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Introduction

1 Introduction

One-dimensional structures are proposed to exhibit interesting physical properties which differ
vastly from the properties observed by structures of higher dimensionality. One such exam-
ple is the Peierls distortion [1] which minimizes the electronic energy of the one-dimensional
system by means of a lattice doubling. Additionally, for one-dimensional systems collective
excitations of charges and spins lead to critical behavior described by Tomonaga-Luttinger
liquids [2].
In reality, however, it is impossible to fabricate truly one-dimensional materials because they
are inherently energetically unstable. Consequently, they must be stabilized by some weak
residual interaction with the environment first in order to be observable. One methodology
to fabricate such stabilized one-dimensional structures is to grow them on top of the surface
of a substrate (which exhibits a higher degree of dimensionality) by self-organization. Due
to the interaction with the substrate the one-dimensional structure is stabilized, however, si-
multaneously this interaction means that the structure is not truly one-dimensional anymore
but merely quasi-one-dimensional instead.
Prominent examples of quasi-one-dimensional structures fabricated as described above are
the class of metal induced atomic wires (e.g., Si(111)-(5×2)-Au [3, 4, 5, 6] and Au induced
atomic wires on Si(hhk) [6, 7, 8]) and the class of rare-earth (e.g., Dy, Tb) silicide nanowires
grown on the Si surface [9, 10, 11].
Interpreting experiments regarding e.g., the electronic properties of these type of structures
properly requires a firm knowledge of the morphology of these structures as well as the
knowledge of their actual atomic structure. Consequently, this thesis is dedicated to the im-
provement of this (structural) knowledge regarding particularly the aforementioned material
systems.
The structural parameters are determined by employing two different diffraction methods in
conjunction with kinematic diffraction theory calculations. Spot-Profile Analysis Low-Energy
Electron Diffraction experiments are performed in order to determine the morphology of quasi-
one-dimensional rare-earth silicide structures on Si(111) and rare-earth silicide nanowires on
Si(001) whereas Surface X-Ray Diffraction experiments are performed in order to determine
the atomic structure of the metal induced atomic wires of the Si(111)-(5×2)-Au system.
The first part of the thesis (Chapters 2, 3 and 4) contains an overview over the theoretical
background, the material systems investigated and the experimental setups used. The sec-
ond part of the thesis deals with the experiments that were performed and the information
derived from them. Here, Chapters 5 and 6 deal with the description and characterization of
the quasi-one-dimensional rare-earth silicide structures on Si(111), Chapter 7 deals with the
diffraction pattern observed for bundled rare-earth silicide nanowires on Si(001) and the struc-
tural information that can be deduced from it and Chapter 8 deals with the determination of
the atomic structure of the gold induced atomic wires on Si(111).
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2 Theoretical background

In this chapter the theoretical basis of the experimental techniques used is established.

2.1 Crystal structures

2.1.1 Bulk structure

A crystal is a solid in which the atoms, ions or molecules are arranged periodically and
infinitely in the three-dimensional space. In such a crystal it is possible to define a sub-unit,
the so-called unit cell, and obtain the rest of the crystal by its translation

R = na +mb + pc with n,m, p ∈ Z , (2.1)

where the points R(n,m, p) define the crystal lattice and a, b and c are the crystallographic
vectors that span the unit cells, see Figure 2.1. The unit cell containing the smallest volume
is called the primitive unit cell.
This description is only sufficient for crystals exhibiting only one atom per unit cell, however,
in order to describe more complex crystal structures containing multiple atoms per unit cell
an (atomic) basis has to be defined. This is done by an additional set of vectors ri

ri = uia + vib + wic , (2.2)

pointing from the origin of the unit cell to the positions of the i atoms (in the unit cell) with
their respective coordinates ui, vi and wi (with 0 ≤ ui, vi, wi ≤ 1).

Figure 2.1: Schematical sketch of a
crystal with the (primitive) crystallo-
graphic lattice vectors a, b, c and a
two atomic basis (black, green). In to-
tal, eight unit cells are displayed.

In principle, the size of the unit cell can be chosen arbitrarily (in multiples of the primitive
unit cell and if the basis is adjusted accordingly), however, in practice most of the time either
the primitive unit cell or slightly larger unit cells exhibiting a high degree of symmetry are
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Figure 2.2: Commonly found crystallographic planes in the cubic crystal system (gray).

chosen. In total, there are seven different crystal systems (triclinic, monoclinic, orthorombic,
tetragonal, rhombohedral, hexagonal, cubic) which amount to 14 possible Bravais lattices by
centering (face-, body-, base-centered).
In order to identify a certain crystallographic plane within a crystal the so-called Miller indices
(hkl) are used. In order to obtain the Miller indices of a particular plane first the intercepts of
the plane with the crystallographic axes are determined. Thereafter, these values are inverted
and reduced to a triplet of integer values with the same ratios (usually the triplet with the
smallest integers is taken). The crystallographic direction [hkl ] represents a vector normal to
this very plane (hkl). Figure 2.2 shows some common crystallographic planes for the cubic
lattice system.

2.1.2 Surface structure

In the former section crystals were defined as spatial infinite (periodic) solids. In reality,
however, no such thing as an infinite solid can exist, instead every real crystal must exhibit
surfaces. These surfaces can also be created artificially by cleavage of the bulk structure in
a particular crystallographic plane. At these crystal surfaces the translational symmetry is
broken in one (crystallographic) direction which is reflected in the mathematical description
of the surface lattice

Rs = nsas +msbs with ns,ms ∈ Z , (2.3)

where only two crystallographic vectors as and bs (parallel to the surface) are needed to
describe the periodicity reducing the number of possible types of Bravais lattices from 14
to five (square, rectangular, centered rectangular, hexagonal, oblique). In addition to the
change in the mathematical description the physical and chemical properties of the surface
may differ from those of the bulk as well (due to e.g. unsaturated atomic bonds, adsorption of
atoms). Consequently, the surface as-cleaved might not exhibit the lowest formation energy
anymore and may relax into a more energetically favorable structure (e.g. by formation of
additional bonds by formerly unsaturated bonds to each other or to adsorbate atoms). This

4



Theoretical background

reconstructed surface (or surface exhibiting a superstructure) usually exhibits a periodicity
different from the one observed for the bulk. Again, this surface can be described via the
definition of a crystal lattice

Rr = nrar +mrbr with nr,mr ∈ Z . (2.4)

Here, the crystallographic vectors of the reconstructed surface (or surface exhibiting a super-
structure) ar and br and the unreconstructed surface as and bs can be related to each other.
Usually, one of two different methods is used. The more versatile yet less intuitive one is the
matrix notation [12] in which the vectors of the reconstructed and unreconstructed surface
are related to each other by a matrix

ar = G11as +G12bs (2.5)

br = G21as +G22bs (2.6)

with the componentsGij . If the reconstructed surface is commensurate to the unreconstructed
surface (i.e. Gij ∈ Z) the more intuitive Wood notation [13]

X (hkl)

(
||ar||
||a||

× ||br||
||b||

)
−Rϕ◦ , (2.7)

can be used. Here, X(hkl) is the surface of the element or compound X with the Miller
indices (hkl) and ϕ◦ is the rotation between the crystallographic vectors of the reconstructed
and the unreconstructed surface.

2.1.3 Reciprocal Lattice

The concept of the reciprocal lattice is very useful for the interpretation of diffraction exper-
iments (e.g. surface X-ray diffraction (SXRD) and low-energy electron diffraction (LEED)).
The reciprocal lattice is a set of points represented by the reciprocal lattice vector G (here
given for a three-dimensional crystal)

G = ha* + kb* + lc* with h, k, l ∈ Z , (2.8)

with the reciprocal crystallographic lattice vectors (a*, b* and c*) which are related to the
crystallographic vectors (a, b and c) via

a* = 2π
b× c

a · (b× c)
, b* = 2π

c× a

a · (b× c)
, c* = 2π

a× b

a · (b× c)
. (2.9)

Due to the missing translational symmetry in one crystallographic direction this reduces to

G = ha* + kb* with h, k ∈ Z , (2.10)
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and

a* = 2π
b× n

a · (b× n)
b* = 2π

n× a

a · (b× n)
(2.11)

for surfaces, where n is a unit vector normal to the surface. Due to the way the reciprocal
crystallographic vectors are constructed they always have the dimension of [1/length] opposed
to the crystallographic vectors which have the dimension [length] (hence they are called recip-
rocal). For surfaces the reciprocal crystallographic vectors and the crystallographic vectors
always lie in the same plane and additionally it can be shown that the reciprocal lattice con-
structed from the crystallographic lattice and the crystallographic lattice itself are always of
the same type of Bravais lattice [14].

2.2 Kinematic diffraction theory

The diffraction of electromagnetic waves and electrons is used to characterize the crystal
structure of elements, compounds and/or surfaces. In order to gain information about the
crystallographic and atomic structure their wavelengths need to be in the order of the atomic
distances in the structures investigated (which is in the Å-regime), consequently, x-rays (in
the energy range of 5keV-100keV) and electron waves (in the energy range of 10eV-500eV)
are used. For the regime in which the interaction between the wave and the material the
wave is scattered/diffracted at is small (i.e. only one scattering process between emission
and detection of the wave takes place and refraction and absorption are neglected) diffraction
phenomena can be described in the kinematic theory of diffraction. In the following chapter
the basic concepts of this theory will be explained.

2.2.1 The Laue equation

If electrons or x-rays impinge on a crystal constructive interference can only be observed if
the path difference of the waves scattered at different points of the crystallographic lattice
exhibits a multiple of the x-ray/electron wavelength for all waves scattered (in the direction
of detector). Mathematically this requirement is formulated by the Laue equations

qa = 2πh , qb = 2πk , qc = 2πl , (2.12)

which can be rearranged to

q = kf − ki = G = ha* + kb* + lc* with h, k, l ∈ Z , (2.13)

by using the definition of the reciprocal lattice (cf. eq. 2.9). Here ki is the wave vector of the
impinging wave, kf is the wave vector of the diffracted wave and q is the scattering vector
(the difference between both) which needs to be a vector to a point in the reciprocal lattice
G at the same time. Consequently, this means for a three-dimensional crystal constructive
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Figure 2.3: Display of the diffraction pattern of a three-dimensional crystal (left) and a
(two-dimensional) surface (right). The black dots represent the Bragg peaks whereas the
black lines represent the lattice rods, the dotted lines are guides to the eye only.

interference can only be observed at these reciprocal lattice points, the so-called Bragg peaks,
see Figure 2.3.

For a surface, however, translational symmetry only exists in two crystallographic directions

q‖ = (kf − ki)‖ = G‖ = ha* + kb* with h, k ∈ Z , (2.14)

meaning that the momentum perpendicular to the surface q⊥ (here alongside the c*-direction)
can be arbitrarily large without impacting the Laue conditions which only hold true for
the part of the momentum projected onto the surface q‖. Consequently, instead of Bragg
peaks constructive interference is observed on every point along the perpendicular direction
meaning that lines of constructive interference, so-called reciprocal lattice rods, can be found
in reciprocal space, see Figure 2.3.
Everything explained above only concerns the position of constructive interference (intensity)
in reciprocal space which is closely coupled with the periodicity of the unit cell. However,
in order to learn more about the atomic structure of the unit cell or the morphology of the
surface the absolute intensity and shape of the intensity (lineshape) need to be investigated,
respectively. This will be addressed in the following chapters.

2.2.2 Diffraction at a single atom

X-rays are scattered at the electrons of an atom whereas electrons are primarily scattered at
the potential exerted by the nucleus of the atom.

Despite these differences the description of the scattering process is analogous for both type of
waves. If the position of the atom placed at the origin of the coordinate system (w.l.o.g.) is far
away from the position where the scattered wave is detected, the Fraunhofer approximation

7



Theoretical background

Figure 2.4: Illustration
of the square of the scat-
tering amplitude for elec-
trons scattered at energies
E = 15eV and 30eV at plat-
inum showing that low en-
ergy electrons are primarily
scattered forwards and back-
wards. Image taken and
adapted from [15].

is valid and the amplitude Aat(q) of the scattered wave is given by a plane wave

Aat(q) ∝ f (q) exp (iqr) , (2.15)

where the atom-dependent part of the amplitude is given by the atomic form factor f (q) and
r is the vector from the point of detection to the position of the atom. Due to the fact that
x-rays are scattered isotropically at atoms, the atomic form factor (for x-rays) fx (q) is only
a function of the norm of the scattering vector q and is given by the sum of the scattering
amplitudes at the individual electrons which is equivalent to the Fourier transform of the
electron density of the atom which in turn can be approximated by four Gaussian functions

fx(G) =

∫
d3rρ (r) exp (iqr) =

4∑
i=1

ai exp

(
−bi

( q

4π

)2
)

+ c , (2.16)

which are tabulated in [16] for most elements and ions. Atomic form factors for an isotropic
electron scattering fB(q) can be derived from the x-ray atomic form factors fx(q) by applying
the Mott-Bethe formula [16]:

fB(q) = 2π
me2

h2ε0
[Z − fx(q)]/q2 , (2.17)
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however, (for electron energies in the LEED-regime) electrons are not scattered isotropically
but show preferential directions instead (forward- and to a lesser extent backward-scattering),
see Figure 2.4. Consequently, in order to obtain more accurate atomic form factors fB(q)
dynamical diffraction theory needs to be applied.

2.2.3 Diffraction at a unit cell

The amplitude of the diffraction at a unit cell Auc(q) is given by the summation of the
individual scattering amplitudes of the atoms inside the unit cell Aat,i(q)

Auc(q) ∝
∑
j

fj (q) exp [iq(R + rj)] = F (q) exp (iqR) , (2.18)

where R is the position of the unit cell and rj is the position of the j-th atom contained in it
(cf. chapter 2.1.1). Additionally, the structure factor of the unit cell F (q) can be defined. It
is given by the sum of the atomic form factors fj (q)

F (q) =
∑
j

fj (q) exp
(
iqrj

)
, (2.19)

thus as the Fourier transform of the electron density in the unit cell. Notably, the structure
factor of the unit cell F (q) generally depends on the direction of the scattering vector q (for
structures with more than one atom in the unit cell) even for x-ray diffraction due to the
interplay of the different atoms.

2.2.4 Debye-Waller factor

The definition of the structure factor given above (cf. chapter 2.2.3) inherently assumes
that the atoms in the unit cells are fixed at particular positions. However, in reality the
atoms in a crystal are subject to thermal excitations (at least for temperatures T ≥ 0 K)
manifesting in a dynamic (i.e., time-dependent) vibration of the atoms about their mean
position. Additionally, the atomic position of equivalent atoms in the unit cell (in different
unit cells) might differ (e.g., due to defects) meaning that there is also a static (i.e., time-
independent) component to the deviation from the mean position. Consequently, the structure
factor needs to be modified and is given by

F (q) =
∑
j

fj (q) exp
(
iqrj

)
exp (−Mj) , (2.20)

where exp (−Mj) is the so-called Debye-Waller factor of the j-th atom. Here, Mj , the factor
in the exponential function, is given by

Mj = 1/2qTUjq , (2.21)

9
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where Uj is a symmetric second-order tensor (uik = uki) representing the ”vibrational ellip-
soid”

Uj =
3∑
i=1

3∑
k=1

ujik (2.22)

and the components of the tensor ujik represent the atomic displacement parameters.

2.2.5 Diffraction at a (infinite) single crystal

The amplitude of the diffraction at a single crystal Asc(q) is given by the summation of the
amplitude of the individual unit cells Auc,j(q)

Asc ∝
∑
j

Fj (q) exp (iqRj) =
∑
j

Fj (q) exp [iq(nja +mjb + pjc)] , (2.23)

where Rj = nja +mjb + pjc denotes the position and Fj (q) the structure factor of the j-th
unit cell. Assuming a crystal with a spatial extension of a number of Na, Nb and Nc similar
unit cells (in the respective crystallographic directions) this can be rearranged to

Asc ∝ F (q)

Na−1∑
n=0

exp (2πihn)

Nb−1∑
m=0

exp (2πikm)

Nc−1∑
p=0

exp (2πilp) ∝ B (h,Na)B (k,Nb)B (l, Nc) .

(2.24)

which essentially is a product of three similar sums B. These sums can be identified as
geometric series (here only displayed for one particular direction)

B (h,Na) =

Na−1∑
n=0

exp (2πihn) =
1− exp (2πihNa)

1− exp (2πih)
. (2.25)

Its absolute square is given by

S (h,Na) = |B (h,Na)|2 =
sin2 (πhNa)

sin2 (πh)
, (2.26)

which is equivalent to the N-slit function S (h,Na) displaying Na− 1 maxima (in the interval
of ∆h = 1), cf. Figure 2.5. Here, maxima located at integer values h ∈ Z always exhibit
more intensity than the maxima observed at fractional values. Increasing the number of
atoms Na in the particular crystallographic direction increases the number of maxima ob-
served. Consequently, the full width at half maximum (FWHM) of these maxima decreases.

10



Theoretical background

Figure 2.5: N-slit function for Na = 6 exhibiting five maxima in the interval ∆h = 1.

Additionally, intensity is redistributed from the fractional to the integer maxima. For the
limes of an infinite number of atoms Na

lim
Na→∞

S (h,Na) = δ(ν − h) with ν ∈ Z , (2.27)

all intensity is confined to the integer maxima which exhibit a negligible FWHM and can thus
be interpreted as a representation of the delta-distribution δ. Applying the same formalism
for the other two directions the intensity of the (infinite) crystal is given by

|Asc|2 ∝ |F (q)|2 δ(ν − h)δ(µ− k)δ(τ − l) = |F (q)|2Glat (q) ν, µ, τ ∈ Z . (2.28)

Here, the lattice factor Glat (q) is essentially a reformulation of the Laue equation for a three
dimensional (infinite) crystal (cf. chapter 2.2.1) determining the points in reciprocal space
where intensity can be observed whereas the absolute square of the structure factor |F (q)|2
determines their intensity.

2.2.6 Diffraction at a crystal surface

The concept of an infinite crystal is not very realistic, however. In order to be able to compare
theoretical calculations with experimental diffraction data obtained from crystal surfaces a
more realistic model needs to be employed.
In reality, every crystal exhibits surfaces. If such a crystal surface is radiated by an x-ray beam
the beam penetrates the surface and passes through the crystal for a particular distance before
it is diffracted. Due to the fact that the interaction between matter and x-rays is relatively
weak x-rays exhibit a large penetration depth ( ∼ µm) and penetrate a large number of crystal
layers which all contribute to the diffracted intensity. Nevertheless, the intensity of the x-ray
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Figure 2.6: (a) Schematic display of a rough (semi-infinite) crystal surface projected
onto the ac-plane. The average of the height function Nc(n,m) is displayed as well. (b)
Display of the diffraction pattern of the rough surface in (a) exhibiting crystal truncation
rods which show maximum intensity at the nominal Bragg peak positions.

beam is decreased by absorption (and reflection) during the pass through, by the factor ε per
layer, meaning that x-rays diffracted at deeper layers are weaker on average and contribute
less strongly to the diffracted intensity.

If the crystal is significantly thicker than the x-ray penetration depth it can be assumed to
be semi-infinite in the direction perpendicular to the surface. Additionally, the surface does
not have to be homogeneous necessarily (i.e., exhibit the same height everywhere), but can
exhibit roughness (described by the height function Nc(n,m)) instead, see Figure 2.6. The
diffracted amplitude of such a rough crystal surface Acs is given by

Acs ∝ F (q)

Na−1∑
n=0

exp (2πihn)

Nb−1∑
m=0

exp (2πikm)

Nc(n,m)−1∑
p=−∞

exp (p(2πil + ε)) , (2.29)

which can be rearranged to

Acs ∝ F (q)

∞∑
n=0

∞∑
m=0

exp (Nc(n,m)(2πil + ε))

1− exp (−(2πil + ε))
, (2.30)

if a macroscopic sample (i.e., n,m→∞) is considered. This essentially equates to the spatial
averaging of the height function Nc(n,m)

Acs ∝ F (q)
〈exp (Nc(n,m)(2πil + ε))〉

1− exp (−(2πil + ε))
(2.31)

12
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which can be rearranged to

Acs ∝ F (q)
exp

(
−σ2 (1− cos 2πl)

)
1− exp (−(2πil + ε))

, (2.32)

where σ is the root mean square of the surface roughness, if the height function Nc(n,m) is
assumed to be Gaussian shaped [17].
Analyzing equation 2.32 shows that no sharp Bragg peaks (with respect to l) can be observed
in the diffraction pattern. Instead, so-called crystal truncation rods (CTR) exhibiting inten-
sity everywhere perpendicular to the surface are observed in reciprocal space (for h, k ∈ Z),
see Figure 2.6. These CTRs exhibit maximum intensity at the nominal Bragg peak positions
and minimum intensity between two nominal Bragg peak positions.

2.2.7 Diffraction at a reconstructed surface

The reconstruction or superstructure of a surface (induced by e.g. bonding of unsaturated
bonds to each other or to adsorbate atoms) usually reaches only several atomic layers deep into
the crystal. Additionally, there is no repetition of the reconstructed unit cell perpendicular
to the surface. Consequently, there is neither a Laue condition nor a formation of CTRs
perpendicular to the surface and the intensity is given by

|Ars|2 ∝ |F (q)|2 δ(n− h)δ(m− k) = |F (q)|2Glat (q) n,m ∈ Z , (2.33)

meaning that intensity can be observed on lattice rods (along the c*-direction for h, k ∈ Z,
as predicted in chapter 2.2.1) in the reciprocal space and the intensity along the lattice rods
is given by the absolute square of the structure factor |F (q)|2.

2.2.8 Diffraction at a disordered surface

Until now we assumed the surface to be void of e.g., point defects, domain boundaries (DBs)
or dislocations. For disordered surfaces, see Figure 2.7, the long-range periodicity is not
necessarily given and the Laue conditions are either blurred or non-existent dependent on the
degree of disorder. Consequently, the amplitude of the diffracted wave Ads is given by

Ads(q) ∝
∑
j

Fj (q) exp (iqRj) = N 〈Fj (q) exp (iqRj)〉j = N 〈F (q) exp (iqR)〉 , (2.34)

which is the spatial average of the arrangement of the unit cells on the disordered surface
(morphology).

Consequently, the intensity is given by

|Ads(q)|2 ∝
∑
n

〈Fj (q)F ∗n (q) exp (iq [Rj −Rn])〉j = |F (q)|2Glat (q) , (2.35)
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Figure 2.7: Schematic sketch of a disordered surface (top view) exhibiting different
domains of the same reconstruction (encased in blue) separated by unreconstructed parts
of the surface.

and depends on the structure factor |F (q)|2 and on the arrangement of the unit cells in real
space (in contrast to ordered surfaces). However, it can be shown that the arrangement of unit
cells in real space does not impact the (absolute) magnitude of the intensity in the Brillouin
zone [18] but instead induces a redistribution of the intensity changing the lineshape of peaks
and lattice rods. Consequently, the morphology or at least central quantities determining the
morphology can be deduced from the investigation of the lineshape.

2.2.9 Electron diffraction

Figure 2.8: Inelastic mean free path
as a function of electron energy. Image
taken from [19].

Electrons with the energy E can be described as electron waves (de Broglie waves) with the
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Figure 2.9: Schematic sketch of column-like unit cells (black boxes) used in the descrip-
tion of electron diffraction for three different type of surfaces (bulk-terminated, stepped
and a reconstructed surface).

wavelength

λ =
h√

2meE
, (2.36)

where h is the Planck constant and me is the rest mass of the electron. Figure 2.8 shows the
inelastic mean free path (IMFP) of these electron waves in matter as a function of electron en-
ergy showcasing that the interaction between matter and electrons is strong (IMFP ≈ 10 Å)
for the LEED energy regime (10eV-1000eV). Consequently, the average number of scattering
processes of an electron (in a crystal) is significantly higher than one (which violates the as-
sumptions made for the kinematic diffraction theory). In order to understand the implications
of the multiple scattering on the intensity of the diffracted electrons dynamical diffraction the-
ory needs to be applied eventually enabling the determination of the atomic structure of the
unit cell (among other properties). However, in order to investigate the crystallography and
morphology multiple scattering can be disregarded and employing an approach based on the
kinematic theory of diffraction is sufficient [18]. Due to the low penetration depth of the
electrons column-like unit cells extending several atomic layers into the surface are sufficient
to describe diffraction completely, see Figure 2.9. Consequently, the diffraction pattern is
surface-like independent of the sample investigated.
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Figure 2.10: Display of three different binary surfaces with an array length m = 32 (a) a
perfect one-fold periodicity, (b) a perfect two-fold periodicity and (c) a two-fold periodicity
with in-phase and anti-phase DBs.

2.3 Binary surface technique

The following sections explain the binary surface technique [20] which is used to simulate the
diffraction pattern of (disordered) surfaces and determine the domain and domain boundary
distributions by comparison to experimental diffraction data.

2.3.1 Binary surface

The crystallographic lattice is parametrized by a binary array with the sizes m× p with peri-
odic boundary conditions. Ones ([1] in the binary array) correspond to scattering centers (i.e.
atoms or unit cells) whereas no scattering takes place at zeros ([0] in the binary array). In this
work, specifically, the surfaces under investigation exhibit a strong (quasi-)one-dimensional
character. Consequently, it is sufficient to describe the surface by an one dimensional binary
array (with the size m×p = m×1). Different periodicities can be realized by different binary
sequences. The unit cell of e.g. a one-fold periodicity is represented by a simple D = [1]
whereas a two-fold periodicity can be represented either as D1 = [1 0] or D2 = [0 1].
Constructing a surface of a particular periodicity is achieved by appending unit cells of the
desired periodicity until the maximum array size m is reached. For instance, the sequences
displayed in Figure 2.10(a)-(b) show a perfect one- and two-fold periodicity for the array
length m = 32.

DBs can be introduced by inserting structural motifs breaking the predominant periodicity,
see Figure 2.10(c), e.g. through the introduction of an additional [1] or [0] between (similar)
adjacent unit cells of a two-fold periodicity. Two different types of DBs can be discriminated
in this description. Depending on the character of the DB adjacent domains are shifted by
a fraction or a multiple of the size of the unit cell. Anti-phase domain boundaries (APDBs)
have a width fractional to the periodicity they are embedded in (e.g. DB1 = [0] for a two-
fold periodicity) and consequently shift the phase by a fraction. In-phase domain boundaries
(IPDBs), however, exhibit a width that is a multiple of the periodicity they are embedded in
(e.g. DB2 = [0 0] for a two-fold periodicity) meaning there is no phase shift between adjacent
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domains.
Introducing N DBs the surface is composed of N domains (e.g. reconstructed with a two-fold
periodicity) separated by these domain boundaries. Consequently, a mean domain size 〈γ〉
and its variance σ2 can be defined,

〈γ〉 =
1

N

N∑
i=1

γi and σ2 =
1

N

N∑
i=1

(γi − 〈γ〉)2 , (2.37)

which equate to the first and second momentum of the individual domain sizes γi.
Reversely, this means that a surface with a certain mean domain size 〈γ〉 can be created by
appending domains with a domain size γ chosen by random numbers following a domain size
distribution P (γ)

P (γ) = P
(
γ, 〈γ〉 , σ2

)
with

∑
P
(
γ, 〈γ〉 , σ2

)
γ = 〈γ〉 . (2.38)

But not only the domain size can be distributed but the size of the DBs as well. Additionally,
different types of DBs/Domains can be alternated, statistically mixed or distributed (by any
kind of distribution) so that basically any configuration of the surface can be realized.

2.3.2 Obtaining the simulated diffraction pattern

In order to obtain the simulated diffraction pattern of a surface with a particular domain
size- and domain boundary distribution, n different surfaces following these distributions are
created. Due to the fact that the individual surfaces are created by random numbers (follow-
ing the respective distributions) each surface is a different representation of the underlying
distributions. Subsequently, the absolute square of the Fourier transform of the individual
surfaces is computed, which equates to the intensity I (q) of the individual surface. Eventu-
ally, the intensity I (q) of all surfaces are superimposed incoherently to obtain the simulated
diffraction pattern of the sample. This methodology is equivalent to the situation in a real
diffraction experiment where different regions on the sample (which are representations of the
underlying distributions of the sample) are probed individually, due to a limited coherence
length of the electron waves. Here, the intensity is given by the incoherent superposition of
the intensity of the individual regions as well.

2.3.3 Determination of domain and domain boundary distributions

In order to be able to determine domain and/or domain boundary distributions first the sim-
ulated and the experimental diffraction patterns need to be made comparable.
Every experimentally recorded diffraction pattern Iexp is broadened by experimental uncer-
tainty, which is intrinsic to the apparatus the diffraction pattern was recorded with. The
experimental error can be described by the instrument function T (q), which can be derived
from the diffraction pattern of a nearly ideally ordered surface (e.g. 7 × 7-Si(111)). The
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recorded diffraction pattern Iexp is given by the convolution of the ideal diffraction pattern
Iideal and the instrument function T [21]

Iexp = Iideal ⊗ T . (2.39)

Consequently, the simulated diffraction pattern Ith needs to be convoluted with the instrument
function T

Icth = Ith ⊗ T , (2.40)

in order to obtain the convoluted simulated diffraction pattern Icth, which can be compared
to the experimentally recorded diffraction pattern Iexp.
The deviation of the convoluted simulated diffraction pattern Icth and the experimentally
recorded diffraction pattern Iexp is quantified by either the mean squared error (MSE)

MSE =
1

n

n∑
i=1

(Icth,i − Iexp,i)2 , (2.41)

or the Pendry R-factor [22]

R =

∫
(Ycth − Yexp)2 dq‖/

∫ (
Y 2
cth + Y 2

exp

)
dq‖ , (2.42)

with

Y = L−1/
(
L−2 + c2

)
and L = I/I ′ , (2.43)

where c is a factor which is proportional to the width of the peaks observed in the (exper-
imental) diffraction pattern. If only a small fraction of the reciprocal space is considered,
comparison by means of the MSE is sufficient, however, due to dynamical effects (influencing
mainly the absolute intensity in the diffraction pattern and not the lineshape itself) for larger
fractions of the reciprocal space the Pendry R-factor is used which is less sensitive to these
differences in absolute intensity but rather is sensitive to peak positions and shapes.
Now, in order to determine the domain and/or domain boundary distributions of a particular
(disordered) surface, the underlying distributions of the surface (cf. equation 2.38) are varied
until the deviation of the theoretical Icth and the experimental diffraction pattern Iexp is
minimized.

2.4 Determination of the atomic structure by SXRD

Due to the fact that the interaction between x-rays and matter is relatively weak, for SXRD
experiments, the samples are irradiated with x-rays under a grazing angle of incidence (slightly
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higher than the angle of total reflection) in order to increase the surface sensitivity. Subse-
quently, intensity is recorded at certain spots in reciprocal space allowing for a direct deter-
mination of basic structural elements of the surface. Afterwards, from these basic structural
elements a so-called starting model can be derived which in turn can be improved by com-
parison of the experimentally recorded and the calculated intensity from this very model. In
the following chapter the basics of this method and the physics behind it are explained.

2.4.1 Reflection and refraction of x-rays at interfaces

The reflection and refraction of x-ray radiation can be described by the complex refractive
index n

n = 1− δ + iβ , (2.44)

where β is the absorption and δ the dispersion, which are proportional to the electron density
of the material and the wavelength of the the x-rays. At an interface between two different
materials the refractive index n changes. Due to this abrupt change in the electron density
one part of the x-ray beam is refracted (transmitting into the new material) while the other
part is reflected. The angle α2 under which the beam propagates in the new medium n2 is
different from the incident angle α1. The change in direction is given by Snell’s law

n1 cosα1 = n2 cosα2 . (2.45)

Due to the fact that the refractive index of matter n2 = nmat is always smaller than unity it
is also smaller than the refractive index of air (n1 = nair ∼ 1) or vacuum (n1 = nvac = 1).
Consequently, the angle under which the x-ray beam propagates in the new medium (coming
from vacuum going into matter) is always smaller than the angle of incidence of the x-ray
beam (α2 ≤ α1). Accordingly, there is a lower limit for the angle of incidence (the critical angle
αc) where x-ray beams cannot penetrate into the matter anymore and instead are reflected
totally. The critical angle can be approximated by

αc =
√

2δmat , (2.46)

which equates to αc ∼ 0.10◦ - 0.25◦ (for dispersions in the order of δ ∼ 10−6 which is realistic
for photon energies of E ∼ 10keV-20keV).

2.4.2 Patterson function

The structure factor F(q) is equivalent to the Fourier transform of the charge density of the
atoms in the unit cell. However, experimentally it is only possible to derive the absolute square
of the structure factor F|(q)|2 and not the structure factor F(q) itself. Consequently, the phase
information is missing and the atomic structure inside the unit cell cannot be derived directly

19



Theoretical background

from the intensity collected in an x-ray diffraction experiment. This is commonly referred
to as the phase problem. One approach to derive structural information despite the phase
problem is to apply the so-called Patterson function P (U, V,W )

P (U, V,W ) =

N∑
j

|F (hj , kj , lj)|2 e−2πi(hjU+kjV+ljW ) , (2.47)

where |F |2 is the absolute square of the structure factor of the intensity observed at the point

Gj = hja* + kjb* + ljc* (2.48)

in reciprocal space. The Patterson function is equivalent to the Fourier transform of the abso-
lute square of the structure factor F|(q)|2, which in turn is equivalent to the auto-correlation
(= self-convolution) of the charge density. Consequently, the maxima in the Patterson func-
tion can be interpreted as inter-atomic distances in the unit cell rather than as positions of
atoms in the unit cell. Additionally, the intensity of the maxima observed in the Patterson
function P (U, V,W ) is proportional to the product of the atomic numbers of the atoms caus-
ing it (Zi × Zj). Therefore, especially distances between the heavier atoms in the atomic
structure are emphasized.
In practice, (usually) only the projection into the xy-plane of the Patterson function P (U, V )
is generated (by taking into account only structure factors F

(
qj
)

at positions with negligible
out-of-plane momentum lj ∼ 0)

P (U, V ) =
N∑
j

|F (hj , kj , lj = 0)|2 e−2πi(hjU+kjV ) , (2.49)

reducing the dimensionality of the Patterson function from three to two dimensions in order
to reduce its complexity. Consequently, the inter-atomic distances are projected into the xy-
plane. Analyzing the Patterson function (i.e., finding the inter-atomic distances) it is possible
to create an initial atomic structure model or estimate the validity of atomic structure models
derived by other experimental and/or theoretical methods.

2.4.3 Structural refinement

In order to refine an atomic structure with reference to experimental data, first a metric
quantifying the agreement between the measured structure factor Fexp and the computed
structure factor for the atomic structure model Fmodel needs to be defined. In principle, there
is a vast amount of functions to choose from, however, the most widely spread function in the
SXRD-community is the χ2-function

χ2 =
1

N

N∑
i=1

(|Fi,exp|2 − |Fi,model|2)2

σ2
i,exp

. (2.50)
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Figure 2.11: Flowchart of the algorithm used to refine the structure(s) in this thesis.
For explanation, see text.

Here, the difference in the absolute square of the experimental Fi,exp structure factor for
a particular reflection (≡ intensity at a particular point in reciprocal space Gi) and the
computed structure factor Fi,model for this reflection is weighted by the experimental error
σi,exp attached to the reflection. In the first order approximation, the experimental error of
a reflection is equal to the statistical error which in turn is proportional to the square root
of its intensity [23]. Consequently, the higher the experimental intensity of a given reflection
the stronger its influence on the χ2-function.

In order to refine a (starting) model properties of the model need to be changed (e.g., the x-,
y-, z-components of the atomic positions) during refinement. These properties, the so-called
free parameters of the refinement pi need to be defined before the start of the refinement
procedure. If a structure model contains N atoms and every atom is allowed to move in every
direction independently during the refinement procedure the number of free parameters i is
equal to 3N . However, the movement of the atoms, needs to be defined in such a way that
the symmetry imposed on the structure model is conserved. Consequently, it is possible that
the movement of certain atoms in the structure model is coupled (e.g., due to mirror planes
or n-fold rotation axes) reducing the number of free parameters i. For each iteration u during
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the refinement procedure a new set of free parameters {pi} = {pi}u is generated (derived from
the current best set of parameters {pi}b by an algorithm). Subsequently, the structure model
(derived by applying the values of the new set of free parameter {pi}u to the starting model)
is compared to the experimental data.
However, the larger the number of free parameters i the smaller the contribution of the
individual parameter pi to the structure factor Fmodel. Consequently, it is possible that
physically unreasonable atomic positions (i.e., for example two (bond) atoms moving very
close to each other) for individual atoms still lead to an overall better χ2-value especially if
the refinement is still far away from the global minimum. This either leads to a decrease
in the rate of convergence or in some cases even to the trapping of the algorithm in a local
minimum instead of finding the global minimum. Therefore, the function quantifying the
agreement (goodness of fit ≡ gof) is modified to

gofu,w = χ2(u) + k(w)EKeat(u) , (2.51)

where k(w) is a proportionality factor weighting the Keating energy EKeat (cf. chapter 2.4.4)
of the structure model (with the parameter set {pi}u) in respect to its χ2(u)-function which
is decreased gradually during the refinement process

kw+1 < kw . (2.52)

This means not only the agreement between the structure factors (of the experiment and the
model) but also the inner energy of the model is considered during refinement. Consequently,
the algorithm does not get stuck in local minima (caused by physically unreasonable bond
length/angles) that easily.
If the gofu,w of a (new) model {pi}u is lower than the gofb,w of the (old) best model {pi}b its
parameters are saved as the (new) best model {pi}b = {pi}u. This process is repeated until
the global minimum (for a particular value k(w) = kw) is found (≡ no change in the gofb,w
for v = 10000 consecutive parameter sets). Subsequently, the proportionality factor k(w) is
decreased

k(w) = kw+1 , (2.53)

and after this the global minimum is searched for again.
This search for the global minimum for a particular value of the proportionality factor k(w)
followed by its decrease is alternated until the global minimum for kw = kend = 0 is found, see
Figure 2.11 for the flowchart of the refinement procedure. This means that the gofu,w reduces
to the χ2-function for k(w) ∼ 0 (close to the global minimum of the refinement procedure)
eventually also allowing for less energetically favorable atomic configurations which might be
observed in reality.
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2.4.4 Keating Energy

The elastic energy for elements or compounds (exhibiting covalent bonds) can be approxi-
mated by the so-called Keating energy [24, 25]

EKeat =
∑
ij

αi + αj
2

(
r2
ij − (ci + cj)

2
)2

+
∑
ijk

βi (rijrik + wijk(ci + cj)(ci + ck))
2 . (2.54)

Here, the c’s are the covalent radii of the particular atoms, the r’s are vectors from one
particular atom to another particular atom (which form a (chemical) bond), the α’s and β’s
are element specific constants (for Si and Ge cf. [25]) and wijk is a factor dependent on
the ideal angle between two bonds (which go out from one mutual atom). For structures
containing only atoms of one element which are sp3 hybridized (e.g., Si, Ge) this can be
simplified to

EKeat = α
∑
ij

(
r2
ij − r2

0

)2
+ β

∑
ijk

(
rijrik + wr2

0

)2
, (2.55)

where r0 is the (covalent) bond length and wijk = w = 1/3. In total, there are two contribu-
tions to the elastic energy (given by two sums). The first sum reflects the additional energy
necessary to compensate for the deviation from the ideal bond length and the second sum
reflects the additional energy necessary to compensate for the deviation from the ideal bond
angle (and to a lesser extent also to the deviation from the ideal bond length). Consequently,
the elastic energy for a perfectly ordered crystal (Si, Ge) is zero.
A Keating energy analysis (i.e., minimization of the Keating energy EKeat by variation of the
atomic positions) cannot be used to find new structure models due to the fact that bonds
between atoms need to be predefined and neither (new) bonds can be formed nor (existing)
bonds can be broken during it. However, a Keating analysis can be used to supplement the
refinement of atomic structures by e.g., SXRD (cf. chapter 2.4.3).

2.5 Auger electron spectroscopy

The Auger electron spectroscopy is based on the Auger effect. Here, a primary electron is
removed from the atom (by either electrons or photons) leaving behind a vacancy in an orbital
at the energy level −EB,1 (with respect to the Fermi energy EF ). Subsequently, this vacancy
is filled by a second electron from an orbital at a higher energy −EB,2. Consequently, there
is an energy difference ∆E

∆E = EB,1 − EB,2 , (2.56)

which either ionizes a third electron (Auger electron) from an orbital at a higher energy
−EB,3 or is emitted as a photon in an alternative process named x-ray fluorescence. The
kinetic energy of the Auger electron is given by

Ekin = (EB,1 − EB,2)− EB,3 − Φ , (2.57)
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Figure 2.12: Schematic sketch of the auger effect for a KLL Auger electron from a spatial
(left) and an energetic (right) point of view.

where Φ is the work function (i.e. the energy difference between Fermi and vacuum energy).
The nomenclature of an Auger electron is given by the letters corresponding to the electron
shells of the three electrons taking part in its emission process (in order). This means for
an Auger process in which the first electron is ionized from the K shell, the second electron
originates from the L shell and the third (auger) electron is emitted from the L shell, the
auger electron is labeled as an KLL electron, see Figure 2.12.

Auger electrons exhibit electron energies in the energy range 10eV ≤ Ekin ≤ 2000eV. Due to
the IMFP of electrons in this energy regime IMFP ≈ 10 Å (cf. Figure 2.8), the collection
and interpretation of Auger electrons spectra (≡ Auger electron spectroscopy [AES]) is a
very surface sensitive technique. Due to the origin of the Auger electrons their energies are
element specific allowing for an identification of the elements in/on a sample (e.g., for the
confirmation of its cleanness). What is more, by comparison of intensities the stoichiometry
can be determined [14].
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3 Investigated materials and systems

In this chapter the basic properties of the material systems (investigated in this thesis) nec-
essary to understand the interpretation of the experiments performed are discussed.

3.1 Silicon

Silicon is the element with the symbol Si and the atomic number 14. It is part of the carbon
group and exhibits the electronic configuration [Ne] 3s2 3p2. Due to the fact that it is a
semi-conductor, its conductivity can easily be tuned by doping with other elements (e.g.
gallium and arsenic) and due to the fact that it is fairly inexpensive (compared to other
semi-conductors), it is the predominantly used substrate in microelectronic applications. It
crystallizes in a face-centered cubic lattice with a two atomic basis (diamond cubic structure,
see Figure 3.1) with a lattice constant aSi = 5.4310 Å and a melting temperature T = 1410◦C.
Due to the fact that all Si atoms are sp3 hybridized in the crystal, all atoms exhibit a
tetrahedral bonding configuration with a nearest-neighbor distance aNN = 2.3517 Å.

Figure 3.1: Sketch of the bulk sili-
con crystal structure (diamond cubic
structure) showcasing the tetrahedral
bonding of Si atoms to one another.

3.1.1 The Si(001) surface

The unreconstructed Si(001) surface, see Figure 3.2(a), exhibits a quadratic surface structure
with the lattice constant a001 = aSi/

√
2 = 3.8403 Å and the layer-spacing d001 = aSi/4

= 1.3578 Å. It contains two unsaturated bonds per surface Si-atom making it energetically
unfavorable. Upon annealing it reconstructs into a (2 × 1) superstructure, see 3.2(b), by
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Figure 3.2: (a) Crystal structure of the unreconstructed Si(001) surface and (b) crystal
structure of the (2 × 1)-reconstructed Si(001) surface (showing only one of the two possible
dimer orientations). [unit cells (black boxes), crystallographic vectors (green arrows),
layer-spacing (blue arrow), topmost Si layer (red atoms), second Si layer (white), lower Si
layers (brown)]
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Figure 3.3: Crystal structure of the (7 × 7) reconstructed Si(111) surface. Additionally,
one remaining unreconstructed (1 × 1) unit cell (inside the (7 × 7) reconstruction) is
highlighted. [unit cells (black boxes), crystallographic vectors (green arrows), layer-spacing
(blue arrow), adatoms (red atoms), dimer atoms (pink), top two Si layers (white), lower
Si layers (brown)]

dimerization of the topmost Si atoms reducing the number of unsaturated bonds by half.
The dimers are asymmetric, however, they can be tilted in two different directions due to the
symmetry of the surface. At room temperature these dimers flip between both orientations at
such a high rate that they become indistinguishable. Only for lower temperatures (T ≤ 200K
[26]) the dimer orientations can be resolved and the (2 × 1) superstructure transforms into a
c(2 × 4) reconstruction.

3.1.2 The Si(111) surface

The unreconstructed Si(111) surface exhibits a hexagonal surface structure with the lattice
constant a111 = aSi/

√
2 = 3.8403 Å and the layer-spacing d111 = aSi/

√
3 = 3.135 Å, see Figure

3.3 (small unit cell). Due to the fact that it contains one unsaturated bond for each surface
Si-atom it is metastable only. Upon cleavage under ultra high vacuum (UHV) conditions the
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Figure 3.4: (a)-(c) Three slices through the bulk crystal structure of the Dy-silicide
DySi2. [unit cell (black boxes), crystallographic vectors a (green arrows), crystallographic
vector c (blue arrows), Si (brown), Dy (turquoise)]

(2× 1) reconstruction is formed which is metastable as well. Both surfaces are converted to the
stable (7 × 7) reconstruction upon annealing, see Figure 3.3 (large unit cell), described by the
so-called DAS-model (dimer-adatom-stacking-fault [27]), reducing the number of unsaturated
bonds (7 × 7) per unit cell from 49 to 19 (as compared to the unreconstructed surface). Due
to the high complexity of the (7 × 7) reconstruction it is not possible to obtain it from a
contaminated surface. Consequently, obtaining the (7 × 7) reconstruction is a benchmark
test for a clean surface.

3.2 Dysprosium

Dysprosium is the element with the symbol Dy and the atomic number 66. It exhibits the
electronic configuration [Xe]4f106s2 and is part of the lanthanides (atomic number 57-71)
which are part of the rare-earth elements. It crystallizes in a hexagonal crystal structure
with a melting temperature of T = 1407◦C. It is a base metal and consequently shows a high
reactivity. In compounds it is commonly found as a trivalent cation. Rare-earth elements
and lanthanides exhibit a similar chemical character due to the fact that the only difference
in electronic structure takes place in an inner shell (f-shell).

3.2.1 Dysprosium on Si(111)

Exposing Si(111) to Dy at elevated temperatures (400◦C-700◦C) either leads to the formation
of Dy-induced reconstructions (in the sub-monolayer regime) or reconstructions based on the
bulk Dysprosium silicide structure DySi2, see Figure 3.4(a)-(c) (in the monolayer to multilayer
regime).
In the sub-monolayer regime the (5 × 2)- and the (2

√
3 × 2

√
3)R30◦-reconstruction can be
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observed [28, 29, 30, 31, 32, 33, 34]. Here, the Dy-atoms adsorb on top of the Si(111) surface
and do not penetrate it (hence, it is referred to as a Dy-induced reconstruction).
In contrast to this, for the monolayer to multilayer regime the Dy-atoms penetrate the Si(111)
surface forming the (1 × 1)-reconstruction for a single monolayer and the (

√
3 ×

√
3)R30◦-

reconstruction for multilayers both of which are based on the bulk structure of the Dy-silicide
DySi2 [28, 32, 33, 34, 35, 36], see Figure 3.5. For both reconstructions the [0001]DySi2 direction
of the bulk Dy-silicide is orientated parallel to the [111]Si direction of the Si surface (i.e. the
Si(111) surface normal is parallel to the surface normal of the crystal slice in Figure 3.4(a)).
Additionally, the [11̄00]DySi2- is parallel to the [11̄0]Si-direction and the [112̄0]DySi2- to the
[112̄]Si-direction meaning that the crystallographic axes of the bulk Dy-silicide and the Si(111)
surface coincide. Due to the small in-plane lattice misfit (less than 1%) the Dy silicide grows
epitaxially on the Si(111) surface.

The (1 × 1)-reconstruction consists of one subsurface Dy-layer which is sandwiched between
two Si(111) (bulk-like) bi-layers with the same orientation thus exhibiting a DySi2 stoichiom-
etry. In contrast to this, the multilayer (

√
3 ×
√

3)R30◦-reconstruction exhibits multiple (at
least two) Dy subsurface layers. Here, the topmost layer is analogous to the topmost layer of
the (1 × 1)-reconstruction, however, for the deeper (subsurface) layers of the reconstruction
there are no Si bi-layers present. Instead, the Si atoms are arranged silicene-like in these lay-
ers (meaning that all Si atoms exhibit the same height). Additionally, a periodic Si vacancy
network is induced in the subsurface layers. For the (

√
3 ×

√
3)R30◦-reconstruction there

is one vacancy per (
√

3 ×
√

3)R30◦-unit cell equating to a nominal stoichiometry of Dy3Si5.
However, depending on the sample preparation the density of Si vacancies can be reduced
to half (consequently exhibiting a (2

√
3 ×

√
3)R30◦-periodicity, see Figure 3.6) inducing a

unidirectional strain in the silicene-like layers. This strain is compensated by (anti-phase)
domain boundaries separating domains in one crystallographic direction thus forming quasi-
one-dimensional domains (cf. chapters 5 and 6).

3.2.2 Dysprosium on Si(001)

Exposing Si(001) to Dy at elevated temperatures (400◦C-700◦C) either leads to the formation
of Dy-induced reconstructions (in the sub-monolayer regime) or reconstructions based on the
bulk Dysprosium silicide structure DySi2, see Figure 3.4(a)-(c) (in the sub-monolayer to
multilayer regime).
For low coverages (≤ 0.5 monolayers) the Dy-induced (2 × 4)-reconstruction and the (2 × 7)-
reconstruction can be observed, see Figure 3.7.

For higher coverages (≥ 0.5 monolayers to multilayers) so-called nanowires (structural motifs
with a very high aspect ratio) can be found whose structure is based on the bulk Dy-silicide
structure DySi2 (cf. Figure 3.4(a)-(c)).
For low Dy coverages the structure of the surface is proposed to consist of a Si(001) surface
where the Si-dimers are replaced by Dy atoms forming the (2 × 4)-reconstruction containing
three Dy atoms per unit cell (≡ 0.375 monolayers) [37]. Increasing the coverage the (2 × 7)-
reconstruction emerges (which is observed simultaneously with the (2 × 4)-reconstruction)
which itself consists of sub-units with a (2 × 4)-periodicity (with a structure similar to the
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Figure 3.5: Crystal structure of the (1 × 1)-reconstruction (a) and the (
√

3 ×
√

3)R30◦-
reconstruction (b) observed on Si(111) for Dy exposure in the monolayer to multilayer
regime. Coordinates taken from [34]. [Dy (turquoise), bulk Si(111) (brown), surface Si
(white), subsurface Si (red)].
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Figure 3.6: (a) Diffraction pattern of the (2
√

3 ×
√

3)R30◦-reconstruction exhibiting
a splitting of some diffraction spots characteristic for the arrangement in quasi-one-
dimensional domains. (b) Diffraction pattern along the yellow line in (a) (recorded at
different energies) showing an energy dependence of the odd-order diffraction peaks of the
(2
√

3 ×
√

3)R30◦-reconstruction (yellow arrows).

Figure 3.7: (a) Proposed crystal structure for the (2 × 4)-reconstruction. Coordinates
taken from [37]. (b) Proposed crystal structure for the (2 × 7)-reconstruction. Coordinates
taken from [38]. [unit cell (black boxes), surface Si atoms (white), bulk-like Si (brown),
Dy (turquoise)]
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Figure 3.8: Proposed crystal structure for the Dy-silicide NWs growing on the Si(001)
surface (here for a NW with a width of two lattice units). The NWs exhibit large aspect
ratios due to an anisotropic lattice misfit. Coordinates taken from [10]. [unit cell (black
boxes), crystallographic vectors (green arrows), Si in NWs (white), bulk-like Si (brown),
Dy (turquoise)]

(2 × 4)-reconstruction) and a (2 × 3)-periodicity containing six atoms in total (≈ 0.429 mono-
layers) which functions as a wetting layer for the nanowire growth [9, 38, 39].

As already mentioned, the structure of the nanowires, see Figure 3.8, is based on the bulk
Dy-silicide structure DySi2. In contrast to the Si(111) surface, however, the growth ori-
entation is different. On the Si(001) surface the [11̄00]DySi2-direction grows parallel to the
[001]Si-direction. Additionally, the [0001]DySi2 is parallel to the [11̄0]Si direction and the
[112̄0]DySi2 direction to the [1̄1̄0]Si direction (or vice-versa due to the cubic symmetry of the
Si(001) surface). The lattice constants of the DySi2 structure are different in [0001]DySi2- and
[112̄0]DySi2-direction (4.11 Å and 3.83 Å, respectively), consequently, the structure is sub-
ject to lattice mismatches of different magnitude (-0.3% and 7.3%, respectively). Hence, the
structure grows epitaxially alongside the direction with the small lattice misfit (NW-lengths
in the µm regime) whereas it is limited to several unit cells in the other direction (NW-widths
of 2-16 lattice units) explaining the formation of nanowire-like structures (with large aspect
ratios) [10].

For very low coverages (≤0.21 monolayers) only the (2 × 4)-reconstruction can be ob-
served, see Figure 3.9. Further increasing the Dy coverage (∼0.21 - 0.63 monolayers), the
(2 × 7)-reconstruction emerges as well. For lower temperatures (T ∼ 500◦C) the (2 × 7)-
reconstruction cannot be prepared exclusively whereas for higher temperatures (T ∼ 600◦C)
this is possible (for ∼0.42 monolayers). Increasing the Dy coverage further leads to a de-
crease of the (2 × 7)-reconstruction due to the formation of nanowires. For even higher Dy
coverages (≥ 0.63 - 1.05 monolayers) the (2 × 7)-reconstruction vanishes completely and only
nanowires and the (2 × 4)-reconstruction (at T ∼ 600◦C) can be observed. For the highest
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Figure 3.9: Submonolayer to monolayer phasediagram of the Dy/Si001-system. Taken
and adapted from [40].

coverage regime (≥ 1.05 monolayers) nanowire bundles start to form [10] until (basically) the
whole surface is covered by nanowire bundles (∼ 2.1 monolayers) for temperatures T ∼ 500◦C
whereas basically no bundling is observed for higher temperatures T ∼ 600◦C.
Inside the bundles adjacent nanowires (of different width) are separated by a distance of one
Si(001) lattice unit. The distance between bundles, however, is critically determined by the
Dy coverage (cf. chapter 7). On top of the nanowires different reconstructions have been
reported, namely (1 × 1)-, (2 × 1)- and c(2 × 2)-reconstructions by Liu et al. [10] and
a (2 × 1)-reconstruction by Preinesberger et al. [41]. Here, LEED experiments favor the
(1 × 1)-reconstruction (cf. chapter 7).
For Dy coverages exceeding 2.1 monolayers three dimensional island growth is observed.

3.3 Gold

Gold is the element with the symbol Au and the atomic number 79. It exhibits the electronic
configuration [Xe]4f145d106s1 and crystallizes in a face-centered cubic crystal structure with
a melting temperature T = 1064◦C. It usually assumes the oxidation states 0, +I or +III in
compounds, however, due to the fact that it is a noble metal it shows a low reactivity and
does not form compounds with many elements.

3.3.1 Gold on Si(111)

Exposing the Si(111) surface to Au at elevated temperatures (400◦C-800◦C) leads to the
formation of Au-induced reconstructions in the submonolayer to monolayer regime, see Figure
3.10. For low coverages the surface retains its (7 × 7)-periodicity (which now is essentially
given by the well-known (7 × 7)-reconstruction decorated with Au adsorbates). For higher
coverages of 0.6 - 0.7 monolayers a (5 × 2)-reconstruction can be observed. For even higher
coverages (1 monolayer) the

(√
3 ×

√
3
)
- and (≥ 1 monolayer) the (6 × 6)-reconstruction

can be observed which are both based on a structural motif with
(√

3 ×
√

3
)
-periodicity and

gradually transition from one to the other in a disorder to order transition [42].
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Figure 3.10: Submonolayer phasediagram of the Au/Si(111)-system. Taken and adapted
from [43].
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Additionally, it should be noted here, that the (5× 2)-reconstruction can occur simultaneously
with its adjacent phases (the (7 × 7)- for lower and the

(√
3 ×

√
3
)
-reconstruction for higher

coverages) depending on the actual coverage and preparation parameters. For high temper-
atures (T ≥ 1050K) both the (5 × 2)-reconstruction and the

(√
3 ×

√
3
)
-reconstruction

transform into a disordered (1 × 1)-phase.
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4 Experimental setup

4.1 UHV chamber

Figure 4.1 shows the schematic setup of the UHV-chamber in which (most of) the samples
investigated in this thesis were prepared. It is equipped with a SPA-LEED device, an AES
device, an Evaporator, a rotary manipulator, a load-lock system and a transfer system to
transfer the sample from the load-lock to the UHV-chamber and vice-versa enabling the ex-
change of samples without breaking the vacuum in the UHV-chamber.
The base pressure inside the chamber (p = 1× 10−10 mbar) is achieved through the combina-
tion of four different type of pumps, namely a rotary vane pump, a turbomolecular pump, an
ion getter pump and a titanium sublimation pump (for further information on the function
and the interplay of these pumps the reader is relegated to [14]). It is possible to heat the
sample via direct current heating enabling sample temperatures of T ≥ 1200◦C. The tempera-
ture of the sample is determined by measuring its infrared radiation via an infrared pyrometer
through the window of the chamber.

Figure 4.1: (a) Schematic display of the UHV-chamber. The lines going out of the SPA-
LEED instrument to the sample correspond to the trajectory of electrons in a diffraction
experiment and the colored area to the infrared radiation emitted by the sample. Taken
and modified from [44]. (b) Schematic sketch of an evaporator equipped with a crucible
in which the materials to be evaporated are stored. Taken and modified from [45].

4.2 Sample preparation

The Si substrates are cut from a silicon wafer to match the size of the sample holder of
the UHV-chamber. Subsequently, they are cleaned with aceton, isopropanol and water to
remove adsorbates. After the transfer to the UHV-chamber they are degassed for 12 hours
at 600◦C by direct current heating (in order to remove the remaining adsorbates) until the
base pressure is smaller than p = 2× 10−10 mbar. Thereafter the substrate is treated by
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a method called flash-annealing to remove the native Si-oxide. Flash-annealing consists of
several heating cycles (≈ 10) in which the starting substrate temperature (600◦C) is increased
close to its melting temperature (1200◦C) nearly instantaneously then is held there for several
seconds (≈ 10s) before it is decreased to the starting temperature again (about as fast as it
was increased). Additionally, the pressure needs to be monitored during the heating cycles
and may not exceed p = 2× 10−9 mbar in order to prevent contamination of the surface.
After flash-annealing the sample SPA-LEED and AES experiments are performed to check
the cleanliness of the substrate. Here, the observation of the well-known (7× 7) or (2× 1)
reconstruction (for Si(111) and Si(001) respectively) in the diffraction pattern and an absence
of contaminants in the AES spectra act as benchmark for a clean surface.

4.3 Evaporator

The materials brought onto the substrates in this thesis are deposited by means of physical
vapor deposition. Figure 4.1(b) shows the schematic design of a evaporator used to do so.
The material to be evaporated is placed in a crucible and a high voltage between the filament
and the crucible is applied (where the crucible is on a positive potential compared to the
filament). If a sufficiently high current is put through the filament the electrons emitted from
it (by thermionic emission) are accelerated towards the crucible. Upon impinging on it the
kinetic energy of the electrons is converted into heat heating up the crucible and the material
which is contained in it. In order to confine the heating to the crucible only (thus keeping
the increase in pressure at a minimum) the rest of the evaporator is cooled by water. If the
temperature of the crucible exceeds the sublimation/boiling temperature of the material to be
evaporated the material starts to sublimate/evaporate forming a molecular beam due to the
shape of the crucible and the aperture of the evaporator. The amount of evaporated material
can be assessed by the change in frequency of a crystal oscillator. Additionally, the evaporator
is equipped with a shutter which can be closed to terminate the exposure of a sample to the
evaporating material immediately. This enables the deposition of precise amounts of material
onto a sample.

4.4 SPA-LEED

Figure 4.2 shows the schematic design of a SPA-LEED instrument. It consists of an electron
gun emitting the electrons used for the diffraction (in the energy range from 0 ≤ E ≤ 500eV),
two octopoles controlling the trajectory of the emitted and diffracted electrons, a crystal
lens focusing emitted and diffracted electrons onto and from the sample and a channeltron
collecting the diffracted electrons. Opposed to conventional LEED measurements the angle
of incidence ε of the electrons onto the sample is not constant for SPA-LEED experiments.
Instead, it is varied during the experiment by means of applying varying voltages to the
octopole plates, thus scanning the Ewald sphere (see Figure 4.3). Additionally, the electrons
are not detected by a fluorescent screen but by a channeltron instead. Due to the fact that the
electron gun and the electron detector (channeltron for SPA-LEED) are not aligned on the
same axis (which is the case for the fluorescent screen and the electron gun for perpendicular
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Figure 4.2: Schematic sketch of the SPA-LEED instrument. Taken and modified from
[46].

incidence for conventional LEED) the specular reflection diffraction spot can be recorded.
The angle α under which the diffracted electrons are detected is kept constant. Consequently,
the radius of the Ewald sphere is twice as large for SPA-LEED (compared to conventional
LEED) experiments and a larger fraction of the reciprocal space can be accessed (for the same
electron energy). Due to the collection of electrons via a channeltron and the high degree of
control over the angle of incidence ε via the octopole plates angular resolutions much higher
than those achievable by the human eye (or a video system used to capture the screen) in a
conventional LEED setting can be achieved. Consequently, spot profiles can be collected very
precisely allowing for quantitative approaches to the processing of the collected data.

Figure 4.3: Ewald construction for
the SPA-LEED experiment exemplify-
ing the scanning of the Ewald sphere
by means of two different diffraction
conditions. Additionally, the lattice
rods of the reciprocal lattice are dis-
played in blue.

39



Experimental setup

Figure 4.4: Schematic sketch of a typical AES setup. Taken and adapted from [14].

4.5 AES

Figure 4.4 shows a sketch of a typical AES setup. Electrons are emitted from an electron
gun (3kV ≤ E ≤ 5kV), impinge on the sample and induce (among other things) the emission
of Auger electrons. These Auger electrons are emitted from the sample (cf. chapter 2.5)
into a cylindrical mirror analyzer consisting of an inner and an outer cylinder. Due to an
electrical field between these cylinders only electrons of a particular energy (which is scanned
in the energy range 0 ≤ E ≤ 1000eV during an AES experiment) are able to pass through
the analyzer and are detected by an electron multiplier. Due to the fact that the signal of
the Auger electrons is small compared to the background (induced by inelastically scattered
electrons) the electrical field between the cylinders is varied as a function of time (∝ k sinωt
with a small amplitude k) and the intensity caused by the Auger electrons is retrieved using
lock-in technology. Consequently, the signal is not given by the number of electrons detected
but rather as the derivative (with respect to the energy) of this quantity instead.

4.6 SXRD-Experiments

The in-situ SXRD experiments were performed at the ID03 [47] and BM25 [48, 49] beamlines
of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Synchroton
radiation has several advantages compared to conventional laboratory x-ray sources, e.g., high
intensity, high brilliance and the possibility to tune the photon energy (in a fairly wide energy
range). For further information on the generation and properties of synchrotron radiation the
reader is referred to [50].

4.6.1 UHV chamber

The UHV setup can be equipped with evaporators in order to prepare a sample exhibiting the
desired (adsorbate induced) surface structure. The successful preparation of the reconstruc-
tions can be assessed by LEED and x-ray photoelectron spectroscopy (BM25) and AES (ID03)
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Figure 4.5: Schematical sketch of a 2S+3D diffractometer used at BM25 (without an
UHV chamber) in the neutral position (all rotation angles are zero) showcasing the different
rotation axes. The experiments in this thesis were performed in vertical geometry (with
an UHV chamber mounted on the diffractometer). Taken and adapted from [51]

experiments prior to performing SXRD experiments. The UHV chamber itself is mounted on
a 2S+3D diffractometer at the BM25 beamline, see Figure 4.5, and a six-circle diffractometer
at the ID03 beamline enabling the execution of in-situ SXRD experiments without breaking
UHV conditions.

4.6.2 SXRD

The interaction between x-ray radiation and matter is relatively weak (penetration depth of
100µm - 1000µm for photon energies of 10keV - 20keV for perpendicular incidence). Therefore,
SXRD experiments are usually performed under a grazing angle of incidence α (which is
chosen to be slightly larger than the critical angle (of total reflection, cf. chapter 2.4.1) to
increase the surface sensitivity. What is more, the angle of incidence α is kept constant during
the experiment. Consequently, the sample needs to be rotated about its surface normal ω
in order to be able to access the complete reciprocal space (at a particular photon energy).
Additionally, the (two-dimensional) x-ray single-photon-counting pixel detector [52] needs to
be positioned in a direction, under the angles γ and δ, in which diffracted intensity I can
be observed (due to the single crystalline nature of the samples intensity is observed only at
certain spots/rods in reciprocal space, cf. Figure 4.6 for the Ewald construction).
During an actual SXRD experiment first a large number j of in-plane reflections Ij (hj , kj ,
l with (l ∼ 0)) is collected (allowing for the generation of the Patterson function later on).
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Figure 4.6: (a) Ewald construction for in-plane conditions (l ∼ 0) showcasing that the
sample has to be rotated about its surface normal (ω) to be able to record the bottom of
all lattice rods (at a particular photon energy E). Taken and adapted from [14]. (b) Ewald
construction for general conditions. In order to be able to record a particular lattice rod
(hn, kn) at different out-of-plane conditions li (with li ≤ lmax(hn, kn)) the sample has
to be rotated about its surface normal (ω) and the detector has to be positioned in the
direction of the diffracted wave (γ, δ). Taken and adapted from [53]

Afterwards, n lattice rods are recorded In (hn, kn, li with 0 ≤ li ≤ lmax(hn, kn)) which can
be used for the refinement of the atomic structure (cf. chapter 2.4).
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Determination of the atomic structure of the Si(111)-(5×2)-Au-
Reconstruction via Surface X-ray Diffraction

Abstract
By performing Surface X-ray Diffraction (SXRD) experiments and through the com-

parison of the experimentally collected in-plane diffraction data and the Patterson function
derived from it with (calculated) Patterson functions derived from structure models pro-
posed for the Si(111)-(5×2)-Au-Reconstruction in literature, i.e., the Abukawa-Nishigaya
(AN), Erwin-Barke-Himpsel (EBH) and Kwon-Kang (KK) models we are able to rule out
the AN model. Through the subsequent comparison of (computed) out-of-plane diffrac-
tion data of the EBH- and KK-models to the experimental out-of-plane diffraction data
we are able to identify the most probable structure model as the KK-model. Addition-
ally, we are able to refine the atomic structure of the KK-model by fitting the calculated
out-of-plane diffraction data to the experimental one.

8.1 Introduction

The (5×2)-Au reconstruction on Si(111) has been in the focus of research for nearly 50
years now [3]. Lately, the interest has been spurred by the fact that the reconstruction
can be regarded as a prototype of a self-assembled quasi-one-dimensional (1D) metallic chain
structure [4, 5]. In order to understand the physical properties accompanying these 1D chains
a profound knowledge of the atomic structure is needed. Historically a plethora of atomic
structures containing 0.4 monolayers (ML) of Au were proposed, e.g. the initial Erwin model
[54]. More recently, however, the Au coverage of the reconstruction has been revised twice,
first to 0.6 ML [55] leading to the construction of the Erwin-Barke-Himpsel- (EBH [56]) and
the Abukawa-Nishigaya-model (AN [57]) and then to 0.67 ML [43] leading to the Kwon-
Kang-model (KK [58]) containing 0.7 ML Au, (cf. Figure 8.1). Most recently, Shirasawa et
al. [59] performed Surface X-ray Diffraction (SXRD) experiments ruling out the AN-model,
thus supporting the theoretical works of Hogan et al. [60] and the theoretical works of Seino
et al. [61], while also favoring the KK-model over the EBH-model. In order to assess this
result we also performed SXRD experiments.

8.2 Experimental

The SXRD experiments were conducted at the beamline BM25 of the European Synchrotron
Radiation Facility (ESRF). The photon beam energy was 18 keV and the incidence angle 0.5◦.
The pressure inside the experimental chamber was lower than 5×10−10 mbar throughout the
whole experiment. The Si(111) substrates were prepared by degassing for 12 h at 600◦C and
were flash-annealed at 1150◦C several times afterwards until the well-known (7× 7) recon-
struction was observed in LEED. Au was deposited by means of physical vapor deposition
from a molybdenum crucible on the clean 7 × 7 reconstructed Si(111) surface at room tem-
perature . Subsequently, the sample was annealed post deposition at 800◦C in several steps,
checking the surface structure by LEED between heating steps, until only the desired 5 × 2
reconstruction was observable (cf. phase diagram in chapter 3.3.1 Figure 3.10). The crystal-
lographic coordinate system used is given by a = b = 3.8403 Å, c = 9.4068 Å, α = β = 90◦
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and γ = 120◦ where a and b are the in-plane lattice constants and c is the out-of-plane lattice
constant. Consequently, the scattering vector q can be given in relative lattice units (H, K,
L) which are related to the reciprocal lattice via

q = G = Ha* +Kb* + Lc* . (8.1)

Planar Si(111)-wafers were used, consequently three rotational domains could be observed. In
total, 35 in-plane reflections (L = 0.5) from the three rotational domains were measured, which
equate to 18 symmetry-inequivalent reflections. Additionally 13 lattice rods (1.5 ≤ L ≤ 5)
were recorded, eight of which are symmetry-inequivalent. Due to the fact that the unit cells
are not well aligned along the × 2 direction (random shifts of 1 lattice unit [62, 63]) no
half-order diffraction spots for

K = 1/2 + n with n ∈ Z (8.2)

can be observed and only streaked intensity can be observed for

−∞ ≤ H ≤ ∞ (8.3)

instead. Consequently, reflections and lattice rods can only be collected for integer-order spots
(in K). Additionally, all recorded reflections and lattice rods belong to the superstructure
only (i.e. H 6= Z ≡ no crystal truncation rods) and therefore reflect only the structure of the
superstructure.

8.3 Results and discussion

8.3.1 In-plane

The Patterson function P is given by

P (U, V,W ) =
N∑
j

|F (Hj ,Kj , Lj)|2 e−2πi(HjU+KjV+LjW ) , (8.4)

where F is the (experimental) structure factor at the position [Hj , Kj , Lj ] in reciprocal
space, which is equivalent to the self-convolution of the electron density and thus contains
information about the inter-atomic distances inside the unit cell. Additionally, the intensity
observed in the Patterson function is proportional to the product of the atomic numbers Z of
the atoms (i.e., Z(Si) and Z(Au)) which cause this intensity. The large discrepancy in atomic
number between Z(Si) = 14 and Z(Au) = 79 means that the Patterson function primarily
images Au-Au- and Au-Si-distances whereas Si-Si-distances only play a minor part.
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Determination of the atomic structure of the Si(111)-(5×2)-Au-Reconstruction via Surface
X-ray Diffraction

Using only in-plane diffraction data (or data with minimal out-of-plane momentum L) of
reflections exclusive to the superstructure to generate the Patterson function P

P (U, V ) =
N∑
j

|F (Hj ,Kj , L ∼ 0)|2 e−2πi(HjU+KjV ) , (8.5)

a projection of the inter-atomic distances in the unit cell of the superstructure onto the xy-
plane is achieved granting (only) the lateral atomic distances making it easier to interpret the
pattern of the Patterson function.
Figure 8.2(a) shows the experimental Patterson function for the (experimentally) recorded
reflections. Since the Patterson function exhibits the same periodicity as the diffraction
pattern used to compute it and only integer spots in the × 2 direction can be measured (see
above for explanation) it exhibits a 5 × 1 periodicity. The × 2 periodicity of the unit cell is not
lost, however, but instead it is back-folded into the × 1 periodicity of the Patterson function.
A total of six distinct maxima (A-F ) can be observed. A-C can be attributed to Au-Au-
distances due to their high intensities. For D-F the assignment is not that straight forward
however, and they could either be attributed to Au-Au- or Au-Si-distances. The Patterson
functions P (U, V ) for the proposed structure models (coordinates for the AN-, EBH- and
KK-model were supplied by Seino et al., see reference [61] for the AN- and the EBH-model
coordinates and table A.1 in appendix A for the KK-model coordinates) were derived by first
calculating the diffraction pattern for the particular model |Fmodel(Hk,Kk, Lk)|2 and then
applying equation 8.5 to only those reflections which were also recorded experimentally. The
calculated Patterson functions P (U, V ) of all computed models exhibit the same six maxima,
see Figure 8.2(b)-(d), however, the intensity of these maxima deviate quite strongly especially
for the AN-model. Here, the maxima A, C and F display intensities significantly stronger
then the intensity observed in the experimental Patterson function indicating that certain
structural motifs of the AN-model do not comply with the ”real” atomic structure of the
5 × 2 reconstruction. The intensity of the maxima of the EBH- and KK-model agree well
with the experimental Patterson function for the maxima A, B, C, E and F , however, minor
differences for the maximum D can be observed. Its intensity, which can be attributed to a
Si-Au distance in the EBH- and a Au-Au distance in the KK-model (caused by the additional
Au atom), in the experimental Patterson function lies between the intensities of the EBH-
and the KK-model. Consequently, it is impossible to prefer one model over the other from
this qualitative analysis.
The qualitative results are supported by the computation of the (crystallographic) R-factor
[64]

R =

∑N
k ||Fexp(Hk,Kk, Lk)| − |Fmodel(Hk,Kk, Lk)||∑N

j |Fexp(Hj ,Kj , Lj)|
(8.6)

for the in-plane data showing that the agreement between the AN-model and the experimen-
tal data is the worst with RAN = 0.3409 as compared to the agreement of the EBH-model
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Figure 8.2: Experimental Patterson function and computed Patterson functions (in-
plane) for the AN-, EBH- and the KK-model. The respective Patterson functions are only
shown for the asymmetric unit of the observed 5 × 1 periodicity. A total of six different
distinct maxima (labeled A-F ) can be observed. The axes are scaled in the crystallographic
coordinates used throughout the manuscript (1.0 corresponds to 3.84 Å).

REBH = 0.1631 and the KK-model RKK = 0.1475 which exhibit lower R-factors. Conse-
quently, the AN-model can be ruled out. This agrees with theoretical calculations [60, 61]
and the SXRD results by Shirasawa et al [59]. The KK-model exhibits the lowest R-factor,
however, the discrepancy between the EBH- and the KK-model is small, consequently the
KK-model cannot be preferred over the EBH-model by comparison of the in-plane diffraction
data with certainty and the experimental out-of-plane diffraction data (lattice rods) needs to
be compared to the computed out-of-plane diffraction data as well.

8.3.2 Out-of-plane/Structural refinement

Figure 8.3 shows the intensity of the eight symmetry-inequivalent lattice rods (exclusive to
the superstructure) recorded for the 5 × 2 reconstruction (blue). Calculating the χ2-function
(cf. chapter 2.4.3 equation 2.50)

χ2 =
1

N

N∑
k=1

(|Fk,exp|2 − |Fk,model|2)2

σ2
k,exp

(8.7)

for the out-of-plane experimental data for the initial EBH- and KK-model (cf. Figure 8.1)
shows that the KK-model agrees significantly better with the experimental data than the
EBH model (χ2(EBH) = 1.66 and χ2(KK) = 1.21), giving a strong indication that the KK-
model can be preferred over the EBH-model.
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Figure 8.3: Display of the intensity of the eight symmetry-inequivalent lattice rods
recorded for the 5 × 2 reconstruction (blue) and the corresponding (calculated) intensity
of the refined KK-model (red) showing a very nice agreement.
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During refinement groups of atoms (composed of one or more atoms) were allowed to move
from their initial positions. The starting models (EBH, KK), cf. Figure 8.1, contain three
subsurface Si double-layers and the (topmost) layer containing the Au atoms. Due to the low
symmetry of the unit cell (P1 symmetry), in principal, no constraints are imposed upon the
movement of the individual atoms in respect to the movement of other atoms in the refine-
ment process as no symmetry elements exist (apart from the identity). However, due to the
fact that the structure of the 5 × 2 unit cell is very similar for both 5 × 1 sub-units (apart
from the dimerization of two Au atoms (EBH, KK) and the additional Au atom in one of
the sub units (KK)) it is defensible to assume the same deviation from the initial position
for ”equal” atoms in both sub-units (at least for the subsurface Si double-layers) reducing
the number of parameters for the subsurface Si atoms to half the number required otherwise.
For the topmost layer the Au atoms are allowed to move independently of one another as are
the Si atoms that are not part of the honeycomb-like ring. The Si atoms in the honeycomb,
however, were coupled in such a way that their lateral positions do not change with respect to
one another and were only allowed to move vertically independently because the honeycomb
structure is integral to explaining e.g. reflectance anisotropy spectroscopic features of the
reconstruction [60].
The structure was refined by allowing deviations (from the initial positions) in all crystal-
lographic directions even though the out-of-plane data should be more sensitive to vertical
deviations because the agreement between calculated and experimental intensity could be im-
proved significantly this way. In order to suppress physically unrealistic bonding-angles and
-lengths during fitting we employed a Keating model approach [24] and defined the following
goodness of fit (gof) [25, 65]

gof = χ2 + kEKeat , (8.8)

where EKeat is the Keating-energy and k is its weighting factor. During optimization the
weighting factor k was decreased gradually eventually only least-square fitting the calculated
to the experimental recorded intensities. Refining the EBH-model grants a χ2-value of

χ2(EBHrefined) ≥ 2χ2(KKrefined) , (8.9)

which further manifests that the KK-model should/can be preferred over the EBH-model.
Figure 8.3 shows a very nice agreement between the intensity of the eight lattice rods recorded
for the 5 × 2 reconstruction (blue) and the corresponding (calculated) intensity of the model
obtained by the refinement of the KK-model (red) with a χ2-value of χ2(KKrefined) = 0.42.
The atomic positions for the KK-model granted by the refinement procedure are given in
table A.2 in appendix A.

The undulation of the intensity observed for some of the lattice rods (especially for [H = 0.2,
K = 0] and [H = 0.8, K = 1.0]) already indicates that the surface might be more corrugated
than assumed in the starting (KK-)model. Indeed, analyzing the deviations from the starting
(KK-)model, see Figure 8.4, one finds that all Au atoms experience an elevation except one
(dashed blue circle) whereas the Si atoms in the topmost layer experience a depression except
one (dashed blue circle). Additionally, this depression of Si atoms is non-uniform leading to
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Determination of the atomic structure of the Si(111)-(5×2)-Au-Reconstruction via Surface
X-ray Diffraction

Figure 8.4: Display of the starting (KK-)model (left) and the refined (KK-)model (right).
The projected distances (given in Å) between adjacent atoms are shown for the starting
model (black numbers on the lefthand side). For the refined model the difference in
magnitude of the (projected) distance ∆r = rref - rstart between the refined and the
starting model is displayed. Here, blue numbers correspond to an increase and black
numbers to a decrease in distance. For the top view (top) the distances are projected into
the xy-plane whereas they are projected onto the z-axis for the side view (bottom). The
Au atom which experiences a depression and the Si atom which experiences an elevation
during the refinement (cf. text) are highlighted by dashed blue circles.
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a vertical tilting of the honeycomb structure. The topmost layer is also changed horizontally
with the most glaring difference being the movement of the surrounding atoms mostly towards
the ”additional” (as compared to the EBH-model) Au atom (five out of six atoms do so). The
subsurface Si structure is changed as well which is most pronounced directly underneath the
Au rows. This change in structure reaches down up to the third subsurface layer where
the atomic distances still exhibit values different from the one expected for a perfect bulk
structure (= 2.352 Å).

8.4 Conclusion

By the comparison of the Patterson function generated from experimentally collected in-plane
diffraction data to the computed Patterson function for the EBH-, AN- and KK-model we
were able to rule out the AN-model. Furthermore, we were able to show that the KK-model
is more probable than the EBH-model by the comparison of experimentally collected out-of-
plane data to their computed counter-part for the EBH- and KK-model and the subsequent
refinement of these structure models. This further cements the KK-model as the state of the
art model which is in concurrence with the results obtained by Shirasawa et al. [59]. However,
contrary to the refined structure model proposed by Shirasawa et al., which only contains two
subsurface Si layers our refined structure model reaches deeper into the crystal with three
subsurface Si layers. The need for an additional subsurface Si layer can be attributed to the
fact that the lattice rods we recorded exhibit strong undulations which are not observed for
the lattice rods and crystal truncation rods recorded by Shirasawa et al. Consequently, their
refined structure model is mostly insensitive to the changes in the subsurface Si layers causing
these undulations whereas our refined structure model contains this information.
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Summary and Outlook

9 Summary and Outlook

In this thesis the morphology and the atomic structure of quasi-one-dimensional structures
grown on Si were determined by means of diffraction experiments in combination with kine-
matic diffraction theory calculations.
In the first and the second study the formerly unknown

(
2
√

3 ×
√

3
)

R30◦ reconstruction
on Si(111) was characterized by means of STM, DFT, SPA-LEED experiments and kinematic
diffraction calculations. Here, a structure model could be proposed which contains half as
many subsurface Si vacancies as compared to the well-known

(√
3 ×

√
3
)

R30◦ reconstruc-
tion on Si(111) it was derived from. Due to the decreased number of subsurface Si vacancies
the reconstruction is subject to an uni-axial strain which is mitigated by the formation of
domains separated by anti-phase domain boundaries. It could be shown that two different
types of domains alternate across the surface forming quasi-one-dimensional domains. Ad-
ditionally, the distribution of the domains could be derived by comparison with kinematic
diffraction calculations. In this thesis only structural features of this quasi-one-dimensional
structure were investigated, additional studies probing the electronic structure could be per-
formed. Here, e.g., Angle-resolved Photoelectron Spectroscopy and/or Density Functional
Theory calculations could be performed in order to show whether the electronic structure is
one-dimensional as well. Additionally, SXRD experiments could be performed in order to
assess the validity of the structure model proposed.
In the third study a deeper insight into the complex system of bundled rare-earth silicide
nanowires on Si(001) was given. Here, the distributions of the NW width, the bundle width
and the bundle distance were deduced from the diffraction patterns collected by SPA-LEED
and the subsequent comparison to kinematic diffraction theory calculations. Additionally, it
was shown that the (2 × 1) reconstruction sometimes observed on top of the NWs by STM
cannot exist over larger parts of the sample and instead a (1 × 1) reconstruction needs to be
assumed to explain the experimentally observed diffraction data. Here, varying the heating
procedure during preparation (e.g., post deposition annealing vs quenching after evaporation)
and additional experiments evaporating different rare-earth silicides could help to determine
whether the underlying NW distributions are strongly influenced by it. Additionally, the
influence of the substrate could be investigated more thoroughly by e.g., changing the angle
of inclination in respect to the Si(001) surface (vicinal surfaces). Here, it would be interesting
to determine whether the decrease of the mean terrace size (accompanying the increase in the
angle of inclination) influences the distribution of the NW width or not and if the growth of
the (bundled) NWs causes a major structural change in the terrace structure (e.g., refacetting
of the surface).
In the fourth study the atomic structure of the gold induced atomic wires of the Si(111)-(5×2)-
Au system was analyzed. The Patterson function of the in-plane SXRD data was compared
to the Patterson functions derived from the atomic structure models proposed in literature
(AN, EBH, KK) ruling out the AN-model. By comparison of the experimental out-of-plane
SXRD data to the corresponding (calculated) SXRD data for the EBH- and the KK-model
the KK-model could be identified as the most probable model. Additionally, a refined atomic
structure model was derived for the KK-model. Here, complementary diffraction methods
(e.g., quantitative LEED, Transmission Electron Microscopy) in addition to Density Func-
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tional Theory calculations could be employed in order assess and/or further refine the atomic
structure model.
In conclusion, the results presented in this thesis clearly display the power of diffraction
experiments especially in conjunction with the comparison to kinematic diffraction theory
calculations and prove that they are applicable even to low dimensional (e.g., quasi-one-
dimensional) structures. Furthermore, it was shown that diffraction experiments can deliver
complementary information (e.g., information on deeper atomic layers) as compared to local
probing methods (e.g. STM or Atomic Force Microscopy) and especially the combination of
local probing methods, DFT calculations and diffraction experiments allows for the explana-
tion of even very complicated material systems.
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Appendix

A Coordinates of the Si(111)-(5×2)-Au-Reconstruction (KK-
model)
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Nr. Element Position [surface units] (u11, u12, u13, u22, u23, u33) [Å2]

1 Au (0.5275, 0.6614, 1.0808) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

2 Au (0.7777, 0.7597, 1.0612) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

3 Au (0.7781, 0.1869, 1.0611) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

4 Au (0.6021, 0.4371, 1.0658) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

5 Au (0.6013, 0.0715, 1.0660) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

6 Au (0.3609, 0.9538, 1.0630) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

7 Au (0.3632, 0.4541, 1.0585) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

8 Si (0.1376, 0.9235, 0.9982) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

9 Si (0.1400, 0.4244, 0.9985) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

10 Si (0.9166, 0.8989, 0.9886) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

11 Si (0.9173, 0.3939, 0.9887) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

12 Si (0.6703, 0.8395, 1.0205) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

13 Si (0.7182, 0.3986, 1.0050) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

14 Si (0.4555, 0.8405, 1.0166) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

15 Si (0.4567, 0.3023, 1.0166) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

16 Si (0.2194, 0.7759, 0.9983) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

17 Si (0.2227, 0.2777, 0.9961) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

18 Si (-0.0014, 0.7493, 0.9918) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

19 Si (0.0018, 0.2516, 0.9893) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

20 Si (0.8750, 0.8459, 0.7447) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

21 Si (0.8755, 0.3424, 0.7447) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

22 Si (0.6679, 0.8358, 0.7652) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

23 Si (0.6770, 0.3467, 0.7607) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

24 Si (0.4663, 0.8376, 0.7646) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

25 Si (0.4669, 0.3308, 0.7645) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

26 Si (0.2610, 0.8272, 0.7546) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

27 Si (0.2625, 0.3278, 0.7520) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

28 Si (0.0679, 0.8357, 0.7488) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

29 Si (0.0695, 0.3368, 0.7475) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

30 Si (0.9353, 0.6695, 0.6533) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

31 Si (0.9373, 0.1713, 0.6520) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

32 Si (0.7380, 0.6780, 0.6743) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

33 Si (0.7383, 0.1685, 0.6743) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

34 Si (0.5333, 0.6677, 0.6820) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

35 Si (0.5388, 0.1740, 0.6830) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

36 Si (0.3322, 0.6673, 0.6776) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

37 Si (0.3328, 0.1645, 0.6776) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

38 Si (0.1319, 0.6662, 0.6575) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

39 Si (0.1327, 0.1654, 0.6569) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

40 Si (0.9348, 0.6690, 0.4064) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

41 Si (0.9353, 0.1694, 0.4053) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

42 Si (0.7349, 0.6716, 0.4231) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

43 Si (0.7349, 0.1670, 0.4232) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

44 Si (0.5333, 0.6672, 0.4291) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

45 Si (0.5356, 0.1698, 0.4299) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

46 Si (0.3336, 0.6676, 0.4259) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

47 Si (0.3338, 0.1666, 0.4259) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

48 Si (0.1323, 0.6660, 0.4098) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

49 Si (0.1326, 0.1656, 0.4093) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

50 Si (0.7991, 0.4997, 0.3367) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)
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Nr. Element Position [surface units] (u11, u12, u13, u22, u23, u33) [Å2]

51 Si (0.8002, 0.0009, 0.3333) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

52 Si (0.6005, 0.5019, 0.3423) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

53 Si (0.6006, 0.0004, 0.3423) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

54 Si (0.4004, 0.5006, 0.3417) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

55 Si (0.4018, 0.0021, 0.3427) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

56 Si (0.2016, 0.5024, 0.3343) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

57 Si (0.2018, 0.0021, 0.3341) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

58 Si (0.0005, 0.5014, 0.3244) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

59 Si (0.0007, 0.0009, 0.3242) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

60 Si (0.7995, 0.5004, 0.0861) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

61 Si (0.7998, 0.0008, 0.0839) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

62 Si (0.6002, 0.5012, 0.0902) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

63 Si (0.6002, 0.0007, 0.0902) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

64 Si (0.4008, 0.5013, 0.0898) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

65 Si (0.4013, 0.0019, 0.0903) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

66 Si (0.2015, 0.5020, 0.0846) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

67 Si (0.2017, 0.0019, 0.0845) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

68 Si (0.0005, 0.5012, 0.0777) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

69 Si (0.0006, 0.0008, 0.0776) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

70 Si (0.8663, 0.8333, 0.0011) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

71 Si (0.8663, 0.3343, 0.0012) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

72 Si (0.6662, 0.8335, 0.0032) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

73 Si (0.6661, 0.3334, 0.0036) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

74 Si (0.4672, 0.8342, 0.0041) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

75 Si (0.4672, 0.3344, 0.0041) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

76 Si (0.2684, 0.8354, 0.0025) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

77 Si (0.2681, 0.3352, 0.0022) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

78 Si (0.0684, 0.8356, 0.0000) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

79 Si (0.0682, 0.3356, 0.0001) (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

Table A.1: Structure of the Si(111)-(5×2)-Au-Reconstruction (KK-model) (cf. chapter
8). The positions of the atoms are given in surface units and the atomic displacement
factors in Å2.
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Nr. Element Position [surface units] (u11, u12, u13, u22, u23, u33) [Å2]

1 Au (0.5334, 0.6505, 1.0854) (0.0087, 0.0072, 0.0000, 0.0063, 0.0000, 0.0000)

2 Au (0.7793, 0.7531, 1.0664) (0.0087, 0.0072, 0.0000, 0.0063, 0.0000, 0.0000)

3 Au (0.7797, 0.1595, 1.0652) (0.0087, 0.0072, 0.0000, 0.0063, 0.0000, 0.0000)

4 Au (0.6028, 0.4520, 1.0590) (0.0087, 0.0072, 0.0000, 0.0063, 0.0000, 0.0000)

5 Au (0.6020, 0.0273, 1.0697) (0.0087, 0.0072, 0.0000, 0.0063, 0.0000, 0.0000)

6 Au (0.3615, 0.9309, 1.0641) (0.0087, 0.0072, 0.0000, 0.0063, 0.0000, 0.0000)

7 Au (0.3638, 0.4311, 1.0601) (0.0087, 0.0072, 0.0000, 0.0063, 0.0000, 0.0000)

8 Si (0.1421, 0.9287, 0.9700) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

9 Si (0.1446, 0.4296, 0.9700) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

10 Si (0.9211, 0.9041, 0.9810) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

11 Si (0.9218, 0.3990, 0.9831) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

12 Si (0.6671, 0.8287, 0.9935) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

13 Si (0.7109, 0.3778, 0.9947) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

14 Si (0.4576, 0.8010, 1.0013) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

15 Si (0.4591, 0.3089, 1.0003) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

16 Si (0.2240, 0.7810, 0.9727) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

17 Si (0.2272, 0.2828, 0.9686) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

18 Si (0.0031, 0.7544, 0.9917) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

19 Si (0.0063, 0.2567, 0.9904) (0.0000, 0.0139, 0.0000, 0.0017, 0.0000, 0.0000)

20 Si (0.8749, 0.8370, 0.7403) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

21 Si (0.8753, 0.3335, 0.7404) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

22 Si (0.6776, 0.8606, 0.7427) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

23 Si (0.6868, 0.3715, 0.7382) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

24 Si (0.4665, 0.8404, 0.7572) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

25 Si (0.4670, 0.3336, 0.7571) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

26 Si (0.2540, 0.8158, 0.7414) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

27 Si (0.2555, 0.3165, 0.7388) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

28 Si (0.0577, 0.7913, 0.7555) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

29 Si (0.0592, 0.2924, 0.7542) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

30 Si (0.9255, 0.6593, 0.6616) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

31 Si (0.9275, 0.1611, 0.6604) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

32 Si (0.7470, 0.6969, 0.6695) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

33 Si (0.7474, 0.1874, 0.6695) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

34 Si (0.5420, 0.6654, 0.7056) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

35 Si (0.5475, 0.1718, 0.7067) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

36 Si (0.3296, 0.6601, 0.6829) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

37 Si (0.3302, 0.1573, 0.6829) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

38 Si (0.1183, 0.6170, 0.6411) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

39 Si (0.1191, 0.1162, 0.6405) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

40 Si (0.9319, 0.6707, 0.4200) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

41 Si (0.9324, 0.1712, 0.4189) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

42 Si (0.7457, 0.7077, 0.4171) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

43 Si (0.7458, 0.2031, 0.4171) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

44 Si (0.5390, 0.6877, 0.4359) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

45 Si (0.5412, 0.1904, 0.4367) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

46 Si (0.3396, 0.6994, 0.4384) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

47 Si (0.3398, 0.1983, 0.4384) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

48 Si (0.1262, 0.6628, 0.4035) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

49 Si (0.1264, 0.1623, 0.4031) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

50 Si (0.8007, 0.5111, 0.3400) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)
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Nr. Element Position [surface units] (u11, u12, u13, u22, u23, u33) [Å2]

51 Si (0.8017, 0.0123, 0.3366) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

52 Si (0.6094, 0.5253, 0.3518) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

53 Si (0.6095, 0.0238, 0.3517) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

54 Si (0.4070, 0.5332, 0.3414) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

55 Si (0.4084, 0.0348, 0.3424) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

56 Si (0.2045, 0.5193, 0.3388) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

57 Si (0.2048, 0.0190, 0.3386) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

58 Si (0.9941, 0.5049, 0.3351) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

59 Si (0.9943, 0.0044, 0.3349) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

60 Si (0.7995, 0.5004, 0.0861) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

61 Si (0.7999, 0.0008, 0.0839) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

62 Si (0.6002, 0.5012, 0.0902) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

63 Si (0.6002, 0.0007, 0.0902) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

64 Si (0.4008, 0.5013, 0.0898) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

65 Si (0.4013, 0.0019, 0.0903) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

66 Si (0.2015, 0.5020, 0.0846) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

67 Si (0.2017, 0.0019, 0.0845) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

68 Si (0.0005, 0.5012, 0.0777) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

69 Si (0.0006, 0.0008, 0.0776) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

70 Si (0.8663, 0.8333, 0.0011) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

71 Si (0.8663, 0.3343, 0.0012) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

72 Si (0.6661, 0.8335, 0.0032) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

73 Si (0.6661, 0.3334, 0.0036) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

74 Si (0.4672, 0.8342, 0.0041) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

75 Si (0.4672, 0.3344, 0.0041) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

76 Si (0.2684, 0.8354, 0.0025) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

77 Si (0.2681, 0.3352, 0.0022) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

78 Si (0.0684, 0.8356, 0.0000) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

79 Si (0.0682, 0.3356, 0.0001) (0.0000, 0.0000, 0.0000, 0.0000, 0.0072, 0.0000)

Table A.2: Structure of the Si(111)-(5×2)-Au-Reconstruction after refinement (KK-
model) (cf. chapter 8). The positions of the atoms are given in surface units and the
atomic displacement factors in Å2.
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