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Abstract

There exist numerous approaches to index either spatio-temporal or high-dimensional data.
None of them is able to efficiently index hybrid data types, thus spatio-temporal and high-
dimensional data. As the best high-dimensional indexing techniques are only able to index
point-data and not now -relative data and the best spatio-temporal indexing techniques suffer
from the curse of dimensionality, this thesis introduces the Spatio-Temporal Pyramid Adapter
(STPA). The STPA maps spatio-temporal data on points, now -values on the median of the
data set and indexes them with the pyramid technique. For high-dimensional and spatio-
temporal index structures no generally accepted benchmark exists. Most index structures are
only evaluated by custom benchmarks and compared to a tiny set of competitors. Bench-
marks may be biased as a structure may be created to perform well in a certain benchmark
or a benchmark does not cover a certain speciality of the investigated structures. In this
thesis, the Interface Based Performance Comparison (IBPC) technique is introduced. It au-
tomatically generates test sets with a high code coverage on the system under test (SUT) on
the basis of all functions defined by a certain interface which all competitors support. Every
test set is performed on every SUT and the performance results are weighted by the achieved
coverage and summed up. These weighted performance results are then used to compare the
structures. An implementation of the IBPC, the Performance Test Automation Framework
(PTAF) is compared to a classic custom benchmark, a workload generator whose parameters
are optimized by a genetic algorithm and a specific PTAF alternative which incorporates the
specific behavior of the systems under test. This is done for a set of two high-dimensional
spatio-temporal indices and twelve variants of the R-tree. The evaluation indicates that PTAF
performs at least as good as the other approaches in terms of minimal test cases with a max-
imized coverage. Several case studies on PTAF demonstrate its widespread abilities.
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Chapter 1

Introduction

Today’s building and infrastructure projects, e.g. concerning the planning and construction
of a subway system, require an efficient database system to store and query the plans and
3D models [52]. In large building projects like the mentioned subway example, often different
variants of a construction plan need to be evaluated and presented to local authorities in order
to satisfy different public requirements containing economical, ecological and other constraints.
Each of these variants describe a complete construction model which in itself usually describes
several discrete stages of the construction process. For the subway example, first the boring
of the tunnels and the later installation of the actual tube is described in different steps of
the construction process. The construction plans are usually displayed in several levels of
detail (LODs). The general course of the subway through a city would be displayed in a much
coarser LOD than the plan for the installation of the ventilation system. Nonetheless, both
LODs effect each other as a change in the course of the subway effects the ventilation system,
and the ventilation system may permit a certain course of the subway.

The different time domains introduced above are the planning time on the one hand and
the building time on the other hand. In terms of database systems, the planning time is known
as transaction time, i.e. the time when an object is inserted in, updated or deleted from a
database. The building time is known as valid time, i.e. the time an object is valid in a
database. If both time domains are combined in one model, this is known as the bi-temporal
model [185]. As the time is always moving forward, this needs to be reflected in a database.
For instance, if one does not certainly know how long a certain building exists, i.e. is valid in
the database, the building is considered to exist until now, with now being the representation
of the ongoing time. Strictly speaking, the value of now increases with the ongoing time and
a query that matches now may produce different results when executed at different times. For
instance, if one queries for the existence of a building in the future, before and after the current
value of now, different results are returned. The query executed before the current value of
now returns true and the query after the current value of now returns false. As one cannot
predict the future existence of a building, this conservative approach is the most convenient
[185] and should be supported by the desired database.

The objects which are stored in the database for the subway project obviously have a
spatial, i.e. three-dimensional, representation. As described above, this representation is
different for the different levels of detail. A three-dimensional representation for each of the
different levels of detail results in a model with clearly more than ten dimensions. In terms of
databases, models with more than ten dimensions are considered to be high-dimensional. As
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2 CHAPTER 1. INTRODUCTION

the time is also a central requirement of the database to support the planning and construction
of building projects, the model described here is a high-dimensional spatio-temporal model.

Efficient queries in a database require a fast and efficient index structure. Generally, an
index structure arranges the data in a database such that it can be queried more efficiently. For
the described spatio-temporal model for building plans the most efficient indexing technique
is the RST-tree [172]. The RST-tree is not able to properly index high-dimensional data. In
addition, no high-dimensional index exists which is able to store spatio-temporal data. Filling
this gap, this thesis introduces a new high-dimensional spatio-temporal index structure which
fits the requirements for an efficient indexing of the desired planning data.

The evaluation of such a new complex data structure can only be based on likewise new
benchmarks which are explicitly designed for the given problem. Such benchmarks can be
biased in two ways: They may miss certain configurations that are needed to adequately
describe the given problem or a complex data structure which is evaluated by a benchmark
may be designed to exploit a certain behavior of the benchmark. This thesis not only evaluates
the new index structure with a new benchmark that bases on an already existing one but
introduces a complete new system to automatically generate performance tests that avoid
the aforementioned problems of biased benchmarks. The new system automatically creates
suitable performance tests for a given set of competitors on basis of a common interface and
compares them. The new system does not address a certain behavior which should be evaluated
but evaluates the complete capabilities of the competitors on basis of the common interface. In
comparison to the classic benchmark, the new automated system unfolds a different behavior
of the evaluated high-dimensional spatio-temporal index structure. This does not mean that
the existing benchmarks need to be replaced by the new system but the new system may be
used in addition to the usually applied benchmarks in order to unfold the complete capabilities
of the competitors most likely unbiased and automatically.

1.1 Contributions of this thesis

The contributions of this thesis are manifold. First and foremost, a new efficient high-
dimensional spatio-temporal index structure, the Spatio-Temporal Pyramid Adapter (STPA)
and a new automatic performance comparison system, the Interface Based Performance Com-
parison (IBPC) technique, are introduced. With the system for performance comparison a
new approach on comparing the performance of a set of competitors on the basis of a common
interface is introduced. The implementation of the IBPC, the Performance Test Automation
Framework (PTAF), addresses several issues: it contains a new, easily extendable system for
the computation of the control flow oriented coverage of Java programs, a new system for
the automatic generation of performance tests for complex data structures in Java and a new
system for the robust and reproducible measurement of the performance of Java programs.

1.2 Organization of this thesis

This thesis is organized as follows: Chapter 2 describes the background on spatio-temporal
high-dimensional index structures as well as on general benchmarking and (performance) test
generation and performance measurement. As the new techniques are mostly built on top
of the existing ones, the background and related work are described together in one chapter.
Chapter 3 describes the new Spatio-Temporal Pyramid Adapter (STPA) and compares it to



1.2. ORGANIZATION OF THIS THESIS 3

the RST-tree [172] using an adapted classic benchmark for spatio-temporal data. Chapter 4
introduces the new technique for the comparison of the performance of a set of competitors
with a common interface. Chapter 5 describes the implementation of the new technique along
with the new systems for coverage computation, performance test generation and performance
measurement in Java. Chapter 6 evaluates this implementation and compares the new ap-
proach of performance comparison to the classic benchmark. For the demonstration of the
capabilities of the system another case study on rather simple data structures is performed.
Chapter 7 summarizes this thesis and gives an outlook on future tasks in the affected fields.





Chapter 2

Background and Related Work

This chapter presents the current state of the research related to this thesis. It is presented
in the order of its appearance in this thesis, i.e. it begins with spatio-temporal and high-
dimensional index structures and their benchmarks, is continued with the general definition of
benchmarks, performance test generation and their specifics in Java programs and concluded
by the basics and the current state-of-the-art in software testing and the automated generation
of unit and GUI tests.

2.1 Data Types

This section gives the necessary background on high-dimensional spatio-temporal data and its
indexing. Emerging from the field of Geo Information (GI) Science [79], the data types outlined
here are not the only ones to consider. In addition, as the main requirement behind the new
indexing technique described in chapter 3 is not only the support of spatial data as used by GI
Systems (GIS) but also general index support for data used by Building Information Modeling
(BIM) tools, only a rough overview of the general achievements in these fields is given.

2.1.1 Spatial Data

Peuquet (1984) [156] states that “Since no model or abstraction of reality can represent all
aspects of reality, it is impossible to design a general-purpose data model that is equally useful
in all situations.”. In GIScience, two general types of spatial data models exist, tessellation-
based and vector-based models [156]. Tessellation or polygonal mesh models use a simple
geometric entity as the basic unit of space. Raster geometries are probably the most prominent
subtype of tessellation. In a raster geometry, the basic unit of space is one square, represented
by one pixel in a data file (see Figure 2.1a). Other examples of tessellation are triangular
meshes and irregular models, which contain triangles of different sizes. In vector models, the
point is the base of all represented information. Points may be extended to lines which may be
extended to faces (see Figure 2.1b). There also exists a variety of hybrid models, containing
both, tessellation and objects represented by vectors [156].

For the use in BIM tools, Constructive Solid Geometries (CSG) as provided by the Industry
Foundation Classes (IFC) [121] are often used. In a CSG, the spatial representation is built
up by a list of primitives and boolean operators on these primitives. Only if all primitives and
operators have been computed in the correct order, the desired representation is complete.

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

(a) Tessellation (grid)-based spatial model
(b) Vector-based spatial model.

− =⇒

(c) Constructive solid geometry (CSG).

Figure 2.1: Three types of spatial models.

An example is provided in Figure 2.1c: a circle with a hole in the center is created by a circle
minus another, smaller circle.

All of these models may be adapted for the higher dimensional space. For instance, in
three dimensions, the squares in Figure 2.1a may be extended to cubes. The points in any
vector-based approach may have more coordinates than only two, enhancing the lines and
faces to polyhedra and other three-dimensional objects. The primitives in a CSG may also be
extended to the three-dimensional space, for instance by replacing the circles in Figure 2.1c
with spheres. The indexing techniques investigated in this thesis only require the minimum
bounding rectangles of a spatial object and functions to determine the topological spatial rela-
tionship between two objects. Therefore, the concrete spatial model used for the representation
of the objects is irrelevant. Egenhofer (1989) [78] defines a formal definition of the possible
topological relationships between two spatial objects. This may be used for d-dimensional ob-
jects as well. A spatial object may be divided into its exterior, interior and boundary, which
separates ex- and interior. The binary topological relation always relates to all combinations
of boundary and interior of the two objects, resulting in eight different possibilities of relation
as visualized in Figure 2.2.

2.1.2 Levels of Detail

Different spatial data types are not only required to model different aspects of the reality, but
also to avoid the storage of any unnecessary data. Usually, spatial data may be generalized and
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A disjoint B
A equal B

A meet B A overlap B

A inside B A contains B
A covers B A coveredBy B

Figure 2.2: The eight topological relationships between two spatial objects according to Egen-
hofer (1989) [78].

details may be spared in order to save data space. In addition, objects in a more generalized
spatial model can be compared to each other with less computation resources. In terms
of building and city models, the original CityGML [112] standard defines five levels of detail
(LOD). In contrast to the generalization of a detailed model, Borrmann et al. (2015) [50] refine
a coarse representation and add more and more details with every LOD. They also focus on
preserving the consistency between the LODs by using a procedural model as spatial model
which is similar to a CSG. Both approaches are compared in Figure 2.3. Biljecki et al. (2016)
[49] state that the CityGML standard does not define the different LODs differentiated enough
and enhance it to 16 levels of detail.

generalization

refinement

Figure 2.3: Levels of detail as described by Kolbe (2009) [112] (above) and Borrmann
et al. (2015) [50] (below). The first approach generalizes the spatial data, the latter refines it.
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2.1.2.1 Temporal Data

In the scope of this thesis, temporal data is not limited to the mere use of timestamps or other
static time representations in databases. All time related values are linked to the ongoing
real-time, called now. The now-relative data faces several difficulties as data sets which have
to be stored ideally should automatically and constantly evolve after they have been stored
without an update of the data sets themselves. Consider Figure 2.4 which depicts the actual
employment in a software company as a Table in a relational database and the corresponding
temporal model.

name role
Sansa assist.
Ilja dev.

name role
Sansa dev.
Ilja dev.

name role
Sansa dev.
Ilja dev.
Marla assist.

name role
Sansa dev.
Marla assist.

update Sansa insert Marla delete Ilja

valid valid valid valid

transaction

Figure 2.4: Example of a database table which changes over time (above) and the corre-
sponding bi-temporal model (below). For visualization purposes, the abbreviations dev. for
developer and assist. for assistant are used.

The bi-temporal model consists of two time axes, the valid and the transaction time. The
transaction time denotes when entries are inserted and deleted physically from the database.
The valid time denotes whether an entry is valid at a specific time in the modeled reality. In
the given example, the entry Sansa is updated in the first step. In the second step, an entry
of Marla is inserted. Note that the entry of Ilja has not changed on the valid time axis, it is
the same entry as it has been at the beginning. In contrast, the entry of Sansa has changed.
Through the transaction time, one may also note that it displays the growth and reduction of
the table. In the third step, Ilja is deleted from the database, thus the transaction time of the
entry ends at that point, only the entries of Sansa and Marla are continued. In each of the four
pictures in the lower row, the latest entry in view of the valid time is considered to be valid and
it should be valid until it changes. Snodgrass and Ahn (1985) [185] survey different approaches
on handling time in databases and introduce three kinds of time: valid, transaction and user-
defined time. User-defined time handles the information that is not addressed by valid and
transaction time. For instance, if the update of Sansa’s role takes some time, this may be
modeled by the user-defined time as an offset to the valid-time. Snodgrass and Ahn (1985)
[185] combine the use of valid and transaction time to (bi-)temporal databases and demonstrate
the use of now in databases. In the example given in Figure 2.4, the visualization of valid
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and transaction time does not involve now. Therefore, Table 2.1 denotes the information of
Figure 2.4 as one bi-temporal database table.

Table 2.1: Example of a bi-temporal database table. Begin and end of the valid (VT) and
transaction (TT) time are defined by ` and a, respectively.

name role V T` V Ta TT` TTa

Sansa assist. 05/2013 05/2014 05/2013 now
Sansa dev. 05/2014 now 05/2014 now
Ilja dev. 05/2013 05/2015 05/2013 05/2016
Marla assist. 05/2015 now 05/2015 now

It should be noted that transaction and valid time may not be linked to each other. For
instance, if a plan for the future is made, all operations on the transaction time already may
have been fulfilled before the valid time of the first entry begins. Also, all entries may have
ended on valid time before the first operation on the transaction time begins. For instance,
if an old archive is stored in a newly set up database or if historical data is stored. Thus,
as the end value in the valid and transaction time may either be a concrete value or now,
four different types for the combination of valid and transaction time exist in the bi-temporal
model. Once again, it must be clearly distinguished between a change in the modeled reality,
e.g. the promotion of Sansa, and a change on the database, e.g. the actual update of Sansa’s
entry. It is always a part of the modeling process if and how to set transaction and valid time
in relation to each other.

Clifford et al. (1997) [66] discuss the semantics of now in more detail and provide a frame-
work for working with bi-temporal data. In the literature, now is also denoted as ∞, -, @ and
until-changed [66]. When incorporating now-relative data, one must always consider that the
concrete value of now changes over time and now has to be modeled properly. To exemplify
one of these problems imagine that now is modeled as ∞ or a very high value, known as the
optimistic approach. Querying if Sansa is still an assistant at 06/2014 would deliver true,
if queried before 05/2014 and false if queried after 05/2014, when the first entry of Sansa is
updated with her promotion. Following this example, it always must be considered that as
abstract now may be, the current value of now always is clearly defined for one certain time
in the database and may affect queries, updates, deletions and insertions.

Aside from the semantics of now and the way it is modeled, the representation of now in
the database has to be chosen. Stantic et al. (2009) [186] distinguish between four approaches
to represent now, which are called NULL, MIN, MAX [190] and POINT. The concept of the
NULL approach is that now is represented by a value outside of the order of the temporal
domain. The MIN and MAX approaches use the minimum and maximum values, e.g. −∞
and∞, of the temporal domain. The POINT approach models now with the same value as the
beginning of transaction and valid time, respectively. For instance, the value for V Ta for Marla
in Table 2.1 would be set to 05/2015 if the POINT approach is used. Stantic et al. (2009) [186]
claim that their POINT approach outperforms MAX and the other approaches when applied
on a database with the B+-tree or R+-tree as indexing technique. Anselma et al. (2013) [35]
introduce the NOT-NOW approach which excludes the usage of now and always assumes that
the ending times of both, valid and transaction time are known for all objects. They use this
approach to compare the cost of now-relative data to temporal data without now.
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The possible topological relationships between temporal intervals are defined by Allen (1983)
[31], refined by Kriegel et al. (2001) [116] and visualized in Figure 3.3 on page 59.

2.1.3 Spatio-temporal Data

In contrast to the isolated perspective on exclusively spatial or temporal extends of objects,
spatio-temporal data combines both into one data model. Worboys (1994) [208] introduces
spatio-bi-temporal data, consisting of two spatial and two temporal (transaction and valid
time) dimensions. Along with examples on administrative areas, road networks and land
ownership an incomplete inside on possible topological spatio-temporal relationships is given.
As now is considered to be an increasing value within the spatio-temporal data space, the usual
topological spatial relationships as defined by Egenhofer (1989) [78] (see 2.2) may be applied,
adopted by the temporal interval relationships by Allen (1983) [31] (see 3.3). He et al. (2013)
[97] combine the 13 interval relationships to the fundamental eight binary relationships between
d-dimensional objects as depicted in Table 3.1 on page 59.

Speaking of spatio-temporal data, one must clearly distinguish between discretely changing
and continuously changing spatio-temporal data. Discretely changing data like the road-
networks, administrative areas or land ownerships exemplified in [208] only changes at concrete
time stamps. Continuously changing spatio-temporal data models are not discretely changing
but moving through space and time. For instance, modeling the users of mobile networks
within a grid of antennas is one possible application of a spatio-temporal model. Querying
those models would always imply that if the query targets the space between two data points,
the actual query result is the result of an interpolation between those two data points. In this
thesis it is not dealt with moving objects but with non-moving yet discretely changing data.

2.1.4 High-Dimensional Spatio-Temporal Data

Given the general d-dimensional definition of spatial data, the possibility of more than two
temporal dimensions which are linked to the ongoing now-value and the need for up to 16
levels of details, a data model easily becomes high-dimensional, speaking of more than 10
dimensions. Those dimensions do not need to be spatial or temporal dimensions exclusively,
but also thematic and therefore may not only be represented by an interval in one dimension
but by a single value of an ordered set. Nonetheless, all dimensions may be modeled within
the possibilities of the general spatio-temporal approaches outlined in the sections above.

2.2 Index Structures and Access Methods

In this section, all access methods related to the technique developed in this thesis and their
basics are described. Starting with the basic access methods for the indexing of large sets of
single values or spatial (2D and 3D) objects and continuing with specialized access methods
for the retrieval of spatio-temporal and high-dimensional data. Generally speaking, each of
the described techniques tends to split the data space into sub spaces and recursively splits
those sub spaces again until a set of small sets of objects exists which may be accessed much
faster than by sequentially scanning each object in the given data set. The smallest subset
of objects should ideally fit onto one hard disk block to achieve the most efficient number of
accesses. Thus, indexing usually describes how the data is ordered, or indexed, on the hard
disk or in memory and the access method ensures the ideal use of such an index. Both may
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often only be used in combination and the literature uses the terms index and access method
interchangeable.

2.2.1 Basic Single-value and Spatial Access Methods

This section focuses on those access methods which are enhanced or used by spatio-temporal
and high-dimensional access methods and are initially designed to grant efficient access on
single values and spatial data (2D and 3D).

...

sequential list

B-tree

(a) Schema of a B+-tree. It contains a traditional
B-tree and the sequential list of keys at the leaf
level.

-1 16 49

1584 16 23 42

-1 16 49

1584 23 42

delete 16

(b) Deletion in a B+-tree, in most cases, only the
leaf nodes need to be updated.

Figure 2.5: Basic concepts of a B+-tree according to [67].

The B-tree [43] indexes single values as a tree structure. Every node holds between k and
2k keys, except the root which may hold between 1 and 2k keys. The keys are ordered from
left to right in each node and each key in a non-leaf node points to a node which contains
keys that are less than the key in the parent node. The retrieval of a key means to traverse
downward from the root until the key is found or a leaf which does not contain the searched
key is reached. Inserting in a B-tree may result in a node which contains more than 2k keys,
such a node must be split up into two nodes with at least k keys. As the parent node gains
one key, it may also be split up recursively. During deletion, which may result in nodes with
less than k keys, nodes must be merged upwards recursively. Several enhancements of the
B-tree exist. The most popular is probably the B+-tree. In a B+-tree [67], the key set and
the tree structure are separated from each other. On the leaf level, all keys are stored in an
ordered sequential list of leaf nodes, with the leaf nodes being linked together from left to
right. Doing so, most of the time only the leaf nodes need to be updated. The non-leaf nodes
only need to be updated when a leaf node has to be split up or merged. Additionally, range
queries become much faster. One only has to traverse to the leaf where the nearest start point
of the result set is located and then sequentially go through all following keys until the first
key outside the query range is reached. Figure 2.5 displays the main properties of the B+-tree.
Instead of inserting or deleting one key at time, B-trees may be built up more efficiently by
using bulk-loading techniques [90], which may be used to insert a set of keys and constructing
a B-tree with an efficient load. An efficient load of the B-tree nodes is achieved when the usual
number of operations can be performed without fragmentation of the tree. A B-tree which is
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able to store new keys without a split after almost every insert and which is able to delete keys
without merging after almost every deletion, is considered to be more efficient. Also, B-trees
with a high density of keys per node are more efficient in lookup and query operations.

The space-partitioning Quadtree [80] is initially designed for two-dimensional objects, but
may be extended easily to higher dimensions, for instance by the Octree for three-dimensional
data [130]. In a Quadtree, every non-leaf node has four children, pointing to child nodes. One
node always splits the space vertically and horizontally with the orthogonal intersection of
both splitting axis being the node itself. That is, the partition in sub spaces does not need
to be symmetric. The creation of a new node only splits the data space within the sub space
in which the new node is created. Insertion, deletion and search work analogously to binary
approaches. The Grid File [144] partitions the multidimensional data space by a uniform grid
of buckets. These buckets are accessed by a directory file in order to ensure the two-disk
access principle for point queries. A bucket that contains more entries than a data block is
able to hold is split, two neighboring buckets which would fit into one are merged. As the
Quadtree, the Grid File may be extended to more than two dimensions. For indexing point
data, the K-D-B-tree [162] partitions the data space into point pages and merges them into
region pages. These region pages are recursively merged up to a root page which represents
the whole data space. The K-D-B-tree [162] partitions the data space by alternating the split
axis. That is, in the two dimensional case, a sub space which has been created by splitting
along the x-axis will be split along the y-axis.

R1 R2

R5R4R3 R6 R7

Figure 2.6: Structure of an R-tree [95]. The ruled area is the example of a spatial object sur-
rounded by its minimum bounding rectangle (MBR). The entries in one node with a maximum
capacity of three point to sub-nodes.

According to Van Oosterom et al. (2002) [194], the most efficient technique for the storage
and retrieval of two and three dimensional spatial data is the R*-tree [44]. The R*-tree is
based on the R-tree [95], which is exemplified in Figure 2.6. An R-tree consists of entries
and nodes. An entry contains a minimum bounding rectangle and a pointer to a node. A
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node consists of a set of entries. The minimum bounding rectangle (MBR) in an entry is the
minimum enclosure of the spatial extend of all entries in the corresponding node. The entries
in the leaf nodes contain the spatial objects which are stored by the tree. All nodes, except
for the root, contain between m and M nodes.

New entries are inserted by traversing from the root through those nodes which would
enlarge least by including the new entry and adding them at the leaf level. If the chosen leaf
node contains more than M entries after insertion, it is split into two new nodes and the split
is propagated upwards in the tree if necessary. In the original variant of the R-tree, three
split variants are proposed: the exhaustive, the linear and the quadratic split. The exhaustive
variant tries all possible groupings and chooses the best, i.e. the tuple of entry sets whose
MBRs cover the search space least. Doing so, future insertions will affect the existing nodes
least. With the node to be split containingM+1 entries, approximately 2M−1 groupings exist
to create the desired tuple.

The quadratic algorithm picks two entries to be the seeds for the desired two new groups
of entries. The two seeds Ei, Ej are chosen such that they waste the most space a =
area(Ei

⋃
Ej) − area(Ei) − area(Ej) with area being a function which calculates the cov-

ering area (2D) or volume (≥3D) of the entry’s MBR. From the group of remaining entries
the entry which has the maximum difference in area enlargement between the two groups is
chosen if it is included by the entries. The chosen entry is added to that group which has the
least area enlargement by including the chosen entry. The quadratic algorithm has quadratic
cost in the number of maximum entries and linear cost in the number of dimensions [95].

The linear algorithm works similar to the quadratic algorithm. The seeds of the two groups
are chosen as follows: For each dimension, the MBR with the maximum start value and the one
with minimum end value are chosen. The difference between these two rectangles is divided
by the width of the entire set of entries to be split along the dimension according to which the
rectangles have been chosen. At last, the entries which have the greatest relative separation
along any dimension are chosen as seeds. The algorithm then chooses one of the remaining
entries at a time and assigns it to that group which has the least area enlargement by including
the chosen entry [95].

When deleting entries from an R-tree, a node may become underful, i.e. containing < m
entries. The remaining entries are then also deleted and the deletion is propagated upwards.
All entries which have been deleted that way are reinserted at their corresponding level in the
tree afterwards.

Instead of only taking the area and its enlargement into account for finding the best
distribution of entries in an R-tree, the R*-tree also incorporates the margin and overlap of
the p MBRs, with an overlap being defined as [44]:

overlap(Ek) =

p∑
i=1,i 6=k

area(Ek
⋂
Ei), 1 ≤ k ≤ p (2.1)

The insertion algorithm in the R*-tree is altered in contrast to the R-tree. If, via travers-
ing the tree, a node is reached which points to leaf nodes, the node with the least overlap
enlargement to include the new entry is chosen. The R*-tree also introduces an alternative
to the immediate split of full nodes which is called forced reinsert. During the insertion of a
new entry, if a node is full, p of the entries of the full node are reinserted at the corresponding
level instead of performing a split of the complete node. Before reinsertion, all M + 1 entries
of a node N are sorted decreasingly by their distances to the center of the MBR enclosing N .
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Either the p entries with the maximum or minimum distance may be chosen for reinsertion
which is called far reinsert and close reinsert respectively. The reinsertion of a node is only
performed once per node level and insert operation. If a node, at a level at which a reinsert
already has taken place, is full, it is split as usual.

Beckmann et al. (1990) [44] also propose another split algorithm, which is called R*-split
for the remainder of this thesis. All M + 1 entries are first sorted by their starting values and
then sorted by their ending values for each dimension. For each of the sorts, M − 2m + 2
distributions into two groups are investigated. Given k = (1, ..,M − 2m+ 2) the first group of
the k-th distribution contains the first m− 1 + k entries and the corresponding second group
contains the remaining entries. In order to choose the split axis for each dimension, the sums
of all margin-values of the two groups of the different distributions are computed. The margin
value of a distribution is the margin of the bounding box of the first group plus the margin
of the bounding box of the second group. The axis which has the minimum of all those sums
is chosen as split axis. Along that axis, the distribution with the minimum overlap value is
chosen. The overlap value is the area of the intersection of the bounding box of the first group
with the bounding box of the second group. Ties are resolved by choosing the area which has
the minimum of the sum of the areas of the two groups.

Note that both, the R-tree and the R*-tree, may be built completely up differently when
the same set of entries is inserted in another order. This behavior is intensified if deletions are
allowed [44].

Hellerstein et al. (1995) [99] generalize the basic principles of the B-tree and R-tree and
their variants to the Generalized Search Tree (GiST). Although the generalization makes a
sub-class of indices interchangeable, the specifics of that approach make the implementation
of index structures that chose different approaches than R- and B-tree difficult and make
index-specific optimizations more complicated. Analogously, Aref and Ilyas (2001) [37] define
an extensible database index for the support of space partitioning trees like the Quadtree.

2.2.2 Spatio-Temporal Access Methods

Most spatio-temporal access methods are designed to handle continuously moving objects.
Extensive surveys on access methods for moving objects can be found in [27, 138, 143, 155, 26].
In this thesis, it is dealt with non-moving, yet discretely changing spatial data. Index structures
which support this type of data are presented in this section. In contrast to pure spatial data,
the index structures have to deal with growing rectangles if the end value is set to now on at
least one of the temporal dimensions. It is important to note that if one leaf-entry contains
a now-relative rectangle, all nodes which include that now-relative rectangle must also be
now-relative.

Spatio-temporal structures are mainly derived from existing spatial index structures. For
instance, the Quadtree [80] is extended by Tzouramanis et al. (1998) [192] to the Overlapping
Linear Quadtree that is able to track the evolution of raster images on the transaction time.
Or the B-tree [43] which is extended to the BX-tree by Jensen et al. (2004) [107].

As the R*-tree [44] is considered to be the most efficient method for indexing spatial data,
it is the most often used technique to be adopted by spatio-temporal indexing techniques.
The improvements on the R-tree regarding spatio-temporal data can be separated into two
branches.

First, there are indexing methods that combine several R-trees in order to take the now-
relative temporal dimensions into account. The Historical R-tree [140] is an R-tree of R-trees,
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one for every time step, where new R-trees only store changed objects and use references to
the subtrees of the unchanged nodes in the previous R-tree in order to save space. The 2+3
R-tree [141] uses one 2-dimensional R-tree to store the current spatial information and one
3-dimensional R-tree to store all past data, i.e. every object that already has now-relative
temporal intervals. If every state of the object is known a priori, the 2+3 R-tree is reduced to
a 3-dimensional R-tree. Both approaches are only able to handle one temporal dimension.

Secondly, some indices try to enhance the R-tree with spatio-temporal functionality by
changing its insert, split and delete algorithms. The RST-tree by Saltenis and Jensen (1999)
[172] uses time-parametrized values and an additional split algorithm to take growing rect-
angles in the valid- and transaction-time into account. Time parametrization means that by
every calculation involving the now-value now is replaced by the current value of now plus a
data-dependent (large) parametrization value. Doing so, the computation may foreshadow the
future expansion of the spatio-temporal objects along their temporal dimensions. Addition-
ally, the user may prioritize the spatial or the temporal component. For instance, the volume
of the spatio-temporal MBR r is computed with:

volume(r) =

{
bitemporalarea(r)1+α · spatialarea(r) if α ≤ 0

bitemporalarea(r) · spatialarea(r)1−a otherwise
(2.2)

Where α ∈ [−1, 1] is the user defined value which indicates how to prioritize the spatial
or temporal component. Note that the margins and overlaps are computed similarly in the
RST-tree. As always, spatialarea(r) is considered to be the volume of r if r is an object in
the 3D or higher dimensional space.

The split algorithm of the RST compares the distribution chosen by the R*-split algorithm
to an additional distribution and choses that one with the minimum overlap value, ties are
resolved by choosing the distribution with the minimum area value. The RST distribution is
generated with the general goal to separate now-relative and non now-relative rectangles. The
approach distinguishes three types of rectangles. Static regions ( ) are those with certain end
values in the transaction time. Note that so-called static stair-shapes are rectangles whose end
values are now for the valid time and are considered to be static. Growing rectangles ( ) are
those rectangles whose end value is now for the transaction time only and the end values of
growing stair-shapes ( ) are now for both, the valid and the transaction time. During a split,
the two resulting groups are set to the type following Table 2.2. Saltenis and Jensen (1999)
[172] state that the RST-split distribution is used in 19% of the cases and improves the query
performance between 10% and 25%.

The forced reinsert of the R*-tree is altered. It also reinserts one entry at a time up to p
entries but reinserts that entry which, when removed, shrinks the volume of the MBR of the
overfull node the most.

One extension of the often-cited Time-Parametrized-R-tree (TPR-tree) [174], the REXP-
tree [173], takes moving objects into account by simply using integrals for the R*-tree opera-
tions such as union, overlap, volume and margin which denotes the length of the boundaries of
a rectangle. Doing so, it is able to build up conservative minimum bounding rectangles (MBR)
which take the future extension of the spatio-temporal MBRs into account. It is not necessary
to update the MBRs with every change of the object’s shape and position. The REXP-tree
does not use a constant parametrization value but a dynamical computation via a time horizon
function. Every n insertions, the time duration ∆t of the last n insertions is computed, where
n equates to the number of entries in a node. Then the update interval length is approximated
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Table 2.2: Prioritization for the types used for two resulting groups of the RST-tree split
distribution according to Saltenis and Jensen (1999) [172]. With k = M + 1−m where M is
the maximum and m is the minimum number of entries per node.

priority first group second group enabling condition
1 | |+ | | = 0
2 | | = 0 ∧ 0 < | | ≤ k
3 | | = 0 + | | > k
4 | | > 0 ∧ | |+ | | <= k
5 0 < | | ≤ k ∧ | |+ | | > k
6 | | > k

as UI =
(

∆t
n

)
N , where N is the number of leaf entries and the querying window length as

W = αW ·UI with 0 < αW < 1. The time horizon H is computed as H = W +UI. The time
horizon function can also be used to enhance the RST-tree. As there seems to be no other
indexing method which is designed for discretely changing spatial and bi-temporal data, the
RST-tree is the most suitable competitor to the technique developed in this thesis.

Stantic et al. (2010) [187] propose a new indexing technique for temporal data based on
the relationships between intervals [31], the TD-tree. Despite the fact that this technique
does not incorporate now-relative data, it is used by He et al. (2013) [97] to create a parallel
indexing technique for spatio-temporal data. Although it does not support now-relative data,
it provides another perspective on indexing high-dimensional spatial data which is partly used
in this thesis.

2.2.3 High-Dimensional Access Methods

The R-tree [95] seems to be the best choice not only for indexing spatial but also point
and spatio-temporal data. Nonetheless, the performance of the R-tree and its best known
enhancement, the R*-tree [44], decrease rapidly when used for objects with a higher number
of dimensions (> 10). Berchtold et al. (1996) [46] state, that the overlap of the directory nodes
of an R*-tree increases rapidly for uniformly distributed points with increasing dimensionality.
They propose the X-tree, which extends the R*-tree with a new splitting technique and super-
nodes. The split algorithm of the X-tree first tries a topological split, such like the split
algorithm of the R*-tree and then a minimum overlap split. The minimum overlap split uses
the recorded split history of the index in order to find the split axis which contains an overlap
free or at least overlap minimal split. The threshold in which an overlap is considered to be
minimal depends on several system dependent parameters like the data page access time or
the CPU time which is necessary to process a data block. If both split algorithms are not able
to find a minimal overlap split, the node is extended to a super-node by enhancing the size of
that node by one block.

The maximum number of entries in one node of the R-tree or a similar hierarchical structure
decreases with an increasing number of dimensions. Thus, more nodes are needed to index
high-dimensional data and therefore more nodes and blocks are accessed when querying the
structure. Referring to that, the TV-tree [123] reduces the number of dimensions by using a
telescoping function. Lin et al. (1994) [123] state that the number of dimensions used in the
directory nodes to discriminate the path to the leafs is reduced significantly.
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Space-partitioning methods do not face the problem of overlapping regions but the number
of partitions grows exponentially [201] with an increasing number of dimensions which also
causes decreasing performance. Facing these problems, Weber et al. (1998) [201] propose the
VA (vector-approximation) file which divides the data space into 2b rectangular cells, where
b is a user defined number of bits. Together with a formula for approximatively addressing
each data point and a filtering function for efficiently excluding data cells when querying, the
VA-file outperforms the X- and R-tree and works even better in higher dimensions.

Beside R-tree-based and space-partition-based methods, dimension-reducing methods use
to map the d-dimensional data points or rectangles onto a one-dimensional value and store
these with a B+-tree [67] or similar method. iDistance [105] identifies the d-dimensional points
by the nearest reference point and the distance to this reference point. The PL-tree [200] uses
a scaling function to map a real vector to an integral vector and the bijective cantor pairing
function to map these d-dimensional data points into a scalar. It outperforms the X- and
R-tree but is outperformed by iDistance in terms of query performance.
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Figure 2.7: Calculation of the pyramid value of a 2-dimensional point P (0.75, 0.1). The data
space is divided into 4 pyramids. The pyramid value for P is 1.4: 1 because it lies in pyramid
1 plus .4 because this is its distance (height) to the center (0.5) in dimension d1 [47].

The Pyramid Technique [47] maps d-dimensional points into one-dimensional values. It
therefore splits the d-dimensional data space into 2d d-dimensional pyramids, whose bases
are the borders and whose centers are the center of the data space. The pyramid value is
calculated as follows (Figure 2.7): the places before the decimal point depict the pyramid in
which the point lies and the decimal places are the height in that pyramid. The height of a
point in pyramid p is the distance of that point from the center in dimension p MOD d. After
mapping all points to their pyramid values, they are stored in a B+-tree [67], using the pyramid
values as keys, while the leaf nodes contain the original d-dimensional key. As the calculation
of the pyramid value is not bijective, a mapped range query on data stored with the pyramid
technique may result in more elements than expected. Therefore, one has to test every match
against the original query. Moreover, a n-dimensional range query is converted into up to 2d
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one-dimensional queries because every pyramid which intersects the query rectangle has to be
queried. The main drawback of the Pyramid Technique is that one has certainly to know the
borders of the data space and rebuild the complete index if data is stored which lies outside
the originally assumed borders. This rebuild causes an overhead of node accesses. Berchtold
et al. (1998) [47] state that this overhead becomes negligible for high-dimensional data.

The Pyramid Technique can be enhanced to the Extended Pyramid Technique [47] by
shifting the center of the pyramids to the median of the data set in every dimension. Doing
so, the efficiency of querying on clustered data sets is improved, but the center of the pyramids
needs to be altered if its distance to the real median is to high. Therefore, an approximation
of the real median of the already inserted data is tracked by a histogram and constantly
compared to the actual center. Altering the center to the median requires a complete rebuild
of the structure which can be done most efficiently by using bulk loading techniques on the
underlying B+-tree. Zhang et al. (2004) [212] generalize this technique to the P+-tree which
dynamically divides the data space into several subspaces in order to deal with more than one
cluster of data points.

2.3 Definitions and Requirements of Benchmarks

In order to compare the new spatio-temporal high-dimensional indexing technique developed
in this thesis (Chapter 3) to existing approaches, this section presents the background on
benchmarks in general. In the current research on benchmarks and benchmark generation no
general accepted definition of a benchmark can be found. Most notably, Jain (1991) [106]
describes workload generation and selection as an art where every task of comparing the per-
formance of several programs must be undertaken individually and with respect to the actual
requirements. Nonetheless, the requirements for a good benchmark seem to be comparable to
the benchmarks and benchmark generators investigated throughout this thesis. In Section 2.4
the evaluations and benchmarks for spatial, spatio-temporal and high-dimensional benchmarks
are described as examples of unaudited and not verified open source benchmarks. Examples
of audited and verifiable industry standard benchmarks are the following:

• The Business Applications Performance Corporation (BAPCo) [1] provides benchmarks
for personal computers, tablets etc.

• The Embedded Microprocessor Benchmark Consortium (EEMBC) [4] provides bench-
marks for embedded systems, like the synthetic CoreMark [3].

• The Storage Performance Council (SPC) [18] provides benchmarks for storage, such as
hard disk drives (HDD) or solid state drives (SSD).

• The Transaction Processing Performance Council (TPC) [22] provides data-centric bench-
marks, i.e. benchmarks for the evaluation of transaction processing and databases.

• The Standard Performance Evaluation Corporation (SPEC) [19] provides a variety of
software benchmarks for single scenarios to a full system scale.

As the TPC and SPEC annually host scientific conferences, the research on benchmarks
is concentrated on these two. For the TPC view on benchmarks, Huppler (2009) [104] gives a
subjective overview of the current state of benchmarking and especially the TPC-C benchmark.
According to [104] a good benchmark should be
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Relevant The user acknowledges that the benchmark reflects an important aspect of the
system under test.

Repeatable Several executions of the benchmark are independent of one another and have
the same result.

Fair The benchmark does not favor a single solution or environment.

Verifiable The results of the benchmark are verified.

Economical Such that the user can afford to run the benchmark.

It is concluded that most benchmarks satisfy four of these criteria and the fifth must be “given
up”. Contrary, the TPC-C benchmark seems to satisfy all criteria and therefore blocks the
introduction of new benchmarks. Also with focus on TPC, Patel (2015) [154] highlights three
key problems in current data-centric benchmarks. These are the ambiguity of benchmarks, for
instance benchmarking the runtime and energy consumption at the same time, the isolated use
of benchmarks by a single vendor only and the generation of benchmarks by vendors and not
by the customers, i.e. users of the benchmark. The users of a benchmark shall certainly have
the clearest perception of what to measure and therefore may be able to create benchmarks
which satisfy their specific needs.

Sim et al. (2003) [182] postulate the usage of benchmarks to improve the research in
software engineering. Along with that, they provide a general definition of benchmarks:

Definition 2.1 We define a benchmark as a test or set of tests used to compare the perfor-
mance of alternative tools or techniques. A benchmark has three components. [182]

These components are a “motivating comparison” which is comparable to the relevance criteria
in [104], the “task example” which should contain a representative sample from the problem
population and the “performance measures” or results of the benchmark. Sim et al. (2003)
[182] compare benchmarking as an empirical method to experiments and case studies. An
advantage of experiments is the possibility to directly compare the results but they may not
be used for explanatory studies, whereas case studies are flexible and robust but the limited
control may reduce the generalizability of the results. According to Sim et al. (2003) [182] a
benchmark shares the advantages of these methods and successful benchmarks share accessi-
bility, affordability, clarity, relevance, solvability, portability, and scalability as properties.

With focus on SPEC, von Kistowski et al. (2015) [198] provide the following definition of
a benchmark:

Definition 2.2 [A benchmark is a] Standard tool for the competitive evaluation and compar-
ison of competing systems or components according to specific characteristics, such as perfor-
mance, dependability, or security. [198]

They distinguish between two types of benchmarks. Specification based benchmarks simulate
a certain business problem to be solved by the competitors. For example, a specification based
benchmark for spatial index structures contains workloads that address the key requirements
of a spatial index structure like insertion, deletion and query of spatial objects. Kit-based
benchmarks also provide the solution for further measurement. For the example of spatial
index structures, a kit-based benchmark would also contain the implementation of a certain
index structure and the user may alter such a benchmark only by a set of parameters. [198] also
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describe five key properties of good workloads: relevance, reproducibility, fairness, verifiability
and usability.

Except for the usability, these requirements equal the characteristics outlined by Hup-
pler (2009) [104]. Where [104] only focuses on monetary characteristics, [198] also include the
technical ability of the user to run the benchmark which includes an accurate description of
the system requirements. The properties relevance and usability reflect the seven properties
postulated by [182]. The definition in [182] emerges from the need of a better measurement
of software engineering techniques and although it is often used1, it lacks key requirements
as reproducibility/repeatability, fairness and verifiability. As von Kistowski et al. (2015) [198]
provide a more verified and solid approach on their definition (Definition 2.2) of a benchmark
and only slightly alter that of [104], it will be used as the only definition of a benchmark
throughout this thesis. Sim et al. (2003) [182] describe a benchmark as a test or set of tests,
whereas [198] use the term workload(s) for the basic components of a benchmark. In this
thesis, a test is a concrete set of operations performed by a competitor and then measured by
the benchmark. A workload is the abstract and parametrized description of a test set.

By the knowledge of the author no general benchmark creator exists. In contrast to
unit testing where several test generators exist which do not depend on specific functional
requirements of the software, a benchmark is always bound to a predefined set of functional
requirements.

2.4 Benchmarking Index Structures

Together with high-dimensional and spatio-temporal access methods, several datasets and
benchmarking applications have been proposed in order to analyze and evaluate different
index structures and access methods. These approaches are described in this section.

For the generation of spatio-temporal data, which in this case means moving-objects
data, the best known frameworks may be GSTD [188], OPORTO [169], and G-TERD [193].
Brinkhoff (2002) [53] proposes a framework for generating network-based moving objects
e.g. traffic in road networks, just like the data created by SUMO [45]. In addition, Jensen
et al. (2006) [108] (COST), Düntgen et al. (2009) [77] (BerlinMOD), and Chen et al. (2008)
[64] define benchmarks for moving objects indices. None of these approaches is compared to
another benchmark or verified by a comparison to real world data. The authors make sug-
gestions on how the benchmark addresses several issues with spatio-temporal data, e.g. by
incorporating several spatial distributions, but the parameters are not, for instance, created
by a regression test of existing data sets or known performance goals. Also, there does not
seem to exist a benchmark for the evaluation of discretely changing spatial data.

Commonly used spatial distributions are uniform, gaussian and skewed distributions as
exemplified in Figure 2.8. Within uniformly distributed values, the probability for a point
being located anywhere in space is equal for each coordinate within the space. A gaussian
distribution is defined by a mean value µ and a variance value σ2 > 0. A set of gaussian
distributed values has a mean value of µ and 50 % of all values are located within a maximum
distance of 0.675σ around µ. The density of points reduces with increasing distance to µ.
That is, 90 % of all values have a distance of 1.645σ to µ and 99 % have a distance of 2.576σ
to µ. A uniformly distributed value u would therefore be altered to g = µ+ σ2 · u. A skewed
distribution incorporates skewness s into a gaussian distribution. If s > 0 the distribution is

1245 citations according to Google Scholar May, 4th 2018
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Figure 2.8: Different distributions in a two-dimensional space.

skewed to the right and for s < 0 it is skewed to the left. For instance, given a uniformly
distributed value u, the skewness would be applied by y = 1−e−s·y

s for s 6= 0 and as before
g = µ+ σ2 · y in order to get a skewed gaussian distribution. For s = 0 the distribution would
remain symmetric.

The most recent approach for the analysis of indexing techniques for high-dimensional
point data is, to the knowledge of the author, QuEval [175, 114], a framework which can be
extended with index structures, data sets, and distance metrics. Unfortunately, it is designed
for high-dimensional point and not spatial or even spatio-temporal data.

2.5 Performance Measurement at the Code Level

In this thesis, the performance of the investigated structures is measured and compared in
order to find the structure with the best performance. This section describes the basics on
performance measurement at the code level, which is used to compare the performance of the
benchmarks and test sets developed throughout this thesis.

The performance of a system may be measured on several levels, such as performance
predictions on the requirements level, or load testing on the design level. For the remainder
of this thesis, performance tests and performance measurements are always computed on
the implementation, i.e. code level. That is, the actual performance of the classes in the
system under test (SUT) is measured. Also, here, performance measurement at first means
measurement of the computation time of a set of tests performed by the SUT. In addition,
performance may also be measured in terms of memory or energy consumption. In the current
literature, several research areas in regard to performance measurement at the code level can
be depicted. First, the investigation of performance anti-patterns and performance problems
at the code level [184, 92, 205, 181]. Secondly, performance measurement of software using
benchmarks [38, 54, 48], i.e. verifying whether the system meets its requirements. Thirdly, the
performance measurement of different software versions using unit tests [103, 161, 55]. Existing
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automated performance test generators are currently all linked to one of the mentioned research
areas [92, 181, 103]. A recent literature review on performance tests in general is given by
Freitas and Vieira (2014) [84].

In contrast to the well-known software patterns [85], anti-patterns [184] can be used to iden-
tify program parts which will likely have a bad performance. In addition, those anti-patterns
may contain strategies to circumvent the predicted bad performance. Software performance
anti-patterns are a useful instrument to optimize existing software, thus they may be used after
the new approach proposed in this thesis reveals that the implemented algorithm or structure
does not compete well against other approaches. They are not useful for a general comparison
of the performance of data structures and algorithms as they only indirectly influence the
differences between several competitors. An implementation which contains an anti-pattern
may nonetheless outperform all other competitors.

Brown et al. (2005) [54] determine the instruction and edge coverage of the SPEC JVM98,
Java Grande, CaffeineMark and JOlden benchmarks suites. They conclude that those suites
“designed to measure real-world applications had poor instruction and edge coverage”.

Bergel et al. (2016) [48] choose a set of appropriate benchmarks for every SUT. The bench-
marks are performed on every version of the SUT. Doing so, revisions with performance prob-
lems can be identified. That is, instead of measuring the performance of a single SUT by
the configuration of specific workloads [38], different versions of the same system are com-
pared. Still, this method aims to satisfy specific performance goals as depicted by the chosen
benchmarks.

In contrast, Reichelt and Kühne (2016) [161] use the unit tests within the SUT to identify
performance changes at the code level. Doing so, also classes of performance problems should
be quantified based on the measured data. These approaches on the comparison of system
versions give a good overview on the tasks to do, when applying performance tests on a SUT
as they also face problems caused by just-in-time compilation, garbage collection and thread
scheduling. They are not fully applicable to the problems this thesis is about, as they deal with
the comparison of different software versions of the very same system and not with different
systems which fulfill a common interface.

Grechanik et al. (2012) [92] develop an automatic performance test generator which uses
a feedback-directed black-box system. They cluster the traces in order to keep a maintainable
data set and conclude that their approach is effective in the detection of so-called performance
bottlenecks, even in large applications. Shen et al. (2015) [181] use a profiler driven by a
genetic algorithm in order to identify performance bottlenecks through variating input param-
eters. Horký et al. (2015) [103] develop a hybrid test generator which automatically generates
a performance documentation from the given unit tests. All these approaches, which are
mostly derived from the generation of load tests, tend to find performance bottlenecks and
misconceptions in a single system. Contrary, the approach developed in this thesis (Chapter
5) is used to compare the performance of different systems with a common interface.

2.6 Performance Testing in Java

As the measurement of a systems computation time is always system dependent, the basics of
performance measurement in Java are described here, as well as the work related to the new
approach for performance measurement in Java which is described in section 5.4.
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Java is listed as one of the most popular and widespread programming languages [61, 21]
in use, mostly for its automatic garbage collection and system independence. Along with
the abstraction used by the Java virtual machine to provide this independence come several
disadvantages regarding a statistically rigorous performance evaluation in Java. This section
points out the major threats to Java performance evaluation and methods to circumvent
them. In this thesis, the Java HotSpot 64-bit Server virtual machine (build 25.60-b23 ) is
used. Although many active Java virtual machine implementations exist [11], only the used
implementation will be described in more detail since it is a direct implementation of the Java
virtual machine (JVM) specification by Oracle and the underlying HotSpot virtual machine
is also used by the widespread OpenJDK project [15].

The main parts of the Java HotSpot Engine [5] which influence the performance of a
Java program are the automatic garbage collection, the “ultra-fast” thread synchronization
and the just-in-time (JIT) compiler. The first two are of less importance than the latter as
the systems designed throughout this thesis are single-threaded and the garbage collection
may influence the performance but not the general significance of performance tests if the
performance tests are computed often enough and a mean value is used for comparison. In
contrast, JIT compilation may alter the structure of the code and optimize such parts which
would have caused a relatively worse performance. In more detail, JIT compilation works as
follows [5]: For the first times a Java method is accessed, it is interpreted by the interpreter.
After a certain amount of (user-)time, the HotSpot virtual machine has identified so-called
hot spots, i.e. methods which are accessed very often. These methods are then compiled and
optimized by the JIT compiler. The most important optimizations defined by the HotSpot
Engine specification [5] are:

• Deep inlining and inlining of potential virtual calls. That is, often invoked methods are
directly compiled into the calling method instead of invoking them over and over again.

• Fast instanceof/checkcast.

• The elimination of range checks if the compiler can prove that the index of the access of
an array is within the bounds of that array.

• Loop unrolling decreases the iterations of a loop and increases its body size.

• Feedback-directed optimization. The JIT compiler captures several trace informations
of the currently executed code and uses this information to optimistically improve the
compiled code. If one of the optimizations violates the assumed behavior of the code,
the code is recompiled and re-optimized.

The last three bullet points may alter the code and therefore optimize those parts which
are crucial for the performance comparison of a Java program. As described in the IBM Java
SDK overview [6], the JIT compiler may reorder, split and delete parts of the control flows.
Strictly speaking, the comparison of two Java programs may have different outcomes with
and without JIT compilation, as well as between two runs of the same program with JIT
compilation. Several recommendations have been made to circumvent the impact of garbage
collection, thread scheduling and JIT compilation on performance measurements in Java.

Georges et al. (2007) [87] compare 13 different Java performance evaluation methodologies
and their influence on the macroscopic level exemplified by the SPECjvm98 and DaCapo
benchmark. The different methodologies are characterized by:



24 CHAPTER 2. BACKGROUND AND RELATED WORK

• The number of virtual machine invocations.

• The number of benchmark iterations per virtual machine invocation.

• Activated and deactivated JIT compilation.

• Full compilation before measurement.

• Full-heap garbage collection before measurement.

• Single and multiple hardware platforms.

• The heap sizes and the number of virtual machine implementations.

• Interleaved and back-to-back measurement.

They derive a prototype of a statistically rigorous Java performance methodology and recom-
mend their approach for the future research on Java performance evaluation. Kalibera and
Jones (2013) [110] also research on a rigorous Java performance evaluation methodology refer-
ring to the SPEC and DaCacapo benchmarks. They concentrate on the detection of a steady
state which is the state at which no more optimizations are computed by the JIT compiler
and the execution of a performance test can be supposed to be stable. It is argued that the
automatic detection of the steady state from [87] is not applicable and that repetition is de-
pendent on the platform, virtual machine and the benchmark. Alghmadi et al. (2016) [30] use
performance counters to detect repetitiveness of the measured performance data and decide
when to stop performance tests. All approaches have in common that they target macroscopic
JVM benchmarks and try to find the ideal set up for benchmark runs and JVM configuration
to produce feasible and stable performance results. Contrary, in this thesis, a set of method
calls for each system under test should be generated in order to perform tests for a better
comparability.

On the microscopic level, Rodriguez-Cancio et al. (2016) [163] isolate the segment under
analysis (SUA), e.g. a loop, via slicing and produce payloads that reflect the input of the
application under test (AUT) on the SUA. The main goal is to prevent dead code elimina-
tion and constant folding during a micro benchmark by the JVM. Thus they investigate the
same threat to performance tests as investigated in this thesis. In contrast, the performance
comparison in this thesis is used to analyze the complete SUT and not only parts of it. In
addition, neglecting automatic optimizations would not stand the requirement of fair perfor-
mance comparison. Implementations which rely on the assumed code optimizations by JIT
compilation would be disadvantaged. Nonetheless, the general approach on a rigorous Java
performance methodology and the awareness of the distortive influence of JIT compilation is
used to perform rigorous performance tests in this thesis. The general approach is described
in Section 5.4.

2.7 Software Performance Engineering

In this section, the approaches on benchmarking, workload generation and performance mea-
surement proposed in this thesis are set in relation to the general field of Software Performance
Engineering.
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Definition 2.3 Software Performance Engineering (SPE) represents the entire collection of
software engineering activities and related analyses used throughout the software development
cycle, which are directed to meeting performance requirements. [207]

Along the given definition, [207] divide SPE into two general approaches: First, the
model-based approach, which uses performance models early in the development cycle and
incorporates certain performance expectations into the system requirements. Secondly, the
measurement-based approach which is applied late in the development cycle when the SUT
can be run and the performance can be measured. This thesis deals with already implemented
structures such that a measurement-based approach is used. Other definitions of SPE [183] do
not accept the measurement-based approach and solely focus on the model-based approach.
As the complete software development cycle is ignored and only the concrete implementation
is necessary for this thesis, any further discussion on SPE is spared. The general approach on
performance test comparison proposed in this thesis may be used as the final stage in a SPE
approach but it is not a SPE framework in itself.

2.8 Software Testing

As this thesis provides a new approach for the automated generation of software performance
tests and benchmarks based on software test generation, the basics on software testing in
general are presented in this section.

The field of Software Engineering distinguishes several techniques to analyze and evaluate
the quality of software through the process. Those techniques might be divided through the
scheme depicted in Figure 2.9 [122].

dynamic static

functional... structural

data flow oriented control flow oriented

verifying analyzing

Figure 2.9: Overview of software quality checks (translated from [122])

It only shows a part of the classification as this is sufficient to characterize the software
tests used in this thesis. Static techniques do not execute the system under test (SUT), do
not produce test cases and may not be used to make thorough statements about correctness
and soundness. Instead, they analyze the SUT using static criteria or verify systems by
mathematical models. Dynamic techniques execute the SUT with certain input values. They
may not be used to make thorough statements as well and are more of a sample. Besides
diversifying and other approaches, the dynamic techniques may be divided into functional and
structural approaches. Functional approaches test the correct functional behavior of the SUT,
without covering the structure of the system itself. Structural approaches use insights on the
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structure of the SUT (see Figure 2.10). Data flow oriented approaches try to cover all memory
reading and writing accesses in the SUT. Control flow oriented techniques try to maximize
the coverage on the control flow of the SUT. That is, a system that is executed with a control
flow oriented technique should access a maximum of a predefined part of the control flow, e.g.
all statements.

For dynamic functional approaches a lot more input of the developer is required as for
dynamic structural approaches. The developer needs to interpret the specification and test
cases are then generated from the developers interpretation of the specification (see Figure
2.10). The requirement of an automated and by all means fair comparison of several structures
forbids the often subjective input of a (human) software tester. Instead, an automatic dynamic
structure based approach may be able to automatically analyze the SUTs and automatically
create suitable test cases afterwards.

Hoffmann (2013) [100] defines four layers in software testing as depicted in Figure 2.11.
The code or module level at the bottom is abstracted by the integration level where several
modules are combined with each other. A test on the module level would only test on the
correctness of the module itself whereas the integration tests test the interaction between
several modules. On the system level, the complete software system is tested and this is often
considered to be the last test before the deployment of software to the customer. The customer
may perform an acceptance test and then accept or reject the completed software.

The techniques described in this thesis operate on the module or unit test level. Every
structure compared to other structures is considered to be its own module. Those modules
could be integrated into a larger system and for the purpose of performance tests it also may
be beneficial to measure performance on the integration level. Index structures for instance
need to be integrated into a database and maybe connected to a structured query language
(SQL) system. But as for the tests of correctness the behavior on the lowest level has to be
determined before the overall performance can be analyzed. The current research on automatic
unit test generation is described in section 2.11.

2.9 Control Flow Terminology and Coverage

This thesis uses the coverage of test sets on the control flow of a system as optimization goal
for a new approach on automated performance test generation. The basics on control flows
and their coverage are presented in this section.

The structure oriented test approach is based on insight knowledge of the SUT, i.e. on
its control flow. One way to describe the control flow of a program is its control flow graph
(CFG) which is described in this section. The definitions in this section are mostly derived
from [98].

A flow graph G = (N,E, n0) is a directed graph containing a set of nodes N , a set of edges
E ⊆ N ×N and a start node n0 ∈ N .

A control flow graph (CFG) is a flow graph that represents the control flow of an imperative
program P . Each node in a CFG represents a single statement of P . Often a sequence of
statements that are always executed together is combined into a single basic block and a node
then represents one basic block. An edge (u, v) between two nodes u and v indicates a jump
from u to v. In McMinn (2004) [128], edges which depict conditional jumps are called branches.

Figure 2.12 shows the CFG (middle) of a program (left). Every node represents a basic
block. For instance, the nodes n0 and n3 contain several statements that are always executed
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(a) Function oriented test
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(b) Structure oriented test

Figure 2.10: Test classification (translated from [122]). Using function oriented tests (a), the
tester creates test cases following his image of the specification and analyzes the results with
respect to the specification. Structure oriented tests are built using insights on the SUT, the
test results are then analyzed with respect to the specification. For both approaches, the tester
has to interpret the specification.
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Figure 2.11: Four layers of software testing [100]

int iterative(int n){

int f = 1;

if (n < 0)

throw new Exception();

while(n > 0)

f = f*n; n = n-1;

return f;
}

(a) Java method, returns the fac-
torial of n.

n0

n1

n2

n3

n4

(b) Corresponding control flow
graph (CFG). Every basic block
is one node in the CFG.

DOM(n0) = {n0}

DOM(n1) = {n0, n1}

DOM(n2) = {n0, n2}

DOM(n3) = {n0, n2, n3}

DOM(n4) = {n0, n2, n4}

(c) Dominance relationships.

Figure 2.12: Program code, CFG and dominance relationships

together. If a program is executed, the sequence of nodes corresponding to the executed
blocks is called a path. For instance, the execution of the iterative method with the actual
parameter n = 1 results in the path p1 = (n0, n2, n3, n2, n4) and n = 2 results in the path
p2 = (n0, n2, n3, n2, n3, n2, n4).

Considering p1, every basic block except for n1 has been executed at least once. That
results in a basic block coverage of 0.8 following the formula

C0 =
|basic blocks at least executed once|

|basic blocks in CFG|
. (2.3)

In the literature, the basic block coverage is also denoted as statement coverage [122]. Some
statements in the source code may be split into several statements in the object or machine
code. Using the statements derived from the source code for the calculation of the statement
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coverage may also produce contorted results. In this thesis, the term of basic block coverage
is used and it should be mentioned that this is denoted as statement coverage in most of the
used literature.

Path p1 contains at least one execution of four of the five branches, resulting in a branch
coverage of 0.8 following the formula [122]

C1 =
number of branches at least executed once

total number of branches in CFG
. (2.4)

The condition coverage is used to describe the executed branch conditions of a CFG. The
CFG in 2.12 contains two branch conditions, one in n0 and one in n2. The simple condition
coverage requires the execution of every condition at least one time with the result true and
at least one time with the result false. To achieve a full simple condition coverage for n0 it
must be executed with n < 0 at least once and also with n >= 0 at least once. The condi-
tion/decision coverage additionally requires that the combined condition is at least executed
once with true as well as false as result. For instance, the decision a && b contains the
conditions a and b which both should be evaluated with true and false at least once and
also, a && b itself should be evaluated with true and false at least once. The minimal mul-
tiple condition coverage also requires that all combinations of conditions inside each decision
must be evaluated [122].

Although the paths p1 and p2 share the same basic block, branch and condition coverage,
they have to be respected as different. The complete path coverage is not applicable if the CFG
contains an infinite loop. The boundary-interior-test contains a boundary and an interior test.
The boundary test requires one execution of each loop and the execution of each path in that
loop. The interior test requires that all paths which can be executed within two iterations of
a loop are executed [122].

In a CFG, a loop is defined through a header and a back edge. The header is a node in
the CFG and every node in the loop can only be accessed through the loop’s header. The
back edge is an edge from one of the nodes in the loop to the loop’s header. For instance, n2

is a header and the edge (n3, n2) is the corresponding back edge of the while loop. To find
possible loop headers, one has to compute the dominance relationships in a CFG. A node x
dominates a node y in a CFG if every path in the CFG from its initial node to y contains x.
It is also defined that DOM(y) = {x|x dominates y}. The only dominator of the start node
is the start node itself (DOM(n0) = {n0}). The dominators of any other node is the union of
the sets of dominators for all predecessors of the node. The node itself is also in that set of
dominators (DOM(ni) = (∪p∈preds(ni)DOM(p)) ∪ {ni}) [98]. A node ni in a CFG g is a loop
header, if a node m ∈ g exists with ni ∈ DOM(m) and (m,ni) ∈ g. A loop is identified by its
back edge. Every execution of a loop header denotes one entry in the corresponding loop(s)
and the execution of one back edge denotes the iteration of the loop.

Figure 2.13 shows the same algorithm as 2.12 but implemented recursively. Thus, the
corresponding CFG does not contain a loop, although the recursive implementation indirectly
performs the same number of iterations as the iterative implementation. Tracking recursive
executions or “loops” over several method invocations lies beyond the capabilities of a CFG.

One test case may often not be sufficient to achieve a full coverage. Therefore, several test
cases are combined into one test set. The coverage is then measured after all test cases in one
set have been executed.
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int recursive(int n){

if (n < 0)

throw new Exception();

if(n == 0) {

return 1;

} else {

return n * recursive(n - 1);
}

}

(a) Java method, returns the factorial of n.

n0

n1

n2

n3

n4

(b) Corresponding CFG

Figure 2.13: Recursive code fragment and CFG

2.10 Code Coverage in Java

Some specialities on code coverage arise through the structure of the generated byte code [124].
This section displays those specialities, the approaches to measure different coverage types in
Java and some of the most recent implementations.

Figure 2.14 shows a simple Java code snippet, its CFG, the corresponding byte code and
the CFG resulting from the byte code. Basically, for any decision, all combined conditions are
split up into atomic decisions. That does not only result in a much larger CFG compared to
the CFG resulting from the source code. Using only atomic decisions in the CFG causes that
a CFG, which has full branch coverage, also has full simple condition coverage.

The possibilities of implementing code coverage in Java are listed in Figure 2.15. Runtime
Profiling approaches like the Java Virtual Machine Profiler Interface (JVMPI) [12] or the Java
Virtual Machine Tool interface [13] for newer Java versions dynamically measure executing
programs. Profiling often has a high impact on the overall performance of a program and is
primarily used for performance analysis. Through instrumentation, code snippets like flags or
counters are inserted at specific positions in the source or byte code. Every time a program is
executed, the instrumented code, or probe, is executed as well when the corresponding code
block is executed. This probe may then be used to count the number of accesses on a code
block. For instance, in Figure 2.14, a probe may be inserted above the lines 0 and 5 to reflect
the execution of the nodes n0 and n1, respectively. The execution of a probe indicates the
execution of the following byte code instructions until the next probe, e.g. branching node.
Such a probe may contain the increment of a static variable associated with the corresponding
CFG node. After execution that variable shows how many times the CFG node has been
accessed. The complexity and position of the used probes determine the possible coverage
types and the influence on the overall performance of the original program. Instrumenting
the source code usually is more costly than byte code instrumentation in terms of runtime.
Without the knowledge of the source code, it is not possible to evaluate decisions which consist
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boolean a = true;

boolean b = true;

if (a && !b || !a && b) {

doSomething();
}

(a) Source Code

n0

n1

n2

(b) CFG

0: iconst_1
1: istore_1
2: iconst_1
3: istore_2
4: iload_1

5: ifeq 12
8: iload_2

9: ifeq 20
12: iload_1

13: ifne 24
16: iload_2

17: ifeq 24
20: aload_0

21: invokevirtual #2

24: return

(c) Bytecode

n0

n1

n2

n3

n4

n5

(d) CFG

Figure 2.14: Control Flow Graph generation on the Java source and byte code generation. The
gray CFG nodes represent nodes which have been accessed when the program is executed. The
dashed branches indicate that these branches have not been traversed during execution.

Code Coverage

Runtime Profiling

JVMPI
JVMTI

...

Instrumentation

Source
Byte code

Offline

Replace
Inject

On-The-Fly

Class Loader
Java Agent

Figure 2.15: Hierarchy of code coverage implementation techniques in Java [9]. JVMPI and
JVMTI are tools for runtime profiling, the other leaves are general techniques.
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of several connected conditions. Byte code instrumentation can be performed on several
levels. Offline instrumentation changes the already compiled class file either by replacement
or injection. Using replacement, the original class files are not altered, but new class files are
generated which contain the additional probes. Contrary, by using injection, the class files are
changed and the additional probes are directly inserted into the existing files. Injection may
be performed dynamically or on the fly. That is, the byte code instrumentation is performed
during the runtime of the program. Using a class loader, the Java byte code is instrumented
whenever a desired class is loaded by the virtual machine. Every class that is loaded by the
virtual machine may be manipulated by a Java Agent. Overriding the class loader in Java is
more modular, but the Java Agent can be used on any class, loaded by any class loader.

Table 2.3 lists a subset of currently available Java coverage tools. In addition, a proven
correct extraction of the CFG from Java byte code can be found in [33]. For Table 2.3, only
those tools are chosen which at least provide informations about the used approach and the
supported coverage types. This excludes most proprietary coverage tools. Three of nine tools
use source code instead of byte code instrumentation. The use of source code instrumentation
may result in another sort of statement coverage than using byte code instrumentation. Source
code statements are often split up into several byte code instructions. Furthermore, all of the
described tools do not state clearly if actually basic blocks instead of single statements are
covered. For both cases, no other statements than the actual executed ones are covered but
they are summed up differently and the coverage result may be distorted between the statement
coverage measured by two different tools. For instance, in Figure 2.14d node n0 represents
two statements, six byte code instructions and one basic block. It has to be noted that it only
represents one quarter of the decision evaluated by the if-statement. The nodes n1,n2 and
n3 represent another quarter of the statements but two byte code instructions and one basic
block. Node n4 represents no statement, one basic block and two byte code instructions. At
last, n5 represents one statement, one basic block and one byte code instruction. As displayed
in Figure 2.14, the execution of the code snippets causes a statement coverage of 3

4 , a basic
block coverage of 3

6 and a coverage on the byte code instructions of 9
15 . By some of the tools,

statement coverage is described as line coverage (CLOVER [2]) or the coverage on byte code
instructions as statement coverage (ECLEMMA [101]).

2.11 Automatic Test Generation

This thesis uses the current achievements in automated test generation to automatically gen-
erate performance tests. This section not only outlines the current achievements in unit test
generation but also in GUI (graphical user interface) test generation. GUI tests are created
on the basis of an interface which is defined by all accessible components on the GUI itself.
The research in GUI tests shall provide insights on how the generation of interface-based test
cases can be achieved. In addition, the term of sequence based test generation is often used for
the same purpose as the interface based test generation in this thesis. That is, sequence based
test generation assumes that for most systems, only the invocation of a sequence of methods
will change the state of a system under test (SUT). For the remainder of this thesis, a test
case always contains a sequence of method invocations and this sequence may have a length
of one. The current state of performance test generation, which is used to find bottlenecks in
software programs or perform load tests, is presented in Section 2.5.
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For most of the presented techniques it should be noted that a test is always meant to be
connected to a corresponding test oracle which defines whether the outcome of a test case is
correct or not. In a recent survey, Barr et al. (2015) [40] state that the generation of oracles
is still an open problem and “Much work on test oracles remains to be done”. As the general
correctness of a test is irrelevant for a performance test, which should prove all possible input
sequences, the further discussion on test oracles is spared.

In terms of this thesis, test generation is always meant to be automatic but not generated
by a user defined set of parameters. That is, automatic test generation shall derive all pieces
of information needed for the generation of test cases from the system under test (SUT) itself.
For instance, [16] generates test data by using a model which has to be defined by the user.
The automation is then only limited to the repetitive creation of test cases on the basis of
the model with random variations in a predefined parameter space. Therefore, this type of
test generation is classified as workload generation, a part of benchmark generation which is
discussed in 2.3.

The current achievements in automated test generation may be divided in four major ap-
proaches: Random Testing, Model Based Testing, Concolic Testing and Search Based Testing.
Each approach is described in more detail in the following subsections. Each of the described
approaches is usually implemented by a test generation tool. Both, the name of the approach
and the name of the tool, are used interchangeably in the literature and in this thesis.

2.11.1 Random Testing

Random test generators randomly select possible input parameters for the SUT or parts of
it. The main problem of randomly generating test cases is that these test cases are often not
valid in terms of the actual specifications of the tested system. Two types of invalidity have
to be strictly divided. On the one hand, certain inputs cause errors predicted by the program
and are somehow handled, e.g. with an exception. On the other hand, invalid inputs which
are not contained in the programs preconditions are called contract-violating tests. JCrasher
[70] executes test cases in order to produce exceptions and errors and tries to distinguish
between contract violating and invalid inputs. As Java does not provide method preconditions
by itself, those are derived from the type of the exception and its message itself. Jartege
[145] requires the definition of Java classes in the Java Modeling Language (JML) to define
the preconditions. Within the parameter space of those conditions, Jartege then randomly
creates test cases. RANDOOP [147, 146] creates test cases incrementally. A method sequence
is expanded by adding a random method invocation with random parameter values from
previously constructed sequences. Sequences that cause illegal behavior, like an unexpected
exception, are discarded. But sequences which violate a contract are added to the output
list of contract-violating tests. In addition to some predefined contracts like reflexivity and
equality in the Java Collection Framework, the user may define a contract-checking interface to
extend the system with custom contracts. Also, methods may be annotated to be ignored by
RANDOOP representing invariants or to create regression assertions. Finally, those sequences
which cause normal, valid behavior are added to the list of regression tests (see Figure 2.16).
T3 [158], which is a complete and enhanced recreation of T2 [160], creates random test sets
just as RANDOOP and directly supports the Java stream API and closures. Those may also
be used with T3 to unfold faulty interactions between methods. Prasetya (2013) [158] claims
that T3 outperforms RANDOOP and is outperformed by EVOSUITE [81]. They argue that
this is caused by the fact that T3 does not use instrumentation due to the generally random
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approach. T3 is the back end of iT3 [159], a Java testing tool which not only allows the
automatic generation of test sets but replaying and querying test suites in Java. GRT [126]
guides the generation of random tests using five modules: (1) The constants of a program and
the likelihood of their usage are extracted by a static mining operation. (2) Impure methods,
thus methods which have a side effect on the states of the classes objects, are extracted and
used to change the object state. (3) All created method sequences are stored in an object
pool together for the generated types for reuse. (4) Those demands are dynamically satisfied
for methods which cannot be accessed without the usage of external libraries. The resulting
sequences and objects are stored in a separate object pool. (5) Finally, the guidance of random
generation is achieved by weighting the methods which are being invoked in the tests. They are
weighted by incorporating the number of branches in a method that are uncovered, the ratio
of successful and failing invocations and the number of times the method has been selected
since the last update. The updates are not performed constantly but after a certain time, in
order to minimize the cost of the generation. JTExpert [170] uses a guided random search
approach. The initial instances are used as seeds for the following search for suitable test
sequences based on those seeds. When invoking randomly selected methods, the seed instance
generator is used to add the desired parameters. After static analysis, the test generator
randomly selects a branch b from all targets to be covered T and removes b from T . Then a
random method sequence is generated and executed. All branches covered by the executed
sequence are removed from the branches to be covered. This may not include b. If b has not
been covered yet, it is added to a set of branches which is computed in the next run of the
algorithm, after T is empty. The algorithm stops if no more branches are to be covered or a
certain time limit is reached.

classes under test

time limit

properties to check

generate
method
sequences

execute
method
sequences

examine
execution

contract-violating
tests

regression tests

Figure 2.16: Behavior of RANDOOP [146].

2.11.2 Concolic Testing

Symbolic execution uses symbolic values instead of actual values when executing a program.
The symbolic values are incorporated into a path condition as the execution emerges. The
path condition denotes which values the several input parameters are required to have in order
to reach the current part of the program. After the execution of one concrete path, a symbolic
execution framework may use backtracking to generate all possible paths in a control flow
graph (CFG). This is called concolic testing [88]. Figure 2.17 exemplifies concolic testing.
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After one random path is executed, all remaining paths are evaluated using backtracking.
Examples for symbolic execution frameworks are Java PathFinder (JPF) [151, 150, 153] for
Java or Euclide [89] for C programs. Symbolic execution shall be used for critical software
systems which require a high confidence on the unit tests or in bug finding, for example in
NASA software [152]. Symbolic execution is also applied in model checkers which try to find
a failing or illegal path. All model checking approaches may be applied on test generation.

n0

n1 n2

n3 n4

OK

EXCEPTION

(a) Testing: One test case executes one path (gray
nodes, continuous branches) at a time.

n0

n1 n2

n3 n4

backtrack

backtrack

OK

EXCEPTION

(b) Concolic testing: After the execution of one path
(thick line), all possible paths are explored using back
tracking and symbolic execution. Here, the constraint,
that every loop only needs to be entered only once, is
used.

Figure 2.17: Testing and Concolic testing examplified on the iterative factorial method (see
Figure 2.12)

PathCrawler [206] is a prototype for the automatic creation of test cases which fulfill the
all-paths criterion, i.e. test cases that cover all possible paths of a program using symbolic
execution. To avoid path explosion caused by loops, the number of required loop iterations
can be user limited by the constant k. DART (Directed Automated Random Testing) [88]
works in three steps. First, using static source code parsing, an interface of the SUT is
automatically extracted. Secondly, due to random test generation on this interface, the most
general parameter space is explored. Thirdly, new tests are systematically generated along the
paths generated in the second step. DART is one of the first tools that uses concolic testing.
Sen et al. (2005) [178] combine concolic and concrete program execution to generate unit tests
in their Concolic Unit Testing Engine (CUTE). There, the focus lies on the handling of pointers
in C programs. In the tool jCute [177] this approach is transferred to the Java programming
language. EXE [58] uses symbolic execution to generate failing test cases. Based upon EXE,
KLEE [57] creates test sets with high coverage. The tools Barad [86] and ACTIVe [34] use
symbolic execution on the event handlers of Java applications to create GUI tests with a high
coverage. Jensen et al. (2013) [109] combine concolic testing and an event handler model to
create test cases for Android apps. A more performance related approach is WISE [56] which
creates worst-case inputs for a SUT. Although symbolic execution is a robust test generation
technique, it is very costly in terms of generation time and required hardware resources.

By using symbolic execution, all possible paths of a SUT are discovered. A loop without
a proper ending condition may always provoke a very high yet infinite number of paths which
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is called path explosion. Therefore, the usage of symbolic execution may not be applicable for
the SUTs investigated in this thesis.

2.11.3 Model Based Testing

Just like the JML definitions in Jartege [145], model based approaches rely on an abstracted
definition of the SUT. The UML modeling language is often used as basis for such definitions.
For instance, UML Use Case and Activity diagrams [197, 63] or statechart diagrams [171] are
used. In terms of GUI testing, the event flow graph (EFG) may be used [132] as a suitable
model. An EFG consists of nodes, each representing an event on a GUI component, and
edges, one for each possible action which leads from one event on a GUI component, i.e.
node in the EFG, to another. Figure 2.18 displays a simple GUI and the corresponding EFG.
Menninghaus et al. (2017) [135] compare local search algorithms and genetic algorithms for
automated GUI test generation. There, the coverage on the SUT or the coverage on the
corresponding CFG are used as optimization goals. The analogy of an EFG in the terms of
interface based test generation may be a graph which contains method invocations as nodes
and each possible following method invocation as an edge to another node, i.e. invocation.
[210] additionally define the event semantic interaction (ESI) relationship between two events
and the corresponding graph, the ESIG. It is traversed in order to produce sequences of GUI
interactions which are likely to change the runtime state of the program.

click
toggle

(a) A simple GUI to toggle the color of a panel.

event
on label

event
on button

(b) Event flow graph (EFG), the different possible
events on the components (e.g. right and left mouse
click) already have been merged.

Figure 2.18: A simple GUI and the corresponding event flow graph (EFG).

2.11.4 Search Based Testing

Search based software testing (SBST) [129] uses meta heuristic search algorithms such as
simulated annealing, hill climbing and genetic algorithms to systematically explore the search
space. Figure 2.19 visualizes the key idea of search based software testing. Given an input
domain, for instance all possible input parameters of a method and a fitness function, which
depicts the quality of the desired outcome and the neighboring solutions, a fitness landscape
is defined. In terms of structural testing, the fitness function would usually depict the code
coverage on the method when executed with the given input parameters. The input domain
may not only contain the possible input parameters for one method but for all accessible
methods and initializers in the SUT. Search algorithms explore this fitness landscape and try
to reach the global maximum of the fitness function. In the ideal case, the global maximum of
the fitness function equals the part of the input domain which is required to create the desired
test set. Random search would randomly choose input parameters until either a resource
limit, e.g. time, is reached or the required input has been chosen. Random search does not
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use any guidance and does not depend on a fitness function. Local search algorithms like hill
climbing and simulated annealing [168] try to enhance the search stepwise. In each step one
of the neighboring input parameters is chosen regarding to the current state of the approach.
In hill climbing, the next state is simply a neighboring state with a better fitness, e.g. with
the maximum fitness. It stops, when no new maximum can be reached from the current
state and therefore may get stuck in a local optimum. In contrast to hill climbing, simulated
annealing uses an additional temperature function. It indicates how far the search reaches
out for an optimum. The longer the algorithm runs, the colder the temperature gets. The
colder the temperature is, the more unlikely it is for the algorithm to choose another state if
the current state is a local optimum. A step may not only contain the selection of new input
parameters but another method or another constructor when the SUT contains several classes
and methods.

input
parameters

required
test data

input domain [-]

fit
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ss
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(a) Random search. Randomly choosen input param-
eters.

(1)
(2)

input domain [-]

fit
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ss

[-]

(b) Hill Climbing. Two different optimization runs
are shown. Each step, the next best input is chosen.

(1)
(2)

input domain [-]

fit
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ss

[-]

(c) Simulated Annealing. Two continuous steps are
shown. Also worsening steps may be chosen in order
to reach the global optimum.

input domain [-]

fit
ne
ss

[-]

(d) Genetic Algorithm. Several input parameters are
chosen and computed at the same time. The param-
eter sets are combined with another and altered to
the next set of parameter sets.

Figure 2.19: Four approaches on search based software testing.
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2.11.4.1 Genetic Algorithms

A genetic algorithm [102] starts with an initial, e.g. random, population of solutions called
generation. The next generation is created by selecting a set of solutions from the previous
generation with respect to the fitness function. The solutions of every generation are then
recombined (e.g. crossover) and also mutated. Recombination usually means that parts of a
solution, e.g. the statements in a test case, are rearranged inside a single solution or exchanged
through several solutions. Mutation alters a single solution, e.g. altering the input parameters
of a method invocation in a test case or adding new statements to a test case. Thus, several
test sets are checked at once and ideally, the best parts of one generation are combined to
create an even better generation of test sets. The general procedure of a genetic algorithm
is depicted in Algorithm 1. Note that all parts of a genetic algorithm are customizable. The
evaluation depends on the chosen fitness function. Selection, mutation and recombination are
all independent and exchangeable modules which may have an impact on the change rate of the
algorithm. Also, genetic algorithms rely on a widespread initial population in the search space.
The impact of different seeding strategies in search-based unit test generation is investigated
in Rojas et al. (2016) [164].

Input : Stopping condition C, Fitness function δ, Population size ps, Selection
function sf , Recombination function rf , Recombination probability rp,
Mutation function mf , Mutation probability mp

Output: Population of optimized individuals P

1 t← 0;
2 P0 ← GenerateInitialPopulation(ps);
3 PerformFitnessEvaluation(δ,P0);
4 while ¬C do
5 Pt+1 ← {} ; // next generation
6 while |Pt+1| < ps do
7 p1, p2 ←Selection(sf ,Pt);
8 o1, o2 ←Recombination(rf ,rp,p1,p2);
9 Mutation(mf ,mp,o1);

10 Mutation(mf ,mp,o2);
11 Pt+1 ← Pt+1

⋃
{o1, o2};

12 end
13 t← t+ 1;
14 PerformFitnessEvaluation(δ,Pt);
15 end

Algorithm 1: Pseudo-code for a simple genetic algorithm. Here, the recombination is a
crossover between two solutions.

Four of the most common mutation and recombination operators are described in the
following paragraphs. Their usage in this thesis is described in Section 5.3.1.

HUX The half-uniform crossover (HUX [96]) operator swaps half of the bits that are not
equal in two given integer variables with one another.
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SBX Deb and Agrawal (1994) [73] propose the simulated binary crossover (SBX ) for the
variation of real, i.e. floating point values in a genetic algorithm. It is designed with respect to
a single-point crossover of binary-coded variables and uses two of its properties: the average
property and the spread factor property. The average property denotes that the average of
both variables incorporated in the crossover is the same before and after the crossover is
applied. The spread factor property denotes that a spread factor of β ≈ 1 is more likely than
any other β value, where β is defined as the ratio of the spread of the offspring values c1, c2

to that of the parent points p1, p2 with β = | c1−c2p1−p2 |. The distribution used by the SBX to
generate offsprings is defined as 0.5(n + 1) 1

βn+2 , where n is the distribution index. Larger
values of n let the generated offsprings be closer to their parents.

BitFlip The BitFlip operator goes through each bit of an integer variable and flips it if a
user defined probability is met. In detail, a 0 becomes a 1 and vice versa.

PM The polynomial mutation (PM ) [74] is used to simulate a bit flip operation on a real,
i.e. floating point value. Like the SBX, it uses a distribution index which indicates how close
the offspring values are located to the parent values. In more detail, the offspring c is created
by using a perturbance factor δ = c−p

∆max
with the parent value p and maximal permissible

perturbance ∆max. The mutated value is calculated as c = pδ∆max.
Besides this general usage of genetic algorithms, automated search based testing frame-

works use search based software testing to automatically create structure based tests, i.e. tests
with a high coverage [129]. TestFul [39] uses a hybridization of class and method based fit-
ness along with the combination of genetic algorithms and hill climbing. In the outer loop, a
classic genetic algorithm is used to generate test sets with a high structural coverage on the
SUT. The test sets contain constructor calls, method invocations and assignments of primitive
values. Instead of working only on the class level of the SUT, the inner loop solely considers
a single method. In the mutation phase of the outer loop, the parameters of single methods
are chosen by targeting the conditions in the method. A branch is connected to one condition
on the byte code level. It is divided between reachable and not reachable branches together
with evaluated and not evaluated conditions. The distance of a test to a desired branch is
computed with respect to the condition that forms the branch on the byte code level with the
following formula:

distance(a⊕ b) =


+∞ condition not evaluated
−∞ target branch executed
|a− b| otherwise

(2.5)

The variables a and b are the two parts that form a condition which may either be constants,
local variables or field variables. For instance, if the condition is (a == 1000), a would be
set to the current value when the condition is evaluated and b to 1000. Baresi et al. (2010)
[39] argue, that a ⊕ b, where ⊕ is any relational operator, are the only conditions found in
the byte code. Using the distance, hill climbing is used to enhance the coverage of a single
method invocation before going back to the outer loop. In the outer loop, the recombination
and selection ensures that method invocations with parameters that cause a high coverage are
spread out to the entire population. Baresi et al. (2010) [39] claim that TestFul outperforms
the tools RANDOOP [177], jAutoTest [118, 7] and ETOC [189]. Therefore, those tools will
not be explained any further.
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The tool EVOSUITE [81, 82] also uses a genetic algorithm to automatically create test sets
with a high structural coverage. The fitness function is computed using two main approaches of
search based software testing: the branch distance and whole test suite (WS) generation. With
branch distance, the one introduced by Korel (1990) [115] is meant. As the branch distance is
of major interest for every recent approach in automatic sequence-based test generation, it is
explained in more detail. First, it defines several branch types. In a CFG, if a node n is only
reachable by a subset of outgoing edges of a node ni, then n is control dependent on ni. Note
that in [115] the term “in the scope of control influence” is used rather than control dependency.
A branch b = (ni, nj) is a critical branch with respect to n, if n is control dependent on ni
and no path from nj to n exists. Branch b is a required branch with respect to n, if n is
control dependent on ni and an acyclic path from ni to n exists including b. Branch b is a
semi-critical branch with respect to n, if n is control dependent to ni and no acyclic path from
ni to n exists which includes b. Branch b is a non-essential branch with respect to n, if n is
not control dependent on ni. Figure 2.20 exemplifies those branch types on the example of
the iterative factorial method.

n0

n1 n2

n3 n4

C R

R

N

C

Figure 2.20: Branch types with respect to node n3 as defined in [115]. The types are C ritical,
Semi-Critical, Required, N on-essential.

As an example, in order to maximize the structural coverage, node n3, i.e. the body of
the while-loop is targeted. The program is executed with a random input and the path of
that execution is tracked. If the current branch is a non-essential or a required branch, the
program execution is continued through that branch. If the current branch is a critical or a
semi-critical branch, the program execution is terminated and hill climbing is used to find a
new input. In contrast to Baresi et al. (2010) [39], Korel (1990) [115] uses a more sophisticated
formula to measure the distance to branches. It is altered by Tracey et al. (1998) [191] and
depicted in Table 2.4.

The distance dmin(b,T ) is the minimum distance of branch b for all tests in test set T
following table 2.4. It is altered by EVOSUITE to the following formula:

d(b, T ) =


0 if the branch has been covered
v(dmin(b,T )) if the predicate has been executed at least twice

1 otherwise
(2.6)

Here v(x) is a function which converts the distance to [0, 1] with v(x) = x/(x+1). A predicate
has to be executed at least twice in order to avoid circular behavior of the branch distance.



42 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.4: Branch distance as defined by Tracey et al. (1998) [191]. K is a constant with
K > 0.

condition branch distance
boolean if TRUE then 0 else K
a = b if |a− b| = 0 then 0 else |a− b|+K
a 6= b if |a− b| 6= 0 then 0 else K
a < b if a− b < 0 then 0 else (a− b) +K
a ≤ b if a− b ≤ 0 then 0 else (a− b) +K
a > b if b− a < 0 then 0 else (b− a) +K
a ≥ b if b− a ≤ 0 then 0 else (b− a) +K
a ∨ b min(cost(a), cost(b))
a ∧ b cost(a) + cost(b)
¬a Negation is moved inwards and propagated over a

The final fitness function is defined as follows:

fitness(T ) = |M | − |MT |+
∑
bk∈B

d(b, T ) (2.7)

Here M are the methods of the SUT and MT are methods of the SUT executed by test set
T . Note that this fitness function targets all branches at once which is called “whole test suite
generation” (WS). Fraser and Arcuri (2013) [82] claim that this strategy outperforms a single
branch strategy using the described branch distance adapted by the approach level [203]. A
more detailed study [165] backs those results and stresses that those cases, where the single
branch target outperforms the whole test suite generation, are special cases rather than general
deficiencies of the whole test suite approach. Note that here test suites are denoted as test sets.
In addition, the EVOSUITE tool does not only contain the described fitness function and an
overall well balanced setup for a genetic algorithm, but several other features which promote
the generation of test cases. For instance, the generation of strings and primitives depend on
the strings and primitives that are used in the SUT as constants. The usage of generic types
is supported by a custom type system. Overall, from the various options EVOSUITE offers,
some also may lead to a worse result than the default settings which are strongly recommended
[82].

Rojas et al. (2016) [165] enhance the whole test suite generation (WS) approach by an
archive. If a new test is discovered, which covers an at that time uncovered branch, the
branch and the test are added to an archive. All branches which are contained in that archive
are no longer targeted by the fitness function. The fitness function in the whole suite archive
approach is:

fitness(T,B) =
∑

b∈B\C

d(b, T ), (2.8)

where C is the archive, B are all branches in the SUT and T the test set. Rojas et al. (2016)
[165] claim that the whole suite archive (WSA) approach outperforms the original WS ap-
proach.

The tool GAMDR [28] uses the same fitness function as EVOSUITE. Where EVOSUITE
uses the traditional mutation operators remove, change and insert to mutate single randomly
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chosen test cases, GAMDR randomly chooses reached but not covered branches. The predi-
cates of the chosen branches are analyzed and those statements in the test case are identified
which have an impact on the predicates. These statements are then removed or changed or new
statements are inserted with a probability of 1/3 for all three mutation operators. Aburas and
Groce (2016) [28] claim that GAMDR achieves higher branch coverage than EVOSUITE for
complex programs which are hard to cover by tests generated by an automated test generator.

2.11.4.2 Multi and Many Objective Genetic Algorithms

[148, 149] change the WS [82] and WSA [165] approaches to a multi objective formulation.
That is, the fitness function does no longer combine all targeted branches by summing up all
branch distances, but all branches are targeted individually. The fitness function is enhanced
to a fitness vector. Without loss of generality, it is assumed for the remainder of this thesis,
that all objectives in the fitness vector are to be minimized by the multi objective algorithm.
As there is no longer one distinct value per solution to compare, the concept of dominance is
introduced in multi-objective genetic algorithms [209]:

Definition 2.4 Given two solutions x, y and their fitness vectors f(x), f(y) ∈ Rn, x domi-
nates y, denoted as x ≺ y, if and only if ∀i ∈ {1, 2, ...n} : fi(x) ≤ fi(y) and ∃j ∈ {1, 2, ...n} :
fj(x) < fj(y) [209].

This dominance is also called Pareto dominance. A solution x∗ is Pareto optimal if there
does not exist another solution x that dominates it. The union of all Pareto optimal solutions
is called Pareto set (PS): PS = {x | @ y, y ≺ x} and the corresponding objective vector set
of the PS is called the Pareto front [119]. Figure 2.21 shows a graphical representation of
Pareto dominance. Given is a SUT with only two branches and five fitness vectors from the
five corresponding solutions, i.e. test sets, {A, ..., E}. All test sets in the grey rectangle (A
and B) are dominated by C because C is better for both objectives f1 and f2. Test set C
does not dominate D. C is closer to cover f1 but worse than D on the other test target f2.
Similarly, C does not dominate E. Thus, C,D and E are non-dominated by any other test set
while A and B are dominated by either C or D.

Given the dominance relation, multi objective optimization problems may lead to a set of
Pareto optimal solutions, i.e., solutions which are all optimal in their position of the objective
space. Especially when the number of objectives is greater than three, this may lead to the
dominance resistance phenomenon, which denotes the incomparability of solutions caused by
an increasing proportion of non-dominated solutions [119].

The recent literature differentiates between multi objective (up to four optimization goals)
and many objective (above three optimization goals) algorithms. Nonetheless, many objective
algorithms are often presented as a subset of multi objective algorithms. The genetic algo-
rithms used for the performance test generation in this thesis use a many objective fitness
function, which is described in Section 5.2.2.5. Detailed surveys on many objective genetic
algorithms can be found in [119, 199]. As a basis algorithm for the most recent approaches
using multi and many objective optimization in automated structural test generation, the non
dominated sorting genetic algorithm (NSGA-II) [75] is firmly explained here. A pseudo-code
listing is given in Algorithm 2.

As the simple single objective genetic algorithm, the NSGA-II starts with an initial random
set of solutions. Until the stopping condition, like a certain time limit, is reached, the next
generation of solutions is evolved as follows. At the begin a new offspring is generated and
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Figure 2.21: Visualization of Pareto dominance. C dominates all solutions in the grey area.

Input : Stopping condition C, Fitness function δ, Population size ps, Selection
function sf , Recombination function rf , Recombination probability rp,
Mutation function mf , Mutation probability mp

Output: Population of optimized individuals P

1 t← 0;
2 Pt ← GenerateRandomPopulation(ps);
3 while ¬C do
4 Qt ← GenerateOffspring(rp,rf ,mp,mf ,Pt) Rt ← Pt

⋃
Qt ;

5 F← FastNonDominatedSort(Rt);
6 Pt+1 ← {} ;
7 d← 1;
8 while |Pt+1|+ |Fd| ≤ ps do
9 CrowdingDistanceAssignment(Fd);

10 Pt+1 ← Pt+1
⋃
Fd;

11 d← d+ 1;
12 end
13 Sort(Fd) ; // according to the crowding distance
14 Pt+1 ← Pt+1

⋃
Fd with size ps − |Pt+1|;

15 t← t+ 1;
16 end

Algorithm 2: Pseudo-code for the NSGA-II.

then added to the current generation (line 4-5) using mutation (e.g. adding or removing test
cases) and recombination (e.g. rearranging test sequences). Afterwards, the parents of the
next generation are selected preferring non-dominated solutions in the current population (line
6). The next generation is then created selecting the best fitting solutions from the current
generation. The crowding distance is used in order to make a decision about which test cases
to select: non-dominated test cases that are far away from the rest of the population have
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higher probability of being selected (line 9-15). The fast dominated sort is used to preserve
solutions from the current approximation of the pareto optimal set in the next generation
(lines 6 and 15).

Although the NSGA-II is more a multi objective than a many objective optimization
algorithm, it is often used as a base for many objective approaches and compared to them
[119, 199]. For instance, to maintain a wider spread set of test sets, the εMOEA [76] uses the
ε dominance relation introduced by Laumanns et al. (2002) [117]. In contrast, the MOEA/D
[120] does not use a classic selection operator. Instead, it decomposes a multi objective into
several single objective sub optimizations. It uses aggregation coefficient vectors to optimize
each objective for its own. This is done in order to achieve a wider spread in the solutions and
to optimize the computation time.

Themany objective sorting algorithm (MOSA) [148] is explicitly designed for the generation
of test sets with a high structural coverage. Using the branch distance and the approach level,
all branches are targeted individually. The approach level is designed to avoid local optima by
incorporating all predicates that are evaluated by the given input when reaching the targeted
branch. It benefits those predicates which are evaluated targeted, i.e. predicates that are
needed to reach the desired branch [204]. Using those objectives, MOSA additionally changes
the original NSGA-II in four ways:

1. The non-dominated sort selection (line 6 in Algorithm 2) is altered by a custom preference
sorting which prefers test cases with uncovered branches.

2. When the algorithm has to decide whether two test cases dominate each other or not
(line 6), the dominance comparator in MOSA only iterates over uncovered targets and
stops immediately if it finds two uncovered targets for which the two test cases do not
dominate each other.

3. Another crowding distance assignment is used (line 10). The test cases which have a
higher distance to the rest of the population are given a higher probability of being
selected. The function is adapted from [113].

4. A second population, called archive, is used to preserve test cases which satisfy previously
uncovered targets as candidates for the final test set.

A recent extension of MOSA is DynaMOSA [149] which dynamically selects the optimiza-
tion targets. That is, with respect to the general goal of test cases with a high structural
coverage, DynaMOSA uses the control dependency of the targets. At the start, DynaMOSA
only selects those targets that are free of control dependencies. This set of targets is then
updated with respect to the targets that were included during the generation of the new off-
spring (line 5 in Algorithm 2). That is, all uncovered targets that are control dependent on
the newly covered targets are added to the target set. Panichella et al. (2017) [149] claim, that
DynaMOSA has a significantly better performance in terms of achieved coverage of the gen-
erated test cases than MOSA and WSA. In a recent study, Campos et al. (2017) [59] support
these conclusions.

2.11.4.3 Benchmarking Search Based Approaches

The annual Java Unit Testing Tool Competition [42, 166, 167, 17] compares the effectiveness
of JUnit test generators in terms of achieved coverage (instruction, branch, ratio of killed
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mutants), the faults that were found, the test suite size and a given time limit. The score also
incorporates a penalty for uncompilable and unstable, called flaky, test cases. A summary of
the score values is given in Table 2.5d. Note that here random testing is considered to be a part
of search based testing and that the score values of different years are not directly comparable
as the calculation of the score changes over time. Nonetheless, it provides a good overview of
the current achievements in search based software testing and automatic test generation. For
those years for which a manual test is given it outperforms the automatic generators. Only in
2015 is EVOSUITE outperformed by another test generator, GRT.

Table 2.5: Results of the SBST Unit testing tools competitions [17]. Results of different years
are not comparable to each other. Different results found for EVOSUITE at the FITTEST
2013.

(a) Results of the SBST 2013 Java Unit Testing Tool Competition [25, 42]

Tool RANDOOP EVOSUITE T2
Score 101.8129 156.9559 50.4938

(b) Results of the FITTEST 2013 Java Unit Testing Tool Competition [41]

Tool RANDOOP EVOSUITE T3 Manual
Score 93.45 205.26 [83] 199.57 [158] 144.98 210.45

(c) Results of the SBST 2015 Java Unit Testing Tool Competition [166]

Tool RANDOOP EVOSUITE T3 JTExpert MOSA GRT Manual
Score 93.45 190.64 186.15 159.16 189.22 203.73 210.45

(d) Results of the SBST 2016 Unit Testing Tool Competition [167]

Tool RANDOOP EVOSUITE T3 JTExpert
Score 747 1127 978 931

2.11.4.4 Genetic Algorithms in GUI Test Generation

Search based testing is also successfully used to generate GUI tests [60]. Static approaches,
such like GUITAR [142] build the GUI model using a ripping procedure before generating the
test cases. Still, GUITAR is more of an adaptable framework rather than a unique approach
on GUI test generation. Dynamic approaches build the GUI model and generate the test cases
dynamically. EXYST [93, 94] uses the experiences made with EVOSUITE to generate small
GUI test sequences with a high code coverage. Pidgin Crasher [71] is developed to find GUI
sequences which cause system crashes. Menninghaus et al. (2017) [135] compare several multi-
objective genetic algorithms (NSGA-II [75], PESA2 [68] and SPEA2 [213]). They generate
GUI tests with the same general settings but are not able to distinguish the three genetic
algorithms in terms of achieved test coverage and conclude that more effort on configuration
and optimization is needed in order to benefit from one genetic algorithm or the other.
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2.11.4.5 Analyzing Evolutionary Algorithms

In this thesis, single and multi-objective genetic algorithms are used to create test sets with
a high structural coverage. The different approaches are not only compared in terms of the
results, i.e. the coverage of the generated test cases, but in the way they approach their goal.
To quantify the several genetic algorithms and their settings, the evolvability metrics described
in this section are used.

Evolvability describes the capability of a genetic algorithm to create a child generation
that has a better fitness than the parent generation. As a random approach is also capable
to find better solutions, the distributions of parent and children populations need to be taken
into account. While the final result of a genetic algorithm (e.g. the coverage of the generated
test sets) describe the general capability of the GA to generate the desired solutions, the
evolvability allows a qualitative analysis on a local level [32].

For the remainder of this section, let {f∗i }ni=1 be the sequence of the best fitness values
after each iteration 1 ≤ i ≤ n. The value of the best fitness value is monotonically increasing
with f∗i 6= f∗i+1 ⇔ f∗i < f∗i+1. Usually, genetic algorithms preserve the best solution which is
called elitism. A sequence of fitness values may be transformed into a binary sequence {bi}n−1

i=1

with

bi =

{
0 if f∗i = f∗i+1

1 otherwise.
(2.9)

Change Rate (CR) The change rate (CR) represents the relation between the number of
iterations with an increasing fitness value and the total amount of iterations [29]:

CR =

∑n−1
i=1 bi
n

(2.10)

The CR does only quantify the relative number of iterations with increasing fitness. It does
not analyze the sub-sequences of increasing or stagnating fitness values.

Population Information Content (PIC) In contrast to the CR, the population informa-
tion content (PIC) [29] measures whether a genetic algorithm is more likely to follow only a
single gradient or to explore different basins of attraction. It analyzes the binary sequence
{bi}n−1

i=1 as a sequence of overlapping blocks of two bits. They determine whether the fitness is
increasing after stagnation ({01}), stagnating after increasing ({10}), continuously stagnating
({00}) or increasing ({11}). The probability of encountering one of those sub-sequences is given
by the number of times the sub-string is found divided by the total number of sub-sequences:

P{bi,bi−1} =
|{bibi−1}|
n− 1

(2.11)

The average amount of information contained in the binary sequence {bi}n−1
i=1 is then cal-

culated as sum of the probabilities for a changing fitness. Note that only two sub-strings with
a changing fitness exist: {01} and {10}. Aleti et al. (2017) [29] sum the probabilities for each
bit in the given bit-string which means that the number of iterations in a genetic algorithm
influences the PIC. In contrast, with respect to the entropy by Shannon and Weaver (1949)
[179], the PIC is defined as:

H = −P{01}log2P{01} − P{10}log2P{10} (2.12)
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The H value approaches zero if the sequence has no changes. The lower the value of
H, the more irregular the fitness development. The general assumption of the PIC is, that a
fitness development which undergoes improvements with interspersed non-improving iterations
is more likely to explore different basins of attractions while continuous improvement indicates,
that a single gradient is followed [29].

An overview of recent methods for fitness landscape analysis can be found in [157].

2.11.4.6 Additional Issues in Search Based Testing

In addition to the mentioned tools, Memon (2001) [131] focuses on coverage criteria for inter-
and intra-component coverage. Yuan et al. (2011) [211] extend that idea with covering arrays
[62] to unfold faults more goal-oriented by controlling the sequence length, the possible posi-
tions of events and certain combination of events. [36] investigate the best sequence length of
tests regarding specific configurations. Fraser and Arcuri (2011) [81] stress the correct bloat
control, with bloating being the disproportional quickly growth of the length of test sequences.

Sharma et al. (2010) [180] compare the general approach of sequence-based test genera-
tion to constraint-based test generation. Unlike constraint solvers that are mentioned with
symbolic execution constraint-based test generation is used to generate complete data struc-
tures for testing. A constraint-based approach would generate a data structure on the basis
of a given general definition of this structure. For instance, given the definition of a heap, a
constraint-based approach would then produce as much heap structures as necessary to test
the implementation fully. The tool Korat [127, 137] generates complex data structures based
on Java predicates which then can be used for testing the implementation of these struc-
tures. Since in this thesis interchangeable test sequences are used, none of the approaches on
constraint-based test generation is applicable.

All presented tools and approaches are guided by various sets of parameters. For each new
class of SUTs encountered, the software tester has to optimize those parameters. Most tools
are configured such that they give good results for the most common SUTs. Arcuri (2011) [36]
focuses his research on the correct strategies to set the parameters to the desired optimum. He
states that the default parameters of EVOSUITE always give good results but that manual
parameter manipulation may also lead to worse results.

2.11.5 Summary

An overview of all tools reviewed in this section is given in Tables 2.6 and 2.7. It should be
noted that none of the reviewed tools is designed to generate interface based test cases as
required by this thesis. Nonetheless, those tools which are capable of generating test cases
based on interfaces after some minor alterations are evaluated in more detail in Section 5.2.1.
Most notably, while some older tools like KLEE are still maintained [14], the most recent
tools use a search based approach including random search. Genetic algorithms which use the
branch distance approach and either a whole suite or many objective approach which targets
all branches are favored. Due to the danger of path explosion, concolic testing seems not to be
of recent interest. Thus, recent automatic test generation approaches seem to prefer a guided
search based on randomness instead of proven complete test generators. Those approaches
which are based on guided randomness always face the pitfall that special cases may be created
which are overseen by the guiding algorithms. Several new automatic test generators which
only use a user given interface for the sequence generation are created throughout this thesis.
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Including those which are specialized for the generation of test cases for high-dimensional
spatio-temporal index structures.

2.12 Conclusions for this Thesis

In order to create a high-dimensional spatio-temporal index structure for discretely changing
planing data and a mostly automated approach to analyze the performance behavior of that
method in contrast to existing ones without the usage of an artificial benchmark, the following
conclusions from the previous sections should be kept in mind:

• The most prominent spatial access method, the R*-tree, suffers from the curse of dimen-
sionality as well as the only structure which is able to handle discretely changing spatial
data well, the RST-tree.

• High dimensional access methods do not support spatio-temporal data. An extension of
the R*-tree, the X-tree may be altered such like the RST-tree but it is heavily system
dependent and may not be suitable for in-memory use.

• No benchmark exists for the desired spatio-temporal or high-dimensional requirements,
such that a new benchmark has to be created.

• The definition of benchmarks and workload generation and the requirements of good
benchmarks suggest a strong community or another possibility of verification, for in-
stance by real-world data which is not applicable for a complete new type of structure.

• Performance measurement and comparison is always system specific and when using
Java, one has to keep in mind that both, the JIT compilation and the measurement
using bytecode instrumentation may affect the general conclusion of an evaluation.

• With the general goal for automated performance test generation and comparison the
necessity of user input should be minimized. The system created in this thesis uses
structural coverage.

• As no flexible coverage recording tool for Java programs exists, a new one is required.

• For the desired automated test generation, search based test generation is of the most
recent interest. Especially the use of either a single objective but whole suite approach
using a genetic algorithm or a multi objective genetic algorithm.





Chapter 3

The Spatio-Temporal Pyramid
Adapter

Section 2.2.3 shows that no spatio-temporal indexing technique exists which handles high-
dimensional data well and no high-dimensional indexing technique exists which is able to
store now-relative data. In this chapter, a new spatio-temporal high-dimensional indexing
technique, the Spatio-Temporal Pyramid Adapter (STPA) which performs well on both data
types, is presented. It is partly published in [134]. It is shown that the most promising
existing approach for the indexing of spatio-temporal high-dimensional data, the X-tree, is not
a sufficient base for the index structure. After presenting the design of the STPA (Section 3.2)
and its implementation (Section 3.4) in detail, its query performance is evaluated (Section 3.5)
using the workload generator for spatio-temporal data according to Saltenis and Jensen (1999)
[172]. An evaluation of the STPA based on automatically generated test sets is provided in
Section 6.2.1.

3.1 Analysis of the X-Tree

From the review of existing approaches in high-dimensional indexing, the X-tree [46] seems
to be the most promising for the adaption of spatio-temporal data. In addition, it is one
of the most often cited index structures1. The probably best technique for the indexing of
discretely changing spatio-temporal data, the RST-tree, is based on the R* [44]. As the X-tree
is also based on the R*-tree, the alterations made by the RST-tree may also be applied on the
X-tree. This section evaluates, why the X-tree is not chosen as a basis for the part of handling
high-dimensional data in the new technique.

Instead of the overlap defined by Beckmann et al. (1990) [44] (Equation 2.1), Berchtold
et al. (1996) [46] use the following formular to compute the overlap in an R-tree:

overlap =

area

( ⋃
i,j∈{1,..,n},i 6=j

Ri ∩Rj

)

area

( ⋃
i∈{1,..,n}

Ri

) (3.1)

11989 citations according to Google Scholar on May, 4th 2017

53
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with Ri being the minimum bounding rectangle (MBR) of a directory node and function
area computing the area for two-dimensional and the volume for higher dimensional MBRs.
Dividing this overlap by the number of directory nodes in the corresponding R-tree results
in the relative overlap o ∈ [0, 1]. According to Berchtold et al. (1996) [46], a high value of o
indicates a probably poor query performance. Every time a query is performed, all directory
nodes have to be traversed, whose MBRs are affected by the query. A high overlap between
the directory nodes increases the number of nodes that have to be traversed in contrast to a
low overlap between the directory nodes.

Definition 1a (Overlap)
The overlap of an R-tree node is the percentage of space
covered by more than one hyperrectangle. If the R-tree
node contains n hyperrectangles , the overlap
may formally be defined as

.1

The amount of overlap measured in definition 1a is re-
lated to the expected query performance only if the query
objects (points, hyperrectangles) are distributed uniformly.
A more accurate definition of overlap needs to take the actu-
al distribution of queries into account. Since it is impossible
to determine the distribution of queries in advance, in the
following we will use the distribution of the data as an esti-
mation for the query distribution. This seems to be reason-
able for high-dimensional data since data and queries are
often clustered in some areas, whereas other areas are virtu-
ally empty. Overlap in highly populated areas is much more
critical than overlap in areas with a low population. In our
second definition of overlap, the overlapping areas are
therefore weighted with the number of data objects that are
located in the area.

Definition 1b (Weighted Overlap)
The weighted overlap of an R-tree node is the percentage of
data objects that fall in the overlapping portion of the space.
More formally,

. 2

1.  denotes the volume covered by A.
2.  denotes the number of data elements contained in A

In definition 1a, overlap occurring at any point of space
equally contributes to the overall overlap even if only few
data objects fall within the overlapping area. If the query
points are expected to be uniformly distributed over the data
space, definition 1a is an appropriate measure which deter-
mines the expected query performance. If the distribution of
queries corresponds to the distribution of the data and is non-
uniform, definition 1b corresponds to the expected query
performance and is therefore more appropriate. Depending
on the query distribution, we have to choose the appropriate
definition.

So far, we have only considered overlap to be any por-
tion of space that is covered by more than one hyperrectan-
gle. In practice however, it is very important how many
hyperrectangles overlap at a certain portion of the space.
The so-called multi-overlap of an R-tree node is defined as
the sum of overlapping volumes multiplied by the number of
overlapping hyperrectangles relative to the overall volume
of the considered space.

In Figure 3, we show a two-dimensional example of the
overlap according to definition 1a and the corresponding
multi-overlap. The weighted overlap and weighted multi-
overlap (not shown in the figure) would correspond to the ar-
eas weighted by the number of data objects that fall within
the areas.
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Figure 3: Overlap and Multi-Overlap of
2-dimensional data
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Figure 2: Overlap of R*-tree Directory Nodes depending on the Dimensionality

a. Overlap (Uniformly Distributed Data) b. Weighted Overlap (Real Data)(a) Original computed relative overlap of directory nodes (y-axis) of the R*-tree as published in [46].
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R-tree variants and implementations.

Figure 3.1: Comparison of the relative overlap of directory nodes according to Berchtold
et al. (1996) [46]. The upper plot shows the original computation, the lower plot shows the
computation done in this thesis.

Figure 3.1 shows the original evaluation of the overlap on an R-tree which contains uni-
formly distributed data (3.1a) and the evaluation of the overlap of R-, R*- and X-tree along
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with the R*-tree without the forced reinsert being performed instead of a split (3.1b). Since
the setup for the original evaluation is lost2, the parameters for the new evaluation are set
in order to reproduce the general behavior of the original evaluation. For each dimension
d ∈ {2, .., 32} 1000 test cases are computed, each with an index that contains 10000 uniformly
distributed points in [0, 1]d. The points are inserted one by one into an empty index. The
plots show the mean relative overlap for each dimension. The relative overlap of the R*-tree
seems to reflect the original evaluation. The dent between the dimensions 4 and 6 seems to be
misplaced, but due to the uncertainty of the R*-tree and the fact that the original evaluation
may not display the mean but a single test set, it is very likely that the index used for the
original evaluation is the R*-tree without the forced reinsert as an overflow technique.

Since the original implementation is lost3, the implementation provided by the eXtensible
and fleXible Library (XXL) [24] for Java is used. To the knowledge of the author, it is the
only available implementation of the X-tree. In addition, it is recommended by the authors of
the original paper4. Figure 3.1b shows that the X-tree performs better in terms of the relative
overlap but is clearly outperformed by the R*-tree. More importantly, the relative overlap
does not rise for more than 10 dimensions, but is slowly declining with an increasing number
of dimensions. The question arises whether the relative overlap is a suitable metric to describe
the decreasing query performance when the number of dimensions increases (see Section 2.2.3).
The same conclusions can be made for the weighted overlap which is also proposed in [46].
In addition, the X-tree is based on system specifics such as the CPU time needed to read a
block from the hard disk. Such parameters have no counterpart for an index which works in
memory.

3.2 Design of the Spatio-Temporal Pyramid Adapter

The new STPA technique needs to incorporate both, spatio-temporal and high-dimensional
data. How this goal is approached is shown in this section.

Four different possible approaches for the generation of a new high-dimensional spatio-
temporal index structure exist: (1) combining an existing spatio-temporal and an existing
high-dimensional indexing technique, (2) extending an existing spatio-temporal technique to
support high-dimensional data, (3) extending an existing high-dimensional technique to sup-
port spatio-temporal data, (4) creating a completely new structure.

Following from the indexing approaches discussed in Section 2.2 and the conclusions for
the X-tree in Section 3.1, (1) seems, to the knowledge of the author, not applicable. For
(2), a spatio-temporal indexing technique has to be altered such that it does not face the
curse of dimensionality. Since the overlap seems not to be a cause of a decreasing query
performance with an increasing number of dimensions (Section 3.1), two other causes can be
identified. First, if the high-dimensional data points are stored inside the directory nodes
and these nodes are stored on disk blocks, which is the most common technique, the number
of entries which can be stored per node naturally decreases with the number of dimensions.
Secondly, usually, if a data point is computed, each of its dimensions has to be computed.
With an increasing number of dimensions, the computation time for each data point also

2Personal contact with the authors. Stefan Berchtold: Nov. 20th 2014, Daniel A. Keim: May 11th 2015,
H.-P. Kriegel: May 12th 2015

3ibid.
4ibid.
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increases. To the knowledge of the author, all spatio-temporal indexing techniques face the
curse of dimensionality and the described problems cannot be eliminated without making the
structures incapable of handling spatial data, i.e. hyper-rectangles. Much more promising is
(3), especially in contrast to a completely new structure (4). As a matter of fact, a high-
dimensional structure should not face the curse of dimensionality. Using it as a basis for the
new structure, one has to find an appropriate representation for the now-value. Section 2.1.2.1
discusses the different possible representations of now in an index structure. Note that the
concrete temporal and especially spatio-temporal model is not of concern as the index should
support all kinds of spatio-temporal data models. The choice of one representation depends
on the underlying high-dimensional technique. To the knowledge of the author, none high-
dimensional technique except for the X-tree does support spatial data. Therefore, the chosen
indexing technique has to be extended to be capable of handling interval data, i.e. storing
a begin and an end value in each dimension per object instead of a single value. By now,
two steps are required: Finding an appropriate mapping of spatial data onto point data and
incorporating now in that mapping.

As a matter of fact, a high-dimensional structure should not have any problems indexing
objects with d or even 2d dimensions. The new STPA maps spatial data onto point data
by doubling the dimensionality of the points. Given a d-dimensional rectangle with each
dimension containing two values, begin (`) and end (a), the d ` values of each dimension are
mapped to the first d values of the point and the d a values are mapped on the second d values
of the point. Mapping the d-dimensional rectangles onto 2d-dimensional points permits the
usage of the possible representations of now as described in Section 2.1.2.1. In particular, the
most efficient approach, the POINT approach, relies on data structured in intervals. Using
a value outside the data space or the maximum or minimum value to represent now would
shift the converted points to the borders of the data space and make queries much more
complex or always lets them cover clearly more space than needed by the actual query. Some
high-dimensional techniques use one or more constant data points to represent a set of high
dimensional points and separate them by the data point the point has been clustered to and
the distance to that point (Section 2.2.3). Using one of those techniques and excluding the
now-value from the clustering and distance computation would not expand the now-relative
queries. In contrast, the now-relative points are then more likely attracted by the constant
data points which already are covered by most of the query rectangles. For instance, a two-
dimensional point p = (1, now) would be clustered only with respect to the first value (1) which
makes it more likely that p is near to a constant data point. From the given techniques, the
Pyramid Technique [46] is chosen because it is based on the R+-tree which is already supported
by most of the current databases and its extensions make it possible to adapt dynamically to
different distributions of data (see the Extended Pyramid Technique [46] or the P+-tree [212]).

As a reminder, the Pyramid Technique divides the d-dimensional data space into 2d pyra-
mids. A d-dimensional point is mapped onto a decimal value. The digits to the left of the
decimal denotes the number of the pyramid at which the point has the lowest height, i.e. the
distance along that pyramid’s center axis to the center of the data space. The digits to the
right of the decimal point are the actual height. It is assumed that the complete d-dimensional
data space lies in [0, 1]d.

Figure 3.2 displays the conversion of now-relative rectangles if the Pyramid Technique is
used as underlying technique and now is mapped to the center of the data space. It assumes
a two-dimensional data space with one now-relative dimension (d0). For the remainder of this
thesis, the data space [0, 1]d is always assumed. For the static rectangle R0, the conversion
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Figure 3.2: Example conversion of spatio-temporal rectangles (left) to pyramid values (right).
The two graphics on the right are both a two-dimensional view on the very same four dimen-
sional space from orthogonal perspectives. In order to keep the numeration of the pyramids
comprehensible, the dimensions of the 2d-space are numbered from 0 to 2d− 1.

works as follows: The beginnings of the dimensions d0 (0.1) and d1 (0.2) are mapped to
the dimensions d∗0 and d∗1 and the ends at dimensions d0 (0.4) and d1 (0.5) are mapped to
the dimensions d∗2 and d∗3 respectively. The 2-dimensional data space is divided into eight
pyramids. The pyramid in which the mapped point has the highest distance is p0 and the
distance along axis d∗0 is 0.4 which results in a pyramid value of 0.4 for R0. The conversion
for the other rectangles works analogously, except for the now-relative part. For instance, the
now values in R3 are converted to the center of the data space in the respective dimension,
which is always 0.5 for the original Pyramid Technique. Doing so, the interval on dimension
d0 is converted to (0.7, 0.5), with 0.7 being the value of the begin and 0.5 the current value of
now. Since an interval must never have a start value greater than its end value, both values
have to be swapped with conversion. As imagined, the conversion of now leads to the effect
that the now value does not affect the computation of the corresponding pyramid value as the
distance for the dimension containing now is 0. Note that the Extended Pyramid Technique
[47] does not use 0.5 as center in each dimension, but an approximated median of all inserted
points in each dimension. The center would therefore dynamically shift during the usage of
the STPA.

The very basis of the STPA for the insertion of a given spatio-temporal MBR Ri of the
data datai with d dimensions is:

1. Map Ri to the [0, 1]d space by dividing each value by the maximum in the corresponding
dimension.
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2. Convert the rectangles Ri = ((r`i,0, ..., r
`
i,d−1), (rai,0, ..., r

a
i,d−1)) to the points Pi = (r`i,0,

..., r`i,d−1, r
a
i,0, ..., r

a
i,d−1), setting now to the current median value in the corresponding

dimension.

3. Compute the Pyramid values pi of Pi according to Berchtold et al. (1998) [47].

4. Store pi as key with a pointer to the original data datai as value in a B+-tree, as suggested
by Berchtold et al. (1998) [47].

5. (Extended Pyramid Technique:) If the distance of the current used median and the
actual median exceeds a given threshold, rebuild the index with the actual median [47].

The lookup, deletion and update of the STPA work analogously to the insertion procedure.
The original object is simply converted by the same procedure as for the insertion and then
the lookup, deletion or update is computed on the underlying B+-tree.

3.3 Querying

The underlying B+-tree only supports one-dimensional range queries. In addition, the con-
version of now to a fixed value in conjunction with the nonetheless constantly ongoing time
requires complex manipulations of any spatio-temporal query performed on data stored with
the STPA. Each of these conversion steps is presented in this section. As an overview, one has
to consider the following manipulations, given a spatio-temporal query consisting of a query
type and a d-dimensional query rectangle q in the [0, 1]d space.

1. Identify the interval query types affected by the spatio-temporal query.

2. Convert the spatio-temporal query to the identified interval queries in every dimension.

3. Convert the interval queries to two-dimensional region queries on the mapped pyramid-
space.

4. Adapt the region queries if they contain now or if they match the current value of now
(now∗).

5. Merge the resulting d two-dimensional region queries to one 2d-dimensional query in the
pyramid space.

6. Convert the query to up to 4d range queries on the underlying B+-tree according to the
Pyramid Technique [47].

As the query is performed on the corresponding MBRs of each object, one has to note that
every object in the result set is only a very good preselection and may contain false positives.
Therefore, every spatio-temporal object in the result set has to be matched with the original
query at the end of the query process to remove these false positives. Every conversion step is
described in more detail in the following subsections. Figure 3.5 provides a complete example
for a now-relative query on a two-dimensional space with one temporal (d0) and one spatial
(d1) dimension.
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3.3.1 (1) Identify Interval Query Types

Since the data is partitioned into intervals in each dimension, the STPA first needs to convert
the query into interval queries. Allen (1983) [31] and Kriegel et al. (2001) [116] suggest 13
relationships between intervals which are visualized in Figure 3.3.

finishedBy contains startedBy

before meets overlaps equals overlappedBy metBy after

starts during finishes

Figure 3.3: Thirteen general interval relationships according to Allen, Kriegel et al. (1983,
2001) [31, 116]. The gray line denotes the query interval, the black line a possible match to
that query.

He et al. (2013) [97] combine these relationships to the eight fundamental relationships
between two d-dimensional objects suggested by Egenhofer (1989) [78]. Likewise, the STPA
determines which interval queries are affected by the given d-dimensional query and unites
the ranges of these interval queries. In contrast to the approach given by He et al. (2013)
[97], it is not efficient to split the query into several sub-queries and combine the results with
logical operators like AND or OR. The STPA would either need to join the possibly large
result sets of the sub-queries or track which elements already have been matched by a query.
He et al. (2013) [97] suggest to use a flag for every element and every dimension to depict if
an element has already been visited by a query in that dimension. This also means that this
flag has to be reset after every query. Just like the join of the result sets of every sub-query in
the first variant, this reset requires each queried element to be called again and causes a large
overhead of I/O operations. Table 3.1 shows which interval query is affected by which of the
fundamental relationships.

Table 3.1: List of the general interval relationships which are affected by the eight relationships
between n-dimensional objects according to He et al. (2013) [97]. The covers and coveredBy
interval relationships are considered to be special cases of the original equals relation between
intervals with and without the borders [97].

Relationships between objects [78] Interval relationships [31]
disjoint before, after
meet meets, metBy
overlap overlaps, overlappedBy
equal equals
contain contains
contained during
cover covers
coveredBy coveredBy
not affected finishes, finishedBy, starts, startedBy
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3.3.2 (2 + 3) Conversion to Region Queries

After identification of the query intervals to be used, the interval queries need to be mapped on
the 2d pyramid space. Figure 3.4 shows how a one-dimensional interval query (q`, qa), where
q` is the begin and qa is the end of the query interval, is converted into a two-dimensional
region query.
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Figure 3.4: 12 queries on intervals. The gray area shows which data is affected by an interval
query (q`, qa) when converted into a two-dimensional region query. The x-axis denotes the
value of the interval’s begin, the y-axis denotes the value of the interval’s end. Note that no
point lies beneath the diagonal and all points are lying inside [0, 1] in every dimension. The
equals query is a point query on (q`, q`) and (qa, qa) respectively (according to He et al. (2013)
[97]).
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A two dimensional region query always queries those objects which are contained in the
space between the lower left (b`, e`) and upper right points (ba, ea) of the query rectangle
including the borders. For instance, a converted finishedBy query would query the objects
between (0, qa) and (q`, qa), whereas a converted before query would query the objects between
(0, 0) and (q`, qa).

3.3.3 (4) Adapt to now-relative Data

Before performing the query, the STPA also needs to incorporate now-relative data into the
generated range queries for the following two cases:

1. The original n-dimensional interval query itself contains now-relative values, thus the
end value in at least one dimension equals now.

2. The interval query matches the current value of now which is denoted as now∗.

For every one-dimensional interval query (q`, qa) the STPA has to determine how to change
the converted two-dimensional region query. Table 3.2 lists how to adapt the resulting region
query for each of the query types from Figure 3.4. Note that the now-relative values have
been stored as the center value of the pyramids in the specific dimension d (cd).

Despite the fact that the finishes, finishedBy, starts, and startedBy queries are not affected
by any of the original eight relationships between objects as shown in Table 3.1, their conversion
is shown in Figure 3.4 and Table 3.2 because one may want to define more specific temporal
queries. In more detail, the steps required for adaption are described and proven in the
following paragraphs.

before The before query is not affected by a now-relative query interval as only those rectan-
gles are queried which completely lie before the actual query interval. A before query matches
now∗ if the end of the query interval is greater or equals now∗. Then the region query on the
end dimension has to be extended to max(q`, cd).

after The after query accepts all intervals beginning after the query interval has ended.
If the query interval ends with now, the begin of the region query needs to be extended to
min(cd, now

∗) on both dimensions, adjusting the begin of the query interval. Likewise, an
after query matches now∗ if the begin of the query interval is less or equals now∗. In that
case, the begin on both dimensions of the region query has to be extended to min(qa, cd).

overlaps The overlaps query accepts all intervals whose ends lie inside the query interval.
If the query interval ends with now it has to be extended to max(cd, now

∗) to include those
rectangles which are now-relative. An overlaps query matches now∗ if now∗ lies within the
query rectangle. In that case, the range on the end dimension e has to be extended to
(min(q`, cd),max(qa, cd)).

overlappedBy In contrast to overlaps, overlappedBy accepts those intervals, whose begin-
nings lie inside the query rectangle. If the query interval ends with now, the begin in the end
dimension has to be extended, such that now is incorporated for the case that now∗ > cd. An
overlappedBy query matches now∗ if now∗ lies within the query rectangle. Then, the begin on
the end dimension of the region query has to be extended analogously to min(qa, cd).
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Table 3.2: Incorporating now-relative values into range queries. The original one-dimensional
query (q`, qa) is mapped into a two-dimensional region query ((b`, ba), (e`, ea)) with dimension
b containing the begin values and dimension e containing the end values. The query has to
be altered if qa = now or if the query matches the current value of now. The value cd is the
value of the center point of the pyramids in dimension d of the converted interval and now∗ is
the current value of now.

querytype qa = now query matches now∗

before not affected ea = MAX(q`, cd)

after e` = b` = MIN(cd, now
∗) e` = b` = MIN(qa, cd)

overlaps ea = MAX(cd, now
∗)

e` = MIN(q`, cd)
ea = MAX(qa, cd)

overlappedBy e` = MIN(cd, now
∗) e` = MIN(qa, cd)

during ba = ea = MAX(cd, now
∗)

e` = MIN(q`, cd)
ea = MAX(qa, cd)

contains e` = MIN(cd, now
∗) e` = MIN(qa, cd)

starts ea = MAX(cd, now
∗)

e` = MIN(q`, cd)
ea = MAX(qa, cd)

startedBy e` = MIN(cd, now
∗)

e` = MAX(q`, cd)
ea = MIN(qa, cd)

meets not affected e` = MIN(q`, cd)
ea = MAX(q`, cd)

metBy b` = e` = MIN(cd, now
∗) b` = MIN(qa, cd)

ba = MAX(cd, now
∗) ba = MAX(qa, cd)

finishes b` = e` = MIN(cd, now
∗) e` = MIN(qa, cd)

ba = ea = MAX(cd, now
∗) ba = ea = MAX(qa, cd)

finishedBy e` = MIN(cd, now
∗) e` = MIN(qa, cd)

ea = MAX(cd, now
∗) ea = MAX(qa, cd)

equals e` = MIN(cd, now
∗) e` = MIN(qa, cd)

ea = MAX(cd, now
∗) ea = MAX(qa, cd)

during The during query accepts all intervals which completely lie inside the query interval.
A now-relative query interval would then be required to extend the end of the region query
in both dimensions to max(cd, now

∗). A during query matches now∗ if now∗ lies within
the query rectangle. Therefore, the range on the end dimension e has to be extended to
(min(q`, cd),max(qa, cd)).

contains The contains query accepts all intervals which contain the query interval. There-
fore, the region query must cover the region at which the begin is ≤ q` and the end is ≥ qa. If
the query interval is now-relative, the region query has to be extended along the end dimension
with e` = min(cd, now

∗), such that those intervals are queried whose end value is now. A
contains query matches now∗ if now∗ is greater than the query interval’s end. As ea already
is set to 1, only e` has to be set to min(qa, cd).
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starts The starts query accepts all intervals whose begin is equal to the begin of the query
interval and whose end lies within the query interval. A now-relative query interval imposes
the extension along the end dimension, such that those intervals are queried which start with
the query intervals start but end with now, resulting in ea = max(cd, now

∗). The starts query
matches now∗ if now∗ lies within the query interval, which results to an extension of the range
query along the end dimension to (min(q`, cd),max(qa, cd)).

startedBy The startedBy query accepts all intervals whose begin is equal to the begin of
the query interval and whose end lies outside the query interval. As the now-relative intervals
have to be excluded from the result set if the query interval is now-relative, the region query
has to be reduced by e` = min(cd, now

∗). A startedBy query matches now∗ if the end of the
query interval is ≤ now∗. Then the region query has to be reduced along the end dimension
to (max(q`, cd),min(qa, cd)).

meets The meets query accepts all intervals which end with the begin of the query interval.
Therefore, the meets query is not affected by a now-relative query interval. It matches now∗

if the begin of the query interval equals now∗. If so, the range query has to be extended
to (min(q`, cd),max(q`, cd)) along the end dimension. Note that the meets query does not
incorporate qa.

metBy The metBy query accepts all intervals which start with the end of the query interval.
If the query interval is now-relative, not only the begin of the region query has to be extended
to min(cd, now

∗) but also the end along the begin dimension ba needs to be extended to
max(cd, now) such that those intervals are queried which have a begin that matches now∗.
A metBy query matches now∗ if qa = now∗. Then the region query has to be extended
along the begin dimension to (min(qa, cd),max(qa, cd)). Note that the metBy query does not
incorporate q`.

finishes The finishes query accepts all intervals which have the same end as the query in-
terval and whose begin lies within the query interval. Given a now-relative query interval, the
region query has to be extended along both dimensions to (min(cd, now

∗),max(cd, now
∗)). A

finishes query matches now∗ if qa = now∗. In order to query those intervals which are now-
relative, the region query has to be extended along the end dimension to (min(qa, cd),max(qa, cd)).
Note that the finishes query does not incorporate q`. In addition, the query needs to be
extended along the begin dimension to shift the original query interval to now∗ by ba =
max(qa, cd).

finishedBy The finishedBy query accepts all intervals which have the same end as the
query interval and whose begin lies outside the query interval. As the region query al-
ready is 0 at the begin dimension, it has only to be extended along the end dimension to
(min(cd, now

∗),max(cd, now
∗)) if qa = now. Likewise, if qa = now∗, the region has to be ex-

tended along the end dimension to (min(qa, cd),max(qa, cd)). Note that the finishedBy query
does not incorporate q`.

equals The equals query accepts all intervals which have the same begin and the same
end as the query interval. If the query interval is now-relative, the region query has to
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be extended along the end dimension to (min(cd, now
∗),max(cd, now

∗)). An equals query
matches now∗ if qa = now∗. Then the query has to be extended along the end dimension to
(min(qa, cd),max(qa, cd))

3.3.4 (5 + 6) Query the Pyramid Space

Querying the pyramid space contains two steps: First, the d two-dimensional region queries
have to be merged into one 2d-dimensional query in the pyramid space. This 2d-dimensional
query is then split up into 4d range queries on the underlying B+-tree as suggested for the
original Pyramid technique [47].

3.3.5 Query Alternatives

The described query alternative usually extends the queried space in order to incorporate
now-relative data. This causes many false positive results which have to be removed from the
result set by matching the results to the original query. In order to minimize the number of
false positives, two query alternatives are described in this section.

In the first alternative, whenever the stored now-relative data has to be accessed, the
query intervals are not expanded but in addition to the spatial-query only those now-relative
elements that lie on the median of the data set are queried which are affected by the query.
Both result sets are then combined with a set operator.

In the second alternative, the now-relative elements are stored in separate indices. As bi-
temporal data is investigated, four indices have to be queried in that alternative. One which
only contains now-relative valid-time data, one which only contains now-relative transaction-
time data, one which only contains elements which are now-relative in both temporal di-
mensions and one which does not contain any now-relative data. Therefore, every query is
distributed into up to four queries on the separated indices and the results combined by set
operators. As the elements in the underlying B+-tree are ordered, the query results could be
joined in linear time in both alternatives. Unfortunately, the costs for the additional queries
exceed the benefits of much less false positive results. The evaluation of these indices with the
workloads described in Section 3.5.1 shows that the alternatives perform worse by up to three
orders of magnitude. Therefore, they are not investigated any further.

3.4 Implementation of the STPA

The STPA is implemented with Java 8. Figure 3.6 gives an overview of the implemented class
structure which is described in more detail in this section.

It may be divided into a storage layer (below) and the index layer (above) which are
divided by the dashed line. The storage layer manages the storage of any object which im-
plements the Storable interface. Using reflection, one may implement a general wrapper
which is able to generate a Storable representation of any object type. For this thesis, only
concrete Storable implementations are used, each created for the types which need to be
stored throughout this thesis. The actual StorageManager is abstract and the two concrete
implementations are an on-disk and an in-memory manager. In order to count the number
of accesses on a Storable, a chain of StorageManager instances is implemented, with the
actual manager on the inner level, wrapped by a counting StorageManager on the outer level.
In addition, buffers may be wrapped around a StorageManager instance.
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(a) The original query rectangle is Q = (0.2, 0.3), (now, 0.8). The query accepts all rectangles which completely
lie within the query rectangle. Note that now is depicted as arrow with a length of 0.2. In order to validate
the existence of �, now should at least be 0.7, the begin value of � in d0.
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(b) Following Table 3.1, the given contained query is converted into two during queries. These during queries
are mapped to region queries according to Figure 3.4. According to Table 3.2, the region query for d0 is
extended along dimension da0 to 0.7 because qa0 = now and now∗ = 0.7 > 0.5 = c0, the median of the data set
in dimension d0.

d`0 (0.2, 0.7) da0 (0.2, 0.7)
d`1 (0.3, 0.8) da1 (0.3, 0.8)

(c) The merged region query basically consists of four range queries (dimension/range), one along each di-
mension. This query has to be converted by the Pyramid Technique to query the underlying B+-tree. The
candidates for the result set are those rectangles which are contained in both region queries.

Figure 3.5: Example of a contained [78] query q in a two dimensional space with one temporal
(d0) and one spatial (d1) dimension and its conversion by the STPA with now∗ = 0.7.

The index layer contains the implementations of the index structures and the query sys-
tem. The basic structure is the NDRectangleKey which consists of a MBR, represented by a
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+load(ref : ObjectReference) : Storable
+delete(ref : ObjectReference) : void
+store(elem : Storable) : void

<<Interface>>
StorageManager

+insert(elem : NDRectangleKey) : boolean
+delete(elem : NDRectangleKey) : boolean
+getContained(region : NDRectangle, q : RectangleQuery)

<<Interface>>
NDRectangleKeyIndex

+query(queried : NDRectangleKey) : boolean

<<Interface>>
RectangleQuery

NDRectangleKey NDRectangle

ObjectReference

STPA

+rangeQuery(from : K, to : K, q : Query<K, V>) : boolean
BPlusTree<K,V>
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Figure 3.6: UML class diagram of the STPA. The upper part shows the query system and
indexing methods, the lower part shows the structure of the underlying storage manager. Any
type of object may be stored, if it has been wrapped into a Storable. Every Storable is
identified by a unique ObjectReference.

NDRectangle and an ObjectReference which is the reference on the Storable that repre-
sents the object. A NDRectangle represents a n-dimensional (hyper-) rectangle. It consists of
two NDPoints, one for the begin and the other for the end values in every dimension. If the
end value equals a NOW-constant, it is considered to be now-relative. Any index is an imple-
mentation of the NDRectangleKeyIndex interface. It will be used as basis for the comparison
of index structures in this chapter. In Chapter 6, a more general definition of an index in-
terface is given, because not all third-party index implementations incorporated in this thesis
provide something comparable to a Storable or StorageManager.

The general procedure of a query is visualized in Figure 3.7. Berchtold et al. (1998) [47]
suggest to store all query results in a point set. Every element in this point set is then matched
to the original query. In order to keep the necessary additional space at a minimum, the STPA
uses the Visitor pattern [85].

In order to query the STPA, the client has to provide a query region and a query instance.
The query instance is a visitor and the STPA a visitable. Thus, for every element accepted by
the query, the given query instance is invoked by the STPA. The STPA converts the region
query into 4d range queries and performs them on the underlying B+-tree [67]. It provides a
begin and an end value for the range query and a query object. Every time the B+-tree finds
a match for the given range query, it invokes the given query object. The query object then
matches the result from the range query against the original query. As the different range
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s d query

[for each affected dimension]

dimensions do 

other, every 

loop

loop
[for each match of the range query]

loop
[for each value in the given list]

opt
[value matches region]

rangeQuery : Query

: STPA : BPlusTree regionQuery : RectangleQuery

8: getContained():void

6: query():true

5: query(value)

7: query():true

4: query(pyramidValue, List<NDRectangleKey>)

2: <<create>>
3: rangeQuery(from, to,rangeQuery)

1: getContained(region,regionQuery)

Figure 3.7: UML sequence diagram of the STPAs parallel query technique. It is assumed that
the original d-dimensional query is converted into 4d range queries as described in section 3.3.
The structure of the classes used in this diagram is shown in Figure 3.6.

queries on the B+-tree are independent to each other, the underlying range queries in the
STPA may be computed in parallel.

3.5 Classic Workload Evaluation

This section evaluates the query performance of the STPA using a workload generator derived
from Saltenis and Jensen (1999) [172]. For comparison, an own implementation of the RST-tree
is also evaluated with this workload generator. To the knowledge of the author, the RST-tree
is the only competitor which is designed to index discretely changing spatio-temporal data
instead of moving objects. The RST-tree is implemented with the same Visitor-based query
technique as the STPA (Section 3.4). Not only a constant but also the dynamic time horizon
[173] is used (Section 2.2.2) for time parametrization.

3.5.1 Workload Generator and Setup

One workload is generated as follows. An index is initialized with initialSize elements
whose end values on the transaction-time axis are set to now. Each of these elements with a
now-relative end value is considered to be part of an active history. A history is a chain of
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versions of one and the same object which changes its appearance. Within every evaluation
step incSize elements are inserted, in which a ratio of startPercentage elements start a
new active history. A ratio of endPercentage elements end a still active history by updating
the last element in that history with an element whose end value in transaction-time is now∗.
A ratio of updatePercentage elements continue an active history by adding an element to a
history whose end value is now on the transaction-time axis. Adding an element to a history
always means that the end value on the transaction-time axis of the latest element is updated
to now∗. Therefore, the start value on the transaction-time axis of the newly inserted element
is set to now∗. The bi-temporal history of two objects A and B is exemplified in Figure 3.8
with now∗ = 0.7. The history of A consists of three transactions, each changing the valid-time
interval of the object. As the last element in transaction time has an end value of now, the
history is active. History B only consists of one transaction and is inactive.

Table 3.3: Setup parameters for the in-memory and on-disk evaluation plus uniformly dis-
tributed, clustered, and skewed data sets.

parameter value(s)
startPercentage 0.1
endPercentage 0.1
updatePercentage 0.8

uniform in[0, 1]

normal stdDev = 2
√
loge(2)

distribution mean = 0.25
validTimeDistribution

skewed normal
stdDev = 0.3
mean = 0.25
skew = −1.0

vtInfinityProbability 0.1
maxValidTimeLength 0.1
maxElementSize 0.1
initialSize 1000
incSize 11000
queries 1000
querySize 0.2
dimensions 5, 10, 15, 20, 30, 40, 50

StorageManager
InMemory

OnDisk
4096 bytes per block
0,50 blocks in buffer

The distribution of the elements in transaction-time is given by the filling process described
above. The distribution along the valid-time axis is given by a validTimeDistribution
which may either be a uniform, gaussian or skewed normal distribution. Although it is possible
to vary the range and concrete behavior of the distributions, the evaluation only uses data
sets which are generated with one of the following settings:

• A uniform distribution in [0, 1]d.

• A gaussian distribution with a standard deviation of 2
√
loge(2) and a mean value of 0.25

in order to create data clusters at 0.25 and most elements lying in [0, 1]d.



3.5. CLASSIC WORKLOAD EVALUATION 69

0 0.25 0.5 0.75 1.0
0

0.25

0.5

0.75

1.0

history of A

history of B

transaction time [-]

va
lid

ti
m
e
[-]

Figure 3.8: Exemplified history of two objects A and B in the bi-temporal space.

• A skewed gaussian distribution with a standard deviation of 0.3, a mean value of 0.25,
and a skew of −1 in order to achieve a maximum skewness. The skewness is applied on
a random number y by y = (1− e−skew∗y)/skew.

In addition, elements which lie outside of [0, 1] in any dimension are discarded. Example point
clouds of these distributions are visualized in Figure 2.8 on page 21.

To create now-relative valid-time intervals, the parameter vtInfinityProbability de-
notes the likelihood for setting the end time on the valid-time axis of a newly created element
to now. For all non-now-relative elements the parameter maxValidTimeLength denotes the
maximum length of the valid-time interval. The length is always uniformly distributed in
[0, maxValidTimeLength]. The begin and end values in all non-temporal dimensions are also
created with either uniform, gaussian, or skewed gaussian distributions. All non-temporal
values are created with the same distribution distribution and the maximum length of
the intervals is given by maxElementSize. The number of dimensions is adjustable but all
elements have a transaction- and a valid-time dimension at least. The dimensions are chosen
with respect to the long computation time for one workload and in order to show the general
behavior of the structures with increasing dimensionality. As the impact of the curse of di-
mensionality may be expected between 5 and 15 dimensions, smaller numbers of dimensions
are chosen for evaluation. After every insertion of incSize elements, the structure is queried
by an amount of queries in [0, 1]d uniformly distributed contained queries. The maximum
length of the queries in every dimension is given by querySize. This is possible because the
valid and transaction-time values are also lying in [0, 1]. now∗ starts at 0.25 in order to model
that some time already has passed and is increased by a constant for every insert or update
operation on the evaluated index. This constant is defined such that now∗ is 0.75 at the end
of the workload generation. Different block and buffer sizes are evaluated but the evaluation
is concentrated on a block size of 4096 byte and a buffer size of 0 due to the fact that a greater
buffer size only shifts the results but does not change the general conclusion if the number of
inserted elements is big enough. In order to keep the number of elements in one workload at a
minimum without falsifying the outcome, the impact of different buffer sizes is not discussed
in detail.

Keep in mind that the block size of the evaluated indices is only crucial for the on-disk case,
since the maximum number of entries in one node is constant for the in-memory case. For each
workload setting, the node sizes of the indices have been optimized. For the implementation
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of the RST-tree, the best maximum node size is 32 entries and the best maximum node size
for the underlying B+-tree of the STPA is 40 entries.

The STPA can only be improved further by altering the center of the pyramids. The center
of the pyramids is set to the median of the data set at the beginning of the evaluation which is
almost optimal. Since the temporal values change over time and therefore the approximated
median changes over time, the Pyramid Technique, whose center is set to a constant, only
provides approximately optimal query results. As in the original paper [47], experiments
show that the benefits in the query cost of providing an optimal center of the pyramids is
outweighed by the additional rebuilding cost. Contrary, when using an approximately optimal
median, the additional rebuilding cost is negligible [47]. The effect of a non-optimized median
is investigated in Section 3.5.2.

The RST-tree can be improved either by using a constant or a dynamic parametriza-
tion value and the parameter α. For the workloads described in this section, both types of
parametrization values are compared and the constant parametrization shows the best results.
Note that the α and optionally αW - parameter is adapted anew for each evaluation setup
and especially for each spatio-temporal distribution. As a reminder, the α-value denotes if
the bi-temporal (α > 0) or spatial part (α ≤ 0) of the MBRs should be prioritized when
computing their margin, overlap and volume. The αW parameter is a control constant for
the expected window querying length when the RST-tree uses the time horizon for dynamic
parametrization. For the in-memory case, the node size in the RST-tree can be improved.

The setup of the workload generator is listed in Table 3.3. 100 workloads are generated
for every setup and both, an in-memory and an on-disk working StorageManager. Every
workload contains 10 evaluation steps with an initial size of 1000 elements. Every evaluated
index contains 100000 elements at the end of one workload.

In order to provide a reproducible evaluation setup, every pseudo random number generated
within one workload depends on a certain random seed. Using this seed, one may reproduce
every number as it was generated in a previous generation of a workload with the same set of
parameters.

3.5.2 Results

The workloads described in the previous section are computed and the results are presented in
this section. Each time the queries in a workload are computed, their performance is measured.
For the in-memory case, the CPU-time is crucial since both indexing methods do not need
much additional memory storage. Note that the maximum number of entries in the nodes of
both structures remains constant for the in-memory case, whereas the node size and not the
number of entries remains constant for the on-disk case. The number of I/O operations is the
most relevant value for the on-disk case. Therefore, for the in-memory case, the CPU time
for each query is measured. The measurement of the CPU time in Java is discussed in detail
in section 5.4. As a single workload contains over 1.1 · 106 invocations of the basic methods,
the impact of the JIT compilation is negligible for the measurement of the CPU time. For
the on-disk case, the number of I/O operations is measured using a certain StorageManager
which counts each load and store operation.

For every evaluation setup three diagrams are provided:

• A three-dimensional diagram showing the means for every data point (n, d) with n
being the number of elements in the index and d being the number of dimensions. The
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(b) gaussian distributions
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(c) skewed gaussian distributions

Figure 3.9: Comparison of the STPA (•, dark gray) with approximated optimal median (black),
default median (dashed) and the RST-tree (�, light gray) in the in-memory case. The absolute
query cost of the sequential scan (4) is not shown fully to achieve a better comparability
between the other methods.
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(b) gaussian distributions
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(c) skewed gaussian distributions

Figure 3.10: Comparison of the STPA (•, dark gray) with approximated optimal median
(black), default median (dashed) and the RST-tree (�, light gray) in the on-disk case. The
query cost of the sequential scan always equals the number of elements.
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mean at every data point is divided by the mean of the first data point (10900, 5).
This improves the visibility of the relative growth of the query cost with respect to the
increasing dimensionality. For an improved visibility, only the data from the STPA with
an approximately optimized median and the RST-tree is shown.

• Two two-dimensional diagrams showing a Line Plot of the absolute mean values for 5
and 50 dimensions.

For both, the in-memory (Figure 3.9) and the on-disk (Figure 3.10) case, the RST-tree has
a better query performance than the STPA for lower dimensions but is clearly outperformed
by the STPA for higher dimensions. Taking the trend for an increasing number of elements
into account, the STPA is more efficient in higher dimensions.

The better query performance of the STPA in the in-memory case is likely to result from
the fact that for an increasing number of dimensions by a constant maximum number of entries
in every node the RST-tree has to perform an increasing number of floating-point computations
when computing the overlaps, margins and volumes of the nodes MBRs. For the on-disk case,
the performance of the RST-tree is reduced in higher dimensions since the maximum number
of entries decreases. That is why more nodes have to be created for storing the same number
of elements and therefore more nodes have to be accessed when executing a query. Neither the
maximum number of entries in the dir-nodes nor the size of the dir-nodes of the underlying
B+-tree of the STPA is affected by an increasing number of dimensions because every entry
is always identified by a one-dimensional value. However, the maximum number of entries in
the leaf-nodes of the underlying B+-tree is affected by an increasing number of dimensions in
the on-disk case and the STPA also has to perform more sub-queries on high-dimensional data
which causes a slightly worse query behavior in the in-memory case.

For different distributions of data the STPA and the RST-tree show the same general
behavior but especially the impact of the median in the STPA varies. For uniformly and
gaussian distributed data choosing the default median of 0.5 seems to have less impact on
the evaluation results as the STPA with the default median is only slightly worse than the
STPA with approximately optimized median. For the in-memory case (Figure 3.9), the mean
values seem to be better for the configuration with the default median but as the results for
optimized and default median also vary about 0.4 a general conclusion on the impact of the
median cannot be made. Such an impact can be seen for the skewed distribution. There, the
approximately optimized median shows better results than the default median setting. The
dent in the plot for the skewed gaussian distribution in lower dimensions (Figures 3.10c, 3.9c)
may be caused by the greater impact of both time dimensions. Especially if it is recalled that
the time moves from 0.25 to 0.75 through every single evaluation.

With respect to the 3D-plots which show the relative means of the STPA with approx-
imately optimized medians and the RST-tree, the relative difference is larger for uniformly,
less for gaussian and even lesser for skewed gaussian distributed data. This means that the
increase of the query cost in the RST-tree depends on the distribution of the data, whereas
the STPA seems to have a nearly equal increase for all three distribution types.

A similar behavior for the costs of insertion, update, and deletion in the indexing methods
can be observed. In difference to the query cost, the STPA outperforms the RST-tree also in
absolute terms and lower dimensions.
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3.6 Conclusions

The evaluation shows that the STPA clearly outperforms the RST-tree in terms of query per-
formance and increasing dimensionality. Beside that, the whole setup is based on assumptions
and best guesses. It would take a much greater and more exhaustive workload generation to
prove the conclusions made in this section and it is to be questioned if a proof is possible with
that large number of impact factors. As a reminder, not only the number of elements but
also their size, distribution and the order of their insertion, deletion and update influence the
performance behavior. In addition, the size and distribution of the query rectangles influences
their performance. Lastly, one has to recall the impact of the ongoing time. A query performs
different when executed at different times.

Nonetheless, the evaluation does support the main thesis of this chapter, which is the STPA
being the currently best solution for indexing discretely changing high-dimensional spatio-
temporal data. But the evaluation is not suited to unfold those settings which do cause bad
performance behavior. Therefore, one needs either to explore the complete parameter space,
or to analyze the structure of the used methods to unfold their general behavior, including
best and worst case scenarios. The latter is done in Chapter 5.

Aside the further discussion on the workload generator, one should keep in mind that
the STPA is based on the B+-tree and therefore may easily be implemented on top of many
existing databases. In addition, the query system supports the parallel computation of the
sub-queries (see Section 3.4) which should decrease the total system time a query is running.



Chapter 4

Automated Performance Comparison

This chapter introduces a new approach for the automated comparison of the performance
of complex data structures which is called Interface Based Performance Comparison (IBPC)
technique. A concrete implementation, the Performance Test Automation Framework (PTAF),
is described in Chapter 5. Whereas the motivation for a new technique and a complete overview
of the structure is given here, the detailed description of the implementation of every necessary
module in PTAF is provided in Chapter 5 and the analysis and evaluation of PTAF is provided
in Chapter 6. The general idea is partly published in [133].

In Section 3.5, two spatio-temporal indexing techniques are compared to each other with
a focus on their query performance on datasets with a high number of dimensions (>10).
It indicates that the Spatio-Temporal Pyramid Adapter (STPA) shows a much better query
performance in higher dimensions than the RST-tree. Because of the high number of factors
that influence or might influence the performance behavior of the structures, a general proof
of the performance of the structures cannot be given. In addition, the used benchmarks may
fulfill the requirements of a good benchmark (Section 2.3) but may not uncover all performance
features inherent to the evaluated structures. That is, the workload generator reveals the
impact of an increasing number of dimensions on the structures for several data distributions
but may not be useful to describe the general average behavior for all possible data sets.
When searching for the best performing structure regarding a certain functionality, e.g. the
query performance in high-dimensional spaces, one should use a specialized benchmark. But
if one wants to analyze and compare the general performance of several structures, e.g. the
performance of insertion, deletion and the execution of queries, a new approach is needed.
The usage of a benchmark may be biased in two different ways. First, a structure may be
designed to perform well in one benchmark, e.g. executing queries on uniformly distributed
data. Secondly, a benchmark may not cover a certain behavior of the analyzed structures. For
instance, a spatio-temporal high-dimensional index may perform well on the data distributions
provided by the benchmark but (unintentionally) perform much worse when using another, not
tested, distribution. The difference is that in the first case, the structure exploits a speciality
of the benchmark. In the second case, the benchmark is not correctly set up. That is, the
structure relies on a benchmark that fully tests its capabilities in the second case and in the
first case, the structure uses a weakness of the benchmark to be proven as efficient. The
following section shows how the problems of possibly biased benchmarks are faced by the
IBPC.

75
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4.1 Overview and General Idea

The Interface Based Performance Comparison (IBPC) technique faces the problems of possibly
biased benchmarks. Implementations like PTAF should produce performance tests that are
unlikely biased and can be used to automatically compare a given set of competitors. The most
likely source of biased benchmarks lies in the manual generation of the respective workloads
or parameters of a workload generator. Therefore, the IBPC tries to minimize the user input
and maximize the automation.

Although in [30] it is stated that the goal of covering the source code to create workloads
may be a “a relatively naive way of designing workloads”, it is the main concept in this thesis
for the generation of workloads. All alternatives for the automatic generation of workloads
presented in [30] and, to the knowledge of the author, elsewhere, somehow base on the struc-
tural code coverage or require more user input (see Section 2.5). As the user input is to be
minimized to avoid biased workloads, the only logical choice for the generation of performance
tests are test sets that are created with the goal of a maximized coverage. The measurement of
coverage and the coverage type chosen for the workload generation is described in Section 5.1.
The automated generation of workloads addresses the problem of possibly biased benchmarks
and benchmarks which (unintentionally) miss certain configuration of the problem, e.g. the
distribution of a spatio-temporal data set.

The performance of the automatically generated test sets must be measured with respect
to the used programming language. For the use of Java, a new measurement technique is
discussed in Section 5.4. The comparability of the performance measurements can be ensured
in two ways. First, all competitors share the same interface. Doing so, the test sets of each
competitor become interchangeable. Secondly, this offers the opportunity to execute the test
sets of each competitor on each other competitor. In combination with the code coverage of
each test set on each system under test (SUT), the performance measurement can be weighted
with respect to the achieved coverage. By using the coverage as performance weight, the
structural differences of the competitors are incorporated into their comparison. The usage of
the coverage as a performance weight addresses the problem of structures which only perform
well for a certain type of inputs, e.g. a certain benchmark.

The general idea behind the comparison procedure is presented in Algorithm 3. Given a
set of n SUTs Si, i ∈ {1, ..., n}, which all implement an interface I, the algorithm generates a
test set Ti for each Si. Each test set only consists of sequences of the invocations of functions
and initializers with the respective parameters defined by I. All test sets Tj , j ∈ {1, ..., n},
are then executed on each Si and the measured performance pij ≥ 1 is stored. This way, the
performance of a test set created on the basis of a certain SUT is measured when executed on
all SUTs. The differences between those executions unfold the differences in the performance
of the competitors. In order to measure differences in the performance tests, the coverage of
the test sets Tj is measured for each Si and stored as cij . This coverage is used in two ways.
First, the differences in the coverage computed for test sets which are created for different
SUTs may unfold functional differences between the corresponding SUTs. Secondly, for a fair
performance comparison, not only the better performing SUTs are benefited, but also those
which are covered by all test cases in an equal manner. Test sets with a high coverage on
an insular approach, which are designed to perform well on a certain set of parameters, most
likely do not have a high coverage on those SUTs which support good performances on the
complete parameter space. With that in mind, the performance is weighted by the coverage.
Note that a lower value is always considered to indicate a better performance.
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Input : Interface I, SUTs Si with default initializers
Output: combined coverage ci and weighted performance pi for each Si

1 foreach Si do
2 Ti =GenerateTestSet(I,Si)
3 end
4 foreach Si do
5 foreach Tj do
6 pij=ExecuteTestSet(Si,Tj)
7 cij=ComputeCoverage(Si,Tj)
8 end
9 covij =

cij
cii

10 end
11 ci =

∏n
j=1(covij)

k
n

12 pi =
∑n

j=1
pij

(covij)k
/n

Algorithm 3: General approach of the IBPC technique.

In more detail, the coverage of Tj on Si first has to be mapped into [0, 1], as there might be
unreachable code fragments which alter the impact of coverage weights. Therefore, covij =

cij
cii

,
with the assumption that a test set which has been created with a maximized coverage on Si,
has the maximum coverage on Si. Given a test generation system which does not certainly
create a test set with maximized coverage, one may also use

covij =


cij
maxi

if cij < maxi

1 otherwise
(4.1)

with maxi being the maximum coverage by any test set Tj on Si.
A possible metric for differences between the coverage on different SUTs is given by

ci =

n∏
j=1

(covij)
w
n (4.2)

with n being the number of SUTs and w being a constant which controls the impact of poor
coverages on the combined coverage of a SUT. That means that SUTs which have a good
coverage when executed with the test cases of the other competitors are benefitted and those
which only are covered by a small fraction are punished. Only using a correction w without
1
n would not worsen the good coverage of only one test set.

The coverage is used as a weight for the weighted performance of a SUT:

pi =

 n∑
j=1

pij
(covij)w

 /n (4.3)

Again, n is the number of SUTs and w a control constant. For pi, those test sets influence
the performance value more which have a lower coverage. The impact of those weights can be
controlled by w and the comparability is preserved by 1

n . Especially, the weighted performance
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benefits those SUTs which have a high coverage for every test set rather than those which only
have a very high coverage for a few test sets. This effect is intensified by a higher value of w.
The combined coverage and weighted performance are evaluated in Chapter 6.

4.1.1 Example

This section provides a simplified example for the usage of combined coverage and weighted
performance. Figure 4.1 shows four different implementations of the very same Java method
max(int a, int b) which should return the maximum of the two given integers a and b.
The IBPC technique is used to determine which of the implementations performs best in
comparison to the others. Note that the IBPC assumes that all given implementations are
correct and fulfill the given requirements. Functional testing is not part of the IBPC.

Implementation Test set
Coverage

(for test set A)
Performance
(for test set A)

A

B

C

D

int c = a - b;
return c < 0 ? b : a;

int c = b - a;
return c < 0 ? a : b;

if (a == b) {
return a;

} else {
return a < b ? b : a;

}

return a < b ? b : a;

(0, 0)
(0, 1)

(0, 0)
(1, 0)

(0, 0)
(0, 1)
(1, 0)

(0, 0)
(0, 1)

5
5

5
5

3
5

3
3

Figure 4.1: Example of the IBPC for four versions of a max(int a, int b)method. Test sets
with maximized coverage are generated from each implementation (first to second column).
Each implementation is executed with each test set and the coverage (third column) and
performance (fourth column) are measured. The coverage is displayed by highlighting the
covered nodes in the corresponding control flow graphs (third column).

In the first step, a test set with maximized coverage for each of the given implementations
is generated. Here, a simple basic block coverage is used, with a basic block consisting of all
byte code statements until the next jump statement. Each test set has a coverage of 1.0 on
the respective implementation and is minimal in the number of required method invocations.
For instance, in order to cover A, two invocations are needed. One where a = b and the other
with a < b. Implementation B also needs two invocations, one with a = b but the other with
b < a, to be fully covered.
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Table 4.1: Basic block coverage per test set on each implementation (covij).

executed test set generated for
on A B C D
A 1.0 2/3 1.0 1.0
B 2/3 1.0 1.0 2/3
C 0.8 0.8 1.0 0.8
D 1.0 2/3 1.0 1.0

In the second step, the structural coverage and the performance of each test set executed
on each implementation are computed. Here, basic blocks are used to represent the nodes of
the CFGs. For a better visibility, Figure 4.1 only shows the coverage on each implementation
by executing the test set generated for A. The coverage values for each execution are shown in
Table 4.1. They can be interpreted as follows: Implementations A and D have the same control
flow graph and therefore react equal on test cases. Implementation C has an additional test
case caused by the first condition, the test on the equality of parameters a and b. Therefore,
the test cases of C cover all other implementations, but C is not fully covered by the others.
In contrast to A, C and D, implementation B returns parameter b if it equals a. That means
that B can not be compared to the other implementations as good as A, C and D.

Table 4.2: Performance for each test case (left) and each test set (right) in number of executed
byte code load and store operations (pij).

executed parameters for test case
on (0,0) (0,1) (1,0)
A 5 5 5
B 3 5 5
C 5 5 5
D 3 3 3

executed test set generated for
on A B C D
A 5 5 5 5
B 5 5 5 5
C 4 4 4.3̄ 4
D 3 3 3 3

In addition, the performance of each test set executed on each implementation is computed.
Here, instead of measuring the CPU time, the number of executed byte code load and store
operations is measured as a deterministic and reproducible approach for this example. In
order to exclude the possible influence of just in time (JIT) compilation in this example,
it is disabled for the performance measurement. The impact of JIT compilation is studied
further in Section 5.4. The number of byte code load and store operations for each of the used
parametrizations performed on each of the implementations is shown in Table 4.2 together with
the performance of each test set when executed on each of the implementations. Consider
for instance implementation C. The comparison of the variables a and b requires two load
operations, one for each parameter. Returning a requires another load operation, resulting in
three operations for the case that a equals b. If they are not equal, the test for a < b requires
two additional operations and returning a or b another load operation. Therefore a total of
five operations is needed.

In the third step, the combined coverage and the weighted performance are computed. The
results are shown in Table 4.3. The parameter w is set to two as an example and its impact
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Table 4.3: Combined coverage and weighted performance with w = 2

combined weighted
implementation coverage performance

A 0.816497 6.562500
B 0.666667 8.125000
C 0.715542 5.770833
D 0.816497 3.937500

is further discussed at the end of this example. As implementation B cannot be compared to
the other implementations as good as A, C and D, it has the least combined coverage:

cB =
∏

j∈{A,B,C,D}

(covBj)
2
4

= (2/3 ∗ 1 ∗ 1 ∗ 2/3)
1
2

= 0.4̄0.5

= 0.6̄

(4.4)

For the weighted performance one can observe, that D has the least and therefore best per-
formance:

pD =

 ∑
j∈{A,B,C,D}

pDj
(covDj)w

 /n

= (
3

12
+

3

0.6̄2
+

3

12
+

3

12
)/4

= (3 + 6.75 + 3 + 3)/4

= 15.75/4

= 3.9375

(4.5)

This results from the fact that D has the least, three in total, number of byte code executions
for any parameter. A and B use a local parameter c which adds two byte code operations for
each invocation. The condition for equality in C makes every invocation of the max(int,int)
method with equal valued parameters much faster in comparison to A and B. A and D have
the best combined coverage but D has the better performance and is preferred.

Note that the parameter w is used to weight the influence of different coverage results. In
fact, it should worsen the influence of a low structural coverage measurement more than it
enhances the impact of one good result. Figure 4.2 shows the influence of different values for
w on the combined coverage and weighted performance on the given example.

With increasing w, the combined coverage obviously decreases without changing the order
of the different implementations. In case of the weighted performance, an increasing w not only
increases the weighted performance but, resulting from the coverage weight, implementation
D has a worse weighted performance than implementation C for w > 7.5. Keep in mind
that a lower performance is considered to be a better performance. Here, implementation C
performs best especially with an increasing w because it has the best of the worst coverage
results (0.8 > 2/3).
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Figure 4.2: Combined coverage and weighted performance for the given example of four im-
plementations of the max(a,b) function.

4.2 Summary

The absence of a general accepted procedure to produce unbiased benchmarks and compare
the performance of several competitors not with respect to a single feature but the complete
functionality of the competitors make a new technique inevitable. For such an automated
performance comparison, the Interface Base Performance Comparison (IBPC) technique is
proposed. To the knowledge of the author, it is the first technique that does not concentrate
on a single, user-defined set of features to compare the performance of a set of competitors
(Section 2.3). In order to avoid benchmarks which do not cover all features of the SUTs and
in order to penalize competitors which only perform well in a certain benchmark, the IBPC
uses the combined coverage and weighted performance. Both metrics are new and exemplified
by a simple example in this chapter. Their capabilities are evaluated in Chapter 6, where the
outcome of an automated performance test comparison performed with an implementation of
the IBPC, the Performance Test Automation Framework (PTAF, Chapter 5) is compared to
the detailed performance analysis of the high-dimensional spatio-temporal indices in Chapter
6.





Chapter 5

The Performance Test Automation
Framework

For the automated and unbiased comparison of a set of competitors, Chapter 4 introduces the
new Interface Based Performance Comparison (IBPC) technique. Here, a competitor is the
implementation for the solution of a specific task, e.g. the efficient indexing of spatial data.
An implementation of the IBPC technique, the Performance Test Automation Framework
(PTAF) is presented in this chapter. First, a general overview of PTAF is given, then the
concept and concrete implementation of the modules for code coverage, test generation and
performance measurement are discussed in detail. In order to get a good overview over the
required tasks, modules and their communication with each other, Figure 5.1 highlights the
main stream of the control and data flow in PTAF with an UML activity diagram.

It shows that only the byte code of the competitors and a common interface is needed to
compute the combined coverage and weighted performance. Both metrics may be used to draw
conclusions about the performance of a system in relation to other competitors. The general
workflow of the implemented framework is as follows. Given the byte code of all competing
SUTs and a common interface, the byte code is instrumented and the corresponding CFG
is extracted (instrument). The instrumented byte code and the CFG are not only used for
the measurement of coverage (measure coverage), but also for the generation of test sets
with a high coverage (generate best covering test sets). The generated test sets are executed
on the unmodified byte code and the performance of the competitors is measured (measure
performance). The coverage and performance measurements are then used to compute the
combined coverage and the weighted performance. The actions compute combined coverage
and compute weighted performance are defined in Section 4.1. The actions instrument, measure
coverage (Section 5.1), generate best covering test sets (Section 5.2) and measure performance
(Section 5.4) are described in detail in the following sections. Note that all of these modules
are exchangeable but language dependent. As a reminder, PTAF is programmed in the Java
8 programming language.

5.1 Instrumentation and Code Coverage Measurement

This section describes the instrumentation of the given byte code, the extraction of the cor-
responding CFG and the computation of the coverage. The existing code coverage tools for
Java are discussed in Section 2.9. PTAF is a prototype implementation such that the actual
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create combined coverage and weighted performance

bytecode

interface

instrument

CFG

instrumented
bytecode

generate best covering testsets

test setsmeasure performance measure coverage

compute combined
coverage

compute weighted
performance

coverageperformance

combined
coverage

weighted
performance

Figure 5.1: UML activity diagram of PTAF.

performance of the computation itself is of lesser concern. Also, following the prototypal ap-
proach, the instrumentation and coverage procedure needs to be flexible and adaptive to new
coverage types. The existing code coverage tools are bound to the coverage types listed in
Table 2.3 and are not designed to be extended by additional coverage types. In addition to the
required flexibility, not only the abstract coverage results are needed but the corresponding
control flow graph for a more detailed analysis. These requirements make a new coverage tool
inevitable.
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5.1.1 Instrumentation and CFG Detection

The concepts of code instrumentation in Java are described in Section 2.10. Although the
overall computation time of the coverage tool is of lesser concern, choosing a fast working
approach does not need to be a drawback. Therefore, byte code instrumentation is preferred
over source code instrumentation. In order to minimize compilation and loading errors in
the Java Virtual Machine, on-the-fly byte code instrumentation using a Java agent is chosen.
Doing so, the instrumentation procedure will not miss to instrument any class.

The basic idea of the new instrumentation approach is that the inserted probes are directly
linked to the control flow graph. As a reminder, a probe is a set of byte code statements that
are inserted in the byte code and used to track the execution of certain parts of the byte code.
Here, each probe represents a certain control flow node. If the virtual machine accesses a
certain probe, it invokes the linked coverage generator module. Depending on what type of
coverage generator has been chosen, the invocation through the probe is handled differently.
A statement coverage generator may only record one access. A branch coverage generator at
least needs to store the last accessed node in order to record which branch has been traversed.
Those invocations are very expensive. For instance, EclEmma [101] instruments each class
with a byte array, with each field representing the number of accesses on one node which is
much more efficient. For each access only one array field has to be incremented instead of an
invocation followed by an unknown number of additional operations caused by the coverage
generator. In contrast to the new approach described here, EclEmma may not be extended
to record path or decision coverage. In addition, thread safety or the flexible incorporation of
several different coverage generators may not be applied on EclEmma.

The instrumentation process works in two phases: a record phase and an instrumenta-
tion phase. A complete example is given in Figure 5.2 to show the instrumentation and the
corresponding control flow graph (CFG) of a simple max(int,int) method. With the start
of the instrumentation process, the record phase begins. During instrumentation and probe
insertion, the corresponding CFG is built up and the byte code of a single method is parsed
sequentially. The targets of some jump instructions may be before the actual jump instruc-
tion, i.e. the target of a control flow edge must be known prior to the source of an edge. For
instance, in the given example, the first conditional jump in line 10 IF_ICMPGE L1 requires
target label L1 before it is actually parsed. Therefore, all targets which are the targets of a
jump instruction are collected throughout the record phase. The record phase will also collect
the begin of all catch blocks, as they are considered to be entry points in a method. After the
invocation of another method, if the invoked method throws an exception which is caught, the
catch block in the invoking method needs to be differentiated from the rest of the methods
CFG. In addition, the end of the method will be stored in order to determine the end of the
actual instrumentation process.

After the end of the record phase, the instrumentation phase begins. A probe always
consists of the invocation of an abstract method which may be implemented by one of the
coverage generators. Each probe invokes the same method. The method is invoked with a
unique ID representing the corresponding CFG node. The ID is not only unique for one method
or class but for all classes that are instrumented throughout the complete instrumentation
process. This is required because an execution trace may jump between several classes when
method invocations or try-catch blocks are executed by the virtual machine. As a drawback,
the results of several independent instrumentation runs may not be combined with each other.
Nonetheless, given a deterministic system under test (SUT), the instrumentation process works
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1 max(II)I
2 LDC 3
3 INVOKESTATIC CoverageConnector.visitMethod (I)V
4 L0
5 LINENUMBER 34 L0
6 LDC 3
7 INVOKESTATIC CoverageConnector.visit (I)V // if(a < b)
8 ILOAD 1
9 ILOAD 2

10 IF_ICMPGE L1
11 L2
12 LINENUMBER 35 L2
13 LDC 4
14 INVOKESTATIC CoverageConnector.visit (I)V // return b;
15 ILOAD 2
16 IRETURN
17 L1
18 LINENUMBER 37 L1
19 FRAME SAME
20 LDC 2
21 INVOKESTATIC CoverageConnector.visit (I)V // return a;
22 ILOAD 1
23 IRETURN
24 L3
25 LOCALVARIABLE this LMax; L0 L3 0
26 LOCALVARIABLE a I L0 L3 1
27 LOCALVARIABLE b I L0 L3 2
28 MAXSTACK = 2
29 MAXLOCALS = 3

true

false

Figure 5.2: Example instrumentation of a simple max(int a, int b) Java-method. Be-
fore the first byte code instruction of each basic block, an invocation to the static method
visit(int) with the ID of the corresponding CFG node is inserted. A certain coverage gen-
erator may register to be notified for any invocation of visit(int). The probes are presented
bold. The LDC instruction is required by the Java virtual machine.

deterministic, i.e. the instrumentation of the same SUT will result in the very same IDs for
the CFG. Note that the numbering of the nodes in Figure 5.2 starts with 2, as 0 and 1 have
already been spent for the identification of the nodes in the default static initialization method
of the instrumented class. The node ID 2 is invoked after 4 because the corresponding node
has been identified as the target of a jump instruction in the record phase.

The probe, i.e. method invocation, is inserted before the first instruction of a certain byte
code block with a block being a series of byte code instructions without a jump. A new CFG
node is created and the corresponding probe is inserted if...

• ...the first label of the CFG is parsed.

• ...a previously recorded target is parsed.
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• ...the last node that has been parsed is a jump, lookup-switch or table-switch instruction.

• ...the parsed instruction is a throw or return instruction. If the block contains a method
invocation instruction, it is split up into two blocks in order to separate the throw/re-
turn from the invocation. The separation of throw and return instructions is important
because one needs to be sure if the method has been completely executed. This is es-
pecially useful to determine the number of executions of a recursive method. Recursive
methods are needed for the generation of suitable performance tests in Section 5.2.2.5.

Besides the construction of the CFG nodes, the edges between the CFG nodes need to be
created. An edge has no equivalent on the byte code level but only in the corresponding CFG.
An edge is created between...

• ...two successive nodes if the last instruction of the previously created node is not a goto
instruction. A goto is an unconditional jump instruction.

• ...a node whose last instruction is a jump, lookup-switch or table-switch instruction and
all nodes which are targeted by the jump instruction. The targets are recorded in the
record step.

The first node and all nodes which start with a catch instruction do not have any incoming
edges. All nodes whose last instruction is a throw or return instruction have no outgoing
edges. Edges are unambiguously identified by the unique IDs of their source and target nodes.

In order to record the control flow between instrumented methods and recursive method
invocations, at the start of every method a certain visitMethod(int) method is invoked. If
a coverage generator registers for updates on this method, it may, for instance, record recursive
method invocations.

Summing up, the instrumentation process merges all continuous byte code instructions
without a jump instruction to a basic block. At the beginning of each basic block, a probe is
inserted which invokes a certain method with a unique node ID. The ID represents a certain
node in the CFG that is built up. The nodes in the CFG are then connected by edges. The
jump instructions in the byte code denote which nodes need to be connected.

5.1.2 Coverage computation

The implementation of the instrumentation system and the generation of the CFGs is de-
scribed in the previous section. This section describes how the instrumented byte code and
the CFG may be used in order to compute several coverage types when the instrumented code
is executed. An overview of the class structure is given in Figure 5.3 and a simplified sequence
of the execution of the instrumented max(int,int) method is depicted in Figure 5.4. In order
to calculate the coverage, the desired coverage generator has to be connected to the Cover-
ageConnector whose visit(int) method is invoked by the instrumented probes. Once an
instrumented method is executed, for each basic block that is reached this visit(int)method
is invoked and it invokes the visit(int) method of the registered coverage generator. After
the execution is completed, one may get the coverage by invoking the calculateCoverage()
method in the registered coverage generator.
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instrumentation

+visit(nodeID : int)
+addControlFlow(ClassControlNode classNode)
+calculateCoverage() : CoverageData

<<Interface>>
CoverageGenerator

<<Interface>>
CoverageData

BranchCoverageGenerator

StatementCoverageGenerator

BranchCoverageData

StatementCoverageDataClassControlNode

+instrumenter(InputStream toInstrument, OutputStream instrumented) : ClassControlNode
Instrumenter

+visit(nodeID : int)
+setCoverageGenerator(c : CoverageGenerator)

CoverageConnector

< < u s e > >

Figure 5.3: UML class diagram for the basic structure of the instrumentation and coverage
system.

5.1.2.1 Statement (Basic Block) Coverage

The different understandings of statement coverage in the literature are discussed in Section
2.9. Here, one node represents all statements that are always executed without being inter-
rupted by a jump. The statement coverage generator simply records the execution of a node
with every access. The fraction of the nodes accessed at least once to the total number of
nodes in the CFG denotes the basic block coverage. The number of statements a single node is
representing may easily be recorded in the instrumentation phase. One determines the state-
ment coverage by summing the number of nodes for every statement which is at least accessed
once and dividing it by the total number of statements in the computed CFG.

5.1.2.2 Branch Coverage

Computing the branch coverage simply means to determine the number of branches which are
accessed at least once and dividing it by the total number of branches in that CFG. If a CFG
consists of only a single node and no branches, it is considered to have full branch coverage
if the node is accessed and zero branch coverage if that node is not accessed. A branch is
considered to be accessed if its source node and target node have been accessed one directly
after another. Naturally, with the computation of the branch coverage, also statement and
basic block coverage may be computed.
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s d execution

d : BranchCoverageData

b : BranchCoverageGeneratorMax CoverageConnector

calculateCoverage():d

<<create>>

calculateCoverage()

visit(4)
visit(4)

visit(3)

setCoverageGenerator(b)

visit(3)
max(1,2)

Figure 5.4: UML sequence diagram describing the basic workflow of the coverage framework.
CoverageConnector is accessed in a static way.

5.1.2.3 Loop Coverage

Loops in a CFG are identified by a header and a back edge. Since every node may be a header,
the back edge may be identified by using the dominator relationship (see Section 2.9). In the
new Java coverage tool described here, the loops of a CFG are identified by Algorithm 4. It
traverses all nodes in a CFG g and searches for those nodes which are dominated by node n.
For each node m which is dominated by n it looks for a back edge (m,n) ∈ g. If such a back
edge exists, a loop is found. The algorithm has an asymptotic runtime behavior of O(n2) with
n being the number of nodes in the CFG and may be a part of optimization when a more
efficient coverage computation is required. As the header of a loop is the target of the back
edge, a loop may solely be identified by its back edge.

The loop coverage is recorded by two values. First, the number of accesses na of a loop
describes the number of accesses of the loop header n which is already recorded by a statement
or branch coverage generator. The number of loop iterations ni is recorded by the number of
accesses of the loops back edge. This is already done by a branch coverage generator. The loop
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Input : CFG g, Map doms(m, d) of nodes m and corresponding dominators d
Output: all loops in g

1 foreach node n ∈ g do
2 foreach d ∈ doms do
3 if n ∈ d then
4 if g contains edge (m,n) then
5 loop with header n and back edge (m,n) found;
6 record loop;
7 end
8 end
9 end

10 end
11 return all loops;

Algorithm 4: Simple algorithm to find all loops in a CFG using the dominators of each
node.

coverage may also be determined in relation to the maximum of loop iterations. Consider a
back edge (m,n) ∈ g and a user defined value of three loop iterations that are desired until that
loop is considered to be fully covered. The relative loop coverage for that loop would than be
i
3 with i being the number of loop iterations. This relative loop coverage is used by the fitness
function described in Section 5.2.2.5 and will be discussed in more detail there. Summing
up, aside the identification of the CFGs loops, no additional computation in comparison to a
branch coverage generator is required for the computation of the loop coverage of a CFG.

5.1.2.4 Path Coverage

Meyering (2016) [136] implements a path coverage generator on top of the new coverage
generator presented here. It consists of an algebra to describe a path more compressed. For
instance, four iterations of a loop a are described by a4. This algebra also may be used to
calculate the maximum number of possible paths in a CFG. The maximum number of iterations
of one loop may be limited to a certain value. Although this approach limits the problem of
path explosion, the paths have to be recorded anyway. For the record of all executed paths, a
trie, i.e. prefix tree, is used. This reduces the required space but nonetheless the recording of
paths exceeds a reasonable amount of space. For instance, the recording of the path coverage
of a single workload as described in Section 3.5.1 takes over 1 TB disk space when stored in a
space saving binary format.

5.1.2.5 Condition Coverage

Vatterodt (2016) [196] implements the basics for a condition coverage generator by extending
the instrumentation and CFG detection. During the record and instrumentation phase, the
conditions of each decision are recorded and for each decision a sub graph of conditions is built.
Using this sub graph, the evaluated conditions can be identified and it can be recorded which
conditions are covered by an execution. The condition coverage generator is able to com-
pute simple condition coverage, minimal multiple condition coverage and multiple condition
coverage. The initial set up of the CFG and the instrumentation for the condition coverage
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generator is much more complex than for the basic statement, branch and loop coverage gen-
erator described above. Nonetheless, during the execution of the byte code, no additional
computation costs are expected for the condition coverage generator in comparison to the
basic coverage generators.

5.2 Automated Test Generation

This section describes the implementation of an automatic generator of test sets which are
derived from a predefined set of methods and initializers. Section 5.2.1 evaluates the ability
of the existing test generators to generate such test sets and concludes that a new generator
is necessary. This new approach is described in Section 5.2.2.

5.2.1 Evaluating Existing Test Generators

In this section the existing test generators outlined in Section 2.11 are used to create test sets
with a high structural coverage only by using methods and initializers from a given interface.
Several implementations of the R-tree and its variants and their conversion to a comparable
format are described. In addition, the test generators and especially the alterations of these
test generators which are needed to let them generate test sets on basis of a single interface
and an SUT are described. This section indicates whether a new test generator for interface
based test sets is needed or an existing test generator can be chosen.

The R-tree is chosen because of its widespread usage and the similarity of indices for spatial
data to indices for spatio-temporal high-dimensional data. Indices for high-dimensional spatio-
temporal data are not chosen exclusively for the evaluation of existing test generators as only
implementations by the author of this thesis exist. A test generator may not be suitable
for a specific implementation style used by a single person. In order to avoid such a bias,
the SUTs used for the evaluation should be diverse in their implementation style but have a
single interface in common. Using R-tree variants is therefore a good compromise between
a diverse implementation style and comparability to the actual investigated high-dimensional
spatio-temporal indices.

Table 5.1: Different implementations of the R-Tree and its variants used for comparison and
evaluation throughout this thesis.

Name Source R-tree type License
linear quadratic R* reinsert

XXL for Java [24] 7 3 3 7 GPL
Android-R-Tree [195] 7 3 7 7 Custom
Java Spatial Index (JSI) [10] 3 7 7 7 GPL 2.1
David Moten’s R-Tree [139] 7 3 3 7 Apache 2.0
Russ Week’s R-Tree [202] 3 3 7 7 LGPL 3.0
Menninghaus’ R-Tree this thesis 3 3 3 3

Table 5.1 lists the libraries used for the evaluation here and their supported R-tree vari-
ants. In addition to the R*-tree’s split algorithm, only the implementation of the R*-tree by
the author of this thesis (Menninghaus R-tree) uses the forced reinsert (Section 2.2.1) as an
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additional overflow strategy. For a better comparability, the implementation by the author
of this thesis offers two R*-tree implementations: with and without the forced reinsert. The
XXL, Android, David Moten’s and Russ Week’s library do only support an implementation
of the intersects, i.e. overlaps query. Therefore, the contained query is implemented anew by
the author of this thesis for these indices on basis of the given query implementations. The
contained query is selected as the query type which has to be supported by all indices for a
later comparison with the results from Chapter 3 which are also based on the contained query.
As the Android, JSI and David Moten’s library only support 2-dimensional rectangles, the
complete evaluation is limited to 2-dimensional rectangles. In contrast to Chapter 3, every
implementation is set up without a previous optimization step but with a fixed maximum node
size of four and a minimum node size of two elements. As a reminder, a node with less than
the minimum node size of elements has to be merged and a node with more than maximum
node size elements has to be split (Section 2.2.1). Doing so, the probability for split and merge
is maximized and fewer elements need to be inserted in order to reach different states in an
index. Each implementation is solely chosen because of its availability. The set of the given
implementations may not be complete but is sufficient for the purpose of the evaluation of test
generators and the evaluation of PTAF.

Each of the implementations is integrated into the evaluation system by using a wrapper
class which implements the NDRectangleKeyIndex-interface (Figure 3.6). Doing so, the test
generators can generate test sequences based on the same interface for each of the implementa-
tions. This is one of the core ideas of the IBPC. In general, the set of methods and initializers,
which may be used by the test generators to generate test sequences, is listed in the following:

• the default-initializer for a certain NDRectangleKeyIndex

• <init> NDPoint(double[]) initializes a new d-dimensional point by the given dou-
ble-array

• <init> NDRectangle(NDPoint, NDPoint) initializes a new d-dimensional rectangle
by the given d-dimensional lower left and upper right corners

• <init> Java .lang.Object() initializes a new Java-Object

• ObjectReference.getReference(Object) returns a unique reference for the given
Java-Object

• <init> NDRectangleKey(NDRectangle, ObjectReference) initializes a new key-
value pair, with a d-dimensional rectangle as key

• <init> DefaultRectangleQuery() initializes a new default query

• NDRectangleKeyIndex.insert(NDRectangleKey) inserts a new key-value pair into
the index

• NDRectangleKeyIndex.delete(NDRectangleKey) deletes an existing key-value pair
from the index

• NDRectangleKeyIndex.getContained(NDRectangle,RectangleQuery) invokes the
given query for any key in the index which is contained in the given rectangle

• initialize a double value or an array of double values
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This set of methods and initializers is derived from the implementation of the STPA and
RST-tree, described in Section 3.4. It is the minimum set of methods and initializers which is
required to build up and fill an index structure and to update, delete and query its elements.
The update and deletion of elements in an index is necessary to create node structures which
may not be created by insertion only. Following from Section 2.2, not only the split but also
the merge of several nodes is crucial to generate different structures. Note that the first entry
in this set, the default-initializer, is varying for the implementation for which the test sets
should be generated. For instance, a valid test sequence for a concrete implementation of a
2-dimensional RTree could look like in Listing 1.

1 RTree rtree = new RTree();
2 double d1 = 0.0;
3 double d2 = 1.0;
4 NDPoint point1 = new NDPoint(d1,d1);
5 NDPoint point2 = new NDPoint(d2,d2);
6 NDRectangle rectangle = new NDRectangle(point1,point2);
7 Object object = new Object();
8 ObjectReference reference = ObjectReference.getReference(object);
9 NDRectangleKey key = new NDRectangleKey(rectangle,reference);

10 rtree.insert(key, reference);
11 DefaultRectangleQuery query = new DefaultRectangleQuery();
12 rtree.getContained(rectangle,query);
13 rtree.delete(key);

Listing 1: Example of a method sequence for the generation and test of a simple concrete
implementation of a 2-dimensional R-Tree.

For each of the implementations, a set of classes, the SUT, is defined. The general goal of
each test generator is to maximize the coverage of the generated test sets on this SUT. The
elements of the SUT are selected before the start of the test generation by analyzing the source
code and identifying all classes within the given library which are affected by the invocation
of the elements of the interface. These classes are then added to the corresponding SUT.

Following from the test sequence example and the given interface above, the evaluated test
generators should be able to

• identify sub- and super-types in order to generate the index by the given default-
initializer but access it through the methods of the interface.

• identify valid points and rectangles, i.e. only generate 2-dimensional points and rectan-
gles.

• maximize the coverage not only of one single class under test but a complete SUT.

• only use the elements of the given interface and no other elements for the generation of
the test sets.

• produce non-failing test sets, i.e. test sets that are compilable and do not throw excep-
tions.

Tables 2.6 and 2.7 list the existing test generators discussed in Section 2.11. Only test
generators which are publicly available at the end of 2017 and fit the desired requirements
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are taken into consideration: RANDOOP, TestFul, EVOSUITE, T3, MOSA, JTExpert, GRT
and DynMOSA. T3, MOSA, JTExpert and GRT fail with an Exception during the generation
of any test set. TestFul produces the desired test sets but they are not compilable as every
instance is referenced as a plain Java Object but invoked with the methods from the SUT
without the required type cast. Only four generators produced the desired results: non-failing
test sets solely on basis of the given interface while maximizing the coverage on the complete
SUT: RANDOOP, EVOSUITE, MOSA and DynMOSA.

As the implementations of MOSA and DyMOSA are branches from the EVOSUITE im-
plementation, all three are adapted in the same manner. In order to aim for a maximized
coverage on the complete SUT and not only a single class, the coverage goal is extended to all
classes in the SUT. The extension of the coverage goal requires a manipulation of the EVO-
SUITE implementation which is taken from Graf (2017) [91] for the branch coverage goal and
adapted for the other coverage goals by the author of this thesis. The automatic detection
of methods and initializers in EVOSUITE which is used to generate test sets with a high
structural coverage, needs to be limited to the given test interface. This limitation is achieved
by designing wrapper classes for each index which only contain the desired methods and do
not inherit other classes, i.e the wrapper classes only inherit from the plain Java Object.
The execution is limited by the total computation time which is set to 5 and to 30 minutes.
The evaluation is performed on a Dell PowerEdge R420 with 192GB 1,600Mhz DDR3L RAM,
Intel Xeon E5-2420 CPU and four SATA 7,200rpm hard disk drives. For one evaluation set,
all other parameters are set to the default configuration as recommended in [82]. A lot of
time and effort has been spent in this thesis to optimize the various parameters offered by
EVOSUITE and its successors MOSA and DynMOSA. Besides the default configuration of
EVOSUITE, one other configuration is shown here to give an understanding about the impact
of different configurations. Note that EVOSUITE offers 339 different parameters which can
not be explained in more detail here. The default configuration of EVOSUITE is changed as
follows:

• The maximum length of a chromosome, i.e. method sequence, is enlarged from 10 to
1000 in order to support more complex test sequences.

• The maximum depth of inheritance is enlarged from 3 to 10 such that the test generator
also accepts types which are inherited over more than three steps.

• The local search budget, i.e. the time being spent to optimize the parameters of a single
method invocation, is enlarged from 5 to 40 ms and multiplied by the number of test
goals. Doing so, the local search budget for a test sequence is enlarged depending on the
complexity of the SUT.

In order to avoid a system crash due to limited resources, the output of RANDOOP is
limited to one billion tests per run and only tests are generated which do not reveal errors.
The default configuration of RANDOOP is not changed in any other way. For comparison,
the coverage for a classic workload generator is computed. The classic workload generator
from Section 3.5.1 is altered as follows: Every time the workload generator extends an existing
history, the alteration is computed without resolving the bi-temporal inclusions. That is, with
a deletion, an element is removed from the index, the update changes an existing element
and so forth. As the computation of the coverage is very time consuming, the total number
of inserted elements is reduced to 10000 elements from the original 100000. The results in
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Section 5.2.2.5 indicate that the decreasing of inserted elements does not influence the branch
coverage because there is little to no variance between the workloads. As an additional proof,
the branch coverage of all workloads with a total of 10000 inserted elements and the branch
coverage of all workloads with a total of 1000 elements is computed. Both workload groups
do not only have the same branch coverage but cover the very same branches. As a matter
of fact, the number of branch accesses and the number of loop iterations varies for a different
number of inserted elements. The relation between the coverage and the number of elements
inserted into an index will be discussed further in Section 5.2.2.5.

5.2.1.1 Results

This section shows the results for the test generation with all test generators. A total of
approximately nine person months work has been spent to build up the evaluation system and
especially test, integrate, adapt and configure the different test generators. All computations
are performed on a Dell PowerEdge R420 with 192GB 1,600Mhz DDR3L RAM, Intel Xeon
E5-2420 CPU and four SATA 7,200rpm hard disk drives and the pseudo random numbers
are generated on basis of a random seed making the evaluation reproducible. The evaluation
compares the branch coverage for all test generators and the classic workload generator (Section
3.5.1). For each implementation, a plot with a box plot for each test generator and the workload
generator is displayed. The lower whisker shows the 2.5 percentile, the upper whisker shows
the 97.5 percentile. The box is bounded by the 25 and 75 percentile, the line in the middle
denotes the median. For each test generator, the dot denotes the fraction of generated test
sets with zero coverage. All test generator executions with zero coverage are removed from
the evaluation. The square at a workload generator denotes the coverage of all workloads
generated by that workload generator run. Each workload generator and each test generator
has been executed 100 times. The pseudo random numbers used for each workload and each
test generator base on a predefined random seed. Thus, the evaluation becomes reproducible.

Figure 5.5 shows the branch coverage of the classic workload generator and the four different
test generators. For instance, Figure 5.5 shows the branch coverage of the test sets created
by the four test generators and the branch coverage of the classic workload generator for
the R-tree from the Android-R-tree library ([195]) using a linear split algorithm. The dots
on the left side of the plots show that nearly no test set has a branch coverage of zero. In
general, the classic workload generator has the highest or nearly highest coverage results for
each implementation. It is outperformed by DynMOSA for the Android and Russ Week’s
implementations but only for the maximal achieved coverage by DynMOSA. DynMOSA is
unable to produce test sets which cover anything for all implementations from the author of
this thesis. In contrast to DynMOSA, the other generators produce test sets with a coverage
comparable to the coverage which is achieved for the other implementations. The coverage
of all workloads together is only slightly higher than the coverage of the single workloads. In
addition, the variance for the workload generator is very small. The custom configuration
made on EVOSUITE, MOSA and DynMOSA only shows a slight variation in the results and
is within the results of the default configuration. The same observations can be made for a
runtime of 5 and 30 minutes. An even shorter runtime of 2 minutes causes a lot of additional
failing tests as EVOSUITE and its successors need some time for set up and their warm up
phase.

The results indicate that a new test generator which is specialized for the generation of
interface based test sequences is necessary to implement the IBPC efficiently. Especially the
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Figure 5.5: Branch coverage of twelve R-Tree implementations for a classic workload generator
and four different test generators with default settings. Italic generator labels depict generators
with the custom configuration. The dots denote the fraction of test sets with zero coverage.
All generators have a time limit of 30 minutes, the results for a time limit of 5 minutes are
identical. One workload contains 11000 insert, delete and update operations.
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implementation of the IBPC may only be compared to the classic workload generation ap-
proach if the performance tests cover at least the same amount of code. This new generator
may be partly derived from DynMOSA which shows the best results among the test gener-
ators. However, one must keep in mind that DynMOSA failed creating test cases for the
implementations by the author of this thesis.

5.2.2 Automated Test Generation based on an Interface

This section uses the requirements summed up in the previous Section and the conclusions
drawn from the existing approaches on automatic test generators in Section 2.11. Following
from Section 2.11, it is obvious that the current “state of the art” of automatic test generation
is to use genetic algorithms. The evaluation of the existing approaches used for the generation
of interface based test generators uncovers the necessity of a new generator. Although genetic
algorithms seem to be the best choice for automatic test generation, it can not be determined
how the countless parameters that can be optimized for those algorithms may be configured.
Even the setup of the chromosomes, the selection, recombination and mutation algorithms used
by a genetic algorithm may be adapted to the specific problem. As the reviewed literature
only offers insights on how the setup of a genetic algorithm for test generation is made and
not how those algorithms react on changes in the configuration, the generator described here
is built upon the requirements and later evaluated as a whole. A detailed evaluation on all
settings and the influence of single modules would exceed the scope of this thesis. As long as
the generator produces test sets which cover the SUTs at least as good as the classic workload
generator, it fulfills its task. The new generator described in this section is not only designed
to perform well on the generation on test sets for spatio-temporal high-dimensional indices
but on complex data structures which provide an interface in general. Therefore, it is referred
to as interface based test generator (IBTG) in the following.

For the implementation of the genetic algorithms, the multi objective evolutionary algo-
rithm (MOEA) framework [96] is used. The MOEA framework already provides a good portion
of the currently used genetic algorithms and operators which may easily be incorporated for
the use with a custom problem representation as the one described in the following section.
The basic input for the described generator is the test interface. The interface contains all
methods and initializers that are needed to build up the desired sequences. An example of
such an interface is given on page 92. It is up to the user to create a consistent interface, i.e.
an interface where any type required by the given methods and initializers is either a primi-
tive type, a type that is returned by one of the methods and initializers or an array of those
types. Although the genetic algorithms and selection operators are provided by the MOEA
framework, the representation of the test sets, the mutation and recombination operators and
the fitness function need to be created to reflect the requirements of the IBPC: test sets with
a high structural coverage generated on the basis of an interface. The following sections de-
scribe the new test set representation, the mutation and recombination operators and the
fitness function which are then used by the genetic algorithms. For the general definition of
genetic algorithms, see Section 2.11.4.1.

5.2.2.1 Representation of Test Sets

As a genetic algorithm is used, the first question is how to represent the desired test sets in the
genetic algorithm. For genetic algorithms, the literature offers countless approaches for the
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selection, recombination and mutation of binary representations. Nonetheless, a non-binary
representation is chosen and the algorithms for selection, recombination and mutation are
re-implemented. Such a specialized representation offers the possibility of using non-binary
operators, i.e. operators whose function directly emerges from the intended structure of the
test sets and the requirements. In addition, the non-binary representation may also be used
to execute the test sets. Doing so, the test sets do not need to be converted from a binary
format to the executable test set representation after each iteration of the genetic algorithm.
Figure 5.6 depicts the structure of the representation of a test set in an UML class diagram.
These classes are also used for storage and execution.

representation

TestSet ActionSequence

+getResultType() : Class
Act ion

+values : int[]
+getType() : Class

Array

+values : int[]
+getConstructor() : Constructor

Ini t ial ize
+object : int
+values : int[]
+getMethod() : Method
+isStatic() : boolean

Invoke

+value : Object
+getType() : Class

Primit ive

1
0..*

1..*
1

Figure 5.6: UML class diagram of the classes representing a test sequence in PTAF.

A TestSet consists of n ≥ 1 ActionSequence instances. An Action is one atomic
operation in a method sequence which is represented by an ActionSequence. All Action
instances refer to objects created during an ActionSequence by the index of their creation
operation in the sequence. For instance, Table 5.2 shows the representation of the example
method sequence from Listing 1. The initialization of the R-tree is set at the start of a
sequence at position 0, all other Action instances will refer to the R-tree as object 0, e.g. the
delete method at position 12. An Invoke action may or may not create a new object as this
depends on the method it represents. All other Action instances always create a new object
which may be referred to by other Action instances using their index in the corresponding
ActionSequence. That is, the nth element of an ActionSequence is only valid if the previous
n− 1 Action instances in the corresponding sequence could be executed without a failure.

For the use in the IBPC, the test sets created in this thesis need to be exchangeable. As this
thesis focuses on complex data structures, any ActionSequence created by the test generator
is restricted to contain one and only one instance of the complex data structures which should
be tested. In addition, that data structure must always be initialized as early as possible in the
sequence. Doing so, the generated sequences may easily be exchanged throughout the different
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Table 5.2: Representation of the method sequence example (Listing 1) as used by the test set
generation framework in PTAF.

position type method object result type values
0 Initialize init - RTree -
1 Primitive - - double 0.0
2 Primitive - - double 1.0
3 Initialize init - NDPoint 1, 1
4 Initialize init - NDPoint 2, 2
5 Initialize init - NDRectangle 3, 4
6 Initialize init - Object -
7 Invoke getReference (static) ObjectReference 6
8 Initialize init - NDRectangleKey 5, 7
9 Invoke insert 0 boolean 8, 7
10 Initialize init - DefaultRectangleQuery
11 Invoke getContained 0 - 5, 10
12 Invoke delete 0 boolean 8

data structures by simply exchanging the first initialization of the data structure with another
one. As all structures should support the same interface, they are fully compatible.

5.2.2.2 Selection

For the selection of the population used for one cycle of a genetic algorithm, the algorithms
already implemented in the MOEA framework are used. The choice of the selection operator
strongly depends on the algorithm and its general design, for instance whether it is a single
objective algorithm or a many objective algorithm. The chosen selection operator will be
defined in the evaluation chapter (Chapter 6) together with the chosen genetic algorithms.

5.2.2.3 Recombination

The recombination in a genetic algorithm chooses one or more parent solutions and rearranges
them to one or more child solutions. For the special case of method sequences which are desired
here, recombining different solutions with one another or even rearranging a single solution
is very error-prone. The atomic parts of one solution are strongly connected to each other.
Any known recombination, such as a crossover or a simple shuffling would much likely cause
a failing sequence. Therefore, only a single-point crossover is applied on complete test sets,
i.e. the ActionSequence instances between two TestSet instances may be exchanged with
a given probability. For instance, considering two test sets with n and m ActionSequence
instances, the first k elements in the first test set are swapped with the first k elements in the
second test set, k ∈ {0, ...,min(length(n), length(m))}.

5.2.2.4 Mutation

A mutation changes an existing solution creating a new one. The mutation operations de-
scribed here are newly designed for the purpose of this thesis. The test generator described
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here mutates a test set on three levels: The mutation of test sets, the mutation of action
sequences and the mutation of actions.

First, the mutation operator mutates the test sets. A test set is incremented or decre-
mented, i.e. new empty sequences are added to a test set or existing ones are removed from
the test set. Secondly, an action sequence may be mutated. As this faces the same problems
as the recombination - the high possibility of an invalid sequence - only the incrementation
and decrementation of existing sequences are applied. Extending a sequence or removing the
last action in a sequence will not cause an invalid sequence.

Existing test generators rely on the diversity of the genetic algorithm to produce longer
and valid sequences whose parts rely on each other. For instance, consider the example of a
valid sequence in Listing 1. Starting with the double each following action has to be added by
the genetic algorithm randomly, guided by a rather complex fitness function. PTAF does not
use this bottom-up approach but a top-down approach, i.e. first the desired method is chosen
and then all necessary parameters created. Algorithm 5 shows how a sequence is incremented
by a new action.

1 addNewAction (required action a, sequence s, interface i)
2 if a is a primitive then
3 create primitive with a new random value of the desired type and add it to s;
4 else if a is an array then
5 create array of random length l;
6 for k = 0, ..., l − 1 do
7 add createParameter(basic type of a,s,i) to a;
8 end
9 add a to s;

10 else
11 foreach parameter p in a do
12 add createParameter(type of p,s,i) to a;
13 end
14 add a to s;
15 end
16 end

17 createParameter (required type t, sequence s, interface i) : index of created parameter
18 if s contains actions which create objects of type t then
19 return getRandomObject(s,t);
20 else
21 action a =getRandomAction(i,t);
22 addNewAction(a,s,i);
23 return index of recently created action;
24 end
25 end

Algorithm 5: Algorithm to increment a sequence by adding a new action. The type of
the action is randomly chosen with incrementation from all available actions given by the
interface.
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When incrementing a sequence, an action is randomly chosen from the set of available
actions defined by the given interface. The parameters required by this action are chosen
randomly and recursively. That is, with a certain probability, if values of the required type
already have been created in the corresponding sequence, one of them is randomly chosen as
parameter. If not, a new value of the required type is created recursively. Therefore, a random
action from all actions in the interface which return a value of the required type is chosen to
create the desired value. The values for the creation of this random action are then chosen
recursively. Again, either already created ones are used at random or new ones are created.
Primitive values and arrays do not need to be added to the interface; they are a part of the
default set of actions in PTAF. The base case of the recursion are primitives and arrays of
primitives or of types which are defined by the given interface, as well as existing values if the
algorithm randomly choses to go with already existing values. If the base case of the recursion
is reached, the actions are added to the sequence starting with the action created in the base
case and continuing to the first action that has been chosen with the incrementation of the
sequence.

For instance, if the genetic algorithm chooses to create an invocation of a max(int,int)
method, it first needs to identify the two int values which should be used. The algorithm
would randomly decide if already existing int values should be used or new ones created. If
it is decided to create new values, all methods in the interface are identified which return int
values. Then either one of these methods is used or the primitive values are simply initialized.
This is decided randomly. If a method is chosen to create the values, its invocation and the
creation of the required parameters is again built up recursively. If it is decided to simply
initialize the primitives, a Primitive instance is added to the action sequence. In the end,
the Invoke instance which represents the invocation of the max(int,int) method, is added
to the action sequence, referring to the position of the corresponding actions in the action
sequence.

The third level of mutation is the mutation of the single actions of a sequence. Possible
changes on single actions are:

• Changing the value of a primitive.

• Changing the length of an array or permuting the elements in an array.

• Choosing other values for a method or constructor by randomly choosing other values
from the pool of existing values of the required type in the corresponding sequence.

5.2.2.5 Fitness Function

The heart of any genetic algorithm is an appropriate fitness function. It needs to direct the
selection of the child population such that mutations are chosen which lead to the best possible
solutions. That is, the fitness function ideally needs to be a continuous function such that the
optimum of the search space is reached in a series of optimization steps with an increasing
fitness. The branch distance function for instance, which is explained in Section 2.11.4.1, is
designed to continuously target branches which are only reached if a certain boolean condition
is met. For the IBPC implementation discussed here, the fitness function needs to direct the
genetic algorithms to generate test sets with a high coverage. For the special case of high-
dimensional spatio-temporal index structures, which is the focus of this thesis, not only test
sets with a high coverage but tests which reflect the impact of increasing dimensionality are
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Figure 5.7: Relative branch accesses. Box Whisker chart over the number of branch accesses
of the 10% setup divided by the number of branch accesses of the 1% setup. The dots mark
the minima and maxima. Branches with zero accesses in either setup are ignored.

needed. In order to create such a fitness function, the classic workloads used in Section 3.5.1
are analyzed with respect to their coverage. A fitness function is created which is able to direct
the genetic algorithms to create test sets which reflect the capabilities of the classic workloads.
This is done by answering several research questions which are described and answered below.
In the end, the final question on how the fitness function should look like, is answered.

Are there differences in the coverage of workloads with a different number of
elements? The computation of coverage is very expensive in terms of computation time.
Especially the growth of invocations during the computation of the coverage of the RST-tree
makes it nearly impossible to generate results over the complete set of workloads with an
appropriate number of iterations (≥ 100). Therefore, the number of elements in an index is
reduced to 10% and 1% of the original workload which only requires three weeks of computation
time on a Dell Precision M4800 CTO with 16GB 1,600 Mhz DDR3L RAM, Intel Core i7-
4810MQ and a Samsung 520/540 850 EVO Basic SSD. For both setups, the covered branches
of all workloads are recorded. Then the difference between the two setups is computed. Each
branch which is only covered by one of the setups but not the other is recorded. The result is
that no such branch exists for the RST-tree. Strictly speaking, on the branch coverage level,
both setups cover exactly the same code. For the STPA, three branches are recorded which
are covered by the 1% but not the 10% setup. That indicates that above a certain value the
total number of elements in an index does not influence the branch coverage at all.

As this thesis focuses on the performance of the workloads, also the differences in the total
number of branch accesses are recorded. With ten times more elements in one than in the
other setup, there should be differences in the total number of accesses. Therefore, the relative
number of accesses is recorded, i.e. the ratio of accesses on a branch between the 10% and
1% setup. Figure 5.7 shows the relation between the total number of branch accesses for all
branches and over all workloads for the 10% and 1% setup. The points denote the minima
and maxima. For most of the branches, the relation is close to 1 for both, the STPA and
the RST-tree. That is, these branches are not only covered but also accessed nearly the same
number of times for either number of elements in the indices. The highest ratio recorded is
4.19355 for one branch in the RST-tree. Naturally, the ratio between the number of accesses
should not grow linearly with the number of elements as also the execution costs of the indices
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is not linearly (see Section 3.5.2) growing. Nonetheless, the research question on the impact
of the number of elements on the coverage can be answered. There does not seem to be an
impact on the coverage of the STPA and the RST-tree if one workload uses more elements
than the other. As conclusion, not the original workloads but the workloads with a reduced
total number of elements are used for the further analysis of the coverage.

What are the differences in the coverage of workloads with different distributions?
In Section 3.5.2, the performance of the STPA and RST-tree clearly show differences when
measured for different spatial and temporal distributions of the data. In order to generate
a test generator which is able to create test sets that reflect this behavior, it needs to be
investigated how the different distributions affect the coverage of the workloads. It needs to be
determined which type of coverage metric is able to reflect the effect of different distributions on
the performance. The workloads are separated by the used distribution. As a reminder, three
different distributions are used by the classic workload generator: a uniform, a gaussian and
a skewed gaussian distribution (Section 3.5.1). The three groups of workloads are compared
pairwise identifying those branches which are covered by the workloads with one but not the
other distribution. This is displayed in Table 5.3.

Table 5.3: Total number of branches covered by the distribution named on the column and
not by the distribution named on the row.

(a) RST-tree (1298 branches in total)

distribution uniform gaussian skewed
uniform 0 10 14
gaussian 0 0 4
skewed 0 0 0

(b) STPA (912 branches in total)

distribution uniform gaussian skewed
uniform 0 2 4
gaussian 4 0 2
skewed 4 0 0

The results indicate that there is an influence of the distribution of the elements used in
a workload on the branch coverage. This effect is greater for the RST-tree as more branches
exist in total, i.e. the sum of all elements in one table, which are not covered by the workloads
of all distributions (a total of 28 branches for the RST-tree and a total of 16 branches for the
STPA). The results in Section 3.5.2 support this assumption. The skewed distribution seems
to have the greatest impact on the query performance (Figures 3.9 and 3.10) and Table 5.3
shows that the skewed distribution also has the greatest impact on the coverage differences.
Those branches that are covered by the workloads of one and not covered by the workloads
of another distribution do not share a common characteristic. They are neither part of a
recursive function nor part of a single method that is totally covered/not covered nor does the
condition that needs to be fulfilled to reach those branches correlate in any way. This means
for the test sets to be created that there needs to be a great variance in the distribution of
automatically created and inserted elements in the index.

Which branches in the RST-tree are correlated to the curse of dimensionality?
The major conclusion in Section 3.5.2 is that the RST-tree is clearly affected by the curse of
dimensionality but the STPA is not. The fitness function used by the test generator of PTAF
should be able to reflect that effect in the test sets it creates. In order to direct the genetic
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algorithms to create such test sets, it is searched for the indicators for a worsening performance
in the coverage.

Therefore, all existing workloads are grouped by the number of dimensions of the generated
data. As the workloads for data sets of seven numbers of dimensions (5, 10, 15, 20, 30, 40, 50)
exist, seven groups of workloads exist. In each of these groups, the mean of the query per-
formance of the in-memory case (Section 3.5.2) is computed. Ordered by the number of
dimensions, this list of mean performance values shows linear behavior. In order to detect
metrics which reflect this performance behavior, different metrics are correlated to the list of
seven performance values. Since the mean performance shows linear behavior with increasing
dimensions, both, the Spearman and the Pearson correlation coefficients are computed.
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Figure 5.8: Spearman (σ) and Pearson (ρ) correlation for the total number of branch hits to
the query performance for every branch. The points represent the minimum and maximum
correlation. All branches that are not covered are excluded from the computation.

Figure 5.8 shows the correlation of the branch hits with the query performance for every
branch in the STPA and the RST-tree. That is, for all workloads in each of the seven groups,
the hits on each branch are summed up. This results in seven groups, each containing n sums,
with n being the number of branches in the corresponding index. The number of hits of each
branch is then correlated to the query performance, resulting in one correlation value for each
branch, i.e. n correlation values. The distribution of the correlation over all branches is then
shown by a box plot.

More branches in the RST-tree show a higher correlation than in the STPA. The maximum
correlation in the RST-tree is 0.928571 for Spearman and 0.904759 for Pearson correlation. In
addition, the minimum correlation for the STPA is much lower than for the RST-tree. Overall,
the curse of dimensionality does not seem to influence all branches in the RST-tree. Moreover,
the difference to the distribution of correlating branches in the STPA does indicate the effect of
the curse of dimensionality on the RST-tree. The branches which show the highest correlation
to the performance are examined individually. For both, the RST-tree and the STPA, these
branches are part of loops which run over all dimensions of the data space.

The correlation behavior of loops is shown in Figure 5.9. It is computed like the branch hit
correlation. For each of the seven groups, each representing a certain number of dimensions in
the workloads, the number of loop iterations on the different loops is summed up. This results
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Figure 5.9: Spearman (σ) and Pearson (ρ) correlation for the total number of loop iterations
to the query performance for every loop. The points represent the minimum and maximum
correlation. All loops that are not covered are excluded from the computation.

in seven groups, each containing n sums with n being the number of loops. Each loop is then
correlated to the query performance, resulting in n correlation values. Strictly speaking, it
shows the correlation of the total number of hits on those branches which are back edges of
a loop to the query performance. These branches show similar behavior as the correlation
of all branches. The correlation of branches of the STPA seems to be higher if only back
edges are considered. This might result from the fact that most of the loops in the STPA
are bounded by the number of dimensions. But no additional conclusion can be drawn if the
chosen branches are only back edges. The reverse conclusion, that the limitation on back edges
does not exclude informations which may be made when considering all branches, should be
noted.
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Figure 5.10: Spearman (σ) and Pearson (ρ) correlation for the total number of recursive
method calls to the query performance for every method. The points represent the mini-
mum and maximum correlation. All methods that are not covered are excluded from the
computation.

Like branches and especially loops, recursive method invocations are examined, too. Figure
5.10 shows the correlation of the total number of recursive method invocations to the query
performance for each recursive method. A recursive method invocation is recorded when a
method is invoked again before the invoked method reaches one of its end nodes. That is,
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method recursions are not only considered to result from a method invocation inside the very
same method but also from invocations from a method that has been invoked by the recursive
method. The STPA does not contain a method that has been invoked recursively through the
execution of the workloads. In contrast to the loops, the correlation of all recursive methods to
the query performance is positive. With the median lying around 0.6 for both, the Spearman
and Pearson correlation, the correlation is not really strong but it should be noted that the
minima are only around 0.4. That is, a correlation can not be excluded for any of the recursive
methods.
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Figure 5.11: Spearman (σ) and Pearson (ρ) correlation for the total number of method invo-
cations to the query performance for every method. The points represent the minimum and
maximum correlation. All methods that are not covered are excluded from the computation.

At last, also the correlation of the total number of invocations of each method to the
query performance is computed which is shown in Figure 5.11. The correlation of the method
invocations shows a behavior similar to the correlation of the total number of branch hits.
The method hits seem to describe a part of the effects recorded for the branch hits.

What should the desired fitness function look like? The coverage of classic workloads
on the STPA and RST-tree is examined in three directions in the previous paragraphs. First,
the effect of a reduced total number of elements in an index is investigated. The analysis shows
that setups with a lower number of elements in total may be used for the analysis as good as
the setups with a higher number of elements, saving computation time for the computation
of the coverage. Secondly, the effect of different distributions on the coverage is measurable
and therefore, the test generator should tend to create test sets with a high diversity in
the inserted elements. Thirdly, the employed metrics indicate that there is no significant
correlation of the curse of dimensionality to the coverage. Nonetheless, high correlations can
be found when examining the branch hits, loop iterations, recursive method invocations and
all method invocations. In addition, the behavior of the branch hits is similar to the behavior
of the loop iterations and method invocations.

For the fitness function, Section 2.11 indicates that many objective genetic algorithms are
the most promising approach. As none of the existing test generators is able to generate test
sets based on an interface with a high coverage on the given set of R-tree implementations
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Figure 5.12: Behavior of the fitness function for targeting a back edge or a recursive method.

(Section 5.2.1), a new function is required. Like the most effective approach on unit test
generation DynaMOSA [149], this new function should also target many objectives, i.e. it
should target each objective individually instead of combining all possibly weighted objectives.
In order to save computation time and reduce the number of objectives and to avoid the typical
problems of a great number of objectives (see Section 2.11.4.1) not each branch is targeted
individually but only those which are back edges. In order to not miss any branch, also the
overall branch coverage is added as objective. Menninghaus et al. (2017) [135] show that adding
the coverage on all methods as optimization goal increases the overall coverage because this
increases the possibility that methods with a low number of branches are targeted, too. The
number of loop iterations and recursive method invocations should be maximized in order to
incorporate test sets with a poor performance, i.e. with a high computation time. Both target
types are treated the same way and each back edge and each recursive method is added as an
objective. Nonetheless, maximizing the number of loop iterations and recursive methods could
lead to test sets which only concentrate on loops and recursive methods. Therefore, the number
of loop iterations and recursive method invocations should be maximized until a certain user
defined level of satisfaction is reached. This allows the user to define how important a high
number of loop iterations and recursive method invocations is. The following function is used
to incorporate recursive method invocations and loop iterations as objective into the many
objective fitness function:

fi(n) =
1

kn
− 1 (5.1)

Here, n is the total number of recursive invocations and loop iterations, respectively. k
is a constant which denotes how many invocations/iterations are needed to achieve a full
“coverage”. The −1 is added since all objectives in the fitness function are to be minimized.
Figure 5.12 shows how k and n influence the fitness function.
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Summing up, a new many-objective fitness function is used for the automatic generation
of performance tests. The objectives are the overall branch and method coverage of the SUT
in [0, 1], the branch coverage of each method in [0, 1] and the coverage on loop iterations
and method recursions in [−1, 0] as defined in Equation 5.1. As the method and branch
coverage should be maximized and the fitness function usually minimizes all objectives, the
coverage values are simply inverted. This function should employ the diversity in test sets as
required by the analysis in the previous paragraphs. Employing the fitness function of method
recursions and loop iterations benefits the generation of performance tests, e.g. when creating
performance tests to unfold the curse of dimensionality.

5.2.2.6 Implementation

The IBTG is implemented on top of the multi objective evolutionary algorithm (MOEA)
framework [96]. Since a specialized representation of the test sets is used instead of a binary
representation, each operator for recombination and mutation has to be implemented anew.
The main benefit of using the MOEA framework is that all already implemented genetic
algorithms and selection operators may be re-used. The implementation is evaluated in more
detail in Chapter 6.

5.2.3 Optimizing the Length of Test Sets

When the IBTG ends its computation due to the fact that each objective reaches its maximum
fitness or the given resources, e.g. the overall computation time, are spent, this results in a set
of test sets, each consisting of action sequences. After computation, all test sets are merged to
a single test set. Each action sequence of this test set is minimized as shown in Algorithm 6 in
order to reduce overhead computation when executing the test sets. Each action that is not
needed to execute another action and whose deletion from the action sequence does not reduce
the overall fitness is removed from the action sequence. Analogously, all action sequences from
the test sets are removed which can be removed without worsening the overall fitness.

Input : action sequence as a list a of n actions ai
Output: a minimized action sequence

1 for i = n− 1,i ≥ 0,i = i− 1 do
2 if !IsRequired(ai,a) then

/* ai is not required by an aj in a with j > i */
3 f0=ComputeFitness(a);
4 fi=ComputeFitness(a \ ai);
5 if f0 ≤ fi for each objective then
6 delete ai from a and update i and n
7 end
8 end
9 end

10 return minimized action sequence a;

Algorithm 6: Algorithm to minimize the number of actions in an action sequence a without
worsening its fitness.
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5.3 Alternative Test Set Generators

The interface based test generator (IBTG) described in Section 5.2.2 is designed in a very
abstract way in order to not only support the generation of test sets for the comparison of
index structures but all other types of systems. As this may lead to non-optimal test sets, two
other more specialized test generators are created and described in this section: The guided
workload generator optimizes the parameters of the classic workload generator (Section 3.5.1)
by a genetic algorithm and the specialized test generator generates test sets similar to the
test generator described in the previous section but with the knowledge of the specialities that
are needed for spatial and high-dimensional spatio-temporal indices. The following subsections
describe the differences between the generators and their major implementation details. Figure
5.13 gives an overview of the workload and test generators used for the remainder of this thesis.
The guided workload generator inherits from the classic workload generator (Section 3.5.1),
the specialized test generator inherits from the IBTG described above. The classic workload
generator is the most specialized generator and only depends on the correct configuration by
user experience. The IBTG is the most general approach and only requires a valid interface
to create the desired test sets. All generators are evaluated in Chapter 6.

Classic Workload
Generator

Guided Workload
Generator

Specialized Test
Generator

Interface Based
Test Generator

specialization

Figure 5.13: Overview of the four different test generators used in this thesis. Two workload
generators (left), and two generators for test sequences (right). Whereas the classic workload
generator is completely dependent on user experience, the automated test generator only
requires a valid test interface and automatically creates appropriate test sets.

5.3.1 Guided Workload Generation

The parameters for the classic workload generator (see Section 3.5.1) are set with respect
to the user experience on the indices to test and the requirements of these indices. Since the
parameter space is too large to be explored exhaustively, a genetic algorithm is used to generate
a setup for the classic workload (see Section 3.5.1) that is designed to achieve a high coverage
on the code. It uses the very same fitness function as described in Section 5.2.2.5 for the IBTG.
The algorithm not only searches for one workload setup but for a set of setups which leads to
the best fitness. Despite the optimization of the parameters by a genetic algorithm, two other
adaptions to the classic workload generator are made by introducing a new parameter. The
sizesCount denotes how many steps a workload has. As a reminder, the classic workload
generator always inserts, updates or deletes a total of incSize histories 10 times. Thus, the
classic workload generator would have a sizesCount of 10.

The genetic algorithm varies every parameter of the classic workload generator. In each
generation, a parameter value is varied when a certain user-defined probability is met. When
a parameter is varied, this is done with respect to the range and the operator types listed in
Table 5.4. The parameter ranges are chosen with respect to the outcome of the evaluation in
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Section 5.2.2.5 and the constraints of the overall application. For instance, a startPercent-
age outside [0, 1] will always cause a corrupted workload as the sum of startPercentage,
endPercentage and updatedPercentage must be ≤ 1.0. A parameter value may be varied
by any of the listed operators in any order. For instance, the initial number of elements in an
index initialSize may be varied by the half-uniform crossover HUX operator first and then
by the BitFlip operator. Each operator chooses the parent solutions by using the selection
operator of the specific genetic algorithm. The operators are chosen to reflect the two basic
operators of a genetic algorithm: the crossover of two values and their recombination and
the mutation of a single value (Section 2.11.4.1). All used non-custom operators are already
implemented in the MOEA framework [96].

Table 5.4: Parameters varied by the guided workload generator, their ranges and the operators
used to vary them.
*: the parameter is not a part of the classic generator
**: custom parameter type to represent a distribution

parameter type range variation operator
startPercentage floating [0.0, 1.0] PM, SBX
endPercentage floating [0.0, 1.0] PM, SBX
updatePercentage floating [0.0, 1.0] PM, SBX
distribution distribution** custom** custom**

validTimeDistribution distribution** custom** custom**

vtInfinityProbability floating [0.0, 1.0] PM, SBX
maxValidTimeLength floating [0.0, 1.0] PM, SBX
maxElementSize floating [0.0, 1.0] PM, SBX
initialSize integer [1, 10] BitFlip, HUX
incSize integer [0, 10] BitFlip, HUX
sizesCount* integer [1, 10] BitFlip, HUX
queries integer [0, 10] BitFlip, HUX
querySize floating [0.0, 1.0] PM, SBX
dimensions integer [2, 50] BitFlip, HUX

The custom operator for the variation of a distribution works as follows: The distribution
may be one of the three basic distributions presented for the classic workload generator (Section
3.5.1): uniform, gaussian or skewed gaussian. Making the distributions more adaptable, for
instance by not only varying the type of the distributions but the parametrization of the chosen
distribution type, leads to a very high amount of failing workloads. Note that each parameter
in a distribution is variated on its own, i.e. without the context of the other parameters.
Changing one parameter without the other ones will often lead to a set of parameters that is
invalid. Therefore, only the discrete change between the three fundamental distribution types
is chosen.

5.3.2 Specialized Test Generator

In contrast to the guided workload generator, the specialized test generator does not use
classical workload generation to optimize the value of the fitness function defined in Section
5.2.2.5, but a specialization of the IBTG. The IBTG depends on the definition of a specific
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test interface in order to create test sets with a high coverage for high-dimensional spatio-
temporal index structures. The specialized test generator is specifically designed for that type
of structures and does not use a general test interface. Instead, each time a test set or a test
sequence needs to be enlarged due to mutation, the enlargement is done with the knowledge
of the desired test structure.

Increasing the test set, i.e. adding a new sequence, always means to initialize a new index.
As for the automated generator, it is ensured by the specialized generator that one and only
one index per test set is initialized and that it is initialized at the very beginning of each
sequence. With the knowledge of the index to be initialized, it always can be set up valid in
the legal bounds of its parameters, for instance the number of dimensions or the size of its
nodes.

Like the classic and the guided workload generator, the specialized test generator saves
the histories of the already existing objects for each index. Whenever the genetic algorithm
mutates a test sequence such that it has to be enlarged one of the existing histories is up-
dated, deleted or a new history started, each with a probability of 1

3 . All new spatial elements
required for the enlargement of a history are created by using a uniform distribution in each
dimension. Using the uniform distribution will not prevent the test generator from creating
action sequences which add elements with other distributions as the uniform distribution is
only the base for the genetic computation. For instance, deletions performed by the genetic
algorithm may shift the uniform distribution of the elements to a gaussian or a skewed distri-
bution. Using the uniform distribution only makes it more likely that the added elements are
uniformly distributed. If an action sequence is to be decremented via mutation, its elements
are only deleted until the actions required for the initialization of the index remain.

All other mutations are set up like for the IBTG (see Section 5.2.2.4). Also, the recombi-
nation, selection and the fitness function remain unchanged in comparison to the IBTG.

5.4 Performance Measurement

In order to compare the performance of a set of SUTs which use a common interface, the
performance measurement needs to be robust and reproducible. This section describes a new
approach for the robust and reproducible measurement of the performance of Java programs.

Georges et al. (2007) [87] compare a large set of performance measurement methodologies
and Alghmadi et al. (2016) [30] describe a rather complex measurement pipeline which au-
tomatically decides when to stop the performance measurement. As both publications seem
to be of the most recent importance for the subject, they are used in this thesis to introduce
a new framework for rigorous Java performance measurement. Unfortunately, the framework
from Alghmadi et al. (2016) [30] does not seem to be available and all contact attempts in the
context of this thesis have not been answered up to the publication of this thesis.

Section 2.6 discusses the main aspects of performance measurement in Java. The greatest
impact factor on the measurement is the just-in-time (JIT) compilation. When measuring the
performance of a Java program, one always needs to incorporate the uncertainty caused by JIT
compilation. Disabling the JIT compilation for performance measurement is not an option. A
program should always be tested and executed as it is meant to be tested and executed. In
addition, disabling the JIT compiler causes a great computation overhead.

Besides JIT compilation, the performance measurement of a Java program is influenced by
scheduling and garbage collection performed by the JVM and by system and user processes
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Figure 5.14: Median (dotted) and the 2.5 and 97.5 percentile (solid) of the performance of
100 JVM invocations over the first 100 workload executions with enabled (top) and disabled
(bottom) JIT compilation. Note the different scales on the y-axis.

which run in parallel to the JVM. In order to get a glimpse on the magnitude of these influences,
the classic workload generator adapted for spatial indices (see Section 5.2.1, page 94) with a
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total element size of 100 is computed 25000 times by a single JVM. A total of 100 of these JVM
executions is performed for each of the 12 index types described in Section 5.2.1. Another total
of 100 JVM executions is performed for each of the 12 spatial index types with disabled JIT
compilation and 1000 workload executions per JVM execution. The parameters for each exe-
cuted workload executed are the very same for each execution. Doing so, the measurements are
comparable between the different JVM executions and between any workload execution. All
workloads are executed on a Dell PowerEdge R420 with 192GB 1,600Mhz DDR3L RAM, Intel
Xeon E5-2420 CPU and four SATA 7,200rpm hard disk drives. Each pseudo random number of
a workload bases on a certain random seed making the evaluation reproducible. Boyer (2008)
[51] states, that using the System.nanoTime() method in Java should be preferred over the
System.currentTimeMillis() or a java.lang.management.ThreadMXBean interface as
it is supported by any system, has a higher resolution and a higher reliability. It is also used
for the actual performance measurement in this thesis.

Figure 5.14 shows the median and the 2.5 and 97.5 percentile for each setting and each
index. Each pair of plots shows the results for activated JIT compilation at the top and the
results for the deactivated JIT compilation at the bottom. The median is chosen instead of the
mean as the measurements show a very high variability. As each workload consists of numerous
method invocations, i.e. the insert, update, delete and query operations, the greatest impact
of JIT compilation is expected in the first 100 workload executions of each JVM execution
which equals over 10000 basic operations (insert, delete, query) on the indices. Therefore, only
the first 100 executions are displayed. As the general behavior is of more interest than the
absolute values of the measurements, the scales of the plots are adjusted such that the trends
are visible. For each index, the measurement with enabled JIT compilation is very high for the
first iterations and then decreases. The measurements seem to be in a steady state for some
indices (e.g. Android Quadratic) earlier than for others (e.g. Moten R*). The measurements
for the disabled JIT compilation seem to be steady except for the very beginning. The peak
at the beginning most likely results from the time being spend on the warmup of the JVM, for
instance the dynamic class loading. Both, the measurements with enabled and with disabled
JIT compilation show variations even after they seem to have stabilized. These variations
most likely result from the deterministic but somehow uncontrollable garbage collection in
Java and from system specific processes, like scheduling and other processes.

5.4.1 Overview

The general assumption behind the new framework is that after a sufficient number of exe-
cutions of the same test in the same virtual machine, the JIT compilation is finished and no
more optimizations will happen. Therefore, the crucial task is to predict whether this steady
state has been reached or if more executions have to be performed. If the steady state is
reached, a sufficient number of executions has to be computed and the median performance
of these executions has to be computed as resulting performance value. The steady state is
to be defined by several parameters. As the performance measurements vary even after sta-
bilization or with disabled JIT compilation, it needs to be determined which portion of the
measurements needs to lie in which interval in order to be considered steady. Always, only
a single JVM execution with the ongoing execution and measurement of the very same test
set needs to be monitored as it seems impractical to overwatch several JVM executions and
then to decide when to stop each of them. That being said, it needs to be determined how
many consecutive executions of the same test set in one JVM execution have to be considered
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Figure 5.15: Example of the new performance measurement framework for Java programs.
The dashed rectangles show how many measurements are taken into account (length on the
x-axis) and how big the variations of theses measurements are allowed to be (height on the
y-axis) when the steady state should be assumed.

in order to determine a steady measurement. If too many consecutive executions are chosen,
the framework needs a lot of unnecessary additional time in order to identify the steady state.
If too few consecutive executions are chosen, the framework may identify the steady state
too early. The same holds for the interval which is used to identify the steady state. If it is
too small, the steady state may never be reached. If it is too great, the steady state may be
identified too early. Figure 5.15 shows the general approach. Given an idealized development
of performance measurements in the very same JVM, as soon as the variations of the mea-
surement stay inside a predefined range, it is assumed that the steady state has been reached.
The height of the dashed rectangles shows how big the variations can be when the steady state
should be assumed and the length of the dashed rectangles shows how many measurements
are taken into account.

5.4.2 Identification of the Steady State

For a better comparability of the measurements for the different indices and in order to identify
the parameters for the identification of the steady state, the measurements are divided by the
median of each iteration. That is, the percentiles of the 100 measurements in each iteration
are divided by the median of that iteration, with an iteration i being the i-th execution of
the workload in a single JVM. Doing so, the quantiles of the measurements are determined
in relation to the corresponding median. As the percentiles for the steady state should be
determined, only the iterations i = 1.5 · 104, ..., 2.0 · 104 are considered for the measurements
with enabled JIT compilation. At this point, the influence of the warmup and JIT compilation
should be very unlikely. For the measurements with disabled JIT compilations the iterations
(i = 10, ..., 103) are considered. The computed percentiles are shown in Figure 5.16. For
instance, the box plot at 0.9 displays the distribution of the 90 percentiles for each iteration
over all JVM executions and all indices.

Even under the presumption that the impact of the JIT compilation should be minimal
after 1.5 · 104 executions in each of the 100 JVM executions, there are still more variances
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Figure 5.16: Box plots of relative quantiles for the performance measurements with enabled
(left) and with disabled (right) JIT compilation over all 12 R-tree implementations.

with enabled than with disabled JIT compilation. One needs to note that the box plots of
the percentiles would look very similar even for a higher number of executions. Some of
the diversity may also result from the fact that the JIT compilation has a greater impact
on one index than on the other indices. That is, the differences between the indices also
influence the box plots of the percentiles. This assumption is supported by the different
trends of the absolute measurements in Figure 5.14. Nonetheless, all executions need to be
considered in order to define an appropriate interval which denotes when the steady state of
the measurements has been reached since the test sets which are executed in Chapter 6 may
also differ in the impact of JIT compilation. Keeping the described variations in mind, the
steady state is defined as to be reached if the measurements between the 2.5 and the 97.5
percentile of the last n executions variate not more than 0.5 around the median. That is,
the performance of the last n executions is measured, their median is computed and the n
measurements are divided by their median. If the measurements between the 2.5 and the 97.5
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percentile lie within the interval [0.5, 1.5], it is assumed that the steady state has been reached.
The defined interval is supported by Figure 5.14 assuming that the steady state is reached
after more than 1.5 · 104 executions, as only a small portion of measurements lie outside the
interval between the 90 and 97.5 percentile. The measurements are cut by the 2.5 and the
97.5 percentile, in order to exclude outliers caused by garbage collection and other processes
on the operating system.

5.4.3 Identification of an appropriate number of measurements

The correct number of consecutive measurements in one JVM execution which are used to
determine whether the steady state has been reached or not, can only be determined ap-
proximately. In order to compare different lengths, the 2.5 · 105 measurements in each JVM
execution are partitioned into non overlapping sublists of length n. For each sublist, the me-
dian and the 2.5, 25, 75 and 97.5 percentiles are computed and divided by the median. Then
the mean values of these percentiles over all sublists at the same position are computed. Doing
so, it can be determined how likely it is for a specific length n to identify the steady state
and after what number of measurements the steady state is identified. Figure 5.17 shows the
described means of percentiles for different lengths of the sublists. The mean percentiles of
each sublist are displayed at the end of that sublist. For instance, if the length of the sublist
is n = 1000, the mean of the first sublist in each execution is displayed at position 1000. In
addition, for each sublist, the likelihood of the identification of the steady state is shown.

For a length of 10, there are much bigger variations in the means of the percentiles as well
as in the probability for a steady state. In contrast, the variations in the probability for the
steady state for a length of 1000 are much smaller. A length of n = 100 seems to be a good
compromise between an early detection of the steady state and a smaller number of detected
false-positives. One has to note that a false-positive is not clearly defined because the steady
state can only be assumed. However, a length of n = 10 means that a high probability exists
to detect the steady state, while the mean of the percentiles (75 and 97.5) is also very high.
As this is a kind of a contradiction, for the performance measurement in this thesis, sublists
of n = 100 are chosen to detect the steady state. The parameter setting described here is
given by a rather bounded set of evaluations. It is a good start for a robust and reproducible
performance comparison of complex data structures, especially the index structures used for
the determination of the parameters. For a use of the new framework for more general Java
applications, an even greater and more diverse evaluation has to be made in order to define the
parameters more generally. Nonetheless, the given parameters suffice for a robust performance
measurement in this thesis. Note that a further evaluation of the performance measurement
technique is not useful as the outcome of any evaluation simply reflects the given setup of the
steady state.
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Figure 5.17: Mean of relative 2.5 and 97.5 (dotted), 25 and 75 (dashed) percentiles plus the
likelihood of the detection of a steady state if all measurements in the sublist (solid) or only
the measurements between the 2.5 and 97.5 (thick) percentile are used.





Chapter 6

Evaluation

This chapter evaluates the Performance Test Automation Framework (PTAF) from several
points of view. The branch coverages of the test sets produced by the Interface Based Test
Generator (IBTG), the specialized test generator and the guided workload generator (Chap-
ter 5) are compared to the coverage of the classic workload generators for each of the two
spatio-temporal (Section 3.5.1) and twelve spatial (Section 5.2.1) indices. With respect to the
coverage, several parameter settings for the test generators are evaluated, too. The test sets
with the best coverage on the spatio-temporal indices are used for the first case study of the
Interface Based Performance Comparison (IBPC) technique. Then the weighted performance
(Section 4) resulting from these test sets is analyzed and compared to the general outcome of
the evaluation of the classic workload generator (Section 3.5.2). For the second case study, a
set of simple data structures is used whose performance behavior is well known.

6.1 Coverage Evaluation for Test and Workload Generators

This section compares the branch coverage of the test and workload generators that are newly
created in this thesis. This is done on the basis of the two spatio-temporal and twelve spatial
indices described in Chapter 3 and Section 5.2.1, respectively.

6.1.1 Setup

The workload generators are configured as specified in Sections 3.5.1 and 5.2.1. For the com-
putation of the coverage in reasonable time, the total number of elements has to be reduced to
10% of the original workload. Section 5.2.2.5 shows that this does not influence the coverage.
Therefore, only the configuration of the other three generators is described: the guided work-
load generator, the specialized test generator and the interface based test generator (IBTG).
All three test generators use the same fitness function (Section 5.2.2.5). In addition, all three
test generators use the same set of genetic algorithms and selection operators.

6.1.1.1 Genetic Algorithms and Selection Operators

The genetic algorithms are chosen in order to reflect different approaches in multi- and many-
objective optimization using genetic algorithms. Due to the limited number of algorithms used
and the specialization of the fitness function, mutation and recombination algorithms, the
evaluation may not be used to make general conclusions about the performance of the genetic
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algorithms and their selection operators. By using different algorithms, it can be determined
whether the structure of the test generation procedure reacts to different algorithms or if the
process of optimization does not depend on the selected algorithm. As the MOSA [148] and
DynMOSA [149] approach seem to be the most effective approaches for unit test generation
(Section 2.11.4.2), their core algorithm, the NSGA-II [75] is also used as genetic algorithm for
the generation of performance tests. In addition, two successors of the NSGA-II, the εMOEA
[76], MOEA/D [120] algorithms are used as they tend to create solutions, which are more
diverse and the algorithms work generally faster. The algorithms and their selection operator
are listed in Table 6.1. They are all implemented in the MOEA framework [96] as described
above.

Table 6.1: The genetic algorithms and their selection operators used for each of the automated
test generators.

Genetic algorithm Source Selection Algorithm
Random none
Genetic Algorithm [102] Linear Weighted Dominance
NSGA-II [75] Tournament Selection with Pareto Dominance Com-

parator
εMOEA [76] Tournament Selection with Pareto Dominance Com-

parator
MOEA/D [120]

The Random algorithm randomly initializes new test sets in every iteration, i.e. it does
not try to enhance the test sets from previous generations. Therefore, the Random approach
does not need a selection algorithm. The Genetic Algorithm [102] is a simple single objective
genetic algorithm as described in Section 2.11.4.1. The fitness values of the objectives in the
fitness function are summed up and they are all weighted equally. The Linear Weighted Dom-
inance selection operator simply takes the test sets with the best fitness value. The NSGA-II,
MOEA/D and εMOEA are described on page 43. The Tournament Selection algorithm ran-
domly selects a predefined number of test sets from the population. It continuously compares
two test sets with each other until the test set with best fitness remains. For each of the se-
lection steps the pareto dominance (Section 2.11.4.2) of the test sets is compared as described
by Deb (2000) [72].

6.1.1.2 Bloat Control

Fraser and Arcuri (2011) [81] stress the control of the growth of the length of method sequences,
called bloat control (Section 2.11.4.6). Bloat control may be done in different ways in the setup
of the test generators. In all three generators, the maximum execution time of a single method
sequence in a test set or workload may be limited to a certain value. For the IBTG and the
specialized test generator, the length of the test sets may also be minimized by an additional
objective in the fitness function. If this objective is added, the fitness function minimizes
the length of the method sequences. It should be noted that the length of the test sets is
not bounded by a certain limit but simply minimized. In contrast, limiting the execution
time of the test sets and workloads implies the definition of a certain limit and therefore it
may prohibit test sets which have a disproportional high coverage compared to the length of
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the method sequences. In this evaluation, all generators limit the maximum execution time
of the workloads and method sequences to 5 seconds each. The analysis of the performance
measurement of the classic workload generator in Section 5.4 shows, that none of the classic
workloads takes more than ≈ 3.5s to compute. Therefore, 5s should be sufficient to avoid
bloating and optimize the overall computation time of the genetic algorithms by not excluding
long test sets with a high coverage. The test generation is computed on the very same system
as the performance measurement.

6.1.1.3 Desired Number of Loop Iterations and Method Recursions

The fitness function described in Section 5.2.2.5 uses the function fi = 1
kn − 1 to achieve a

high number of loop iterations and recursive method invocations n. In the evaluation setup,
the parameter k is set to the values 1.0, 1.05 and 1.25 to determine the impact of k.

6.1.1.4 Resource Limit

As the IBTG minimizes the test sets and workloads in different directions, e.g. they try
to maximize the coverage and minimize the length of the method sequences, not a perfect
solution which fulfills each objective but the best compromise can be expected. Therefore,
the overall computation time of the generators is limited. All computations are performed
on a Dell PowerEddge R420 with 192GB 1,600Mhz DDR3L RAM, Intel Xeon E5-2420 CPU
and four SATA 7,200rpm hard disk drives, the very same that is used for the evaluation of
the existing test generators in Section 5.2.1. Each computation is based on a certain random
seed. As the evaluation of the existing test generators does not show a difference between
a computation time limit of 5 and 30 minutes, all generators in this evaluation are limited
to 5 minutes computation time each. Note that the minimization of the method and test
sequence described in Section 5.2.3 is performed after the automated generator has finished,
i.e. after the desired 5 minutes computation time. Within the minimization all solutions of the
pareto optimal sets are combined into one test set for the IBTG and the specialized generator.
However, for the guided workload generator, all parameter sets of the pareto optimal set are
treated as individual solutions.

6.1.1.5 Test Interface and SUT Definition

The interface based test generator (IBTG) demands a test interface which indicates which
methods and initializers can be used to build the test sets. For the spatial indices, the same
test interface as presented on page 92 is used. For the spatio-temporal indices, the initializer of
the now-generator NowGen(double,double) is added to the test interface. The first double
denotes the start time and the second double the increment size of the current value of
now (now∗) per time step. In case of a workload generator, every insert, delete and update
operation implies an increment of now∗. In case of the IBTG and the specialized test generator,
the increment has to be performed explicitly by invoking the method incNow(). The size of the
increment value and the number of incNow() invocations denote which time span is covered
by the now-value during the execution of the corresponding method sequence. Therefore, the
incNow() method is also added to the test interface for the spatio-temporal indices.

The IBTG and the specialized test generator both initialize one index at the very beginning
of each method sequence. No index is initialized during the rest of the method sequence
and all operations regarding an index are performed on one and only one index structure
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per method sequence. All indices that are initialized by the IBTG and the specialized test
generator are using a factory method that implements a common interface. All spatial indices
are initialized with an implementation of the method createInstance(int), where the int
denotes the number of dimensions of the index. All spatio-temporal indices are initialized with
an implementation of the method createInstance(int, NowGen), where the int denotes
the number of dimensions of the index and the NowGen represents the current value of now.
In case of the specialized test generator it is ensured that no spatial or spatio-temporal object
created after the initialization of the index has another dimension than the dimension of the
index. In addition, the number of dimensions is in {2, ..., 50}. For spatio-temporal data, the
specialized test generator ensures that only one NowGen is created for each index. In addition,
the NowGen is initialized within appropriate bounds, i.e. the start value lies in [0, 1] and the
increment value is a small fraction of the start value.

All generators need a set of classes to represent the system under test (SUT). The coverage
values that are needed to compute the objectives of the fitness function are computed with
respect to the complete corresponding SUT. The SUTs are defined by analyzing the source
code and identifying those classes which are affected by the methods and initializers of the test
interface. The classes from the packages provided by the Java standard library are excluded
from the SUTs.

6.1.1.6 Configuration of Mutation and Recombination Operators

The guided workload generator mutates each parameter of the classic workload generator in
order to generate a workload with a maximized coverage. The operators are described in detail
in Section 5.3.1. The probability for each of the operators to mutate each of the parameters
is set to 0.05. Doing so, it is more likely that only one operator is applied on one parameter
in a single variation step of the genetic algorithm. The probability for a bit flip is set to 0.1,
the default value in the MOEA framework. The distribution index is set to 0.5 which is also
the default value in the MOEA framework.

The specialized test generator mutates the test sequences by adding or removing a method
invocation or initialization in a method sequence, by adding or removing a method sequence
from the test set or by applying a crossover on two test sets. The probability for each mu-
tation and recombination is set to 0.2 which makes it more likely that only one mutation or
recombination is applied per iteration of the genetic algorithm. A probability of less than 0.2
would make it too unlikely that the test sets change at all in one iteration.

The IBTG mutates the test sets, the method sequences and the values of the actions as
described in Section 5.2.2.4. Each mutation and the crossover of the test sets is applied with
a probability of 0.2. As for the guided workload generator and the specialized test generator,
the probability is chosen such that for most of the iterations of the genetic algorithm, one and
only one mutation is applied on a test set. In contrast to the other generators, the IBTG uses
pools of primitive values to randomly generate primitive values. Each primitive pool generates
the primitives with respect to a gaussian distribution with a mean value of 0.0 and a standard
deviation of 5.0. Doing so, most primitive values that are created lie inside [−5, 5]. In order to
incorporate constant values such as not a number (NaN), each primitive pool may generate one
of the possible constant values instead of a primitive value. The probability for the creation of
a constant value is set to 0.02 and each available constant is chosen with the same probability.
These default values are chosen in order to use the IBTG for a larger number of SUTs and
test interfaces, not only the spatial and spatio-temporal indices. In future implementations of
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the IBTG, the primitive values may be generated based on a pre-evaluation step which, for
instance, analyzes the primitive values used in the source code. EVOSUITE [81] already uses
such a pre-evaluation step. As most of the results indicate, the chosen parameters suffice for
now.

Table 6.2: Setup parameters for the evaluation of the coverage of the different test and workload
generators.

parameter IBTG specialized guided
genetic algorithm Random / Genetic / NSGA-II / εMOEA / MOEA/D
parameter k 1.0 / 1.05 / 1.25
time limit 5 min
execution time limit 5 s
test set minimization yes / no -
number of executions 21, 000 21, 000 10, 500

6.1.2 Results and Analysis

This section presents the coverage of the different test sets and workloads that are produced
by the three different generators in comparison to the classic workload generator. The main
question is whether the automated generators are able to generate test sets and workloads that
have a comparable or even higher coverage on the SUTs, i.e. the different indices. In addition,
it is shown how the different setup parameters, i.e. the different genetic algorithms, the
minimization objective and the control parameter k, influence the coverage of the resulting
test sets and workloads. Finally, the results should indicate which configuration has to be
chosen in order to generate the test sets for the application of the Interface Based Performance
Comparison (IBPC) technique. The setup of parameters is summarized in Table 6.2. Each
execution is performed on a Dell PowerEdge R420, with 192GB 1,600Mhz DDR3L RAM,
Intel Xeon E5-2420 CPU and four SATA 7,200rpm hard disk drives and the pseudo random
numbers are generated on basis of a random seed. The box plots are defined as follows: The
lower whisker shows the 2.5 percentile, the upper whisker shows the 97.5 percentile. The box
is bounded by the 25 and 75 percentile, the line in the middle denotes the median. The dots
denote the minima and maxima.

6.1.2.1 Overview of the Achieved Coverage

Figures 6.1 and 6.2 show the branch coverage of the test sets and workloads generated by the
IBTG, the specialized test generator and the guided workload generator in comparison to the
classic workload generator. The coverage of all workloads executed by the classic workload
generator is combined, i.e. the classic workload generator is represented by a single coverage
value. Each of the other generators is executed 50 times and the results for every execution
and every configuration are presented in a single box plot per index.

All generators for the R-tree implementations are able to generate workloads and test
sets, respectively, which have a branch coverage that is comparable to the branch coverage
of the classic workload generator. Compared to the total number of executions only a few
workloads and test sets have a higher coverage than the classic workload generator (IBTG:
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Figure 6.1: Branch coverage of the different workload and test generators for every configu-
ration compared to the branch coverage of the classic workload generator for twelve R-tree
implementations.

475, specialized: 693, guided: 548). A high coverage of the classic workload generator generally
supports the evaluation of the query performance in Section 3.5.2. Nonetheless, the higher
coverage of some executions shows that there is still space for optimization.

For the spatio-temporal indices, the test sets generated with the IBTG and the specialized
test generator do not cover the indices as good as the classic workload generator. A detailed
analysis unfolds that both fail to configure the NowGen and the inserted elements such that the
test sets reflect the different temporal relationships, e.g. adding a data set after its valid time
has ended etc.. In addition, a lot of the test sets generated by the IBTG fail as the NowGen
is initialized with non matching or illegal parameters. For instance, the NowGen must have a
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Figure 6.2: Branch coverage of the different workload and test generators for every configura-
tion compared to the branch coverage of the classic workload generator for two spatio-temporal
indices. The IBTG* denotes the results of an optimized configuration of the primitive object
pools and the initial setup.

start value ∈ [0, 1] and the increment should only be a small fraction of the start value such
that the invocation of incNow does not increase the current value of now above 1.0.

Configuring the IBTG such that only double values ∈ [0, 1] are generated and only one
NowGen is initialized per method sequence avoids the aforementioned problems. Figure 6.2
shows the results for the εMOEA with k = 1.25 and no minimization objective as those
settings show the overall best results for the default setup. The coverage of the test sets
generated by the described configuration shows relatively stable results with a low variation
around the coverage of the classic workload generator. The test sets with the highest coverage
will be chosen for the prototypal use of the IBPC in Section 6.2.1.

Although the specialized generator provides the most test sets with a coverage higher
than the coverage of the classic workload generator, the IBTG provides test sets with a high
coverage for each of the implementations. In addition, the IBTG generates the test sets with
the overall highest coverage.

For the remainder of this evaluation, the coverage value of each execution is divided by the
coverage of the classic workload generator. Thus, the coverage does not need to be analyzed
with respect to a specific index and all of these relative coverage values can be combined.
In order to get a good overview of the effect of the different configuration, the optimized
configuration of the IBTG for the spatio-temporal indices is not included into the further
analysis.

6.1.2.2 Analysis of different Genetic Algorithms

Each generator is executed with five different genetic algorithms. In order to detect those
algorithms, which provide the test sets and workloads with the highest coverage, the relative
coverage values for each algorithm are combined for each generator. The relative coverage is
the coverage of a test set or workload divided by the coverage of the classic workload generator
for the given index. Figure 6.3 shows the relative coverage of the generators configured with
the different algorithms for each of the generators as a box plot.
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Figure 6.3: Relative branch coverage ordered by the used algorithms over all indices.

The MOEA/D and the Random generator produce the best results for the guided workload
generator but the worst results for the specialized generator and the IBTG. This results from
the fact that the guided workload generator already starts with a good initial solution which
then has to be refined. The IBTG and the specialized generator may only provide good
results after several invocations have been added to the initial method sequence. The other
three algorithms show similar results for each of the generators, with the εMOEA showing the
best coverage results.

Note that each algorithm uses the same random seed for the same setup. For instance, the
ith execution of configuration c has the same random seed for the MOEA/D as for the NSGA-
II. In addition, it should be noted, that the single-objective genetic algorithm, which sums the
objectives of the fitness function equally weighted performs comparable to the multi-objective
εMOEA and NSGA-II.

The evolvability of the genetic algorithms is measured by the change rate (CR) and the
population information content (PIC) (Section 2.11.4.5). Since the MOEA/D algorithm splits
a multi-objective problem into the optimization of many single-objective problem, the mea-
surement CR and PIC are not applicable. The CR and PIC are only shown for the other three
non-random algorithms in Figures 6.4 and 6.5.

The NSGA-II has the highest CRs over all configurations and all indices, the εMOEA has
the overall lowest CRs and the simple genetic algorithm has CRs that are comparable to the
CRs of the εMOEA but are slightly higher. The PICs of the simple genetic algorithm are the
highest, followed by those of the εMOEA and the NSGA-II. The conclusion can be drawn that
the NSGA-II has the highest evolvability. Still, the εMOEA shows the best coverage results.
For future applications it is promising to use the NSGA-II and more time resources.

6.1.2.3 Analysis of the Parameter k

The parameter k is used in the fitness function (Section 5.2.2.5) in order to increase the number
of loop iterations and recursive method invocations by a test set or workload setup. In order
to avoid a disproportional high growth of loop iterations and recursive method invocations,
k bounds the value of the objective for each loop and recursive method ∈ [−1, 0]. Doing so,



6.1. COVERAGE EVALUATION FOR TEST AND WORKLOAD GENERATORS 127

0 0.2 0.4 0.6 0.8 1

Genetic

NSGA-II

εMOEA

CR [-]

(a) guided workload gener-
ator

0 0.2 0.4 0.6 0.8 1

CR [-]

(b) specialized test genera-
tor

0 0.2 0.4 0.6 0.8 1

CR [-]

(c) IBTG
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Figure 6.5: Population information content (PIC) of the used algorithms over all indices.

it is more unlikely for the genetic algorithm to only concentrate on more loop iterations and
recursive method invocations by ignoring the other objectives.
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Figure 6.6: Relative branch coverage of different parametrizations of k over all indices.

Figure 6.6 shows the relative coverage of the three test and workload generators for each of
the three evaluated values of k over all indices. k does not have an influence on the coverage
of the workloads generated by the guided workload generator. This most likely results from
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the fact that the guided workload generator generates workloads with a lot more elements
than the other test generators. More elements always result in more loop iterations and more
recursive method invocations. Therefore, the usage of a higher k does not increase the already
great number of elements.

For the specialized test generator, k = 1.0 generates test sets with a worse median coverage
than the test sets that are generated with k = 1.05 or k = 1.25. A similar observation can be
made about the IBTG. Here the difference between a k = 1.05 and k = 1.0 is even higher. For
both test set generators, those setups with k = 1.25 generate the test sets with the highest
coverage. Nonetheless, all generators are able to generate test sets and workloads with a
coverage higher than the classic workload generators. For the generation of performance tests,
a higher value of k seems desirable as this forces the test generator to generate test sets with
more elements. The evaluation of the IBPC for spatio-temporal indices unfolds the necessity
for k > 1.0

6.1.2.4 Analysis of Test Set Minimization

The bloat control (Section 2.11.4.6) in the IBTG and the specialized test generator is achieved
in two ways: By adding an objective for the minimization of the test set length and by limiting
the execution time a single test set. In this evaluation, the latter is chosen with respect to
available resources and the expected required maximum execution time of the workloads and
test sets. The evaluations of the IBTG and the specialized test generator are all performed
with enabled and disabled minimization objective.

0 0.5 1 1.5

enabled

disabled

relative branch coverage

(a) specialized test genera-
tor

0 0.5 1 1.5

relative branch coverage

(b) IBTG

Figure 6.7: Relative branch coverage of test sets generated with enabled and with disabled
minimization objective over all indices.

Figure 6.7 shows the relative coverage of the IBTG and the specialized test generator for all
executions with enabled and with disabled minimization objective. Disabling the minimization
objective does not cause bloating of a test set as all test sets are limited by their execution
time. All test sets which take longer to execute than the provided 5s get the worst fitness
value. Still, the question is wether the minimization of the length of the test sets results in a
worse coverage compared to test sets which are generated without minimization objective. For
both, the IBTG and the specialized test generator, an enabled minimization objective causes
worse coverage results than the disabled minimization objective. As the “hard” bloat control,
the limitation of the execution time, seems to be sufficient, the additional minimization of the
length of the test sets does not need to be applied.
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6.2 Case Studies of the IBPC

This section exemplifies the application of the Interface Based Performance Comparison (IBPC)
on two scenarios: The comparison of the performance of the high-dimensional spatio-temporal
indices discussed in Chapter 3 and the comparison of the performance of an array list, a linked
list and a hash set from the GNU Trove library [23]. The IBPC is designed to compare the
overall performance of a set of competitors on the basis of a common interface. Therefore, the
application of the IBPC on both scenarios should show which of the competitors has the best
performance with respect to the given interface.

6.2.1 High-Dimensional Spatio-Temporal Indices

Section 2.4 shows that no general accepted benchmark for spatial, spatio-temporal and high-
dimensional indices exists. Therefore, in Section 3.5.1 the same workload generator as for
its competitor, the RST-tree [172] is used to compare the performance of the spatio-temporal
pyramid adapter (STPA). The results of this comparison are compared to the application of
the IBPC here. The quality of the performance comparison with the IBPC depends on the
coverage of test sets which are generated for each of the competitors. Therefore, the best
covering test sets of the optimized test generation in Section 6.1.2.1 are chosen as a basis.

In order to optimize the performance measurement, the length of all test sets is minimized
as described in Section 5.2.3 after the test sets have been generated.

The performance of each test set is measured using the performance measurement devel-
oped in this thesis (Section 5.4). As the parameters for the detection of the steady state are
set by using the evaluation of very similar R-tree like indices, they should suffice for a stable
measurement. The mean value of the performance measurements in 100 different Java Virtual
Machine (JVM) invocations is taken as the performance of a certain test set executed on one
of the indices.

The tables in Table 6.3 show all values computed by the IBPC on the generated test sets.
The branch coverage of the test set generated for the RST-tree has a higher coverage on the
STPA than the test set generated for the STPA has on the RST-tree (a + b). Each test set
takes more time when executed on the RST-tree than executed on the STPA (c). Therefore,
for a low weight of the coverage on the weighted performance, the STPA outperforms the
RST-tree. For a high weight of the coverage the RST-tree outperforms the STPA (d).

Most importantly, this reflects the outcome of the evaluation of the STPA in Section 3.5:
The STPA is more efficient than the RST-tree. It also shows an effect that can not be reflected
by the classic approach. The RST-tree works more stable than the STPA as it is covered
by the test sets of the STPA better than its test sets cover the STPA. Generally, the STPA
has a greater vulnerability to worst case configurations of the progression of now than the
RST-tree. For instance, the query space of the contained query needs to be extended for now-
relative queries (Section 3.3) which may cause many false positive results. The classic workload
generator only uses a single progression of now. The current value of now (now∗) is always
beginning at 0.25 and ending and 0.75, regardless of the number of operations. The IBTG
generates different progressions of now, especially if they are required to reflect different states
of the indices. For the RST-tree, different progressions of now are not necessarily required but
for the STPA. This explains the differences in the coverage values. For the STPA, it is assumed
(Chapter 3) that it can easily be enhanced to a more adaptable index, for instance by using
the P+-tree [212] which is based on the pyramid technique and which is specialized for more
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Table 6.3: Results of the case study on two spatio-temporal high-dimensional indices which
are compared with the IBPC using PTAF.

(a) Achieved branch coverage (cij) of the test sets generated
for the different indices (j) on the indices (i).

test set executed on (i)
for (j) RST-tree STPA

RST-tree 0.512327 0.46413
STPA 0.490755 0.516304

(b) Relative coverage (covij) of the test sets generated
for the different indices (j) on the indices (i).

test set executed on (i)
for (j) RST-tree STPA

RST-tree 1.0 0.898947
STPA 0.957895 1.0

(c) Achieved performance (pij) of the test sets generated
for the different indices (j) on the indices (i) in s.

test set executed on (i)
for (j) RST-tree STPA

RST-tree 0.167661 0.0951223
STPA 0.507944 0.378269

(d) Combined coverage and weighted performance with w = 0 (left) and w = 30 (right)

combined weighted
index coverage performance [s]

RST-tree 1.0 0.337803
STPA 1.0 0.236696

combined weighted
index coverage performance [s]

RST-tree 0.806471 1.00694
STPA 0.587045 1.35118

diverse data sets. Therefore, the conclusion that the STPA is the more efficient structure holds.
In addition, the IBPC is able to reflect rather complex issues in the performance comparison
of different structures.

Both, the configuration of the test generator and the structure of the competitors influence
the outcome of the IBPC. For instance, the minimization of the generated test sets by only
using the branch coverage and not the original fitness function for comparison, results in
test sets with the same branch coverage but with a different behavior. For that case, the
performance of the RST-tree is comparable to that of the STPA, as the missing of an increased
number of loop iterations and method invocations influences the length of the test sets and
especially the number of used elements. For a very small number of elements, the difference in
the performance of the RST-tree and the STPA becomes very vague. If the set of competitors
in this case study is extended by the sequential scan, the comparison of the RST-tree and the
STPA remains the same but the sequential scan is identified as best performing competitor.
This results from two facts: First, the sequential scan is covered by all test sets maximal as
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it computes any element in the very same way. Secondly, for a small number of elements,
the sequential scan works as efficient as the other indices as it does not use any further
computations on the elements that are required to index the data.

Summing up, the case study of the IBPC using the spatio-temporal indices shows the
following: First, the quality of the IBPC relies on the quality of the generated test sets.
Secondly, the results of the classic workload generator can be approved by the IBPC. Thirdly,
due to its comprehensive approach on performance testing, the IBPC unfolds performance
issues on the STPA that are not reflected by the classic approach.

6.2.2 GNU Trove Library

This work focuses on efficient high-dimensional spatio-temporal indices and especially the
evaluation and comparison of their performance. In order to show the capabilities of the
IBPC, a rather simple set of structures is chosen in this case study. The GNU Trove library
[23] provides a large set of abstract data types for the access on primitive types in Java.
For instance, instead of using the java.util.LinkedList from the Java standard library
and a wrapper class to store primitives, the Trove library implements a linked list for each
primitive type. Avoiding the usage of autoboxing and -unboxing increases the performance of
such structures significantly [23]. Here, three abstract data types, that store byte values are
compared: a linked list, an array list and a hash set. For each of them a test set is created
using the default settings described in Section 6.1.1, the εMOEA algorithm, no minimization,
and k = 1.25.

The SUTs simply consists of the classes of the ADT themselves and no additional classes.
The test interface for the generation of the test sets is defined to reflect the basic usage of
the structures, the insertion, deletion and lookup of values: add(byte), delete(byte) and
contains(byte). The performance of the test sets is measured using the performance mea-
surement technique developed in this thesis (Section 5.4). The mean value of the performance
measurements in 100 different (JVM) invocations is taken as the performance of a certain test
set executed on one of the structures.

The tables in Table 6.4 show all values computed by the IBPC on the generated test
sets. All test sets executed on the hash set have the same, maximum coverage. The test
set generated of the array list has a lower coverage than the maximum when executed on
the linked list. Both, the test set generated for the linked list and the test set generated for
the hash set have a lower coverage than the maximum when executed on the array list (a +
b). The performance of all three competitors is comparable for each test set as the standard
deviations of all measurements overlap one another (c). For a higher weight of the coverage,
the IBPC indicates that the hash set outperforms the linked list which outperforms the array
list. That means that the hash set shows the overall best performance regarding the given
interface. Only given add(byte), delete(byte) and contains(byte), one can easily agree
on this outcome: For a higher number of elements, the array list needs to be rebuilt if a new,
greater array has to be initialized. The execution of contains(byte) requires the array list
and the linked list to sequentially lookup each element whereas the lookup on the hash set lies
in O(1).
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Table 6.4: Results of the case study on three simple abstract data structures of the GNU
Trove library [23] which are compared with the IBPC using PTAF.

(a) Achieved branch coverage (cij) of the test sets generated
for the structures (j) on the structures (i).

test set executed on (i)
for (j) array list linked list hash set

array list 0.091716 0.0990099 0.0406977
linked list 0.0857988 0.10396 0.0406977
hash set 0.0857988 0.10396 0.0406977

(b) Relative coverage (covij) of the test sets generated
for the structures (j) on the structures (i).

test set executed on (i)
for (j) array list linked list hash set

array list 1.0 0.952381 1.0
linked list 0.935484 1.0 1.0
hash set 0.935484 1.0 1.0

(c) Achieved performance (pij) of the test sets generated
for the structures (j) on the structures (i) in ms.

test set executed on (i)
for (j) array list linked list hash set

array list 0.829929 0.782302 0.812044
linked list 0.796448 0.808828 0.78213
hash set 0.505674 0.490927 0.518285

(d) Combined coverage and weighted performance with w = 0 (left) and w = 10 (right)

combined weighted
structure coverage performance [ms]
array list 1.0 0.710683
linked list 1.0 0.694019
hash set 1.0 0.704153

combined weighted
structure coverage performance [ms]
array list 0.641075 1.12225
linked list 0.849902 0.858014
hash set 1.0 0.704153

6.3 Conclusions

From the evaluation of the techniques developed in this thesis, most importantly the automated
performance test generation and comparison, the following conclusion can be drawn:

• In terms of coverage, the Interface Based Test Generator (IBTG) generates test sets that
are as good and better as the workloads generated by the classic workload generator.

• Equal to the existing test generators, the quality of the results of the IBTG depend on
a proper configuration.
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• The Interface Based Performance Comparison (IBPC) technique is able to automatically
identify and compare a set of competitors with a common interface as expected. In
the case of spatio-temporal indices, the IBPC unfolds performance issues that are not
addressed by the classic workload generator.

• The results of the IBPC rely on the configuration of the test generator and on the
definition of the test interface.

• The IBPC does not replace existing benchmarks but should be used in addition to
existing benchmarks or for a set of competitors for which no proper benchmark exists.





Chapter 7

Summary and Future Work

This thesis introduces a new indexing technique for spatio-temporal high-dimensional data,
the Spatio-Temporal Pyramid Adapter (STPA). In order to evaluate the new technique and
compare its performance to the best competitor, the RST-tree [172], not only a classic workload
generator (Chapter 3) is used, but a complete new system for the performance comparison of
a set of competitors with a common interface is introduced. The new Interface Based Perfor-
mance Comparison (IBPC, Chapter 4) technique uses two new metrics: the combined coverage
to describe the comparability of the competitors and the weighted performance to measure the
overall performance of the competitors in comparison to each other. The implementation of
the IBPC, the Performance Test Automation Framework (PTAF , Chapter 5), describes a new
adaptable system for the computation of control flow based coverage in Java, a new system
for the generation of suitable performance tests in Java and a new system for the robust and
reproducible performance measurement of Java programs. Here, performance is considered to
be the computation time of a program on the CPU. The evaluation of the IBPC and PTAF
(Chapter 6) shows that the automatically generated performance tests have a branch coverage
as high and higher as the branch coverage of the classic workload generator. Most important,
applying the IBPC on the comparison of the STPA and the RST-tree shows that overall the
RST-tree works more stable considering different distributions of not only the spatial objects
but especially the distribution of the now-relative values and their relation to the current value
of now. Nonetheless, the STPA is more efficient for its intended use which is reflected by the
classic workload generator. That shows the benefits of the IBPC: it unfolds all differences
in a set of competitors automatically. It may be used to give an overview over the complete
capabilities of a new structure in comparison to existing approaches. In addition, the IBPC
generates a well fitting set of performance tests which may be used as a basis for the generation
of specialized benchmarks.

All new techniques and implementations have a prototypal character. They suffice for the
application in the desired domains but may not be suitable for a general use in the software
industry. Nonetheless, using the outcome of this thesis, the STPA, IBPC and PTAF may easily
be re-implemented for commercial use. The STPA may be used in the building information
modeling (BIM) environment as an efficient backend for the storage of building models as well
as in geographic information systems (GIS) for the storage of land and real estate registers
or city models. The IBPC and PTAF can be used especially in the research of complex
data structures for a most likely unbiased comparison of new techniques as well as for the
comparison of programs in other domains. Besides, PTAF provides efficient implementations

135
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for control based coverage computation, test generation and performance measurement in Java
which may be used in other domains as well.

For the future research, the following issues are of most importance: The automatic adap-
tion of the STPA to different distributions of data like in the P+-tree [212] is only assumed
and needs to be implemented and evaluated to prove the general efficiency of the STPA. The
performance comparison by the IBPC using the combined coverage and weighted performance
are a first shot for a generally fair performance comparison and both metrics may be replaced
by other comparison methods without falsifying the outcome of this thesis. The efficiency of
the coverage computation in this thesis suffices for the desired scope but may be enhanced
significantly by using another type of probe than the method invocations used (Section 5.1).
Like the already existing test generators, the quality of the test sets generated by the Inter-
face Based Test Generator (IBTG) (Section 5.2) depends on its configuration and the used
algorithms. A more exhaustive study like the study by Graf (2017) [91] for EVOSUITE [81]
could lead to a more stable and generally efficient configuration. The new framework for a
robust and reproducible performance measurement in Java (Section 5.4) depends on a prefer-
ably comprehensive setup of the parameters for a stable detection of the steady state of the
performance measurements. As the parameters used in this thesis base on the evaluated index
structures, before a use of the system for Java in general, the parameters should be refined
using a larger evaluation.

The STPA [134] and the general idea of the IBPC and PTAF [133] already have been
published and presented to a greater audience of experts in their respective domains. Besides,
the generation of high covering test sets using an interface has been proven and published
using GUI tests in [135]. This shows the general acknowledgement of the work presented in
this thesis by the respective research communities.
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