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Abstract 

Remote sensing provides temporal, spectral and spatial information covering a wide 

area. Therefore, it has great potential in offering a detailed quantitative determination 

of the leaf area index (LAI) and other crop parameters in precision agriculture. The 

spatially differentiated assessment of LAI is of utmost importance for enabling an 

adapted field management, with the aim of increasing yields and reducing costs at the 

same time. 

The scientific focus of this work was the investigation of the potential of 

hyperspectral remote sensing data of different spectral resolutions, which were 

acquired at different spatial scales, for a precise assessment of wheat LAI. For this 

reason, three research experiments were conducted: 1) a comparison of different 

empirical-statistical regression techniques and their capabilities for a robust LAI 

prediction; 2) a determination of the required spectral resolution and important spectral 

regions/bands for precise LAI assessment; and 3) an investigation of the influence of 

the ground sampling distance of remote sensing images on the quality of spatial LAI 

predictions. 

The first part of this thesis compared three empirical-statistical regression 

techniques – namely, partial least-squares regression (PLSR), support vector 

regression (SVR) and random forest regression (RFR) – and their achieved model 

qualities for the assessment of wheat LAI from field reflectance measurements. In this 

context, the two different validation techniques – leave-one-out cross-validation (cv) 

and independent validation (iv) – were applied for verifying the accuracy of the 

different empirical-statistical regression models. The results clearly showed that model 

performance markedly depends on the validation technique used to assess model 

accuracy. In the case of leave-one-out cross-validation, SVR provided the best results, 

while PLSR proved to be superior to SVR and RFR when independent validation was 

applied. 

In the second part of this thesis, the spectral characteristics of the hyperspectral 

airborne sensor aisaDUAL (98 spectral bands) and the upcoming hyperspectral 

satellite mission EnMAP (204 spectral bands) were investigated to show their 

capability regarding the precise determination of wheat LAI. Moreover, the feature 

selection algorithm RReliefF, combined with a randomized sampling approach, was 

applied to identify the spectral bands that were most sensitive to changes in LAI. The 

results demonstrated that only three spectral bands of aisaDUAL, as well as EnMAP, 

at specific locations within the investigated spectral range (400–2,500 nm) were 

necessary for an accurate LAI prediction. 

The third part of this thesis dealt with the influence of the spatial resolution of 

aisaDUAL (3 m) and simulated EnMAP (30 m) image data on the assessment of wheat 
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LAI. While the ground sampling distance (GSD) of aisaDUAL allowed a robust 

regression model calibration and validation, LAI predictions based on simulated 

EnMAP image data led to poor results because of the distinct difference in size 

between the EnMAP pixels (900 m2) and the sampled field plots (0.25 m2) for which 

the LAI was measured. In order to enable a more precise determination of wheat LAI 

from EnMAP image data, the two different approaches of image aggregation and 

image fusion were examined. In this context, the fusion approach has proven to be the 

more suitable method, which allowed a more accurate LAI prediction compared to the 

results based on the EnMAP data with a GSD of 30 m. 

In summary, the findings of the research reported in this thesis demonstrated that 

the accuracy of spatial LAI predictions from remote sensing data depends on several 

factors. Besides the applied empirical-statistical retrieval- and validation method, the 

spatial and spectral characteristics of the used image data sets played an important role. 

With the forthcoming hyperspectral satellite missions (e.g., EnMAP, HyspIRI), the 

area-wide assessment of LAI and other crop parameters (e.g., biomass, chlorophyll 

content) will be strongly supported. The moderate spatial resolutions of these satellites 

systems, however, require a combined use with spatial higher resolution multi- or 

superspectral satellite data (e.g., RapidEye, Sentinel-2). This multisensoral approach 

offers great potential for the prompt identification of spatial variations in crop 

conditions on sub-field scale, which is a mandatory prerequisite for precision 

agricultural applications. 
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Zusammenfassung 

Fernerkundungsdaten haben großes Potential für die quantitative Erfassung von 

Pflanzenparametern im Bereich der Präzisionslandwirtschaft, da sie spektrale 

Informationen großer Flächen liefern, die zu verschiedenen Zeitpunkten innerhalb der 

Wachstumsperiode aufgenommen werden können. Die räumlich differenzierte 

Erfassung des Blattflächenindex (engl. LAI) ist dabei von besonderer Bedeutung für 

eine angepasste Bewirtschaftung von Feldern mit dem Ziel die Erträge zu steigern und 

gleichzeitig die Kosten zu senken. 

Die vorliegende Arbeit beschäftigt sich mit der Untersuchung des Potentials hyper-

spektraler Fernerkundungsdaten mit unterschiedlicher spektraler und räumlicher Auf-

lösung zur genauen Erfassung des LAI von Winterweizen. Zu diesem Zweck wurden 

drei verschiedene Forschungsexperimente durchgeführt: 1) Vergleich verschiedener 

empirisch-statistischer Regressionsverfahren und deren Fähigkeiten zur genauen 

Vorhersage des LAI; 2) Ermittlung der nötigen spektralen Auflösung und wichtiger 

spektraler Regionen/Kanäle zur möglichst exakten Erfassung des LAI; und  

3) Untersuchung des Einflusses der räumlichen Auflösung von Fernerkundungsdaten 

auf die Genauigkeit von räumlichen LAI Vorhersagen. 

Im ersten Teil der Arbeit werden verschiedene Ergebnisse der drei empirisch-

statistischen Regressionsverfahren Partial Least Squares Regression (PLSR), Support 

Vector Regression (SVR) und Random Forest Regression (RFR) verglichen, die im 

Zuge der Vorhersage des LAI von Winterweizen auf Grundlage von Feldspektrometer-

messungen erzielt wurden. In diesem Zusammenhang wurden die zwei 

Validierungsmethoden „leave-one-out“ Kreuzvalidierung (cv) und eine Form der 

unabhängigen Validierung (iv) vergleichend angewandt, um die Genauigkeit der 

trainierten Regressionsmodelle zu ermitteln. Die Ergebnisse verdeutlichen, dass die 

Modellgüte sehr stark von der verwendeten Validierungsmethode abhängt. Während 

im Fall der „leave-one-out“ Kreuzvalidierung das Regressionsverfahren SVR das 

beste Ergebnis lieferte, konnte bei der unabhängigen Validierung die höchste 

Vorhersagegenauigkeit mit dem Regressionsverfahren PLSR erzielt werden. 

Der zweite Teil der Arbeit beschäftigt sich mit der Untersuchung der spektralen 

Eigenschaften des flugzeuggetragenen Sensors aisaDUAL (98 spektrale Kanäle) und 

des zukünftigen Satelliten EnMAP (204 spektrale Kanäle) zur Erfassung des LAI. 

Darüber hinaus wurden mit dem Variablenselektionsverfahren RReliefF und zwei 

daran angeschlossenen randomisierten Experimenten die spektralen Kanäle ermittelt, 

die am sensitivsten auf Veränderungen des LAI reagieren. Die dabei erzielten 

Ergebnisse haben gezeigt, dass sowohl bei aisaDUAL- als auch EnMAP jeweils nur 

drei spektrale Kanäle an bestimmten Positionen im untersuchten Spektralbereich 

(400–2.500 nm) nötig waren, um genaue LAI Vorhersagen zu ermöglichen. 
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Im dritten Teil der Arbeit wurde die Vorhersagegenauigkeit des LAI in Abhängig-

keit von der räumlichen Auflösung der Sensoren aisaDUAL (3 m) und EnMAP (30 m) 

analysiert. Während die räumliche Auflösung von aisaDUAL eine stabile Kalibrierung 

und Validierung eines Regressionsmodells ermöglichte, führten die Vorhersagen  

des LAI auf Grundlage simulierter EnMAP-Bilddaten zu wesentlich niedrigeren 

Genauigkeiten. Der Grund dafür bestand im deutlichen Größenunterschied der 

abgedeckten Flächen eines EnMAP-Pixels (900 m2) im Vergleich zu den im Feld 

beprobten Plots (0,25 m2), für die der LAI erfasst wurde. Aus diesem Grund wurden 

die beiden Verfahren Bildaggregation und Bildfusion auf den simulierten EnMAP-

Daten angewendet um genauere Vorhersagen des LAI zu ermöglichen. Dabei hat sich 

die Bildfusion als das geeignetere Verfahren herausgestellt. 

Zusammenfassend verdeutlichen die Ergebnisse dieser Arbeit, dass die räumliche 

Vorhersagegenauigkeit des LAI auf Grundlage von Fernerkundungsdaten von 

verschiedenen Faktoren abhängt. Neben den verwendeten empirisch-statistischen 

Regressionsverfahren und den verschiedenen Validierungsmethoden haben vor allem 

die räumliche und spektrale Auflösung der Bilddaten erheblichen Einfluss auf die 

genaue Ableitung des LAI. Mit den zukünftigen hyperspektralen Satellitenmissionen 

(z.B. EnMAP, HyspIRI) wird eine noch präzisere Erfassung des LAI und anderer 

wichtiger Pflanzenparameter (z.B. Biomasse, Chlorophyllgehalt) möglich sein. 

Allerdings stellt die zu geringe räumliche Auflösung dieser Satelliten für bestimmte 

Anwendungen innerhalb der Präzisionslandwirtschaft ein Problem dar und erfordert 

eine Kombination mit räumlich höher aufgelösten Daten multi- oder superspektraler 

Satelliten (z.B. RapidEye, Sentinel-2). Ein solcher multisensoraler Ansatz bietet 

großes Potential für die zeitnahe Erfassung von Veränderungen der Wachstums-

bedingungen und ermöglicht die Ableitung wichtiger Informationen über den Zustand 

der Pflanzen, was wiederum eine wichtige Voraussetzung für eine angepasste und 

räumlich differenzierte Bewirtschaftung von Feldern ist. 
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1 Introduction 

At present, more than 7.2 billon people live on earth [U. S. Census Bureau, 2015], 

while forecasts indicate that by 2050, the world’s population will rise to more than 

nine billion [DESA, 2015]. To feed the growing population, more than 500 million ha 

of additional land have been cultivated in the last 50 years [FAO, 2015] and this 

process will continue well into the future [Alexandratos and Bruinsma, 2012]. In total 

37.72 % of the earth’s surface is used for agriculture [FAO, 2015]. Hence, 

agriculturalists may be regarded as the chief managers of terrestrial usable land 

[Tilman et al., 2002]. 

In addition to rice and maize, wheat is one of the most important food grain sources 

for humans, which is grown on more land area than any other commercial crop in the 

world [CIMMYT, 2015], because it has a high yield potential and a good adaptability 

to different climatic conditions and soil types [BLV, 2014]. Due to limited natural 

resources (e.g., suitable soils, water), it is not possible to increase food production 

based on wheat and other crops indefinitely in the future. For this reason, modern 

agriculture faces considerable challenges. 

To counter the rising global population and the limited availability of arable land, 

the European Commission declared the further development and rapid diffusion of 

sustainable agricultural practices and precision agricultural approaches as two of the 

major objectives in the coming decade [European Commission, 2012]. Precision 

agriculture is defined as an information-based management system using sustainable 

methods to increase crop productivity and farm profitability, while reducing negative 

environmental impacts that are often caused by conventional agriculture (e.g., over-

supply of fertilizers, pesticides or herbicides) [Gebbers and Adamchuk, 2010;  

Mulla, 2013; Zhang et al., 2002]. 

The first precision agricultural approaches were applied in the 1980s to develop the 

right treatment of agricultural fields in the right place at the right time [Gebbers and 

Adamchuk, 2010; Robert, 2002]. Since the 1990s, it has been practised commercially 

in the USA, Europe, Australia, Canada and Japan [Mulla, 2013]. In accordance with 

Crookston [2006], it belongs to the top ten revolutions in agriculture today. One of the 

most important factors in the development and dissemination of precision agriculture 

is the increasing awareness of variation in soil and crop conditions. In addition the 

emergence and further development of technologies, such as geographic information 

systems (GIS), global navigation satellite systems (GNSS), miniaturized computers, 

mobile computing, advanced information processing, telecommunications, and proxi-

mal and remote sensing, have made an important contribution to the dissemination of 

precision agriculture [Gebbers and Adamchuk, 2010; Zhang et al., 2002]. 

In particular, remote sensing is a key technology because airborne and spaceborne 

sensors provide spatial, spectral and temporal information about agricultural fields, 

which can be used to identify infield variability and support decision-making. This is 
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especially important for the development and implementation of an adapted field 

treatment to avoid over- and/or undersupply of agricultural inputs, a frequent cause of 

ecological problems and economic drawbacks [Gebbers and Adamchuk, 2010;  

Moran et al., 1997; Seelan et al., 2003; Zarco-Tejada et al., 2005; Zhang et al., 2002]. 

The fast, cost-effective and non-destructive assessment of relevant biochemical and 

structural vegetation properties is of the utmost importance when characterizing the 

crop status at leaf and canopy level. In this regard, parameters, such as chlorophyll 

content, above-ground biomass dry matter, nitrogen status, canopy water content and 

leaf area index (LAI), provide important information for describing current growth 

conditions, which can be converted into yield-driving state variables (e.g., dry mass 

increase) and used for the re-parameterization of agricultural production models  

[Cox, 2002; Delécolle et al., 1992; Mulla, 2013; Schueller, 1992].  

The LAI is one of the most important plant parameters and serves as an  

essential variable for assimilating remote sensing data into crop growth models  

[Machwitz et al., 2014; Moulin et al., 1998]. It is defined as the ratio of the total one-

sided leaf surface area per unit soil surface area [Herrmann et al., 2011; Monteith and 

Unsworth, 2007; Watson, 1947]. As an indicator for the current biotic and abiotic 

conditions, the LAI provides information about the photosynthetic ‘potential’ of plants 

and is an important input parameter for yield modelling, since it is significantly 

influenced by yield-limiting and -reducing factors, such as plant diseases and 

mismanagement [Boegh et al., 2002; Carter, 1994; Daughtry et al., 1992]. 

Various methods for LAI determination exist, differing in the type of measurement 

methodology and the requirements of the technical equipment [Bréda, 2003; Zheng 

and Moskal, 2009]. Destructive methods for measuring LAI normally provide more 

precise results, but the assessment is time-consuming, expensive and, therefore, often 

limited to small areas [Bréda, 2003]. The increasing use of multispectral remote 

sensing data in recent decades has significantly improved the spatial and non-

destructive assessment of LAI. Additionally, a rising number of hyperspectral airborne 

and spaceborne sensors are in operation nowadays. While multispectral data often 

provide an insufficient number and/or a non-optimal location of spectral bands per 

pixel, hyperspectral data have a large amount of spectral bands that cover a wide 

spectral range. Each pixel in a hyperspectral data cube contains spectral information 

about a large number of adjacent bands. These can be displayed as a continuous 

spectral curve. The additional spectral information can be used to improve the  

spatial assessment of LAI and other plant parameters [Gray and Song, 2012;  

Haboudane et al., 2004; Lee et al., 2004]. 

In recent years, two complementary groups of approaches have been developed for 

LAI estimation from remote sensing data. On the one hand, the inversion of physically 

based radiative transfer modelling approaches provides the possibility to retrieve  

LAI and other vegetation parameters [Bacour et al., 2002; Fang et al., 2003;  
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Jacquemoud et al., 1995; Jacquemoud et al., 1996; Vohland and Jarmer, 2008;  

Weiss et al., 2000]. On the other hand, empirical-statistical regression models  

(e.g. partial least squares regression (PLSR), support vector regression (SVR), random 

forest regression (RFR), neural net regression (NNR), or multivariate adaptive 

regression splines (MARS)) can be calibrated with in situ LAI measurements to 

establish a relation to reflectance spectra or spectral vegetation indices (VIs)  

[Curran, 1994; Duchemin et al., 2006; Koppe et al., 2010; Thenkabail et al., 2000; 

Viña et al., 2011]. 

While physically based radiative transfer models do not need in situ data about a 

biophysical/-chemical target variable for model calibration, they are very complex 

(several input variables are needed) and the ill-posed nature of model inversion can re-

sult in an incorrect parameter prediction [Atzberger, 2004; Darvishzadeh et al., 2011]. 

In contrast to radiative transfer models, the calibration of the empirical-statistical 

models requires field measurements of the target variable as a basic prerequisite. 

However, the number of biophysical/-chemical parameter samples measured during a 

field campaign is often too low for allowing an independent validation of an empirical-

statistical model [Cohen et al., 2003]. In this case, cross-validation is widely  

used as an appropriate method for determining the quality of a regression model  

[e.g., Efron, 1983; Oredein et al., 2011; Snee, 1977; Steyerberg et al., 2001]. 

Nevertheless, a well-known problem of empirical-statistical models is overfitting. This 

phenomenon can be defined as an error that occurs in regression modelling  

when a model is too closely fit to a limited number of samples [Babyak, 2004;  

Hawkins, 2004]. Consequently, transferring a cross-validated model developed from 

data of one agricultural field to another field with the same crop yields mostly limited 

success and often leads to inaccurate results. 

In addition to the methodology on which the parameter retrieval is based, the 

properties of remote sensing data play an important role. There is no uniform definition 

of hyperspectral data. According to Baltsavias [2002], a hyperspectral sensor must 

have at least 10 spectral bands (usually more than 100 bands) and a narrow bandwidth 

of typically a few tens of nanometres or less for visible light (VIS) and near infrared 

(NIR). Field spectroradiometers (e.g., ASD Field Spec III (ASD Inc., USA), SVC HR-

1024 (Spectra Vista Corporation, USA)) and hyperspectral airborne sensors (e.g., 

HySpex (Norsk Elektro Optikk, Norway), aisaDUAL (Specim Ltd., Finland)) 

correspond to this definition. EO-1 Hyperion also meets these criteria and 

demonstrates the potential of hyperspectral imaging technology for earth observation. 

Additionally, in the near future, new hyperspectral satellite missions, such as the 

Environmental Mapping and Analysis Program (EnMAP) or the Hyperspectral 

Infrared Imager (HyspIRI) scheduled for launch in 2018 and 2022, respectively, will 

continue hyperspectral earth observation and provide data with improved qualities 
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with respect to signal-to-noise ratio (SNR) and spatial coverage [Guanter et al., 2015; 

Lee et al., 2015]. 

Unfortunately, from a statistical point of view, large parts of hyperspectral data are 

redundant because adjacent spectral bands are highly correlated [Ghosh et al., 2013; 

Sohaib et al., 2012]. For this reason, different feature selection techniques have  

been developed in remote sensing or adapted from other scientific fields  

[Bolón-Canedo et al., 2013; Guyot et al., 1992; Saeys et al., 2007] in order to reduce 

the high dimensionality of hyperspectral data and simultaneously identify the most 

important features with the highest explained variance regarding the target variable 

(e.g., LAI). In the context of supervised classification and regression methods, these 

feature selection techniques can be distinguished in filter, wrapper and embedded 

methods [Guyot et al., 1992; Saeys et al., 2007]. In the field of remote sensing, several 

feature selection techniques have been developed and applied to classification 

problems, using hyperspectral field and image data [e.g., Bajwa et al., 2004; 

Benediktsson et al., 1995; Thenkabail et al., 2004]. Additionally, numerous studies 

have been conducted using feature selection techniques for the optimization of 

regression models to predict the LAI [e.g., Darvishzadeh et al., 2011; Li et al., 2014]. 

Furthermore, the spatial resolution (ground sampling distance (GSD)) of 

hyperspectral sensors, operating from various spatial scales, is completely different. 

While field spectroradiometers can only measure small footprints of an investigated 

crop canopy, airborne sensors acquire image data of entire fields, while satellites even 

provide information of complete agricultural regions. Due to their GSD, hyperspectral 

data from field spectroradiometers and airborne sensors were often used for precision 

agricultural applications in the past [e.g., Haboudane et al., 2004; Jarmer, 2013; 

Tanaka et al., 2015; Zarco-Tejada et al., 2005]. In contrast, EO-1 Hyperion, the only 

available scientific hyperspectral satellite system, has a GSD of 30 m, which means 

that a single pixel represents an averaged spectral reflectance signature of a large area 

[Chen et al., 2014; Mayumi and Iwasaki, 2011]. This is especially a problem in 

precision agriculture for monitoring the small-scale intra-field variability of crops, 

which is important to identify areas affected by stress, diseases and physical damage 

[Johnson, 2014; Moran et al., 1997; Pinter et al., 2003]. Additionally, remote sensing 

data with high spatial and spectral resolution covering large areas are highly demanded 

because they serve as a vital information source for applying an adapted field treatment 

on a sub-field scale and, thus, facilitate a more precise management practice  

(e.g., fertilization [Baret et al., 2006] and irrigation [Vuolo et al., 2015]). To overcome 

the limitation of the medium spatial resolution of current and future hyperspectral 

satellite sensors, pan-sharpening is an adequate method to enhance the GSD of 

acquired image data. In this context, hyperspectral image data of lower spatial 

resolution, which contain numerous spectral bands, are fused with a panchromatic 

image of higher spatial resolution [Ehlers et al., 2010; Pohl and van Genderen, 2015;  
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Zhang, 2012]. Numerous studies dealing with pan-sharpening, however, were mostly 

not focused on a specific application, but rather on the development and validation of 

new algorithms. Until now, only a few studies focusing on precision agriculture have 

been conducted using fused multispectral satellite data [Amorós-López et al., 2013; 

Zurita-Milla et al., 2008] or merged multi- and hyperspectral information acquired 

from different platforms (satellites, aircraft, unmanned aerial vehicles (UAVs)) 

[Delalieux et al., 2014; Gevaert et al., 2014] to assess crop conditions. 

The presented work in this thesis is based on data collected within the framework 

of the HyLand research project, ‘Hyperspectral remote sensing for the assessment of 

crop and soil parameters in precision farming and yield estimation’. HyLand was a 

preparation project for the hyperspectral German satellite mission EnMAP and funded 

by the German Aerospace Center (DLR) with financial resources from the Federal 

Ministry of Economics and Technology. During the project, wheat crops were mainly 

investigated. Consequently, the different methods of LAI assessment and spatial 

predictions of LAI from airborne and spaceborne data are focused on wheat. 

The described approaches and associated problems in the process of estimating the 

LAI from hyperspectral data lead to the following three primary research questions 

and ensuing tasks: 

 

 

1. What potential do empirical-statistical regression models have for an accurate 

prediction of crop LAI based on hyperspectral data? 

This topic has been examined by Siegmann and Jarmer [2015]1. The following 

concrete tasks were defined to answer the question: 

• Compare different empirical-statistical regression algorithms in terms of 

model suitability and performance for the retrieval of LAI. 

• Investigate the influence of the measured LAI range and type of applied 

validation technique on regression model accuracy and transferability to 

unknown data. 

 

                                                            
1 Siegmann, B. and Jarmer, T. (2015): Comparison of different regression models and validation 

techniques for the assessment of wheat leaf area index from hyperspectral data. International Journal 
of Remote Sensing, 36(18):4519–4534. 
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2. What spectral resolution and location of spectral bands are necessary to enable 

a precise estimation of the parameter LAI?  

This question is part of a research paper that is not yet published. To answer the 

question, two main tasks were formulated: 

• Use a feature selection approach to identify the spectral bands and/or 

regions that are most important to derive the parameter LAI. 

• Compare LAI prediction accuracies of empirical-statistical regression 

models using full and reduced spectral resolution. 

3. What influence does the ground sampling distance of remote sensing images have 

on the spatial assessment of the LAI and the associated regression model 

validation? 

A study conducted by Siegmann et al. [2015]2 investigated this issue in detail. In 

this regard, the following two tasks were defined to answer the question: 

• Examine the spatial LAI prediction accuracy based on the hyperspectral 

data of different spatial resolutions (aisaDUAL and EnMAP) when using 

in situ LAI measurements of small plots as the basis for validation. 

• Investigate aggregation and pan-sharpening as two different methods to 

obtain a more valid LAI prediction based on medium-resolution EnMAP 

data. 

 

 

  

                                                            
2 Siegmann, B., Jarmer, T., Beyer, F. and Ehlers, M. (2015). The potential of pan-sharpened EnMAP 

data for the assessment of wheat LAI. Remote Sensing, 7(10):12737–12762. 
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2 Remote Sensing of Vegetation 

Remote sensing systems used for vegetation studies are generally divided into 

active systems, such as LIDAR (light detection and ranging) and radar sensors (radio 

detection and ranging), and passive systems, such as optically reflective and thermal 

sensors. While active systems emit a signal and record the amount of radiant flux 

scattered back towards the sensor, passive systems record the naturally occurring 

electromagnetic radiation, which is reflected or emitted from the surface  

[Jensen, 2000]. Since this thesis is focused on optically reflective remote sensing in 

the wavelength range from 350 to 2,500 nm, the first part of the chapter provides a 

detailed description of how light interacts with a single leaf, as well as with an entire 

canopy, in this spectral domain. The second part of the chapter then summarizes the 

different methods of in situ and remote sensing LAI retrieval, which have been 

developed in the previous decades. 
  

2.1 Optical Properties of Plants 

Plants need solar energy to carry out photosynthesis. For that reason, the interaction 

of plants with incident radiant energy is of the utmost importance in many fields of 

science (e.g., botany, ecology, agronomy) [Gates et al., 1965]. The understanding of 

the radiative properties of plant canopies is essential in order to interpret the 

reflectance signal acquired by remote sensing sensors. The obtained reflectance signal 

provides meaningful information on plant chemical ingredients, plant structure and, 

therefore, information on the current condition of plants [Jones and Vaughan, 2010]. 

This is especially important in agriculture, where this information is needed in order 

to apply an adapted treatment of fields [Moran et al., 1997]. The following subchapters 

first describe the radiative properties of plant leaves, and then the interactions of 

radiation with a plant canopy is presented in detail. 
 

2.1.1 Properties on Leaf Level 

The theory of how light interacts with a leaf was originally described by Willstätter 

and Stoll [1918]. Based on this work, Allen et al. [1969] and Gates et al. [1965], for 

example, conducted experiments that proved Willstätter and Stoll’s theory 

[Kneubühler, 2002]. Incident radiation, which impinges on a green leaf, is either 

reflected, absorbed or transmitted. Figure 2.1 (left) shows the spectral reflectance 

curve of a green leaf simulated with the radiative transfer model (RTM) PROSPECT 

[Jacquemoud and Baret, 1990]. The same reflectance curve is illustrated in  

Figure 2.1 (right), together with the simulated transmittance and absorbance spectra. 

The three components are closely interrelated and correspond to the total amount of 

incident radiation. While the transmittance spectrum has approximately the same 
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shape as the reflectance spectrum, the absorbance spectrum is the opposite of the other 

two [Atzberger, 1998].  

 

 
Figure 2.1: Reflectance spectra of a green leaf simulated with PROSPECT (left); reflectance 
and corresponding transmittance spectrum of a green leaf simulated with PROSPECT (right). 

 

Leaf optical properties can be described as a function of leaf structure, concentration 

of biochemical ingredients and water content [Curran, 1989; Fourty et al., 1996;  

Gates et al., 1965; Kneubühler, 2002]. Leaf surface reflectance is mainly an interaction 

of diffuse reflection processes, which are caused by multiple scattering of radiation 

within the leaf structure [Grant, 1987]. As reported by Jones and Vaughan [2010], only  

  

 
Figure 2.2: Schematic cross-section of a leaf and the paths of radiation within the leaf for 

visible (VIS) and near infrared (NIR) light [Guyot, 1990]. 
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a small part of the incident radiation is reflected at the upper cuticle surface. The rest 

of the radiation, which penetrates the leaf surface, is either transmitted, absorbed by 

chlorophyll and/or other pigments, or scattered at air-water interfaces at the surface of 

cells. The scattering at the interfaces is called volume scattering. It is mainly 

influenced by the different values of refraction indices for the different components 

within a leaf. Figure 2.2 shows a schematic cross-section of a leaf and the paths of 

radiation within the leaf. 

In the visible part of the spectrum (VIS: 350–700 nm), the reflectance is dominated 

by the light absorption of the leaf pigments. Since this spectral domain is very 

important for the process of photosynthesis, it is also known as the range of 

photosynthetically active radiation (PAR) [Alados et al., 1996]. In contrast, the near 

infrared (NIR: 700–1,300 nm) and the short wave infrared part of the spectrum  

(SWIR: 1,300–2,500) are controlled by the internal leaf structure. However, in the 

SWIR region of the spectrum, the shape of the curve is additionally influenced by the 

leaf water content, which strongly attenuates the reflectance signal [Grant, 1987].  

 

Visible Light (350–700 nm) 

The reflection of a green leaf in the visible domain is mainly dominated by the 

absorption of the foliar pigments, chlorophyll and carotenoids [Gitelson et al., 2002]. 

Figure 2.3 illustrates the absorbance of different plant pigments in the wavelength 

range of 350–750 nm. Chlorophyll a and b have strong absorption peaks in the blue 

and the red region of the electromagnetic spectrum. The absorptions of chlorophyll a 

(peak at 430 nm) and b (peak at 440 nm) in the blue region overlap with the absorptions 

of the carotenoids. In the red region of the spectrum, only chlorophyll a (peak at  

660 nm) and b (peak at 640 nm) absorb incident radiation [Curran, 1989; Sims and 

Gamon, 2002]. Although chlorophyll a and b are the most important plant pigments in 

order to perform photosynthesis, carotenoids consisting of carotenes and xanthophylls 

also play an important role. They contribute energy converted from absorbed radiation 

to photosynthesis and protect the reaction centre in case of an energy oversupply 

[Blackburn, 2007]. Since the chlorophyll concentration of green leaves is, on average, 

ten times higher than that of carotenoids, the effect of carotenoids on the reflectance 

spectrum is masked by that of the chlorophylls [Verdebout et al., 1994].  

From 670 to 780 nm, the reflectance distinctly increases because of leaf internal 

scattering processes and the decrease of chlorophyll absorption [Curran et al., 1991]. 

This region is called the red edge. According to Collins [1978] and Horler et al. [1983], 

the shift of the red edge inflection point (REIP), which is the point of maximum slope 

in the red-infrared transition area, is related to the chlorophyll concentration of leaves 

from different species (e.g., winter wheat and sorghum). 
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Figure 2.3: Absorption spectra of the major plant pigments [Blackburn, 2007]. 

 

Near Infrared (700–1,300) 

The near infrared portion of a leaf spectrum is also known as the infrared plateau 

because of the high reflectance and transmittance level. In this spectral region, incident 

radiation penetrates deeper into the leaf and, therefore, provides more information 

about the leaf structure [Verdebout et al., 1994]. The reflectance increases with the 

increase of intercellular air spaces because of scattering effects caused by the transition 

of light from hydrated cell walls to intercellular air spaces with different refractive 

indices [Gausman and Allen, 1973]. The NIR region is also characterized by minor 

water absorption features located near 960 and 1,200 nm, which vary significantly in 

shape and depth, and may be related to both leaf cellular arrangement and hydration 

state [Wessman, 1990]. In the phenological development, the NIR reflectance level of 

a leaf is almost constant until the growth stage of maturation is reached. When leaves 

begin to senesce, cell water content decreases and cell geometry changes. 

Consequently, the NIR reflectance greatly increases. The same effect can be observed 

under drought stress conditions [Sinclair et al., 1971; Verdebout et al., 1994].   

 

Short Wave Infrared (1,300–2,500) 

The SWIR domain of leaf reflectance is mainly influenced by the absorption of 

water and other foliar biochemical components. The dominant water absorption 

features are located around 1,450, 1,900 and 2,500 nm [Verdebout et al., 1994]. 

Allen [1969] introduced the term equivalent water thickness (EWT) using the plate 

model to measure the influence of leaf water content and intercellular air spaces on 

leaf reflectance and transmittance [Kneubühler, 2002; Seelig et al., 2008]. This 
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concept has been used as the basis for the most popular leaf radiative transfer model 

PROSPECT, which was developed by Jacquemoud and Baret [1990]. 

A decrease in leaf water content leads to a distinct increase in SWIR reflectance. 

Thus, small absorption features, caused by other leaf components (e.g., cellulose, 

lignin, starch), become visible, having previously been masked by water. A detection 

of these absorption features with fresh leaves is difficult because water represents  

60–90 % of the fresh weight of leaves [Verdebout et al., 1994]. A detailed overview 

of absorption features related to leaf chemical ingredients was presented by  

Curran [1989].  
 

2.1.2 Properties on Canopy Level 

To understand the complex process of canopy radiative transfer, it is insufficient 

simply to apply the reflectance properties of a single leaf on canopy scale. Rather, 

canopy reflectance is a composition of the optical properties of different plant 

components (e.g., leaf, stem), distribution of plants within the canopy, soil 

background, illumination conditions and viewing geometry [Hurcom et al., 1996]. 

According to Asner [1998] and Kneubühler [2002], the canopy reflectance (ρcanopy) 

can be described as follows: 
 

ρcanopy = f (geometry, plant biochemistry, soil reflectance, structure) [2.1]

 

The parameter geometry describes the relation between the observer viewing direction 

(observer zenith and azimuth angle) and solar illumination conditions (sun zenith and 

azimuth angle) (Figure 2.4). The specific reflectance and transmittance signals of 

different plant components are partly a result of their chemical ingredients and forms  

 

 
Figure 2.4: Geometry of solar irradiance and observer viewing direction. 
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the second parameter biochemistry (cf. Chapter 2.1.1). The third parameter soil 

reflectance is determined by the mineral and moisture properties of the soil underneath 

the canopy. Especially in canopies with low vegetation cover, soil reflectance has a 

considerable influence on canopy reflectance. Figure 2.5 shows different reflectance 

spectra simulated with the canopy RTM PROSAIL [Jacquemoud et al., 1995]. For all 

simulated spectra, the same input parameter combinations were used; only the LAI 

was changed stepwise from zero (bare soil) to seven. It can clearly be seen that the soil 

reflectance has a major impact on the reflectance spectrum of canopies with very low 

LAI (LAI < 1). The structure, as the last parameter, can be described as a composition 

of different sub-parameters. This includes LAI, horizontal distribution of the plants, 

leaf angle distribution and plant height. 

 

 

Figure 2.5: Canopy reflectance spectra simulated with PROSAIL. All the spectral curves were 
simulated with the same input parameter combinations, except LAI, which was varied stepwise 
from zero (bare soil) to seven. 

 

The LAI, which is one of the most important structural parameters, was first defined 

by Watson [1947] as the ratio of the total one-sided leaf surface area per unit soil 

surface area (m2 leaf area/m2 soil area). Since several horizontal leaf layers can cover 

a defined soil area, LAI values greater than one are possible. Figure 2.6 schematically 

illustrates a soil area covered with one fully closed leaf layer (LAI = 1) and three fully 

closed leaf layers (LAI = 3), respectively. Together with the leaf angle distribution, 

the LAI strongly controls the relationship between leaf and canopy reflectance  

[Asner, 1998]. Thus, the LAI acts as a key variable to draw conclusions about leaf 

biochemical properties from canopy reflectance [Verdebout et al., 1994] and is, 

therefore, an important parameter in ecological and agricultural modelling [Broge and 
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Mortensen, 2002; Moran et al., 1995]. As reported by Asner [1998], a changing LAI 

has the greatest impact on the NIR and the least on the VIS domain of canopy 

reflectance. This finding is consistent with the simulated canopy reflectance spectra 

presented in Figure 2.5. While distinct differences in the reflectance signal of canopies 

with low LAI (LAI < 3) can be detected in the VIS, NIR and SWIR region, only the 

NIR region is additionally sensitive to small LAI changes in canopies with higher LAI 

(LAI ≥ 3). For that reason, the NIR range of canopy reflectance is best suited to derive 

information about leaf biochemical properties. However, it is often very difficult to 

distinguish between biochemical and structural effects in the NIR domain. One 

example in this regard is the widening and deepening of the chlorophyll absorption 

feature in the red region of the spectrum, which is caused by either a higher LAI or the 

increase in chlorophyll content. Both lead to a shift in the red edge inflection point, 

which causes a change of the NIR reflectance [Horler et al., 1983; Kneubühler, 2002].   

 

 
 
Figure 2.6: Schematic representation of a defined soil area completely covered with one leaf 
layer (left) and three leaf layers (right) (based on Stovall [2012]. 

 

In addition to the parameters mentioned in Equation 2.1, surface roughness, shading 

and gaps must be considered as important factors influencing canopy reflectance 

[Asam, 2014; Roujean and Lacaze, 2002]. Consequently, a vegetation canopy cannot 

be regarded as a Lambertian surface, which reflects incident radiation uniformly in all 

directions. On the contrary, a canopy is an anisotropic surface whose reflectance 

properties vary strongly with wavelength, illumination angle and viewing angle. The 

bidirectional reflectance distribution function (BRDF) provides a mathematical 

description of canopy reflectance for every wavelength when taking into account the 

current illumination condition and viewing angles [Lillesand et al., 2004]. The BRDF 

is defined under the assumption of infinitesimal solid angles for the solar incident 
irradiance from one direction (θs, ϕs) and the reflected radiance in one direction  

(θo, ϕo). However, it cannot be determined under realistic conditions in the field 

because irradiance does not consist of a single direction and remote sensing sensors do 
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not integrate over infinitesimal but large solid viewing angles [Asam, 2014; 

Schaepman-Strub et al., 2006]. For that reason, the BRDF can be simplified to the 

bidirectional reflectance factor (BRF). The BRF is the ratio of the radiance reflected 

from a surface in a specific direction and the radiance reflected from a lossless 

Lambertian reference (reflectance standard of known reflectivity) measured under 

identical illumination geometry [Sandmeier and Itten, 1999]. 
 

2.2 Retrieval Methods for LAI Assessment 

Since the LAI of wheat is the focus of this thesis, the various methods for measuring 

this parameter will be described in more detail. These methods differ in the type of 

measurement methodology and the requirements of the technical equipment  

[Bréda, 2003; Zheng and Moskal, 2009]. Different methods exist to measure the LAI 

directly or indirectly in the field. Alternatively, plant leaves can be harvested and the 

LAI determination is made under laboratory conditions afterwards. Furthermore, 

remote sensing data acquired from proximal, airborne or spaceborne sensors offer the 

possibility for a spatial LAI assessment [Gray and Song, 2012; Lee et al., 2004]. The 

following sections first provide an overview of the various methods of in situ LAI 

measurements, after which different approaches for deriving the LAI from remote 

sensing data are presented.  

 

 
Figure 2.7: Overview of in situ LAI assessment methods (based on Bréda [2003] and 
Jonckheere et al. [2004]). 
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2.2.1 In Situ Assessment of LAI3 

In situ methods for measuring the LAI can be distinguished in direct or indirect 

techniques. The direct methods are further subdivided in destructive (harvesting) and 

non-destructive (non-harvesting) methods. While direct methods enable LAI deter-

mination in a direct way, indirect assessment is based on the derivation of LAI from 

more easily measurable parameters [Gower et al., 1999; Jonckheere et al., 2004]. The 

different in situ LAI assessment methods are summarized in Figure 2.7. 
 

Direct LAI Assessment 

For the direct assessment of leaf area, the investigated plants need to be physically 

touched in some manner [Asam, 2014]. On the one hand, direct measurements can be 

made with portable leaf area meters in the field (e.g., LI-3000C (LI-COR Inc., USA), 

CI-201 (Delta-T Devices Ltd., UK)). This has the advantage that the leaves do not 

have to be harvested and thus, a monitoring of LAI changes over longer periods is 

possible. On the other hand, several direct measuring methods have been developed in 

recent years, which require a destructive sampling of leaves. In this context, one 

method is to fix harvested leaves on a flat surface and measure their area manually or 

take photos of known sizes and derive the leaf area using image classification 

techniques. Moreover, different stationary leaf area meters are available (e.g., LI-3100 

(LI-COR Inc., USA), CI-251 (Delta-T Devices Ltd., UK)), which enable LAI 

assessment of a large number of harvested leaves in laboratory after a field campaign. 

Such devices consist of a fluorescent light source and a transparent conveyer belt with 

constant speed on which the leaves are placed. A well-calibrated scanning camera, 

mounted below the moving conveyor belt, acquires image data of the leaves and a 

small processing unit determines their leaf area [Jonckheere et al., 2004]. The LI-3100 

stationary leaf area meter, for example, which is depicted in Figure 2.8, falls into this 

category of devices. 

 

 

Figure 2.8: LI-COR LI-3100 stationary leaf area meter [LI-COR Inc., 2016a]. 

                                                            
3 Parts of this section have previously been published by Bauer et al. [2014]. 
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Since only direct methods are directly related to foliage and therefore allow the 

most precise LAI determination, they were used as references for the calibration and 

evaluation of indirect methods in numerous studies [e.g., Wilhelm et al., 2000]. 

Moreover, direct measurements provide additional information on the shape, size and 

number of leaves [Bréda, 2003]. 
 

Indirect LAI Assessment 

Although direct LAI assessment usually provides more precise results, data 

acquisition is time-consuming, expensive and, therefore, often limited to small areas  

[Bréda, 2003; Jonckheere et al., 2004]. For that reason, several optical indirect 

methods have been developed in recent years, which require no physical contact with 

the leaves. Using these methods, the LAI is derived from measurements of light 

transmission through the canopy [Jonckheere et al., 2004].  

Hemispherical photography belongs to the category of indirect measurement 

methods (Figure 2.7). A fisheye lens mounted on an upward-pointing digital camera 

is used to acquire photos from beneath the canopy. The subsequent analysis of the 

photos with appropriate image processing software enables the assessment of gap size 

distribution (exploiting the contrast between leaves and sky) and the determination of 

the LAI [Jonckheere et al., 2004]. Although hemispherical photography can be used 

for all types of canopies [Rich, 1990], this technique is mainly applied in forestry, 

where the assessment of incoming radiation above the canopy is difficult to measure 

[Welles, 1990]. 

In agricultural studies, which are mainly focused on low and regular canopies, the 

LAI is often calculated with devices that simply compare measurements of incoming 

light above and below the canopy [Jonckheere et al., 2004]. Four commercial devices 

are available, which measure the fraction of transmitted radiation that passes through 

a plant canopy. They all work on the same principle. The smaller the amount of 

radiation transmitted by the leaves, the higher is the LAI, and vice versa. In this 

context, Figure 2.9 illustrates the effect of multiple leaf layers on canopy reflectance 

and transmittance. Since the optical properties of each leaf are different, the portion of 

reflected and transmitted radiation are described by the factors a to z in the figure. 

The LAI-2000 and its successor, the LAI-2200 (LI-COR Inc., USA), as well as the 

DEMON (CSIRO, Australia), determine the LAI from gap fraction measurements 

made for different incident angles in the blue domain of VIS. Although measurements 

collected with the SunScan (Delta-T Devices Ltd., UK) and the AccuPAR (Decagon 

Devices, USA) are based on gap fraction analysis as well, these devices use the entire 

PAR range for LAI determination. According to their measurement principle, the four 

devices also belong to the group of indirect measurement methods (Figure 2.7). 

Additionally, several studies in recent years have been conducted using low-cost 
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sensor nodes [e.g., Bauer et al., 2016a; Bauer et al., 2014; Qu and Sun, 2010] or 

smartphones [Bauer et al., 2016b] equipped with ambient light sensors, which also 

facilitate robust measurements of gap fraction and LAI. Given that, in this thesis, the 

in situ LAI measurements of wheat were collected with an LAI-2000 and a SunScan 

device, the function and the design of both instruments will be explained in the 

subsequent section. 

 

 
Figure 2.9: Effect of multiple-leaf layers on canopy reflectance and transmittance (modified 
according to Spengler [2013] and Hoffer [1978]). (I=incoming radiation, R=reflected 
radiation, T=transmitted radiation, a…z=portion of reflected and transmitted radiation) 

 

The typical behaviour of light transmittance of plants in the visible spectrum is 

leveraged by both devices for indirect LAI determination. The Beer-Lambert law 

establishes the theoretical basis for deriving LAI from the quantitative interaction 

between solar radiation and the plant canopy [Jonckheere et al., 2004]. According to 

this law, there is a logarithmic dependency between the LAI and the solar radiance that 

is partially absorbed by the canopy, which can be described by the following equation: 

 

 B = Ae-CLAI. [2.2]

 

Here, A is the light intensity observed above the canopy and B is the corresponding 

sensor reading below the canopy. Furthermore, the constant term C is the light 

extinction coefficient, which is given by the quantity of the specific light absorption 
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property of leaves from different plant species. In addition, the leaf orientation angle 

and solar altitude have a distinct impact on this coefficient. Thus, it is both cultivar- 

and site-specific [Jonckheere et al., 2004; Qu and Sun, 2010]. By exponential 

transformation of Equation 2.2, the Monsi-Saeki model [Monsi and Saeki, 2005] 

applies the Beer-Lambert law for LAI estimation. This results in: 
ܫܣܮ  = − 1

C
 log + ൬B

A
൰ , [2.3]

 

where 
B

A
 is the transmittance used by the indirect methodology and gathered by the 

LAI-2000 and the SunScan device. Since these devices often do not take the scattered 

radiation from leaf surfaces into account, it is recommended that the light intensity is 

measured under fully diffused sky conditions [Kobayashi et al., 2013]. An inherent 

weakness in LAI estimation, based on this approach, is that it does not distinguish 

photosynthetically active leaves from other plant elements such as branches and stems 

[Jonckheere et al., 2004]. Therefore, the term effective LAI (LAIeff) is occasionally 

used to describe the measured values [Chen and Black, 1992; Garrigues et al., 2008]. 

Since this effect is less pronounced in homogenous plant canopies, such as wheat  

[Richter et al., 2011], only the term LAI is used in the rest of this thesis. 

The LAI-2000 consists of a measurement wand, which is attached to a control unit. 

At the end of the measurement wand, there is a fisheye optical sensor  

(Figure 2.10 (left)). The sensor’s field of view is divided into five rings with different 

centre angles. To ensure accurate LAI measurements, an optical filter is installed, 

which rejects any incoming radiation above 490 nm. Applying the filter results in a 

distinct improvement in the contrast between sky and leaf material because, in the blue 

range of VIS green leaves have a very low reflectance, such that they are detected as 

black bodies, which results in a more accurate LAI assessment [Garrigues et al., 2008; 

LI-COR Inc., 2016b]. 

The SunScan device enables the measurement of incident (above the canopy) and 

transmitted PAR (below the canopy). It consists of a probe for below canopy readings 

equipped with 64 equidistant calibrated photodiodes (Figure 2.10 (right)). The 

measurements of the photodiodes can be stored as single values or as an averaged 

reading. It is also possible to record the incident PAR above the canopy with the probe. 

In this measuring mode, the SunScan works in a similar way to the LAI-2000. 

Alternatively, above canopy readings can be stored with a beam fraction sensor, which 

is connected to the probe. This allows the simultaneous assessment of below canopy 

readings with the probe, as well as above canopy measurements of direct and diffuse 

incident radiation [Bréda, 2003]. 
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Figure 2.10: LAI-2000 (left) [LI-COR Inc., 2016c] and SunScan (right) [Delta-T Devices Ltd., 
2016]. 

 

2.2.2 Remote Sensing Assessment of LAI 

The estimation of biochemical and -physical (e.g., LAI) parameters from remote 

sensing data is a very important topic in modern agriculture. For that reason, in the last 

45 years, numerous methods have been developed or adapted from other fields of 

science, in order to derive information about the current condition of plants from the 

spectral reflectance acquired by proximal and remote sensing sensors. These methods 

can be divided into two main groups: empirical-statistical regression and physically 

based methods [Dorigo et al., 2007]. 

 
Empirical-Statistical Regression Methods 

Empirical-statistical regression methods are used to relate in situ measured leaf or 

canopy parameters to remote sensing data [Cohen et al., 2003; Dorigo et al., 2007]. 

They can be distinguished in parametric and non-parametric approaches. Figure 2.13 

provides an overview about the different categories of empirical-statistical regression 

methods used in the field of remote sensing. 

Parametric regression methods describe the relationship between a plant parameter 

and a single spectral observation [Verrelst et al., 2015]. Most of the parametric 

approaches are based on broadband VIs, which can be further subdivided into ratio 

and orthogonal indices [Broge and Mortensen, 2002]. The most famous ratio index is 

the normalized difference vegetation index (NDVI) [Rouse et al., 1974], which has 

been used in several studies to predict the LAI [e.g., Broge and Mortensen, 2002;  

Elvidge and Chen, 1995]. In contrast to ratio indices, orthogonal indices, such as the 

perpendicular vegetation index (PVI) [Richardson et al., 1982] or the soil-adjusted 

vegetation index (SAVI) [Huete, 1988], also consider soil background effects. As 

such, they have also been widely applied in the past to derive LAI and other plant para-
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meters from remote sensing data [e.g., Darvishzadeh et al., 2008a; Wu et al., 2007]. 

With the increasing availability of hyperspectral remote sensing data in recent years, 

several narrow band vegetation indices have been explored using the information 

contained in narrow absorption features [Dorigo et al., 2007]. Along with ratio indices, 

such as the chlorophyll absorption ratio index (CARI) and the water index (WI), which 

were mainly developed to retrieve chlorophyll [Haboudane et al., 2002] and water 

content [Peñuelas et al., 1997], new categories of indices based on spectral shape  

(e.g., derivative green vegetation index (DGVI)), REIP and spectral continuum 

measures (e.g., continuum removed chlorophyll well depth (CRCWD)) have  

been introduced for the assessment of LAI [e.g., Broge and Leblanc, 2001;  

Clevers et al., 2002; Elvidge and Chen, 1995]. 

 

 
Figure 2.11: Overview of the different empirical-statistical regression methods (modified 
according to Verreslt [2015]). 

 

VIs are often sensitive to more than one plant parameter, meaning that it is difficult 

to identify which parameter change causes a change in the VI [Dorigo et al., 2007; 

Govaerts et al., 1999]. Furthermore, the relationship between numerous VIs and the 

LAI is non-linear, and especially for wheat crops, the problem of saturation from 

moderate to high values of LAI (LAI > 3) has been observed in different studies 

[Nguy-Robertson et al., 2014; Serrano et al., 2000]. This effect is illustrated in  

Figure 2.12, which shows the relationship between the LAI of wheat crops and the two 

indices, NDVI and SAVI.  

 



Remote Sensing of Vegetation  21 

 

 

NDVI SAVI 

Figure 2.12: Scatter plots of measured LAI vs. calculated NDVI (left) and SAVI (right) from 
field spectral measurements of 124 wheat plots (unpublished data). 

 

In the case of using VIs to predict plant parameters, linear regression analysis is 

normally applied to model the relationship between the dependent variable  

(e.g., LAI) and the independent variable (VI). In general, however, VIs are based on 

only two or three wavelengths, while the rest of the spectral data space provided by 

multi- or hyperspectral sensors remains unconsidered. For that reason, non-parametric 

regression methods can be used because they allow for the inclusion of numerous 

spectral bands to predict a plant parameter. Approaches belonging to this group make 

use of a calibration and validation phase for model optimization [Dorigo et al., 2007; 

Verrelst et al., 2015]. Figure 2.13 schematically depicts the basic concept of this type 

of regression methods. In Figure 2.11 it is also shown that non-parametric regression 

approaches are further subdivided into linear and non-linear methods. 

Multiple linear regression (MLR) can be regarded as the simplest non-parametric 

linear regression method. Unfortunately, in MLR, the independent variables (spectral 

bands) are assumed to be uncorrelated. This is normally not the case and can result in 

the problem of regression model overfitting [Dorigo et al., 2007; Yoder and Pettigrew-

Crosby, 1995]. 

In this context, principle components analysis (PCA) is an appropriate linear 

method reducing the high dimensional data space into a small set of uncorrelated 

components, which contain most of the spectral information [Cohen et al., 2003]. The 

uncorrelated principle components can be used to substitute the often highly correlated 

independent variables X (spectral bands) in MLR analysis. This method is called 

principle components regression (PCR) and is able to handle the problem of 

multicollinearity [Geladi and Kowalski, 1986]. However, PCR has two major 
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disadvantages. Firstly, as the generated components are dependent on the dataset, they 

are not transferable to other image data. Secondly, the coefficients (scores) of the PCA 

components are generated without regard for the relationship between the components 

and the dependent variable [Cohen et al., 2003]. Although MLR and PCR have some 

weaknesses, they have been used in several studies to retrieve plant parameters from 

remote sensing data [e.g., Atzberger et al., 2010; Darvishzadeh et al., 2008b]. 

 

 
Figure 2.13: Schematic concept of the empirical-statistical approach. Feature selection is an 
optional step (modified according to Asam [2014] and Dorigo [2007]). 

 

Taking into account these weaknesses, PLSR was developed, which can be 

regarded as an extension of MLR. In contrast to MLR, however, PLSR is less 

restrictive because model building is possible with fewer dependent (e.g., observations 

of plant parameters) than independent variables (spectral bands) [Dorigo et al., 2007]. 

PLSR and PCR are based on a similar function principle. However, while PCR only 

uses the PCA scores of the independent variables (spectral bands), PLSR takes into 

account the scores of both the independent (spectral bands) and the dependent 

variable(s) (e.g., plant parameter(s)) by relating them with each other  

[Verrelst et al., 2015]. Since PLSR is one of the non-parametric linear empirical-

statistical regression approaches applied in this thesis, a detailed overview of this 

method is provided in Chapter 6.1.1. 

Along with non-parametric linear regression models, several non-parametric non-

linear regression techniques have been developed and adapted to remote sensing 

images in order to retrieve plant parameters. These methods are based on non-linear 

transformation procedures and have the advantage that they can handle non-linear 

relationships of image features without knowledge about the underlying data 
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distribution [Verrelst et al., 2015]. Non-linear regression methods are also known as 

machine learning techniques. According to Verrelst et al. [2015], they can be 

subdivided into four categories: Bayesian networks, artificial neural networks, 

decision tree learning and kernel methods. 

Regression algorithms from all four groups have been used to predict the LAI from 

remote sensing images in recent years. Kalacska et al. [2005] and Mustafa et al. [2012], 

for example, successfully applied Bayesian networks to estimate the LAI from  

Landsat 7 and MODIS data. Moreover, artificial neural networks, and their suitability 

for the retrieval of LAI from multi- and hyperspectral data, have been investigated by 

Verrelst et al. [2012] and Jensen et al. [2012]. RFR is the main representative of 

decision tree learning methods for regression applications. This technique is also 

applied in this thesis in order to estimate the LAI of winter wheat. Therefore, a detailed 

description of the functionality of RFR is presented in Chapter 6.1.3. Kernel-based 

methods form the last group of machine learning regression techniques. This group 

includes algorithms using kernel functions to quantify similarities between input 

samples of a data set [Shawe-Taylor and Cristianini, 2004; Verrelst et al., 2015]. As 

SVR is the most widely known method in this group, it has been chosen to predict the 

LAI from spectral reflectance data in this thesis. Chapter 6.1.2 provides a detailed 

description of SVR. 

In general, empirical-statistical regression methods are widely used in remote 

sensing to retrieve plant parameters because these techniques are simple to apply and 

computationally inexpensive in most cases [Verrelst et al., 2015]. However, the 

estimation of LAI based on VIs, mainly using the red and NIR spectral range, has often 

led to poor results (cf. Figure 2.12) because of saturation effects in canopies with 

higher vegetation density [Hansen and Schjoerring, 2003]. In contrast, non-parametric 

empirical-statistical regression techniques explore the complete spectral information, 

such that they are also referred to as full-spectrum methods [Verrelst et al., 2015].  

Although regression algorithms can deal with the high dimensionality of the 

hyperspectral data, many studies have reported that a preselection of features (spectral 

bands) can improve the regression model quality and prediction capability  

[Renzullo et al., 2006; Viscarra-Rossel and Lark, 2009]. The training procedure of 

some non-parametric empirical-statistical regression algorithms is already based on 

feature selection techniques (e.g., RFR [Breiman, 2001], MARS [Friedman, 1991]). 

These algorithms are known as embedded methods [Hilario and Kalousis, 2008]. 

Additionally, wrapper methods can be applied to identify the most important features 

with the highest explained variance regarding a target variable (e.g., LAI)  

[Guyot et al., 1992; Saeys et al., 2007]. Wrapper methods, such as recursive feature 

elimination [Guyon et al., 2002] or genetic algorithm [Holland, 1992], conduct the 

search for the most appropriate variables by a repeated calibration and validation of a 

previously selected regression algorithm (e.g., SVR) with varying subsets of all 



Remote Sensing of Vegetation  24 

 

 

features. In the end, the subset that is chosen is the one that provided the highest 

regression model quality [Kuhn and Johnson, 2013]. In contrast to embedded and 

wrapper methods, feature selection based on filter methods is completely decoupled 

from the process of regression model building. As shown in Figure 2.13, a filter 

method can be optionally applied prior to regression model calibration to select 

important spectral bands. In this thesis, the RReliefF filter method [Robnik-Sikonja 

and Kononenko, 1997, 2003] was used prior to regression analysis in order to identify 

the most important spectral bands for the estimation of LAI. The theoretical 

background of this method is given in Chapter 6.2.1. 

Alongside the numerous benefits that empirical-statistical regression methods 

provide for the retrieval of LAI and other plant parameters, there are also some 

drawbacks. To establish an empirical-statistical relationship between remote sensing 

data and a plant parameter of interest, it is mandatory to collect field measurements of 

the investigated parameter for the purpose of model calibration and validation. 

Furthermore, the parameter of interest should be measured for different stages of plant 

development in order to ensure the coverage of a wide range of possible values. This 

is important for the regression model quality and prediction capability [Sims and 

Gamon, 2002]. However, field measurement campaigns are very time-consuming and 

expensive, such that in situ data sampling is often limited to small areas [Bréda, 2003]. 

This often leads to the calibration of regression models, which are only representative 

for the investigated area at a certain time. Therefore, the transferability of locally 

developed regression models was often criticized for their poor results when applied 

to data acquired under varying canopy (e.g., phenological stage, canopy geometry) and 

external (e.g., local soil properties, atmospheric conditions, sun and view geometry) 

conditions [Baret and Guyot, 1991; Dorigo et al., 2007]. To minimize these effects, 

several VIs and regression algorithms use transformation techniques. Nevertheless, a 

robust evaluation of an empirical-statistical relationship is mandatory to test  

the predictive performance of developed models over independent data sets  

[Dorigo et al., 2007]. In this context, a recent study of Verrelst et al. [2013] 

demonstrated the reliable transfer of a locally calibrated non-linear regression model 

to other regions (independent data sets), which led to promising LAI prediction results. 

Nonetheless, the authors of the study also pointed out that this field of science needs 

to be further investigated in the future. 

 
Physically Based Methods 

Beside empirical-statistical regression methods, physically based RTMs form the 

second group of techniques used in the retrieval of plant parameters from remote 

sensing data. They enable to calculate top-of-canopy reflectance based on physical 

laws by simulating the interactions between solar radiation and the elements forming 
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the canopy [Dorigo et al., 2007]. In general, RTMs can be distinguished in models 

simulating leaf optical properties and models simulating canopy reflectance. 

Alongside plate models, such as PROSPECT [Jacquemoud and Baret, 1990], 

LEAFMOD [Ganapol et al., 1998] and DLM [Stuckens et al., 2009], which enable the 

determination of foliage leaf reflectance and transmittance, several other models have 

been introduced to explain the radiative transfer at leaf level. These include LIBERTY 

[Dawson et al., 1998], a compact spherical particle model especially developed to 

simulate the reflectance of conifer needles, N-flux models, such as the 4-flux model 

presented by Richter and Fukshansky [1996], stochastic models, such as SLOP  

[Maier et al., 1999], and ray-tracing models, such as RAYTRAN [Govaerts and 

Verstraete, 1998]. 

In addition to leaf optical models, numerous approaches have been developed, 

which describe the radiative transfer of entire canopies. According to Goel [1988], 

these models can be divided into four categories: turbid medium models (e.g., SAIL 

[Verhoef, 1984]), geometrical models (e.g., 4-scales [Chen and Leblanc, 1997]), 

hybrid models (e.g., TRIM [Goel and Grier, 1988]) and computer simulation models 

(e.g., drat [Lewis, 1999]). A comprehensive comparison and evaluation of a large 

number of canopy RTMs was conducted by the RAdiation transfer Model Inter-

comparison (RAMI) initiative at the Joint Research Centre (JRC) of the European 

Union [Widlowski et al., 2013]. 

While geometric and hybrid models were mainly used in forest canopies to 

calculate the radiative transfer, turbid medium models were often applied to simulate 

the top-of-canopy reflectance of agricultural crops [e.g., Bacour et al., 2002]. The 

PROSAIL model [Jacquemoud et al., 1995], which is a combination of the 

PROSPECT leaf optical model and the SAIL canopy reflectance model, is the most 

popular model in this category and a valuable tool for the characterization of horizon-

tally homogeneous and dense leafy canopies, such as crops stands [Asam, 2014; 

Schlerf and Atzberger, 2006]. Furthermore, ray-tracing methods are increasingly 

applied to calculate the canopy reflectance of cereals [e.g., Kuester et al., 2014]. These 

techniques, however, are very computationally intensive, due to the complex 

description of how light photons interact with simulated canopies consisting of 

detailed three-dimensional models of single plants. 

For the retrieval of plant parameters, canopy RTMs have to be inverted. Inversion 

techniques can be divided into numerical optimization, lookup table (LUT) and hybrid 

methods [Dorigo et al., 2007; Verrelst et al., 2015]. Numerical optimization can be 

regarded as the classical inversion approach and has been applied in many studies 

[e.g., Jacquemoud et al., 1995; Zarco-Tejada et al., 2001]. In this context, a cost 

function is used to find the best fit between the simulated and the measured reflectance 

by iteratively running the canopy RTM with different sets of input variables  

[Dorigo et al., 2007]. The LUT approach is based on using an RTM in forward mode 
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to generate thousands, or even millions, of spectra for a large number of input 

parameter combinations. Subsequently, measured spectra are compared to those in the 

LUT using a cost function. The input parameters of the LUT spectrum with the closest 

match to the measured spectrum can be regarded as the ultimate solution in the 

inversion process [Dorigo et al., 2007; Verrelst et al., 2015]. The LUT approach is the 

most widely used inversion technique and has been applied in different studies to 

estimate the LAI of wheat [e.g., Richter et al., 2011; Rivera et al., 2013]. A schematic 

concept of the LUT approach to estimate plant parameters from remote sensing data is 

illustrated in Figure 2.14. Along with numerical optimization and the LUT approach, 

hybrid methods are increasingly used. These techniques combine RTM modelling with 

non-linear regression algorithms. At first, similar to the LUT approach, a RTM is used 

in the forward mode to build up a LUT. Subsequently, a non-linear regression model 

is trained with all available data from the LUT. As the last step, the trained model can 

be applied to measured spectral data in order to predict vegetation parameters  

[Verrelst et al., 2015]. Several studies have been carried out successfully using NNR 

[Atzberger, 2010; Vohland and Jarmer, 2008] as an inversion technique to predict the 

LAI. Moreover, initial results also show the potential of SVR [Durbha et al., 2007] and 

RFR [Doktor et al., 2014] as suitable inversion techniques. 

Physically based models and their inversion enable a sound retrieval of plant 

parameters from remote sensing data using the entire spectrum. The functioning of the 

forward mode of RTMs is based on the relationships between input variables and the 

spectral reflectance. This physical relationship is well understood. In contrast, the 

process of model inversion is less transparent because the performance of the inversion 

for different plant parameters strongly depends on the applied cost function  

[Rivera et al., 2013; Verrelst et al., 2015]. Moreover, some input parameters of RTMs 

are very difficult to measure during field campaigns. One of the input parameters of 

the PROSAIL model, for example, is the average leaf inclination angle. This parameter 

can vary greatly within an investigated canopy, even if it consists of a single variety. 

However, the leaf inclination angle is important to describe the leaf angle distribution, 

which on the other hand strongly controls the relationship between leaf and canopy 

reflectance [Asner, 1998]. In general, prior knowledge of the range and distribution of 

the different RTM input parameters can be very useful to limit the number of possible 

parameter combinations in a LUT. Thus, the problem of ill-posedness, which describes 

that different parameter combinations can result in identical simulated reflectance 

spectra, can be minimized in the process of model inversion [Dorigo et al., 2007]. In 

summary, reflectance modelling is a suitable tool for the prediction of LAI from 

reflectance data. The user, however, needs a great deal of expert knowledge for RTM 

parameterization and optimization in order to achieve accurate results. 
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Figure 2.14: Schematic concept of the RTM inversion using the LUT approach (adapted from 
Verrelst [2015]). 
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3 Remote Sensing in Precision Agriculture 

According to Moran [1997], precision agriculture is an agricultural management 

system designed to target crop and soil inputs, according to within-field requirements 

to optimize profitability and protect the environment. The first precision agricultural 

practices were developed in the USA in the 1980s [Gebbers and Adamchuk, 2010; 

Robert, 2002]. Since the 1990s these practices have also been adopted and 

commercially used in Europe, Australia, Canada, and Japan [Mulla, 2013]. 

The main objective of precision agriculture is to apply the right treatment to 

agricultural fields in the right place at the right time. For that reason, different 

geospatial technologies, including GIS, GNSS and remote sensing, are nowadays 

extensively utilized as information sources and bases for decision-making  

[Ge et al., 2011; Gebbers and Adamchuk, 2010]. In particular, proximal and remote 

sensing technologies are increasingly important spatio-temporal information sources 

in precision agriculture for identifying variation in soil and crop conditions on a sub-

field scale. In recent years, various remote sensing sensors have been developed and 

applied in agriculture, which use different wavelength regions ranging from the 

ultraviolet to microwave portions of the electromagnetic spectrum [Mulla, 2013]. 

The first section of this chapter provides a short overview of the history of optically 

reflective remote sensing in precision agriculture. In the second section, the necessary 

requirements of precision agriculture on remote sensing sensors and the current 

limitations of earth-observing technologies will be addressed. 
 

3.1 Contribution of Remote Sensing to Precision Agriculture 

Since the early 1970s, remote sensing data were used for a wide range of 

applications in agriculture, such as crop yield assessment [e.g., Serrano et al., 2000], 

crop nutrient and water stress detection [e.g., Bastiaanssen et al., 2000], infestations of 

weeds [e.g., Thorp and Tian, 2004], detection of insects and plant diseases  

[e.g., Seelan et al., 2003], and estimation of soil properties [e.g., Stevens et al., 2010]. 

The first study using satellite data acquired by Landsat 1, with the aim of classifying 

agricultural fields, was conducted by Bauer and Cipra in 1973. Since then, numerous 

optical satellites have been launched, which had/have different characteristics 

regarding their spatial, spectral and temporal resolution [Mulla, 2013]. An overview 

of former and current commercial and scientific optically reflective satellite systems, 

which have been used for agricultural applications, is given in Table 3.1. Apart from 

the study of Bauer and Cipra [1973], as well as other investigations focused on 

classification issues, the first precision agricultural application was published by  

Bhatti et al. [1991], who used Landsat 5 data to identify spatial patterns in soil organic 

matter content. In subsequent years, multispectral Landsat 5, SPOT 1 and IRS 1A 
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Table 3.1: Selection of former, current and future optically reflective remote sensing satellites 

used for conventional and precision agriculture (modified according to Mulla [2013] and 

Whelan and Taylor [2013]). (PA=precision agriculture, L=low, M=medium, H=high) 

Satellite (year) 
Spatial 

resolution4 
Spectral 

resolution5 
Return 

frequency6 
Suitability 

for PA 

Landsat 1/2/3 (1972/75/78) 79 m 4 bands 18 d L 

Landsat 5 (1984) 30 m 6 bands 16 d M 

SPOT 1/2/3 (1986/90/93) 20 m 3 bands 2-6 d M 

IRS 1A (1988) 72 m 4 bands 22 d M 

SPOT 4 (1998) 20 m 4 bands 2–6 d M 

IKONOS (1999) 3.2 m 5 bands 3 d H 

Landsat 7(1999) 30 m 7 bands 16 d M 

EO-1 Hyperion (2000) 30 m 220 bands 16 d H 

EO-1 ALI (2000) 30 m 10 bands 16 d M 

QuickBird (2001) 2.62 m 5 bands 1–4 d H 

PROBA/CHRIS (2001) 18–36 m 19 bands 7 d H 

SPOT 5 (2002) 10–20 m 5 bands 1-4 d M 

RapidEye (2008) 6.5 m 5 bands 1 d H 

GeoEye-1 (2008) 1.6 m 6 bands 2–8 d H 

WorldView-2 (2009) 1.84 m 8 bands 1.1 d H 

Pleiadis-1A/B (2011/12) 2 m 5 bands 1 d H 

SPOT 6/7 (2012/14) 6 m 5 bands 1 d H 

Landsat 8 (2013) 30 m 9 bands 16 d M 

SkySat-1/2 (2013/14) 2 m 5 bands 2 d H 

WorldView-3 (2014) 1.24–3.7 m 17 bands 1 d H 

Sentinel-2A (2015) 10–60 m 13 bands 10 d M 

Sentinel-2B (2017)7 10–60 m 13 bands 10 d M 

EnMAP (2018)7 30 m 242 bands 27 d H 

HyspIRI (2022)7 30 m 214 bands 16 d H 

                                                            
4 spatial resolution (GSD) of multi-/super-/hyperspectral sensors 
5 number of bands including panchromatic band when available  
6 off-nadir revisit when possible 
7 planned launch 



Remote Sensing in Precision Agriculture  30 

 

 

data were used in several studies to develop and support precision agricultural 

applications. Although data from these satellite systems covered large areas with 

spectral bands in the VIS, NIR and SWIR domain of the spectrum that enabled 

vegetation studies, the return frequency (except SPOT 1) and the spatial resolution 

(20–30 m) were only suitable for use in precision agriculture to a limited extent  

[Mulla, 2013]. 

As a consequence, satellites, such as IKONOS and QuickBird, were developed and 

launched in 1999 and 2001, respectively, which better met the demands of precision 

agriculture in terms of spatial (GSD < 5 m) and temporal resolution (< 5 days). Image 

data of both satellites were extensively used, for example, to map crop yield variability 

on a sub-field scale [Enclona et al., 2004; Yang et al., 2006]. The launch of the five-

satellite constellation known as RapidEye in 2008 was another milestone in satellite-

based precision agriculture. RapidEye contains five spectral bands (including a novel 

red edge band) and has a spatial resolution of 6.5 m. Given the five identical satellites 

involved, it is possible to record data of any location on the globe on a daily basis. 

Therefore, RapidEye images are very well suited to investigations that require high 

spatio-temporal resolution, such as the monitoring of important plant parameters in 

agriculture with the aim of optimizing crop production [Kross et al., 2015]. 

The latest generation of spatial very high-resolution multispectral satellites has 

GSDs of 2 m (Pleiadis-1A/B, SkySat-1/2) or even higher (GeoEye-1, WorldView-2, 

WorldView-3) and revisit cycles of one to two days. These systems provide a high 

potential for precision agricultural applications, such as site-specific irrigation or 

fertilization [e.g., de la Fuente et al., 2013]. However, these satellites are all operated 

by private companies, meaning that the image data acquisition can be very expensive, 

which is especially the case for the monitoring of large areas or multitemporal analysis 

in precision agriculture, where several scenes are required. For that reason, moderate 

resolution satellite images (e.g., Landsat 8) are still frequently used for agricultural 

applications because they are less expensive or even freely accessible [Johnson, 2014]. 

However, due to its spatial resolution of 30 m, Landsat 8 has only a limited value to 

precision agriculture. In contrast, the recently launched Sentinel-2 system provides 

images with a finer resolution (four spectral bands with 10 m and six bands with  

20 m GSD). Moreover, Sentinel-2A data are free of charge and the recorded images 

cover large areas; meanwhile, in several preliminary studies based on simulated image 

data, the potential of Sentinel-2 for precision agricultural applications was demon-

strated [e.g., Richter et al., 2011; Verrelst et al., 2012]. With the planned launch of 

Sentinel-2B (identical to Sentinel-2A) in 2017, image data of the same location on the 

globe will be available every five days. Hence, Sentinel-2 data will also have great 

potential for multitemporal analysis in the future. 

In addition to multispectral satellite remote sensing, hyperspectral image data have 

been used for a wide range of applications in precision agriculture. The majority of 
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previous studies are mostly based on hyperspectral image data acquired by airborne 

sensors. The first sensor of this category was AVIRIS in 1987, which was built by the 

Jet Propulsion Laboratory of NASA. In subsequent years, the sensor was further 

developed and AVIRIS image data were applied in different studies that were focussed 

on the estimation of plant parameters from crops [e.g., Jacquemoud et al., 1995;  

Lee et al., 2004]. Until today, several comparable sensors, such as HyMap (HyVista 

Corp., Australia), CASI (ITRES Research Ltd., Canada), aisaDUAL (Specim Ltd., 

Finland) or HySpex (Norsk Elektro Optikk, Norway), have also been developed and 

extensively used, for example, for yield prediction [e.g., Uno et al., 2005], canopy 

nitrogen assessment [e.g., Siegmann et al., 2013] or monitoring of several crop 

parameters [e.g., Jarmer, 2013]. Furthermore, an increasing number of low weight 

multi- and hyperspectral sensors is now available, which can be mounted on UAVs. 

Although these systems can only cover small areas, UAVs are flexibly usable and their 

operation is relatively inexpensive. Initial studies have already proved their suitability 

for precision agriculture [e.g.,  

Aasen et al., 2015; Zarco-Tejada et al., 2012].  

Beside the large number of existing airborne hyperspectral systems, EO-1 Hyperion 

is currently the only satellite system in operation that provides spatial medium-

resolution hyperspectral data free of charge. A study on the evaluation of  

EO-1 Hyperion data by Miglani et al. [2009] concluded that the data have a lot of 

potential for investigating agricultural crops. This potential was previously 

demonstrated, for example, through the retrieval of wheat chlorophyll content  

[Bannari et al., 2008] and the estimation of rice yield [Datt et al., 2003]. In the near 

future, new hyperspectral satellite missions, such as EnMAP (planned launch in 2018) 

and HyspIRI (planned launch in 2022), will continue hyperspectral earth observation. 

Both systems provide great potential for agricultural applications. In comparison to 

EO-1 Hyperion, however, EnMAP and HyspIRI data will have improved qualities with 

respect to SNR and spatial coverage [Guanter et al., 2015; Lee et al., 2015]. 
 

3.2 Requirements of Precision Agriculture on Remote Sensing  

From the precision agricultural perspective, different information is required in 

order to apply the right treatment of fields in the right place at the right time. In this 

context, remote sensing data serve as a vital source of information, which are still used 

for many agricultural applications. According to Whelan and Taylor [2013], the 

benefit of using remote sensing data, however, depends on the following three essential 

properties of sensor systems, which are vital to their use in precision agriculture: 

 
• temporal resolution 

• spectral resolution coverage 
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• spatial resolution 

The temporal resolution is very important in order to enable the monitoring of crops 

over the growing season. Temporal frequency has been improved dramatically from 

Landsat 1 (18 d) to modern satellite systems (e.g., RapidEye, Worldview-3), which 

have revisit cycles of one day. Moreover, the increasing availability of remote sensing 

image data from airborne platforms (UAVs and aircraft) additionally allow for the 

collection of remote sensing data at multiple times, which is highly in demand in 

precision agriculture in order to conduct near real-time soil, crop and pest management 

[Mulla, 2013]. Alongside the higher flexibility of airborne data acquisition to obtain 

image data at a given time, it is also possible to collect data under cloudy conditions, 

which is one of the major drawbacks of optically reflective satellite remote sensing, 

especially in Central Europe. Together with temporal resolution, the turnaround time 

of acquired image data is very important for time-critical applications in precision 

agriculture. Regarding turnaround time, Moran [1997] refers to the time that the user 

has to wait for the desired, processed satellite or airborne data. This includes both the 

delivery time from acquisition to user and the processing time for conversion of raw 

data to information. However, modern processing chains and improved computational 

power enable a fast availability of processed satellite data shortly after data acquisition. 

ESA, for example, provides access to processed Sentinel-2 data (radiometrically and 

geometrically corrected) within a few hours after data recording. 

The spectral resolution of a remote sensing sensor is another important issue. Most 

optical sensors, which have been used for agricultural applications, are multispectral 

systems with three to ten spectral bands and a spectral coverage from 400 to 1,000 nm 

[Whelan and Taylor, 2013] (cf. Chapter 3.1). Some satellites have additional bands in 

the SWIR region (e.g., Landsat 8) that are better suited to characterize soils or retrieve 

the water content of plants. Multispectral images are also called broadband images 

because each band covers a certain spectral range (e.g., blue, green, red, NIR) with a 

bandwidth of several hundred nanometres [Yao et al., 2012]. Some optically reflective 

satellites of the latest generation are classified into the new group of superspectral 

sensors (e.g., Sentinel-2, Worldview-3). These are systems having more than ten and 

less than 50 spectral bands with narrower bandwidths compared to multispectral 

sensors [Herrmann et al., 2011; Malin, 2007]. According to Stoorvogel et al. [2015], 

satellites belonging to this group will provide the opportunity for estimating 

biophysical properties of crops with improved accuracy. Moreover, the increasing 

number of the already mentioned hyperspectral airborne sensors, and the availability 

of hyperspectral satellites with improved data quality in the near future, offer/will offer 

the capability of sensing a wide variety of soil and crop characteristics simultaneously 

[Mulla, 2013]. Compared to superspectral sensors, hyperspectral sensors often have 

more than 100 bands and an even narrower bandwidth of typically a few tens of 

nanometres or less [Baltsavias, 2002]. Thus, they provide the potential for a much 
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more detailed extraction of plant and soil information, including parameters such as 

soil moisture status, soil organic matter, nutrients, chlorophyll, carotenoids, cellulose, 

LAI and crop biomass [Mulla, 2013; Yao et al., 2012]. 

 Although hyperspectral data contain information in a large number of spectral 

bands, EO-1 Hyperion and near-future hyperspectral satellite sensors have/will have a 

relatively small spatial coverage and a long revisit cycle compared to current multi- 

and superspectral systems. The spatial resolution, which Whelan and Taylor [2013] 

identified as another important characteristic, can also be regarded as a drawback of 

hyperspectral satellite sensors for applications in precision agriculture. Unfortunately, 

the combination of a good SNR for a spatial high-resolution instrument is extremely 

difficult from a technical point of view, especially when dealing with hyperspectrality. 

Therefore, the spatial resolution of hyperspectral satellites is currently limited to 30 m 

GSD, which allows every narrow spectral band to gather enough light and in turn 

ensure a high SNR [Villafranca et al., 2012]. 

For most applications in precision agriculture, however, a higher spatial resolution 

than 30 m is required to enable an adapted treatment on a sub-field scale. According 

to Mulla [2013], the necessary spatial resolution depends on the type of application. 

While variable rate application of fertiliser and variable rate irrigation are possible 

using data with 5–10 m spatial resolution, other applications, such as the estimation of 

spatial patterns in crop yield and variable rate spraying of herbicides for spot weed 

control, require distinctly higher resolution image data with GSDs of 3 m or even 

higher. Newer satellites, such as Worldview-3, Pleiadis or RapidEye, for example, 

offer this high-resolution images but data acquisition is expensive and, therefore, often 

only profitable for large commercial farms [Mulla, 2013]. For this reason, freely 

available medium-resolution satellite images (e.g., Landsat 8, EO-1 ALI, Sentinel-2,  

EO-1 Hyperion) are still used for agricultural applications. Beside the insufficient 

spatial resolution of these sensors for most precision agricultural applications, it is also 

very difficult to validate derived parameter maps based on these images. Satellites such 

as Landsat 8 or EO-1 Hyperion have a pixel size of 900 m². This makes it very 

complicated or even impossible to collect in situ parameter values (e.g., LAI, biomass, 

chlorophyll content) that are representative for such large areas. To overcome the 

limitation of insufficient spatial resolution, pan-sharpening can be used as an adequate 

method to enhance the GSD of these data sets [Whelan and Taylor, 2013]. In this 

context, many multispectral satellites also have a single panchromatic band, which 

provides a finer spatial resolution in comparison to their multispectral bands.  

SPOT 6/7, EO-1 ALI and Landsat 8, for example, have panchromatic bands covering 

the VIS range with spatial resolutions of 1.5, 10 and 15 m, respectively. These higher 

resolution data can be used to increase the spatial resolution of lower resolution multi- 

or hyperspectral image data, while preserving their spectral characteristics at the same 

time [Ehlers et al., 2010; Pohl and van Genderen, 2015]. On the one hand, the 
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improved spatial resolution as the result of pan-sharpening increases the image data 

suitability for precision agricultural applications; on the other hand, the validation of 

derived parameter maps will be facilitated because only smaller areas must be sampled 

during field campaigns, which are spatially representative for the smaller pixel size 

after pan-sharpening. In this context, the Ehlers Fusion, a pan-sharpening technique 

combining colour space transformation with filtering in the frequency domain, was 

applied in this thesis in order to investigate the potential of pan-sharpened 

hyperspectral EnMAP data for the precise spatial retrieval of LAI. An overview about 

the methodological background of this pan-sharpening technique is presented in 

Chapter 6.3.1. 

In general, the selection of suitable optically reflective image data largely depends 

on the requirements of their specific use in agriculture. For that reason, Whelan and 

Taylor [2013] provide a checklist of sensor specifications, which should be considered 

when choosing image data: 

 
• temporal resolution 

• spectral resolution and coverage 

• spatial resolution 

• area captured in the image 

• availability and timing of delivery 

• price of image data and required processing 

 
In this regard, the overview of available satellites and their corresponding 

characteristics, which are presented in Table 3.1, can help to select data with suitable 

spatial, spectral and temporal resolution, which meet the actual requirements of a 

precision agricultural application. 
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4 Study Area8 

The study area (11°54′E, 51°47′N) is located in the eastern part of Germany in the 

federal state of Saxony-Anhalt and belongs to the Magdeburgian-Anhaltinian Börde 

(Figure 4.1). Within the study area, four wheat fields (A and B (2011) and C and D 

(2012)) were investigated. The wheat fields are located on a plain between the city of 

Köthen in the east and the city of Bernburg in the west.  

 

 
Figure 4.1: Location of the study site in Germany (top left) and in Saxony-Anhalt (bottom 
left); the four investigated wheat fields (A–D) within the study site (right), background: digital 
topographic map on the scale of 1: 25,000 (TK 25), © GeoBasis-DE [LVermGeo LSA, 2015]. 

 

4.1 Geographical Aspects 

The entire area was formed during the last ice age from 10,000 years ago. At this 

time, the region was the preferred run-off area of the main local rivers (i.e., Elbe, Saale, 

Mulde, Weiße Elster), which accumulated Pleistocene sediments in the region. Later, 

during the Weichselian period, the area was covered by loess, such that the existing 

relief structures were nearly compensated [Schröder, 2000]. Today, the region is 

characterized by a slightly undulated plain. The altitude of the study site varies 

between 65 and 88 m above sea level. While Field C and Field D are relatively flat 

with an average altitude of 70 m, Field A and Field B show differences in altitude up 

to 4 m and 7 m, respectively (Figure 4.2 a)). 

                                                            
8 Parts of this chapter have previously been published by Siegmann and Jarmer [2015] and  

Siegmann et al. [2015]. 
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The area is covered by a loess layer up to 1.2 m deep. Chernozems, in conjunction 

with Cambisols and Luvisols (Figure 4.2 b)), represent the predominant soil type 

characterized by highly diverse soil properties, resulting in a fine-scale pattern of soil 

texture and organic matter. The soils from the study site have an average quality 

(Ackerzahl (in German)) of about 85 and, therefore, belong to the most fertile soils in 

Germany [Schröder, 2000]. 

 

 
Figure 4.2: a) Digital elevation model of the study site (based on SRTM) with a spatial 
resolution of 30 m [NASA JPL, 2013]. b) Soil map of the study site (based on BÜK 200) on 
the scale of 1:200,000 [LGBA, 2015]. Both maps are underlaid by the digital topographic map 
on a scale of 1:25,000 (TK 25), © GeoBasis-DE [LVermGeo LSA, 2015]. 

Since the area is situated in the rain shadow of the Harz Mountains, it is distinctly 

dry with 500 mm of mean annual precipitation. The mean annual temperature is 9°C 

(Figure 4.3 a)). Due to less pronounced differences in the relief structure, the entire 

region has similar climatic conditions. In comparison to the long-term average, the 

winter of the 2010/11 growing season was relatively cold and wet (Figure 4.3 b)). This 

was followed by a period of less precipitation in spring 2011, leading to drought stress 

symptoms within the observed wheat fields. In contrast, the summer was characterized 

by a lot of rain, which is less advantageous for the harvest that is normally conducted 

in late July or early August (Figure 4.3 c)). In general, the weather conditions of the 

2011/12 growing season matched more closely to the long-term temperature and 

precipitation profile. Although late winter and early spring were again a little dry, the 

months of May, June and July brought much more rain and, thus, guaranteed decent 

growth conditions (Figure 4.3 d)).  
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Figure 4.3: Climate graphs of the weather station Bernburg/Saale (Nord): a) 1952-2014,  
b) 2010, c) 2011 and d) 2012 (based on data of DWD [2015]). 

 

4.2 Phenological Aspects of Winter Wheat 

Due to its high yield rates and its adaptability to different soil conditions, winter 

wheat is one of the most important cultivated plants [BLV, 2014]. For that reason,  

it is grown on more land area than any other commercial crop in the world  

[CIMMYT, 2015]. In Germany, wheat is also the most important agricultural plant 

(Figure 4.4). In particular, wheat in Saxony-Anhalt was cultivated on 330,000 ha in 

both 2011 and 2012. This corresponds to 60 % of the total cropping cultivation area of 

the entire federal state [SLS-A, 2015]. Thus, the proportion was a little higher than the 

national average (cf. Figure 4.4). 

The phenological development of winter wheat is typically described by different 

growth stages. In the past, several scales have been developed explaining the growth 

stages in detail (e.g., Feekes scale [Large, 1954], Zadoks scale [Zadoks et al., 1974] 

and the scale of Biologische Bundesanstalt, Bundessortenamt und CHemische 

Industrie (BBCH scale) [Meier, 2001]). Since it is the most frequently used scale in 

Europe, the BBCH scale was applied in this thesis to describe the growth stages of 

winter wheat. The BBCH scale consists of ten principle growth stages (Table 4.1). 

Each of the ten principle stages is further divided into ten secondary stages. During the  
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Figure 4.4: Cultivation area of relevant crops in Germany in 1965–2014 (modified according 
to Statista [2015] based on data of Statistisches Bundesamt [2015]). 

 

plant development, the different secondary stages normally overlap because of slightly 

different site conditions within a field. Therefore, only the principle stages are used to 

describe the winter wheat development in this thesis. In addition, Figure 4.5 illustrates 

computer-graphical models of a wheat plant in the different growth stages simulated 

by Spengler [2013]. 

 

Table 4.1: BBCH scale, principle growth stages of winter wheat [Meier, 2001]. 

Stage Principle stage 

0 Germination / sprouting / bud development 

1 Leaf development (main shoot) 

2 Formation of side shoots / tillering 

3 
Stem elongation or rosette growth /  
shoot development (main shoot) 

4 
Development of harvestable vegetative plant parts or vegetative 
propagated organs / booting (main shoot) 

5 Inflorescence emergence (main shoot) / heading 

6 Flowering (main shoot) 

7 Development of fruit 

8 Ripening or maturity of fruit and seed 

9 Senescence, beginning of dormancy 



Study Area   39 

 

 

 

 F
ig

u
re

 4
.5

: 
M

od
el

le
d 

w
he

at
 p

la
nt

s 
w

ith
 c

or
re

sp
on

di
ng

 B
B

C
H

 s
ta

ge
s 

(s
id

e 
vi

ew
 (

to
p)

, t
op

 v
ie

w
 (

do
w

n)
),

 (
m

od
if

ie
d 

ac
co

rd
in

g 
to

 S
pe

ng
le

r 
[2

01
3]

).
 



Study Area   40 

 

 

The sowing date of the investigated fields in 2011 (Field A and Field B) and 2012 

(Field C and Field D) was in late October in each of the previous years. Before winter, 

the wheat plants passed the first three development stages (i.e., germination, leaf 

development, tillering). Afterwards, winter wheat needs a period of cold temperatures 

between 0° and 5° C to initiate the flowering. This process is called vernalization, 

which is an important requirement for stem elongation in spring [BLV, 2014;  

Bowden et al., 2008]. Until summer, the plants passed growth stages four to eight  

(i.e., booting, heading, flowering, fruit development, ripening). Depending on the 

weather conditions, the harvest normally takes place in late July or at the beginning of 

August. Field A and Field B were harvested on 11 August 2011, and Field C and  

Field D on 10 August 2012.
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5 Data and Pre-processing9 

5.1 Field Data 

During two field campaigns in May 2011(7th–10th) and May 2012 (24th–25th), the 

four wheat fields (A–D) were investigated (Figure 5.1). The fields varied in size 

between 21 and 94 ha. A digital elevation model (DEM) and Landsat 5 data from 

previous years were used prior to the field campaigns to develop an adjusted strategy 

for allowing a representative sampling of the four investigated fields. In this regard, 

the topographic wetness index (TWI) [Beven and Kirkby, 1979] was calculated using 

the DEM to identify regions with different soil conditions. Different soil properties in 

turn led to spatially inhomogeneous growth conditions for plants. In total 124, winter 

wheat plots (each of size 50 × 50 cm), which were distributed across the investigated 

fields, were sampled. Measurements from 57 plots were collected in May 2011. One 

year later, in May 2012, 67 plots were sampled (see Table 5.1). For each plot, several 

plant parameters were determined and spectral reflectance measurements were 

collected. A detail description of field data acquisition is given in the next sections. 

 

 
Figure 5.1: The four investigated wheat fields (A–D) (red polygons) and the sampled plots 
within the fields (yellow dots), background: digital aerial photos of 2009 [MLU, 2009]. 

                                                            
9 Parts of this chapter have previously been published by Siegmann and Jarmer [2015] and 

Siegmann et al. [2015]. 
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Table 5.1: Investigated fields in 2011 and 2012, with information on field size and number of 
sampled plots. 

Field Size in ha Number of plots Year 

A 82 37 2011 
B 94 20 2011 
C 21 31 2012 
D 29 36 2012 

 

5.1.1 Wheat Parameter Measurements 

During the field campaigns, a standardized measurement procedure was applied to 

every plot. Firstly, the chlorophyll content (Cab) of ten different top leaves was 

measured with a SPAD 502 Chlorophyll Meter (Konica Minolta Holdings Inc., Japan) 

and plant height as well as the phenological stage of plant development (BBCH scale) 

were determined. Additionally, LAI measurements were acquired for every plot (see 

details below), the above-ground biomass fresh matter (FM) was harvested completely 

and soil samples of every plot were collected (only in 2012). After the field campaigns, 

the plant material was dried in an oven at 60° C for at least 24 hours, after which the 

carbon and nitrogen content of the above-ground biomass dry matter (DM) of each 

plot was determined in the laboratory. Furthermore, the weight difference of FM and 

DM enabled the determination of the plant water content (PWC) of every plot. 

Since LAI assessment is the focus of this thesis, its determination in the field should 

be described more in detail. The LAI of all plots was measured non-destructively with 

a SunScan device in 2011 and an LAI-2000 in 2012. For covering a wide range of 

values, the LAI was acquired for the two different phenological stages of stem 

elongation (BBCH 3) in 2011 and inflorescence emergence (BBCH 5) in 2012. In both 

years, the LAI was measured six times for each plot. Mean LAI values of each plot 

were calculated from all measurements of a plot within the simple standard deviation 

to exclude outliers from further investigations. 

The LAI of all measured wheat plots covered a range between a minimum of  

0.50 m2 m–2 and a maximum of 5.70 m2 m–2. The mean LAI of 2.80 m2 m–2 indicated 

that lower LAI values predominated. Due to the earlier stage of plant development 

(BBCH 3), the LAI values of the wheat plots in 2011 were relatively low, varying 

between 0.50 and 3.40 m2 m–2, with an average of 1.64 m2 m–2. In 2012, the measured 

plots had a higher LAI because plant development was already more advanced  

(BBCH 5) than in 2011. The range of measured LAI, with a minimum of 1.04 m2 m–2 

and a maximum of 5.70 m2 m–2, was relatively high, suggesting a more pronounced 

variability of the wheat stands in comparison to those measured in 2011. However, 

only three plots in 2012 had values less than 2.00 m2 m–2. Most of the LAI 

measurements varied between 2.50 and 5.70 m2 m–2. Thus, the values measured in both 
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years covered a different value range (Figure 5.2). Descriptive statistics of the winter 

wheat samples for the individual fields, the individual years and when taken all 

together are summarized in Table 5.2. 

 

 
Figure 5.2: Examples of sampled field plots and corresponding LAI values measured in 2011 
(left) and 2012 (right). 

 

Table 5.2: Descriptive statistics of winter wheat LAI values (in m2 m–2). 

Year Field n Min Max Mean SD Median 

2011 
Field A 37 0.50 3.40 1.54 0.71 1.50 
Field B 20 0.94 2.95 1.84 0.50 1.75 

Field A & B 57 0.50 3.40 1.64 0.66 1.58 

2012 
Field C 31 1.04 5.34 3.60 0.96 3.58 
Field D 36 1.91 5.70 3.94 0.82 3.97 

Field C & D 67 1.04 5.70 3.78 0.90 3.84 

2011 & 2012 Field A–D 124 0.50 5.70 2.80 1.33 2.78 

 

As one of the structural canopy parameters, LAI is correlated with other structural 

and biochemical canopy properties [Verrelst et al., 2015]. In this thesis, the calculated 

correlation coefficients between LAI and DM (r = 0.95, p < 0.01), as well as between 

LAI and PWC (r = 0.98, p < 0.01), illustrated a high statistical relationship between 

the measured variables. Although the correlation between LAI and Cab was less 

pronounced, the calculated coefficient of 0.73 (p < 0.01) also indicated a medium-high 

relationship. These correlations between LAI and other plant parameters have been 

reported in several scientific studies [Filella and Peñuelas, 1994; Stagakis et al., 2010].  
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5.1.2 Spectral Reflectance Measurements 

In parallel to the in situ plant parameter determination, reflectance measurements 

of each plot were collected with two ASD FieldSpec III spectroradiometers (Analytical 

Spectral Device Inc., USA) in 2011 and one ASD FieldSpec III, as well as one SVC 

HR-1024 spectroradiometer (Spectra Vista Corporation, USA) in 2012 (Figure 5.3). 

All instruments covered the spectral range 350–2,500 nm. The measurements were 

taken 1.4 m above the ground in the nadir view using 25° field of view (FOV) optics 

in the case of the ASD instruments, and a 14° FOV optic with the SVC instrument. All 

measurements were converted to absolute reflectance values using a reflectance 

standard of known reflectivity (Spectralon, Labsphere Inc., USA). Five spectral 

measurements were acquired per plot and averaged to one single measurement for 

further analysis. The exact position of each plot was located by a GPS device and 

photos were taken for documentation. Given the lower spectral resolution of the SVC 

HR-1024 spectral data (1,024 spectral bands), the measured ASD FieldSpec III 

spectral signatures (2,151 spectral bands) were resampled to the spectral resolution of 

the SVC HR-1024 data to make both data sets comparable. The bands in the region of 

atmospheric water absorption (1,350–1,480 nm and 1,780–1,990 nm) were deleted, 

leaving 867 spectral bands between 350 and 2,500 nm. 

 

 
Figure 5.3: In situ spectral reflectance measurements of plots with different LAI values. 
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5.2 Multi- and Hyperspectral Image Data 

5.2.1 Airborne Data 

In parallel to the field campaigns, image data of the test site were acquired by the 

airborne hyperspectral scanner aisaDUAL (Specim Ltd., Finland) for allowing spatial 

predictions of LAI of the observed fields. The aisaDUAL system is a hyperspectral 

push broom scanner consisting of the two separate sensors, namely, aisaEAGLE 

(VIS/NIR, 400–1,000 nm) and aisaHAWK (SWIR, 1,000–2,500 nm) (Figure 5.4). The 

recorded image data have a geometric resolution of 3 m with 367 spectral bands in the 

wavelength range 400–2,500 nm. 

 

 
Figure 5.4: Principle of a hyperspectral push broom scanner (left) (modified according to 
Jensen [2004]), and an aisaDUAL airborne system consisting of the two sensors, aisaEAGLE 
and aisaHawk (right) [Specim Ltd., 2015]. 

 

For data correction, the ROME destriping algorithm [Rogaß et al., 2011] was used 

to reduce miscalibration effects, which were present as deficient lines along the track 

in the images. Afterwards, an atmospheric correction was conducted using 

MODTRAN4 (MODerate resolution atmospheric TRANsmission) for transferring the 

radiance values of each pixel to reflectance data [Berk et al., 1998]. Additionally, an 

empirical line correction with spectral ground measurements of different dark and 

bright targets, which were collected at the study site during the time of aisaDUAL 

overpass, was necessary for removing spectral artefacts that were still in the data after 

atmospheric correction. 
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The geometric correction of the aisaDUAL data was realized with the software 

CaliGeo (Specim Ltd., Finland), while orthorectification was performed with the 

software ENVI (Exelis Inc., USA). Due to noise in the processed aisaDUAL spectra, 

an additional spectral binning was carried out on the data. Spectral binning is a 

commonly used method to reduce noise in hyperspectral data. In this context, adjacent 

spectral bands were summed up to one new single binned spectral band to enhance the 

SNR of the data [Dell’Endice et al., 2009]. Therefore, three adjacent spectral bands of 

the aisaDUAL data were averaged to generate one new spectral band. Thus, the 

number of spectral bands was reduced from 367 to 122 with improved SNR. 

Furthermore, 22 spectral bands in the range of the water vapour absorption bands 

(1,354–1,432 nm, 1,807–1,996 nm), as well as selected bands at the beginning and at 

the end of the aisaDUAL spectral range (400–430 nm, 2,390–2,500 nm) were deleted 

because of the high noise of the aisaDUAL system in these spectral regions, thereby 

leaving 98 spectral bands for further analysis. The different steps of aisaDUAL  

pre-processing are summarized in Figure 5.5. 
 

 
Figure 5.5: Overview of aisaDUAL pre-processing. 

Although image data of Field B were acquired in 2011, a geometric correction of 

the aisaDUAL flight stripe covering the field was not possible because of an outage of 

the GPS device connected to the airborne scanner. Figure 5.6 a) illustrates the 

uncorrected image of Field B, which cannot be subsequently used in the rest of this 

thesis. Additionally, aisaDUAL image data of Field C have not been considered for 

the spatial prediction of LAI because of numerous small-scale inhomogeneous growth 

conditions within the field. Consequently, the measured plant parameters (including 
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LAI) of many field plots were only representative for areas, which were smaller than 

an aisaDUAL pixel with a size of 9 m2. Moreover, two large areas within the field 

were not cultivated because of waterlogging at the time of sowing. Figure 5.6 b) shows 

one of these areas. 

 

 
Figure 5.6: a) Geometrically uncorrected aisaDUAL image data of Field B. b) Uncultivated 
area within Field C due to waterlogging during sowing. 

For that reason, Figure 5.7 a) only shows the processed aisaDUAL data subsets 

covering Field A (2011) and Field D (2012). In addition, two drainless hollows in the 

northern and south-eastern parts of Field A, which were investigated in 2011, were 

masked by building a decision tree based on NDVI because there was no vegetation 

cover as a result of waterlogging in early spring in that particular year.  

Furthermore, the 33 spectral bands covering the spectral range from 450 to 900 nm 

were averaged to generate panchromatic images (aisaDUAL pan) out of the aisaDUAL 

data (Figure 5.7 b)). This spectral range was chosen because it approximately 

corresponds to the spectral range of the panchromatic bands of current multispectral 

satellite systems. The generated panchromatic images were a requirement for the pan-

sharpening of the EnMAP data to be presented later in this thesis. 

 

5.2.2 Satellite Data 

Image data from the German hyperspectral satellite EnMAP (scheduled for launch 

in 2019) and the ESA superspectral satellite Sentinel-2 (launched on 23 June 2015) 

were simulated using the aisaDUAL data sets of the study site acquired in 2011 and 

2012. Table 5.3 provides an overview of their specifications. 

The simulations were conducted using the EnMAP end-to-end simulation tool 

(EeteS). The tool consists of a complete forward (EnMAP Scene Simulator) and  
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Table 5.3: Specifications of EnMAP [DLR, 2015] and Sentinel-2 [ESA, 2015]. 

 EnMAP Sentinel-2 

Spectral range 420–2,450 nm 443–2,190 nm 

Spectral bands 204 13 

Spectral sampling 
6.5 nm (420–1,000 nm) 

10 nm (900–2,450 nm) 

15–180 nm 

band dependent 

Signal-to-noise ratio 
500 (at 495 nm) 

150 (at 2,200 nm) 

154 (at 490 nm) 

100 (at 2,190 nm) 

Radiometric resolution 14 bit 12 bit 

Geometric  

resolution 
30 m  

10 m (4 bands) 

20 m (6 bands) 

60 m (3 bands) 

Swath width 30 km 290 km 

Orbit altitude 652 km 795 km 

Return frequency 27 days 10 days 

 

 as a detailed physical sensor model of EnMAP, which enables the simulation of 

realistic EnMAP data. A detailed description of EeteS is given in Segl et al. [2012] 

and Guanter et al. [2009]. Although the software was especially developed to simulate 

EnMAP data, the flexible modular structure of EeteS can easily be adapted to simulate 

image data from other sensors (e.g., Sentinel-2). Thus, EeteS offers the possibility to 

investigate the potential of future satellite missions for numerous applications and 

supports the development of new sensor designs [Segl et al., 2012]. 

As a result of the simulations, two EnMAP (Figure 5.7 c)) and two Sentinel-2 

(Figure 5.7 d)) data sets (one each in 2011 (Field A) and 2012 (Field D)) were 

generated, which have the specific sensor characteristics of EnMAP and Sentinel-2, 

respectively. Due to the different GSDs of the single spectral bands, which will be 

provided by Sentinel-2, only the four spectral bands with the highest spatial resolution 

of 10 m (band 2: 458–522 nm, band 3: 543–577 nm, band 4: 650–680 nm, band 8: 

785–900 nm [ESA, 2015]) were further used for pan-sharpening the EnMAP data. 

Comparable to the aisaDUAL data, panchromatic images (Sentinel-2 pan) for both 

years were created out of the Sentinel-2 scenes by averaging the four Sentinel-2 

spectral bands (Figure 5.7 e)). Afterwards, the simulated EnMAP and Sentinel-2 data 

sets were resized to match the spatial dimensions of the aisaDUAL data sets covering 

the investigated fields. Dependent on the GSD of the panchromatic image used for 

pan-sharpening, the EnMAP data had to be resampled (with cubic convolution) to the 

same spatial resolution (aisaDUAL pan: 3 m, Sentinel-2 pan: 10 m). 
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      Field A - 2011   Field D - 2012 Sensor properties 
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Figure 5.5: Image data of the investigated fields (Field A (2011) and Field D (2012); yellow 
polygons) with specific sensor characteristics. a) aisaDUAL data; b) panchromatic data sets 
based on aisaDUAL; c) simulated EnMAP data; d) simulated Sentinel-2 data and  
e) panchromatic data sets based on Sentinel-2 simulations.
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6 Methodology 

6.1 Empirical-Statistical Regression Models10 

Empirical-statistical regression models can be broadly divided into parametric 

methods and non-parametric methods (cf. Figure 2.11). While parametric regression 

approaches only use a limited number of spectral bands to calculate indices, for 

example, which are related to soil or plant parameters, non-parametric methods use the 

full spectrum. The latter group of regression methods consist of a learning phase based 

on training data to optimize the prediction model. During this phase, weights 

(coefficients) must be adjusted to minimize the estimation error of the target variable 

(e.g., LAI) [Verrelst et al., 2015]. 

The following sections provide a detailed description of the three non-parametric 

regression methods that are applied in this thesis. At first, the theoretical background 

of PLSR is presented, which belongs to the linear non-parametric group of models. 

Afterwards, an overview is given of the functional principals of the two non-linear 

non-parametric models, SVR and RFR. 

 

6.1.1 Partial Least Squares Regression 

PLSR was originally developed for data analysis in econometrics [Wold, 1985]. 

Later, the algorithm was transferred to chemical applications [Wold et al., 1987] and 

has also been used in remote sensing for many years to predict biophysical and 

biochemical parameters [e.g., Darvishzadeh et al., 2008b; Jarmer, 2013; Pu, 2012]. In 

this thesis, PLSR was performed with the R package ‘pls’ [Mevik and Wehrens, 2007]. 
The following explanation of the algorithm is based on a study of Geladi and  

Kowalski [1986], who provide a detailed description of PLSR. 

The starting point of PLSR involves two data matrices called the X and Y blocks. 

The X block has the dimension n × m, where n represents the number of samples  

(e.g., number of spectral reflectance measurements), while m is the number of 

independent variables (e.g., reflection values of a spectral curve at certain 

wavelengths). The Y block represents the dependent variable o (e.g., LAI) whose n 

values belong to the corresponding sample of the X block. Y has the dimension n × o. 

A prerequisite in PLSR modelling is that the variables of both blocks have to be mean-

centred before model calibration. 

In general, a PLSR model consists of an outer relation and an inner relation. While 

the outer relation describes the individual consideration of the X block and Y block, 

respectively, the inner relation defines the linkage of both blocks. The outer relation 

describes the X block in the form of its principle components: 

 

                                                            
10 Parts of this section have previously been published by Siegmann and Jarmer [2015]. 
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X = TPʹ + E = ∑ th ph
' + E [6.1]

 

where h can be regarded as a dummy index counting the used components, hereinafter 

referred to as latent variables (LV). T represents the scores matrix (th), p' the loadings 
matrix (ph

' ) and E is the residual of X. Figure 6.1 depicts how the scores and loadings 

are obtained by projecting X into vectors. 

 

 

Figure 6.1: Scores (t) and loadings (p') obtained by projecting X into vectors (modified 
according to Geladi and Kowalski [1986]) 

 

Replacing X by its principal components solves the problem of multi-collinearity. This 

is because the high number of independent variables can be reduced to a distinctly 

lower number of uncorrelated LVs. These represent an orthogonal linear combination 

of the original independent variables [Atzberger et al., 2010; Yu et al., 2015]. The 

outer relation of the Y block can be built in the same way: 

 

Y = UQʹ + F* = ∑ uh qh
'  + F* [6.2]

 

Graphically, both outer relations can be represented as follows. 

 

[6.3]

  

 

[6.4]
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The goal is to describe Y as well as possible, keep ║F*║ as low as possible and 

establish a suitable relation between X and Y at the same time. Therefore, the scores of 

both blocks are related to each other for each LV (h). This can be done by the inner 

relation: 

 
ûh = bh th [6.5]

 

where bh can be regarded as the regression coefficient. Given that the LVs of both 

blocks were calculated separately, the best possible model cannot be found. As a result, 

both blocks have a weak relation to each other. For this reason, it is advantageous to 

give both blocks information about each other by slightly rotating their LVs to 

establish a better fit to the regression line. This is done by an iterative process. A 

problem in this context is that the scores (th) of the X block are no longer orthogonal. 
Therefore, the loadings (ph

' ) in Equation 6.1 need to be replaced by weights (wʹ) to 

again generate orthogonal score values (th), after which the residuals of both blocks 

can be calculated as follows: 

   
Eh = Eh-1 - th ph

'   ;  X = E0 [6.6]ܨ௛∗ = Fh-1
*  - uh qh

'   ;  Y = F0 [6.7]

 

For the outer relation of the Y block, uh is substituted by ûh from Equation 6.5 to finally 

establish a mixed relation of both blocks: 

 

Y = TBQʹ + F* = ∑ bh th qh
'  + F* [6.8]  

 

with: 

 

Fh = Fh-1 - bh th qh
'  [6.9]  

 

The relation of both blocks enables the possibility predicting the target variable from 

unknown data. Figure 6.2 additionally illustrates the relation of the X and Y blocks in 

PLSR analysis. 

The maximum number of allowed LVs was set to ten, except less than ten spectral 

bands were involved in PLSR model building. In this case, the number was adapted in 

line with the number of used spectral bands. Furthermore, the Akaike information 

criterion (AIC) was calculated for the different PLSR models to determine the model 

with the optimum number of LVs [Akaike, 1974]: 
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AIC = n log (RMSE) + 2 h [6.10]

 

where n represents the number of samples and h is the number of LVs. Additionally, 

the root-mean-square error (RMSE) of cross-validation has to be determined 

[Viscarra-Rossel, 2008]. Finally, the number of LVs (and hence the corresponding 

PLSR model) was chosen, which provides the lowest AIC [Gerighausen, 2013;  

Li et al., 2002]. 

 

 

Figure 6.2: Relation of X block and Y block in PLSR analysis (modified according to  
Wold et al. [2001]). 

 

6.1.2 Support Vector Machine Regression 

Support vector machines (SVMs) can be traced back to statistical learning theory, 

which was mainly developed by Vapnik and Chervonenkis [1974] and Vapnik [1995]. 

In general, learning theory describes the process of characterizing properties by 

learning machines, which enables them to classify or predict unknown data. Originally, 

SVM classifiers were used in optical character recognition and later, they were applied 

to regression problems [Smola and Schölkopf, 2004]. For some years, SVMs have also 

been adapted to solve classification and regression problems in the field of remote 

sensing. Karimi et al. [2008], Siegmann et al. [2013] and Tuia et al. [2011], for 

example, showed the potential of this regression technique for the estimation of plant 

parameters in agriculture. 

In this thesis, standard ε-SVR models with a Gaussian radial basis function (RBF) 

kernel were built using the R package ‘kernlab’ [Karatzoglou et al., 2004]. In 

accordance with the notation used by Camps-Valls et al. [2006] and Heinert [2010], 

SVR is based on the following theoretical background. An input data set consists of a 

certain number of samples, each of which is characterized by the independent variable 

xi ∈ ℝd (e.g., a spectral curve with a certain number of spectral bands) and the 
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corresponding dependent variable, yi ∈ ℝ (e.g., a LAI value). Firstly, the independent 

variable xi is mapped onto a higher dimensional space ℋ (kernel feature space) using 

the kernel trick: 

 

 xi = Φ(xi). [6.11]

 

A detail description of the kernel trick is given, for example, in Smola and  

Schölkopf [2004]. In this way, it is possible to transfer a non-linear regression problem 

in the input feature space to a linear regression problem in the kernel feature space, 

which is easier to solve (Figure 6.3 (left and middle)). 

 

 

Figure 6.3: Scheme of support vector regression. Data set in the input feature space (left), 
data mapped onto the kernel feature space (middle) and ε-insensitive cost function (right) 
(modified according to Camps-Valls et al. [2006] and Heinert [2010]). 

 

Then yi can be determined as follows: 

 

ŷi = f(xi,w) = ΦT(xi)w +b [6.12]

 

where w is a weight factor, b is a bias term and ŷi is an estimate of yi. Additionally, an 

error term ei is introduced, which corresponds to the residuals of the model  

(ŷi = yi + ei). In standard ε-SVR, the goal is to minimize residuals ei by using the square 

norm of the model coefficients: 

 

 F(w,ei) = 
1

2
‖w‖2 + ෍Ψ(ei)

n

i=1

 . [6.13]
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In SVR, the hyperplane, which is used in support vector classification for separating 

two classes, must be modified. All samples located on both sides of the hyperplane in 

the range –ε...+ε are not involved in the optimization process. For all samples outside 

of the range, non-negative slack variables ξi and ξi
* are determined (Figure 6.3 (middle  

and right)). This results in an ε-insensitive function Ψε, such that the loss function has 

to be redefined as follows: 

 

 Φ(w,ξi,ξi
*) = 

1

2
‖w‖2 + C ෍ (ξi + ξi

*)

n

i=1

 [6.14]

 

with respect to w, b, ξi, and ξi
* constrained to 

 

yi  -  Φ
T (xi)w - b ≤ ε + ξi    ∀ i = 1…n [6.15] ΦT (xi)w - b - yi ≤ ε + ξi

*     ∀ i = 1…n [6.16]                       ξi, ξi
* ≥  0            ∀ i = 1…n . [6.17]

 

The introduced constant C (C > 0) can be regarded as a regularization parameter, which 

determines the trade-off between the flatness of f and the amount up to which 

deviations larger than ε are tolerated [Smola and Schölkopf, 2004]. The minimization 

of the loss function (Equation 6.14) can equally be solved by the maximization of the 

SVR function: 

 

 Q൫αi,αi
*൯ =- ε෍൫αi + αi

*൯ + ෍ yi൫αi - αi
*൯ - 

n

i=1

n

i=1

 

1

2
෍ ൫αi - αi

*൯ ൫αj - αj
*൯n

(i,j)=1

 K ൫xi,xj൯ [6.18]

 

under the conditions 

 ෍ αi

n

i=1

= ෍ αi
*

n

i=1

 and 0 ≤ αi,αi
* ≤ C     ∀ i = 1…n . [6.19]

 

The solution of the regression problem for any x is then: 
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 f(x) = ෍൫αi - αi
*൯n

i=1

K (x,xi) + b [6.20]

 

where K is the kernel, and αi and αi
* are the Lagrange multipliers, which can be 

interpreted as the contribution of the i-th example of the input data to the ultimate 

solution of w. In the process of model building, the parameters ε, ξi and ξi
* must be 

chosen in accordance with C, in order to reduce the number of support vectors and, 

therefore, the model complexity. In order to find the optimal parameter values for C 

and g (kernel parameter), the SVR implementation in the R package ‘kernlab’ uses a 

grid search technique based on an implementation in ‘libsvm’ [Chang and Lin, 2011]. 

 

6.1.3 Random Forest Regression 

RFR was realized with the R package ‘randomForest’, which contains a direct 

implementation of Breiman's random forest algorithm for classification and regression 

problems [Breiman, 2001]. To date, only a few studies have demonstrated the potential 

of this regression algorithm to derive plant parameters from remote sensing data 

[Mutanga et al.2012; Powell et al., 2010; Vuolo et al., 2013]. 

 The random forest method was originally developed to solve classification 

problems. It belongs to the ensemble learning methods, where many ‘weak’ classifiers 

(in this case single trees) are aggregated into a combined classifier (in this case a forest) 

with improved predictive power [Liaw and Wiener, 2002]. Along with the 

classification of categorical variables, random forest can also be used for regression 

applications to predict continuous variables [Breiman, 2001]. 

Each regression tree of a random forest is built with two thirds of the entire data set 

(bootstrap samples), which are randomly selected with replacement. For growing a 

single regression tree the CART (classification and regression tree) method, developed 

by Breiman et al. [1984], is used. According to Hastie et al. [2009], the basic 

functioning of CART can be described as follows. In a binary case, the continuous 

dependent variable Y (e.g., LAI) is described by two independent variables, X1 and X2 

(e.g., two spectral bands). In Figure 6.4 (left), the feature space is divided into 

rectangles, with a simple model fitted into each rectangle. Thus, it is possible to 

describe Y in each rectangle by using different constants. Firstly, the feature space is 

partitioned into two regions, while the output is modelled by the mean of Y in each 

region. Afterwards, both regions are each split into two more regions. This process is 

repeated until a stopping criterion is reached. The split values t1 to t5 are chosen in such 

a way that an optimal separation is achieved. Figure 6.4 (right) shows the same model 

(as in Figure 6.4 (left)) in the form of a tree, which divides the feature space by 

successive binary decisions. In this context, observations that meet the conditions of a 
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node are assigned to the left branch, while observations that do not meet the conditions 

are assigned to the right branch. The terminal nodes (or leaves of the tree) represent 

the regions R1 to R5 (rectangles) in Figure 6.4 (left). 

 

 

 

Figure 6.4: Partitions in CART. Recursive binary splitting of a two-dimensional feature space 
(left) and tree-based recursive binary splitting (right) (Hastie et al. [2009]). 

 

One of the most important steps in growing a regression tree is making a decision 

at each interior node, which divides the data set into two groups. For this reason, a 

splitting rule must be defined. The aim is to partition the data set into m regions  

(R1, R2,…, Rm), which correspond to the terminal nodes of the tree (LAI values of the 

training samples). Therefore, a constant term cm (Equation 6.21) has to be modelled in 

each region. If the minimization of the sum of squares is used as criterion for binary 

splitting, then cm corresponds to the mean response value (e.g., LAI) of a considered 

region Rm. 

 

 cm = 
∑ yiI (x ∈ Rm)i∑ I (x ∈ Rm) i

 [6.21]

 

For example, at the first node, the mean of all dependent variables (LAI values) of 

the training data set is used as cm. Subsequently, the optimal splitting variable j 

(spectral band) and split point s (reflection in spectral band j) have to be defined. For 

each splitting variable j, the optimal value s can be determined by: 

 

min j,s ቎minc1
෍ ൫yi - c1൯2

xi ∈ R1(j,s)  +  minc2
෍ ൫yi - c2൯2

xi ∈ R2(j,s) ቏ 

. 

[6.22]
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This procedure is repeated at every node until the tree is fully grown. At the end, every 

terminal node represents one of the target regions Rm. 

For the assessment of LAI in this thesis, each RFR model was made up of 500 

individual trees. At each node of a tree, only a few variables (square root of the number 

of all the spectral bands) were randomly selected with replacement for decision-

making. As already mentioned above, each tree was built with two thirds of the training 

data, which were randomly selected (bootstrap samples). The remaining third (the out-

of-bag samples) were used for the internal validation of each tree. Hence, the error 

rates of the single trees enabled the determination of an error rate of the entire random 

forest. After building a random forest, it is possible to predict the target variable  

(e.g., LAI) from unknown data samples (unknown spectral reflectance measurements). 

In this context, the predicted values from each tree are averaged to generate the result 

of the entire forest. 

 

6.1.4 Evaluation of Empirical-Statistical Regression Models 

As criteria for regression model accuracy, the coefficient of determination (R2) and 

RMSE were calculated. Moreover, the residual prediction deviation (RPD) was 

computed as an additional indicator of the robustness of the regression models. The 

RPD represents the ratio of the standard deviation of the observed LAI and the RMSE 

of the predictions [Malley et al., 2004]. Williams [2001] developed a RPD scale based 

on high-resolution NIR laboratory spectra with different value classes for applications 

in food chemistry. Due to the lower spectral resolution of the data used in this study, a 

RPD scale with the following value limits, which was suggested by Dunn et al. [2002], 

was instead applied to evaluate the robustness of the regression models: RPD < 1.6 is 

a poor model; RPD = 1.6−2.0 is an acceptable model; RPD > 2.0 is an excellent model. 

 

6.2 Feature Selection 

The high spectral dimensionality of hyperspectral data is one of the major problems 

in the process of deriving soil or plant parameters from remote sensing images. This 

phenomenon is known as the curse of dimensionality [Bellman, 1962]. It describes the 

exponential growth in the number of examples required to maintain a given sampling 

strategy on the one hand, and the exponential growth in the complexity of the target 

function with increasing dimensionality on the other hand. For that reason, the 

selection of the most important features (spectral bands) is a crucial processing step 

when using regression algorithms to estimate biophysical and -chemical parameters 

from hyperspectral data [Camps-Valls et al., 2011]. 
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The subsequent subsections first give a detailed overview of the RReliefF 

algorithm, which belongs to the group of filter methods within the family of feature 

selection techniques. Following this, a randomized sampling approach is explained, 

which enables the validation of the results provided by RReliefF. 

 

6.2.1 RReliefF 

The Relief algorithm belongs to the filter methods used for feature selection in 

different fields of science. The basic Relief idea was invented by Kira and  

Rendell [1992] and was solely designed to solve classification problems with two 

classes. Later, the algorithm was extended to ReliefF by Kononenko [1994] in order 

to deal with multi-class classification problems, as well as incomplete and noisy data 

sets. Due to its characteristics, ReliefF is well suited to classification problems in 

remote sensing, such that it has been used in some remote sensing studies to detect the 

optimal spectral bands to separate multiple classes [Ghosh et al., 2013;  

Wu et al., 2013]. In contrast to classification problems, where discrete classes are 

available, the estimated values are continuous in regression scenarios. Therefore, 

Robnik-Šikonja and Kononenko [1997, 2003] further developed the algorithm to 

RReliefF (Regressional ReliefF), which is able to estimate the quality of features in 

regression problems. 

 

1. set all weights W[B] := 0.0; 

2. for i := 1 to m do begin 

3. randomly select an instance Ti; 

4. find n nearest hits Hj; 

5. for each class C ≠ class(Ti) do 

6.  from class C find n nearest misses Mj(C); 

7. for B := 1 to b do 

8.  W[B] :=W[B] - ∑ diff (B,Ti,Hj)/(m·n)n
j=1  + 

9. ∑ [
P(C)

1-(class(Ti))
C≠class(Ti)

 ∑ diff (A,Ti,Mj(C))n
j=1 ] /(m·n); 

10. end; 

Figure 6.5: Pseudocode of the ReliefF algorithm [Robnik-Šikonja and Kononenko, 2003]. 

The ReliefF algorithm for multi-class problems randomly selects an instance (Ti), 

which corresponds to a spectral curve of a certain class in a remote sensing data set. 

Afterwards, the algorithm searches the n nearest neighbours of the same class (nearest 
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hits – Hj) and the n nearest neighbours of different classes (nearest misses – Mj), which 

it does by calculating the summarized Manhattan distance over all features (spectral 

bands - B) between the selected instance (Ti) and all other instances of the data set. The 

calculated distances of the n hits and the n misses of an instance are then averaged, 

with the n misses additionally weighted with a prior estimated probability of the 

corresponding class (P(C)). The already calculated distances for the single features (B) 

are then used to determine the importance of every feature regarding its suitability for 

class separability. The whole procedure is repeated m times (user defined parameter) 

to update the quality estimation W[B] (depending on Ti, Hj and Mj) and finally ascertain 

the weight factors of all features. The pseudocode of ReliefF is shown in Figure 6.5. 

Due to the lack of classes and thus, not clear definable hits and misses, ReliefF 

cannot be transferred to regression problems without adjustments. Therefore, in 

RReliefF, the following probabilities have to be determined to distinguish whether the 

values of two instances (Ti) are different. First, the probability of a feature B of an 

instance Ti differs from the same feature B of its nearest neighbour instance (Ij) 

(Equation 6.23). Second, the probability of a predicted value τ (e.g., LAI) of an 

instance Ti differs from its nearest neighbour instance (Ij) (Equation 6.24). Third, the 

probability of a predicted value τ, as well as feature B, differs from its nearest 

neighbour instance (Ij) (Equation 6.25). 

 

PdiffB = P(different value of B│nearest instances Ij) [6.23]

 
PdiffC = P(different prediction τ│nearest instances Ij)  [6.24]

 
PdiffC│diffB = P(different prediction τ│ 

different value of B and nearest instances Ij) 
[6.25] 

  

Finally, the different probabilities are merged in Equation 6.26, with Bayes’ rule used 

for estimating the weight factor of a feature W[B]: 

 

W[B] = 
Pdiff C│diff B  Pdiff B

Pdiff C 
- 

Pdiff C│diff B  Pdiff B

1 -Pdiff C 
 [6.26]

 

Analogous to ReliefF, the instances (Ti) were chosen randomly, whereas the n 

nearest neighbour instances (Ij), as well as the number of repetitions (m), were defined 

by the user. Figure 6.6 illustrates a summary of RReliefF in the form of a pseudocode 
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of the algorithm. The weight factors of the different prediction values τ (line 6), the 

different features B (line 8), and the different predictions values and features (line 9) 

are collected in NdC, NdB[B] and NdC&dB[B], respectively. Additionally, a weighting 

term d(i,j) was introduced, taking into account the influence of the n nearest neighbour 

instances (Ij) regarding their different distances to Ti.  Finally, the estimation of the 

weight of each feature W[B] can be calculated using Equation 6.26 (line 14). 

In this thesis, RReliefF was applied to field spectral measurements and the 

corresponding measured LAI in order to identify the spectral bands that provide the 

most important information to predict the LAI. For this purpose, the R software 

environment was used again with the additional ‘FSelector’ package, which holds an 

implementation of the RReliefF algorithm [Romanski and Kotthoff, 2014]. The 

number of the n nearest neighbours was set to ten and the entire procedure was repeated 

100 times (m). The determined weighting factors for every spectral band from each 

run were stored and averaged in order to ascertain the final importance of every 

spectral band. 

 

1. set all NdC, NdB[B], NdC&dB[B], W[B] := 0.0; 

2. for i := 1 to m do begin 

3.  randomly select an instance Ti; 

4.  select n instances Ij nearest to Ti; 

5.  for j := 1 to n do begin 

6.  NdC := NdC + diff(τ,Ti,Ij) · d(i,j);  

7.   for B := 1 to b do begin 

8.    NdB[B] := NdB[B] + diff(B,Ti,Ij) · d(i,j); 

9.   NdC&dB[B] := NdC&dB[B] + diff(τ,Ti,Ij) · diff(B,Ti,Ij) · d(i,j); 

10.   end; 

11.  end; 

12. end; 

13. for B := 1 to b do 

14. W[B] := NdC&dB[B] / NdC - (NdB[B] - NdC&dB[B]) / (m - NdC); 

Figure 6.6: Pseudo code of the RReliefF algorithm [Robnik-Šikonja and Kononenko, 2003]. 
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6.2.2 Evaluation of Feature Selection 

In order to verify the spectral bands selected as the most important by RReliefF for 

LAI prediction, randomized experiments were conducted. In this context, numerous 

regression models were calibrated with spectral bands selected by simple random 

sampling with replacement. This method enabled the random selection of subsets of 

individuals (subsets of spectral bands) from the entire population (all available spectral 

bands) [Ardilly and Tillé, 2006]. In the end, the subset of spectral bands that provided 

the model with the highest R2 was chosen and the spectral bands involved in regression 

model building were compared to those selected using RReliefF. 

 

6.3 Pan-sharpening11 

In remote sensing, image fusion techniques are frequently used to combine two or 

more different images acquired by the same or different sensors to form a new image 

with enhanced characteristics by using a certain algorithm [Jiang et al., 2011]. One of 

the most popular image fusion methods is known as pan-sharpening [Pohl and van 

Genderen, 2015]. This technique is commonly applied to merge the spatial details of 

a high-resolution panchromatic image and the spectral information of a low-resolution 

multi- or hyperspectral image, with the aim of generating a spatial high-resolution 

multi-or hyperspectral image (hybrid product) [Fonseca et al., 2011]. 

In this thesis, the Ehlers Fusion is applied to merge image data with high spatial and 

high spectral resolution to create a composite image with new qualities, which  

provides more information for the spatially accurate prediction of LAI than the original 

images. The theoretical background of this pan-sharpening technique is presented in 

the next section. Following this, the validation techniques are presented, which are 

used to evaluate the fusion results. 

 

6.3.1 Ehlers Fusion 

The Ehlers Fusion was developed specifically for a spectral characteristics 

preserving image merging [Klonus and Ehlers, 2007]. As it is based on an IHS 

(intensity, hue, saturation) transform, coupled with a Fourier domain filtering, it is 

representative of the hybrid image fusion methods [Pohl and van Genderen, 2015]. 

The principal idea behind a spectral characteristics preserving image fusion is that 

the high-resolution image has to sharpen the multi-/hyperspectral image without 

adding new grey level information to its spectral components. An ideal fusion 

algorithm would enhance high-frequency changes, such as edges and grey level 

discontinuities in an image, without altering the spectral components in homogeneous 

regions [Ehlers et al., 2010]. To facilitate these demands, two prerequisites have to be 

                                                            
11 Parts of this section have  previously been published by Siegmann et al. [2015]. 
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addressed. First, spectral and spatial information need to be separated. Second, the 

spatial information content has to be manipulated in a way that allows an adaptive 

enhancement of the images. This is achieved by a combination of colour and Fourier 

transforms. 

For optimal separation of spatial and spectral information from an RGB (red, green, 

blue) image, an IHS transform is used. In this regard, intensity I refers to the total 

brightness of the colour, hue H refers to the dominant or average wavelength of the 

light contributing to the colour, and saturation S refers to the purity of colour. This is 

comparable to human perception [Klonus and Ehlers, 2007]. According to Gonzalez 

and Woods [2007], the H component of each pixel of a given RGB image can be 

determined using the following equation: 

 

 H = ቄ θ                   
θ – 360          

if B ≤ G 
[6.27]

if B > G 

with:  

 θ = cos-1 ቐ 1

2
[(R - G) + (R - B)]ሾ(R - G)2 + (R - B)(R - B)ሿ1/2ቑ

. 
[6.28]

 

The S and the I components are calculated as follows: 

 

 S = 1 - 3

(R + B + G)
ሾmin (R, G, B)ሿ [6.29]

 

 I = 
1

3
(R + B + G) [6.30]

 

This technique is extended to include more than three bands by using multiple IHS 

transforms until the number of bands of the multi-/hyperspectral image is exhausted. 

If the assumption of spectral characteristics preservation holds true, there is no 

dependency on the selection or order of bands for the IHS transform. 

Subsequently, Fourier transforms of the intensity component, which contains the 

spatial information of the multi-/hyperspectral image, and the panchromatic image are 

conducted to transfer the images into the frequency domain. For that purpose, the two-

dimensional fast Fourier transform (FFT) is used, which is given by the equation: 
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 F (u,v) =   1

M N
෍ ෍ൣf (x,y) e-j2π(ux/M+vy/N)൧N - 1

y = 0

M - 1

x = 0

  [6.31]

 

where M is the number of horizontal image pixels, N is the number of vertical image 

pixels, x and y are the spatial variables, u and v are the frequency variables, and j 

represents the imaginary component of a complex number [Klonus, 2011]. Afterwards, 

the generated intensity power spectrum in the frequency domain is filtered with a 

Gaussian low-pass filter (Equation 6.32), whereas the power spectrum of the high-

resolution panchromatic image is filtered with the inverse Gaussian high-pass filter  

(Equation 6.33). 

 

L (u,v) = e-D2(u,v)/2σ2
 [6.32]

H (u,v) = 1 - e-D2(u,v)/2σ2
 [6.33]

 

In both filter functions, D represents the distance from the origin of the Fourier power 

spectrum and σ is a measure of the spread of the Gaussian curve [Gonzalez and Woods, 

2007]. After filtering, the images are transformed back into the spatial domain with an 

inverse FFT using the following equation: 

 

 f (x,y)  = ෍ ෍ൣF (u,v) e j2π(ux/M+vy/N)൧N - 1

v = 0

M - 1

u = 0

 . [6.34]

 

As a next step, both images are added together to form a fused intensity component 

with the low-frequency information from the spatial low-resolution multi-/hyper-

spectral image and the high-frequency information from the spatial high-resolution 

panchromatic image. This new intensity component has to be histogram matched to 

the original intensity component for mapping it into the value range of the original 

image. Afterwards, the fused and histogram-matched intensity component and the 

original hue and saturation components of the multi-/hyperspectral image form a new 

IHS image. Finally, an inverse IHS transform produces a fused RGB image, which 

contains the spatial resolution of the panchromatic image and the spectral 

characteristics of the multi-/hyperspectral image. Gonzalez and Woods [2007] provide 

a comprehensive description of the inverse IHS transform. At the beginning, the H 
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component is multiplied by 360 to return the hue to its original range (0°−360°). 

Subsequently, the RGB values are determined as follows: 

If 0° ≤ H < 120°: 

B = I (1 - S) [6.35] R = I ൤1+
S cos H

cos(60° - H)
൨ [6.36]

G = 3I - (R + B) [6.37]

  

If 120° ≤ H < 240°: 

H = H - 120° [6.38]

Then the RGB components are: 

R = I (1 - S) [6.39] G = I ൤1+
S cos H

cos(60° - H)
൨ [6.40]

B = 3I - (R + G). [6.41]

 

If 240° ≤ H < 360°: 

H = H - 240° [6.42]

Then the RGB components are: 

G  = I (1 - S) [6.43] B = I ൤1+
S cos H

cos(60° - H)
൨ [6.44]

R = 3I - (G + B). [6.45]

 

The different steps of the Ehlers Fusion can be repeated with successive three band 

selections until all bands of the multi-/hyperspectral image are fused with the 

panchromatic image. The order of bands and the inclusion of spectral bands for more 

than one IHS transform are not critical because of the colour preservation of the 

procedure [Ehlers et al., 2010]. The entire fusion process is presented in Figure 6.7. 
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Figure 6.7: Scheme of the Ehlers Fusion with i1, i2, i3 ∈ {1, 2,…, n} (modified according to 
Klonus and Ehlers [2007]). 

 

6.3.2 Evaluation of Pan-sharpened Images 

Since the visual interpretation of the fusion results can be considered as very 

subjective and always depends on the experiences of the human interpreter, two 

statistical evaluation criteria were calculated to measure the spectral preservation of 

the results. These methods are objective, quantitative and reproducible. First, the 

spectral angles (αspec) between corresponding pixels of the original image data and the 

fusion results were determined [Kruse et al., 1993]. αspec can be calculated in hyper-

dimensional space for all bands of two pixels (two spectral curves) at once. An angle 

of zero indicates an ideal fusion result, while larger angles imply a poorer spectral 

preservation [Alparone et al., 2007]. αspec was calculated (per pixel) to determine the 

spectral performance achieved by the Ehlers Fusion in order to identify spatial 

differences of the spectral preservation in the fusion results. 

 

αspec = cos-1 ۇۉ ∑ ti ri
n
i=1ට∑ ti
2n

i=1  ට∑ ri
2n

i=1 [6.46] ۊی
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where  n is the number of spectral bands, ti is the fused spectral curve and ri is the 

original spectral curve.  

As a second evaluation criterion, the correlation coefficient (R) was calculated for 

corresponding bands of the original data and the fusion results. In contrast to αspec, R 

was determined to evaluate the goodness of spectral preservation achieved for every 

single band. R has a value range from -1 to 1, where 1 indicates a perfect match for 

two compared spectral bands. 

 

ܴ = ۇۉ
∑ ൫ti-µt൯n

i  ൫ri-µr൯ට∑ ti
2n

i  ට∑ ri
2n

i [6.47] ۊی

 

where  n is the number of spectral bands, ti is the fused spectral curve, ri is the original 

spectral curve and µt/r is the mean of t or r.
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7 Results and Discussion 

In this chapter, the results obtained in the course of this thesis are presented and 

discussed. To this extent, different research experiments were conducted to answer the 

three research question developed in Chapter 1. The different tasks formulated with 

regard to each research question form the thread for the following subchapters. First, 

in Chapter 7.1, different empirical-statistical regression models are evaluated 

regarding their suitability for an accurate LAI prediction from field reflectance 

measurements. Then, in Chapter 7.2 and Chapter 7.3, the spectral and spatial properties 

of hyperspectral image data acquired from different platforms and scales are 

investigated in detail to identify the potential and the limitations of these types of data 

for the spatial prediction of LAI in precision agriculture. 
 

7.1 Quality Assessment of Empirical-Statistical Regression 
Techniques12 

Empirical-statistical regression models are frequently applied techniques to 

estimate plant or soil parameters from remote sensing data. Although numerous studies 

have used these kinds of models to derive the LAI and other parameters, model 

validation aimed at verifying the prediction accuracy, as well as model transferability 

to unknown data, has been investigated insufficiently to date. For that reason, in the 

next sections, the research question, provided below, ought to be answered: 

What potential do empirical-statistical regression models have for an accurate 

prediction of crop LAI based on hyperspectral data? 

7.1.1 Influence of Validation Procedure on Regression Model 
Performance 

As a first step, PLSR, SVR and RFR models were separately generated for the data 

from the two individual years (2011 and 2012). In all cases, model validation was 

performed by leave-one-out cross-validation (cv), which means that each sample was 

estimated by a regression model that was calibrated using the remaining (n – 1) 

samples [Otto, 2007]. SVR provided the best results for the separate analysis of 2011 

and 2012 data, with R2
cv values of 0.739 and 0.850, respectively; meanwhile, RMSEcv 

was relatively low at 0.242 and 0.376. A reason for the higher RMSEcv value in 2012 

was the wider range of measured LAI in the field, which is typical for subsequent 

stages of canopy development. PLSR yielded lower R2
cv values (R2

cv = 0.696 (LV = 6) 

in 2011, R2
cv = 0.790 (LV = 5) in 2012) than SVR. However, the RMSEcv of PLSR  

(RMSEcv = 0.244 in 2011, RMSEcv = 0.408 in 2012) was comparable to that of SVR. 

                                                            
12 This section has previously been published by Siegmann and Jarmer [2015]. 
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In contrast, RFR showed significantly lower model accuracy compared to SVR and 

PLSR. Particularly, in 2011, it was not possible to build a robust model with RFR  

(R2
cv = 0.420, RMSEcv = 0.337). In 2012, however, RFR provided much better results  

(R2
cv = 0.715, RMSEcv = 0.476), but still showed lower model performance than SVR 

and PLSR. RPDcv values calculated for SVR (2.709 for 2011 and 2.383 for 2012) and 

PLSR (2.668 and 2.196, respectively) were all higher than 2.0. According to  

Dunn et al. [2002], regression models with RPD values higher than 2.0 are well suited, 

while values between 1.6 and 2.0, like those of RFR for both years, can only be 

regarded as acceptable. Table 7.1 summarizes the results of the cross-validated models 

using different regression algorithms. 

 

Table 7.1: Cross-validated results of LAI prediction with PLSR, SVR and RFR, for 2011  
and 2012. 

n = 57 (2011) 
n = 67 (2012) 

R2
cv RMSEcv RPDcv 

2011 2012 2011 2012 2011 2012 

PLSR 0.696 0.790 0.244 0.408 2.668 2.196 

SVR 0.739 0.850 0.242 0.376 2.709 2.383 

RFR 0.420 0.715 0.337 0.476 1.943 1.884 

 

The scatter plots in Figure 7.1 underline the results of the regression models based 

on their statistical values. More robust models for predicting the LAI could be built 

with PLSR and SVR. Although PLSR models had lower R2
cv values in both years, 

observed offsets were smaller compared to SVR models and the regression lines were 

closer to the 1:1 line. This fact indicates a more reliable model performance of PLSR 

in comparison to SVR. RFR scatter plots suggested lower model accuracies in relation 

to the other algorithms. The scatter plot for 2011 particularly illustrated a poor 

relationship between measured and predicted LAI values. In general, the model 

performance of all regression algorithms was much better in 2012. The later 

phenological stage of wheat development results in a wider range of measured LAI, 

which is one reason for higher model accuracy. Furthermore, the spectral field 

measurements were less influenced by soil reflectance because of the denser 

vegetation coverage in 2012. This fact may be another reason for better model 

performance. Additionally, the overestimation of lower and the underestimation of 

higher values by the algorithms are problematic and occurred in the scatter plots of all 

models. 
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Figure 7.1: Scatter plots of predicted (cross-validated) and measured LAI values for winter 
wheat, based on PLSR, SVR and RFR, for 2011 and 2012. The solid red line represents the 
regression line, while the dashed black line represents the 1:1 line. 

 

As a second step, leave-one-out cross-validation was conducted to determine model 

quality for the entire data set (for 2011 and 2012). Table 7.2 summarizes the results 

for the models obtained by the different regression algorithms. PLSR and SVR 

provided results with high R2
cv values of 0.901 (LV = 5) and 0.944, respectively. The 

relatively low RMSEcv of 0.417 (PLSR) and 0.322 (SVR), together with RPDcv values 

well over 3.0 for PLSR, and even over 4.0 for SVR, indicated the robustness and 

successful calibration of both models [Dunn et al., 2002]. Although RFR also provided 

high model accuracy, R2
cv was distinctly lower (R2

cv = 0.799) when compared to PLSR 

and SVR. In addition, an RMSEcv of 0.597 and an RPDcv of 2.222 showed distinctly 

higher and lower values, respectively, in contrast to the other models. 

Figure 7.2 illustrates the scatter plots of measured and corresponding estimated 

LAI. For PLSR and SVR, observed offsets in LAI estimation were negligible, while 

RFR clearly showed an overestimation of smaller and an underestimation of higher 

LAI. RFR also had a higher scattering of sample points compared to the other models. 

The differences between PLSR and SVR accuracy were also obvious in the scatter 

plots. While offset and slope of the regression line had slightly better values for PLSR 

concerning the fit to the 1:1 line, the scattering was slightly higher compared to the 

SVR model, especially for higher values.  
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Table 7.2: Cross-validated results of LAI prediction with PLSR, SVR and RFR  
(2011 and 2012). 

n = 124 R2
cv RMSEcv RPDcv 

PLSR 0.901 0.417 3.190 

SVR 0.944 0.322 4.134 

RFR 0.799 0.597 2.222 

 

PLSR SVR RFR 

Figure 7.2: Scatter plots of predicted (cross-validated) and measured LAI for winter wheat, 
based on PLSR, SVR and RFR, for 2011 and 2012. The solid red line represents the regression 
line, while the dashed black line represents the 1:1 line. 

 

In general, similar to the results from the separate data sets already highlighted, all 

models more or less overestimated lower values (LAI ≤ 2), while higher values  

(LAI ≥ 4) were underestimated. Furthermore, the scatter plots indicated an under-

representation of LAI at around 3, which can be ascribed to the fact that LAI was only 

measured in the phenological stages of wheat plant development (BBCH 3 in 2011; 

BBCH 5 in 2012), where lower or higher LAI dominated. 

Independent validation (iv) can be considered the most robust method for assessing 

regression model accuracy, given that validation data are not involved in the process 

of model development. Nevertheless, it is common to carry out cross-validation when 

data division is not possible because of the inadequate availability of samples, as in 

the case of the separate years in the context of this thesis. Although the entire data set 

had a relatively high number of samples, leave-one-out cross validation was performed 

to compare the results with those from independent validation presented below. 

To prepare the data for independent validation, the 124 LAI values were arranged 

in ascending order according to their size. Finally, the data set was split into three 

subsets by choosing every third value for each subset. Thus, three approximately 

equal-sized data subsets were generated (subset A with 42 samples, subsets B and C 

both with 41 samples), each of which almost covered the range of values measured in 
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2011 and 2012. Subsequently, the corresponding field spectral measurements were 

arranged into the corresponding three subsets. For independent validation, each subset 

of the data set was used once for validation, while the models were built using the 

samples from the other two subsets.  

Table 7.3 shows the independently validated results for the different regression 

algorithms. For the three models based on the three different subsets, PLSR provided 

very reliable results, with R2
iv values around 0.9 (mean R2

iv = 0.912, LV for subsets 

A/B/C = 5/5/5) and RMSEiv of about 0.4 (mean RMSEiv = 0.402). The high R2
iv and 

the RPDiv of well over 3.0 (mean RPD = 3.336) were indicators of successful model 

calibrations [Dunn et al., 2002]. SVR (mean R2
iv = 0.769, mean RMSEiv = 0.645) and 

RFR (mean R2
iv = 0.770, mean RMSEiv = 0.643) prediction accuracies were 

comparable to each other, but much lower than PLSR prediction accuracy. 

Additionally, the mean RPDiv for both regression algorithms was just over 2.0, 

suggesting the lower robustness of these models. 

 

Table 7.3: Independent validated results of LAI prediction, with PLSR, SVR and RFR for the 
data subsets A, B, and C (ncal = 83/82, nval = 42/41). 

 
R2

iv RMSEiv RPDiv 

A B C Mean A B C Mean A B C Mean 

PLSR 0.898 0.924 0.913 0.912 0.450 0.367 0.396 0.402 3.067 3.595 3.346 3.336 

SVR 0.708 0.796 0.802 0.769 0.757 0.592 0.585 0.645 1.821 2.231 2.268 2.107 

RFR 0.635 0.839 0.835 0.770 0.842 0.546 0.540 0.643 1.638 2.418 2.457 2.171 

 

A general trend can be seen in the independent validation of all regression models. 

While using data subsets B and C as independent validation data led to nearly identical 

results in model internal comparison, there seemed to be a deviation in data subset A. 

The validation accuracy for PLSR with data subset A (R2
iv = 0.898) was almost 

negligibly lower compared to data subsets B (R2
iv = 0.924) and C (R2

iv = 0.913). 

Clearer differences in model performance could be detected by comparing SVR and 

RFR validation results of data set A (SVR: R2
iv = 0.708, RFR: R2

iv = 0.635) to data 

subsets B (SVR: R2
iv = 0.796, RFR: R2

iv = 0.839) and C (SVR: R2
iv = 0.802, RFR:  

R2
iv = 0.835), respectively. 

The scatter plots for the independent validated data subsets A, B and C, shown in  

Figure 7.3, illustrate the same trend of overestimating lower and underestimating 

higher values already observed in the scatter plots of the cross-validated regression 

models (see Figure 7.1 and Figure 7.2). PLSR provided nearly identical results to those 

achieved with the cross-validated model using the entire data set and the regression 

lines fit close to the 1:1 line, which is an indicator of a robust and well-calibrated 

model. In contrast, the scatter plots for independently validated SVR and RFR showed 
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a larger offset and a more pronounced scattering. In particular, the aforementioned 

problem using subset A for validation was highlighted by the scatter plots of SVR and 

RFR, where the regression lines substantially deviated from the 1:1 line. 
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Figure 7.3: Scatter plots of estimated (independently validated) and measured LAI for winter 
wheat, based on PLSR, SVR and RFR, for the different calibration and validation data subsets 
(A, B and C). The solid red line represents the regression line, while the dashed black line 
represents the 1:1 line. 

 

7.1.2 Comparison of Regression Model Results 

The individual data sets of the separate years consisted of a relatively low number 

of samples (57 samples in 2011, 67 samples in 2012). Consequently, leave-one-out 

cross-validation was performed to determine model quality. In comparison to the 

cross-validated regression models built with the data of both years, model accuracies 
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for the single-year data sets were distinctly lower for all considered regression 

algorithms (Table 7.1 and Table 7.2). This was mainly due to the fact that using the 

entire data set (2011 and 2012) increased the number of samples and enlarged the LAI 

range by including LAI measurements of different phenological stages. This is in 

accordance with studies by Haboudane et al. [2004], Herrmann et al. [2011], and 

Nguy-Robertson et al. [2014], all of whom also achieved better correlations between 

VIs and LAI measurements using data of different phenological stages during the 

growing season. In addition, the scatter plots for the regression models, when 

incorporating the data of both years, illustrated a substantial increase in model 

robustness, less scattering and a better fit of the regression line to the 1:1 line in relation 

to the scatter plots of the single-year regression models (cf. Figure 7.1 and Figure 7.2). 

Furthermore, the order of regression algorithm performance was equal in both the 

single-year and complete data sets. In each case, SVR provided the best results, closely 

followed by PLSR and then RFR, albeit with distinctly lower model performance. 

The subsequent independent validation of the complete data set led to a very 

different result. For all validation data subsets, PLSR produced the most robust 

models, with R2
iv and RPDiv values comparable to those of the cross-validation. In 

contrast, independently validated SVR models provided much lower accuracies, which 

were on the same level as the RFR results (cf. Table 7.3). While the model perfor-

mances of PLSR and RFR were almost identical for cross- and independent validation 

of the combined data set, SVR showed a significant decline in R2
iv and RPDiv, as well 

as an extensive increase in RMSEiv at the same time. For the data used in this thesis, 

it seemed that SVR models were overfitted with respect to the training data. In the case 

of cross-validation, this led to very high model accuracy but, at the same time, an 

unknown sample could not be predicted with the same high accuracy, which was 

shown in the case of independent validation. The same problem of overfitting was not 

detected for PLSR and RFR. Both regression algorithms produced almost stable 

accuracy for both validation strategies, with PLSR providing results at a substantially 

higher level. The better and more stable results of PLSR, compared to SVR, differed 

from recent remote-sensing studies, where machine learning approaches, such as SVR, 

have outperformed PLSR, or have at least provided comparable results for the retrieval 

of biophysical and -chemical parameters from agricultural fields [e.g., Arenas-Garcia 

and Camps-Valls, 2008; Wang et al., 2011]. 

Obviously, the validation technique for verifying the performance of a regression 

model is very important. The results showed that PLSR and RFR performance was 

less sensitive to the validation technique used. In contrast, SVR model quality 

depended more on the type of validation. Independent validation was the more robust 

approach for verifying regression models because training and validation data are 

statistically independent from each other. Thus, model overfitting during calibration 

can be prevented. 
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In recent years, several different validation techniques have been developed. For 

example, Wang et al. [2011] randomly divided their data into two thirds for calibration 

and one third for validating regression models. Another method for independent 

validation was presented by Tuia et al. [2011], who conducted two experiments by 

randomly splitting the data into 80 and 50 % for calibrating the model and validation, 

respectively. Each experiment was repeated 40 times, with the results averaged to 

avoid skewed data distribution. In this thesis, a random division of calibration and 

validation data was not planned. Instead, the LAI values were arranged in ascending 

order according to their size, while every third value was chosen for one of the three 

resulting data subsets. Therefore, the data range and distribution of LAI values in each 

subset were very similar, which is a key requirement because statistically robust model 

validation can only be conducted on independent data that cover the same data range 

as used for model calibration. In this context, it was not possible to build regression 

models with the data set acquired in 2011 and predict the data of 2012, and vice versa, 

because the value range covered for the two years was different. The LAI range 

covered by the LAI data from both years was more appropriate for model building to 

predict LAI from unknown spectral data. However, in order to build a ‘universal 

model’, the LAI measurements of earlier (BBCH 1–2), later (BBCH 6–7) and 

phenological stages in between (BBCH 4) also had to be integrated into model 

calibration to cover the entire range of possible LAI during the growing season. 

Additionally, the spatial domain plays an important role in calibrating and 

validating regression models. The data used in this thesis were acquired from four 

different agricultural fields within a region and mixed to build independent data 

subsets for model calibration and validation. Consequently, the samples were not 

spatially independent. Therefore, further research is required to investigate an 

approach that is spatially more independent. In this context, regression models have to 

be calibrated with data collected from one field. Subsequently, the model validation 

can be conducted on data from a neighbouring field with the same crop. This approach 

can help in the development of spatially independent regression models that are 

transferable within a region. 

Besides the validation procedure, which was applied for assessing regression model 

quality, the use of different spectroradiometers (ASD FieldSpec III and SVC 1024) 

and LAI measuring devices (LAI-2000 and SunScan) can have an influence on the 

regression results. In order to ensure comparable spectral measurements, all 

instruments were calibrated by the manufacturers less than one year before the field 

campaigns and the spectral data were converted to absolute reflectance values using 

reflectance standards of known reflectivity. Additionally, the spectral measurements 

were acquired at the same height above ground in both years. Nevertheless, the 

divergent FOV of the spectroradiometers used, as well as the different plant heights in 

2011 and 2012, may have had some influence on the spectral measurements. The 
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different LAI devices used in 2011 (SunScan) and 2012 (LAI-2000) were also 

calibrated by the manufacturers. Moreover, according to Wilhelm et al. [2000], 

comparable measurements are possible, as long as the operator follows the procedures 

described in the user manuals. Thus, the use of different measuring devices as an 

influencing factor on the regression results can be reduced to a minimum. 

Furthermore, multicollinearity is a known problem using regression analysis 

applied to hyperspectral data sets. This can also have an impact on model calibration, 

validation and, in turn, on model prediction. The best results in the case of independent 

validation, however, were achieved for PLSR, which is less influenced by this problem 

because the high number of spectral bands is reduced to a distinctly lower number of 

uncorrelated LVs, representing an orthogonal linear combination of the original 

spectral bands [Atzberger et al., 2010; Yu et al., 2015].  

The next section addresses the problem of multicollinearity when using 

hyperspectral data. In this regard, the influence of the spectral resolution on regression 

model performance to predict the LAI was investigated in greater detail. 
 

7.2 Influence of Spectral Resolution on LAI Determination 

Hyperspectral sensors often have much more than 100 spectral bands and a typical 

bandwidth of a few tens of nanometres or even less [Baltsavias, 2002]. The high 

spectral resolution in combination with a wide spectral range make these sensors 

ideally suited to numerous applications. The hyperspectral EnMAP mission, for 

example, has the goal to provide valuable information for different research fields, 

including agriculture, forestry, natural ecosystems, geology, soil science, coastal and 

inland waters, and urban areas [Guanter et al., 2015]. For a specific application, 

however, such as the assessment of LAI, not all the spectral information is necessary 

to enable a robust regression model calibration [Thenkabail et al., 2004]. This fact 

leads to the following research question, which should be answered: 

What spectral resolution and location of spectral bands are necessary to enable 

a precise estimation of the parameter LAI? 

7.2.1 LAI Determination Based on aisaDUAL and EnMAP Spectral 
Resolution 

Since useful image data from aisaDUAL, EnMAP (simulated) and Semtinel-2 

(simulated) were only available for Field A (2011) and Field D (2012) (cf.  

Chapter 5.2.1), the total number of field spectral reflectance and corresponding LAI 

measurements (n = 124) was reduced to the number of samples collected from those 

fields (n = 73). This was a necessary step to make the in situ data set comparable to 

the image data sets for the ensuing course of the investigations. Moreover, one sampled 
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plot of Field A and two sampled plots of Field D were also excluded, due to their 

location at the edge of the fields and the resulting problem of mixed pixels in the 

EnMAP image data. Thus, 70 samples were used in further analysis. Since both fields 

were investigated during different stages of plant development (Field A: BBCH 3, 

Field D: BBCH 5), the covered range of LAI measurements had a comparable width 

to that of the entire data set (cf. Table 5.2). Hence, an important requirement has been 

met, which has already been identified as a decisive factor for a robust calibration of 

regression models in Chapter 7.1.2. 

The field reflectance measurements (867 spectral bands) were first spectrally 

resampled to the resolution of aisaDUAL (98 spectral bands) and EnMAP  

(204 spectral bands), respectively. Spectral resampling was conducted with the 

software ENVI using a Gaussian model with a full width at half maximum (FWHM) 

equal to the band spacings of both sensors. Hence, it was possible to investigate 

whether the reduced spectral resolution has any influence on the achieved model 

quality. For that reason, regression models were built based on the three data sets with 

different spectral resolutions. Due to the number of samples (n = 70), leave-one-out 

cross-validation was applied to evaluate the model quality. PLSR was selected as 

regression technique, since the accuracy obtained using this method has proven to be 

less affected by the type of validation technique (cf. Chapter 7.1.1). 

At first, a PLSR model was built based on the full-resolution field spectral 

measurements of the 70 samples. The high R2
cv of 0.96 (LV = 7), in combination with 

a relatively low RMSEcv of 0.279, which was achieved by the leave-one-out cross-

validated model, indicated that the LAI could be predicted with high accuracy. 

Furthermore, the fairly high RPDcv of 5.073 served as additional evidence for a robust 

model calibration [Dunn et al., 2002]. In comparison to the PLSR model, which was 

built with the entire data set (cf. Table 7.2), a distinct improvement in model 

performance was again possible. This is also obvious when comparing the scatter plots 

of both models. While the PLSR model, built with the 70 samples from Field A and 

Field D, only depicts distinctly less scattering and a nearly perfect match between the 

regression and the 1:1 line (Figure 7.4 (left)), the scatter plot of the model based on 

the data of all fields is characterized by more pronounced scattering and a slight 

deviation between the regression and the 1:1 line (Figure 7.2 (left)). 

The two other models using the 70 field spectral measurements, which were 

resampled to aisaDUAL and EnMAP resolution, provided model qualities comparable 

to those of the model built with full-resolution spectra. While the EnMAP model  

(LV = 7) had almost identical R2
cv (0.960), RMSEcv (0.281) and RPDcv values (5.046), 

the aisaDUAL model showed an almost negligible poorer model performance  

(R2
cv = 0.958, RMSEcv = 0.288, RPDcv = 4.923, LV = 6). All three data sets enable 

regression model calibration and validation on a very high level of accuracy. Table 7.4 

summarizes the results of the cross-validated PLSR models based on data sets with 



Results and Discussion   78 

 

 

different spectral resolutions. The scatter plots of the three models presented in  

Figure 7.4 also look almost identical. The models had the same regression functions, 

while the regression lines were very close to the 1:1 line. In all three cases, higher LAI 

values were marginally underestimated whereas lower values were marginally 

overestimated. The same effect, albeit more pronounced, has already been observed in 

the regression models based on the entire data set. 

 

Table 7.4: Cross-validated results of LAI prediction with PLSR for full-resolution field 
spectra, as well as field spectra resampled to aisaDUAL and EnMAP spectral resolution. 

n = 70 
No. of 
bands 

spectral 
sampling 

R2
cv RMSEcv RPDcv LV 

Field spectra 867 ≤ 3.8 nm 0.960 0.279 5.073 7 

aisaDUAL resampling 98 13–19 nm 0.958 0.288 4.923 6 

EnMAP resampling 204 6.5–10 nm 0.960 0.281 5.046 7 

 

The achieved results confirm that the spectral sampling rate and the resulting 

spectral resolution of the different data sets had no noticeable effect on the LAI assess-

ment of wheat. Even the data set with the lowest spectral resolution (aisaDUAL –  

98 spectral bands) enabled a LAI prediction on a very high level of accuracy. These 

findings are consistent with a study conducted by Atzberger et al. [2010], in which the 

authors also applied PLSR and obtained accurate LAI predictions of wheat LAI from 

field reflectance measurements, which were resampled to the spectral resolution of the 

HyMap hyperspectral airborne scanner  (127 spectral bands), which had a spectral  

 

Field spectra 
Field spectra 

aisaDUAL resampling 
Field spectra 

EnMAP resampling 

Figure 7.4: Scatter plots of estimated (cross-validated) and measured LAI for winter wheat, 
based on PLSR for full-resolution field spectra and field spectra, resampled to aisaDUAL and 
EnMAP spectral resolution. The solid red line represents the regression line, while the dashed 
black line represents the 1:1 line. 
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configuration comparable to that of aisaDUAL used in this thesis. Moreover, 

numerous studies proved that the LAI may also be derived from lower-resolution 

spectral data with high accuracy because the LAI is sensitive to several different 

regions along the electromagnetic spectrum [e.g., Asner, 1998; Lee et al., 2004; 

Thenkabail et al., 2004]. As such, the location of spectral bands, which are sensitive 

to changes in LAI, can be regarded as a more important factor than their pure number. 

To this extent, the next section is aimed at identifying the spectral bands with the 

highest amount of explained variance regarding the target variable LAI. 
 

7.2.2 Detection of the Most Important Bands for LAI Determination 

In the previous section, it was demonstrated that the higher spectral resolution of 

the full-resolution spectral field measurements did not result in higher LAI prediction 

accuracy. For this reason, and since precision agriculture requires detailed spatial 

information on the distribution of plant parameters, only the field spectral measure-

ments, which were resampled to the spectral resolution of the aisaDUAL and EnMAP 

imaging sensors, were further investigated to locate the most important spectral bands 

for the assessment of wheat LAI. 

The red bars in Figure 7.5 and Figure 7.6 illustrate the weight factors for each 

spectral band, calculated by the RReliefF feature selection algorithm after 100 runs, 

which were determined for the field spectral measurements resampled to aisaDUAL 

as well as EnMAP spectral resolution. Positive values implied that a band is relevant 

for LAI prediction, whereas bands with negative values were irrelevant. Higher 

positive weight factors indicate a higher importance of the band in order to predict the 

LAI [Robnik-Sikonja and Kononenko, 1997]. Underlying the bar plot is a typical 

wheat reflectance spectrum to enable a better understanding of the information content 

of the spectral bands, which were weighted by RReliefF. 

RRelief allowed the identification of eight spectral regions, each of which consisted 

of more than one band. The eight regions were manually selected by the user based on 

negative ranked bands or local maxima and minima. Thus, two different regions were 

separated either by negative ranked bands (e.g., Region 2 and Region 3) or by local 

minima (bands with distinctly lower positive RReliefF ratings) between two local 

maxima (e.g., Region 3 and Region 4). Table 7.5 gives an overview of the spectral 

regions identified with the help of RReliefF, based on the field spectral measurements 

resampled to aisaDUAL and EnMAP spectral resolution. Apart from minor 

differences, it became clear that the same spectral regions were selected in both data 

sets. Furthermore, all regions (except one) included spectral wavelengths/ bands, 

which have also been identified as important in other research studies [Asner, 1998; 

Darvishzadeh et al., 2008b; Lee et al., 2004; Thenkabail et al., 2004]. 
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Due to the fact that adjacent spectral bands within the eight selected regions were 

highly correlated to each other [Ghosh et al., 2013; Sohaib et al., 2012], only the bands 

with the highest RReliefF rating in each group were selected for further analysis. In 

order to verify that the highest-ranked band per region provided the most important  

 

 
Figure 7.5: Weight factors determined by RReliefF after 100 runs for each spectral band of 
the field spectral measurements resampled to aisaDUAL spectral resolution (red bars). 
Underlying the bar plot is a typical wheat reflectance spectrum (grey line). The eight frames 
represent the selected spectral ranges (Regions 1-8) with the most important information for 
the prediction of LAI. 

 

 
Figure 7.6: Weight factors determined by RReliefF after 100 runs for each spectral band of 
the field spectral measurements resampled to EnMAP spectral resolution (red bars). 
Underlying the bar plot is a typical wheat reflectance spectrum (grey line). The eight frames 
represent the selected spectral ranges (Regions 1-8) with the most important information for 
the prediction of LAI. 
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Table 7.5: Spectral regions, manually selected with the help of RReliefF, from the field 
spectral measurements resampled to aisaDUAL and EnMAP spectral resolution. 

RReliefF 
regions 

Sensors 
No. of bands  

per region 
Spectral range 
of the regions 

Importance of the 
regions in other studies

1 
aisaDUAL 5 438–497 nm 

- 
EnMAP 15 443–503 nm 

2 
aisaDUAL 2 703–717 nm 

x13, 14 
EnMAP 4 705–726 nm 

3 
aisaDUAL 13 759–930 nm 

x15, 16 
EnMAP 26 755–944 nm 

4 
aisaDUAL 7 1,041–1,127 nm x15 

EnMAP 10 1,018–1,120 nm  

5 
aisaDUAL 7 1,146–1,260 nm x13 

EnMAP 8 1,155–1,239 nm  

6 
aisaDUAL 4 1,278–1,345 nm 

x13,14,15 
EnMAP 10 1,251-1,348 nm 

7 
aisaDUAL 3 1,450–1,505 nm 

x13, 14 
EnMAP 4 1,457–1,511 nm 

8 
aisaDUAL 10 1,618–1,788 nm 

x13, 14, 16 
EnMAP 18 1,601–1,783 nm 

 

information regarding the target variable, a randomized experiment was conducted. In 

this context, 500 leave-one-out cross-validated PLSR models were built, each with one 

spectral band per region randomly selected to predict the LAI. Afterwards, the models 

were arranged in ascending order according to their R2
cv value. The 50 models with 

the highest R2
cv were subsequently chosen and a majority voting was conducted for 

each region to ascertain which spectral band was most frequently involved in model 

building. The eight spectral bands that were determined during the randomized 

experiment may be regarded as the most important spectral bands for deriving the LAI. 

Figure 7.7 and Figure 7.8 illustrate the location of the most important band per region, 

which was identified with the help of RReliefF (blue bars) and randomized sampling 

(green bars) from the field spectral measurements resampled to aisaDUAL and 

EnMAP spectral resolution. In addition, Table 7.6 provides an overview of the exact 

                                                            
13 Asner [1998] 
14 Lee et al. [2004] 
15 Thenkabail et al. [2004] 
16 Darvishzadeh et al. [2008b] 
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positions of the most important spectral bands per region ascertained by both 

approaches. In most cases, the spectral bands of a region in each data set, determined 

by RReliefF and randomized sampling, were very close to each other, or even had 

exactly the same position. Only in two regions the identified spectral bands had  

 

 
Figure 7.7: Comparison of the most important spectral bands determined by RReliefF (blue 
bars) and randomized sampling (green bars) for LAI prediction, based on the field spectral 
measurements resampled to aisaDUAL spectral resolution. The height of a bar corresponds 
to the RReliefF weight factor. Underlying the bar plot is a typical wheat reflectance spectrum 
(grey line). The frames represent the eight previously selected spectral ranges (Regions 1-8). 

 

 
Figure 7.8: Comparison of the most important spectral bands determined by RReliefF (blue 
bars) and randomized sampling (green bars) for LAI prediction, based on the field spectral 
measurements resampled to EnMAP spectral resolution. The height of a bar corresponds to 
the RReliefF weight factor. Underlying the bar plot is a typical wheat reflectance spectrum 
(grey line). The frames represent the eight previously selected spectral ranges (Regions 1-8). 
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distances of more than 50 nm. In the case of the aisaDUAL data set, this was  

Region 3 (distance: 57 nm), while in the case of the EnMAP data set, this was  

Region 8 (distance: 78 nm). Moreover, when separately comparing the selected bands 

from both datasets for each region, it was apparent that the highest-ranked RReliefF 

bands lie very close together. Only in Region 1 were spectral bands determined with a 

slightly larger distance (17 nm), whereas the smaller distances in some other regions 

resulted from the different spectral sampling intervals of both sensors and, therefore, 

the location of the spectral bands in both data sets. In contrast, the randomized 

sampling approach led to larger distances between the selected aisaDUAL and EnMAP 

bands in several regions (Region 1 (54 nm), Region 6 (60 nm), Region 8 (41 nm)). 

 
Table 7.6: Comparison of spectral bands ascertained by RReliefF and randomized sampling 
for the assessment of wheat LAI based on the field spectral measurements resampled to 
aisaDUAL and EnMAP spectral resolution. 

RReliefF 
regions 

Sensors 
Highest ranked band per region 

RReliefF Randomized sampling 

1 
aisaDUAL 457 nm 497 nm 

EnMAP 440 nm 443 nm 

2 
aisaDUAL 717 nm 717 nm 

EnMAP 719 nm 726 nm 

3 
aisaDUAL 816 nm 759 nm 

EnMAP 808 nm 762 nm 

4 
aisaDUAL 1,070 nm 1,070 nm 

EnMAP 1,074 nm 1,074 nm 

5 
aisaDUAL 1,203 nm 1,222 nm 

EnMAP 1,203 nm 1,215 nm 

6 
aisaDUAL 1,316 nm 1,335 nm 

EnMAP 1,323 nm 1,275 nm 

7 
aisaDUAL 1,450 nm 1,450 nm 

EnMAP 1,457 nm 1,457 nm 

8 
aisaDUAL 1,713 nm 1,675 nm 

EnMAP 1,710 nm 1,634 nm 

 

As the next step, leave-one-out cross-validated PLSR regression models were again 

built, but only with the eight spectral bands identified with the help of RReliefF and 

randomized sampling for both data sets. Since only eight bands were involved in 

regression model building, the allowed number of latent variables was set to eight. 

Table 7.7 summarizes the results of the cross-validated models. The achieved results 

were almost identical to those obtained for the models built with all the spectral bands 
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of aisaDUAL (98 bands) and EnMAP (204 bands), respectively (cf. Table 7.4). Both 

the aisaDUAL and the EnMAP models, which were based on the eight bands selected 

by randomized sampling, provided slightly higher R2
cv and RPDcv, as well as lower 

RMSEcv values, in comparison to the two RReliefF models. Furthermore, in the case 

of randomized sampling, only six LVs were used for model building, whereas the 

RReliefF models are based on seven and eight LVs, respectively. In this context, a 

PLSR model with a lower number of LVs can be regarded as more robust than a model 

with a higher number of LVs because less noise is introduced into the model by 

excluding lower order LVs [Li et al., 2002]. Therefore, the randomized sampling 

models can be regarded as the models with higher statistical quality. 

 

Table 7.7: Cross-validated results of wheat LAI prediction with PLSR for the eight spectral 
bands determined by RReliefF and randomized sampling, based on the field spectral 
measurements resampled to aisaDUAL and EnMAP spectral resolution. 

n = 70 No. of bands R2
cv RMSEcv RPDcv LV 

aisaDUAL resampling (RReliefF) 8 0.956 0.294 4.814 7 

aisaDUAL resampling (randomized s.) 8 0.960 0.281 5.045 6 

EnMAP resampling (RReliefF) 8 0.958 0.289 4.904 8 

EnMAP resampling (randomized s.) 8 0.960 0.280 5.056 6 

 

Figure 7.9 illustrates the scatter plots of the RReliefF and randomized sampling 

PLSR models, which also exhibited strong similarities with the scatter plots of the 

models built with all the spectral bands of aisaDUAL and EnMAP (cf. Figure 7.4). All 

four models in Figure 7.9 show less scattering and a close match of the regression to 

the 1:1 line. Moreover, as the models have almost the same regression function, they 

can be regarded as equivalent. 

Although the randomized sampling models provided slightly better model 

performances, the differences were negligibly small and both approaches identified 

almost the same wavelength in each region as important. For that reason, the 

randomized sampling can be regarded as an appropriate method to evaluate whether 

the highest-ranked RReliefF spectral bands were most suited for an accurate LAI 

assessment. 

The next question was concerned with examining, whether the spectral information 

of each identified region was truly necessary for an accurate LAI prediction. Therefore, 

a second randomized experiment was conducted. In this context, the number of the 

highest-ranked spectral bands selected with the help of RReliefF (one spectral band 

from each region) was gradually reduced from eight to two spectral bands. In each  
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Figure 7.9: Scatter plots of estimated (cross-validated) and measured LAI for winter wheat, 
based on PLSR for the eight spectral bands, which were determined by RReliefF and 
randomized sampling from the field spectral measurements resampled to aisaDUAL and 
EnMAP spectral resolution. The solid red line represents the regression line, while the dashed 
black line represents the 1:1 line. 

 

step, 100 leave-one-out cross-validated PLSR models were generated to predict the 

LAI. Each of the 100 models was built with n – 1 randomly selected spectral bands, 

while the number of allowed LVs was adapted to the number of used spectral bands. 

Afterwards, the model with the highest R2
cv was selected and the band that was not 

involved in model building was determined. This spectral band was subsequently 

excluded from further analysis in the next step. Figure 7.10 illustrates the changes in 

R2
cv and RMSEcv for the aisaDUAL and EnMAP data set when the number of spectral 

bands was gradually reduced. The figure clearly shows that the R2
cv and RMSEcv of 

the aisaDUAL and EnMAP models had similar or even identical values. Therefore, 

they are described together below. From eight (Table 7.7) to four spectral bands  

(R2
cv = 0.952, RMSEcv = 0.307), the decrease in R2

cv and the increase in RMSEcv were 
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very small. Although the further reduction to three spectral bands resulted in a slightly 

more pronounced decline in R2
cv (0.946) and rise in RMSEcv (0.327), the PLSR models 

based on three aisaDUAL and three EnMAP spectral bands still provided high model 

qualities. In contrast, the subsequent PLSR modelling with only two spectral bands led 

to a distinct decrease in model accuracy. The model quality, however, was still rather 

high with, an R2
cv of 0.912 and an RMSEcv of 0.418. 

 

            R2
cv            RMSEcv 

Figure 7.10: Changes in R2
cv and RMSEcv regarding the prediction of winter wheat, based on 

PLSR, when gradually reducing the number of spectral bands from the field spectral 
measurements resampled to aisaDUAL and EnMAP spectral resolution. 

 

The models generated with three spectral bands can be regarded as the most robust 

models because they provided distinctly higher model qualities than the models based 

on two spectral bands, as well as possessed almost the same accuracies compared to 

the models built with four to eight spectral bands. This indicates that more than three 

spectral bands are incapable of further increasing the model qualities to a significant 

degree. For both the aisaDUAL and the EnMAP data set, the highest ranked bands 

from Regions 4, 5, and 8 were identified as sufficient to predict the LAI with high 

accuracy. Table 7.8 summarizes the most important spectral bands determined from 

the spectral field measurements resampled to aisaDUAL and EnMAP spectral 

resolution. 

In Region 4, the aisaDUAL spectral band located at 1,070 nm and the EnMAP 

spectral band located at 1,074 nm were identified as important for the assessment of 

LAI. This is well in line with a study by Thenkabail et al. [2004], in which a similar 

wavelength position (1,085 nm) was found to be sensitive to changes in the LAI of 

shrubs, grasses, weeds and crops. Furthermore, the spectral bands at 1,203 nm in 

Region 5 were highly rated in both data sets. The identified position was close to the 

small water vapour absorption feature on the NIR plateau, which is at around  
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1,150 nm [Rollin and Milton, 1998]. This wavelength position was also determined to 

be relevant when predicting the LAI by Asner [1998], who observed a deepening of 

this absorption feature with increasing LAI. Furthermore, important spectral bands for 

the assessment of wheat LAI were found in Region 8 at 1,713 nm and 1,710 nm in the 

aisaDUAL and EnMAP data set, respectively. This is consistent with the findings of 

previous studies by Darvishzadeh et al. [2008b] and Lee et al. [2004], all of whom 

ascertained strong relationships between spectral bands in the SWIR I region  

(1,500–1,900 nm) and the LAI of grasslands and crops. 

 

Table 7.8: Comparison of the most important spectral bands ascertained for the assessment 
of wheat LAI, based on the field spectral measurements resampled to aisaDUAL and EnMAP 
spectral resolution. 

RReliefF Region Sensor Highest ranked RReliefF band  

4 
aisaDUAL 1070 nm 

EnMAP 1074 nm 

5 
aisaDUAL 1203 nm 

EnMAP 1203 nm 

8 
aisaDUAL 1713 nm 

EnMAP 1710 nm 
 

The results of the leave-one-out cross-validated PLSR models built with three 

aisaDUAL and three EnMAP spectral bands are presented in Table 7.9. Additionally, 

the results of the models based on eight as well as all the spectral bands are shown 

again to allow for a better comparison. The achieved results prove that highly accurate 

LAI predictions based on only three spectral bands were possible. The three-band 

model qualities for aisaDUAL and EnMAP were similar (R2
cv = 0.946,  

RMSEcv = 0.327), as well as only slightly poorer compared to the models based on 

eight as well as all the spectral bands. RPDcv values well over 4.0 additionally indicated  

 

Table 7.9: Cross-validated results of wheat LAI prediction with PLSR for models, based on 
three (RReliefF), eight (RReliefF) and all the spectral bands of the field spectral measurements 
resampled to aisaDUAL and EnMAP spectral resolution. 

n = 70 No. of bands R2
cv RMSEcv RPDcv LV 

aisaDUAL resampling (RReliefF) 3 0.946 0.327 4.333 3 

EnMAP resampling (RReliefF) 3 0.946 0.327 4.333 3 

aisaDUAL resampling (RReliefF) 8 0.956 0.294 4.814 7 

EnMAP resampling (RReliefF) 8 0.958 0.289 4.904 8 

aisaDUAL resampling 98 0.958 0.288 4.923 6 

EnMAP resampling 204 0.960 0.281 5.046 7 
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the robustness and successful calibration of both models [Dunn et al., 2002]. The 

scatter plots in Figure 7.11 confirmed the results of the three-band regression models, 

based on their statistical values. Both models had the same regression function, 

exhibited less scattering and provided a close match between the regression and the 

1:1 line. 

 

Fieldspectra  
aisaDUAL Resampling 

Fieldspectra  
EnMAP Resampling 

  

Figure 7.11: Scatter plots of estimated (cross-validated) and measured LAI for winter wheat, 
based on PLSR for the three most important spectral bands of the field spectral measurements 
resampled to aisaDUAL and EnMAP spectral resolution. The solid red line represents the 
regression line, while the dashed black line represents the 1:1 line. 

 

In general, the weight factors determined by RReliefF were only partially helpful 

in identifying the most important spectral bands for the assessment of wheat LAI. 

While the first randomized experiment proved that the highest-ranked RReliefF 

spectral band in each region mostly had the highest information content in order to 

predict the LAI, the second randomized experiment clearly showed that only the 

spectral bands with the highest RReliefF rating from Regions 4, 5, and 8 were 

necessary for highly accurate LAI predictions. As already described above, the three 

most important bands were also found to be sensitive to changes in LAI in other 

studies. While the importance of the selection of spectral bands in Regions 4 and 5 can 

probably be explained by the fact that changes in canopy LAI strongly influence  

the level of reflectance height in the NIR domain [Asner, 1998], the high  

rating of spectral bands in Region 8 (SWIR), which is mainly influenced by the water 

content of plants [Verdebout et al., 1994], may result from the high correlation of LAI 

and PWC (r = 0.98) determined in this thesis (cf. Chapter 5.1.1). In this context, 

Verrelst et al. [2015] suggested that the estimation of a structural plant parameter  
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(e.g., LAI) can be supported by a biochemical plant parameter (e.g., PWC), if both  

are correlated to each other. Spectral information from VIS and the transition area 

between VIS and NIR (700-900 nm), however, seem to be less important in the 

assessment of wheat LAI in this thesis. This stands in contrast to studies conducted by 

Lee et al. [2004] and Thenkabail et al. [2004], all of whom determined strong 

relationships between these spectral regions and the parameter LAI. 

The results showed that only three spectral bands at specific locations were 

necessary to predict the LAI of wheat with an accuracy comparable to those achieved 

for the models based on all the spectral bands. This fact proved that PLSR can deal 

efficiently with a low number of specific spectral bands without any substantial loss 

in model accuracy. This is in accordance with a study conducted by An et al. [2015], 

in which the authors also achieved comparable prediction results for the LAI of 

turfgrass using PLSR models calibrated with continuous spectra and models, which 

were only generated with a small number of selected spectral bands. Identifying the 

most important spectral regions from hyperspectral data for the assessment of a certain 

plant parameter can be very helpful in predicting the same parameter for other parts of 

the same study site, for which only multispectral data are available that possibly 

contain spectral bands in the same spectral ranges. Unfortunately, none of the three 

regions identified in this thesis as important in the retrieval of LAI is covered by 

spectral bands of current multi-/superspectral satellite systems (e.g., Landsat 8, 

Sentinel-2). 

Due to the limited number of sampled wheat plots used in this thesis, which were 

collected from only one study site during only two stages of plant development, the 

generated PLSR models cannot simply be transferred to other regions. For that reason, 

LAI and corresponding reflectance measurements of numerous regions, which cover 

several growth stages, must be examined in future studies in order to develop more 

robust and regionally transferable regression models, based on the most relevant 

spectral bands. In this regard, first promising results were achieved by  

Gerighausen et al. [2016], who successfully transferred PLSR models, which were 

calibrated with data collected from one study site to a different region, in order to 

predict the LAI of crops. 

The derivation of LAI from remote sensing data for the assessment of the current 

growth conditions of crops in agriculture requires high accuracy. In this section, it was 

shown that both aisaDUAL and EnMAP provide the required spectral characteristics 

to enable an accurate prediction of wheat LAI. Moreover, the location of the most 

important spectral bands of both sensor systems were determined in order to 

demonstrate that, by far, not all the spectral bands of aisaDUAL and EnMAP 

hyperspectral data are necessary for estimating the LAI. Together with the spectral 

specifications of imaging remote sensing sensors, the spatial resolution plays a 

decisive role in many applications in agriculture. For that reason, the next section 
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investigates the GSD of aisaDUAL and EnMAP to ascertain their potential for the 

spatial prediction of LAI in precision agriculture. 

 

7.3 Influence of Spatial Resolution on LAI Determination 

For precision agricultural applications, the spatial resolution is one of the most 

decisive factors to enable an adapted treatment of fields [Whelan and Taylor, 2013]. 

Most of these applications (e.g., irrigation, fertilization) require GSDs of less than  

ten metres [Mulla, 2013]. Hyperspectral data acquired from UAVs or aircraft usually 

meet this requirement. Current and near future hyperspectral satellites, however, 

provide/will provide spatial resolutions of only 30 m. Nevertheless, from a spectral 

point of view, hyperspectral data, typically with more than 100 spectral bands, offer 

the potential to derive the LAI on a level of accuracy that often cannot be achieved 

using multispectral data [Lee et al., 2004]. Therefore, this section examines the impact 

of the spatial resolution of hyperspectral image data on the retrieval of the parameter 

LAI. In this regard, the following research question was formulated, which should be 

answered in the ensuing sections: 

What influence does the ground sampling distance of remote sensing images have 

on the spatial assessment of LAI and the associated regression model validation? 

7.3.1 LAI Prediction Based on aisaDUAL and EnMAP Image Data 

In Chapter 7.2, it was already demonstrated that the spectral characteristics of 

aisaDUAL and EnMAP were well suited to the precise assessment of LAI. The 

previous investigations in this thesis, however, were exclusively conducted using field 

spectral measurements resampled to aisaDUAL and EnMAP spectral resolution. To 

ascertain the potential of real aisaDUAL and simulated EnMAP image data for the 

spatial prediction of LAI, the reflectance spectra of the image pixels, which 

corresponded to the geographic location of the different sampled wheat plots of  

Field A and Field D, were extracted from both data sets. Afterwards, PLSR models 

were generated based on the extracted spectra. First, all bands of aisaDUAL and 

EnMAP were used for model calibration and then models were built with only the 

three most important bands identified for each sensor, as given in Chapter 7.2.2.  

Table 7.10 summarizes the results of the generated PLSR models. 

The high R2
cv of both aisaDUAL models (98 bands: 0.890, 3 bands: 0.892), in 

combination with a relatively low RMSEcv (98 bands: 0.466, 3 bands: 0.461), achieved 

by leave-one-out cross-validation, indicated that the LAI could be predicted with high 

accuracy. Although the model accuracies were lower when compared to the models 

calibrated with the field spectral measurements resampled to aisaDUAL spectral 
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resolution (cf. Table 7.9), both models built with real aisaDUAL data provided an 

RPDcv higher than 3.0, which indicated a robust model calibration [Dunn et al., 2002]. 

In contrast, both EnMAP models showed distinctly lower model accuracies with 

respect to R2
cv (204 bands: 0.666, 3 bands: 0.678) and RMSEcv (204 bands: 0.831,  

3 bands: 0.814) when compared to the models, which were based on the field spectral 

measurements resampled to EnMAP spectral resolution (cf. Table 7.9). In addition, 

RPDcv values of 1.703 for the EnMAP model, built with all the spectral bands and 

1.740 for the three-band EnMAP model only suggested moderate model performances  

[Dunn et al., 2002]. 

 

Table 7.10: Cross-validated results of wheat LAI prediction with PLSR for models, based on 
all as well as only three spectral bands of aisaDUAL and EnMAP. 

n = 70 No. of bands R2
cv RMSEcv RPDcv LV

aisaDUAL  98 0.890 0.466 3.037 4 

aisaDUAL (RReliefF) 3 0.892 0.461 3.069 3 

EnMAP  204 0.666 0.831 1.703 3 

EnMAP (RReliefF) 3 0.678 0.814 1.740 3 

  

The scatter plots of the aisaDUAL and EnMAP models are presented in Figure 7.12. 

Both aisaDUAL plots showed more pronounced scattering compared to the scatter 

plots of the models, which were built with the field spectral measurements resampled 

to aisaDUAL spectral resolution (cf. Figure 7.9 and Figure 7.11). In general, however, 

the scattering was on a relatively low level. The offsets of both models were small, 

such that, the regression lines fitted close to the 1:1 lines. In contrast, the EnMAP 

models provided distinctly more scattering and the regression lines considerably 

deviated from the 1:1 lines. Furthermore, both aisaDUAL and EnMAP scatter plots 

illustrated the same trend of overestimating lower and underestimating higher values, 

which were already observed in the scatter plots of the regression models in the 

previous sections. 

For both data sets, the three-band models provided comparable model accuracies to 

those achieved for the full-resolution models. This proved that the three identified 

spectral bands of both sensors in Chapter 7.2.2 also carried the most important 

information for the assessment of wheat LAI in the aisaDUAL and EnMAP image 

data. The quality of the three-band aisaDUAL model was only slightly lower compared 

to the field spectral measurements resampled to aisaDUAL spectral resolution, given 

that the locations of the small field plots (size: 0.25 m2) were chosen on the basis that 

each plot was representative of a larger surrounding area of approximately 5 x 5 m 

with comparable growth conditions. Therefore, the LAI measurements of the field 

plots appeared to be suitable for calibrating and validating robust PLSR models, based 
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on aisaDUAL image pixels, each of which covered an area of 9 m2. An EnMAP pixel, 

however, has a size of 900 m2; therefore, the sampled field plots, which were 225 times 

smaller, were less representative for model calibration and validation. Consequently, 

poor model qualities were achieved. Figure 7.13 illustrates the size of an aisaDUAL 

and an EnMAP pixel in comparison to a sampled field plot in order to emphasize the 

problem. 

 

aisaDUAL EnMAP 

  

  

Figure 7.12: Scatter plots of estimated (cross-validated) and measured LAI for winter wheat, 
based on PLSR for all as well as for only the three most important spectral bands of aisaDUAL 
and EnMAP. The solid red line represents the regression line, while the dashed black line 
represents the 1:1 line. 

 

Although it was only the aisaDUAL three-band model that provided high accuracy, 

both three-band models were transferred to the image data of Field A and Field D to 

predict the spatial distribution of LAI. Figure 7.14 illustrates the LAI maps based on 
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the two three-band prediction models. In the rest of this section, the three-band models 

are only referred to as either the aisaDUAL or the EnMAP model, respectively. Due 

to the higher quality of the aisaDUAL model, the predicted aisaDUAL LAI maps 

served as reference; as such, they are described in more detail below. 

 

 
Figure 7.13: Size of an aisaDUAL and an EnMAP image pixel in comparison to the size of a 
sampled field plot. 

 

The aisaDUAL maps for both years showed a very detailed spatial LAI distribution 

across the fields and the tramlines caused by agricultural machinery were clearly 

visible. Field A had a very heterogeneous spatial LAI distribution, while, in some parts 

of the field, the LAI was already above two (middle southern part); other parts, 

however, were characterized by an LAI of distinctly lower than one (eastern and north-

western parts). Between the parts with low and high LAI, there were small transitional 

zones with an LAI of around one. This unequal distribution of LAI is typical for the 

early stages of plant development and represents intra-field small-scale differences in 

water supply, different soil conditions and/or differences in sowing density. These 

factors have a strong influence on plant growth and, thus, on the LAI. In contrast to 

Field A, Field D had a relative homogeneous spatial LAI distribution. The main parts 

of the field were characterized by an LAI of between three and four. Only three small 

areas on the western edge and two areas on the eastern edge were characterized by an 

LAI of lower than two, which differed from the rest of the field. During the more 

advanced stages of plant development (as reported for 2012 in this thesis), the intra-

field spatial differences of LAI distribution are not quite as pronounced as they are in 
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earlier development stages. Additionally, Field D was much smaller than Field A and, 

apparently, had more comparable growth conditions in spatial terms. The maps based 

on the EnMAP model also represented the general LAI structure of the fields. In 

comparison to the aisaDUAL maps, small variations could not be detected. The reason 

for this was that the lower spatial resolution of the EnMAP image data only allowed 

the calibration of a regression model with moderate prediction capabilities. 
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Figure 7.14: Spatial LAI prediction of Field A and Field D, based on aisaDUAL and EnMAP. 

 

Due to the medium spatial resolution of EnMAP, robust calibration and validation 

of regression models, using reference data collected from small field plots, to predict 

the LAI or other plant parameters was only possible to a limited extent. For that reason, 

the next section deals with two different approaches, which enable a more precise 

validation of spatial LAI predictions based on EnMAP, in which image data of higher 

spatial resolution is also available. 
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7.3.2 Validation of Spatial LAI Prediction Based on EnMAP Image 
Data17 

According to Wu and Li [2009], the retrieval of LAI from remote sensing data 

acquired at different spatial scales is feasible using the same method. Thus, it was 

possible to use PLSR models for the spatial prediction of LAI based on the aisaDUAL 

and EnMAP data sets of Field A and Field D. For a robust calibration and validation 

of the EnMAP model, however, in situ LAI measurements are necessary, which are 

representative of an EnMAP pixel with a size of 900 m2. Since the LAI measurements 

collected during the field campaigns were only representative of areas that were equal 

to or less than 25 m2, a spatial comparability between the reflectance values of the 

EnMAP pixels (independent variables) and the in situ LAI measurements (dependent 

variables) was not given, such that a valid model calibration was not possible. 

Nevertheless, in order to enable a reasonable spatial prediction of LAI based on 

EnMAP image data, two different approaches were applied in this thesis. The first one 

was to upscale the aisaDUAL LAI result maps of both fields to the spatial resolution 

of EnMAP, and then comparing them with the LAI result maps obtained from the 

EnMAP images. This approach was referred to as aggregation [Morisette et al., 2006]. 

Another possibility was to improve the spatial resolution of the EnMAP images by 

merging them with higher resolution image data, and then generating a new PLSR 

prediction model based on the merged data set, which allows for a more robust spatial 

LAI assessment of both fields. This method was called fusion in the further course of 

this section. 

 

Aggregation 

The aim of the aggregation approach, also known as the bridging method, was to 

make the LAI values, which were derived from coarser resolution EnMAP data, equal 

to the average of LAI values derived independently from finer resolution aisaDUAL 

data [Shi et al., 2015; Tian et al., 2003]. In order to achieve this, the aisaDUAL LAI 

result maps presented in Figure 7.14 a) were spatially scaled up (aggregated) to 30 m 

spatial resolution using an EnMAP pixel grid (Figure 7.15 a)). Hence, the aggregated 

aisaDUAL and the EnMAP LAI maps of both fields (Figure 7.15 b)) had the same 

spatial resolution, which allowed for a comparison of the predicted values at the pixel 

level. Figure 7.15 c) shows the difference maps calculated for both fields. In this 

context, the EnMAP LAI maps were subtracted from the aisaDUAL LAI maps, which 

were scaled up to a GSD 30 m, since the spatial predictions based on aisaDUAL served 

as references. 

 

                                                            
17 Parts of this section have previously been published by Siegmann et al. [2015]. 
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Figure 7.15: Spatial LAI prediction of Field A and Field D. a) aisaDUAL aggregated to a 
spatial resolution of 30 m; b) EnMAP; and c) resulting difference maps for both fields 
(difference of aisaDUAL (aggregated) and EnMAP predictions). 

 

Bluish pixels in the difference maps represented areas with small LAI differences, 

which were achieved for both data sets, while yellow, orange and red pixels were 

indicators of higher deviations. The differences in the spatial LAI predictions were on 

the same level for both fields. In the western and north-western parts of Field D, two 

areas with larger deviations were identified. During the field campaign in 2012, both 

areas exhibited low vegetation cover, meaning that they had low LAI values. In 

comparison to the aggregated aisaDUAL LAI map, however, the LAI of both areas 

was distinctly underestimated in the EnMAP LAI map. The difference map of Field A 

also provided mainly bluish pixels. Only in the eastern and north-eastern part of the 

field were a few pixels with higher deviations observed. In these areas, the LAI was 

slightly overestimated in the LAI prediction map, which was based on EnMAP in 

comparison to the aggregated aisaDUAL LAI map. The descriptive statistics of the 
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LAI difference maps are presented in Table 7.11. The mean LAI deviation of 0.409, 

which was determined for Field D, was slightly higher than that for Field A, which 

was only 0.265. Furthermore, a combined scatter plot was generated to illustrate  

the goodness of fit between the aggregated aisaDUAL and the EnMAP LAI maps  

(Figure 7.16). The scatter plot also clarified the higher conformities of lower LAI 

values (LAI < 3), which were mainly determined for Field A, and the slightly more 

pronounced deviations for higher LAI values (LAI > 4), which were exclusively 

derived for Field D. The higher scattering of LAI values greater than four was possibly 

predicated on the fact that the more complex geometry of the further developed wheat 

plants, which were investigated in 2012 (Field D), had more influence on the 

prediction of LAI from different spatial scales. The deviation of the regression line 

from the 1:1 line in the scatter plot further confirmed the overestimation of lower and 

the underestimation of higher LAI values in the EnMAP prediction maps, which were 

already observed in the difference maps computed for both fields (Figure 7.15 c)). 

 

Table 7.11: Descriptive statistics of the LAI differences maps achieved for Field A and  
Field D 

Year Field n Min Max Mean SD Median 

2011 Field A 901 0.000 1.323 0.265 0.170 0.255 

2012 Field D 310 0.000 1.478 0.409 0.279 0.384 

2011 & 2012 Field A &D 1211 0.000 1.478 0.318 0.238 0.282 

 
 
 

 

Figure 7.16: Scatter plot of spatial LAI predictions achieved for Field A and Field D based 
on aisaDUAL (resampled to a GSD of 30 m) and EnMAP LAI result maps. 
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Fusion 

The objective of the fusion approach was to sharpen the medium spatial resolution 

hyperspectral EnMAP images of both fields (30 m GSD) using panchromatic 

aisaDUAL (3 m GSD) and Sentinel-2 image data (10 m GSD) of higher spatial 

resolution without altering the spectral characteristics of EnMAP. As described in 

Chapter 5.2, the different data sets were prepared and the Ehlers Fusion algorithm was 

applied to merge the images. 

Figure 7.17 illustrates the fusion results for both fields in comparison to the 

simulated EnMAP data sets (Figure 7.17 a)). A predefined filter design for rural 

regions was used in the fusion process, which took into account the predominant land 

cover of the investigated area. As a result of merging simulated EnMAP data with 

aisaDUAL or Sentinel-2 panchromatic images, fused data sets were created with the 

spectral characteristics of EnMAP (204 spectral bands) and the spatial resolution of 

aisaDUAL pan (Figure 7.17 b)) or Sentinel-2 pan (Figure 7.17 c)), respectively. 

As a first step, a visual analysis of the fusion results was conducted. In this context, 

the EnMAP–aisaDUAL fusion result of Field A showed a plausible spatial 

enhancement compared to the EnMAP data and a good agreement with the original 

aisaDUAL image. In contrast, the EnMAP–aisaDUAL fusion of Field D appeared 

more blurred. This was particularly evident for the villages with their small-scale 

structures in the northern and south-eastern parts of the image. Both EnMAP–

aisaDUAL fusion results (Field A and Field D) showed some artefacts. Due to the 

frequency content of the image covering Field D, these artefacts were less notable. The 

results of the EnMAP–Sentinel-2 fusion showed a similar trend. The result for  

Field A seemed to be sharper compared to the result achieved for the images of  

Field D. Furthermore, the lower spatial resolution of Sentinal-2 provoked fewer 

artefacts in the result images in comparison to the EnMAP–aisaDUAL fusion results. 

In terms of visual evaluation, the colour infrared composites (RGB 863/652/548 nm) 

of all fusion results provided reasonable colour preservation. This kind of 

interpretation, however, can be regarded as very subjective and only allowed the 

analysis of a single three-band combination. For a more objective spectral evaluation, 

αspec was calculated using corresponding pixels from the original aisaDUAL data sets 

and the fused images. In this context, the original aisaDUAL datasets, which consisted 

of 367 spectral bands, first had to be resampled to match the spectral resolution of the 

fusion results (204 spectral bands). Second, due to the different spatial resolution of 

the original aisaDUAL data (3 m GSD) and the EnMAP–Sentinel-2 fusion results  

(10 m GSD), a spatial resampling of the aisaDUAL GSD to 10 m was necessary. Thus, 

the data sets were prepared to apply a pixel-based αspec determination. 
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Figure 7.17: Comparison of the EnMAP data sets with the fusion results. Displayed images 
in RGB (863/652/548 nm): a) simulated EnMAP data sets; b) EnMAP–aisaDUAL fusion; and 
c) EnMAP–Sentinel-2 fusion. The two investigated fields are indicated by the yellow polygons. 
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Based on the computed αspec map of each fusion result, descriptive statistics were 

calculated for the pixel values covering the investigated wheat fields (Table 7.12). The 

minimum αspec values determined for the EnMAP–aisaDUAL fusion and the EnMAP– 

Sentinel-2 fusion were nearly the same. In contrast, the maximum αspec values showed 

distinct differences. The maximum angles of the EnMAP–Sentinel-2 fusion results for 

both fields were much higher, when compared to those achieved for the EnMAP–

aisaDUAL fusion results. In contrast, the mean αspec values of both EnMAP– 

Sentinel-2 fusion results were somewhat lower. This finding indicates a slightly better 

spectral preservation of the EnMAP–Sentinel-2 fusion results achieved for Field A and 

Field D. 

 

Table 7.12: Descriptive statistics of αspec maps (in degrees) for both years. 

 Min Max Mean SD 

Field A D A D A D A D 

EnMAP–aisaDUAL fusion 1.765 1.738 35.614 50.608 5.798 4.486 3.651 2.456

EnMAP–Sentinel-2 fusion 1.989 1.859 88.605 89.147 5.109 4.048 5.618 3.102

 

Figure 7.18 illustrates the pixel-based calculated spectral angles of the investigated 

fields. As already mentioned in Chapter 5.2, due to waterlogging in early spring, which 

allowed no plant growth, the two drainless hollows in the northern and south-eastern 

parts of Field A, which was investigated in 2011, were masked and not considered for 

αspec determination.  

In general, the fusion results of Field D showed a better spectral preservation 

capability. One reason might be the more advanced plant development stage in 2012 

compared to 2011, resulting in a spectrally more homogeneous surface, which caused 

less problems in the fusion process. Only an area with less vegetation in the eastern 

part of the field and three smaller areas at the western, north-western and south-western 

edges of the field provided higher spectral angles and, therefore, a poorer spectral 

preservation compared to the rest of the field. Furthermore, some fusion artefacts 

present as horizontal edges crossing the middle part of the field were recognized  

in the EnMAP–aisaDUAL fusion result. That was most likely the result of the  

insufficient correction of defective image lines during aisaDUAL pre-processing  

(cf. Chapter 5.2.1). In comparison to Field D, the αspec, maps based on the fusion results 

of Field A, had a distinctly higher number of cyan pixels, indicating only a medium 

quality spectral preservation. The yellow, orange and red areas at the edges of the 

drainless hollows in both αspec maps of Field A represent regions with large spectral 

angles and, thus, a poor spectral preservation. In these transition areas, the spectral 

reflection was characterized by a small-scaled and fast changing mixture of vegetation 
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and soil, resulting in a spectral inhomogeneous surface structure, which apparently led 

to problems during the fusion. Additionally, the same problem was detected at the 

western edge of Field A in the EnMAP–aisaDUAL fusion result. In this area, the sharp 

spectral transition of the wheat field to the neighbouring field, which was covered with 

bare soil, could not be properly reproduced in the fusion result. In the EnMAP–

Sentinel-2 fusion result, the problem was less pronounced. One possible reason for this 

was the lower spatial resolution of Sentinel-2 and, therefore, the lower spatial fusion 

ratio of 1:3, in comparison to the EnMAP–aisaDUAL fusion with a ratio of 1:10. 
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Figure 7.18: αspec maps based on a) EnMAP–aisaDUAL fusion and b) EnMAP–Sentinel-2 
fusion for Field A and Field D. 

 

Besides the pixel-based performance of the fusion procedure, which provided 

information on the spatial distribution of the spectral preservation capability, it was 

equally important to determine the spectral quality of the single bands. Therefore, the 

correlation coefficient R was calculated for every spectral band of the fusion results. 

Similar to the αspec calculations, R was computed solely for the pixels covering the 

investigated fields. Table 7.13 shows the general results for the EnMAP–aisaDUAL 

and the EnMAP–Sentinel-2 fusions. In this context, the mean value provided the most 

important information. Consistent with the results of the αspec analysis, the EnMAP–

Sentinel-2 fusion produced a better spectral preservation. This was confirmed by a 

higher correlation average across all the spectral bands compared to the mean R, which 
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was determined for the EnMAP–aisaDUAL fusion. With respect to the single band 

analysis, Figure 7.19 illustrates the correlation of every spectral band of the EnMAP–

aisaDUAL fusion as well as the EnMAP–Sentinel-2 fusion with the original 

aisaDUAL bands. It can be seen that, on average, the EnMAP–Sentinel-2 fusion 

showed a higher correlation than the EnMAP–aisaDUAL fusion. 

 

Table 7.13: Image statistics based on calculated correlation coefficients (R), taking into 
account all the spectral bands of EnMAP (204 spectral bands) for the pixels covering the two 
investigated fields. 

 Min Max Mean SD 

EnMAP–aisaDUAL fusion 0.508 0.872 0.707 0.103 

EnMAP–Sentinel-2 fusion 0.520 0.889 0.773 0.066 

 

In general, the shape of the graphs representing the R of the EnMAP–aisaDUAL 

and the EnMAP–Sentinel-2 fusions were characterized by a similar behaviour; 

however, in some spectral regions, the R values were on different levels. In the blue 

range of the VIS, the correlation coefficients were very low. A possible reason for this 

can be the very low reflectance of green vegetation in the blue part of the spectrum, 

which has an impact on the histogram match applied to the fused intensity component 

matching it to the original intensity component during the Ehlers Fusion. The same 

problem appeared in the red domain of VIS. However, it was less pronounced because 

the reflectance in this spectral range was on average a little higher. Furthermore, a 

sharp decline of correlation in both fusion cases was detected for the spectral bands in 

the red edge range. This can also be explained by one of the operations during the 

fusion process. To conduct the IHS transforms three successive spectral bands were 

used each time. In the red edge range, these bands had a strongly deviating level of 

reflectance height caused by the steep increase in green vegetation reflectance in this 

spectral region. This probably had a negative impact on the generated intensity 

component, which was necessary for the further steps in the fusion procedure. The 

same effect was also detected for the spectral bands around 1,150 nm and less 

pronounced around 940 nm. This fact can also be explained by an abrupt change in the 

reflectance level of green vegetation because of the small water vapour absorption 

bands in these spectral ranges. In general, the spectral preservation was on a higher 

level in the NIR domain compared to the VIS. Maybe this is due to the fact that the 

reflectance of green vegetation is distinctly higher in this spectral range, which 

obviously had a positive impact on the fusion results achieved with the Ehlers method. 

This assumption was confirmed by the lower R values determined for both fusion cases 

in the SWIR domain, which is also characterized by lower spectral reflectance due to 

strong water absorption in this spectral range. Moreover, it is important to note that the 
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fusion procedure led to a distinctly better spectral preservation of the SWIR spectral 

bands in the case of merging EnMAP with Sentinel-2, compared to the results obtained 

in case of the EnMAP–aisaDUAL fusion. 
 

 
Figure 7.19: Correlation coefficients (R) calculated between the original aisaDUAL data sets 
and the fusion results for the single spectral bands: the grey line represent a typical green 
vegetation reflectance spectra added for better interpretation and understanding purposes. 
Furthermore, the red bars mark the location of the most important spectral bands for LAI 
prediction, identified with the help of RReliefF. 

 

Since only three EnMAP spectral bands were necessary in order to accurately 

predict the LAI, the spectral preservation of these bands was of particular interest. The 

location of the three spectral bands is marked by red bars in Figure 7.19 and  

Table 7.14 shows the corresponding R values. While the correlation coefficients of the 

spectral band located at 1,074 nm were on a high level and almost similar for both 

fusion cases (EnMAP–aisaDUAL: R = 0.812, EnMAP–Sentinel-2: R = 0.808), the 

achieved R values for the other two spectral bands showed some differences. At  

1,203 nm, the spectral preservation was better for the EnMAP–aisaDUAL fusion  

(R = 0.834) than for the EnMAP–Sentinel-2 fusion (R = 0.764). In contrast, the R value 

for the band located at 1,710 nm was distinctly higher in the case of the EnMAP– 

Sentinel-2 fusion (R = 0.801), compared to the EnMAP–aisaDUAL fusion (R = 0.747).  

Based on these results, it was difficult to assess whether the fused EnMAP–

aisaDUAL images or the EnMAP–Sentinel-2 images were better suited to the 

assessment of LAI. For that reason, comparable to Chapter 7.3.1, PLSR models were 

again built with the spectral information of the image data sets. Therefore, the 

reflectance spectra of the fused image pixels, which corresponded to the geographic 

location of the different sampled wheat plots of Field A and Field D were extracted 

and afterwards the spectral information were reduced to the three spectral bands 

located at 1,074, 1,203, and 1,710 nm. 
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Table 7.14: Correlation coefficients (R) of the fusion results for the three most important 
EnMAP spectral bands, which were ascertained for the assessment of wheat LAI. 

RReliefF  
regions 

Highest ranked  
RReliefF band  

Fused data sets R 

4 1074 nm 
EnMAP–aisaDUAL 0.812 

EnMAP–Sentinel-2 0.808 

5 1203 nm 
EnMAP–aisaDUAL 0.834 

EnMAP–Sentinel-2 0.764 

8 1710 nm 
EnMAP–aisaDUAL 0.747 

EnMAP–Sentinel-2 0.801 

 

The model built for the EnMAP–aisaDUAL fusion resulted in a slightly lower 

model performance (R2
cv = 0.742, RMSEcv = 0.713), compared to the EnMAP– 

Sentinel-2 model (R2
cv = 0.760, RMSEcv = 0.689). The slightly higher model quality 

achieved for the EnMAP–Sentinel-2 fusion was also confirmed by an RPDcv value 

higher than 2.0, while the RPDcv of the EnMAP–aisaDUAL fusion model was slightly 

below 2.0. The results are summarized in Table 7.15. In order to achieve better 

comparability, the results of the three-band aisaDUAL and the three-band EnMAP 

model are again presented in the table. 

 

Table 7.15: Cross-validated results of wheat LAI prediction, based on PLSR for the three-
band models of aisaDUAL, EnMAP, EnMAP–aisaDUAL fusion and EnMAP–Sentinel-2 
fusion. 

n = 70 No. of bands R2
cv RMSEcv RPDcv LV 

aisaDUAL (RReliefF) 3 0.892 0.461 3.069 3 

EnMAP (RReliefF) 3 0.678 0.814 1.740 3 

EnMAP–aisaDUAL fusion 3 0.742 0.713 1.985 3 

EnMAP–Sentinel-2 fusion 3 0.760 0.689 2.055 3 

 

Due to the almost equal regression functions and calculated model evaluation 

criteria, the three-band models built for both fusion results have almost identical scatter 

plots (Figure 7.20). One reason for the equal performance of the fusion models can be 

the spatial fusion ratio. The higher the ratio, the more difficult the filtering of the 

intensity component becomes in the Fourier space. For this reason, the fusion ratio of 

1:3 in the case of the EnMAP–Sentinel-2 fusion was obviously well suited for a robust 

LAI estimation of the investigated fields. Using a higher ratio, such as 1:10 in the 

EnMAP–aisaDUAL fusion, allowed for no additional improvement in the LAI 

prediction.  
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EnMAP–aisaDUAL Fusion EnMAP–Sentinel-2 Fusion 

  

Figure 7.20: Scatter plots of estimated (cross-validated) and measured LAI for winter wheat, 
based on PLSR models for three spectral bands of the fused EnMAP–aisaDUAL images and 
the EnMAP–Sentinel-2 images. The solid red line represents the regression line, while the 
dashed black line represents the 1:1 line. 

 

Although the quality of both three-band fusion models were considerably lower 

than that for the aisaDUAL three-band model, an improved LAI prediction was 

possible in comparison to the EnMAP three-band model. The general trend of 

overestimating lower and underestimating higher LAI values was also observed in 

both fusion cases. This suggested a successful pan-sharpening because the fused 

datasets obviously contain spectral information, which is comparable to that of the 

simulated EnMAP data, as well as the original aisaDUAL hyperspectral data. 

Finally, both three-band fusion models were transferred to the corresponding 

images of Field A and Field D to enable a spatial LAI prediction. Figure 7.21 shows 

the LAI maps obtained for the fused EnMAP–aisaDUAL images and the  fused 

EnMAP–Sentinel-2 images in comparison to the maps already generated for 

aisaDUAL and EnMAP in the previous chapter. The spatial LAI prediction from the 

regression models, based on the aisaDUAL (Figure 7.21 a)) and the EnMAP data sets  

(Figure 7.21 b)), served as reference for the LAI estimates, which were achieved by 

the three-band regression models of the fused data sets. The maps derived from the 

EnMAP–aisaDUAL fusion results (Figure 7.21 c)) enabled a more detailed spatial LAI 

assessment compared to the EnMAP results, as well as showed more precise 

correspondence with the aisaDUAL maps. However, areas of Field A with low LAI in 

the eastern and south-western parts of the field, along with areas with high LAI around 

the drainless hollow in the south, were underestimated. For Field D, the largest 

differences occurred at the eastern and southern edges of the field, where the LAI was 

again underestimated. In general, the spatial improvement by a factor of ten seemed to 

be problematic. In this context, the LAI map of Field D showed some unrealistic 
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structures. These structures reflected artefacts caused by the fusion process using 

images with a distinctly different GSD and, thus, a high fusion ratio (1:10). Although 

the LAI map of Field A had no visible artefacts, the spatial improvement appeared  
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Figure 7.21: Spatial LAI prediction based on a) aisaDUAL, b) EnMAP, c) EnMAP–aisaDUAL 
fusion and d) EnMAP–Sentinel-2 fusion. The dashed rectangle indicates the area presented in 
Figure 7.22. 
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exaggerated. This fact indicated that the filter settings for the high pass pan filter were 

set to a frequency that was probably too low and, thus, included too much  

spatial information from the pan images during the fusion process. The LAI maps of 

both fields, which were derived from the EnMAP–Sentinel-2 fusion results  

(Figure 7.21 d)), provided a more realistic LAI distribution within the fields. Due to 

the lower spatial resolution, very small-scaled structures within the field, which can be 

detected in the aisaDUAL LAI maps, cannot be recognized. In contrast to the EnMAP 

LAI maps, however, more detailed LAI predictions were possible. The EnMAP–

Sentinel-2 LAI map of Field D showed a high agreement with the aisaDUAL LAI map 

of Field D. The map of Field A also reflected the spatial pattern of LAI very well. Only 

two areas with low LAI in the northern part of the field were underestimated in 

comparison to the corresponding areas in the aisaDUAL LAI map. 

As an additional criterion for evaluating the fusion results, a profile covering an 

area with highly variable LAI over a short distance was extracted from all LAI maps 

of Field A. In Figure 7.21, the area of interest was bordered with a dashed black line 

in all LAI maps. Figure 7.22 illustrates the enlarged areas with the profiles on the right 

side and a line graph with the extracted LAI of the pixels on the left side. 

 

 

Figure 7.22: LAI profile for a specific area of the field investigated in 2011 based on a) 
aisaDUAL (black), b) EnMAP (red), c) EnMAP–aisaDUAL fusion (blue), and d) EnMAP–
Sentinel-2 fusion (orange). 
 

The black graph represents the reference profile of the aisaDUAL LAI map. The 

profile has a length of 180 m, which corresponds to 60 pixels and, thus, 60 LAI values. 

At the beginning, the LAI increased from 2.75 to 3.50, after which it gradually 

decreased to a value of approximately 1.00. In the range between 45 and 75 m, the LAI 

went up and down again. After 75 m, the LAI increased again sharply, then levelled 

out at a value of about 2.25 with slight fluctuations. The red graph showed the profile 
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extracted from the EnMAP LAI map. Due to the spatial resolution, one EnMAP pixel 

corresponded to ten aisaDUAL pixels. Therefore, the EnMAP profile could not reflect 

the curve of the aisaDUAL profile and had almost the same value over the entire 

distance, which corresponded approximately to the average of the aisaDUAL profile. 

In general, the shape of the EnMAP–aisaDUAL fusion LAI profile was well in 

accordance with the aisaDUAL profile. Only in areas characterized by sharp changes 

along the profile, the LAI was slightly over- or underestimated.  The same problem, 

albeit more pronounced, was also observed in the EnMAP–Sentinel-2 fusion profile. 

While the LAI values were underestimated at the beginning of the profile, an 

overestimation could be observed from a distance of 30 m onwards. In contrast to the 

EnMAP profile, however, the EnMAP–Sentinel-2 graph showed a better match with 

the aisaDUAL graph in most areas. In both fusion cases, it seems the Ehlers Fusion 

had some difficulties in dealing with the abrupt changes in LAI from high to low 

values, and back, over short distances. Nevertheless, in comparison to the EnMAP 

graph, the LAI profiles, which were based on both fusion results, better reflected the 

profile of aisaDUAL on average. 

 

Comparison of Aggregation and Fusion 

Both aggregation and fusion can be used to evaluate the quality of spatial LAI 

predictions based on EnMAP image data. In each case, however, image data of higher 

spatial resolution are a necessary requirement to enable a robust validation. 

During the aggregation process applied in this thesis, the higher spatial resolution 

aisaDUAL LAI maps of both fields were reduced to the spatial resolution of EnMAP. 

As a result, each aggregated aisaDUAL pixel represented an averaged value of several 

original aisaDUAL pixels. Due to the averaging, the small-scale LAI variability within 

the investigated fields was lost. Although the aggregation approach has been 

recognized as an effective way to validate satellite products with medium spatial 

resolution in different studies [e.g., Cohen et al., 2003], its feasibility is influenced by 

the limited number of high-resolution images [Shi et al., 2015]. Moreover, the 

acquisition of airborne hyperspectral data, such as the aisaDUAL data used in this 

thesis, is very expensive, time-consuming and usually only covers small areas. In 

contrast, the fusion method only requires a spatial high-resolution panchromatic data 

set to sharpen the EnMAP images. Such data sets are more often available compared 

to high-resolution multi-/hyperspectral data. Several medium-resolution multispectral 

satellites with relatively short revisit cycles also have a panchromatic band with higher 

spatial resolution (e.g., Landast 8 Pan (GSD: 15 m) [Roy et al., 2014], ALI Pan  

(GSD: 10 m) [Chander et al., 2009], SPOT-5 Pan (GSD: 5 m) [Gleyzes et al., 2003]), 

which is well suited to the pan-sharpening of EnMAP image data. Moreover, due to 

the fact that the fusion method was applied directly to the EnMAP image data, rather 
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than to the LAI maps based on EnMAP, the small-scale LAI variability within the 

fields could be largely preserved. This is an advantage of the fusion over the 

aggregation method for applications in precision agriculture. However, some problems 

remain, even though the first EnMAP–aisaDUAL and EnMAP–Sentinel-2 fusion 

results were promising. In this thesis, all used data sets were based on aisaDUAL 

airborne data. Consequently, all data sets exhibit the same acquisition conditions  

(e.g., same day and time, same atmospheric conditions, same sensor view angles) and 

are optimally co-registered with each other. Given that, in future work, the pan-

sharpening of real EnMAP images with real Sentinel-2 data may cause problems, 

which could not be considered in this thesis. In this context, different acquisition dates 

and atmospheric conditions can lead to major problems during the pan-sharpening 

process. Nevertheless, using simulated data in this thesis, acquired under the exact 

same conditions, can also be regarded as an advantage. Thus, it was possible to identify 

problems caused by the applied pan-sharpening algorithm itself.
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8 Conclusions 

Remote sensing can be regarded as one of the key tools in precision agriculture 

because it allows for the spatial assessment of important crop parameters and, thus, 

supports decision-making for adapted intra-field treatment [Mulla, 2013]. Precise 

spatial information on the current growth conditions of wheat is of particular interest 

because wheat is one of the most vital food grain sources for humans  

[CIMMYT, 2015]. In order to monitor the actual status of wheat development, the 

area-wide determination of LAI is critical because it serves as an indicator of the 

photosynthetic performance of plants and, therefore, is a decisive factor in agricultural 

modelling [Moran et al., 1995]. 

For that reason, the scientific focus of this thesis was to investigate the potential of 

hyperspectral remote sensing data acquired at different spatial scales for the precise 

assessment of wheat LAI. Three research experiments were conducted for the 

following reasons: 1) to identify the empirical-statistical regression technique that 

enables the most robust LAI predictions; 2) to determine which spectral resolution and 

which spectral regions or single bands are essential for a precise LAI assessment; and 

3) to investigate the influence of the ground sampling distance of remote sensing 

images on the quality of spatial LAI predictions. The results and scientific findings of 

the three research experiments are concluded in the following paragraphs.  

 

Research question 1: What potential do empirical-statistical regression models have 

for an accurate prediction of crop LAI based on hyperspectral data? 

In Chapter 7.1, three regression algorithms (PLSR, SVR, RFR) were investigated 

in order to predict wheat LAI from field reflectance spectra, which were collected from 

different fields and at different plant development stages. The results clearly show that 

model performance markedly depends on the validation technique used to assess 

model accuracy. In the case of leave-one-out cross-validation, SVR provided the best 

results for individual years and the entire data set, but revealed significant weaknesses 

when independent model validation was performed. This suggested a problem in data 

overfitting during model calibration, which cannot be proven by leave-one-out cross-

validation, as model calibration and validation are performed using almost identical 

data. PLSR and RFR yielded a lower performance for leave-one-out cross-validated 

models of individual years. Although model accuracy for the entire data set, achieved 

with both regression algorithms, showed a clear improvement, it was still lower 

compared to SVR. However, in contrast to SVR model accuracy, independently 

validated PLSR and RFR models provided nearly identical model performance, similar 

to that obtained with leave-one-out cross-validation. This indicated that PLSR and 

RFR are less influenced by data overfitting, meaning that they are less sensitive to the 
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validation techniques used. However, PLSR provided distinctly better results than 

RFR and was, therefore, better suited for predicting the parameter LAI in this thesis.  

Furthermore, it was shown that an extended data range through the inclusion of the 

LAI data at different stages of plant development was essential for improving model 

performance for all regression algorithms considered. Therefore, empirical-statistical 

regression models, calibrated with hyperspectral reflection, and corresponding LAI 

measurements of numerous growth stages, which cover a wide range of values, have 

the capability to provide accurate LAI predictions from unknown wheat spectral 

measurements acquired within the same region. 

The portability of locally developed regression models has often been criticized  

for their poor results when applied to data acquired under varying canopy  

(e.g., phenological stage, canopy geometry) and external conditions (local soil 

properties, atmospheric conditions, sun and view geometry) [Baret and Guyot, 1991; 

Dorigo et al., 2007]. The results achieved in this thesis, however, show that PLSR has 

the capability to accurately predict the LAI of wheat from spectral data, which are not 

involved in model calibration. Therefore, it seems at least possible to transfer PLSR 

models within a region with comparable soil conditions. The influence of further 

external factors on the transferability of a regression model, such as atmospheric 

conditions and sun and view geometry, may be reduced to a minimum by collecting 

the reflectance spectra, as well as the LAI measurements, under comparable irradiance 

conditions always using the same measurement set-up. Moreover, in order to take into 

account varying canopy conditions, data from different plant development stages were 

used in model calibration. This was another important step to enable the calibration of 

PLSR models with high predictive power when applied to unknown data. 

The robust evaluation of an empirical-statistical relationship is mandatory  

[Dorigo et al., 2007], as well as being an important research topic in many remote 

sensing studies, especially in relation to agricultural applications. The conducted 

research experiment demonstrated that independent validation is necessary to verify 

the ‘real’ robustness of a regression model. PLSR and RFR, however, proved to be 

less influenced by the applied type of validation. This finding needs to be further 

investigated in future work, in which the calibration and validation of different 

empirical-statistical regression models should be conducted by using spatially 

independent data sets collected from different regions. 

 

Based on the comparison of different empirical-statistical regression models and 

validation techniques, the following main conclusions can be drawn:  

• The data range of LAI used in model building strongly affected the quality of 

the prediction model. Including data from different phenological stages during 
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wheat development distinctly improved the accuracy of all applied regression 

techniques (PLSR, SVR, RFR).   

• The validation technique had a major influence on the predictive power of the 

generated empirical-statistical regression models. PLSR proved to be superior 

to SVR and RFR when independent validation was applied, while SVR 

outperformed the other regression techniques in the case of leave-one-out 

cross-validation. 

 

Research question 2: What spectral resolution and location of spectral bands are 

necessary to enable a precise estimation of the parameter LAI? 

In Chapter 7.2, it was first examined whether the spectral characteristics of 

aisaDUAL and EnMAP were suitable for the precise assessment of wheat LAI. For 

that reason, the field spectral measurements (867 spectral bands) were resampled to 

the spectral resolution of aisaDUAL (98 spectral bands) and EnMAP (204 spectral 

bands). Subsequently, PLSR models were calibrated to determine the predictive power 

of both data sets. The results clearly showed that the same high model qualities were 

achieved for the models, based on the field spectral measurements resampled to the 

spectral resolution of aisaDUAL and EnMAP, respectively, as for the model calibrated 

with full-resolution field spectra. The fact that the data set with the lowest spectral 

resolution (aisaDUAL) still provided sufficient spectral information for a precise LAI 

retrieval is consistent with results achieved by Atzberger et al. [2010]. The authors also 

used PLSR modelling for the precise assessment of wheat LAI, based on a 

hyperspectral data set with comparable spectral characteristics to those of aisaDUAL. 

Since several studies have proved that the LAI can be derived from lower-resolution 

spectral data [e.g., Asner, 1998], the second part of Chapter 7.2 was aimed at 

identifying the most important spectral bands/regions for an accurate LAI assessment. 

For this purpose, the RReliefF feature selection algorithm was applied because this 

method enables the selection of important spectral bands prior to the regression model 

calibration and, therefore, can be combined with any empirical-statistical regression 

technique. RReliefF allowed for the selection of eight spectral regions, each of which 

consisted of more than one band. This is in accordance with numerous studies in which 

several spectral regions had been identified as sensitive in order to predict the LAI 

[e.g., Lee et al., 2004; Thenkabail et al., 2004]. Due to the high correlation of adjacent 

spectral bands, a randomized experiment was conducted to prove whether the highest-

ranked RReliefF band of each of the eight regions contributed the most important 

information for the prediction of LAI. In most regions, the spectral band selected by 

randomized sampling was very close to the highest rated RReliefF band, or even had 

exact the same position. Consequently, it could be demonstrated that the spectral bands 
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with the highest RReliefF rating in the different regions had high predictive power to 

estimate the LAI. 

Additionally, a seconded randomized experiment was conducted to test whether it 

was necessary to use the highest-ranked RReliefF band of each region to obtain precise 

LAI predictions. The achieved results proved that the highest-ranked bands of  

Region 4 (aisaDUAL: 1,070 nm, EnMAP: 1,074 nm), Region 5 (aisaDUAL and 

EnMAP: 1,203 nm), and Region 8 (aisaDUAL: 1,713 nm, EnMAP: 1,710 nm) were 

sufficient to predict the LAI with high accuracy. These findings were consistent with 

studies of Asner [1998] (Regions 5 and 8), Darvishzadeh et al. [2008b] (Region 8),  

Lee et al. [2004] (Region 8), and Thenkabail et al. [2004] (Region 4), in which similar 

wavelength positions were found to be most sensitive to changes in LAI. For that 

reason, it can be concluded that applying RReliefF enabled the selection of the three 

most important spectral bands. At the same time, however, additional spectral bands 

were also identified as important, which were unable to contribute to a significant 

improvement in LAI prediction. The selection of these spectral bands was possibly the 

result of the high correlation of LAI with other plant parameters (e.g., Cab, DM, PWC), 

which influence the spectral reflectance in this range of the electromagnetic spectrum 

[Verrelst et al., 2012]. 

It can be summarized that RReliefF was a supportive algorithm in determining the 

relevant spectral bands for the assessment of LAI. The interpretation of the RReliefF 

weightings obtained for each spectral band, however, required expert knowledge to 

identify important spectral regions/bands. Additionally, a repeated randomized 

sampling procedure was necessary to finally ascertain the three most important 

spectral bands. For that reason, the entire feature selection applied in this thesis was a 

semi-automatic procedure. 

Since the three-band aisaDUAL and EnMAP PLSR models provided almost 

identical high prediction qualities as the models built with all the spectral bands, it 

could be proved that PLSR is able to provide precise parameter predictions from 

numerous highly correlated spectral bands, as well as from a few spectral bands located 

in specific wavelengths regions [An et al., 2015]. Although a feature selection was not 

necessary to predict the LAI with high accuracy from hyperspectral data, the 

identification of the most important spectral bands was advantageous in proving 

whether multispectral satellites, which normally have shorter revisit cycles and larger 

spatial coverage than hyperspectral systems, provide information in the same spectral 

regions. Unfortunately, frequently used multi-/superspectral satellites, such as  

Landsat 8 and Sentinel-2, do not have spectral bands at the locations identified as 

relevant by this thesis. 
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Based on the experiment aimed at determining the required spectral resolution and 

location of the most relevant spectral bands for a precise LAI prediction, the following 

main conclusions can be drawn:  

• The spectral resolution of aisaDUAL (98 spectral bands) and EnMAP (204 

spectral bands) was suitable for the precise assessment of wheat LAI. In 

comparison to the PLSR model calibrated with full-resolution field spectra, the 

same high model qualities could be achieved for the PLSR models, based on 

the field reflectance measurements resampled to aisaDUAL and EnMAP 

spectral resolution. 

• The RReliefF feature selection algorithm, in combination with a randomized 

sampling procedure, enabled the identification of the most important spectral 

bands for the assessment of wheat LAI. Two spectral bands on the NIR plateau 

and one spectral band in the SWIR I region were selected as most sensitive to 

changes in LAI from both the aisaDUAL and the EnMAP data sets. 

 

Research question 3: What influence does the ground sampling distance of remote 

sensing images have on the spatial assessment of LAI and the associated regression 

model validation? 

In Chapter 7.3, the findings of the previous chapters were initially used to build 

PLSR models, based on aisaDUAL and EnMAP image data, in order to predict the 

spatial LAI distribution of two wheat fields. Therefore, PLSR models were generated 

with all the spectral bands of each sensor, and then with only the three most relevant 

spectral bands of aisaDUAL and EnMAP, which were identified during the feature 

selection procedure in Chapter 7.2.2. The results based on the image spectra of both 

sensors showed that the three-band models had the same predictive power as the 

models generated with all spectral bands.  

The models built with the aisaDUAL image spectra exhibited only slightly lower 

prediction accuracies compared to the models based on the field spectral measure-

ments resampled to aisaDUAL spectral resolution. In contrast, distinctly poorer model 

qualities were achieved for the models based on EnMAP image spectra in comparison 

to the models generated with the field spectral measurements resampled to EnMAP 

spectral resolution. This is explained by the different spatial resolutions of the 

aisaDUAL (3 m) and EnMAP images (30 m). In the case of aisaDUAL, the collected 

LAI values of the field plots (each with a size of 0.25 m2) were sufficiently 

representative of pixels of 9 m2 in size. In contrast, the small field plots were definitely 

unsuitable for robust regression model calibration and validation, based on EnMAP 

pixels, each of which has a size of 900 m2. 
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In order to enable a precise assessment of wheat LAI from EnMAP image data, two 

different approaches were examined. First, the aisaDUAL LAI result maps were scaled 

up (aggregated) to the spatial resolution of EnMAP. Thus, a direct comparison of the 

EnMAP LAI maps and the aggregated aisaDUAL LAI maps was possible. The results 

showed that lower LAI values had a high level of agreement in both prediction maps, 

while higher LAI values exhibited deviations that were slightly more pronounced. A 

possible reason for this was the more complex geometry of the further developed 

wheat plants investigated in 2012, which may have affected LAI prediction from 

different spatial scales. 

As a second step, the EnMAP data sets of both fields were pan-sharpened with 

artificially generated aisaDUAL and Sentinel-2 panchromatic images using the 

spectral preserving Ehlers Fusion. Image spectra of the generated EnMAP– 

aisaDUAL (3 m GSD) and EnMAP–Sentinel-2 fusion results (10 m GSD) of both 

fields were used to build PLSR models for the spatial assessment of wheat LAI. 

Although the qualities of the EnMAP–aisaDUAL and the EnMAP–Sentinel-2 fusion 

models were distinctly lower compared to the quality of the aisaDUAL model, both 

fusion models provided higher accuracies in comparison to the model based on 

EnMAP image data. Therefore, the fused data sets were deemed to be better suited for 

the prediction of wheat LAI compared to the EnMAP images. However, the fusion 

procedure also showed some problems, which can be explained by the methodology 

on which the Ehlers Fusion is based. In this context, the fusion ratio of the fused data 

sets had a substantial impact on the fusion results, but not on the LAI predictions. The 

fused EnMAP–aisaDUAL data sets (fusion ratio: 1:10) did not lead to a more precise 

LAI estimate in comparison to the prediction based on the fused EnMAP–Sentinel-2 

data sets (fusion ratio: 1:3). A fusion ratio in between the two (e.g., 1:5 or 1:6) possibly 

would allow for more accurate LAI estimates, since artefacts occurring in the EnMAP–

aisaDUAL fusion results could be avoided. Furthermore, in comparison to the fused 

EnMAP–Sentinel-2 images, more spatial details of the panchromatic image could be 

transferred into the merged data sets. 

In general, merging EnMAP images with higher resolution panchromatic data 

provides more potential for the precise assessment of wheat LAI in precision 

agriculture than aggregating LAI result maps, which are based on hyperspectral 

airborne data, to the spatial resolution of EnMAP. The acquisition of hyperspectral 

airborne images is very expensive and normally only covers small areas. Thus, the 

aggregation method can only be used to a limited extent for the validation of parameter 

maps based on EnMAP images. In contrast, spatially higher resolution panchromatic 

satellite images or artificial panchromatic images, derived from high-resolution 

multispectral satellite data, are already available for large areas with high temporal 

resolution. These images can be used to sharpen entire EnMAP scenes. Consequently, 

fused EnMAP data with improved spatial resolution would provide high potential for 
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applications in precision agriculture. In this context, the successful fusion of simulated 

EnMAP and Sentinel-2 data presented in this thesis has already demonstrated the 

advantage of combining the spectral and spatial characteristics of both satellite 

systems. In future work, however, the true benefit of merging ‘real’ EnMAP and ‘real’ 

Sentinel-2 data for the assessment of LAI and other plant parameters needs to be 

examined. 

 

Based on the experiment determining the influence of the spatial resolution on a 

precise LAI prediction, the following main conclusions can be drawn: 

• The spatial resolution of aisaDUAL and EnMAP had a major impact on the 

validation of the regression models and, therefore, on the achieved LAI 

prediction accuracies. While the size of the sampled field plots enabled robust 

model calibration and validation based on aisaDUAL airborne data, regression 

modelling based on EnMAP image data led to poor results because of the 

distinct difference in size between the EnMAP pixels and the sampled field 

plots. 

• The pan-sharpening of EnMAP image data offers great potential for the 

assessment of LAI in precision agriculture. The EnMAP–aisaDUAL and the 

EnMAP–Sentinel-2 fusion results of the wheat fields allowed for a distinctly 

more precise LAI prediction, when compared to that achieved from the 

EnMAP data with the original GSD of 30 m. 
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9 Outlook18 

Given the increasingly growing world population and the limited availability of 

arable land, the further dissemination of precision agriculture is urgently needed to 

increase crop productivity and farm profitability, while reducing negative environ-

mental impacts [European Commission, 2012; Mulla, 2013]. Since the concept of 

precision agriculture is based on up-to-date spatial information of variations in soil and 

crop conditions, remote sensing can be regarded as one of the key technologies in this 

field, given that airborne and spaceborne sensors provide this information for large 

areas [Gebbers and Adamchuk, 2010; Robert, 2002]. 

Although remote sensing image data contain information about the actual crop 

status, the temporal, spectral and spatial resolution of the data sets, as well as the 

applied retrieval methods, have a major influence on the prediction accuracy of plant 

parameters, such as the LAI. For this reason, different aspects regarding the assessment 

of wheat LAI from hyperspectral remote sensing data were investigated in this thesis, 

in order to show the benefits as well as the limitations of this information source in 

relation to applications in precision agriculture. 

The combination of the RReliefF spectral feature selection technique, which was 

expanded by a randomized sampling procedure, with PLSR modelling proved to be 

reliable for the precise assessment of wheat LAI from field reflectance measurements 

resampled to the spectral characteristics of aisaDUAL airborne and EnMAP space-

borne data. In future research, the identification of important spectral bands using the 

developed feature selection procedure can be helpful in designing new VIs. These VIs, 

would possibly be less affected by the main problems of numerous established VIs 

used to predict the LAI: namely, the influence of several plant parameters on the  

index value and the problem of saturation from moderate to high LAI values  

[Govaerts et al., 1999; Nguy-Robertson et al., 2014]. 

This thesis, however, has only focussed on the parameter LAI using data from one 

study site. Since additional information about crops is required to monitor the growth 

conditions, follow-up studies should be aimed at the prediction of other plant 

parameters (e.g., Cab, DM) using data sets, which are collected from several regions 

at different stages of plant development. This would help to evaluate the robustness of 

the combined use of RReliefF and PLSR modelling. Furthermore, data from different 

study sites would facilitate a spatially more independent validation, which would help 

to improve the spatial transferability of empirical-statistical regression models. A 

study investigating this topic was recently conducted by Gerighausen et al. [2016]. The 

authors demonstrated that PLSR models, which were developed with data collected in 

one region, could be successfully transferred to another region in order to predict the 

                                                            
18 Parts of this section have previously been published by Siegmann and Jarmer [2015] and  

 Siegmann et al. [2015]. 
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LAI, as long as the data range and the distribution of measured LAI values are 

comparable in both regions. Furthermore, the spatial validation of a predicted para-

meter map (e.g., LAI map) strongly depends on a meaningful interpretation method, 

which provides quantifiable prediction accuracies on pixel basis. Normally validation 

data are only available for a small number of pixels within an investigated field 

(location of sampled plots). New non-parametric non-linear regression techniques, 

such as Gaussian processes regression, also provide uncertainty measures for every 

predicted pixel in a parameter map [Fang et al., 2012; Verrelst et al., 2015]. This is 

very new research topic, which needs to be further explored in the future in order to 

ascertain the area-wide prediction capability of empirical-statistical regression models 

at pixel level. 

Beside the spatial transferability of regression models and the spectral charac-

teristics of remote sensing images, their spatial resolution is of the utmost importance. 

Precision agriculture requires image data of equal to or less than 10 m GSD in order 

to enable an adapted treatment of fields on sub-field scale. Although the aisaDUAL 

data met this requirement, airborne campaigns are cost-intensive and normally only 

cover small areas. In contrast, future spaceborne imaging spectrometers, such as 

EnMAP and HyspIRI, provide data with larger spatial dimesnsions. These data have 

the potential to serve as an information base for the fast, cost-effective and non-

destructive assessment of relevant biochemical and structural crop properties. The 

medium spatial resolution of EnMAP and HyspIRI image data, however, will be 

unsuitable for precision agricultural applications. To overcome this problem simulated 

EnMAP images were sharpened with panchromatic data sets of higher spatial 

resolution in this thesis. The results showed that the fused EnMAP images allowed for 

more accurate LAI predictions, when compared to the original EnMAP data with  

30 m spatial resolution. Therefore, pan-sharpening can be regarded as an adequate 

method to make EnMAP data more usable for the retrieval of LAI and other crop 

parameters in precisions agriculture. 

Since the entire pan-sharpening procedure and the subsequent LAI retrieval were 

based on simulated data, panchromatic bands of operational satellites (e.g., SPOT 5 

(GSD: 5 m), EO-1 ALI (GSD: 10 m)) or artificial panchromatic bands, which were 

derived from multi-/superspectral satellite information (e.g., RapidEye (GSD: 5 m), 

Sentinel-2 (GSD: 10)), need to be integrated in the fusion process as a next step in 

investigating the capability of fused EnMAP data for the assessment of LAI and other 

important crop parameters. Moreover, in future research, more attention must be paid 

to an inter-comparison of the Ehlers method with other techniques enabling the fusion 

of hyperspectral data sets, such as the Hyperspherical Color Sharpening (HCS), 

introduced by Padwick et al. [2010], or the wavelet-based Bayesian fusion developed 

by Zhang [2012] and Zhang et al. [2009]. Besides an inter-comparison, uniform fusion 

evaluation criteria have to be defined to ensure an objective validation of the fusion 
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results. Although numerous criteria measuring the spectral preservation already exist, 

there is still a great demand for meaningful spatial evaluation criteria. 

With the forthcoming hyperspectral satellite missions, the further dissemination of 

precision agricultural practices will be strongly supported. Hyperspectral, in 

combination with temporal and spatial higher resolution multi- and superspectral 

satellite image data, will enable the area-wide monitoring of crops at several stages of 

plant development over a growing season. In particular, the spatially differentiated 

assessment of LAI, as shown in this thesis, in combination with remote sensing 

information on crop DM [e.g., Marshall and Thenkabail, 2015] offer great potential 

for improving yield estimates [e.g., Dente et al., 2008]. This is because both para-

meters serve as essential variables for assimilating remote sensing image data into crop 

growth models [Fang et al., 2008; Moulin et al., 1998]. Thus, using temporal, spatial 

and spectral information from different satellites in an integrated manner provides the 

possibility for optimizing yield quantity and quality [Whelan and Taylor, 2013], which 

can help to secure sufficient food supplies for the world’s growing  population. The 

further spread of remote sensing image data as a valuable source of information in 

agriculture, however, strongly depends on the successful integration of the image data 

and derived products into agricultural decision support systems [Kneubühler, 2002], 

which will make it easier for agriculturalists to benefit from the large amount of 

information. 
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