the layer structure. The most widely used type of
network, which is based on this idea, is called convolutional neural network (CNN). CNNs are
specifically developed for the task of image analyzes and taking the structure and properties
of an image as input into account. Commonly, a CNN consists of a set of convolutional
layers, which are followed by several fully-connected layers. The task of the convolutional
layers is to detect and extract features from the input image (the deeper the network the
more complex are the learned features), whereas the task of the fully-connected layers is to
find the mapping to the output labels from the extracted features.

A convolutional layer consists of a multi-dimensional rectangular grid of neurons and a set
of s filters sometimes called kernels, which contain the weights of the network. Each filter
k®*) has a size of (2r® + 1) x (2r® 4+ 1). In contrast to fully-connected layers, only a small
region in layer ¢ is connected to a neuron in layer ¢ + 1 (sparse connected layers). The region
in the input image I, which is indirectly connected to a neuron (unit) ¢ in layer ¢ is called
the receptive field. The size of the receptive field depends on the size of the applied filter
and increases with depth. An example of convolutional layers and the receptive field of a
point q is illustrated in Figure 2.17.

The concept of sparse connected layers is reflected in the computation of the activations att1).

Given as an example the 3 dimensional input a®), where the third (spectral) dimension
(t+1)

represents the different channels, the activation a; ;.

| for a unit at position (3, j) of channel
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ct+1 in layer ¢ is given as

agficill =0 ((agi) * k(tS)) .. + bgf])',ct) =0 < Z Z agt—)u,j—v,ctk’glt,ﬁ) + b’L(',tj?,Ct> J (221)

i
J U=—rv=—"

where * denotes the convolution operator. The matrix agﬂ ) of channel ¢4 is called feature

£9) over the input feature map ag). The length

map and is generated by shifting the filter k(
of these shifts is called stride and can vary from one to several units. If the input matrices
are not padded with zeros around the boundaries (zero-padding) the size of the feature maps
will decrease with the depth of the network. In practice, a set of up to several hundred
filter is applied to each channel of the input of layer ¢, where every filter learns to extract a

particular feature and produces a corresponding feature map.

In contrast to fully connected layers, where every connection has a distinct weight, convolution
layers utilize only one filter (one set of weights) to generate one feature map. The idea behind
this concept of parameter sharing is that a particular feature occur at several locations
within the image and can always be extracted with the same filter. Parameter sharing and
sparsely connected layers tremendously decreases the number of parameters of a network
and have been proven to be a very efficient regularization technique in practice. The number
of parameter in a CNN can be further decreased by inserting pooling layers between the
convolutional layers. The aim of pooling layers is to reduce the dimensionality of the feature
maps and to make the network invariant to local translations. Common used pooling
operators are max pooling [66] or average pooling, where the features maps are downsampled
by taking the maximum or the average value of a defined region. Pooling layers are useful
for tasks, such as object recognition, where the exact location of the object in the image is
less important. For further regularization strategies we refer to [48].

Neural Networks - Types of Application Possibilities

The ways of deploying neural networks for particular task can be categorized into three
strategies: The first strategy is to design a network particular for a specific task and train it
from scratch given a labeled dataset. This strategy is only applicable if a large dataset is
available. The second strategy is based on the idea of transfer learning, which means to use
knowledge gained from one problem to solve a similar one. The idea is to utilize layers from
an already trained network (trained for a different task) and combine them with new and
untrained layers. Commonly, only the last few layers of pre-trained models are exchanged.
For the subsequent training the old weight can either be fixed and only the weights of the
new layers are adjusted, or all weights are adjusted (fine-tuning). The last strategy is to use
the features learned by a neural network and feed it as input to a different machine learning
algorithm such as SVMs or decision trees. In this thesis we will follow the first strategy and
always train the networks from scratch.
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2.2.2 (Generative Adversarial Networks

Generative adversarial networks (GANs) are a new machine learning architecture introduced
by Goodfellow et al. [67] in 2014. The concept of GANs earned a lot of attention in the field
of machine learning and offers new possibilities for several research problems through the
generation of high quality samples. The application fields of GANs range from computer
vision problems, e.g. semantic segmentation [68], single image super-resolution [69], text to
image synthesis [70], to the problem of discovering new drugs for specific diseases in the field
of medicine [71]. A further use case in medicine is the utilization of GANs for the generation
of computer tomography (CT) images from magnetic resonance imaging (MRI) to reduce the
radiation exposure to patients during acquisition [72]. In the context of remote sensing, Guo
et al. [73] investigated the application of GANSs for the synthesis of SAR image patches.

GANSs belong to the class of generative models and pursue the goal of learning the data
distribution of a given dataset, commonly images, in order to generate new data from the
learned distribution. As described in Subsection 2.2 generative models are difficult to learn
and come with high computational costs. Moreover, commonly no labeled datasets exist for
these kinds of tasks, which means that GANs initially deal with an unsupervised learning
problem. Despite these problems, the development of generative models and especially
GANs made decisive progress over the last years. The success originates from the idea of
reformulating the image generation problem and to integrate it into a newly defined task,
which can be learned through supervised learning techniques. Through this strategy, the
original task will be learned as a by-product and difficulties of unsupervised learning can
be avoided. The only additional requirement is a labeled dataset in order to realize the
supervised learning task.

In the specific case of GANs the learning procedure is realized through an adversarial
process, which is based on the simultaneous training of two counteractive neural networks,
the generator G and the discriminator D. The overall (unsupervised) goal is to train the
generator network G to map random noise z to output images y (the artificial image samples).
More specific, the aim of G is to estimate the real data distribution pgata of a given training
dataset Dirain as good as possible and to generate artificial images samples from the learned
distribution. In order to reach this goal, a discriminator network D is added to the system
for the time of the training. This network is trained through supervised learning techniques,
where the goal of D is to distinguish as good as possible between real images y and images
y = G(z) generated by G. The training objective of G on the other hand is reformulated to
the goal of producing more and more realistic images to "fool" D as often as possible. The
described problem can be expressed through a two-player minimax game

predicted log probability of D that y is real

mén max Lcan(G,D) = mGin max Eypania(y) [10g D(y)] +

Erpa(xllog(l = D(G(2)))]

predicted log probability of D that G(z) is fake

(2.22)

where E denotes the expected value, pgata the real data distribution and p, a noise distribution,
e.g. a uniform or normal distribution. D is commonly realized by a binary classification
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Figure 2.18: Illustration of the general GAN concept. The task of the generator network G is to
produce artificial image samples y = G(z) from random noise samples z with a distribution p,(y) as
close as possible to the real data distribution pga¢a(y). The task of the discriminator network D is
to distinguish as good as possible between real image samples y ~ pgata(y) and artificial generated

samples ¥ ~ pgy(y).

network and outputs the probability that an input image belongs either to the class 0 ("fake")
or to the class 1 ("real"). To ensure that the output values of D lie in the range of [0, 1]
a sigmoid layer can be used as the last layer of D. Generally, the network architecture of
D and G underlies not many restrictions and a variety of different designs find a practical
application. Note that after the training phase D will be neglected and only the learned
skills of G will be evaluated during the test phase.

In practice, the two networks are trained at the same time by alternating the training of
D and G, by first maximizing the GAN loss with respect to the discriminator parameters
0P) and then minimizing the same loss with respect to the generator parameters 8(¢). The
intuition behind these two steps is that D tries to get D(G(z)) close to 0, which means to
detect all images generated by G and correctly label them as "fake". In contrast, G aims to
get D(G(z)) close to 1, which means that D does not identifies the artificial images generated
by G and wrongly label them as "real". Due to this learning strategy G will consequently
learn an estimation of the real data distribution pgats. The discriminator network D is
trained on two different kinds of training image samples. Half of the training samples are
"fake" examples, generated by G, and the other half are "real" examples from the training
dataset Diain. These two cases are represented by the red and green arrows in Figure 2.18,
which illustrated the overall concept of GANS.

Commonly, gradient descent is utilized to optimize the GAN loss from Equation 2.22, where
one gradient descent step of D is followed by one gradient descent step of G. There exist
several algorithms to optimize gradient descent, such as [63] or [62], with the aim of finding
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the optimal update rule for the parameters 82) and (@) of D and G, respectively. The
specific algorithms utilized in this thesis will be discussed in detail in Sections 4.2 and 4.3.

A frequent problem at the beginning of the training procedure is the low quality of the
image samples generated by G. Due to the low image sample quality, D will quickly learn to
distinguish artificially generated images from real image samples, which means that D(G(z))
is close to zero. As a consequence, log(1 — D(G(z))) will be close to 0, and hence the loss of
the generator and its gradients are close to 0. Small gradients hamper the generator from
learning and extremely slow down the training procedure. This problem is often referred to
as vanishing gradients problem. To avoid vanishing gradients of G a common course of action
is to minimize — log(D(y, G(z))) instead of log(1 — D(y, G(z))) with respect to (%) (the
first term of Lgan is independent from G). This change provides stronger gradients for G,
even if D(G(z)) is small, while providing the same optimum. Note, this change is practical
motivated to ensure strong gradients for both networks to facilitate the learning process.
In the later theoretical discussion of the GAN concept the original generator loss will be
considered. A summary of the described GAN training procedure is given in Algorithm 1.

Goodfellow et al. [67] built the described learning strategy on the basis of a theoretical
analysis, which shows that through the application of Algorithm 1, p, converges to pgata if
optimal training conditions are given (high enough model complexity and training time). In
the following, we will provide an overview of the most important theoretical results and refer
for more details and full proofs to [67].

Algorithm 1: GAN training procedure with stochastic gradient descent.

Input: A training dataset Dirain, a noise distribution p,, the learning rate A, the batch
size Ny, the number of training iteration nyain

for i =1,..., Nyrain do
N
e Sample a mini-batch {z(z)}, bl from the noise distribution p, and a mini-batch
1=

Y.
{y(z)}, bl from the set of real training data Dy, with distribution pgata

=

e Compute the stochastic gradient g(®) of D w.r.t. its parameters 8(2):
Ny

9P — Voo 52 2 [logD (y(i))] + log (1 -D (G (z(i))))}

e Update the parargeters of D via an optimization algorithm (OptAlg):
0(P) « 0(P) 1 X\ OptAlgo(8(P), g(P))

N
e Sample a mini-batch {z(l)}, bl from the noise distribution p,
=

e Compute the stochastic gradient g(&) of G w.r.t. its parameters 8(%):
@) . (i)
99« Voo - % 1 [log (D (¢ (29)))]
e Update the parameters of G via an optimization algorithm (OptAlg):
0@ «— 6@ + X OptAlgo(0D), ()

end
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If we assume a continuous space and utilizing the definition of the expected value, the GAN
loss from Equation 2.22 can be rewritten as follows

Larn(CD) = [ pana(y) 108 (D)) dy + [ ps(z)log (1 = D(G(x))) dz

(2.23)
— [ passaly) 108 (D(y)) + py(y) log (1 = D(y)) dy.
y
Since a function of the form f(z) = alog(x)—blog(1—x) has its maximum at _%5 for € [0, 1]
and (a,b) € R?\ {0,0}, the optimal solution of max Lcan(G, D) is DE(y ) #%

given a fixed generator network GG. Furthermore, maximizing the GAN loss with respect to D
is equivalent to maximizing the log-likelihood of D predicting the correct label to a training
sample, whereas maximizing the GAN loss with respect to G is equivalent to minimizing the
same log-likelihood. By further assuming an optimal trained discriminator network DF,, we
can reformulate Equation 2.22 as follows

min max Lcan(G, D) =

= mén (ml%x Lean(G, D))

=Laan(G,Dg)
= min Eypyia (108 DG(Y)] + Bznp, [log(1 — Dg(G(2)))]

= min Eypyia [10g DG(Y)] + Eznp, [log(1 - D(y))] (2.24)
. pdata(y> pg<y)

=min Ey~p,... |log + E,p, |log
R [ Pdata(y) + pg(y) P [ Pdata(y) + Pa(y)

. Pdata(y)
= mén Eprdata |}0g a; :

2
+E.p, llog pg(y) 1

pdata(y) +pg(y) 2 . pdata(y) +pg(y)

pdm(y);r pg(y)> Dt (pg(y) H pdata(y); pg(y)>

= mén —2log(2) + Dx1, <Pdata(y)
/l\

def. KL divergence

= mGin —210g(2) + 2Ds(pdata(y) || Pg(y)),
/l\

def. JS divergence

where the Kullback-Leibler (KL) divergence Dk, is defined as

Dic () 1| () = Byt [102 (22 )] (2.25)

and the Jensen-Shannon (JS) divergence Djg as

Ds(ptw) |l aw) = 3Px () | LL ) 4 D (i) | P2 (2.2

The JS and KL divergence are two different methods for measuring the similarity between
two probability distributions p and ¢. As Equation 2.24 reveal, minimizing the function
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max Lcan(G, D) with respect to the generator parameters is equivalent to minimizing
the Jensen-Shannon divergence between pgata and pg, given an optimal discriminator Dg,.
Minimizing the JS divergence between pgata and pg is equivalent to gradually increasing the
similarity between both distributions. It can be further shown, that the global minimum
of maxp Lgan is achieved if and only if p; = pgata (see [67]). Additionally, this optimal
solution can be found through the application of Algorithm 1 if the model complexity of D
and G is high enough and the discriminator is trained long enough to reach its optimum
given G. In contrast to this theoretical results, where D should be trained until the optimal
solution, given G, is found (one gradient descent step of G is followed by many of D), it has
been proven in practice to be more efficient to train G and D alternately, where one gradient
descent step of G is followed by one of D.

We introduced the overall training problem of Equation 2.22 as a two-player minimax game.
In game theory the optimal solution of such a problem is called Nash Equilibrium. Based on
the theory presented in [74], a Nash Equilibrium in the context of GANs can be defined as a
tuple (0p,f¢) that is a local maximum of Lgan with respect to fp and a local minimum
of Loan with respect to 6. At this points the both players G and D reach there optimal
strategy. In relation to the above discussion this point is reached if py = pdata-

A drawback of GAN training in comparison to the training of a common neural network is
that finding the Nash equilibrium is commonly more difficult than optimizing a loss function.
On the other hand GANs have the advantage of not tending to overfit. Since the generator
is getting information about the training data only indirect through the discriminator it
cannot learn to just replicate the training samples. In Section 4.2 we will introduced some
GAN variants, further discuss some advantages and disadvantages and introduce the specific
network architecture of G and D applied in this thesis.
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2.3 Summary

The theoretical concepts presented in this chapter lay the foundation for the multi-modal
image registration methods presented later in this thesis. In summary the following aspects
have been discussed in the context of optical and SAR imagery in Section 2.1:

e Optical and SAR satellites are built on different acquisition concepts (synthetic aperture
with distance measurements in SAR; perspective projection in optical), viewing perspec-
tives (respectively off-nadir and usually near-nadir) and utilize different wavelengths
(respectively cm and nm) for the acquisition of images.

e The use of different wavelengths lead to different radiometric properties in the optical
and SAR images, as the response of an object depends on the signal properties
(wavelength, polarization), the surface properties (roughness, randomness of local
reflectors and reflectance properties) and sensor perspective. The speckle effect in SAR
images further complicates the human and automatic image interpretation.

e The different image acquisition principles also affect the geometry of the observed
objects. In particular, the sideways-looking acquisition of SAR sensors introduces
typical geometric distortion effects (layover, foreshortening) and shadowing for 3D
objects such as buildings or trees. These effects have a strong influence on the
appearance of all objects above the ground level in SAR images. As a consequence,
the boundary of an elevated object in a SAR image does not fit the object boundary
in the optical image, even if the imaging perspective is the same for both sensors.

e The differences in image acquisition further affect the geo-referencing process of the
images. Optical satellite images commonly have a geo-localization accuracy in the
order of tens of meters only, due to inaccurate measurements of the attitude angles in
space. High-resolution SAR images such as TerraSAR-X images on the other hand,
exhibit an absolute geo-localization accuracy within a few decimeters.

In the context of supervised machine learning (see Section 2.2) the most important aspects
can be summarized as follows:

e Depending on the type of learning, machine learning algorithms can be broadly divided
into three categories: supervised, unsupervised and reinforcement learning.

e The focus of this thesis is on the application of neural networks trained through
supervised learning algorithms. Such learning algorithms pursue the goal of learning a
mapping from input data X to a set of corresponding labels Y (labeled data).

e The learning process of the networks is thereby divided into three phases, training,
validation and test, where each phase pursues a certain goal and therefore requires an

independent dataset.

e For an efficient training of neural networks the so called backpropagation algorithm in
combination with regularization techniques and adjusted network architectures, such
as usage of convolutional layers, is suggested.
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e Through the design of a suitable network architecture and training procedure, neural
networks are able to learn all kind image features and can therefore be used for a
variety of tasks such as the detection and extraction of objects or the classification of
images.

e A novel machine learning architecture is the so called generative adversarial network
(GAN), which pursues the goal of learning the data distribution of a given dataset,
commonly images, in order to generate new data from the learned distribution.

e GANSs are trained through an adversarial training process, which is based on the

training of two counteractive neural networks, the generator and the discriminator.

e Through the specific network architecture and particular training process the generation
of high quality image samples from noise became feasible and open ups new possibilities
for the generation of artificial images.



IMAGE REGISTRATION

This chapter briefly describes the principles of image registration and its application in the
context of multi-modal images. Furthermore, state-of-the-art concepts for the problem of
optical and SAR image registration are introduced, and their advantages and disadvantages
discussed and summarized. In contrast to traditional image registration methods, typically
used in remote sensing, we introduce two novel image matching concepts, based on deep
learning techniques, which provides new opportunities for the improvement of multi-modal
image registration. The chapter is concluded by a short summary about previous research
studies and the research gaps regarding the image matching of optical and SAR satellite
images.
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Image registration has applications in various fields such as medical imaging, computer vision
and remote sensing. Commonly, image registration techniques are required, if information
from multi-model, multi-temporal or multi-viewpoint images has to be compared on a
point-to-point basis or combined in order to fuse information, to find changes or to derive
three-dimensional information. Zitova and Flusser [75] roughly divided image registration
problems into four groups (according to the image acquisition mode): Registration of images
acquired 1) from different viewpoints, 2) at different times, 3) from different sensors and, 4)
the registration of images and models of a scene. Besides this separation, image registration
techniques can also be categorized with respect to other aspects such as the transformation
models, which align one image with another, or based on the frameworks utilized for the
detection of correspondences between the different images. However, due to the circumstance
that registration techniques are commonly developed for a specific kind of application and
not for a specific problem (e.g. multi-temporal or multi-modal image alignment), it is difficult
to assign the different image registration techniques only to one class (in relation to one of
these categorization types). The focus of this thesis is on the registration of multi-modal
image data, which are acquired at varying times. In particular, we focus on the development
of concepts for the registration of image pairs from optical and SAR satellites.

Accurate geo-referenced and precisely co-registered optical and SAR image pairs are a
prerequisite for any image fusion application such as earthquake damage assessment of
buildings [5], road network extraction [6] or change detection [8] (further details presented in
Section 1.2). Commonly such data are not available, entailing the need of image registration
techniques. Besides the usage for image fusion tasks, image registration of high-resolution
optical and SAR image pairs has an additional benefit. Assuming the case of multi-modal
image data, where one of the images exhibits a higher absolute geo-localization accuracy,
image registration techniques can further be employed to improve the localization accuracy
of the second image. As discussed in Subsection 2.1.2, high-resolution SAR satellites like
TerraSAR-X exhibit an absolute geo-localization accuracy in the range of a few decimeters
or centimeter for specific targets [14], whereas high-resolution optical sensors still require
ground control points (GCPs) to reach similar accuracies.

Therefore, the successful registration of optical and SAR images has two major advantages:
first, the provision of aligned multi-modal image data as a foundation for several image fusion
applications and second, the provision of accurate absolute geo-referenced optical images
(under the assumptions of utilizing high-resolution SAR images for the registration process).
The main application aimed in this thesis is the geo-localization accuracy enhancement of
optical images through the registration with SAR images. Therefore, we will provide a brief
introduction to image registration principles in Section 3.1. Section 3.2 gives an overview of
state-of-the-art optical and SAR image registration techniques and a discussion about open
problems and challenges of these methods. A novel concept for the registration of images,
which represents a promising alternative to traditional methods by providing solutions for
several common challenges, is introduced and discussed in Section 3.3. We will conclude this
chapter with a summary of the research gaps regarding the problem statement and research
questions of this thesis in Section 3.4.
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3.1 Principles of Image Registration

Zitova and Flusser [75] defined image registration as the process of precisely overlaying
two or more images of the same scene taken at different times, from different viewpoints,
and/or by different sensors. This process geometrically aligns two images, by transforming
an input images (or sensed image) to a reference image. A slightly different definition can be
found in [76], where image registration is defined as the procedure to determine the best
spatial fit between two or more images of the same scene by geometrical matching of two or
more images acquired with the same or different sensor, with or without the same ground
resolution or at the same or different time. Mathematically, image registration between an
input image I and a reference image R can be stated as the following equation

R(xvy) :g(f(I(u7 U)))? (31)

where (u,v) are coordinates in the image space of I, (z,y) coordinates in the image space
of R, f a spatial transformation function (e.g. translation, affine or polynomial function)
and g a radiometric interpolation function to resample the transformed input image I to R
(e.g. nearest neighbor, bilinear or cubic interpolation). A visualization of Equation 3.1 is
presented in Figure 3.1.

The overall goal of each image registration method is to find the optimal transformation
functions f and g to precisely align I and R. In order to achieve this goal a suitable
registration framework has to be developed, which takes the particular properties of the
input-reference image pair into account. Commonly, every image registration framework
consists of the following four essential steps:

1. Feature detection and extraction: Prominent and salient image features such as
corners, line intersections or small image patches containing distinctive structures, are
detected independently in the spatial or frequency domain of the input and reference
image. The important information about the detected features is subsequently extracted
from the images and often represented in form of feature descriptors.

2. Feature matching: In order to identify corresponding matching or tie points in the
input and reference image the extracted features are matched through the application

of a suitable matching approach (feature- or intensity-based).

e . L e
input 1 reference R
Figure 3.1: Illustration of the image registration process. The input image I is mapped to the
reference image R by applying a spatial transformation f and a radiometric transformation g.
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3. Transformation model estimation: Based on the obtained image correspondences
in form of tie points and eventually existing knowledge about the specific kind of
distortion (e.g. none, global or local) between the input and the reference image the
optimal type of the transformation model and its parameters are estimated.

4. Image transformation and resampling: The input image is transformed based
on the computed transformation function and resampled through the application of a
suitable interpolation method in order to be precisely aligned with the reference image.

The four steps are usually well adapted to fulfill the needs and requirements of a particular
application, given an available image dataset, and can therefore vary quite a lot between
different registration approaches. Each step of the registration framework pursues a particular
goal and has to overcome certain challenges. The most challenging and most widely researched
part of the image registration framework are the first two steps, which also form the focus of
this thesis.

The purpose of the feature detection, extraction and matching steps is to link the input and
reference image by generating a set of tie points, sometimes called matching points. Tie points
are points, which represent the same locations in the input and in the reference image and are
utilized to estimate the type of the transformation model and its parameters. Therefore, the
accuracy and precision, with which the tie points are extracted, have an enormous influence
on the final registration outcome. As a consequence, the detection and extraction of a reliable
set of tie points play a central role in every registration framework. In particular, if the input
image exhibit local distortions, the tie points should be uniformly spread over the whole image
scene. Automatic techniques for the provision of such a set of tie points roughly divides image
registration techniques into two groups: feature-based and intensity-based approaches. In
the following, the general idea and specific challenges of feature- and intensity-based tie point
generation approaches will be discussed (see Subsections 3.1.1 and 3.1.2). In Subsection 3.1.3
we will present common practices for the determination of a suitable transformation model
and resampling function utilizing the obtain tie points.

3.1.1 Intensity-based Tie Point Generation

The first group of automatic techniques for the generation of tie points are often called
intensity- or area-based approaches. Generally, intensity-based approaches skip the feature
detection and extraction step, and instead focus on feature matching without explicitly
link particular features between the images. The principle idea is to define and utilize
a similarity metric to measure the similarity between image regions from the input and
reference image based on pixel information (e.g. intensity values in the spatial domain). Image
correspondences are found by searching region pairs, which achieve the highest similarity
value among all region pairs.

A common practice to find corresponding image regions is to crop small image patches, often
called templates, from the input image around a regular grid of location (see left side of
Figure 3.2). Afterwards, the similarities between the templates and image regions from the
reference image are computed. Without additional information about the specific kind of
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template

.’

input image I reference image R

Figure 3.2: Illustration of a search strategy to find correspondences between images within an
intensity-based matching framework. Templates are cropped around a regular grid of locations
from the input image I. For every template a search areas (windows) around the same locations in
the reference image R is defined. The search areas can be adjusted and reduced in size by taking
additional information about the image distortion between both images into account.

distortion, the whole reference image has to be searched in order to find a corresponding
image region for every template. If additionally information exist, it can be used to adjust
and limit the search areas within the reference images. In the case of registering orthorectified
high-resolution optical and SAR image it can be assumed that there is only a local offset
of less than one hundred meters between the images. Therefore, the search space can be
significantly reduced in size by determining a small search area (window) in the reference
image for every extracted template from the input image (see right side of Figure 3.2).

The success of intensity-based methods heavily depends on the selected similarity metric
and its ability to measure the similarity between the given images. More specific, in the
case of multi-temporal and multi-modal image data the selection of suitable metrics requires
particular care. In order to gain a better understanding for different types of similarity
metrics, we will briefly introduced two frequently utilized metrics in the following. Both
metrics will later form the basis of two baseline approaches that we will utilize to assess our
results (see Subsection 5.1.4).

Normalized Cross-Correlation: The first similarity metric, often applied for the task of
single sensor image matching, is called normalized cross-correlation (NCC). The idea of NCC
is to measure the similarity of two images or image patches based on a pixelwise comparison
of their intensity values. The NCC-value between a template T" with size N, x N, cropped
from I and an image patch located around the position (m,n) in R is defined as follows

Ny Ny — _
> 3 (Rm+in+j)-R)(TG,j)-T)
NCC(m,n) = =l

(3.2)

NI Ny . . Y 2 . . =1 2

>3 (R(m—l—z,n—i—j) - R) (T(z,j) - T)

i=1j=1
Here, R(m + i,n + j) and T'(i,j) are the intensity values of R and T at the locations
(m+i,n+j) and (i,7), respectively, T is the mean intensity value of T', and R the mean
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intensity value of the overlapping image patch between T and R. The NCC-value ranges
from —1 to 1, where a value close to 1 indicates a high similarity between the images. In
order to find the image regions of R, showing the highest similarity to the template T', the
template is moved over the corresponding search area in R. The search area has a size of
(Ng 4+ 2% Ay) x (Ny+2%Ay), where A, and A, is the search space in z- and y-direction.
The length of one stride is s, and s, in - and y-direction, respectively (commonly one pixel
in each direction). At each position the NCC-value between the overlaying areas is computed
and the position with the highest NCC-value (within the search area) is the position with
the best match between T and R. This procedure is often called template matching and is
illustrated in Figure 3.3.

template
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| I |
l R
L—=d ,—-——:—b Ay
|
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|
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I————I : . Ny
: 1
|
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1
\ A,
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search area

Figure 3.3: Illustration of an intensity-based matching between a template T' and a reference image
R, often called template matching. The template is moved over R (within the search area) with
a striding length of s, and s, in 2- and y-direction, respectively. The search area has a size of
(Ng+2%A;) x (Ny+2xA,) where A, and A, is the search space in 2- and y-direction, respectively.

Mutual Information: A further similarity measure is mutual information (MI). In contrast
to NCC, MI is measuring the similarity between images or image patches based on the
comparison of their local intensity distributions. The normalized MI-value between a template
T and an image patch R; cropped from the search area in R is defined as

H(T)+ H (R;)
H(T,R)) ’

MI(T, R;) = (3.3)
where H(T) and H(R;) are the marginal entropies and H (T, R;) the joint entropy between
T and R;. The marginal and joint entropy between two images X and Y are defined based
on the marginal and joint probability distribution of the intensity values in the images and
can be stated as follows:
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H(X)=—-> px(z)logpx(z)

H(X,Y) ==Y pxy(z.y)logpxy(zy).
:E’y

(3.4)

Furthermore, the marginal and joint probability distribution can be computed using the
joint histogram h(z,y) of the two image patches X and Y:

_ h(z,y)
pX,Y(xay) - %h(.’ﬂ,y)
px(z) =) pxy(z,y) (3.5)
Yy

py(y) = pxy(z,y).

The joint histogram is a two-dimensional matrix containing correspondences between the
intensity values of both images. The normalized MI-value ranges from 0 to 1, where a value
close to 1 indicates a high similarity between two images. As for NCC, the detection of
image correspondences is based on maximizing the MI-value between image regions from
the input and reference image and can be realized through the above explained template
matching procedure. Additional information about MI can be found in [77, 78].

Generally, intensity-based matching approaches suffer from particular problems, which need
to be taken into account when utilizing them for the tie point generation. A major drawback
is the reliability of the detected correspondences. By skipping the feature detection step of the
registration chain, there is a high chance that the selected templates and the corresponding
search areas do not show any salient features or structures. Due to ambiguities in such
homogenous areas it can happen that unrelated image areas are linked. Moreover, if the
measure of the similarity is only determined based on the pixel intensity values without
analyzing the structure of the values, as in the case of NCC, the results will be sensitive to
noise and radiometric differences between the images. As a consequence, relevant points
or areas are normally identified beforehand through feature detection algorithms such as
the Forstner operator [79] or Harris corner detector [80]. Additionally, the computation of
tie points through an intensity-based approach, comes commonly with high computational
costs. Therefore, sophisticated search strategies have to be applied or developed to lower the
computational costs and, hence, speed up the template matching without loss in accuracy.

3.1.2 Feature-based Tie Point Generation

In contrast to an intensity-based tie point generation, the focus of feature-based approaches
lie on the detection and matching of salient image features. An image feature is often defined
as a pattern or an object that differs from its neighborhood and exhibits a salient and
distinctive structure, which capture important image information [75, 81]. Features are often
divided into three categorize: point features (e.g. line intersections, road crossings, corners,
centroids of closed boundary regions such as centers of building roofs or inner circles of
roundabouts), line features (e.g. line segments, roads, object contours, coastal lines) and
areal or region features (e.g. lakes, small islands, buildings, forest, fields). The detection
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and extraction of image features is an important step for several applications, e.g. image
classification, object recognition or matching. Here, features are utilized to represent images
either through a single feature vector representing the whole image (global features) or
through smaller image regions (local features) (see Figure 3.4 for a visualization).

In order to find image correspondence and to generate a set of tie points, distinctive image
features have to be detected and extracted in both images. For the particular task of
registering multi-temporal and multi-modal images and to handle local distortions between
the images, it is important that local features are additionally visible and detectable in both
images and are constant over time. In practice man-made infrastructure, such as airports,
road networks and intersections, field patterns and boarders, corners of agricultural fields,
buildings and inner circles of roundabouts have proven to be reliable sources for the detection
of features.

Frequently used methods for the detection of suitable features are corner detectors such
as the Harris corner detectors [80], edge detectors such as Canny [82] or the Laplacian of
Gaussian (LoG) [83] and segmentation techniques [84] for the detection of areas or regions.
Due to the essential role of the detected features in the image registration process, a feature
detector should fulfill various requirements [81]. Firstly, a feature detector should be robust
against image noise and local image deformations (e.g. rotation, scaling, shifting). Secondly,
the feature detection procedure should be repeatable (one detector should always detect the
same features in one scene independent from viewing conditions). Lastly, the detector should
be as accurate as possible in determining the exact feature locations.

Independent of the feature type (point, line, area) each detected feature can be represented
by a point (end of a line, centroid of an area). These points are often called control points
(CPs) or keypoints. One possible approach to match two images is to compare the spatial
distribution of the detected keypoints. Another and more frequently used approach, is the
matching via a symbolic feature descriptions. Therefore, local patterns (regions of interest)
around each keypoint are extracted and represented by so called feature descriptors or feature
vectors (see Figure 3.4). Similar to a feature detector, a feature descriptor should fulfill
certain characteristics. These can be summarized according to Zitova and Flusser [75] as

feature descriptor

feature
descriptors

|| regions of '0)

|| interest | | B

— key points [ ]
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(a) Global image features (b) Local image features

Figure 3.4: Comparison between local and global image features and a visualization of feature
descriptors, regions or areas of interest and keypoints.
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follows: 1) The same feature detected in the input and reference image should be represented
by the same descriptors (invariance), 2) if two features are different, then the corresponding
descriptors should be different as well (uniqueness), 3) small changes of a feature should lead
to small changes of the descriptor (stability) and 4) if the feature is described by a vector,
the elements of the vector should be functionally independent (independence). In practice,
no feature detector or descriptor will fulfill all the required characteristics. Therefore, it is
particular important to select feature detectors and descriptors that are suitable or adaptable
to the needs of the specific application.

The next step, after obtaining a set of keypoints and associated descriptors from the input
and reference image, is to identify corresponding keypoints between the images. A common
approach towards this goal is to compare the distances between the feature descriptors
from the input and reference image. A pair of keypoints (p, ¢), where p is a keypoint from
the input image I and g a keypoints from the reference image R, is set to be a match, if
the distance between their descriptors is the minimum among all distances between the
descriptor from p and all descriptors from R and the minimum among all distances between
the descriptor from ¢ and all descriptors from I. To find corresponding pairs among all
possible pairs of keypoints and the measure the distance between descriptors, methods such
as the nearest-neighbor search using the Euclidean or the Hamming distance are commonly
applied [81]. An important requirement for every matching approach is to provide a reliable
set of tie points. This means that keypoints should only be linked during the matching
procedure, if they represent the same feature in the input and reference image.

In the following, we will briefly introduce two feature-based tie point generation approaches,
the scale-invariant feature transform (SIFT) [85] and the binary robust invariant scalable
keypoints (BRISK) [86]. Both methods will serve later as baselines for the assessment of the
methods presented in this thesis (see Subsection 5.1.4) and will help to gain a better insight
into common feature detection, description and matching techniques.

Scale-Invariant Feature Transform (SIFT): SIFT was introduced by Lowe [85] in 2004
and has proven to be a robust technique for the generation of tie points ever since. The
four major steps of SIFT are: 1) keypoint detection, 2) keypoint localization and outlier
removal, 3) orientation assignment and 4) keypoint description. In order to detect local
features a space scale is constructed by convolving the image with Gaussian filters. In order
to enhance the detectability of the image features, the differences of Gaussian (DoG) images
are computed by subtracting the filtered images from each other. An illustration of the
procedure is shown in Figure 3.5. This process is followed by the detection of local extrema
over scale and space by comparing neighboring pixels within a scale and between the adjacent
scales (next and previous scale). A pixel with a larger or smaller value compared to all of
its neighbors is set to be keypoint candidate. The location of the keypoint candidates is
determined with sup-pixel accuracy by utilizing the interpolation technique described in
[87]. This method is based on the idea of fitting a quadratic surface to the neighborhood
of each keypoint and computing the peak of the surface. Afterwards, unstable keypoints
(with low contrast or located on edges) are removed by performing two threshold-based
stability checks. The next step is to determine one or more dominant orientations for each
keypoint. Therefore, the gradient magnitude and orientation of all pixels around a keypoint
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Figure 3.5: Illustration of the scale space and the computation of the differences of Gaussian (DoG)
(image source: [85]).

are computed. Then, a histogram over all orientations (surrounding the keypoint) and
weighted by their gradient magnitudes is computed. The most dominant orientations of each
keypoint are determined by the highest peak and all peaks larger than 80% of the highest
peak of the corresponding histograms. Finally, the set of detected keypoints is described
by the keypoint descriptors. Therefore, a 16 x 16 descriptor window around each keypoint
is selected and the gradient magnitudes and orientations are computed. To increase the
influence of gradients close to the keypoints the gradient magnitudes within the descriptor
windows are weighted by a Gaussian kernel. Additionally, the gradient magnitudes and
coordinates are rotated with respect to the determined keypoint orientations in order to
achieve rotation invariance. Then, the descriptor windows are divided into sixteen 4 x 4
sub-windows and for each of these sub-windows an 8 bin orientation histogram is computed.
The histogram values of the sixteen sub-windows form the final feature descriptor, which
is represented by a vector with 128 elements. Even though the main objective of the SIFT
operator is to detect and describe local keypoints, Lowe proposed to match the descriptors
based on searching the minimum of the Euclidean distances between the descriptors [85].

Binary Robust Invariant Scalable Keypoints (BRISK): The BRISK algorithm was intro-
duced by Leutenegger et al. [86] in 2011 and can be divided in the same four steps as SIFT
(keypoint detection, keypoint localization and outlier removal, orientation assignment and
keypoint description). The first step of the algorithm is to create a scale space that consist of
n octaves ¢; and n intra-octaves d;. The octaves are generated by half-sampling the previous
octave staring from the input image, whereas the intra-octaves are generated by half-sampling
the previous intra-octave starting from dg, which is the input image downsampled by a factor
of 1.5. Subsequently, the FAST 9-16 detector from [88] is applied in order to select keypoint
candidates. To remove outliers from the keypoint candidates, non-maxima suppression is
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performed within the scale-space pyramid. In order to determine the sub-pixel locations of
the maximum in each layer, a 2D quadratic function is fit to the 3 x 3 patch surrounding
the remaining keypoints in the corresponding and the adjacent layers. For each keypoint,
the tree corresponding maxima are then interpolated applying a 1D parabola across the
scale-space and the 3D maximum determined. The first step of the orientation assignment
is the computation of sampling patterns around the detected keypoints. The points of the
patterns are subsequently paired and divided into short- and long-distance pairs depending
on the distance between points (shorter or longer than a certain threshold). Additionally,
the gradients between the long-distance pairs are computed and the sum of the gradients
used to determine the orientation of the keypoints. The computed orientations are then
applied to rotate the short-distance pairs and used in a final step to construct the binary
descriptor of each keypoint.

In practice, feature-based approaches are preferred over intensity-based ones, when image
properties are better represented by structural information than by image intensities [75] and
when computational costs should be kept to a minimum. However, feature-based tie point
generation approaches have to overcome certain problems in order to generate a reliable
set of tie points, especially when dealing with multi-modal or multi-temporal image data.
If the images additionally exhibit local distortions, the two sets of extracted features from
input and reference image should have enough common elements in order to find a proper
amount of tie points. Ideally, the tie points are spread over the whole image scene to enable
an accurate transformation model estimation. As a consequence, the feature detection,
extraction and matching techniques have to be accurate and should not be sensitive to noise,
intensity changes or to radiometric differences between the images.

3.1.3 Transformation Model Estimation and Image Alignment

After generating a set of reliable tie points between the images, a suitable type of trans-
formation model has to be chosen and its parameters have to be estimated. The task of
the transformation function, sometimes called mapping function, is to map the input image
onto the reference image. The proper type of transformation function depends on the kind
of image acquisition processes, the type of the assumed or known geometric deformation
between the images and on the type of application and its required accuracy. In cases, where
the image acquisition processes and the cause of the geometric distortions are not known, an
empirical transformation model has to be used, where the transformation model parameters
are estimated from the set of detected tie points. Such transformation models can be roughly
divided into two categories: global and local transformation models.

Global transformation models utilize a single transformation function for the mapping of
the entire image, where the function parameters are estimated from the whole set of tie
points. Commonly applied global transformation models are translation, affine, projective or
higher polynomial transformations. Each of these transformation models requires a minimum
amount of given tie points to determine the transformation parameters. In the case that
more tie points are given than required, least square estimations are usually applied. As a
consequence, not every tie point will be mapped exactly on the corresponding point in the
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reference image. The computational costs of global transformation models are low but such
models can not accurately handle local distortions.

Local transformation models are preferred over global ones, when local distortion between
the images are assumed [89, 90]. Local transformation models map image regions differently,
where the parameters of the applied mapping functions depend on the spatial location of
the image regions. Frequently used local transformations models are piecewise linear or
cubic functions, local weighted mean [89] and elastic models [91]. Local transformations
are only able to accurately handle local image distortion if a large number of uniformly
spread tie points are available. Detailed descriptions of common utilized global and local
transformations models in the context of remote sensing image registration can be found in
[75, 91-93].

On the other hand, if information about the image acquisition processes and the cause of the
image distortions exist, a physically accurate transformation model can be constructed. Such
models can be directly adapted to the cause of the distortions. For example, the main cause
for the inaccuracy of the absolute geo-localization of the optical satellite data are inaccurate
measurements of the satellite attitude and thermally affected mounting angles between the
optical sensor and the attitude measurement unit (for details see Subsection 2.1.2). This
insufficient pointing knowledge leads to local geometric distortions of orthorectified images
caused by the height variations of the earth surface. Based on this knowledge, manually
extracted GCPs or tie points automatically generated from the matching with an accurate
geo-localized image can be utilized to adjust the parameters of the physical sensor model,
and hence correct the geometric distortions.

Image Transformation and Resampling: After a suitable type of transformation model
and its parameters are determined, the transformation function is utilized to map the input
image onto the reference image and thereby aligning the images. Two possible methods
exist to perform the transformation: The first one, often called forward mapping, directly
transforms each pixel from the input based on the estimated transformation model. The
problem of a forward mapping is the possible occurrence of holes and/or overlapping regions
in the transformed image. The second method, often called inverse or backward mapping,
generates the transformed image by applying the inverse transformation function on the
pixel of the reference image in order to determine the corresponding intensity values from
the input image. The advantage of the inverse mapping is that it assigns one intensity value
to each pixel of the transformed image and thus, avoid holes and overlaps.

In general, the image grid of the input and reference image do not correspond to each
other. In order to achieve a fine registration between the input and reference images, the
transformed image has to be resampled to the reference image grid. Therefore, interpolation
techniques are usually applied (in addition to the transformation function) to estimate
the intensity values for all locations within the transformed image that lie between grid
points in the input image. Commonly, methods such as nearest neighbor, bilinear and cubic
convolutions, and B-splines are utilized for this task. An overview and detailed description
of frequently applied interpolation techniques can be found in [94].



3. Image Registration 49

3.2 Traditional Multi-modal Image Registration Concepts - A Review

After introducing the fundamentals of image registration, we will now discuss the latest
research studies regarding the problem of multi-modal image registration of optical and
SAR satellite images and outline the current challenges of these traditional registration
approaches. Since this thesis focuses on the development of accurate and reliable methods
for tie point generation, we also set the focus of the following discussion on the various
developed methods for the construction of image correspondences between optical and SAR
image rather than on the subsequent process of image alignment. For the registration of
optical and SAR images we follow a concept, which is based on an approach introduced in
[95] and will be outlined in detail in Section 4.4. This approach pursues the idea of enhancing
the physical sensor model of the optical satellite images through a set of GCPs in order to
improve their geo-localization accuracy. In our case, the GCPs are represented by the part
of tie points that is extracted from the high-resolution SAR images complemented by height
information from a d digital elevation model (DEM). By utilizing these data for the sensor
model enhancement of the optical images, the optical and SAR images get aligned.

3.2.1 Intensity-based Optical and SAR Image Registration Methods

Intensity-based concepts for the registration of optical and SAR images determine the trans-
formation between two images by optimizing a corresponding similarity measure that assign
image similarities based on a relation between pixel intensity values. Early registration ap-
proach such as [20, 96], investigated the applicability of correlation-based similarity measures
to find image correspondences between optical and SAR images. However, correlation-based
methods (e.g. NCC) or the squared intensity differences (SID) cannot always handle radio-
metric differences between multi-model images and are therefore unsuitable for the matching
of multi-modal image data [97].

Influenced by the field of medical image processing, the cluster reward algorithm (CRA)
[20, 21, 96], mutual information (MI) [20-24, 96] and the cross-cumulative residual entropy
(CCRE) [25] have been repeatedly investigated for their applicability to optical and SAR
image registration. Several of these studies [20, 21, 96] compared CRA and MI and came
to the conclusion that MI is more robust against noise and radiometric differences and is
therefore more suitable for matching optical and SAR image pairs. Suri and Reinartz [21, 23]
further investigated the influence of the image content (type of objects within the scenes) on
the image registration results. Due to the different geometric imaging properties of optical
and SAR sensors, which are particularly pronounced for all 3D objects (e.g. buildings), images
correspondences obtained from areas that contain such objects are not reliable. Therefore,
they propose the usage of an segmentation approach, which is based on the image intensities
of the SAR images, in order to discard all image regions containing above ground objects.
Hassan et al. [25] on the other hand, investigated the use of the CCRE to measure the
similarity between the images. Their results revealed that a matching of optical and SAR
images based on CCRE is more robust compared to MI and in addition, computationally
faster.
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A particular difficulty of every similarity measure in the spatial domain is to handle the
non-linear radiometric differences between optical and SAR images and the speckle in the
SAR images. Liu et al. [98] try to overcome this problem by finding image correspondences
between the images in the frequency domain. They therefore computed local frequency
information in Log-Gabor wavelet transformation space utilizing the mean local phase
angle and the frequency spread phase congruency. Subsequently, image correspondences are
computed by applying a confidence aided similarity measure, which measures the similarity
between the image pairs and provides a corresponding confidence score. The evaluation of
this method showed a higher robustness to image noise and radiometric differences and a
higher matching accuracy in comparison to MI (applied in the spatial domain).

3.2.2 Feature-based Optical and SAR Image Registration Methods

Feature-based approaches rely, in contrast to intensity-based approaches, on the detection
and matching of robust and salient images features. A majority of feature-based methods are
adapted to the detection, extraction and matching of one particular feature within the image
scenes. Early approaches are often adapted to the detection and matching of line or regional
features. Typical utilized line features are edges [26-28, 99-102], straight line segments [29]
and contours [30, 31, 103, 104]. Contours are often extracted applying thresholding strategies
[31, 103] or edge detection algorithms [30, 104]. To enable a robust detection of edges in the
images it is normally recommended to apply different algorithms to optical and SAR images
(e.g. Canny [82] for optical images and D1 method [105] for SAR images). However, the
detection of edges or lines in SAR images is in general a difficult task and strongly influences
the success of subsequent matching process. Region-based registration approaches on the
other hand, commonly utilize areas such as larger fields or water areas such as lakes, rivers
or flooded areas [32, 106, 107]. In [32, 106] suitable regions are detected using segmentation
strategies and in [107] a supervised classification algorithm is applied for the detection of
water bodies. However, a common problem of all feature detection methods that rely on
water levels is the stability over time. In the case of extreme weather conditions, images
that are acquired only a few hours apart can exhibit great differences in the shape and size
of waters bodies.

Another category of feature-based approaches investigated the applicability of point feature
detector and descriptor methods such as SIFT [85] or the local self-similarity (LSS) [108]
for the registration of optical and SAR images. The feature descriptors provided by these
methods commonly suffer from the speckle in the SAR image and the non-linear radiometric
differences between the images and are therefore usually not effective for the generation of tie
points [24, 109, 110]. As a consequence, several research groups investigated the adaptation
of the SIFT and LSS operator to optical and SAR images [33, 34] and the application of SIFT
in combination with other features detectors [35]. More precisely, Fan et al. [33] introduced
a modified version of SIFT, which enables a fine registration for coarsely registered images,
but on the downside is not applicable to image pairs with large geometric distortions. Ye
et al. [34] on the other hand investigated the applicability of an adjusted LSS descriptor.
The evaluation of results revealed the merits of the proposed approach in comparison to
intensity-based approaches such as MI, but is only applicable if the images exhibit enough
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shape or contour information. Xu et al. [35] successful utilized SIFT for the identification
of corresponding points between optical and SAR images by combining SIFT features with
a level set segmentation procedure for the detection of area features. A drawback of this
approach is the need for sharp edges from runways, rivers or lakes.

If a feature-based approach utilizes only one particular feature it always exist the possibility
that this features has a low occurrence or a poor distribution within the image scene. In such
situations an accurate estimation of a transformation model will be difficult, especially in
case of local image distortions. Therefore, several research studies investigated the use of a
combination of different feature types [32, 111, 112]. Long et al. [111] proposed a single stage
registration approach, which utilize the combination different features (points, straight lines,
free-form curves or regions). The approach shows good performance for the registration of
optical and SAR images, but a drawback is the need of a manual feature extraction from
the SAR images. In [112] a two stage registration framework was proposed, where extracted
image regions are utilized for a coarse registration and line and point features for a fine
registration of the images. A similar approaches was proposed in [113], where the coarse
registration was carried out through the matching of closed contours and the fine registration
by corners detected through the Harris operator [80]. Although these methods utilize several
kinds of features, they rely on a successful coarse registration and will fail if the first step
provides an inaccurate transformation model.

To overcome the problem of misaligned images caused by unprecise detected and extracted
features two research groups [29, 35] proposed iterative registration procedures. The approach
in [29] is based on an iterative coarse-to-fine Voronoi spectral point matching procedure,
which pursues the goal of finding point correspondences between extracted line-intersection.
Here, for the coarse registration only the main spatial structures are utilized and extracted
at lower resolutions. Due to the iterative detection and extraction strategy during the coarse
and fine registration stage, the feature matching is more robust and yields to a more reliable
set of tie points. On the other hand, the proposed approach is only applicable for image
scenes that exhibit salient straight line features. The iterative approach introduced by Xu et
al. [35] showed its effectiveness for high-, mid- and low-resolution images but (as mentioned
above) requires the occurrence of sharp edges within the image scenes.

Instead of performing the feature-based registration in the spatial domain a few studies
investigated the use of Fourier [114, 115] or wavelet transformations [116] to derive features in
the frequency domain. The main reason for this course of action is to improve the robustness
of feature detectors and descriptors to noise and the radiometric differences between optical
and SAR images. Shi et al. [116] introduced a feature point extraction method particularly
developed for the registration of islands. This method is based on the non-subsampled
wavelet transform and a threshold shrink operator in order to extract robust and accurate
key points from islands. In [114] a new feature descriptor was developed to extract local
shape properties based on the amplitude and orientation of phase congruency. The obtained
descriptors tend to be more robust to noise and radiometric differences, but are not invariant
to scale or rotation changes between the images and hence unsuitable for images that exhibit
larger geometric distortions. Another feature descriptor was introduced by Chen et al.
[115]. In order to improve the robustness against speckle, features are detected based on a
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logarithmic phase congruency and the corresponding descriptors are constructed subsequently
on the basis of Gaussian-Gamma-shaped bi-windows. A comprehensive evaluation showed
the advantages of the proposed descriptor compared to SIFT and improved SIFT descriptors
proposed in [33].

A common difficulty of all feature-based approaches is the robust detection of features
especially in the SAR images (independent of the type of feature). Many feature detectors
that perform well on optical images provide unreliable or unstable results on SAR images due
to speckle within the images (e.g. [109, 110]). As mentioned above, several research groups
tried to customize feature detectors to SAR images. Héansch et al. [117] in contrast, tried to
overcome this problem by developing a machine learning-based framework, which follows the
goal of learning how a keypoint detected in the optical image appears in the SAR image by
reformulating the problem of tie points generation to a classification problem. Therefore,
SIFT is utilized to detect and describe a set of keypoints in the optical images, which serve
as positive examples. Another set of negative keypoint examples is drawn from random
position in the optical image. For every training sample (positive and negative) a patch
around the corresponding location in the SAR image is extracted. The pixel intensity values
of these patches are used to build the descriptors of the corresponding SAR image features.
Note that for the generation of the training data aligned optical and SAR image pairs are
needed. The last step includes the training of a random forest classifier in order to learn the
identification of corresponding features descriptors in the optical and SAR images.

3.2.3 Hybrid Optical and SAR Image Registration Methods

Hybrid registration approaches try to overcome drawbacks of intensity and feature-based
approaches by combining beneficial aspects of both registration schemes. A global coarse
registration using mutual information on selected areas followed by a fine local registration
based on linear features is proposed in [118]. An interesting aspect of the proposed approach
is the selection of proper regions for the MI information-based coarse registration. Similar
to [21, 23] image regions that usually provide tie points with high localization errors such
as dense urban and heterogeneous areas are not taken into account. As a drawback, the
method highly depends on the coarse registration. If the coarse registration fails, the fine
registration will lead to unreliable results.

However, the majority of existing hybrid optical and SAR image registration approaches follow
a two stage coarse-to-fine registration strategy, where a feature-based approach is utilized to
coarsely register the images and an intensity-based approach for the fine registration. For the
coarse feature-based registration the utilized features are straight lines [119], contours [112] or
point features extracted with the help of the BRISK [120] or SIFT algorithm [121]. The fine
intensity-based registration is realized by applying the correlation coefficient [112] and mutual
information [119-121] as similarity measures. This registration concept is motivated by two
observations from previous research studies. First, the accurate localization and assignment
of features between optical and SAR images is prone to errors. Second, similarity-based
approaches show difficulties in handling larger geometric distortions between the images
to be registered. Although the difficulties of intensity and feature-based approaches are
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(a) optical image (NDVI) (b) edge image (c) roundabout template (d) SAR image

Figure 3.6: Illustration of the artificial roundabout generation. From left to right: The roundabout
in the normalized difference vegetation index (NDVI) image, the edge image and the detected central
island (red marked), the artificial generated roundabout template and the roundabout in the SAR
image.

partly remedied an accurate registration is not guaranteed. For example, if the coarse
registration fails (overall alignment error larger than required for the algorithms used for the
fine registration), e.g. due to missing contour or straight line features, the fine registration
will probably also yield in inaccurate results.

The hybrid approach proposed in [122] combines an intensity- and a feature-based algorithm
in another way. Here, a coarse transformation model is estimated by the use of MI, but in
contrast to the other approaches it is subsequently utilized to remove unreliable tie points
obtained from an improved SIFT-based image matching. Additionally, the influence of a
speckle filter on the matching quality was investigated. Similar pre-processing concepts were
proposed in [29, 100, 118, 120], where pre-filtering or de-noising techniques were applied
in order to reduce the influence of noise or speckle on similarity measures and on feature
detection methods. A risk of such pre-processing steps is a possible loss of the exact location
of feature or the addition of artifacts. Due to a possible influences on the sub-pixel feature
localization, Suri et al. [122] suggested the utilization of a speckle filter only for a coarse but
not for a fine registration.

Another possible hybrid matching concept is an artificial templates-based matching approach
[123]. In Merkle et al. [124] we introduced such a matching approach, which focuses on the
generation of artificial roundabout templates. The three main steps of this method are: 1)
detect and extract roundabouts in the optical image, 2) generate artificial SAR-like templates
out of the detected roundabout information (see Figure 3.6) and, 3) apply an intensity-based
matching approach to match the artificial templates with the SAR images. The advantage
of this approach is that features only have to be extracted in the optical images and by
adapting the radiometric properties of the artificial templates to SAR images, even similarity
measures such as NCC yield accurate results. A drawback of the proposed method is the
hand-crafted generation of the artificial templates, which requires the knowledge of the
common radiometric properties of SAR image features and lead to unsatisfying results if the
visual appearance of the extracted features deviates from the norm.
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3.2.4 Challenges of Traditional Optical and SAR Image Registration
Methods

Every optical and SAR image registration framework has to face challenges, mainly due
to the different sensor acquisition concepts and different times, viewpoints and weather
conditions during the image acquisition. In particular, different radiometric and geometric
properties caused by the different acquisition concepts and speckle in the SAR images hamper
the accurate registration of optical and SAR images. In order to develop suitable optical
and SAR image registration methods, these challenges have to be taken into account and
insights obtained from the state-of-the art approaches should be exploited. Therefore, we
will summarize in the following the major challenges a traditional optical and SAR image

registration approaches has to face.

As shown in Subsection 3.2.1 many intensity-based approaches have been developed and
investigated over the past years and several of them showed their potential for the regis-
tration of optical and SAR images. Nevertheless, these approaches mainly deduce image
correspondences on the basis of pixel intensity values and hence suffer from the different
radiometric properties of optical and SAR images. Additionally, these approaches are often
computationally expensive and sensitive to speckle in the SAR image and, usually only
achieve high registration accuracies if the distortions between the images are small. Besides,
several comparative studies have demonstrated the higher suitability of feature-based ap-
proaches for the problem of optical and SAR image registration, due to their higher flexibility
and less sensitivity to illumination, reflectance, and geometry inconsistency between the
images.

Nevertheless, feature-based approaches are not free of challenges and difficulties when
applying them on optical and SAR images. In general, it is difficult to develop one approach
which is able to reliable extract features among images with various imaging properties. Such
methods have to take into account that features might change over time (multi-temporal
images) or are dissimilar in both images (radiometric differences between multi-modal image
data or different image acquisition conditions). In order to handle local image distortions
the chosen approach has to be capable of selecting features that are visible in both images,
stable over time, frequently spread and occur in a large number and further, is not sensitive
to noise. Even though such features occur in the images these features have to be accurately
extracted, which have proven to be very difficult especially in SAR images, and robustly
matched in order to obtain reliable and precise tie points.

One way to overcome some of the existing problems is the development of a hybrid-based
registration approach. By combining valuable characteristics of intensity- and feature-based
approaches promising concepts for the registration of optical and SAR images could be
developed in the past. Nevertheless, hyprid-based approaches, like intensity- and features-
based ones, are handcrafted in which case every processing step has to be carefully developed
or adapted to fulfill the particular needs of optical and SAR images. Often, these approaches
are specialized for the detection, description and matching of one specific type of feature,
which limits the applicability to particular image scenes.
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3.3 Deep Learning-based Image Matching Concepts

A variety of research studies indicate the high potential of deep learning-based methods for
tasks such as image classification [125], object recognition [126] and detection [127]. Over
the last years, these methods outperformed traditional methods in various tasks and over
different research areas due to their impressive ability of feature detection, representation
and discrimination. In the field of remote sensing neural networks find already application for
problems such as the classification of hyperspectral data [128], enhancement of existing road
maps [129] or high-resolution SAR image classification [130]. Furthermore, neural networks
were successfully trained for tasks that rely on the detection of image correspondences between
two images such as stereo evaluation [131-135], optical flow estimation [136-138], oblique
aerial image matching [139], ground to aerial image matching [140] or image registration
[141, 142].

In contrast to traditional approaches for the tie-point generation, deep learning-based
approaches open up the possibility of finding image correspondences without the need of
handcrafting similarity measures or feature detectors, descriptors and matching concepts.
Fischer et al. [143] investigated the quality of features extracted with CNNs by comparing
their matching performance to SIFT features for manual pre-selected regions of interest.
Their results showed a higher quality of the extracted CNN features in comparison to SIF'T
features and hence the potential of CNNs for the task of image matching. In [144] the
utility of learned features from a pre-trained CNN in combination with SIF'T features for the
matching of remote sensing data was investigated. More precisely, the obtained SIFT features
and the CNN features, computed from an area around the SIFT features, are fused and
afterwards matched between the images by utilizing the Euclidean distance. The evaluation
over several image pairs showed an improved matching performance through the combination
of SIFT and CNN features in comparison to a matching based on SURF or SIFT features
only. Yi et al. [145] went one step further and proposed a framework where CNNs are not
only used for the description of features from pre-selected areas, but are also used for the
step of feature detection and orientation estimation. They compared the proposed framework
with a number of feature detection and description algorithms (e.g. SIFT, BRISK, SURF
[146] and FREAK [147]), which revealed the effectiveness of the proposed approach and the
advantages over these traditional matching concepts.

So far, the introduced deep learning-based approaches still require a handcrafted feature
matching framework to find image correspondences between images. In [148], a deep
learning-based method is proposed to detect and match multiscale keypoints with two
separated networks. The detection network is trained on multiscale patches to identify
regions including good keypoints. The description network is trained to match extracted
keypoints from different images. Here, the problems of feature extraction and matching are
regarded separately and as a consequence, the extracted features are might not be the most
suitable ones for image matching. Therefore, the latest research studies propose end-to-end
concepts on the basis of a Siamese neural network architecture [149]. The basic idea of
these concepts is to learn both task in one step by training one neural network, which is
composed of two parts: The first part, a Siamese or pseudo-Siamese neural network, is
trained to extract features from image patches. In the majority of approaches the two
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branches of the Siamese neural networks are realized through convolutional neural network
[131, 132, 135, 139, 150-154]. The second part of the network, sometimes called fusion or
classification network, is trained to measure the similarity between the extracted features. It
is often realized through fully connected layers [132, 135, 139, 150, 151, 153], the Lo distance
[152, 154] or the dot product [131, 132]. The input of these networks can be single resolution
image patches [139, 150, 152, 154], multi-resolution patches [151, 152] or patches which differ
in size for the left and right branch of the Siamese neural network [131, 151, 153]. In order to
learn the detection of image correspondences, the networks are commonly trained by using
the hinge loss [132, 135, 152-154] or the cross-entropy loss [131, 139, 150].

In general, the just described framework has proven high potential by providing state-of-the-
art results on several challenging benchmarking datasets such as KITTI [155] and by offering
a high degree of flexibility in terms of the particular input data feed into the network or the
particular learning goal. For example, the above introduced frameworks can be applied on a
coarse level with the aim of predicting, if two image patches, e.g. acquired from different
viewpoints, show the same scene or not, or one fine level with the aim of finding a dense
pixel-to-pixel correspondence, e.g. for stereo or optical flow estimation. On the downside,
a sufficient amount of training data have to be available in order to train the network and
among other things an optimal network architecture, loss function and training procedure
have to be carefully chosen.
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3.4 Research Gaps

The detailed discussion about the relevance of the topic from Section 1.2 underlines the
high potential and necessity for accurate and precise optical and SAR image registration
frameworks. However, the theoretical comparison of optical and SAR images outlined in
Section 2.1, and the summary in Subsection 3.2.4 about the current challenges of traditional
registration methods, show the necessity for further investigations and developments of a
general concept to handle the problem of optical and SAR image registration.

The basis of such a concept is the creation of an optimal (at least to certain degree) initial
situation. Due to fundamental differences in the geometric properties of optical and SAR
images and the demands on reliable features for the generation of accurate tie points, not
every area within the images is suitable. In order to minimize the impact of the different
acquisition modes of optical and SAR satellites and hence enhance the conditions of accurate
and reliable tie point generation process, the development of an automatic process that
enables the pre-selection of suitable matching areas from optical and SAR images should be
researched (see Subsection 4.1).

Traditional intensity- and feature-based approaches have proven their high potential for the
generation of accurate and reliable tie points in the case of single sensor image matching
but underperform for the precise extraction of corresponding features from optical and SAR
images. By a careful pre-selection of suitable areas, the influence of geometric differences can
be reduced to a minimum and only radiometric differences have to be taken into account.
In order to handle the radiometric differences, an interesting and open research direction is
the translation of optical images into SAR images or vice versa by maintaining geometric
properties of the input image while synthesizing radiometric properties of the desired output
image. Such an image translation could improve the conditions of traditional approaches
and could enable the utility of their valuable characteristics (see Subsection 4.2).

However, taking the findings and insights of previous research studies into account, feature-
based approaches are to be preferred over intensity-based ones mainly due to the lower
susceptibility of the former to the non-linear radiometric differences between the images.
Nevertheless, traditional feature-based approaches are handcrafted and many approaches
are developed for the extraction of one particular type of feature. The development of an
universal concept, which is able to precisely detect and extract diverse and corresponding
feature information from images, is very difficult. Considering the high potential and success
of deep learning techniques for the automatic extraction and matching of features from
optical images (as discussed in Subsection 3.3), the investigation of an deep learning-based
approach for the case of optical and SAR image data represents a promising field of study
(see Subsection 4.3).
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The differences in the geometric and radiometric properties of optical and SAR images
pose a substantial challenge for every matching approach. In particular, the handcrafted
feature extraction stage of common optical and SAR image matching methods suffers from
this circumstance and requires a concept, which is carefully tailored to the characteristics
of optical and SAR image pairs. Recent breakthroughs in the training of neural networks
through deep learning techniques opened up new possibilities and led to the development of
automatic feature extraction and matching methods for the matching of single sensor images.
In this chapter two pre-processing chains, a semi-automatic and an automatic one, will
be presented in order to create an optimal initial situation for the matching approaches by
limiting the geometric differences of optical and SAR image pairs through the extraction of
suitable matching areas. Subsequently, two novel deep learning-based optical and SAR image
matching methods for the generation of accurate and precise tie points are presented. Finally,
a scheme for the registration of optical and SAR images, enhancing the geo-localization
accuracy of optical images through the extracted tie points will be discussed.
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4.1 Matching Areas Pre-selection

As indicated in Subsection 3.4, reducing the impact of the different acquisition modes through
the pre-selection of suitable matching increases the probability to obtain accurate and reliable
tie points between optical and SAR images. More precisely, candidates for such suitable
areas should contain almost only planar objects that exhibit the same (at least to a certain
degree) geometric appearance in the optical and in the corresponding SAR image. In most
cases, these features are related to man-made infrastructure objects such as streets, street
crossings, roundabouts and borders between agricultural fields. The reason for excluding 3D
objects are the different geometric distortions induced by the different acquisition types for
optical and SAR images. As described in Subsection 2.1.2 elevated objects like buildings
appear differently in optical and SAR images and get projected to different positions within
the image. As a consequence, the boundary of an elevated object in a SAR image does not
fit the object boundary in the optical image, even if the imaging perspective is the same
for both sensors. Therefore, these features can only be utilized for the generation of tie
points if additional three-dimensional information (e.g. DEMs or point clouds) for the image
scenes is given with high accuracy. Since this is not the case for our investigations we refer
to [156, 157] for two research studies examples that investigate the tie point generation
between optical and SAR images over urban areas by taking three-dimensional information
into account.

In addition to the mentioned geometric aspect, two further important points have to be
considered during the area pre-selection in order to further increase the probability of a
successful matching. First, selected areas should actually contain salient features. Large
areas that contain only homogenous structures, e.g. exclusively crops or grass land, are very
likely to lead to ambiguities during the matching process, and hence should be excluded.
Second, relevant features should be visible in both the optical and the SAR image. Due
to a higher level of detail in the optical images it is often the case that features are visible
in the optical images but not in the corresponding SAR images. Figure 4.1 shows samples,
where many roads and field boarders are visible in the optical but not in the SAR image.
Nevertheless, the reverse case occurs when clouds or their shadows cover the image scenes
during the acquisition of the optical images. The second aspect is especially important for
the development of an automatic process.

Under different circumstances, data sources such as OpenStreetMap (OSM) data could
be utilized for the pre-selection of suitable areas by providing additional information. For
example, OSM data includes the rough location of the majority of streets, street crossing
and roundabout for most areas around the world. However, since only parts of the available
information, e.g. the existing road network, provided by OSM is actually visible in the SAR
images the direct use of such data is not feasible in our case of application. Nevertheless,
we realized the collection of suitable matching areas, which later build the basis for the
developed tie point generation approaches (presented in Sections 4.2 and 4.3), through the
development and application of a semi-automatic selection procedure, which is introduced in
Subsection 4.1.1. Additionally, we provide the concept of a fully automatic scheme for the
pre-selection of suitable matching areas in Subsection 4.1.2 in order to facilitate the future
development of a fully automatic matching framework.
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(a) Optical image samples (b) SAR image samples

Figure 4.1: Illustration of the feature visibility in optical and SAR images. Optical images commonly
exhibit a higher level of detail compared to SAR images, and hence suitable features for image matching
such as roads and field boarders are in many cases not visible in the corresponding SAR images.

4.1.1 Semi-automatic Pre-selection of Matching Areas

To get a first indication of areas that contain suitable patterns, such as parts of streets or
runways in rural areas, the CORINE land cover [158] from the year 2012 is applied. The
utilized CORINE layer includes 44 land cover classes and has a pixel size of 100m. This
data enables the exclusion of unsuitable areas, which contain e.g. cities, industrial areas or
woodlands. We choose the following classes for a first pre-selection: airports, non-irrigated
arable land, permanently-irrigated land, annual crops associated with permanent crops and
complex cultivation patterns, land principally occupied by agriculture, with significant areas
of natural vegetation. Figure 4.2 exemplifies a variety of different land cover classes, where
the description of the discarded classes are red framed and of retained classes green framed.
Note that in this thesis only satellite images acquired over Europe are utilized, and hence
only the CORINE land cover is needed. For a similar pre-selection for images outside Europe
several existing global land cover maps can be utilized.

Subsequently, the resulting image areas are manually refined to ensure that the above
mentioned requirements are fulfilled: 1) all selected areas should exhibit salient features
and 2) these features should be visible in the optical and the SAR image. Additionally,
due to the relatively large resolution of the CORINE layer some image regions still contain
street segments through smaller villages, and hence have to be discarded during the manual
selection process. The manual refinement is realized by cropping overlapping image patches
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Figure 4.2: Illustration of different land cover classes from the CORINE [158] layer. All classes
listed in red-bordered text boxes are discarded, while all classes listed in green-bordered test boxes
are retained.

from the masked optical and SAR images. The size of the image patches and the offset
between them can be adapted to the respective application. In our case we choose a patch
size of 201 x 201 pixels and an offset between the patches of 20 pixels in easting and northing
direction. Note that we generate overlapping patches in order to increase the size of our
training dataset. All images patches that violate one of three points, e.g. exhibit only
ambiguous structures or exhibit salient features in one patch of each patch pair only, are
discarded from the set of matching patches. Without the manual refinement, unsuitable
patch pairs could hamper the detection of corresponding features, and hence interfere the
later matching process.

Nevertheless, the described semi-automatic process is time consuming and vulnerable to
human errors during the manual patch selection. As a consequence, the fast extension to new
image pairs is associated with high efforts and a slow realization. To handle these problems
and to enable the future development of a fully automatic matching framework, we further
propose an automatic matching area selection concept in the following subsection.
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4.1.2 Automatic Pre-selection of Matching Areas

The pre-selection of matching areas represents an important pre-processing stage for the
later introduced deep learning-based tie point generation concepts. Since deep learning
techniques require a large set of training data, a concept for the automatic generation of
training sets from aligned optical and SAR images have to be provided in order to enable a
fast and simple extension to new image pairs. In particular, if the learned model should be
applied on new image data acquired from different optical and/or SAR sensors that exhibit
different imaging properties compared to the training dataset. For this purpose, we propose
the following automatic concept.

Similar to the semi-automatic framework, the use of the CORINE layer is suggested to get a
first collections of pre-qualified areas that contain fitting patterns. This step is realized by
excluding unsuitable areas such as cities, woodland and industrial areas. This step is followed
by the application of OSM data in order to ensure that suitable features are contained in the
set of pre-qualified areas. Particularly, we propose the use of the road network provided by
OSM data and more specific the derived street crossings as features of interest. Commonly,
road networks, and hence street crossings are spread over the whole image scenes and are
present in nearly every image. These objects are therefore well suited for the problem of
image matching by providing the possibility of generating equally distributed tie points
between the images. The advantages of utilizing street crossings instead of streets are the
prevention of ambiguities during the matching process. An example of the provided OSM
road network and the derived street crossings for a rural area in England is illustrated in
Figure 4.4. Here, the road network contains all kind of roads such as highways, country
roads and dirt roads.

However, the provided information from OSM data is neither complete nor free of errors (in
terms of location accuracy and wrong or outdated information) and, as mentioned earlier,
not every street that is visible in optical images is visible in the corresponding SAR images.
In order to identify the part of the provided road network, and hence the particular street
crossings that are visible in the SAR images the implementation of a further processing
step is required. The detection of road in SAR images is a difficult problem in itself (see
example in Figure 4.3) and was tackled by different research studies in the past, e.g. [159-161].

Figure 4.3: SAR image subset illustrating objects of different nature which look much alike. A
segmentation model must learn to distinguish all kinds of roads from railways, tree hedges and rivers.
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(a) OSM road network for a rural area (b) Derived street crossings

Figure 4.4: Illustration of the road network and the derived street crossings provided by OSM data
for a rural area in England. The orange marked road network in Figure (a) contains all kind of roads
provided by OSM, e.g. highways, country roads and dirt roads. The blue marked street crossings in
Figure (b) are derived from the road network.

Nevertheless, we developed a novel approach for the road detection in SAR images based
on fully-convolutional neural networks (FCNNs) [162]. As this method will not be utilized
in later sections we only provide a short summary about the FCNN-based road detection
framework for interested readers below and refer to [162] for more implementation aspects
and a detailed evaluation of its performance.

In a last step, the information from the OSM data and the detected streets in the SAR
images is combined to identify areas that contain street crossings, which are visible in the
SAR and optical images. In order to utilize these areas for the training of a neural network
or for another matching algorithm patches with a certain size and overlap can be automatic
cropped from these areas and utilized for the training. Note that the obtained patches are
most likely not complete (in terms of containing all existing visible road crossing). However,
for a later matching it is more important that the resulting patches are located across the
whole image scene and, actually contain distinct features visible in both the optical and SAR
image.
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Figure 4.5: Illustration of the proposed road segmentation approach, including three specific FCNN
architectures: FCN8, FCN16 and FCN32.

Road Segmentation in SAR Images: We based our method for a pixel-wise segmentation
of roads in SAR images on a FCNN architecture, which have proven to provide accurate and
detailed segmentation [163]. A FCNN is commonly composed of two parts: The first part, a
DCNN, analyzes the input SAR images and outputs a cluster of predictions by gradually
down-sampling to input image through pooling layers and at the same time extracting more
and more meaningful features. We choose the VGG-19 [126] architecture as our DCNN. The
resulting predictions of the VGG-19 are subsequently processed by the second component of
the FCNN, the up-sampling network. It restores the spatial properties of the predictions
using backward convolution layers (commonly called deconvolution layers [164]) until the
road predictions (output image) share the same size as the input image. In order to assemble
both parts, we follow the suggested FCN8s architecture proposed in [163]. This specific
version of the FCNN infuses the results from two intermediary layers of VGG-19 into the
up-sampling process through skip-connections (see Figure 4.5). These layers have a finer
prediction resolution than the DCNN output and help to improve the segmentation accuracy.
The FCNS8s architecture is commonly preferred over other FCNN versions such as the FCN32s
and FCN16s, where the FCN32s directly up-samples the output of the VGG-19 32 times,
resulting in a coarse segmentation, while FCN16s fuses only one layer. A comparison between
the road predictions obtained by these three FCNN versions is illustrated in Figure 4.6.

N\

Figure 4.6: Segmentation result comparison between three the FCN versions (left to right: FCN32s,
FCN16s, FCN8s, ground truth)
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Instead of treading the problem of road segmentation as a binary classification, where each
pixel must be classified as road or as background, we propose the use of regression with
an adjustable spatial tolerance during the network training. Therefore, we adapted ideas
proposed in [131, 165] and utilize a smooth target distribution Y, which is centered around
the true ground truth distribution Yyi,. The distribution Yi;, contains binary labels for
each pixel in the input image depending if the pixels are labeled as road or background. The
values of the smooth target distribution in contrast range from a maximal value of 1 (for
pixels labeled as roads in Yi,) and linearly decrease to 0 until a fixed distance is reached
(e.g. 4 pixel apart from a pixel labeled as road). The advantage of this approach is that
incorrect network predictions can be penalized depending on their distance to the ground
truth. In other words, incorrect predictions only a few pixels away from the actual road are
only slightly penalized during training. In order to train the network we utilize the following
mean squared error (MSE) loss

N

1 .
Lyse(0) = N > wilyi — 98,)° (4.1)
=1

where 0 are the network parameters learned during training, y; the value of the smooth
target distribution Yi, ¢; the predictions and w; the loss weighting coefficient for the i-th
pixel in the output image with an overall number of N pixel. The need for a weighted
loss emerges from the fact that roads appear as thin objects in the SAR images and are
likely outweighed by the background class, especially outside cities. Therefore, we follow
the approach proposed in [166] and reweighting each class during the loss calculation by
multiplying the loss associated with pixel ¢ by the corresponding loss weighting coefficient
w;, which is defined as follows

w; = { 7 if pixel 7 is labeled as a road in Y, (4.2)

1 otherwise

Here, 7 is a fixed value taken from the interval [1,1/ fioad], Where fioaq is the ratio of road
pixels over the total number of pixels V. The training of the network is realized by minimizing
Equation 4.1 with stochastic gradient descent and the adaptive moment estimation (ADAM)
optimizer [63].

Since FCNNs are likely to provide imprecise predictions along object boundaries and as
roads are thin and expected to be smooth and continuous, the predictions of our network
have to be refined after the training process. Therefore, we follow the common practice and
use fully-connected conditional random fields (FCRFs) [167] in order to refine the segmented
roads, and hence to further improve the overall prediction quality. FCRFs provide a learnable
approach to enhance region boundaries on segmentation maps and have been successfully
employed in combination with FCNNs [168]. FCRFs using image wide context instead of local
context through a pairwise comparison of pixels. Taking into consideration the predictions
and the input image, it aims at improving the border smoothness between side by side areas,
by minimizing the following energy function

E(y) = Z 6i(Di) + > i (i 05) (4.3)

]
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where g; is the predicted label for the i-th pixel. The energy function is a compound of two
potentials. The first one, the unary potential ¢;, penalizes any uncertainty in the prediction.
The more confident the network is about the predicted class of a pixel, the lower the weight.
The second one, the bilateral pairwise potential ¢; ;, contains three terms summed overall
pixel pairs. More detailed, ¢; ; compare two pixels and checks for consistency by looking
at their predicted class, their corresponding color intensities on the input image and their
positions. The more alike they are, the lower their potential. This energy encompasses the
whole image, as it interconnects all pixels together, effectively leveraging the full context of
the picture. The FCRF must be trained in order to minimize its energy function. FCRFs
have an erosion effect on the predictions and since roads are already thin objects, they might
be narrowed and even disconnected from each other in the process. Therefore, we apply
the FCRFs on the background predictions in order to fill gaps between the roads and helps
reconnecting them. For this purpose, we invert the input values given to the FCRFs. The
resulting segmentation map is subsequently inverted to obtain the refined road predictions.
An example of the resulting raw and refined network predictions is shown in Figure 4.7.

4.1.3 Summary

Two frameworks for the pre-selection of suitable matching area have been introduced in this
section. The semi-automatic framework can be summarized in the following three steps:

1. Apply the CORINE layer in order to get a first indication of qualified areas by discarding
unsuited areas such as cities, industrial areas or woodland.

2. Crop (overlapping) patches with the desired size from the obtained areas in the optical
and SAR images.

3. Manually refine the set of patch pairs by discarding patches that do not exhibit salient
features in both patches of each optical and SAR patch pair.

The fully automatic framework on the other hand can be summarized in the following four
steps:

1. Apply the CORINE layer in order to get a first indication of qualified areas by discarding
unsuited areas such as cities, industrial areas or woodland.

2. Apply OSM data in order to derive all available streets crossing from the provided
road network in each image scene.

3. Utilize the FCNN-based road detection method in order to identify visible roads in
SAR images.

4. Combine the resulting information and crop (overlapping) patches with the desired
size from areas that exhibit street crossing in the optical and SAR images.

Both frameworks enable the provision of an optimal initial situation for the tie point
generation frameworks presented in the next two sections. More precisely, both matching
approaches will benefit due to the following aspects:
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e Due to the elimination of areas containing elevated objects such as cities, the different
geometric properties of certain objects in the optical and SAR images (caused by the
different sensors) will be reduced to a minimum. As a consequence, the reliability of
the obtained tie points with regard to their geo-localization will be increased.

e By ensuring the existence of distinct features in the areas to be matched, the risk for
our matching approaches to produce total mismatches will be reduced and the quality
of the resulting tie points will be increased.

Note that for the generation of the final training, validation and test dataset, and hence for
all experiments presented in Chapter 5 the semi-automatic framework introduced in Subsec-
tion 4.1.1 is utilized. Details about the obtained datasets are provided in Subsection 5.1.2.
The automatic area pre-selection framework introduced in Section 4.1.2 was developed to
provide the option for the future development of a fully automatic matching framework and
will not further be utilized, evaluated or discussed in the following chapters.
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4.2 Conditional Adversarial Networks for Multi-modal Image Matching

Our research objective is the computation of a set of very accurate and reliable tie points
between optical and SAR images. Towards this goal we developed two novel frameworks. The
first one, presented in this subsection, is based on the application of conditional adversarial
networks [169, 170]. The basic idea of this approach is to eliminate (to a certain degree)
radiometric differences between the images to be registered, and hence enable the utilization
of traditional matching approaches such as NCC, MI, SIFT and BRSIK, which have proven
to yield to accurate and reliable results in the case of single-sensor image matching. The
proposed approach represents an extension of our previous work [124], where we focused on
the generation of artificial roundabout templates and their applicability for the generation
of tie points. The general concept of this approach can be summarized in the following
three steps: 1) Detect and extract roundabouts in the optical image, 2) generate artificial
SAR-like templates out of the extracted roundabout information and, 3) apply an intensity-
or feature-based matching approach to match the artificial templates with the SAR images.
This approach fulfills important demands of an optical and SAR image matching approach
(e.g. features are not directly extracted from SAR images, traditional matching approaches
are applied on images patches with similar radiometric properties, geometric differences are
almost eliminated through skillful selection of suitable objects) and first results reveal the
potential of this concept [18]. However, the approach has some crucial weaknesses, which
complicates the extension to more frequent image features such as street crossings.

The first drawback is the need of the precise detection and extraction of feature information
to generate high quality feature templates. This requires several processing steps and the
result mainly depends on the quality of the detected edges, which makes the approach
impractical for images scenes with lower resolutions or for image scenes containing only
small objects. Furthermore, in contrast to roundabouts, the shape of features such as street
crossings vary in shape between image scenes from urban, suburban, rural areas and between
different countries (uniform street blocks in many parts of the United States vs. irregularly
shaped street patterns in most parts of Europe). The extensions to street crossing and other
more complex features therefore requires the development of an universal concept in order
to extract the geometric properties of varying types of features. The second drawback is
the template generation step. The hand-crafted generation of artificial templates requires
the knowledge of the common radiometric properties of the features and lead to unsatisfied
results if the visual appearance of the feature deviates from the norm.

To exploit the advantages of the above described matching approach and to enable the
generalization to all kind of optical and SAR image scenes the above mentioned problems
have to be tackled. One way of doing this is by utilizing a method which automatically
generates artificial templates without the need of extracting geometric information of features.
In the field of deep learning the generation of new training samples is crucial for tasks where
training data is limited. As described in Subsection 2.2.2 generative adversarial networks
(GANS) can be trained for the task of generation artificial images from noise. Based on the
concept of GANS, Isola et al. [171] proposed a method, which enables the generation of an
artificial image with the texture of a reference image, while keeping the geometric properties
of a given input image. This is realized through the training of a conditional generative
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adversarial network (cGAN). Inspired by the high potential provided by this approach, we
add ¢cGANs to our processing chain. This step removes the feature extraction part, the
improvement of the artificial template generation and the generalization to various kinds
of input features. Furthermore, due to the automatic image generation framework and the
associated omission of the handcrafted feature detection and extraction stage, the generation
and utilization of artificially generated optical image patches comes feasible, too.

4.2.1 Concept of Optical and SAR Image Matching Based on Conditional
Adversarial Networks

The framework for the generation of tie points between optical and SAR images through the
use of conditional adversarial networks is composed of the following three steps. The first
stage includes the selection of suitable matching areas from optical and SAR images. For the
selection of suitable matching areas the semi-automatic method described in Subsection 4.1.1
is utilized and will not be further discussed. The second stage includes the generation of
artificial image patches from optical or SAR image patches through a generator network
G. The training of G is realized through the concept of conditional generative adversarial
networks and is outlined in detail in Subsection 4.2.2. The third stage includes the matching of
artificially generated patches with the real image patches counterpart through the application
of traditional tie point generation concepts and is described in Subsection 4.2.3. An graphical
overview of the whole concept is depicted in Figure 4.8.

artificial SAR-like patch
optical images generation

Patch based
matching
utilizing Ml,

SIFT and
BRISK

input data patch extraction tie point generation

Figure 4.8: Graphical overview of the cGAN-based tie point generation framework. Tie points are
generated by matching SAR and artificial image patches created by a generator network G.

4.2.2 Details of the Artificial Image Generation Process

In the case of unconditional GANs (see Subsection 2.2.2) the artificial images are generated
from noise and the control of the image generation process, for example through the
implementation of certain requirements, is hardly feasible. In our special case of application,
the goal is to generate artificial image patches with geometric properties of given input
image patches and with radiometric properties of a determined output image. Therefore,
we utilize the concept of conditional GANs (cGAN), which enable the use of additional
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information or requirements in form of input data such as discrete labels [172, 173], text
[70] or images [171, 174]. As a consequence, a more controlled and target-oriented images
generation process can be achieved. In our case, the conditioning is based on an optical
or SAR image patch as additional input. For reasons of simplification we assume optical
patches as input and SAR patches as our target in the following.

Our utilized image cGAN relies next to noise samples z on optical input image patches x
and consists, similar to GANs, of a generator network G and a discriminator network D.
Through the pre-selection of suitable areas (as described in the previous Subsection 4.1)
the impact of geometric distortion is reduced to a minimum, and hence we can assume the
same geometric properties between the given optical input patches and the corresponding
SAR output or target patches. As a consequence, the generator G can directly utilize the
geometric structure from the input patches @ and only has to learn the radiometric or style
transformation from the optical patches to the corresponding SAR patches y. Towards
this goal, both networks are trained through an adversarial process in order to learn the
generation of conditional artificial images. By adding the condition to the GAN loss from
Equation 2.22 we obtain the following cGAN loss

predicted log probability of D that the image pair (x,y) is real
LGAN (G7 D) = Ew,prdata(w,y) [IOg D($7 y)] +
By paaa(@),z~ps(2)108(1 — D(z, G(2, 2)))] ;

predicted log probability of D that the image pair (x, G(z)) is fake

(4.4)

where £ denotes the expected value, pgata the real data distribution, p, a noise distribution,
x denotes an optical input patch, y the corresponding SAR output or target patch (the
ground truth image patch) and G(x, z) the artificially generated SAR-like patch.

To further control the image generation process and to force G to produce artificial images
patches, which are similar to the ground truth SAR patches y (in the sense of the L; distance)
we follow the idea proposed in [171] and extend Equations 4.4 by the following regularization

term £L1 (G> = Ew,ywpdata(w,y),zwpz(z)[Hy - G(:I:, Z)”l] ) (4'5)

which influence only the learning of G and not of D. A positive impact on the image
generation process through such an additional term was also reported in [175]. Here, the Lo
distance was utilized, which leads in contrast to the L; distance to slightly blurred output
images. By combining both losses the final objective can be expressed as

G* = arg mGin max Lecan(G, D) + AL, (G). (4.6)

The conceptional training idea of cGAN is the same as for unconditional GANs: D, a binary
classification network, tries to distinguish as good as possible between real images and images
G(z) generated by G, whereas G tries to produce more and more realistic images to "fool”
D as often as possible. The only difference to the GANs training, is the additional input
data @, which controls the generation process and forces G to produce images that exhibit
geometric properties of the input images x and radiometric properties of the target images y.
The training of both networks takes place simultaneously, where the discriminator network
D is alternately trained on two different kinds of training pairs. Half of the training pairs
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Figure 4.9: Overview of cGAN training procedure. On the left side the training setup for "fake"
examples (optical and artificially generated SAR patch pairs) as input for the discriminator D and
on the right side the training setup for "real" examples (optical and SAR patch pairs) as input for D.

are "fake" examples and are composed of optical and artificially generated SAR-like patch
pairs. The other half are "real" examples and are composed of optical and SAR patch pairs.
An illustration of the two different training setups are shown in Figure 4.9. As proposed in
[171] we do not feed noise directly (in form of noise image samples) as additional input into
the network. Instead dropout [65] is used inside the generator network as form of noise and
regularization in order to prevent the generator from overfitting.

Network Architectures: For our application, we utilize the proposed network architectures
from [171]. More precisely, the generator G is realized via a U-Net [176], which is an
encoder-decoder type of network with skip connections between layer ¢ and layer L—i, where
L is the total number of layers and i € {1, ..., L}. Here, a skip connection between the layers
i and L — ¢ means to concatenate all channels of layer ¢ with those of layer L —i. U-Nets
have proven their high potential for several tasks in the area of image-to-image translation
[175, 177, 178] and commonly consist of two parts. The first part, the encoder, consists of
L, = 8 convolutional layers and pursues the goal of extraction low to high order features
by gradually downsampling the input image with a size 256 x 256 pixels to a 1 x 1 x 512
dimensional feature map. The last layer of the encoder is often called the bottleneck. The
second part, the decoder, also consists of Ly = 8 convolutional layers and pursues the goal of
assemble the overall network output from the provided information by gradually upsampling
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the encoders output to an image with an size of 256 x 256 pixels. The skip connections are
additional connections between layers of the en- and decoder and enable the transmission of
extracted low level feature information from encoder layers to layers of the decoder, and hence
prevent the loss of information by circumvent the bottleneck. An example of such an network
architecture is shown in Figure 4.9. Each encoding layer utilizes spatial convolutions of size
4 x 4 with a stride of 2, spatial batch normalization [57] and a rectified linear unit (ReLU) as
an activation functions. The decoding layers are constructed the same way but utilizes 4 x 4
transposed convolutions [164] to realize the upsampling. The number of computed features
maps, sometimes called channels, of the encoding layers i, € {1,...,4} are 2°T% and of the
layers i € {5, ..., L} are 512, whereas the number of feature maps of the decoding layers are
512,1024,1024, 1024, 1024, 512,256 and 128. A detailed explanation of the usage of spatial
batch normalization and the merits of rectified linear units over other activations function
can be found in Subsection 4.3.2. For more details about the design choice or architectural
details about the utilized U-Net we refer to [171, 176].

The discriminator D on the other hand, is realized via a binary classification network. The
classification network consists of five convolutional layers and takes a set of stacked training
pairs (either a "real" or a "fake" example) as input. Each of the five layers utilizes spatial
convolutions of size 4 x 4, spatial batch normalization (except layer one and five) and a
rectified linear unit as an activation function (except layer five). The length of the stride in
layer one to three is 2 and in layer four and five 1. The feature map size gradually decreases
with the depth of the networks and is 64, 128,256,512 and 1 for the five layers, respectively.
These five layers incrementally downsample the network input to a 1 x 30 x 30 dimensional
output matrix. This is contrary to other methods, since the output of the last layer does not
provide a single value for the classification of the input patch pair. Instead, the classification
is based on regarding the local structures of the input by provides one classification value
for 900 overlapping 70 x 70 pixels large sub-patches of input patches. In order to obtain an
overall network output the average over all single responses is computed and in a final step,
mapped via a Sigmoid function to the interval [0, 1]. This enables the consideration of the
network output as a form of probability that the given input pair belongs to the class "real"
or "fake" (1 or 0). For a more detailed overview we refer to [171, 179].

Network Training: The networks are trained with stochastic gradient descent and the
adaptive moment estimation (ADAM) optimizer [63]. ADAM is a computationally efficient
optimization algorithm, which is developed for machine learning problems and well established
in the field of deep learning due to its faster convergence compared to other stochastic
optimization methods while providing accurate results [63, 180]. The training of both
networks takes place at the same time by alternating the training of D and GG. More precisely,
one gradient descent step of D is followed by one gradient descent step of G. As described
in Subsection 2.2.2, a frequent problem of a GAN training in combination with the Lgan
loss from Equation 2.22 are vanishing gradients. For the described cGAN setup with the
loss from Equation 4.4 the same problem can occur. Therefore, to limit the problem of
vanishing gradients and hence improve the quality of the image generation process, we follow
the common practice for the training of G, which is to maximize log(D(x, G(x, z))) instead
of minimizing log(1 — D(x,G(x, z))). For more details about the cGAN training procedure
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see Algorithm 1 and for the selection of the set of suitable hyperparameters we refer to
Subsection 5.2.1.

Image Generation (Network Testing): After the training process only the generator net-
work is needed for the process of artificial image generation (see the graphical overview of
the framework in Figure 4.10). Therefore, a set of optical image patches is feed into the
network from which the generator is able to produce within seconds the corresponding set of
SAR-like image patches. To enable a fair evaluation of the generators abilities, the set of
optical images patches should be unseen, which means that it was not utilized in the training
process. During the image generation phase, the weights of G are retained and not modified
in any way. Note that through retaining the weights one input patches will always lead to
the same artificial output patch.

The cGAN setup described so far has proven to be particularly suitable for the task of image-
to-image translation by generating high quality image samples [171]. However, a common
problem of (conditional) GANs with an objective function that is based on the negative
log-likelihood (see Equation 4.4), is an unstable course of training due to vanishing gradients.
Despite the above mentioned change of the objective function (maximize log(D(x, G(x, z)))
instead of minimizing log(1 — D(x, G(x, z)))) the problem of vanishing gradients cannot be
completely avoided. Recent research studies like [181, 182] try to overcome this problem by
describing more stable training procedures. Therefore, we introduce two alternative cGAN
setups and investigate their influence on the stability of the image generation process and on
the quality of the later image matching in order to obtain an optimal tie point generation
framework.

The first alternative cGAN setup was proposed in [181] and only requires a change in the loss
function L.gan from Equation 4.4. It is based on the following observation: The common
(¢)GAN losses from Equations 2.22 and 4.4 only slightly penalize generated image samples,
which are correctly classified by D but are far away from the real data distribution pgata.
Therefore, such examples cause almost no error during the training and can lead to vanishing
gradients. In order to tackle this problem, Mao et al. [181] proposed the usage of a least
squares loss. Such a loss penalizes image samples based on their distance to the decision
boundary and is therefore able to penalize samples far away from the real data distribution
even though they are correctly classified by D. The utilized least square loss L.scAN 1S
defined as follows

ECLSGAN(GJ D) = Ex,ywpdata(z,y) [(D(l" y) - 1)2]

) (4.7)
+ Eﬂ?vprdata(%y),Zsz(Z) [D(xa G(:B: z))) ] .

We call the new cGAN setup, where the least square loss is utilized, cLSGAN. Besides the
replacement of the cGAN loss from Equation 4.4 with the cLSGAN loss from Equation 4.7
no other changes of the above described method are necessary nor performed, e.g. in the
network architecture or during training. Mao et al. [181] showed in an extensive study that
the cLSGAN setup is able to generate higher quality images samples and provides a more
stable training procedure that is less vulnerability to vanishing gradients in comparison to
the common cGAN setup.
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The second alternative approach was proposed in [182] and also focuses on the implementation
of an improved training objective. The general aim of each (¢)GAN training procedure is to
learn a model, which is able to generate data samples from the real data distribution pgata.
In order to reach this goal, the distance between pgat. and the learned generator distribution
pg has to be measured during the training. In Subsection 2.2.2 we showed that optimizing the
common GAN objective from Equation 2.22 is equivalent to minimizing the Jensen-Shannon
(JS) divergence. This means that for the common (¢)GAN setups the JS divergence is utilized
to measure the distance between pqata and p, during the training process. However, Arjovsky
et al. [182] showed that from an optimization perspective the JS divergence is not optimal
since it is not ensured that the gradient is always well-defined during the training process.
Additionally, the gradients tend in some situation to be always zero, which causes vanishing
gradients, and hence lead to an unstable training process. Therefore, they proposed to use
of an alternative distance on the basis of which an improved (¢)GAN setup can be build.

The distance utilized in [182] is called the Wasserstein (or Earth Mover distance) and is
defined as follows

W(pdataapg) = ’YNHéDI;ia,pg) E(m,G(z))Nv [HZE - G(Z)H] ) (4.8)
where II(pdata, Pg) denotes the set of all joint probability distributions v(x,G(z)). The joint
probability distributions v can be interpreted as a transport plan, which describes how much
mass has to be moved from x to G(z) in order to transform py into pgata. Consequently,
the Wasserstein distance gives the minimal cost or effort that has to be spend to transform
Dg INto pdata by following the optimal transport plan. The advantages of the Wasserstein
distance over the JS divergence is that it provides an novel GAN setup which exhibit a
continuous and almost everywhere differentiable loss function. The benefit of such a loss
are well-defined gradients during the whole training, which leads to an improved and more
stable training process of the generator and discriminator network.

However, since the computation of all possible transport plans, and hence the exact computa-
tion of the Wasserstein distance is intractable, an approximation of the Wasserstein distance
has to be found. Therefore, the authors utilized the Kantorovich-Rubinstein duality [183]
which leads under some assumption to the following approximated Wasserstein distance (for
more theoretical details about this derivation see [182])

W(pdata, Pg) = mgx Errpgaa [f0(T)] — Bz, [fo(G(2))] - (4.9)

Here, the function f is called the critic (in the common GAN setup the discriminator) and
is defined by the set of parameters 8. In contrast to the common (¢)GAN setup, the critic
does try to classify the input images into "real" or "fake". Instead it tries to compute the
Wasserstein distance between p, and pqata. By minimizing Equation 4.9 the generator will
learn to produce more and more realistic looking image samples and as a consequence, p,
will get closer to pgata. Bringing all together and adapting it to the case of cGANs, lead to a
novel cGAN setup called cWGAN, which is based on the following loss

ECWGAN(Gv D) = Ew,ywpdam(m,y) [D(a:, y)]

(4.10)
- Ewdiata($)vapz (Z) [D(a:7 G(w7 Z))} .
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In order to ensure the theoretical benefits of minimizing the Wasserstein distance instead
of the JS divergence even in the case of utilizing the approximated Wasserstein distance,
the previously described ¢cGAN training process has to be adjusted. First, to guarantee a
continuous and accurate estimation of the Wasserstein distance during training the discrimi-
nator have to be trained to optimality. Therefore, it is recommended in [182] to train the
discriminator more often than the generator. We follow the common practice and perform
five gradient descent steps of D followed by one gradient descent step of G. Second, the
weights of the discriminator have to be limit to ensure that the discriminator function is
restricted, and hence that an optimal set of parameters can be computed. In practice, the
weights are clipped to the interval from —0.01 to 0.01 after each iteration of D during the
training process. Third, Arjovsky et al. [182] reported the risk of an unstable training when
utilizing the ADAM optimizer for the WGAN training. Therefore, the use of the RMSProp
optimizer [62] is recommended, which is another gradient descent optimization algorithm
that automatically adapts the learning rate during the training procedure. An overview of
the cWGAN training procedure can be found in Algorithm 2 and for more details about the
theoretical analysis of the Wasserstein GANs and its characteristics we refer to [182].

Algorithm 2: cWGAN training procedure with stochastic gradient descent.

Input: A training dataset Di;ain, a noise distribution p,, the learning rate A, the batch
size Ny, the number of training iteration 7yain, the clipping parameter gy, the number
of discriminator iterations ngjsc per one generator iteration
for i =1,..., Ngrain do
for i = 1,..., ngjsc do
N
e Sample a mini-batch {z(z)}A bl from the noise distribution p, and a mini-batch
1=
, N
{az(z),y(’)}‘ " from the set of real training data Dipain with distribution pgata

=1

(D)

e Compute the stochastic gradient g(P) of D w.r.t. its parameters 8(2):

Ny . ) ) )
gP) VB(D)N%) ; {D (y(l)) - D (az(z),G (m(l),z(")»]
e Update the parameters of D via the optimization algorithm RMSProp:
0(P) «— (") 1 X\ RMSProp(6P), g(P))
O(D) <~ Chp(a(D)7 _tclip7 tclip)

end

LY
e Sample a mini-batch {z(z)}A bl from the noise distribution p, and a mini-batch
1=

N
{m(’)}l bl from the set of real training data Di;,i, with distribution pgata
1=

(@) (@)

of G w.r.t. its parameters 8'~/:

e Compute the stochastic gradient g
Ny ) . .
1 Sy~ [P .0 (2

e Update the parameters of G via the optimization algorithm RMSProp:
0(%) «— 0(G) — X RMSProp(0©), g(@))

end
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4.2.3 Tie Point Generation Through Artificial Images Matching

Several approaches exist to realize the matching between artificially generated image patches
and the corresponding reference images in order to compute a set of tie points. In our inves-
tigations we focus on two intensity-based (NCC and MI) and two feature-based approaches
(SIFT and BRISK). These matching approaches have proven their high quality in the case of
single-sensor matching, but usually lead to inaccurate results for the matching of optical
and SAR images. For our investigation we will evaluate two aspects: 1) Can we improve the
conditions for the traditional matching approaches NCC, MI, SIFT and BRISK, and hence
improve the quality of the obtained matches and 2) can we obtain accurate and reliable tie
points?

Intensity-based approaches measure the similarity between a template T and a larger reference
image R at all locations within the search space. In the later evaluation in Subsection 5.2.3,
the template T will either be a patch cropped from the optical image or the generated
artificial SAR-like patch and R a patch cropped from the SAR image. We use a sliding
window technique to compute the NCC- or MI-value for every location of T within R
(see Subsection 3.1.1 for details about the NCC- and MI-value computation). The correct
matching position is given by the highest NCC-value within the search space. Since we are
only interested in reliable and accurate tie points, the raw NCC- and MI-values can be used
as a quality measure to detected outliers in the set of tie points. More precisely, by setting a
certain threshold unreliable matches can be removed and the quality of the obtained set of
tie points can be increased.

In contrast, feature-based approaches are based on the detection of features in both images,
called key points, and the measurement of their similarity in the feature space. The two feature
detectors utilized for our evaluation are SIF'T and BRISK. The idea of both algorithms is to
find key points in T and R and to return a descriptor for every key point. The descriptors of
two images are then matched by utilizing the Euclidean distance for SIFT and the Hamming
distance for BRISK in combination with a nearest neighbor search (details of the SIFT and
BRISK feature descriptor computation can be found in Subsection 3.1.2). To increase the
quality and reliability of the detected tie points we remove outliers through RANSAC [184]
with an underlying affine model and by setting a distance threshold. More details about
the selected threshold for the intensity- and features-based artificial template matching are
outlined in Subsection 5.2.1.

4.2.4 Summary

The overall tie point generation framework introduced in this section can be summarized in
the following five steps:

1. Select suitable matching areas through the framework described in Subsection 4.1.1
and generate a set of optical and SAR training pairs.

2. Train the cGAN, cLSGAN or cWGAN setup on the set of optical and SAR training
patch pairs.
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3. Apply the trained generator network on a set of unseen optical image patches (these
patches should be cropped from the optical images to be registered) and generate the
corresponding artificial SAR-like image patches.

4. Apply a NCC-, MI-, SIFT- or BRISK-based image matching on the computed artificial
SAR-like patches and the corresponding real SAR image patches.

5. Remove outliers using a RANSAC framework in order to obtain the final set of tie
points.

The proposed novel tie point generation method open up the possibility of an automatic and
widely applicable tie point generation framework while providing the following benefits:

e The exclusion of ineligible matching areas increases to reliability of the later computed
tie points.

e No handcrafted feature detection and extraction algorithms during the artificial image
generation process are used nor required.

e Due to the utilization of a cGAN the image generation process is not limited to
particular features such as roundabouts.

e Due to the learned image-to-image translation radiometric differences between the
artificially generated patches and the corresponding SAR patches can be reduced to
a minimum, and hence the applicability of traditional matching approaches such as
NCC, MI, SIFT and BRISK for the tie point generation becomes feasible.

An extensive evaluation of this framework is provided in Section 5.2. This evaluation
includes the comparison of the three introduced image generation setups (cGAN, cLSGAN
and cWGAN) in terms of their ability for the high quality image generation and their
applicability for an accurate and precise tie point generation process implemented on the
basis of a NCC-, MI-, SIFT- and BRISK-based image matching.
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4.3 Convolutional Neural Networks for Multi-modal Image Matching

Our second framework for the generation of tie points between optical and SAR images
[185] is based on a specific convolutional neural network architecture, called Siamese neural
network, and enables the end-to-end learning of an accurate and reliable tie point generation
method. As discussed in Subsection 3.2.4, traditional optical and SAR image matching
approaches are based on handcrafted feature detection, extraction and matching algorithms.
Additionally, these methods are usually tailored to fulfill the needs of certain image features,
and hence are not applicable to a wide range of images acquired over different areas or at
different times of the year. In the previous sections, we tried to overcome some of these
problems by first, eliminating geometric differences by pre-selecting suitable matching areas
(see Section 4.1) and second, eliminating radiometric differences through a cGAN-based
image-to-image translation framework (see Section 4.2). However, the cGAN-based tie
point generation framework still depends on the success of two separated steps: 1) the
artificial image generation process and 2) the accurate and precise image matching through
handcrafted matching approaches.

In order to obtain an end-to-end tie point generation framework, which does not rely on
a single handcrafted processing step, we propose in this section a deep learning-based
image matching approach for pre-selected areas, where geometric differences are reduced
to a minimum. Inspired by the successful use of Siamese neural networks for the task of
image matching (discussed in Subsection 3.3), we base our method on this kind of network
architecture. In contrast to the common deep learning-based matching approaches utilized
for tasks such as stereo matching or optical flow estimation, our input images are acquired
from different sensor types with different radiometric properties and exhibit a lower level
of detail. Additionally, due to the speckle in the SAR images, the pre-processing of the
images plays in our case an important role for the training process and for the resulting
matching accuracy and precision at test time. These circumstances entail the need for a
careful adaption of common Siamese neural network architectures, e.g. find the right tradeoff
between the number of parameters, the number of layers, and more important the receptive
field size. Nevertheless, by implementing a suitable Siamese neural network that fulfills the
particular requirements of optical and SAR images and by training it on a large dataset
containing images spread over different locations and acquired at different times of the year,
the network will learn to handle all kind of image changes, e.g. radiometric or small geometric
changes of an object over time or at different locations, and hence will be applicable to a
wide range of image scenes.

In the following we will outline the general idea of the Siamese neural network-based tie point
generation framework (see Subsection 4.3.1). Subsequently, we will introduce the idea behind
the tie point generation process through Siamese neural networks, establish the selection of
the final network architectures, give details about the training process and about the final tie
point generation through the learned network (Subsection 4.3.2). At last, a summary of the
whole process and an outline about theoretical benefits of the proposed method compared to
the state-of-the-art is provided in Subsection 4.3.3.



4. Deep Learning-based Optical and SAR Image Registration 81

4.3.1 Concept of Optical and SAR Image Matching Through Siamese
Neural Networks

Our concept for the generation of tie points through the use of Siamese neural networks
includes the following three steps: First, to suppress geometrical differences between optical
and SAR patches, we focus our training on patches containing flat surfaces like streets
or runways in rural areas. Towards this goal, the semi-automatic approach described in
Subsection 4.1.1 is utilized to identify suitable matching areas and to extract optical and SAR
patch pairs, where the cropped SAR image patches are larger in size compared to the optical
patches. Second, a Siamese neural network is trained in order to find the correct location
(with the highest similarity) of optical patches within the corresponding larger SAR patches.
More precisely, during the training process the Siamese neural network learns to extract
important image features from both patches via two independent CNNs. Subsequently, the
dot product is utilized to measure the similarity between the extracted features vectors. The
resulting network output is a score map for each input pairs and contains a similarity value
for every location of a smaller optical patch within the corresponding larger SAR patch. In a
last step, tie points are selected with the help of the score maps and confidence scores, which
are provided by the network and enable the removal of outliers. The described framework is
visualized in Figure 4.10 and will be described in detail in the following subsection.

SAR images

dot product

input data patch extraction tie point generation

Figure 4.10: Graphical overview of the tie point generation framework based on a deep learning-
based image matching process. Tie points are generated by training a Siamese neural network, which
step by step learns to measure the similarity between optical and SAR patches.

4.3.2 Tie Point Generation Through Siamese Neural Networks

In order to learn the automatic computation of tie point between optical and SAR images
patches a suitable neural network and a corresponding training concept has been developed.
Due to the experiences and insight of previous research studies in the context of deep learning-
based image matching (see Subsection 3.3), we base our framework on a Siamese neural
network architecture with the proposed matching concept from [131, 132] and adjust it for
the case of optical and SAR input images. In general, Siamese neural networks are composed
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Figure 4.11: Illustration of the Siamese neural network architecture (left side) and details of the
training concept (right). With the help of two CNNs image features are extracted from the input
patch pairs. The resulting outputs of the i-th optical patch and of the corresponding SAR patch are
a feature vector f(* and a feature matrix h(9, respectively. The similarity between the extracted

5’1) at location q§i) of the

score map sV is given by sy) = f0). h;i). The correct location (shift) of the optical patch within
the larger SAR patch is predicted based on the score map.

features is measured through the use of the dot product, where the value s

of 1) two parallel branches (two sub-neural networks), which pursue the goal of extracting
all relevant features from the corresponding input data, and 2) a subsequent part (a fusion
or classification network), which pursues the goal of measuring the similarity between the
extracted features. The weights of the two branches can be shared (Siamese architecture) or
partly-shared (pseudo-Siamese architecture) between each other. A simplified representation
of the described Siamese neural network architecture is depicted on the left side of Figure 4.11.
In the following we will describe the concept behind the training procedure in detail. For
a better understanding we refer to the associated graphical visualization of the training
procedure and the utilized terms on the right side of Figure 4.11.

The tie point generation is realized by training a Siamese neural network over a training
dataset consisting of optical and SAR image patch pairs, where the smaller optical patches
are feed into the left branch and the larger SAR patches into the right branch of the
network. In this work, we utilize two CNNs as the two branches of the network, where the
used optical training patches have a size of b x h and the SAR training patches a size of
(b+ s) x (h+ s). Note that s defines the range of the search space. The search space S
has a size of (s 4+ 1) x (s 4+ 1) and contains all possible location of the optical image within
the SAR image with respect to a pixel-wise shift. Given an input image pair, the overall
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network output is a two dimensional score map s, whose size (s + 1) x (s + 1) depends on
the size of the search space S. The score map s\ of the i-th input image pair contains a

y) for each location q](-i) in the search space (j € J ={1,...,|S|}, where |S]|

is the cardinality of S). The search space index J is indexing the two dimensional search

(4)

oL (2
space, where each position ¢;

similarity score s

in S corresponds to a specific two dimensional shift of the
left optical patch with respect to the larger SAR patch.

The first step to compute a score map for every input image pair of the training set is to
apply the two CNNs. The task of the CNNs is to extract all relevant features from the input
data and to provide a feature vector f for each optical training patch and a feature matrix h
for the corresponding SAR patches. The feature vector £() is the output of the left network
branch and is a representation of the i-th optical training patch. The dimension of £ is ¢,
where ¢ is number of feature maps (number of applied filters in the last convolutional layer).
The feature matrix h(® is the output of the right network branch and a representation of
the i-th SAR training( ‘%)atch. The matrix h(®) has a dimension of |S| x ¢ and is composed of
7

S| feature vectors h;” (one for each location in the search space). The second step is to

compute the similarity between the features vectors f() and h;i) for every position q](-i) es.

We are utilizing the dot product in order to measure the similarity between the two vectors
£@ and h;z), and hence obtain the similarity scores sy) = £ ~h§l) for all 5 € J. Note
that a high value of sy) indicates a high similarity between the two vectors f(?) and R\ at

J
location q](-z). In other words, a high similarity score sy) indicates a high similarity between

the i-th optical patch and the i-th SAR patch at location qj(-i) in our search space.

In order to get a calibrated score over all locations within the search space we apply the

softmax function at each location q](-i) es

(4.11)

The softmax function provides the probability distribution of q](-i), or the corresponding shift,

being the correct location (shift) over all possible locations (shifts) within .S, where §§.i) € [0,1]
and Zégi) = 1 over all j € J. Therefore, we can interpret the values of the calibrated
score maps § as probabilities and the values of the score maps s as confidence scores, which
indicate the confidence of the network that a specific location (shift) is correct.

By treating the problem as a multi-class classification problem, where the different classes
represent the possible positions (shifts) of an optical patch within a larger SAR patch, we
can train our network by minimizing the following cross entropy loss

min 5 e () oz (1.6) (112

il jeg

with respect to the Siamese neural network parameters . Here, p(¥) (q(i) 0) is the probability

] Y
of the training sample 7 at location qj(-z)

ground truth target distribution. Instead of a delta function with non-zero probability

in our search space S, and pgt is the corresponding



84 4. Deep Learning-based Optical and SAR Image Registration

197 X 197
193 X 193

185X 185
169 X 169

137x 137

73X 73

input
Conv+BN+ReLU
Conv+BN+ReLU \
|
2-DilatedConv+
BN+ReLU
4-DilatedConv-+
BN+ReLU
|
8-DilatedConv+
BN+ReLU
16-DilatedConv—+
BN+ReLU \
16-DilatedConv+
BN+ReLU
Conv+BN+ReLU
Conv+BN
output

Figure 4.12: Detailed overview of the utilized convolutional neural network. The details of the
nine layers of the convolutional network are framed in gray and shown on the bottom of the figure.
The corresponding example, depicted on the top of the figure, shows the effect (in terms of change
in dimensions) of these layers for a given optical input patch. Here, the output of convolutional
layers and of dilated convolutional layers are reported in blue and green, respectively. Abbreviations:
Convolution (Conv), batch normalization (BN) and rectified linear unit (ReLU).

mass only at the correct location q]@ = qgt), we are using a soft ground truth distribution
which is centered around the ground truth location. Therefore, we set pg; to be the discrete
(4)

approximation of the Gaussian function (with o = 1) in an area around g

ONNONE
1 7| % "%t o ()

p (@) = BT -
0 otherwise

, <3, (4.13)

where ||-||, denotes the Ly (Euclidean) distance. The idea behind utilizing a soft ground truth
distribution is to penalize the predictions not only according to their correctness but also to
their distance to the correct location. In other words, the soft ground truth enables to put
higher penalties on incorrect predictions far away from the correct location while penalizing
incorrect predictions that are close to the true location only slightly. Furthermore, without
a soft ground truth only one location out of the |S| possible location in our search space
S is correct (a positive sample) whereas the other |S| — 1 locations are incorrect (negative
samples) given one training patch pair. Therefore, the use of a soft ground truth improves
the imbalance between positive and negative training samples in our training dataset, and
hence improves the quality and speed of your training process.
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Network Architecture: Our Siamese neural network architecture is based on the architecture
proposed in [131] but contains some important adjustments in order to fulfill the particular
requirements of optical and SAR image matching (e.g. lower level of detail compared to
application in stereo estimation, multi-modal image data). In the following we will describe
the selected network architecture and provide reasons for the decisions made, where details
a graphically illustrated in Figure 4.12. The basis of our Siamese neural network are the two
branches (two CNNs). For the task of single sensor image matching, the weights between the
networks are commonly shared in order to utilize learned information from an input image
for the extraction of features from the other input image. Furthermore, if the parameters
between the two networks are shared, the Siamese architecture provides the advantage of
consistent predictions. As both network branches compute the same function, it is ensured
that two similar images will be mapped to a similar location in the feature space. However,
since the image properties of our input data are quite different we investigate two different
setups, one with shared weights (Siamese architecture) the other with partly-shared weights
(pseudo-Siamese architecture) between the branches. In the case of our pseudo-Siamese
architecture, the weights of the first three layers are different, whereas the remaining layers
share their weights.

Both CNNs are composed of nine layers, where each layer consists of three components: 1) a
spatial convolution, 2) a spatial batch normalization (BN) [57] and 3) a rectified linear unit
(ReLU). The purpose of the convolution layers is to extract spatial features from the input
data through trainable filters, where the complexity of the features extracted by the layers
increases along with the depth. We employ in all layers convolutions with a filter size of
5 x 5 pixels and with a stride of 1 pixel. The number of filters used in layer one to four are
32 and for the others 64. Since our training dataset contains images with a spatial resolution
of 2.5m, the input patches exhibit a lower level of detail in the images compared to the
ones used in common matching networks such as in [131, 150-152]. In order to increase the
probability of the availability of salient features in the input data, we use optical patches
with a size of 201 x 201 pixels and SAR patches with a size of (201 + s) x (201 + s) for
training. To achieve that the whole optical input patch and the corresponding area in the
larger SAR patch has an impact on our network output, a receptive field size of 201 x 201
pixels is desired (the size of the smaller optical input patches). In the context of CNNs,
the receptive field refers to the part of the input patches, having an impact on the output
of the last convolutional layer. The standard ways to increase the receptive field, such as
strided convolutions or pooling layers inside the neural network, always involve a loss of
information as these approaches reduce the resolution of the image features. In contrast,
dilated convolutions [186] systematically aggregate information through an exponential
growth of the receptive without losing resolution. The dilated convolution %4 at a given
position p in the image I is defined as

T
Teak)p)= 3 T(p—d-m)k(m)., (4.14)
m=—r
where k denotes the filter with size (2r + 1) x (2r + 1) and d the dilation factor. Instead of
looking at local (2r+1) x (2r+1) regions as with standard convolutions, dilated convolutions
look at [d- (2r + 1)] x [d - (2r + 1)] surrounding regions, which lead to an expansion of
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Figure 4.13: Illustration of the exponential expansion of the receptive field through dilated convolu-
tions (image source: [186]). The left image shows the output of a standard convolution with a filter
size of 3 x 3, where each element has a receptive field size of 3 x 3. The images in the middle shows
the output of a 2-dilated convolution with a filter size of 3 and an obtained receptive field with a
size of 7 x 7 for each element in the image. The image on the right shows the output of a 4-dilated
convolution with a filter size of 3 and an obtained receptive field size of 15 x 15 for each element.
Note that the number of parameters is the same in all three examples.

the receptive filed size (for an illustration see Figure 4.13). Beyond, dilated convolutions
have the same number of network parameters compared to its convolution counterpart.
Therefore, we adopt the concept of dilation convolutions to our network architecture in order
to overcome the problem of our relatively large input patches and to gradually downsample
our 201 x 201 dimensional optical input patches to a 1 x 1 x 64 dimensional output and the
(201 + s) x (201 + s) dimensional SAR input patches to a (s+1) x (s+1) x 64 dimensional
output. In practice, we utilize dilated convolutions in the layers three to seven with a dilation
factor d of 2, 4, 8, 16 and 16. This setup leads to the desired receptive field size of 201 x 201
pixels for each computed feature vector f and each vector h() of the feature matrix h, and
hence ensures that the whole input patches are represented in the network output.

The second component of our layers, batch normalization (BN), is often used as a pre-
processing step in order to increase the learning speed and the performance of the network.
The idea behind BN is to enable a comparison of the data across all layers by normalize
the input of each layer, and hence providing a consistent distribution of each layer input.
Additionally, it provides a form of regularization (reduces overfitting) and decreases the
dependency of the network performance on the initialization of the weights. Note that next
to BN we follow the common practice of normalizing the input data before feeding them
into the network, which further enables a comparison between the different input samples.
For a detailed overview of BN we refer to [48, 57].

The third component of our layers are non-linear activation functions. Non-linear activation
are needed to introduce nonlinearities into the network (otherwise the network can only
model linear functions). Therefore, we utilize the most frequently used activation function
called ReLU (defined in Subsection 2.2.1). An Advantage of ReLUs compared to other
activation function is a more efficient and faster training of the network by decreasing the
risk of vanishing gradients. Note that we are not utilizing a ReLLU in the last layer of each
CNN in order to preserve the information encoded in the negative values. See [48] for more
details about ReLUs.
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Network Training: For the training of the Siamese neural network a training dataset
composed of aligned optical and SAR patches is utilized, where the ground truth (correct)
location for all training samples is in the center of the larger SAR patches. In order to
minimize the loss function from Equation 4.12, and hence train the Siamese neural network
to learn the matching between optical and SAR patches, we use stochastic gradient descent
with the ADAM optimizer [63]. Note that in the case of shared weights the weights of the
two CNNs are identical, and hence only one CNN is actually trained. For more details about
the characteristics of the utilized training set see Subsection 5.1.2, for details about the
selected set of hyperparameters required for the training process see Subsection 5.3.1 and for
an investigation of the effects of shared vs. partly-shared weights see Subsection 5.3.2.

Tie Point Generation (Network Testing): After training we keep the learned parameters
0 fixed and decompose the network into two parts: the feature extractors (CNNs) and the
similarity measure (dot product layer). As the feature extractor is convolutional, we can
apply both CNNs on images with arbitrary size. Thus during test time, we first feed an
optical patch as input to the corresponding CNN and compute the feature vector f. Then,
we feed a larger SAR patch, which covers the desired search space, either to the same CNN
(shared weights) or the second CNN (partly-shared weight) and compute the feature matrix
h. Afterwards, we use the dot product layer to compute the score map s and the calibrated
score map § from f and h in the same way as during training. Applying this strategy, we
can compute a matching score between optical patches (with arbitrary size) and SAR images
over an arbitrary search space. The desired tie points (predicted shifts) are finally computed
by selecting for every input pair the points with the highest value (highest similarity between
optical and SAR patch) within the corresponding search map. In order to remove outliers
we regard the values of raw score map s as the confidence of the network that the provide
prediction is correct. For this reason, we set a threshold on the confidence score and remove
all tie point from the final set with a confidence score less than the threshold. Note that
during the tie point generation process only unseen optical and SAR patches are utilized.
Details about the test dataset are provided in Subsection 5.1.2, about the chosen threshold
in Subsection 5.3.1 and an investigation about the influence of the outlier removal on the
accuracy and precision of the tie points in Subsection 5.3.2.
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4.3.3 Summary

The overall tie point generation framework introduced in this section can be summarized in

the following four steps:

1.

Select suitable matching areas through the framework described in Subsection 4.1.1
and generate a set of optical and SAR training pairs.

. Train the Siamese neural network in order to learn the matching between optical and

SAR by extracting relevant features and measuring their similarity.

Apply the trained Siamese neural network on a set of previously unseen optical and
SAR image pairs (these patches should be cropped from the optical and SAR images
to be registered) and generate the corresponding score maps.

Select locations with the highest similarity from the score map as tie points and remove
outliers through the help of the corresponding confidence scores.

The described optical and SAR image matching framework provides a novel and automatic

process for the generation of tie points while providing the following benefits:

The exclusion of ineligible matching areas increases the reliability of the tie points
computed in the subsequent step.

No handcrafted feature detection, extraction and matching step is required in the tie
point generation framework.

Training the network over a large dataset that contains a variety of different image
pairs enables applying our framework to a wide range of images acquired over different
cities or at different times of the year.

Due to the utilized convolutional layers our framework is applicable to different image
resolutions and images sizes. In particular, the size of the search space can simply be
adjusted according to the assumed offset between the optical and SAR images patches.

Once the network is trained, tie points can be computed between arbitrary image pairs
within seconds.

An evaluation and detailed discussion about the advantages and disadvantages of the

proposed approach is provided in Section 5.3. This includes an investigation about the

influence of Siamese and Pseudo-Siamese architectures, of outlier removal through the

networks confidence and the proposed tie point refinement step on the quality of the final

set of tie points. Additionally, the applicability of the obtained tie points for the absolute

geo-Localization accuracy enhancement of optical images is discussed in Subsection 5.3.3.
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4.4 Geo-localization Accuracy Enhancement of Optical Images

The inaccuracy of the absolute geo-localization of the optical satellite data in the geo-
referencing process arise mainly from inaccurate measurements of the satellite attitude and
thermally affected mounting angles between the optical sensor and the attitude measurement
unit. This insufficient pointing knowledge leads to local geometric distortions of orthorectified
images caused by the height variations of the Earth surface. To achieve higher geometric
accuracy of the optical data, ground control information is needed to adjust the parameters
of the physical sensor model. We are following the approach described in [95] to estimate the
unknown parameters of the sensor model from GCPs by iterative least squares adjustment. In
the following, we will introduce the idea of a physical sensor model (see Subsection 4.4.1) and
shortly described the process behind the geo-localization accuracy improvement of optical
images (see Subsection 4.4.2).

4.4.1 Physical Sensor Model for Direct Georeferencing

In order to set the geometric relation between images and their corresponding ground
coordinates, suitable sensor models are required. Physical sensor models, or sometimes
called rigorous sensor models, are the most accurate models with respect to an accurate
positioning and are built on information such as the type of utilized sensor, the satellite

position and the attitude angles [188]. In case of direct georeferencing, the sensor model

sensor
object

in an Earth-bound object coordinate system. The

is based on the collinearity equations and relates a point 7, in the sensor coordinate

Earth
object

optical images used in this thesis are acquired through the use of a pushbroom scanner

system to the corresponding point r,

system. As mentioned in Subsection 2.1.1, a pushbroom scanner consists of a linear array
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B reemy
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Figure 4.14: Tllustration of the acquisition principle of a pushbroom scanner system (image source:
[187]).
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Figure 4.15: Tllustration of the geometric relation of the utilized physical sensor model (image
source: [95]).

of n detectors that are arranged perpendicular to the flight direction of the satellite and

simultaneously receive information from the ground [40]. While flying over the ground, the

systems records an image line by line, where all pixels in one line are obtained simultaneously

from the different detectors (see illustrated in Figure 4.14). As a consequence, the observed

image point in the j-th scan line is directly related to the recording time ¢; = to + j - At,

where tg is the recording time of the first line and At the sampling time. The geometric
n

relation between an observed image point at location v; =4 — 5§ with ¢ =0,...,n—1 and its

corresponding ground point can therefore be expressed as

Earth Earth Earth bod
Tol%ietct (tj7 Ui) = Tse?lrstor (tj) + Spem (tj7 vi) ’ Rbgéty (tj) ’ Rs:ns)c])r (tj7 Ui) ’ T(S)%?Zgi (Ul) ) (415)

where spgy denotes a pixel scaling factor defined by the utilized DEM, Rgsé;h describes the
rotation around the three Euler angles (w, v, k) from the body to the Earth coordinate system
(derived from the satellite position and velocity or by orbital parameters) and, R;’é’n(i%r denotes
the boresight alignment angles or instrument mounting angles, which describe the rotation

around the three Euler angles € = (e1,e2,¢3)7 from the sensor to the body coordinate

sensor
object

of an image point at location v; to the Cartesian sensor coordinate frame with origin at the

system (defined by the attitude measurement unit). The term 7 denotes the mapping

sensor projection center and can be stated as ripiect (vi) = (tan Wy (v;), tan Wy (v;), nr. 1If
the two object sided angles ¥, and ¥, are measured for a series of focal plane pixels through
pre-launched laboratory calibrations. Here, the x-axis points along the flight direction and
the y-axis across track. An illustration of the geometric relation stated in Equation 4.15 and

the used terms is provided in Figure 4.15. For more details we refer to [95].
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4.4.2 Sensor Model Adjustment Through Tie Points

In order to achieve a high positioning accuracy during the geo-referencing process, each
parameter of the utilized physical sensor model has to be carefully determined. Commonly,
the satellite position and the interior orientation of the camera system can be determined
with a high-precision. The relative alignment between the body and the sensor coordinate
system on the other hand, causes in most cases pointing errors, mainly due to inaccurate
measurements of the satellite attitude and thermally affected mounting angles. As a
consequence, additional data in form of well measured GCPs is required in order adjusting
the corresponding parameters (the boresight angles) of the physical sensor model. By
reformulation Equation 4.15 the following system can be derived

J _ 11 (ajoe - xse) + ri2 (yoe - yse) + 713 (Zoe Zse) —tan \:[Im
21 (xoe - xse) + 190 (yoe - yse) + 123 (Zoe - Zse) (4 16)
J r21 (ajoe - xse) + 199 (yoe - yse) + 123 (Zoe Zse) )
y(e) = —tan ¥, ,
31 (xoe - xse) + 32 (yoe - yse) + 733 (Zoe - Zse)

where 4 represents an elements of the matrix Risuor (1) = REGw (€)1 REAN (1)1, riorth =
(Zoes Yoe, zoe)T, rfe?fstg} = (%se, Yses zse)T and r(s)%‘}:g = (%os, Yoss 1)T = (tan ¥, tan ¥,, 1)T.
The three unknown boresight angles € are estimated by minimizing the cost functions J,
and J, from Equation 4.16 through an iterative least squares adjustment. In order to remove
outliers from the given set of GCPs, and hence estimate the unknown angles € as precise as
possible, an iterative blunder detection is integrated into the least squares adjustment. Here,
outliers are defined as GCPs with a residual greater than a certain threshold (usually 1 to 2
pixels), where the residuals are the 2D deviation at the GCPs in image space. A detailed

description of the blunder detection step is provided [95].

After estimating the boresight angles and adjusting the sensor model parameters, the
improved model and a corresponding DEM are utilized for the orthorectification of given
optical images (level-1 products). Through this procedure new orthorectified optical images
with an improved absolute geo-localization accuracy can be achieved. Note that in contrast
to [95], where the GCPs are generated from optical images, we are using tie points generated
by the methods described in the Subsections 4.2 and 4.3. The results of the described sensor
model adjustment procedure applied on a set of optical test images and automatic generated
tie points are evaluated and discussed in Subsection 5.3.3 and 5.2.4.
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4.5 Summary

In this section we presented a novel and automatic optical and SAR satellite image registration
framework and the associated absolute geo-localization accuracy enhancement of optical
images. The three main components of the framework are:

1. Selection of suitable matching areas in order to eliminate geometric differences between
optical and SAR images through a semi-automatic process.

2. Generation of a reliable and accurate set of tie points through a deep learning-based
matching of optical and SAR image patches cropped from pre-selected areas.

3. Adjustment of the physical sensor model parameters through the generated tie points
in order to register optical and SAR images and therefore enhance the absolute geo-
localization accuracy of the corresponding optical images.

In contrast to traditional approaches our developed framework provides the following theo-
retical benefits:

e Through the pre-selection of suitable areas the existence of salient features can be
guaranteed and on the other hand areas containing elevated objects and therefore
exhibit different geometric properties in optical and SAR images can be eliminated.
As a consequence, the risk for our matching approaches to produce total mismatches is
reduced and the quality and reliability of the obtained tie points with regard to their
geo-localization is increased.

e If the cGAN-based matching approach is utilized for the tie point generation, radio-
metric differences between arbitrary optical and SAR image pairs can be reduced to a
minimum through the generation of artificial SAR-like patches. As a consequence, the
application of traditional matching approaches for the tie point generation becomes
feasible. In addition, the image generation process is independent of handcrafted
feature detection and extraction algorithms and not limited to particular features. This
circumstance enables its applicably to a wide range of image scenes.

e [f the Siamese neural network-based matching approach is utilized for the tie point
generation, no handcrafted feature detection, extraction and matching algorithms
are required for a single step and new tie points can be generated within seconds.
Furthermore, the end-to-end training over a large dataset and the particular design of
our network enable the application to a wide range of images acquired over different
scenes, at different times of the year, with different resolutions and image sizes.

In order to assess the proposed framework, we will perform an excessive evaluation of the tie
point generation methods and their abilities for a geo-localization accuracy improvement for
a set of optical test images in the Sections 5.2 and 5.3 of the following Chapter. Beforehand,
the specifics of the utilized optical and SAR images will be presented and the training,
validation and test dataset derived from our semi-automatic area selection process will be
described in Section 5.1.1. In a final step, the two tie point generation concepts of our
registration frameworks will be compared and their strength, weaknesses and potential for
future developments will be discussed in Section 5.4.



RESULTS AND DISCUSSION

In this chapter the proposed concept for the registration of optical and SAR images through
tie points, automatically generated over pre-selected image regions, is tested and evaluated on
several image pairs spread across FEurope. The main focus of our investigation lies on the
evaluation of the two novel tie point generation methods and their ability to generate reliable
and accurate tie points. Therefore, the experimental setup with the image characteristics,
pre-processing steps and the final datasets for the training, validation and testing of our deep
learning based approaches is introduced and an overview of the utilized statistical measures
and baseline methods is provided. Then, both tie point generation approaches are consecutively
tested on the same test set and compared with state-of the art approaches with regard to their
potential for an accurate and precise tie point generation and for an absolute geo-localization
accuracy enhancement of optical images. At last, a detailed comparison of the advantages,
disadvantages, strength and limitations of both methods is carried out.
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5.1 Experimental Setup

This section forms the basis for the evaluation of both tie point generation methods (outlined
in Chapter 4) and their abilities for the geo-localization accuracy enhancement of optical
images. Therefore, the image specifications and pre-processing steps of the utilized optical
and SAR image pairs are described in Subsection 5.1.1. Then, the final training, validation
and test sets obtained from the semi-automatic matching area selection procedure described
in Subsection 4.1.1 are presented in Subsection 5.1.2. Finally, a description of the statistical
measures and the baseline methods on which our evaluation are based on is provided in
Subsection 5.1.3 and 5.1.4, respectively.

5.1.1 Image Specifications and Pre-processing

To perform our experiments we generated training, validation and test datasets out of
46 orthorectified optical (PRISM!) and radar (TerraSAR-X! acquired in stripmap mode)
satellite image pairs acquired over 13 cities in Europe (see Figure 5.1 for an illustration
of the image distribution across Europe). The images cover greater urban zones including
suburban, industrial and rural areas with a total coverage of around 20.000 km?. The spatial
resolution of the optical images is 2.5 m and the pixel spacing of the of the SAR images is
1.25m. To have a consistent pixel spacing within the image pairs we downsampled the SAR
images to 2.5 m using bilinear interpolation. To enable the possibility to generate a larger

Figure 5.1: Overview of the training (blue), validation (green) and test (red) set image locations
(image source: [189]).

_?PRISM: high resolution panchromatic sensor mounted on the satellite ALOS of the Japanese Space Agency
"TerraSAR-X: high-resolution SAR satellite of the German Aerospace Center and EADS Astrium
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(a) SAR image samples (b) Despeckled SAR image samples

Figure 5.2: Visual comparison between SAR and despeckled SAR image samples by applying the
probabilistic patch-based (PPB) filter from [191].

training dataset and to train the networks with multi-resolution data, we further use bilinear
interpolation to downsample all optical and SAR images to a pixel spacing of 3.75 m.

All optical and SAR image pairs are aligned and hence, serve as our ground truth (assumed
true matching location). The alignment was carried out in the Urban Atlas project [190]
where all optical images were manually co-registered to the corresponding SAR images. In
order to achieve this, several hundred tie points were manually selected between every image
pair. Subsequently, the selected tie points were refined and used to improve the sensor model
related to the optical images. For this step, the same procedure as described in Section 4.4
was utilized. By using the improved sensor models to orthorectify the optical images a second
time, the global alignment error could be reduced from up to 23 m to around 3m in this
project. Note that the following evaluation of our results (see Sections 5.2 and 5.3) must
always be set in relation to this accuracy.

SAR Image Filtering: In order to investigate the influence of the SAR image despeckling
on the quality of the obtained results we applied the probabilistic patch-based (PPB) filter
proposed in [191] for the generation of a filtered SAR image dataset. This filter is developed
to suppress speckle in SAR images by adapting the non-local mean filter by Buades et al.
[192] to SAR images. The idea of the non-local mean filter is to estimate the filtered pixel
value as the weighted average over all pixels in the image. The weights are measuring the
similarity between the pixel values of a patch Ay centered around s and the pixel values of a
patch A; centered around ¢. The similarity between two patches is measured with respect
to the Euclidean distance. In [191] the noise distribution is modeled using the weighted
maximum likelihood estimator. Here, the weights are expressing the probability that two
patches centered around the pixels s and ¢t have the same noise distribution under a given
image. A comparison between SAR and despeckled SAR patches are shown Figure 5.2.
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5.1.2 Training, Validation and Test Datasets

As mentioned in Section 2.2, three independent datasets are needed in order to train the
networks (training set), find the best set of hyperparameters (validation set) and to evaluate
the performance of the networks (test set). The training, validation and test datasets are
generated by randomly splitting the 46 image pairs into 36 image pairs for training, 4 for
validating and 6 for testing of our methods. An overview of the different image location of
our three sets within Europe is provided in Figure 5.1. Through the image pre-processing
(described in Subsection 4.1.1), each of the image pairs is available in four different versions:
with a resolution of 2.5m, with a resolution of 3.75m, with a resolution of 2.5m and
despeckeled SAR images and, with a resolution of 3.75m and despeckeled SAR images. To
minimize the impact of the different acquisition modes of PRISM and TerraSAR-X, we focus
on flat surfaces where primarily the radiometry between the optical and SAR images is
different. Note that this is not a strong restriction of our approaches since these kind of
condition frequently appear in nearly every satellite image. The pre-selection of the images
is carried out through the semi-automatic pre-selection process described in Subsection 4.1.1.
Subsequently, the training, validation and test patches are cropped from the pre-selected
areas of the images of the corresponding sets. The cropped optical patches have a size of
201 x 201 pixels and the corresponding SAR patches a size of 221 x 221 pixels. Note that the
alignment error between the SAR and the optical image is expected to be not larger than

Figure 5.3: Samples of Optical and SAR patch pairs with a size of 201 x 201 pixels and a resolution
of 2.5m cropped from the pre-selected matching areas (in three columns).
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Datasets pixel spacing speckle filter # of patch pairs

o0 1 2.5m - 69,900
g 2 2.5m v 69,900
= 3 2.5m+3.75m - 137, 450
ie 4 2.5m+3.75m v 137,450
= 1 2.5m - 5,000

g 9 2.5m v 5,000

€ 1 2.5m - 14, 401
S 2 2.5m v 14, 401

Table 5.1: Details of the different training, validation (val.) and test datasets.

32m (the mean alignment error of the 6 test images is provided in Table 5.2). Therefore
a 21 x 21 pixel search space with a pixel spacing of 2.5m and a total number of search
locations of 441 is assumed to be large enough in order to simulate a real world scenarios.
Samples of resulting optical and SAR image pairs are shown in Figure 5.3 (here both with a
size of 201 x 201 pixels).

Overall, we generate four different training datasets and two different validation and test
sets, respectively. The two smaller training sets contain 69,900 patch pairs cropped from
the optical and SAR image pairs with a pixel spacing of 2.5 m, where either the SAR or the
filtered SAR images are used (single-resolution; with or without filtered SAR patches). The
two larger training sets contain 137,450 patches pairs cropped from the image pairs with a
pixel spacing of 2.5m and 3.75 m, where either the SAR or the filtered SAR images are used
(multi-resolution; with or without filtered SAR patches). Note that the patches with 3.75m
resolution are centered around the same location as the 2.5 m resolution patches but contain
bigger areas and only exists in the dataset if the patches do not exceed the image boundaries.
The larger training dataset is deployed to enlarge the number of training samples and to
investigate the influence of different image resolutions on the quality of the network trainings.
Since the matching should be as precise as possible, the validation and test sets contain only
patches with a resolution of 2.5m. The two validation sets contain each 5,000 patch pairs
(with or without filtered SAR patches) and the two test sets contain each 14,401 patch pairs
(with or without filtered SAR patches). Note that patches extracted from one image are
either used for the training, the validation or the test dataset. An overview of all dataset is
provided in Table 5.1.

Test images city size [pixel] # of patch pairs mean error [pixel]
1 Bristol 7,014 x 10,083 705 3.57
2 Kalisz 3,877x7,653 343 12.93
3 Leeds 8,003x9,318 1065 7.22
4 Leeds 5,623 x 7,790 356 8.14
) London 8,569 x 14, 095 6054 9.17
6 Stara Zagora 7,554 x 13,865 5878 7.95

Table 5.2: Details of the six test image pairs with a pixel spacing of 2.5 m.
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The training and validation sets are utilized for the computation of the network parameters
and for finding the optimal set of hyperparameters, respectively. The test set is not involved
in these stages and is only utilized for the later performance analysis of the learned networks.
Here, we will evaluate the performance over the whole test set but also on an image level. For
this purpose, the details of the six images that form the test set are provided in Table 5.2.

5.1.3 Statistical Measures

In order to assess the performance of our methods and to be able to compare different
setups and methods with each other, the quality of the generated sets of tie point has to
be measured. Towards this goal, we evaluate the quality of our tie points regarding two
aspects: the accuracy and precision. The accuracy of a set of tie points indicates how far
away each predicted point is from its true location (correctness). The precision on the other
hand, indicates how much the error of the predicted locations differs between tie points
(consistency). In order to measure the accuracy and precision of a set of tie points in the
subsequent sections, we apply the following measures.

Accuracy Measure: To measure how close the predicted tie point locations are to the true
locations, a metric has to be defined. A metric, sometimes called a distance function, is a
function that defines a distance between any two points of a given set [193]. Independent of
the type of metric, the distances between two points lies in the range of [0, oo[ and is equal to
zero if and only if the two points are equivalent. Our applied accuracy measure p is based on
the Lo (Euclidean) distance d and simply measures the accuracy by computing the average
over the distances between the tie points and the corresponding ground truth locations

L~ i) _ LS|l o
=N ;dm "N ; g~ (5.1)

5

Here, d® denotes the Euclidean distance between the true location pgt) and the predicted

location p9 of the i-th tie point and N the total number of tie points.

Precision Measure: The corresponding precision of the tie points is measured through the
standard deviation o of the distances d®. The standard deviation is defined as the square

root of the variance and, in our case, given as

N 1

N
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where d9 denotes the Euclidean distance between the true location pgt) and the predicted

location p® of the i-th tie point, 1 the mean distance between the predicted and the true
locations and N the total number of tie points.
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5.1.4 Baseline Description

To set the results of our developed tie point generation methods in relation to traditional
and state-of-the-art methods we utilize five baseline methods. To enable a fair comparison,
all baselines are applied on the same test data as our methods, the accuracy and precision of
the corresponding set of tie points are computed as described in Subsection 5.1.3 and we
implemented specific outlier removal strategies adapted to each baseline. Three of the applied
baselines belong to the class of area-based approaches and two to the class of feature-based
approaches and are described in the following:

Area-based Baseline Methods: From the large set of area-based matching approaches we
choose NCC, MI and CAMRI [21] in order to compute tie points between the patch pairs
from our test datasets. The computational details of a NCC- and MI-based matching and tie
point generation procedure are provided in Subsection 3.1.1 and will not further be discussed.
Since we are only interested in reliable and accurate tie points, we use the corresponding
NCC- and MlI-values of each tie point as a quality measure to detect and remove outliers
from the set of tie points. More precisely, we remove all tie points with a NCC-value of
less than 0.4 and a MI-value of less than 1.12. CAMRI on the other hand is a MI-based
registration framework tailored to the problem of optical and SAR matching. CAMRI is a
fully automatic framework with an integrated speckle filter and outlier removal procedure.
Therefore, we apply CAMRI not on the test dataset containing despeckled images. For more
details about CAMRI we refer to [17, 21].

Feature-based Baselines Methods: From the set of feature-based approaches we utilize a
SIFT- [85] and BRISK- [86] based matching and tie point generation process. Computational
details about both methods were described in Subsection 3.1.2 and will not further be
discussed. To increase the quality and reliability of the detected tie points through the SIFT-
and BRISK-based matching, we remove outliers through RANSAC [184] with an underlying
affine model and with a distance threshold of 5 pixels. Note that we applied the SIFT and
BRISK based matching in combination with RANSAC on the patches of the six test image
scenes separately.

Note that besides CAMRI, none of the baseline method is particular developed for the
problem of optical and SAR image matching. Nevertheless, we apply these methods due to
the following reasons: 1) To investigate the performance of these methods as they often form
the basis of single-sensor and traditional optical and SAR matching frameworks but are said
to poorly perform without any adaptions to optical and SAR imagery. 2) To investigate our
claim that the cGAN-based image-to-image translation scheme described in Subsection 4.2.2
improved the performance of these methods and enables the use of traditional matching
approaches for an accurate and reliable tie point generation process between optical and SAR
images. 3) To set the results of methods, specifically developed to the problem of optical
and SAR image matching such as CAMRI and our two developed frameworks, in relation to
such that are not particularly adapted to this problem.
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5.2 Optical and SAR Image Registration Through Artificial Image
Matching

The first approach for the registration of optical and SAR images is based on tie points
generated through the usage of cGANs. In order to find the best model for this task,
several cGAN configurations are trained and evaluated in the following. Therefore, an
overview of the utilized configurations and the associated training parameters are provided
in Subsection 5.2.1. An analysis and discussion about the quality and characteristics of the
resulting artificial optical and SAR image patches in relation to the different cGAN setups
are provided in Subsection 5.2.2. Subsequently, the ability of the different cGANs for an
accurate and reliable tie point generation through a NCC-, MI-, SIFT- and BRISK-based
image matching between the artificial image patches and the reference images is provided in
Subsection 5.2.3. Additionally, the quality of the resulting tie points is compared to the state-
of-the-art method CAMRI [21]. In Subsection 5.2.4, the potential of the generated tie points
for the registration of optical and SAR images, and hence for the absolute geo-localization
accuracy enhancement of optical images is discussed. Finally, the results of the proposed
framework are summarized and its limitations and strengths discussed in Subsection 5.2.5.

5.2.1 Training Setups and Parameter Settings

In order to find the best cGAN for an accurate and reliable tie point generation between
optical and SAR images, the three different cGAN setups (¢cGAN, cLSGAN, cWGAN) from
Subsection 4.2.2 are trained with several configurations on the four training sets described in
Subsection 5.1.2. Note that all training datasets contain larger SAR patches (for the later
matching) but for the artificial image generation and hence for the training of the cGAN,
equally large optical and SAR patches are required. Therefore, the SAR patches are cropped
around the center to have the same size as the optical patches. Since the optical and SAR
images used for the dataset generation are aligned, the cropped SAR patches show now the
same image regions as the optical patches. The final training dataset consists therefore of
optical and SAR image patches with a size of 201 x 201 pixels.

We investigated several configurations for the generation of artificial image patches. These
include the generation of (despeckled) SAR-like and optical-like image patches at varying
scales (pixel spacing: 2.5m and 3.75m), the training of the networks through different losses
(cGAN, cLSGAN and ¢cWGAN), the training with different batch sizes (1,4 and 40) and
the training with despeckled SAR, SAR images and optical images as reference. Here, the
batch size refers to the number of training instances used in one iteration of the training
procedure. An overview of the different training configurations can be seen in Table 5.3.

Setup dataset batch size filter direction

cGAN  25m /25m+3.75m 1/4/40 yes /no SAR—Opt / Opt—SAR
cLSGAN 25m /25m+3.75m  1/4/40 yes /no SAR—Opt / Opt—SAR
cWGAN 25m /25m+3.75m  1/4/40 yes /no SAR—Opt / Opt—SAR

Table 5.3: Overview of the different cGAN training configurations.
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As mentioned is Subsection 4.2.2, each network is trained using stochastic gradient descent
with the ADAM optimizer [63] and an initial learning rate of 0.01 for the cGAN and cLSGAN
setups and with the RMSProp optimizer [62] and an initial learning rate of 0.0002 for the
cWGAN setup. For all setups the generator G and discriminator D networks are trained
at the same time by alternating the training of D and G (one gradient descent step of D
is followed by one gradient descent step of G in the cGAN and cLSGAN setups and five
gradient descent steps of D are followed by one gradient descent step of G in the cWGAN
setup). For each setup the corresponding cGAN is trained over 200 epochs (one epoch refers
to one whole cycle through the entire training set) on a single NVIDIA GeForce GTX Titan
X GPU. The training time varies from several days to several weeks depending on the batch
size, the size of the training dataset and the chosen ¢cGAN setup.

5.2.2 Artificial Image Generation

In this subsection, we provide a quantitative evaluation of the quality of the artificial image
generation process. A qualitative analysis of the artificial patches with regard to their
usability for the generation of accurate and reliable tie points through traditional matching
approaches is provided in Subsection 5.2.3. All artificially generated images patches shown in
this and the following subsections are obtained from the set of test image patches, and hence
have never been shown to the different generator networks during the training process.

SAR image generation: We first investigate the generation of artificial SAR and despeckled
SAR image patches from optical images. Figure 5.4 shows examples of (despeckled) SAR
patches with a pixel spacing of 2.5m generated by two different generators. The first
generator, utilized for the SAR image generation, was trained with the cWGAN loss, a
batch size of one and on the smaller training dataset. The second generator, utilized for
the despeckled SAR image generation, was trained with the cGAN loss, a batch size of 40
and on the smaller dataset, where the filtered SAR images were used as reference. These
two configurations led, from a visual point of view, to the most realistic-looking SAR and
despeckled SAR image patches. The illustrated examples show that the geometric structures
of streets extracted from optical images are preserved in the generated patches, while the
radiometric properties are adapted to SAR or despeckled SAR images. Through the training
process the generators learned that in contrast to optical images, streets normally appear
with a lower intensity in SAR images. Furthermore, the generators try to represent the
characteristics of speckle or the resulting pattern from the speckle filter. The development of
the learning process of both generators trained with the two different configurations over the
training time are exemplified in Figure 5.5. The longer we trained the networks, the better
become the generators in generating realistic looking (despeckled) SAR images from optical
image patches.

Despite the good visual appearance of the imitated texture of the speckle and the speckle
filter, it is important to note that it is randomly generated and independent from the real
image objects or their properties. Furthermore, the (despeckled) SAR image generation is
not free of errors and in some situations the generators produces unsatisfying results (see
Figure 5.6). A possible reason for the difficulties of the networks in generation image patches
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optical image artificial image SAR image optical image artificial image SAR image

SAR generation

despeckled SAR generation

Figure 5.4: Side by side comparison between optical, artificial (despeckled) SAR and real (despeckled)
SAR image patches with a pixel spacing of 2.5m in two columns. SAR generation: The generator
used to generate the artificial SAR images was trained with the cWGAN loss, a batch size of one
and on the smaller training dataset. Despeckled SAR generation: The generator used to generate
the artificial despeckled SAR images was trained with the cGAN loss, a batch size of 40 and on the
smaller dataset with filtered SAR images as reference.

for the runway example (first row and column) is the small amount of runway patches in
the training dataset. This problem could be solved with a larger runway training dataset or
a separated training of street and runway patches. In the other three cases it can be seen
that some features are present in the optical images but are missing in the generated images.
Since optical images exhibit a higher level of detail than the SAR images the network learns
during the training to ignore some of the features/objects for the generation of (despeckled)
SAR images. However, for our later application it is essential that features that are valuable
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optical image epoch 1 epoch 10 epoch 50 epoch 200 SAR image

SAR generation

despeckled SAR generation

Figure 5.5: Development of the generator over training. From left to right: optical input patches,
the artificially generated patches at epoch 1, 10, 50, 200 and the (despeckled) SAR target patches.
The first two rows show the development of a generator trained for the generation of SAR patches by
using the cWGAN loss, a batch size of 1 and the smaller training dataset. The third and fourth rows
show the development of a generator trained for the generation of despeckled SAR patches by using
the cLSGAN loss, a batch size of 4 and the larger training dataset with the filtered SAR images.

for the image matching, e.g. street and street crossings, are still present in the generated
images. A possible solution for this problem could be to adjust the training procedure by
adding the actual problem, the matching between the generated images and the reference
image, into to training objective. Thereby the generator would learn, which features are
crucial for the matching process, and hence which features should be kept in the artificial

image generation process.

Optical image generation: We further investigated the reversed process and therefore
trained networks in order to generate artificial optical images out of SAR images. Examples
of such artificially produced optical images are shown in Figure 5.7. The corresponding
generator was trained using the cGAN loss, a patch size of 4 and over the large training
dataset. This configuration led (from a visual point of view) to the best and most realistic
looking artificial optical images. Similar to the (despeckled) SAR image generation, the
generator learned to keep the geometric structures of objects such as streets from the SAR
images, while adapting the radiometric properties to optical images. Figure 5.8 shows two
samples that illustrate the learning process of the generator over the training time.
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optical image artificial image SAR image optical image artificial image SAR image

Figure 5.6: Comparison of failure cases of artificially generated SAR images with optical and real
(despeckled) SAR image patches. The first row shows low quality artificial SAR images, and the
second row low quality artificial despeckled SAR images.

Like for the SAR image generation, the learned generator model is not perfect and provides
for some input images optical images of low quality (see Figure 5.9). Due to the lower level
of detail in SAR images and the speckle it is more difficult to extract and recreate features
from SAR than from optical images. Most of the details are missing in the SAR images
and a realistic recreation is therefore almost impossible for the networks. As a consequence,
the network tries to come as close as possible to real optical images by adding additional
structure to the artificially generated images. These created structures might look realistic
but is not derived from the input images.

SAR image artificial image optical image SAR image artificial image optical image

Figure 5.7: Comparison between SAR, artificial optical and real optical image patches. The generator
used to generate the artificial optical images was trained with the cGAN loss, a batch size of 4 and
on the larger training dataset.
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SAR image epoch 1 epoch 10 epoch 50 epoch 200 optical image

Figure 5.8: Development of the generator over training. From left to right: the SAR input patches,
the artificially generated patches at epoch 1, 10, 50, 200 and the optical target patch. The generator
used to generate the artificial optical images was trained with the cGAN loss, a batch size of 4 and
on the larger training dataset.

SAR image artificial image optical image SAR image artificial image optical image

Figure 5.9: Comparison of failure cases of artificially generated optical images with real optical and
SAR image patches.

In general, the concept of cGANs (introduced in Subsection 4.2) enables the translation from
SAR to optical images and vice versa. In both directions, realistic looking optical and SAR
images respectively can be generated. In practice, the cGAN and cWGAN loss led to more
realistic looking images compared to the cLSGAN loss (see Figure 5.10 for a comparison).
However, for our pursued application it is not important that the obtained images look
real. The important aspect is that the artificially generated patches improve the quality
of the matching between optical and SAR images. Therefore, a detailed investigation and
discussion about the effects of the different configuration, e.g. the three losses and the kind
of input and reference data (SAR, despeckled or optical), on the quality of the generated tie
points follows in the next subsection.
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5.2.3 Tie Point Generation

In this subsection, we investigate the influence of the artificially generated image patches on
the matching quality of a NCC-, MI-, SIFT- and BRISK-based matching between optical
and SAR images. More precisely, the matching quality will be assessed with respect to an
accurate and reliable tie point generation between the artificial and real image patches and
compared to the matching results between the real optical and SAR patches. Towards this
goal, several aspects of the image generation process will be examined such as the influence of
a speckle filter, of the matching directions (optical to SAR or vice versa) and of the training
loss on the quality of the resulting tie points. In the following, the matching accuracy is
measured, next to method described in Subsection 5.1.3, as the percentage of tie points
having a Lo distance with less than 3 pixels to the ground truth location.

Influence of the Speckle Filter: The application of a speckle filter is an important pre-
processing step for many matching methods applied on SAR images. We exploited therefore
two application cases of the speckle filter and provide the corresponding results in Table 5.4.
First, we investigated the influence of the filter on the NCC-, MI-, SIFT- and BRISK-based
matching between optical and despeckled SAR images (without the use of cGANs). Here, the
use of the speckle filter led only in the case of a BRISK-based matching to an improvement of
the matching quality. Second, we investigated the generation of SAR-like despeckled patches
from optical patches via cGANs and their influence on the NCC-, SIFT- and BRISK-based
matching. Utilizing the artificially generated despeckled SAR patches for an NCC- and
MI-based matching with the real SAR image patches led to a deterioration of the accuracy
and precision of the resulting tie points, whereas the application of a SIFT- and BRISK-based
matching lead to an improvement of the results. Overall, the second application case of the
speckle filter led to better results and provides an first indication of the usefulness of the
artificially generated patches for the problem of optical and SAR image matching. On the
other hand, Table 5.5 reveals that the best overall results are achieved without the usage of a
speckle filter (see the last block of four). More precisely, the best overall results are achieved
by using artificial SAR-like patches generated from a generator who was trained through the
use of the cLSGAN loss. For more details about the best training configuration see the later
paragraph "Influence of the Loss Function'. A possible reason for the lower performance
of despeckled artificial image patches could be a modification of the shape or boundaries
of the objects through the speckle filter. Since despeckled SAR images are utilized during
the training as reference, the generator learns to simulate these effects while creating the
artificial images. Even if the changes on the extracted objects are small, they can interfere
an accurate and precise matching.

Influence of the Matching Direction: We further considered to reverse the whole process
and utilize artificially generated optical-like image patches for the matching with the real
optical image patches. Despite the reasonable visual appearance (see Figure 5.7) the artificial
optical images could only slightly improve the matching quality of the four applied matching
approaches (see Table 5.4). We attribute this to the fact that optical images reveal a higher
level of detail as SAR images and that the extraction and recreation of features from SAR
images is more difficult than from optical images. It is therefore more difficult to preserve all
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matching accuracy matching precision

Methods < 3 pixels p [pixel] o |pixel]
NCC 35.55% 5.50 4.76
MI 64.47% 3.09 4.69
SIFT[85] 31.10% 5.61 1.64
BRISKI[86] 39.58% 3.61 1.70
NCCg 19.75% 6.91 4.79
MIg; 29.40% 4.89 3.60
SIFTg 26.37% 6.09 1.84
BRISKg 52.21% 2.98 1.37
NCCerscaN fil 37.59% 5.93 5.11
MIcrsaaN, 1 33.12% 5.44 4.34
SIF T r,scAN, 61 62.80% 2.62 1.23
BRISK 1sGAN, 1 68.93% 2.38 1.12
NCCcqan,opt 20.05% 8.05 4.55
MIcGAN, opt 39.35% 6.90 3.96
SIFT .G AN, opt 46.39% 4.44 1.45
BRISK GAN,opt 60.22% 2.62 1.08
NCCe.LscAN 75.48% 2.94 5.79
Ml LscaN 65.60% 3.19 4.67
SIFT LscAN 68.85% 2.40 1.05
BRISK 1 ,sgan 75.21% 2.22 1.10
CAMRI[23] 57.06% 2.80 2.86

Table 5.4: Influence of the artificially generated templates on the matching accuracy and precision of
a NCC-, MI-, SIFT-[85] and BRISK-[86] based image matching, and comparison with baseline method
(CAMRI[23]). The matching accuracy is measured as the percentage of tie points having Lo distance
to the ground truth location smaller than 3 pixels, and as the average over the Lo distances between
the predicted tie points and the ground truth locations u. The matching precision is represented by
the standard deviation o.

image features that are important for a reliable and accurate matching. Nevertheless, this
direction provides several possibilities for future developments, which will be discussed in
detail in Chapter 6.

Influence of the Loss Function: To identify the best training configuration for our ap-
plication we investigated the influence of the three different loss functions introduced in
Subsection 4.2.2 and their dependency on the batch size and the dataset size for the case
of SAR image generation. An overview of the tested configuration is provided in Table 5.3.
We achieved the best matching results, with respect to the utilized cGAN, cLSGAN and
cWGAN training losses, with the artificial patches whose corresponding generators where
trained over the larger dataset and with a batch size of 4, 4 and 1, respectively. An overview
of the best results with respect to the three training losses is shown in Table 5.5. In contrast
to Subsection 5.2.2, where the best results were obtained through a training based on the
cGAN and cWGAN loss, here the best results were achieved through a training based on the
cLSGAN loss. This circumstance can be explained by regarding the corresponding artificially
generated image patches (shown in Figure 5.10) and by taking the different requirements of
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matching accuracy matching precision

Methods < 3 pixels p [pixel] o [pixel]
NCCcgan 63.70% 3.99 5.56
MLgax 65.30% 3.14 4.72
SIFT.caN 65.87% 2.52 1.15
BRISK.oan  74.82% 2.24 1.08
NCC.sGAN 75.48% 2.94 5.79
MI.rscaN 65.60% 3.19 4.67
SIFT.r.scAN 68.85% 2.40 1.05
BRISKusaan  75.21% 2.22 1.10
NCCewaaN 49.47% 3.96 4.61
MIowGAN 93.31% 6.54 3.72
SIFT waaN 56.51% 2.89 1.31
BRISK . wcan 61.71% 2.61 1.18

Table 5.5: Influence of loss function on the matching accuracy and precision of a NCC-, MI-,
SIFT-[85] and BRISK-[86] based image matching between artificially generated SAR-like and SAR
image patches. The matching accuracy is measured as the percentage of tie points having Lo distance
to the ground truth location smaller than 3 pixels, and as the average over the Lo distances between
the predicted tie points and the ground truth locations u. The matching precision is represented by
the standard deviation o.

both tasks into account (realistic looking image generation vs. accurate image matching).
The cGAN and cWGAN loss enables the creation of speckle and resulting patterns of the
speckle filter, whereas the cLSGAN loss causes a blurry appearance of objects such as fields
without any speckle patterns but with sharper boarders between objects. This effect of the
cLSGAN could be a possible explanation for the better matching performance since the
applied matching methods (NCC, MI, SIFT and BRISK) normally suffer from speckle in the
image patches. Moreover, since the "real" speckle of the SAR images and the "real" pattern
from the speckle filter cannot be derived from the optical patches, it cannot be learned
by the generator. As a consequence, the generator network will produce patches, which
contain random speckle or simulated patterns from the speckle filter that look real enough to
"fool" the discriminator network but negatively influence the matching quality. Overall, the
occurrence of artificially generated patterns in the generated patches makes the matching
more difficult, and hence less accurate.

Influence of the Matching Method: We realized the matching between the test image pairs
through four traditional matching approaches. Without the use of the artificially generated
image patches none of the methods could provide accurate and precise tie points between the
optical and SAR image patches (see Table 5.4). Through the use of generated SAR-like image
patches the matching performance of NCC, SIFT and BRSIK can be improved significantly.
Only in the case of a MI-based matching the results could not be improve and the application
of the artificial patches led to a slight deterioration. Overall, the feature-based approaches
SIFT and BRISK performed better and led next to an accurate also to a very precise set of
tie points, whereas the points obtained through an intensity-based matching through NCC
and MI show a lack of precision.
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Figure 5.10: Comparison between the most realistic looking artificial images patches and the best
artificial patches for the task of image matching. The first two rows show a comparison between
the most realistic looking artificial SAR patches (training: cWGAN loss, a batch size of 1 and on
the smaller training dataset) and the artificial SAR patches leading to the best matching results
(training: cLSGAN loss, a batch size of 4 and on the larger training dataset). The last two rows show
a comparison between the most realistic looking artificial despeckled SAR patches (training: cGAN
loss, a batch size of 40 and on the smaller training dataset) and the artificially generated despeckled
SAR patches leading to the best matching results (training: cLSGAN loss, a batch size of 4 and on
the larger training dataset). All depict patches have a pixel spacing of 2.5 m.

Comparison to Baseline Method: For a better assessment of the quality of the resulting
tie points a comparison with the state-of-the-art approaches CAMRI [23] is carried out. By
performing a SIFT- and BRISK-based matching between the artificially generated SAR and
real SAR image patches, we can achieve better results than CAMRI [23] (applied on the optical
and SAR image patches) with respect to the matching accuracy and precision of the obtained
tie points (see Table 5.4). This fact underlies the high potential provided by the cGAN-based
image matching as an accurate and reliable tie point generation framework. Whether the
obtained tie points are suitable for an accurate optical and SAR image registration, and
hence for an absolute geo-localization improvement of optical images is further investigated
in Subsection 5.2.4. Additionally, a comparison between the cGAN and the Siamese neural
network-based tie point generation approaches is performed in Subsection 5.3.2.
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optical image SAR image score map optical image SAR image score map
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Figure 5.11: Two comparisons (top/bottom) of the score maps between the NCC-based matching
of the optical image and the SAR image (left), and between the artificially generated images and the
despeckled SAR image (right).
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Figure 5.12: Two comparisons (top/bottom) of the score maps between the MI-based matching of
the optical image and the SAR image (left), and between the artificially generated images and the
despeckled SAR image (right).

P

Qualitative Results of NCC and MI: At last, Figure 5.11 and Figure 5.12 show a qualitative
comparison of the NCC- and MI-based matching between optical and SAR patches and,
between artificially generated SAR and SAR patches, respectively. Note that CAMRI [23]
does not provide a score map as output. Here, the optical and artificial SAR image patches
have a size of 201 x 201 pixels and the SAR patches a size of 221 x 221 pixels. The search
space is Ay, = Ay = 20 pixels in each direction around the center position. All artificial
patches are generated with the same generator network, which have proven to provide the
best patches for an accurate matching (for details see the paragraph "Influence of the Loss
Function"). For all examples, the correct matching position is in the center of the SAR
patches (red framed area). The brighter the color of the score map, the higher is the NCC-
or MI-value at the corresponding location. The examples emphasize that the generated
SAR-like image patches can improve the matching between optical and SAR images through
a NCC- and MI-based matching.
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5.2.4 Geo-localization Accuracy Enhancement Though Tie Points

In order to archive precisely registered optical and SAR images it is important to have a set
of reliable and accurate tie points. The set of tie points does not have to be too large but
the points have to exhibit a high accuracy and precision and, to a certain degree, have to be
equally spread over the whole image scene. So far, we only evaluated the first aspect and
investigated the accuracy and precision of the resulting tie points in Subsection 5.2.3. We
showed that the usage of artificial image patches significantly improved the matching accuracy
and precision of a NCC-, SIFT- and BRISK-based matching (see Table 5.4). Additionally,
we showed that in the case of a SIFT- and BRISK-based image matching the accuracy and
precision of the obtained tie points are better compared to the state-of-the-art approach
CAMRI [23]. Nevertheless, several important aspects have not yet been examined: How
many tie points does the proposed method provide per optical and SAR test image pair? Do
we obtain enough tie points per image scene? How accurate and precise are these tie points?
Are the tie points spread over the whole image or accumulated at one location?

In Table 5.6 an overview of the obtained numbers of tie points per test image scene and
the corresponding accuracies and precisions (with and without the use of artificial patches)
for each of the four matching approaches is given. Note that here and in the rest of this
subsection the utilized artificial patches are generated with the same generator network. This
generator was trained utilizing the cLSGAN loss, a batch size of 4, on the larger training
set and has proven to provide the most suitable artificial patches for the task of optical and
SAR image matching (see Subsection 5.2.3). The achieved results indicate once again that a
NCC- and MI-based matching is not capable to generate a usable set of tie points whether
the artificial images are used or not. A SIFT- and BRISK-based matching in combination
with the artificial images on the other hand, provides a large set of accurate and especially
precise tie points for every image scene. In all cases, the usage of the artificial image patches
increased the number of computed tie point while increasing their accuracy and precision.
Additionally, the performance of the SIFT- and BRISK-based matching is nearly equal
between the different image scenes even though they are spread across Europe. This is
particularly remarkable for test image six, which is located far away from any training images
(see images Figure 5.1). In the following only the BRISK- and SIFT-based matching is
further considered due to the better performance.

In order to ensure that the obtained tie points are not all located at the same location
within the image scenes we utilize a further post-processing step. More precisely, we set
an empirical distance threshold to 50 m to ensure that the final set of tie points contain
only points with at least a spatial Euclidean distance of 50 m to each other. The resulting
numbers of tie points and the corresponding accuracies and precisions per test images scene
before and after applying the distance threshold are provided in Table 5.7. In most of the
cases the distance threshold led to a minor deterioration of the accuracy and precision of
the tie points and to a reduction in the number of tie points. Comparing the results of the
SIFT- and BRISK-based matching underlies the better performance of BRISK in all aspects
examined. Overall, a sufficient number of tie points was achieved for all image, although
their accuracy and precision still leave room for improvement. An example of the tie point
distribution within an images scene is exemplified for the first test image in Figure 5.13.
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Test # of patch # tie points accuracy u [pixel]  precision o [pixel]
image pairs without with cGAN  without with cGAN without with cGAN
1 705 65 64 3.86 1.67 5.62 4.63
2 343 0 2 - 2.53 - 3.47
8 3 1065 60 22 8.44 3.42 3.42 6.98
7o 4 356 0 18 - 2.32 - 6.83
5) 6054 140 33 5.64 3.62 4.64 4.99
6 5977 81 16 4.45 6.71 5.21 4.50
1 705 24 97 3.10 2.21 4.18 4.67
2 343 6 1 1.72 2.24 3.78 3.51
-3 1065 58 35 6.21 4.96 3.71 3.96
= 356 18 230 2.29 3.05 5.79 5.28
5 6054 85 54 3.41 3.29 4.14 4.20
6 5977 97 13 2.90 5.71 5.32 3.89
1 705 84 235 3.27 2.04 1.85 0.97
2 343 7 120 25.53 2.52 0.30 1.23
E 3 1065 10 70 19.28 2.61 1.83 0.99
n 4 356 9 27 21.19 2.48 0.43 1.21
5 6054 55 363 3.11 2.49 1.03 1.08
6 5977 110 286 4.86 2.49 1.95 1.07
1 705 460 697 3.49 2.14 1.43 1.04
\ 2 343 53 393 3.02 2.12 1.35 1.12
wn 3 1065 592 520 3.99 2.04 1.78 1.06
g 4 356 101 164 3.25 2.11 1.72 1.03
A5 6054 1409 2834 3.83 2.26 1.88 1.13
6 5977 687 1052 3.00 2.30 1.48 1.07

Table 5.6: Influence of the artificially generated patches on the numbers of tie points and their
accuracies and precisions obtained through a NCC-, MI-; SIFT- and BRISK-based matching on the
six test image pairs. Here, the term "without" indicates the tie point generation through the matching
between real optical and SAR image patches, while "with cGAN" through the matching between
artificial SAR-like and real SAR patches from the set of test image pairs.

Here, the distribution of the tie points across the whole image is clearly visible. In the
following the final set of tie point will be used to register the corresponding optical and SAR
image, and hence to increase the absolute geo-localization accuracy of the optical images.

In a last step, the final sets of tie points (provided by the BRSIK-based matching) are utilized
to improve the parameters of the corresponding sensor models and, hence, to improve the
geo-localization accuracy of the optical images as described in Section 4.4. The unknown
parameters of each sensor model are estimated from the corresponding set tie points by
iterative least squares adjustment. During this process, a blunder detection is used to further
remove outliers from the set of tie points (details provided in Section 4.4). For our six test
images 5-10% percent of the tie points were removed during this step. At the end, we used
the improved sensor model to generate new orthorectified optical image, which show an
improved absolute geo-localization accuracy.
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# of patch # tie points accuracy p [pixel] precision o [pixel]

Image pairs before after before after before after

. 1 705 235 29 2.04 2.22 0.97 1.10
5 2 343 120 20 2.52 2.87 1.23 1.11
2 3 1065 70 18 2.61 2.76 0.99 0.93
= 4 356 27 8 2.48 2.87 1.21 0.94
% 5 6054 363 68 2.49 2.63 1.08 1.04
6 5977 286 65 2.49 2.44 1.07 1.02

z 1 705 697 42 2.14 2.20 1.04 1.04
é 2 343 393 27 2.12 2.36 1.12 1.04
o 3 1065 520 40 2.04 2.47 1.06 1.03
5y 356 164 28 211 2.28 1.03 1.06
E 5 6054 2834 101 2.26 2.35 1.13 1.04
M 6 5977 1052 94 2.30 2.30 1.07 1.10

Table 5.7: Influence of the empirical distance threshold on the numbers of tie points and their
accuracies and precisions obtained through a SIFT- and BRISK-based matching between the artificial
SAR-like and SAR image patches with respect to the six optical and SAR test image pairs.

A quantitative analysis of the results of the image registration process is provided in
Figure 5.14 and Figure 5.15. Here, the checkerboard overlays of two different optical and
SAR image pairs from test image one are shown. The overlays in Figure 5.14(a) and
Figure 5.15(a) show the uncorrected optical and SAR image, where the residual alignment
error between the images is clearly visible in northing direction along the runway and roads.
The overlays in Figure 5.14(b) and Figure 5.15(b) on the other hand show the corrected
optical with the same SAR images. In contrast to Figure 5.14(a) and Figure 5.15(a) the
images here seem to be aligned.

5.2.5 Summary

We proposed a new concept for the problem of multi-modal image matching, based on
conditional generative adversarial networks (cGANs). Different cGANs setups were trained
for the task of generating SAR-like image patches from optical images and for the reversed
task. We showed the ability of cGAN for the task of realistic looking (despeckled) optical
and SAR image generation. Beyond that, we showed the feasibility to improve the matching
accuracy and precision of a NCC-,; SIFT- and BRISK-based matching between optical and
SAR image patches through the use of artificially generated patches. By performing a
BRISK-based matching between SAR, and artificial SAR-like patches we achieved tie points
with an average Euclidean distance to the ground truth locations of 2.22 pixels and a precision
(standard deviation) of 1.10 pixels over six test image scenes. Furthermore, the quality of
the tie points is stable across the different scene even though they are spread across Europe.
Finally, the obtained tie points were successfully used to register the corresponding optical
and SAR image pairs, improving the absolute geo-localization accuracy of the optical images.
Thereby, the overall alignment error could be reduced from up to 23 m to around 5m. In the
following paragraphs, the main drawbacks and advantages of the approach are summarized

and a brief outlook for potential future developments is provided.
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Figure 5.13: Illustration of the final set of tie points (marked orange) of the first test image
superimposed on the corresponding optical image. The optical and SAR image pair of test scene one
cover an area close to the city of Bristol, England.

Limitations: A general problem of our training and test data is the existing global alignment
error of around 3m. This error restricts the assessment of our method. In order to determine
the actual quality of our proposed method, a set of independent reference points with an
absolute geometric accuracy in the range of a few centimeter, e.g. measured with a GPS,
would be needed. A problem of (conditional) GANs is the difficult validation of the training
success. In contrast to other machine learning architectures, where a loss function or different
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(b) After the geo-localization enhancement of the optical image.

Figure 5.14: Checkerboard overlays of two optical and one SAR image with a pixel spacing of 2.5 m.
The image tiles have a size of 100m. Figure 5.14(a) and Figure 5.14(b) show the optical image before
after the sensor model adjustment (geo-localization enhancement) through the generated tie points,
respectively.

measures can be used to evaluate the quality of the training process over a validation set,
GANSs require mainly a visual assessment of the generated images or (in our case) the
evaluation of the matching results. This is time consuming, since every setup has to be
trained till the end to find the best one. Additionally, time consuming task is the training of
the ¢cGANSs, which can takes up to several weeks. Besides the high computational cost of the
network training and data quality evaluation, the experiments revealed that it is important
to generate patches which retain the geometric structures of the optical patches instead of
generating patches which visually look like real SAR images. Therefore, not every loss and
c¢GAN setup is applicable for the problem of optical and SAR image matching.
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(a) Before the geo-localization enhancement of the optical image.

(b) After the geo-localization enhancement of the optical image.

Figure 5.15: Checkerboard overlays of two optical and one SAR image with a pixel spacing of 2.5 m.
The image tiles have a size of 100m. Figure 5.15(a) and Figure 5.15(b) show the optical image before
and after the sensor model adjustment (geo-localization enhancement) through the generated tie
points, respectively.

Strengths: An advantage of the proposed method is that it enables the application of well
know matching techniques (NCC, BRISK and SIFT) for the matching of optical and SAR
images. These methods provided high quality matchings for images acquired from the same
sensor (e.g. NCC for SAR to SAR matching [194], and SIFT and BRISK for matching optical
images [195]) respectively, but normally fail in the case of optical and SAR images. The
evaluation of the results and the comparison with state-of-the-art matching approaches such
as CAMRI [23] revealed the potential of the proposed method, and the possibility to apply
it for the problem of absolute geo-localization accuracy improvement of optical images. A
further benefit is the fast applicability of the method to new image scenes once the generator
is trained. In such cases, artificial SAR-like patches can be generated within minutes from
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optical patches. Furthermore, the variety of scenes in our training dataset, containing images
acquired at different times of the year and over different locations in Europe, ensures the
applicability of the method to a wide range of images acquired over different landscapes.

Overall, the proposed method opens up new possibilities for future developments towards
the goal of matching optical and SAR images. The provided results validate the potential
of the proposed approach in comparison to a state-of-the-art method but also reveal the
need for further enhancements of the image generation process. More specific, the necessity
for a generator network, which reliably and precisely retains the geometric structures of
the optical images, should be the main focus of further investigations. The combination of
a generator network with a deep learning-based matching approach represents thereby a
promising future extension to generate more suitable artificial images patches, and hence to
further improve the quality of the image matching.
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5.3 Optical and SAR Image Registration Through Siamese Neural Net-
works

The second approach for the registration of optical and SAR images is based on tie points
generated through Siamese neural networks. In order to find the best model for this task,
several network configurations are trained and evaluated in the following. Therefore, an
overview of the utilized configurations and the associated training parameters are provided
in Subsection 5.3.1. An analysis and discussion about the networks qualities for an accurate
and reliable tie point generation between optical and SAR image patches and a comparison
of these results with traditional approaches, the state-of-the-art method CAMRI [21] and our
cGAN-based matching framework is presented in Subsection 5.3.2. In Subsection 5.3.3, the
potential of the generated tie points for the registration of optical and SAR images, and hence
for the absolute geo-localization accuracy enhancement of optical images is discussed. Finally,
the results of the proposed framework are summarized and its limitations and strengths
discussed in Subsection 5.3.4.

5.3.1 Training Setups and Parameter Settings

Several training configurations are tested and evaluated in Subsection 5.3.2 in order to find
the best Siamese neural network for an accurate and reliable tie point generation between
optical and SAR image patches. The training of all models was performed over the two larger
training datasets, which contain patches with a pixel spacing of 2.5m and 3.75m and SAR
and despeckled SAR patches, respectively (for details see Table 5.1 and Subsection 5.1.2).
Note, that first experiments showed that the smaller training datasets do not provide enough
data to realize a successful training. Besides the different training data, we investigated
the influence of two network architectures: A Siamese and a pseudo-Siamese architecture.
For the Siamese architecture the weights between the two branches are shared and for the
pseudo-Siamese architecture the weights of the first three layers are different, whereas the
remaining layers share their weights. For more architectural details see Subsection 4.3.2.

As further mentioned in Subsection 4.3.2, each network is trained using stochastic gradient
descent with the ADAM optimizer [63] and an initial learning rate of 0.01. The learning rate
is reduced by a factor of 5 at iteration 60 and 80. The training with each configuration is
performed 100 rounds, where each round takes 200 iterations over a single batch. We trained
all networks in parallel on 2 Titan X GPUs using a batch size of 100. Note that given a
batch size of 100 we actually perform 15 epochs per training (one epoch refers to one whole
cycle through the entire training set). The weights of the network are initialized with the
scheme described in [54], which particularly considers the rectifier nonlinearities. The whole
training process takes around 30 hours.

5.3.2 Tie Point Generation

In this subsection, the quality of the tie points generated from various Siamese neural networks
is evaluated. In detail, the effects of the different training configurations (no filter vs. speckle
filter and Siamese vs. pseudo-Siamese architecture) on the accuracies and precisions of
the corresponding sets of tie points is examined. Additionally, a comparison between the
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best performing Siamese neural network and the state-of-the-art approach CAMRI [23] and
our proposed cGAN-based tie point generation approach (see Subsection 5.2.3) is carried
out. Note that all results shown in this and the following subsections that are related to a
performance analysis of the networks during training time are obtained from the validation
sets, whereas the results related to the computed set of tie points are obtained from the test
sets. Neither the validation nor the test set image patches have been shown to the different
Siamese neural networks during the training process. In the following, the matching accuracy
is measured (next to method described in Subsection 5.1.3) as the percentage of tie points
having a Lo distance with less than 3 pixels to the ground truth location.

Influence of Speckle Filter: In order to find the optimal training configuration we first
investigated the influence of a speckle filter on the learning process of the networks and on
the quality of the resulting tie points. Therefore, Figure 5.16 shows the accuracies of the
tie points computed between the optical and SAR and, the optical and despeckled SAR
patches of the validation set during training time. In Figure 5.16(a) the matching accuracy is
measured as the percentage of tie points, where the Euclidean distance to the ground truth
location is less than 3 pixels, whereas in Figure 5.16(b) the matching accuracy is measured
as the average over the Euclidean distances between the computed tie points and the ground
truth locations. Both images reveal that regardless of the network architectures, using a
speckle filtering helps the network to better learn the similarities between optical and SAR
patches and thus, to improve the accuracy of the generated tie points.

Comparison of Network Architectures: We further investigated the influence of partially-
shared (pseudo-Siamese architecture) and shared weights (Siamese architecture) between
the two network branches during training. Note that in the case of the pseudo-Siamese
architectures, the weights of the first three layers are different whereas the remaining
layers share their weights and in the case of the Siamese architectures, all weights are
shared. Figure 5.16 shows a comparison of the matching accuracy between the results of
the Siamese and pseudo-Siamese architecture over the validation set. It can be seen that a
Siamese architectures learns slightly faster and achieve higher matching accuracies in the
end. As a consequence, the following evaluations are carried out only for the best training
configuration: despeckeled SAR images as reference in combination with a Siamese neural
network architecture.

Outlier Removal: So far, we used the normalized score (after applying the soft-max function)
and we selected the locations with the highest value (highest probability) within each search
area as the predicted tie point in the SAR image patches. Another possibility, which was
presented in Subsection 4.3.2, is to use the raw score (before soft-max) as an indicator of
the confidence of the predictions. In theory, this additional quality measure should enable
the detection of outliers, and hence should lead to a higher overall matching performances.
In Figure 5.17 we investigated the influence of the raw score as a threshold. As shown in
the single images, a higher threshold on the raw score lead to a better accuracy in terms
of correct predictions as well as a smaller Euclidean distance between the predicted tie
points and the ground truth locations. Note that the rough shape at the right side of the
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Figure 5.16: Influence of a speckle filter and of different network architectures on the matching
accuracy during training time. All results are generated from the validation set. Figure 5.16(a) shows
the percentage of tie points, where the Ly distance to the ground truth location is less than or equal

to 3 pixels. Figure 5.16(b) shows the average Ly distance between the tie points and the ground
truth location.

curves in Figure 5.17(b) and Figure 5.17(c) is the result of an outlier. Here, an outlier has
a strong influence since these numbers are computed from less than 20 test patches (tie
points). By using only the first 1000 matches with the highest raw score, the average over
the Lo distances between the tie points and the ground truth location can be reduced from
3.91 pixels (using all matches) to 1.91 pixels, and the standard deviation (matching precision)
from 3.37 to 1.14 pixels (see Table 5.4). Note that a higher threshold results in a smaller
number of valid tie points, which are more reliable (in terms of the Ly distance). For a later
application a threshold does not have to be specified. Depending on the number of tie points
x needed for an image pair, the best = tie points can be chosen, based on the raw score.
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Figure 5.17: Influence of the raw score as a threshold. Figures 5.17(a-d) show respectively the
relations between: (a) predicted score and number of patches, (b) number of patches and matching
accuracy, (c) predicted score and matching accuracy, and (d) predicted score and average distance
(L2) between the predicted tie points and the ground truth locations. The matching accuracy in
Figure 5.17(b) is measured as the percentage of tie points, where the Ly distance to the ground truth
location is less than 3 pixels and in Figure 5.17(c) less than 2, 3 and 4 pixels.

Comparison to Baseline Methods: For a better evaluation of our results, we compare our
method with several baseline methods: a similarity-based matching through NCC [196] and
MI [77], a feature-based matching through SIFT and BRISK, the MI-based state-of-the-art
method CAMRI [23] and our own ¢cGAN matching based approach introduced in Section 4.2.
Since the evaluation presented in Subsections 5.2.3 has shown that the use of a speckle filter
deteriorated the results of all utilized baseline methods, except CAMRI [23], we apply these
methods on the optical and SAR image patches. In case of CAMRI, a slightly different speckle
filter is implemented internally and therefore it is also applied on the optical and SAR image
patches. Table 5.8 shows the comparison of our method with the baseline methods. Here,
the expression "DeepMatch" denotes our Siamese-based tie point generation method, where
we used a threshold to detect outliers and to generate more precise and reliable tie points
(detailed explanation in the previous paragraph "Outlier Removal"). "DeepMatch" achieves
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matching accuracy matching precision

Methods < 3 pixels  p [pixel] o [pixel]
NCC 35.55% 5.50 4.76
MI 64.47% 3.09 4.69
SIFT [85] 31.10% 5.61 1.64
BRISK [86] 39.58% 3.61 1.70
CAMRI [23]  57.06% 2.80 2.86
BRISK.saan  75.21% 9.9 1.10
DeepMatch 82.80% 1.91 1.14

Table 5.8: Comparison of matching accuracy and precision of our method with NCC-, MI- SIFT-,
BRISK-based matchings, the state-of-the-art approach CAMRI [23] and our ¢cGAN-based matching
framework over the test set. The matching accuracy is measured as the percentage of tie points,
having a L, distance to the ground truth location smaller than a specific number of pixels, and as
the average over the Lo distances between the predicted tie points and the ground truth locations.
The matching precision is represented by the standard deviation o.

higher matching accuracy and precision than all utilized baseline methods. Furthermore, the
comparison of the matching precisions reveals that our tie points with a standard deviation
o of 1.14 pixels are, next to the BRISK-based matching in combination with the cLSGAN,
the most reliable ones. The running time of our method during test time is 3.3 minutes for
all 14,000 test patches on a single GPU. The baseline methods are running to a large extent
on a single CPU, which makes a fair comparison difficult. Nevertheless, CAMRI [23] requires
around 3 days for the computation of the tie points between the test set image patches. In
Subsection 5.3.3 we will further assess the quality of the computed tie points by investigating
important aspects for an accurate optical and SAR image registration, and hence for an
absolute geo-localization improvement of optical images.

Qualitative Results: The last examination of this subsection is shown in Figure 5.18, where a
side by side comparison of the score maps of the proposed approach with two similarity-based
matching methods NCC and MI for several sample image patches is illustrated. Therefore,
we perform our search over a search space with size 51 x 51 pixels, where the used patches
have a resolution of 2.5 m. The images in the first column are optical image patches and the
images in the last column the despeckled SAR image patches. To generate the images in
column 2 to 4 we perform the matching between the corresponding image pairs using NCC,
MI and our method. Yellow indicates a higher score and blue indicates a lower score. The
ground truth location is in the center of each patch. Our approach performs consistently
better than the corresponding baseline methods. More precisely, the score maps generated
with our approach shows one high peak at the correct position, except for the last example.
Here, two peaks are visible along a line which corresponds to a street in the SAR patch. In
contrast, both baseline methods show a relatively large area with a constantly high score at

wrong positions for most examples.
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optical image DeepMatch SAR image

Figure 5.18: Side by side comparison between optical patches (201 x 201 pixels), the resulting
score maps of NCC, MI and our method (51 x 51 pixels), and the despeckled SAR reference patches
(251 x 251 pixels).

5.3.3 Geo-localization Accuracy Enhancement Though Tie Points

As mentioned in Subsection 5.2.4, a precise registration of optical and SAR images requires
a reliable and accurate set of tie points. Additionally, the tie point have to be spread
across the whole image scene to handle local distortions. In the previous subsection, we
showed the potential of the Siamese-based optical and SAR matching framework for an
accurate and precise tie point generation. Furthermore, the evaluations revealed a better
performance of this methods in comparison to the state-of-the-art approach CAMRI [23] and
our cGAN-based matching approach. Nevertheless, the numbers presented in Subsection 5.2.3
were obtained by using the first 1000 tie points with the highest confidence score. In the
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# of patch # tie points accuracy p [pixel] precision o [pixel]

Image pairs before after before after before after
P 1 705 112 50 2.45 1.99 1.82 1.00
S 2 343 71 25 2.60 2.14 1.87 1.39
§ 3 1065 129 50 2.14 1.90 1.31 0.97
2 4 356 34 25 2.08 1.80 1.45 0.78
o 5 6054 350 50 2.47 1.91 2.14 1.05
R 6 5977 339 50 3.61 2.28 2.72 1.95

Table 5.9: Influence of the confidence score on the numbers of tie points and their accuracies and
precisions for the sic test images. The tie points are generated through our Siamese-based matching
approach DeepMatch and the application of the empirical distance threshold.

worst case, these 1000 points could all be obtained from one of the six test image pairs
and located nearly at the same location. In this section, we therefore investigate whether
the proposed methods is able to generate accurate and reliable tie points for each of the
test image scenes, and hence is applicable for the registration of optical and SAR image
patches. For this reason, we investigated the following aspects: How many tie points does
the proposed method provide per optical and SAR test image pair? Do we obtain enough tie
points per image scene? How accurate and precise are tie points? Are the tie points spread
over the whole image or accumulated at one location?

As is Subsection 5.2.4 we set an empirical distance threshold to 50 m to ensure that the
obtained tie points are spread across the image scenes and not accumulated around one
location. Subsequently, we use the confidence score of the network to find the best set of tie
points for each image scene. More precisely, we utilized the confidence score to find the best
50 tie points for the test images 1, 3,5 and 6 and, due to the lower number of test patches and
resulting tie point after the distance threshold, the best 25 tie points for the test images 2 and
4. Table 5.9 contains the number of obtained tie points and their matching accuracies and
precisions for each test image scene after applying the empirical distance threshold (before
applying the confidence score) and after applying the confidence score. In all of the cases the
use of the confidence score led to a significant improvement of the accuracy and precision of
the tie point. Additionally, the confidence score allows the selection of a suitable number of
tie points that can be adapted to the respective application. For a better insight of the tie
point distribution within the image scene, Figure 5.19 depicts the final set of tie points of
test image five. Here, the points are superimposed on the corresponding optical image. The
accuracy and precision of the computed tie points varies around half a pixel between the six
image scenes. It is noticeable that for test image six the most inaccurate and unprecise tie
point were obtained. A possible cause is that this test image was acquired around the city of
Stara Zagora, which is located far away from the training data. Additionally, for test image
two, which contains the smallest amount of extracted patches, less accurate and precise tie
points were computed. Both problems could be avoided in the future by applying a better
and automatic matching area selection, such as described in subsection, in order to expand
the training and test datasets. In the following, the obtained points are utilized to register
the corresponding optical and SAR image and an absolute geo-localization accuracy of the
optical images will be investigated.
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Figure 5.19: Illustration of the final set of tie points (marked in orange) of the fifth test image
overlaid on the corresponding optical image. The optical and SAR image pair of the test scene five
covers an area close to the city of London, England.

In order the enhance the absolute geo-localization of the optical test image, the final sets
of tie points are utilized to improve the parameters of the corresponding sensor models.
The unknown parameters of each sensor model are estimated from the corresponding set
tie points by iterative least squares adjustment. During this process, a blunder detection
removed around 5-10% tie point from the final sets. For details about this process we refer to
Section 4.4. At the end, we used the improved sensor model to compute new orthorectified
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(a) Before the geo-localization enhancement of the optical image.

(b) After the geo-localization enhancement of the optical image.

Figure 5.20: Checkerboard overlays of two optical and one SAR image with a pixel spacing of 2.5 m.
The image tiles have a size of 100m. Figure 5.20(a) and Figure 5.20(b) show the optical image before
and after the sensor model adjustment (geo-localization enhancement) through the generated tie
points, respectively.

optical image, which exhibit an improved absolute geo-localization accuracy in contrast to
the optical image orthorectified with the original sensor model.

A quantitative analysis of the results of the image registration process five is provided
in Figure 5.20 and Figure 5.21. Here, the checkerboard overlays of two different optical
and SAR image pairs from test image five are shown. The overlays in Figure 5.20(a) and
Figure 5.21(a) show the uncorrected optical and SAR images, where the residual alignment
error between the images is clearly visible in easting direction along the roads. The overlays
in Figure 5.20(b) Figure 5.21(b) show the corrected optical images and the identical SAR
images that seems, in contrast to Figure 5.20(a) and Figure 5.21(a), to be aligned.
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(b) After the geo-localization enhancement of the optical image.

Figure 5.21: Checkerboard overlays of two optical and one SAR image with a pixel spacing of 2.5 m.
The image tiles have a size of 100m. Figure 5.21(a) and Figure 5.21(b) show the optical image before
and after the sensor model adjustment (geo-localization enhancement) through the generated tie
points, respectively.

5.3.4 Summary

Our second optical and SAR image registration framework on based in the automatic
generation of tie points through a Siamese neural network. In detail, a Siamese neural
network has been trained to learn the similarity between optical and SAR images patches,
and hence to spatially shift patches. The network is composed of a feature extraction part
(Siamese neural network) and a similarity measure part (dot product layer). The network
was tested on 14,000 pairs of patches cropped from optical and SAR satellite image pairs
acquired over 6 urban areas spread across Europe. Our results proved an effective generation
of accurate and reliable tie points between optical and SAR images patches, outperforming
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state-of-the-art matching approaches, such as CAMRI [23] and our cGAN-based matching
framework (see Subsection 5.2.3). In particular, tie points can be achieved with an average
Lo distance from known locations of 1.91 pixels and a precision (standard deviation) of 1.14
pixels. Furthermore, by utilizing the resulting improved sensor model for the geo-referencing
and orthorectification processes, we achieve an enhancement of the geo-localization accuracy
of the optical images. Regarding the observed accuracies along the tie points, our method is
able to reduce the overall alignment error from 23 m to under 5 m.

Limitations: Our training, validation and test dataset has a global alignment error of 3 m.
In addition to the resulting assessment problems of the quality of our method (as described
in the limitations of the cGAN approach in Subsection 5.2.5), the alignment error causes here
another problem. As the training process of the Siamese neural network is directly based on
the tie point generation, we could penalize the network for predictions that are actually more
precise then the ground truth. This could hamper the learning process and limit the quality
of the generated tie points. A drawback of the current network architecture is the restriction
to input patches of size 201 x 201 pixels for the left branch of the network. If we would
use the full resolution of the SAR images and upsample the optical images to 1.25m, our
training and test dataset would contain a large amount of image patches containing just one
straight line (street segment). These patches are ambiguous for our two dimensional search,
and hence not suitable for the training process. As a consequence, we need larger image
patches to reduce the amount of ambiguities. Therefore, we downsampled the optical and
SAR images. Due to memory limits of our available GPUs, it was not possible to increase
the input patch size and simultaneously keep a proper batch size. Possible solutions could
include the investigation of a new network architectures, enabling the use of larger input
patches, or a better selection process of the patches, e.g. only patches containing street
crossings. The processing chain for the generation of our dataset and the relative small
amount of training data represent the main current weaknesses. The selection of the image
patches for the dataset was mainly done manually and is limited to one optical and SAR
satellite sensor (PRISM and TerraSAR-X). Through the usage of OpenStreetMap and/or a
road segmentation network, the generation of the dataset could be done automatically and
our datasets could be promptly extended with new image patches. A larger dataset would
help to deal with the problem of overfitting during training, and further improve the network
performance. Additionally, the success of our approach depends on the existence of salient
features in the image scene. To generate reliable tie points, these features have to exhibit
the same geometric properties in the optical and SAR image, e.g. street-crossings. Therefore,
the proposed method is not trained to work on images without such features, e.g. images
covering only woodlands, mountainous areas or deserts.

Strengths: The results prove the potential of our method for the task of geo-localization
improvement of optical images through SAR reference data. By interpreting the raw network
output as the confidence for predicted tie points (predicted shifts) between optical and
SAR patches, we are able to generate tie points with high matching accuracy and precision.
Furthermore, the high quality of the tie points does not increase the computation time. After
training, we can compute new tie points between arbitrary optical and SAR image pairs
within seconds. In contrast, a MI-based approach like CAMRI [23] needs up to several days
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to compute the tie points between the same image patches, yielding less accurate results. In
contrast to other deep learning-based matching approaches, our network is able to match
multi-modal images with different radiometric properties, is extendable to other optical or
radar sensors with little effort, and is applicable to multi-resolution images. In contrast to
other feature-based matching approaches, our method is based on reliable (in terms of equal
geometric properties in the optical and SAR image patches) features, e.g. streets and street
crossings, which frequently appear in many satellite images. Furthermore, the variety in our
training image pairs makes our method applicable to a wide range of images acquired over
different landscapes or at different times of the year.

Overall, the proposed method has proven its qualities for the task of optical and SAR image
registration and represents a promising basis for further developments. However, for a
better assessment of the Siamese tie point generation approach, but also of the cGAN-based
approach, we provide an extensive comparison of both methods in the following subsection.
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5.4 Comparison of the Image Registration Frameworks

In this thesis, we presented two novel deep learning-based approaches for the registration of
optical and SAR images through automatic generated tie points and performed an extensive
evaluation. Thereby, both methods have shown their potential for an accurate and reliable
tie point generation, and hence for an accurate and precise registration of optical SAR
image pairs. However, each approach has specific advantages and disadvantage that have to
be taken into account for further developments. For a better assessment of the individual
methods, we will compare them on the basis of various aspects.

Training Time and Handling: Both methods utilize deep learning techniques, and hence
require a sufficient amount of training data. Due to the specific concept of cGAN, the involved
networks are less vulnerable to the problem of overfitting in comparison with Siamese neural
networks. As a consequence, the cGAN matching framework requires less training data,
which is an asset for a fast and efficient extension to new optical and SAR image pairs, e.g.
acquired from different sensors and with another pixel spacing. On the other hand, the
training of cGANs is very time consuming and the monitoring of the training process difficult.
So far, our cGAN losses are not based on the actually problem of image matching and only
penalize patches that visually look less like real SAR or optical images. Whether the final
generator is able to provide useful patches for the task of image matching or not does not
become clear before performing and evaluating the SIFT- or BRSIK-based patch matching.
This circumstance has an effect on the training time, as we do not know when the best time
to finish the training has come. For the Siamese neural network we can monitor the quality
of the generated tie points over a validation set and stop the training when there is no sign
of improvement after several training iteration.

Test Time and Handling: With respect to the test time (the duration of tie point com-
putation after the training) the performance of the Siamese-based method is much higher
than of the cGAN-based one. In detail, the Siamese neural network can be used directly to
generate tie points for a series of image patch pairs after the training, whereby the entire
process takes only a few seconds. In contrast, the trained generator network is only able
to generate artificial images from given input patches. The actually tie point generation
has to be performed subsequently and, depending on the method, requires up to several
hours. Therefore, the handling of the Siamese-based approach is easier since it provides an
end-to-end solution for the problem of tie point generation between image patches. Addition-
ally, the Siamese-based matching approach provides an included quality measure through
the raw network output. This raw network output can be treated as an confidence score,
which enables the removal of doubtful tie points, while providing the possibility to keep a
desired amount of tie points. For the cGAN methods on the other hand, additional methods
such as RANSAC have to be utilized to remove outliers from the resulting set of tie points.
Here, the number of final tie points can only be controlled indirectly through different input
parameters.

Quality of the Results: The final results of both methods are summarized in Table 5.10.
For all six test areas, our Siamese neural network based method DeepMatch provides more
accurate and precise set of tie points even though this method is not able to perform the
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# of patch # tie points accuracy precision error reduction

Image pairs u [pixel] o [pixel] [%]
z 1 705 42 2.20 1.04 40.06
0 2 343 27 2.36 1.04 83.45
3 3 1065 40 2.47 1.03 71.75
% 4 356 28 2.28 1.06 74.08
g 5 6054 101 2.35 1.04 75.35
aa] 6 5977 94 2.30 1.10 71.07
= 1 705 50 1.99 1.00 44.26
I 2 343 25 2.14 1.39 83.45
g 3 1065 50 1.90 0.97 73.68
2 4 356 25 1.80 0.78 77.52
@ ) 6054 50 1.91 1.05 79.17
A 6 5977 50 2.28 1.95 71.32

Table 5.10: Comparison between the cGAN- and Siamese-based matching frameworks with regard
to the quality and quantity of the obtained tie points for each of the six test image scenes.

matching on a sub-pixel accuracy level. For test image number two and four, both methods
provide less tie points, which is probably caused through the smaller set of test images patches.
In the case of DeepMatch, the smaller set of existing test image patches also affects the quality
of the final set of tie points. Overall, the performance of the cGAN-based framework is more
constant between the different test image scenes, whereas the Siamese-based framework is
able to provide tie point with an accuracy of less than two pixel for three out of six image
pairs. On the other hand, the tie point of both methods were successfully utilized for the
absolute geo-localization improvement of the optical images, where the initial alignment
error of the test images (see Table 5.2) could be reduced by up to 83% (see Table 5.10).

Potential for Future Developments: Both methods enable to achieve the goal of an accurate
and precise tie point generation and hence an improvement of the absolute geo-localization
accuracy of optical images. Nevertheless, both methods have the potential for a further
increase in performance through the use of additional training data and developments or
structural changes in the training process. In the case of the Siamese-based methods, a
training on more data acquired from different sensors and with different pixel spacing would
be of great interest. In the case of the cGAN-based method, the introduction of the actual
problem of image matching into the training process provides great potential. So far, the
training of the cGANSs is geared to the problem of generating images, which look realistic
enough to "fool" the discriminator. The results reveal that patches, which look more like real
SAR images not necessarily lead to better matching results. Therefore, it is more important
to preserve features such as edges or corners, which are beneficial for a matching technique, in
the artificial patches. This could be realized through the combination of both approaches by
including the generator network into the Siamese architecture. By replacing the discriminator
with the a Siamese matching network the training of the generator could be tailored towards
the problem of generating artificial patches, which lead to better matching results than using
the original optical patches.
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This work was motivated by a common problem of optical satellite imagery, namely their
lower absolute geo-localization accuracy compared to SAR images. Utilizing imprecisely
geo-localized images directly or in combination with additional data can cause reduced
information retrieval especially in joint data evaluation. The problem can be tackled by
adjusting the optical sensor model parameters through the use of tie points computed between
optical images and images with a highly better absolute geo-localization accuracy such as
TerraSAR-X images. Therefore, a framework for the generation of accurate and reliable tie
points between high-resolution optical and SAR satellite imagery was developed, evaluated
and discussed in this thesis.

Previous research studies investigated several strategies in order to handle the problem of
optical and SAR image registration. The utilized matching concepts of these approaches can
mainly be divided into intensity-based approaches, which rely on pixel intensity values in
order to measure the similarity between images, and feature-based approaches, which rely
on the detection, extraction and matching of salient image features. Recent studies further
investigated the combination of both matching types in order to combine their strengths and
to overcome their individual weaknesses, and thereby achieving promising results. However,
all of these traditional methods are not able to learn the detection and extraction of features
and thus rely on carefully tailored processing steps in order to handle the different imaging
properties of optical and SAR imagery. As a consequence, most methods are developed ad
hoc for the matching of a certain image feature, and are hence limited to the registration of
specific image scenes.

In contrast to the traditional methods we base our work on deep learning techniques, which
provide new possibilities for this research field. Our main contribution is the development of a
framework for the absolute geo-localization accuracy enhancement of optical satellite images,
which is based on the usage of two novel and general optical and SAR image matching
methods. These two methods built on existing knowledge about the utilized images (in
order to provide an optimal initial situation) and on neural networks (in order to realize an
automatic image matching). The presented framework is thereby divided into three parts:
the selection of suitable matching areas, the generation of reliable and accurate tie points,
and a sensor model adjustment of the optical sensors.

The first step of the framework selects suitable matching areas. The main outcomes of this
step are the following:

e Based on existing knowledge about the geometric properties of optical and SAR imagery,
a semi-automatic concept has been created and applied in order to select suitable
matching areas such as street and street crossings. The selection is based on the usage
of a manual refined CORINE land cover layer. Through the pre-selection geometric
differences between the images are strongly reduced and the existence of reliable and
salient features in the areas to be matched is enhanced. As a consequence, the reliability
of the later generated tie points with regard to their geo-localization increases. The
achieved dataset (later split into a training, validation and test set) includes around
160, 000 patches organized in pairs, cropped from 46 optical and SAR images spread
across Europe. A drawback of the approach is the manual refinement step, which is
time consuming, and hence hampers the extension to new image pairs.
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e To overcome the drawback of a manual refinement and to simplify the future usage
and further developments, we developed a fully automatic area selection approach,
extracting areas along existing road networks. The road network is thereby identified
with the help of available OSM data and a novel deep learning-based concept developed
especially for the task of street detection in SAR images. This enables a faster adaption
to new image pairs, and hence further improves the quality and abilities of the matching
framework. On the other hand, the true quality of automatic selected areas has to be
evaluated in the future.

The second step of the framework includes a tie point generation process realized through
two deep learning-based matching approaches. The main outcomes of this step can be
summarized in the following points:

e Two deep learning-based architectures have been developed that are capable of generat-
ing a set of reliable and accurate tie points from a set of pre-selected optical and SAR
image patches. Because of the variety in our training image pairs (in landscape and
acquisition time) our methods are applicable to a wide range of images acquired over
different locations or at different times of the year. The evaluation of both approaches
on an independent set of test image pairs revealed their capacity of generating reliable
sets of tie points with a stable quality across different image scenes, and hence their
potential to set the basis for a general image registration framework. Both methods
outperformed state-of-the-art approaches.

e The cGAN-based matching frameworks helped to overcome radiometric differences
between optical and SAR images by translating the former to the later. Through the
use of the artificially generated images patches, the application of traditional SIFT-
and BRISK-based image matching become feasible. More precisely, the matching
accuracy of SIFT could be increased around 57% to an average accuracy of 2.4 pixels
(average Euclidean distance to the ground truth locations) and with a precision of 1.05
pixels (standard deviation). In the case of a BRISK-based matching, the accuracy
could be increased around 38% to an average accuracy of 2.22 pixels and with a
precision of 1.10 pixels. An open problem of this approach is still the time consuming
cGAN training, along with its difficult performance analysis with regard to its tie
point generation ability. Furthermore, this approach still relies on the success of the
handcrafted matching approaches SIFT and BRISK. A benefit is the fast applicability
of the proposed method to new image scenes once the image generator network is
trained.

e The developed Siamese neural network-based tie point generation approach, on the
other hand, does not rely on a single handcrafted processing step. In contrast to other
deep learning-based matching approaches, our network is able to match multi-modal
images with different radiometric properties. Through the implementation of a target-
oriented training procedure, the network learns to measure the similarity between
optical and SAR images, and therefore to automatically generate tie points. After
the training, new tie points between arbitrary optical and SAR image pairs can be
computed within seconds. Furthermore, the network provides an integrated confidence
score in order to assess the predicted tie points. This enables a quick and efficient
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removal of outliers. Overall, a matching accuracy of 1.91 pixels with a precision of 1.14
pixels was achieved. A drawback of this approach is the large amount of required data
in order to successfully train the network. As a consequence, the extension to new data
from different sensors requires a more efficient and faster dataset generation concept.

In order to complete the image registration framework and to enable the geo-localization
accuracy improvement of optical imagery we utilize, in a third and final step, the generated
tie points and well-proven methods to adjust the corresponding sensor model parameters
of the optical images. For both tie point generation approaches only 5-10% of the tie
points were removed during this process, highlighting the uniform quality of the generated
points between the different test images. Note that the distribution of the final set of tie
points within the images depends thereby highly on the nature of the image scene (rural or
semi-urban area), or more precisely, on the distribution of the suitable features within the
image and the quality of the image pre-selection process. Through our image registration
process, the overall alignment error of the test images could be reduced from about 23 m
to 5m. A quantitative analysis of the newly orthorectified optical images clearly showed
the improvement in absolute geo-localization accuracy of the optical images from our test
set, and hence the potential of our image registration framework. Overall, the usage of
deep learning techniques for the problem of matching optical and SAR images enabled an
automatic registration, and thus the absolute geo-localization accuracy enhancement of
optical imagery acquired over various cities across Europe. In contrast to other approaches,
our method is based on reliable (in terms of equal geometric properties of the optical and
SAR image patches) features, e.g. streets and street crossings, which frequently appear in
many satellite images. Additionally, our neural networks are extendable to images from other
optical and SAR sensors and with different spatial resolutions and pixel spacing, respectively.
Nevertheless, more tests have to be performed in the future in order to assess and verify
the applicability to a variety of different optical and SAR sensors. As this step requires
a time-consuming and costly manual registration of optical and SAR image pairs for the
creation of a new training dataset, it went beyond the scope of this work.

Future Prospects: The developed framework tackles the problem of optical and SAR
image matching for the first time with the help of deep learning techniques. For a further
improvement of the quality of the image registration results, the following is proposed:

e As the results of the proposed framework highly depend on the quality of the training
dataset, the realization of the proposed automatic matching area selection process
should be pursued in the future. This step requires the combination of the extracted
road information from the SAR images, the extracted streets crossings from OSM data
and information about the desired land classes from the CORINE layer. The benefit of
such an extension is that both tie point generation methods could be quickly and easily
adapted to new optical and SAR training pairs acquired from a variety of different
sensors. Furthermore, having such an automatic training dataset generation process
would enable a better validation of both tie point generation methods and, hence the
overall framework, for in a more general setting.
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SAR image artificial optical image optical image

Figure 6.1: Side by side comparison between SAR, artificial optical and original optical sample
patches with a ground sampling distance of 3.75 m.

e In case of the cGAN matching framework, the investigation of different generator
architectures would be of interest. In particular, the influence of the network depth,
number of parameters and skip connections on the image generation process would
be an in interesting field of research. Furthermore, including the problem of image
matching in the training process could further improve the quality of the tie point
generation. For this set, a new training strategy and objective have to been developed.

e So far, the artificial optical images generated from SAR images could not be successfully
applied for the task of accurately and reliably generating tie points. Nevertheless, this
direction could be interesting for other applications, such as a better interpretation
or visual understanding of SAR images or to enable a first indication of the image
content for areas covered by clouds or their shadows in optical images as exemplified
in Figure 6.1. In order to reach this goal, the latest cGAN architectures and training
concepts should be investigated in order to find the best setup for an SAR to optical
image translation process.

e In the case of the Siamese-based matching framework, the influence of data augmenta-
tion techniques (e.g. rotation, flipping), alternative network architectures (e.g. fully
shared weights, less layers/weights), similarity measures (e.g. Minkowski distance,
Euclidean distance, fully connected layers) and loss functions (e.g. hinge loss, triplet
loss) on the accuracy and precision of the tie points is of great interest and should
be fruther investigated in the future. Additionally, the resulting score maps could be
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further enhanced by using curve fitting or interpolation techniques to enable sub-pixel
accuracies.

Aside from the improvement of the each single methods, the combination of a generator
network with a deep learning-based matching approach represents an promising future
extension. Thereby, more suitable artificial images patches could be generated, which
could further improve the quality of the image matching process. In detail, by replacing
the discriminator with a Siamese matching network, the image generation process
could be geared towards the problem of image matching and directly be integrated in
the matching frameworks. This would lead to the generation of artificial images, which
will probably not look like real SAR images anymore, but facilitate the image matching
process. A challenge of this idea, is to develop a suitable training procedure and to
combine both networks into one architecture, while keeping the number of training
parameters within a reasonable bounds (the network has to fit on the available GPUs).
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