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Sparse Methods for Hyperspectral Unmixing and Image
Fusion

Abstract

In recent years, the substantial increase in the number of spectral channels
in optical remote sensing sensors allows more detailed spectroscopic analysis
of objects on the Earth surface. Modern hyperspectral sensors are able to
sample the sunlight reflected from a target on the ground with hundreds of
adjacent narrow spectral channels. However, the increased spectral resolu-
tion comes at the price of a lower spatial resolution, e.g. the forthcoming
German hyperspectral sensor Environmental Mapping and Analysis Program
(EnMAP) which will have 244 spectral channels and a pixel size on ground as
large as 30 m × 30 m. The main aim of this thesis is dealing with the problem
of reduced spatial resolution in hyperspectral sensors. This is addressed first
as an unmixing problem, i.e., extraction and quantification of the spectra of
pure materials mixed in a single pixel, and second as a resolution enhance-
ment problem based on fusion of multispectral and hyperspectral imagery.

This thesis proposes novel methods for hyperspectral unmixing using sparse
approximation techniques and external spectral dictionaries, which unlike
traditional least squares-based methods, do not require pure material spec-
trum selection step and are thus able to simultaneously estimate the un-
derlying active materials along with their respective abundances. However,
in previous works it has been shown that these methods suffer from some
drawbacks, mainly from the intra dictionary coherence. To improve the per-
formance of sparse spectral unmixing, the use of derivative transformation
and a novel two step group unmixing algorithm are proposed. Additionally,
the spatial homogeneity of abundance vectors by introducing a multi-look
model for spectral unmixing is exploited.

Based on the above findings, a new method for fusion of hyperspectral
images with higher spatial resolution multispectral images is proposed. The
algorithm exploits the spectral information of the hyperspectral image and
the spatial information from the multispectral image by means of sparse
spectral unmixing to form a new high spatial and spectral resolution hyper-
spectral image. The introduced method is robust when applied to highly
mixed scenarios as it relies on external spectral dictionaries.

Both the proposed sparse spectral unmixing algorithms as well as the reso-
lution enhancement approach are evaluated quantitatively and qualitatively.
Algorithms developed in this thesis are significantly faster and yield better
or similar results to state-of-the-art methods.





Zusammenfassung

Eine deutliche Erhöhung der Anzahl von spektralen Kanälen in optischen
Fernerkundungssensoren ermöglicht genauere spektroskopische Analysen von
Objekten auf der Erdoberfläche. Moderne hyperspektrale Sensoren sind in
der Lage, das reflektierte Licht mit Hunderten angrenzenden schmalen spek-
tralen Kanälen aufzuzeichnen. Die hohe spektrale Auflösung führt jedoch zu
einer geringeren räumlichen Auflösung, so besitzt z.B. der deutsche Hyper-
spektralsensor EnMAP (Environmental Mapping and Analysis Program) mit
244 spektralen Kanälen nur eine Pixelgröße von 30 m auf dem Boden. Haupt-
motivation dieser Dissertation ist das Problem der reduzierten räumlichien
Auflösung in der hyperspektralen Fernerkundung zu behandeln. Mögliche
Optimierungen hierzu sind die spektrale Entmischung, das heißt, Extraktion
und Quantifizierung der Spektren von reinen Materialien in einem einzelnen
Pixel, und die Auflösungsverbesserung basierend auf Fusion von multispek-
tralen und hyperspektralen Bilder unter Benutzung der Entmischungsalgo-
rithmen.

In dieser Arbeit wird ein neuartiges Verfahren zur hyperspektralen Ent-
mischung mit Sparse-Approximationstechniken und spektralen Bibliotheken
vorgeschlagen, die im Gegensatz zu der herkömmlichen, auf kleinste Qua-
drate basierten Methode, eine Endmember Vorauswahl erfordert und somit
in der Lage ist, gleichzeitig die in jedem Pixel vorhandenen Materialien zu-
sammen mit ihrer jeweiligen Häufigkeiten zu schätzen. In früheren Arbeiten
wurde gezeigt, daß diese Verfahren einige Nachteile haben, hauptsächlich
aufgrund der Kohärenz innerhalb der Bibliotheken. Zur Verbesserung der
Entmischung wird ein Ansatz über Ableitungen sowie ein neuer dualer Algo-
rithmus vorgeschlagen. Darüber hinaus wird der Ansatz dahingehend erwei-
tert, die räumliche Homogenität des Abundance-Vektors durch Einführung
eines Multi-Look-Modells für die Entmischung zu nutzen.

Basierend auf den oben ausgeführten Entwicklungen wird ein neues Ver-
fahren zur Fusion von Hyperspektraldaten mit höher räumlich aufgelösten
Multispektraldaten vorgeschlagen. Der Algorithmus nutzt die spektralen In-
formationen der hyperspektralen Bilder und die räumliche Information aus
multispektralen Bildern durch sparse-Entmischung, um ein neues Bild ho-
her räumlicher und spektraler Auflösung zu erzeugen. Durch die verwendete
spektrale Bibliothek ist das vorgeschlagene Verfahren auch dann robust, wenn
es in komplexen Szenarien angewendet wird.

Die vorgeschlagenen sparse-Entmischungs Algorithmen sowie die Auflös-
ungsverbesserung werden schließlich quantitativ und qualitativ bewertet. Es
wird gezeigt, dass die entwickelten Algorithmen wesentlich schneller sind und
bessere oder ähnliche Ergebnisse wie die state-of-the-Art-Methoden liefern.
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The human eye contains three types of photoreceptor cells known as cones,

each sensitive to a different range of light. Every cone type is able to distin-

guish 100 colors, allowing us to see 1003 colors (Neitz et al., 2001). Yet, this

spectral range and resolution is often not sufficient to e.g. distinguish salt

from sugar or real from artificial plants. This is because the distinct spectral

features are often very subtle or are located beyond the spectral range of

the cones. Therefore if we would have hundred of cones making us able to

distinguish 100100 colors, the question whether the object we are observing

is sugar or salt would not be a problem any more.

As adding cones to the eye is impossible, a similar thing has been done with

modern imaging sensors. The hyperspectral imaging sensors, with hundreds

of narrow spectral channels spread over a wide spectral range, were developed

to allow very detailed detection, classification and quantification of objects.

Such sensors have been very quickly adapted in remote sensing, where the

spectroscopic information enabled development of applications such as min-

eral mapping, vegetation healthy monitoring or environmental monitoring.

Unfortunately, the richness of spectral information comes at the price of

a decrease in spatial information. Adding spectral channels means that the

light has to be split among them, and in order to provide sufficient amount

of light for each channel. The size of a pixel in the sensor or the dwelling

time must be larger. This results in decrease of the spatial resolution i.e. the

reduction of the amount of geometrical details visible in the image. Another

problem arising with the reduced spatial resolution is the increased amount

of mixed pixels, i.e., pixels containing a mixture of spectra from more than

one pure material. This process is known as spectral mixing and its effect has

essential impact in applications such as classification, detection or mapping.

In this thesis both problems problems will be addressed.

Researchers found that the spectral mixing can be easily inverted using

the rich spectral information delivered by the hyperspectral sensors. This in-

version process, named spectral unmixing, is usually approached in two steps.

At first, pure spectra of materials also known as endmembers are extracted

from the image. Then, abundances, i.e., the amount of each endmember in

every pixel, are estimated. The inversion can be done based on the assumed
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mixing model e.g. using a linear mixing model, which states that the spec-

trum of a mixed pixel can be expressed as the integrated sum of the spectra

of all endmembers within the captured pixel (Keshava, 2003). One way to

obey the problem of endmember identification is to use a predefined set of

labelled endmembers, e.g. measured in the laboratory, known as spectral dic-

tionary. Assuming that in the image all possible endmembers can occur, such

dictionary should be very large with usually many more endmembers than

spectral channels. This fact makes the abundance estimation hard or even

not possible using typical least squares based methods (Bioucas-Dias et al.,

2012). However, in the past two decades researchers found many efficient

ways to solve the at first glance ’unsolvable’ problems when they fulfil the

assumption that the estimates are sparse (Baraniuk, 2007; Baraniuk et al.,

2008; Candes and Wakin, 2008; Chen et al., 1998; Donoho and Elad, 2003;

Elad, 2010). What in essence means that the number of non-zero elements

in the estimated vector is much less than the number of zero elements. This

requirement based on the a priori information seems to be applicable to the

sparse spectral unmixing, in which one expects to find only few endmembers

in each hyperspectral image pixel. The spectral unmixing with large spectral

dictionaries using a sparsity prior has been first used by Parente and Zym-

nis (2005), Iordache et al. (2011) and Bieniarz et al. (2012) but it has also

been shown that this approach suffers from several drawbacks and limita-

tions. Firstly, the large spectral dictionaries exhibit high mutual coherence,

which affects the uniqueness of the results of sparse spectral unmixing (Bi-

eniarz et al., 2012; Iordache et al., 2011). Secondly, the methods proposed to

solve sparse spectral unmixing have a high computational complexity, mak-

ing these algorithms inefficient with applications to large images. Finally,

the pixel-based algorithms, in light of the high mutual coherence of the dic-

tionary and noise in the data, often produce spatially inconsistent results

(Bieniarz et al., 2015; Iordache et al., 2012b).

In order to find novel, more suitable sparse spectral unmixing methods, it is

important to address the above problems. The first contributions contained

in this work are focused on tackling the problem of the mutual coherence of

spectral dictionaries. This is done in two manners, by expanding existing
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sparse approximation algorithms with a preprocessing step, and by reduc-

ing the size of the spectral dictionary. Subsequently, the problem of spatial

inconsistency is tackled by the introduction of a novel model for sparse spec-

tral unmixing based on the linear mixing model but also taking into account

spatial correlations among neighbouring pixels. Additionally, the use of the

well studied algorithm Least Angle Regression LASSO (LARS/LASSO) is

proposed to solve sparse unmixing problem which can significantly reduce

execution time.

Spectral unmixing addresses the problem resulting from the decreased spa-

tial resolution, but it also has been shown that it can be used to enhance

the resolution of hyperspectral images (Zhukov et al., 1999). This is usually

done by means of fusion of the spectral unmixing results from a lower spatial

resolution hyperspectral image with a higher spatial resolution image. E.g.

Yokoya et al. (2012) and Bieniarz et al. (2011) fused high spatial resolution

multispectral image, i.e. an image characterised by a lower number of spec-

tral channels than the hyperspectral image, with the result of image-based

spectral unmixing. The main advantage of using these methods is the abil-

ity of reconstructing the high spatial resolution without losing the spectral

resolution, which is usually the case when applying other sharpening meth-

ods Grohnfeldt et al. (2014). However, when the resolution of highly mixed

hyperspectral image is low, these methods are hindered by the inaccuracies

in the unmixing step. This drawback is addressed in this thesis by applying

sparse unmixing methods for the unmixing, and a new multi-look model for

fusion which accounts for spatial correlations in the higher spatial resolution

image. Unlike in methods based on image-based unmixing, the complete set

of spectra can not be used for the whole image. Thus, a novel window based

method for hyperspectral-multispectral image fusion is presented.

This work is divided in three parts. The first part introduces the concepts

which are essential for the understanding of the proposed methods and al-

gorithms. Chapter 2 presents a theoretical background on optical remote

sensing systems. This includes concepts of image generation with its typi-

cal problems but also the introduction to mixing and unmixing problems in

hyperspectral imagery.
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After introducing the data related theory, the background for the method-

ology is introduced in chapter 3. Here the methods and algorithms for solving

underdetermined systems of equations are discussed, along with introducing

typical regularisation problems and algorithms designed to solve these kind

of problems.

In the second part the proposed methodology including algorithms and im-

provements is presented. First, the developments in sparse spectral unmixing

are discussed in chapter 4. Here the concepts for reduction of coherence are

presented. These are followed by the introduction of a novel unmixing al-

gorithm, which improves the performance of sparse spectral unmixing with

large spectral dictionaries. This chapter presents an algorithm for unmixing

spatially correlated images, which is the main result of this thesis. Chap-

ter 5 describes the developed algorithm for hyperspectral image resolution

enhancement, and its contributions to the state of the art.

The third part of the thesis is dedicated to experimental results, evaluation

of presented algorithms and conclusions. In chapter 6 the developed sparse

spectral unmixing algorithms are compared to the state of the art highlight-

ing the implemented improvements. Chapter 7 features experiments with

resolution enhancement methods using several representative data sets, both

simulated and real. Conclusions and ideas for future work are presented in

chapter 8.
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Part I

Theoretical Background



2
Hyperspectral Imaging – Remote

Spectroscopy

The objective of this chapter is to present the basic concept of hyper-

spectral remote sensing as well as the principles of image generation.

The physics of imaging spectroscopy including atmosphere effects on

the image product will be discussed. Also, the definition of spectral,

spatial resolution and noise in the hyperspectral image will be provided.

Based on these introductory concepts first overview of spectral mixing

and the unmixing principle will be considered.
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In optical remote sensing electromagnetic signals propagated from the

Earth are measured using a sensor mounted on an aircraft or spacecraft

platform (Richards and Jia, 1999). These measurements quantify optical

properties of the Earth’s surface and atmosphere and are used as an input

for numerous remote sensing applications ranging from environmental mon-

itoring, through agricultural assessment to security and defence.

Most of the optical remote sensing sensors are passive sensors acquiring

images by recording reflected sunlight or the electromagnetic radiation emit-

ted by the objects. Such sensors can take images in a specific electromag-

netic wavelength range commonly in the visible and near-infrared (VNIR)

and sometimes short-wavelength infrared (SWIR). Optical remote sensing

sensors can be classified depending on the number of spectral bands, i.e.,

providing one or more images at different spectral ranges:

• Panchromatic (PAN) sensors can take single images usually in a wide

spectral range.

• Multispectral sensors are capable of acquiring simultaneously several

images in different spectral ranges, i.e., several spectral bands.

• Hyperspectral sensors exhibit a large number of narrow, adjacent spec-

tral bands covering a wide spectral range see Figure 2.1.

This thesis is dedicated to the development of new methods for hyper-

spectral image processing. In the following sections the basic concepts and

theoretical background of this work will be discussed. Note that even though

the main focus will be put on hyperspectral data all the physical background

as well as image acquisition concepts are common with the multispectral

data.

2.1 Physics of Imaging Spectroscopy

Hyperspectral imaging is known also as imaging spectroscopy. This name

comes from the ability to take spectroscopic measurements allocated spatially
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Figure 2.1: Concept of hyperspectral imaging. Hyperspectral images can be
represented as a stack of images taken at hundreds narrow adjacent bands over a
wide spectral range. As a consequence each spatial pixel from this image can be
represented as a reflectance spectrum.

in an image (Figure 2.1). Spectroscopy aims at studying interactions between

atoms and molecules, with the electromagnetic spectrum. These interactions

can be either absorption, reflection or transmission and can be represented

as a function of the wavelength.

2.1.1 Reflectance Spectrum

Reflectance is a unit-less ratio defined as the intensity of the reflected light

normalized by the intensity of the incident light (Bachmann, 2007; van der

Meer et al., 2001). A function of reflectance at various wavelengths is called

reflectance spectrum. Opposite to the reflectance spectrum is the transmit-

tance spectrum determined by the amount of light transmitted by the surface

normalized by the intensity of the incident light. Besides the transmitted and

reflected light, some portion is absorbed by a surface. The measure of the

light which has been absorbed with relation to the incident light is known as

absorption. The relation between the transmittance τλ, reflectance Rλ, and

absorption αλ can be written as

τλ +Rλ + αλ = 1. (2.1)
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This relationship is shown in Figure 2.2
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Figure 2.2: Plot of spectral reflectance and transmittance of a green vegetation.
The white area between the reflectance and transmittance represents the amount
of energy absorbed by the medium.

2.1.2 At-Sensor Radiance Spectrum and Effects of the Atmo-

sphere

Remote sensing optical sensors measure the at-sensor radiance, i.e., the quan-

tity of the radiation incident on the sensor. This radiation is composed of

the radiation reflected from the Earth’s surface plus the influences of the at-

mosphere. The gases and aerosols contained in the atmosphere interact with

the light modifying its energy. Thus, the at-sensor radiance Ls is dependent

on the reflectance of the surface as well as atmospheric effects as follows

Ls = R
τφ
π
εG + Lp [Wm−2sr−1], (2.2)
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Figure 2.3: Comparison or radiance and reflectance spectrum of grass. The
shape of the radiance spectrum is strongly influenced by the absorption features
from the atmosphere (from Schowengerdt, 2006, p. 57).
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Figure 2.4: Solar irradiance at top of atmosphere and at sea level. The irradiance
at the Earth’s surface contains many absorption features caused by the gases in
the atmosphere.

with the irradiance at the Earth’s surface (Figure 2.4) εG defined as

εG(λ) = ε(λ)τθ cosφτθ(λ) + εD(λ) (2.3)
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Figure 2.5: A schema of the effects in the atmosphere determining the at-sensor
radiance. Remote sensing optical sensor receives energy reflected from the Earth’s
surface. This energy is determined by the atmospheric transmittance as well as
interactions like diffuse scattering, surface scattering, scattering from the Earth’s
surface or diffuse scattering. (Modified from Richards and Jia, 1999, p. 28)

where

• R is the reflectance

• Lp indicates the path radiance, which is an additional radiation that

can reach the sensor by either scattering from the Earth’s surface or

diffuse scattering of incoming light.

• τφ is the atmospheric transmittance between the surface reflection point

and the sensor and

• atmospheric transmittance τθ between the source and the reflection

point with angles respectively φ and θ.

• the average spectral irradiance ε∆λ in the channel and the

• sky irradiance εD caused similarly by the diffuse scattering and surface

scattering.
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a) GSD = 2m b) GSD = 5m c) GSD = 20m d) GSD = 30m

Figure 2.6: Comparison of different GSDs. The GSD shown in a) and b) are in
typical range for spaceborne multispectral sensors. c) and d) exhibit the GSD of
modern hyperspectral spaceborne sensors.

A schema of these effects is illustrated in Figure 2.5. The influences of the

atmosphere can be seen directly in the at-sensor radiance spectrum when

compared to the reflectance spectrum. The characteristic features of the

reflectance curve are often masked and modified by the atmospheric trans-

mittance, sky irradiance and path radiance (for e.g. see Figure 2.3).

In order to retrieve the reflectance spectrum from the at-sensor radiance

an inverse processing of the equation (2.2) including the modelling of the

atmospheric effects has to be done. This type of processing is known as at-

mospheric correction. The discussion of the atmospheric correction methods

can be found in Datt et al., 2003; van der Meer et al., 2001, p. 279-281;

Richter and Schläpfer, 2011; Schowengerdt, 2006, p. 337-341.

2.2 Spatial Versus Spectral Resolution

The resolution of a sensor can be defined as the smallest quantity which can

be measured by the sensor. The resolution of the sensor is often determined

by its design properties. In the following section the spectral and spatial

resolution properties will be discussed.
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Figure 2.7: Comparison of the spatial and spectral resolution of current and
future space-borne hyperspectral and multispectral satellite missions. Red dashed
line indicates the conventional border of the spectral resolution between the hy-
perspectral and multispectral sensors.

2.2.1 Spatial Resolution

Spatial resolution is defined as the smallest structure/detail that can be

recognized in the image (Gonzalez and Woods, 2001, p.57-62). The spatial

resolution in the hyperspectral image is limited by the the number and spatial

distribution of the sensor elements as well as the geometry of the sensor.

Additionally, the spatial resolution depends of the contrast of the imaged

object and the sum of all blurring effects and distortions of the imaging

system. For airborne or spaceborne sensors these effects are a function of
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sensor altitude, detector size, focal length and system configuration (Wang

and Weng, 2013, p. 12-13). In remote sensing the spatial resolution is often

related to the GSD. The GSD is measured as a distance on ground between

the centres of two neighbouring pixels. Thus it gives the intuitive relation of

the resolution and the distance on the Earth’s surface. Images with different

GSD are shown in Figure 2.6 .

2.2.2 Spectral Resolution

Similarly to the spatial, spectral resolution defines the ability to resolve fea-

tures in the spectrum. The increase of the spectral resolution results in the

reduction of the spatial resolution and vice versa. This is simply caused by

the limited amount of the incoming light which has to be split in order to

feed hundreds of spectral bands. So that the the average radiance at spectral

band λ is

L∆λ ∝
Ls
K

(2.4)

where K stands for the number of spectral bands (Shaw and Burke, 2003).

Higher spectral resolution of the sensor helps to resolve fine features in the

spectrum e.g. absorption features of materials (Figure 2.8). The compari-

son of the spatial and spectral resolution for current and planned sensors is

presented in the Figure 2.7.

2.2.3 Spectral Response Function

Specification of multispectral and hyperspectral sensors determining the spec-

tral resolution are the width, the height and the central wavelength of the

spectral channel. These values define the wavelength range in which the

channel responds to incoming photons as well as the spectral separation of

the spectral bands. This response can be defined more precisely measuring

the sensor’s light detection efficiency at a specific wavelength, i.e., the signals

SRF. The SRF is especially important for re-sampling of spectra needed for

comparison of spectral properties in between sensors as well as for the image

simulation. The SRF is usually given as a number of electron counts per unit
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Figure 2.8: Comparison of the spectral resolution between selected sensors.
Alunite spectrum plotted with different spectral resolution of two hyperspectral
(AVIRIS and HyMAP) and two multispectral (LANDSAT 7 and WorldView 2)
sensors. Blue dots correspond to the centers of bands for these sensors.
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Figure 2.9: Measured SRF of eight bands of the WV2 multispectral spaceborne
sensor.
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Figure 2.10: Simulated Gaussian SRF of the WV2 multispectral sensor using
the given band center and standard deviation in the sensor specifications.

radiance (mW · cm−2 · nm−1 · sr−1) or its normalized version. The measured

SRF for WorldView2 multispectral sensor is illustrated in Figure 2.9.

Sometimes the measured SRF of the sensor for a specific spectral band is

not known. In such case it can be modelled with a Gaussian function

Ri(λ) =
1

σ
√

2π
e−

(λ−µ)2

2σ2 , (2.5)

where λ is the wavelength from the continues range, µ is the band center

wavelength and sigma is a standard deviation of that band. This simulation

however, as it can be seen in Figure 2.10 it often deviates from the real SRF

(Figure 2.10).
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Figure 2.11: The PSF components of the Landsat satellite with 30m GSD. (from
Gonzalez and Woods, 2001, p. 94).

2.2.4 Response of a sensor to a Point Spread Function

An example of Point Spread Function (PSF) is shown in Figure 2.11.

The blurring effects and distortions which determine the spatial resolution

(see Section 2.2.1) are characterized by the PSF. Similarly to the SRF, the

PSF describes the spatial response function of the sensor to the input signal.

The PSF of an optical remote sensing instrument includes

• optical PSFopt defined as the 2-D response of the imaging system to

a point-source. It can be measured but often it is modelled as a 2-D

Gaussian

PSFopt(x, y) =
1

2πab
e−x

2/a2e−y
2/a2 (2.6)

where (x, y) are the spatial coordinates, a and b are the cross and long

track widths,

• image motion PSFmotion modelling the movement of the image across

the detector during acquisition. If the motion is in one direction the

image motion PSF is modelled by a square pulse in this direction,

• detector PSFdetector dependent from the shape and the area of the de-

tector. It is usually modelled as a square pulse function,

• and electronics PSFelectronics, the blurring caused by the electronic

components of the instrument. It also contains the additional filter-
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ing sometimes introduced in order to reduce the noise (Gonzalez and

Woods, 2001, p. 86-90).

Summarizing, the PSF of an image is given by

PSF = PSFopt + PSFmotion + PSFdetector + PSFelectronics (2.7)

2.2.5 Spectral Re-Sampling and Image Simulation

Each band of a lower spectral resolution image can be simulated from a higher

spectral resolution image using

Li =

∫ λ2
λ1
Ri(λ)L(λ)dλ∫ λ2
λ1
Ri(λ)dλ

, (2.8)

where Li is a ith band of the lower resolution sensor, R(λ) measured spectral

response of band i and L(λ) is a measured radiance or reflectance with the

higher spectral resolution instrument (van der Meer et al., 2001, p. 41-44).

An example of re-sampled spectra from higher to lower spectral resolution is

shown in the Figure 2.6. Spatial re-sampling is usually done by interpolation

of the neighbouring pixels in order to achieve the desired final GSD. The re-

view of and comparison of resampling methods can be found in Schowengerdt,

2006, p. 300-308; Segl et al., 2010 and van der Meer et al., 2001, p. 41-44.

Similarly, the higher spatial resolution image can be degraded using the

PSF of the lower resolution image. That spatial convolution function can be

written as

s′(x, y) =

∫ αmax

αmin

∫ βmax

βmin

s(α, β)PSF(x− α, y − β)dαdβ (2.9)

where s′ is the signal of the new lower resolution image with spatial coordi-

nates in (x, y) and s is the signal of the higher resolution image with spatial

coordinates in (α, β).
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2.2.6 Signal-to-Noise-Ratio

Noise is defined as any unwanted signal contaminating the signal of interest.

It is usually introduced into the image by the sensor and can occur in a very

wide variety of types and models (Cerra et al., 2014; Chang and Du, 2004;

Chen and Qian, 2011; Schowengerdt, 2006, 140-152). The discussion of the

noise types is beyond the scope of this thesis. However, this section provides

an overview of the methods of noise description and measurement.

The Signal-to-Noise-Ratio (SNR) is one of the mostly used quality mea-

sures of hyperspectral images as well as one of the crucial sensor parameters.

There is no single SNR definition and it changes with application. In order

to be meaningful, the ratio should be chosen taking in to account,

• the signal type which can be either at-sensor radiance or reflectance,

• different types of noise contamination (e.g. Gaussian, salt-and-pepper

or quantization noise),

• the method for SNR estimation,

• and the ratio type (amplitude or power).

Generally the SNR in a digital image can be defined as

SNRamplitude =
psignal
pnoise

(2.10)

where psignal is the number of counted signal electrons and pnoise is the number

of the noise electrons. The signal electrons can be estimated as follows

psignal = AθΩti

∫ λ2

λ1

η(λ)T (λ)
λ

hc
Ls(λ)dλ (2.11)

where Aθ is the area of the sensor optics, Ω the field of view, ti dwell time,

η(λ) is the quantisation and T (λ) is the transmission of the sensor optics.

Similarly the number of noise electrons is estimated as

pnoise =
√
N2
sh +N2

i =
√
psignal +N2

i (2.12)
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where Nsh is the shot noise and Ni noise of the instrument. The above

definition is common in image processing and is referred to as amplitude

ratio SNR.

In signal processing the SNR is commonly defined ratio of signal and noise

power.

SNRp =
p2
signal

p2
noise

. (2.13)

Both amplitude and power SNR can be expressed in decibels (dB),

SNRdB = 10log10(SNR), (2.14)

where log10 stands for the common logarithm. Since the separation of signal

and signal noise in the sensor is not possible, there exist several methods to

estimate SNR in the image.

The common ”laboratory method” for the SNR estimation is to take an

image of a bright surface, compute the ratio between a mean µband and the

standard deviation σ of all pixels in one spectral band

SNR =
µband
σband

(2.15)

Similarly the SNR can be calculated out of an image from a uniform region

or locally for example in a sliding window. Because the standard deviation

in this case is not only dependent from the noise but also from the variations

in the window, it tends to inflate the SNR. Another method is estimation of

the noise from the dark current measurement. This method however, since

the dark current is only one component of the noise, tends to deflate the

SNR (Schowengerdt, 2006, p. 147-149; van der Meer et al., 2001, p. 35,37).

An example of an image contaminated with random Gaussian noise of

different SNR is shown in Figure 2.13.
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Figure 2.12: Alunite reflectance spectrum without noise and with added random
noise given by different noise levels.

2.3 Spectrum of Materials

The fine spectral resolution of hyperspectral images enables tracking even

smallest changes and features in the reflectance spectrum. This property

allows to study the reflectance spectra in a similar way like it is done in

spectroscopy. Based on the fact that each material has its own unique spec-

tral signature it allows recognition of these materials and use in applications

like mineral mapping, target detection or classification. However, unlike in

laboratory based spectroscopy one can not assure the measured spectrum

comes from only one pure material. Therefore, while studying hyperspectral

reflectance spectra, the fact that these spectra might consist of a mixture of

reflectance from different materials appearing in the pixel should be taken

into account. In this section the spectral mixing as well as some basic defi-

nitions and concepts to deal with this problem will be discussed.

2.3.1 Spectral Mixing Model

The relatively low GSD of hyperspectral images, acquired from airborne of

spaceborne platform, results usually in contribution of more than only one

material spectrum in one measured spatial pixel. This means that in this

pixel a mixture of spectra is recorded and the process is usually referred to

as spectral mixing. Spectral mixing in most of the cases can be modelled as

a linear system of equations

yj = Axj, (2.16)
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a) SNRp ≈ 0 b) SNRp ≈ 40dB

c) SNRp ≈ 30dB d) SNRp ≈ 20dB

Figure 2.13: Comparison of spatial effects caused by additive Gaussian noise
with different SNR level. The SNR ≈ 0 is achieved by filtering and down-sampling
the original image with GSD = 0.2m to GSD = 2m.



where yj ∈ Rm stands for the measured spectrum from the jth hyperspectral

pixel with m spectral bands, A ∈ R[m×n] is the mixing matrix containing n

unique linearly independent spectra and xj ∈ Rn is a vector representing pro-

portions of each element from A in the pixel yj. This model equation (2.16)

for pixel synthesis represents the linear mixing model (LMM) (Bioucas-Dias

et al., 2013; Drake et al., 1999; Horwitz et al., 1971; Keshava, 2003; Keshava

and Mustard, 2002). In other words, the LMM states that the radiance mea-

sured by the sensor can be represented as the integrated sum of the spectral

radiance of all objects within the captured pixel. Wherein, the proportions

of the ai spectra for each ith material is in linear relation to the geometric

proportions in the pixel

yj =
n∑
i=1

aixji where xji ∝
area(ai)

GSD2
yj

. (2.17)

Based on the above considerations, the proportions vector xj satisfies the

following positivity and sum to one constrainsxji > 0, ∀i = 1, · · · , n,∑n
i=1 xji = 1.

(2.18)

Although, most of the mixing process is linear, a fraction of radiance re-

ceived by the hyperspectral sensor might have undergone a nonlinear mix-

ing. While the linear mixing occurs at sensor the nonlinear mixing is usually

caused by physical interactions of the incident light e.g. multiple scattering at

either macroscopic level [Figure 2.14 e)] or microscopic level [Figure 2.14 f)]

(Bioucas-Dias et al., 2013; Halimi et al., 2011; Heylen et al., 2011b; Keshava,

2003; Keshava and Mustard, 2002; Yokoya et al., 2014).

2.3.2 Spectral Endmember

Until now we have referred to the unique, linearly independent material spec-

trum as a final element of the mixing matrix in the LMM. This assumption

is sufficient for understanding of basic concepts, need to be specified for fur-
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Figure 2.14: Possible mixing scenarios

ther consideration of this thesis. For this purpose we introduce the concept

of spectral endmember. Spectral endmember is assumed to represent pure

material at macroscopic level and varies depending on applications (Bioucas-

Dias et al., 2013; Halimi et al., 2011; Heylen et al., 2011b; Keshava, 2003;

Keshava and Mustard, 2002; Ma et al., 2014). In this section we present two

points of view for endmember namely physical and geometrical.

Physical Approach - Material Endmember

Despite the fact that a material endmember is uniform at macroscopic scale,

it can sometimes consist of other materials or chemical elements from which

each separately can have its unique spectral features. The size of the macro-

scopic scale is highly dependent on the application and sometimes a definition

of soil endmember will be sufficient, whereas in other case, a division to clay,

sand, sill and loan or even consisting minerals and moisture levels might be

necessary.

The spectra of endmembers are usually measured using spectrometer, in
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the laboratory or in the field, and converted to the reflectance spectra. A

collection of spectral endmembers are called spectral libraries.

Signal Processing Approach - Data Cloud

Each hyperspectral pixel consists of m spectral bands, this means that the

pixel yj can be considered as a vector in m-dimensional Euclidean space.

All the hyperspectral pixels build a m dimensional data cloud. Taking into

account the constrains from the equation (2.18) all vectors xj will build

a simplex hence the data cloud spans all pixels, yj will be a simplex too.

The geometrical definition of an endmember assumes that the pure spectra

or endmembers occupy extremities of the m dimensional, i.e., vertices of

the data cloud simplex (Keshava and Mustard, 2002; Nascimento and Dias,

2005). The graphical interpretation of that concept using real data is shown

in the Figure 2.15.

2.4 Introduction to Spectral Unmixing

The method for recovery of endmembers and estimation of their amount for

each pixel is called spectral unmixing. Recently, spectral unmixing is inten-

sively studied by many researchers resulting in diverse methods where the

endmembers can be retrieved from the image in the manner of geometrical

approaches (vertex component analysis - VCA, pixel purity index - PPI, N-

FINDR, iterative error analysis - IEA), statistical approaches (independent

component analysis ICA-EA) (Bioucas-Dias and Plaza, 2011) or manual se-

lection from existing databases of endmembers or the image itself.

The next step of the spectral unmixing is estimation of the abundance

of each endmember in each hyperspectral pixel. Common approaches for

abundance estimation include the method of OLS, NNLS (Keshava and Mus-

tard, 2002) and Fully-Constrained Least Squares (FCLS) (Heinz and Chein-

I-Chang, 2001). While NNLS ensures the nonnegativity of the abundances,

FCLS additionally enforces that the elements of the abundance vector sum to

one. Yet, these techniques are dedicated for overdetermined mixing models
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that require a pre-selection of endmembers from a spectral library based on

a priori knowledge or retrieving them from the image directly (Bioucas-Dias

et al., 2012). As a consequence, the amount of allowable endmembers is

severely limited. The unmixing methods will be discussed more extensively

in Chapter 4.

2.5 Summary

The following issues have been discussed in this chapter.

• Remote sensing hyperspectral sensors are capable of imaging the Earth’s

surface reflectance with very high spectral resolution, i.e., hundreds con-

tiguous, few nanometres-wide bands, in a relatively wide spectral range.

In general, the increase of spectral causes the decrease in the spatial

resolution.

• The resolutions are determined also by the design properties of the

sensor. E.g. the spectral resolution is closely related to the SRF of the

sensor, i.e., the wavelength range and the sensitivity of the sensor to

incoming photons. An important factor influencing spatial resolution

is the PSF characterizing the blurring effects and spatial distortions.

• Images are always contaminated with different type of noise. SNR is

the most common way of expressing the noise level in image processing.

However, the definition of SNR depends upon the application, in this

thesis we will consider the power SNR expressed in decibels.

• The spectrum recorded by the single pixel is, due to the resolution limi-

tations, seldom coming from a single unique material. This means that

it most likely contains a mixture of spectra from different materials.

The process of retrieving the amount of the constituent materials is

known as spectral unmixing and will be further studied in this thesis.

After presenting the above introductory concepts of hyperspectral imaging,

in the next chapter, we will discuss the theoretical backgrounds for concepts

of estimation methods used in this thesis to solve the unmixing problem.
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3
Sparse Approximation

– The Magic Method

The core of the methods developed in this thesis is based on the approxi-

mation of object properties from indirect measurements. As introduced

in the previous chapter, the pixels in hyperspectral images usually con-

sist of a mixture of reflectance spectra of materials linked to the area

of the pixel fraction on ground. The spectral unmixing method aims

at recovery of the amount of the spectra using the hyperspectral image

data and the set of the endmembers. This approach is usually done

by approximation methods. In this chapter first the basic concepts and

nomenclature will be given next, general methods with examples of al-

gorithms will be discussed, finally a modification of these methods will

be presented.
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3.1 Basic Concepts

3.1.1 Linear Model for Inverse Problems

The inverse problem aims to find the information about the observed object

x ∈ Rm based on indirect measurement y ∈ Rn of that object. A general

model for the inverse problem can be written as

y = T {x}+ ε (3.1)

where τ : Rn −→ Rm is a known operator and ε is the residual vector often

related to the additive noise. In case of a linear model, the operator will be

a matrix A ∈ Rn×m

y = Ax+ ε (3.2)

If A has more rows than columns (n > m) and is full-ranked, such a system

of equation is overdetermined. Otherwise, if A has more columns than rows

(m > n) the model (3.2) is called underdetermined.

An example of a linear model is the LMM and inverse problem to this linear

model is spectral unmixing (see section 2.4). This concept will be extended

in the next chapter.

3.1.2 What is Sparsity?

A signal y ∈ Rn is k−sparse when the support

supp(y) = {i ∈ [1, n] | y(i) 6= 0} (3.3)

is of cardinality k � n, i.e., only few k elements are non zero elements.

Often, when the signal y is not sparse, one can find a linear representation

y = Ax where the vector x is sparse.
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3.1.3 What is a Vector Norm?

A vector’s b `p-norm can be defined as

‖b‖p = p

√∑
i

|bi|p, (3.4)

where p ∈ R . The most commonly used norm is the `2 norm (‖·‖2) known as

the euclidean norm. The `2-norm is simply a length of the vector b. Whereas

the `1 norm, known as the Manhattan norm, is simply a sum of all elements

absolute values. A special case in the family of norms is the pseudo `0-norm.

Since it is not possible to take a zero-root the pseudo `0 is considered to be

‖b‖0 = lim
p→0
‖b‖pp = lim

p→0

∑
k

|xk|p = #{i : xi 6= 0} (3.5)

`0 and `1 norms are recently gaining special attention in the engineering fields

due to their sparsifying properties. This properties and its application will

be discussed in the following sections.

3.2 Solving Linear System of Equations

In this section methods for solving inverse problems using different approaches

for data approximation are discussed.

3.2.1 Ordinary Least Squares

An overrdetermined linear system of equations usually does not have a unique

solution or has no solution at all and Ax 6= y for all x. Therefore, instead of

calculating x an approximate x̂ has to be found. The most common way of

approximating x̂ is by finding the minimum Residual Sum of Squares (RSS)

RSS(x) =
∑

r2 =
∑

(y − Ax) = ‖y − Ax‖2
2 (3.6)

and accordingly

x̂OLS = argmin ‖y − Ax‖2
2 (3.7)
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ŷ = Ax̂LS

Figure 3.1: Geometrical interpretation of OLS. Estimated ŷ is a projection of y
onto the plane spanned by A with columns a1 and a2.

which is usually referred to as OLS. It can be geometrically interpreted as

finding such x̂ for which RSS(x) will be orthogonal to each column of A

AT (y − Ax̂OLS) = 0⇒ x̂OLS = (ATA)−1ATy (3.8)

i.e. the distance between vector y and estimated vector ŷ = Ax̂ will be the

smallest Figure 3.1. Note, that the equation (3.8) can compute the solution

only when the ATA is invertible. Additionally, when the system of equations

is underdetermined equation (3.8) will not find unique solution. Therefore,

it is common to use the Minimum-Norm Solution (MNS)

x̂MNS = argmin ‖x‖2 subject to (s. t.) y = Ax (3.9)

which can be calculated using the Moore-Penrose pseudo inverse

x̂MNS = AT (AAT )−1y. (3.10)
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Figure 3.2: Geometrical interpretation of the ridge regression. The blue circle
represents the `2 norm of the vector x. The x̂OLS is the OLS solution and x̂ is the
solution to the ridge regression.

3.2.2 `2 Norm Regularization

The OLS and MNS will always try to find the best representation of y in

sense of the smallest RSS. This means that in the presence of noise in y the

OLS will approximate the signal and the noise instead of just the observed

object x e.g. overfit the data. Even small amount of noise in the data might

lead to large errors in the estimation. This instability phenomena is called

ill-posedness (Vogel, 2002, p. 1-24).

This problem can be addressed by the ridge regression, also known as

Tikhonov regularization. Here the least squares term is regularized by the

length of the estimated vector x. The geometrical interpretation of ridge

regression is shown Figure 3.2. This minimization problem can be written in

general form as

min‖Ax− y‖2
2 + λ‖x‖2

2 (3.11)

where λ is the penalty parameter. That means that for a specific setting of
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λ a solution with upper bound δ will be promoted

min‖Ax− y‖2
2 s.t. ‖x‖2 ≤ δ. (3.12)

where small bound δ corresponds to large penalty λ and vice versa. In order

to solve this minimization problem a minor modification to equation (3.8)

has to be done

x̂ridge = AT (AAT + λI)−1y (3.13)

where I is the identity matrix. One can easily observe that if λ = 0 this

equation becomes OLS, for λ = ∞, x̂ridge = 0 and for λ = 〈0,∞〉 the linear

model y on A is balanced with the shrinking of x̂.

3.2.3 `0 Norm Regularization

x1

x2

x̂

ˆxOLS

Figure 3.3: Geometrical interpretation of the `0 norm regularization. The blue
line represents the `0 norm of the vector x. The x̂OLS is the OLS solution and x̂
is the solution to the ridge regression.

The previous method promotes solutions with restricted length of x̂ and
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even though for λ→∞, x̂→ 0 the elements x̂ will shrink towards zero but

will not be set to zero. Therefore, in case when x is expected to be sparse,

the `0 norm can be used as a regularizer

min‖Ax− y‖2
2 + λ‖x‖0. (3.14)

The geometrical interpretation of the sparsity promoting property of this

formulation is shown in (Figure 3.3). Similarly like in ridge regression an

alternative equivalent formulation can be written

min‖Ax− y‖2
2 s.t. ‖x‖0 ≤ δ0 (3.15)

where δ0 sets the limit on the number of non-zero elements in the vector x. If

the sparsity of x is not known the minimization problem can be reformulated

to be constrained by the upper bound ε on the RSS, often related to noise

min‖x‖0 s.t. ‖Ax− y‖2
2 ≤ ε. (3.16)

Because the ‖x‖0 term is non-convex it is a typical example of a combinato-

rial search problem. Such problems are very hard to solve (Baraniuk, 2007;

Baraniuk et al., 2008; Candes and Wakin, 2008). For example consider a

matrix A ∈ Rn×m is of size n = 200 and m = 300 and we suppose that the

sparsest solution has k = 10 non-zeros we have to go through
(
n
k

)
≈ 1.4×1018

combinations of y = Akxk. If the calculation of a single y = Akxk would take

only 10−9 second, to find a complete set of possible combinations it would

take 556 days to compute x (Elad, 2010, p. 13-14).
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Algorithm 1: OMP (Orthogonal Matching Pursuit)

Input: A, y, δ0, ε

1 begin

2 initialize: set all x̂j,...,m = 0, V = ∅,r = y;

3 for i = 1,...,δ0 do

4 calculate correlation vector ĉ = AT r;

5 update active set with the greatest current correlation

V = {j : |cj| = max(|ĉj|)};
6 get a subset matrix AV = (· · · sjaj · · · ), where sj = sign{|cj|}

for j ∈ V ;

7 update the coefficient vector x and the residual r

x̂←− (ATVAV )−1ATV y, r ←− (y − AV x̂);

8 if if ‖r‖2
2 ≤ ε then

9 return x̂

10 ;

11 return x̂;

Due to the inefficiency of the combinatorial search, another option to find

the solution to problem (3.15) is to use the greedy search algorithm. How-

ever, this is proofed to work only if the the equation (3.2) fulfils several

requirements (for example see Donoho and Elad, 2003; Elad, 2010, p. 65-71;

Gribonval and Nielsen, 2003). Additionally, due to the hard thresholding the

algorithm tends to select local minima to the final solution (Murphy, 2012,

p. 429-430). To illustrate this problem lets consider one of the most estab-

lished algorithms for sparse recovery based on greedy search - OMP. The

OMP algorithm can recover a k−sparse solution in only k iterations. This

is possible because it selects one column from A which is the most corre-

lated with the residual r at each iteration and adds it to the set of active

columns V . Subsequently the solution x̂ is updated solving the OLS using so

constructed AV and calculating a new residual r for the next iteration. For

details refer to the pseudo code in Algorithm 1. The OMP algorithm can

solve the problem (3.15) by setting δ and problem (3.16) if the ε is set. If
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both parameters are set the OMP will iterate until one of the conditions is

met. This type of discrete selection recovers the exact support of x. However,

OMP has been reported to have strong limitation on the properties of A. As

an example the high correlation among columns in A leads to the solution

instability, i.e., the OMP might at first pick up a wrong column and later due

to the hard thresholding this failure can not be corrected. This drawback

should especially be considered when y is noisy.

3.2.4 `1 Norm Regularization

It has been shown that an alternative method for finding sparse approxima-

tion of x is to regularize the RSS by penalizing the `1 norm of this vector

min
1

2
‖Ax− y‖2

2 + λ‖x‖1 (3.17)

This type of regularization is known as Basis Pursuit Denoising (BPDN)

(Chen et al., 1998). The advantage of this approach is the substitution

of the non-convex, discrete term of ‖x‖0 (Figure 3.3) with the convex and

continuous term of ‖·‖1 (Figure 3.4). The equation (3.17) can be equivalently

expressed with its constrained version written as

min‖Ax− y‖2
2 s.t. ‖x‖1 ≤ δ1 (3.18)

where δ is upper bound on the `1 norm of the vector x. This formulation,

more popular in the statistical community, is known as the Least Absolute

Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996).

The sparsity promoting property of the `1 norm can be explained compar-

ing Figure 3.4 with Figure 3.2. The optimal solution for these functions can

be found at the intersection point of the constraint surface and the objec-

tive function (Murphy, 2012, p. 430-431). One of the most popular choices

in solving the (3.18) problem is the LARS/LASSO algorithm (Efron et al.,

2004). The principle of the algorithm is similar to the OMP algorithm. Both

start with x set to zero and at each step select column from A most cor-

related with the residual r and add it to the set of active columns V . The
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x̂
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Figure 3.4: Geometrical interpretation of the `1 norm regularization. The blue
square represents the `1 norm of the vector x. The x̂OLS is the OLS solution and
x̂ is the solution to the ridge regression.

main difference between both algorithms is the way of updating the solu-

tion x̂. While OMP computes the new solution with the new set of active

columns (hard thresholding), the LARS/LASSO updates the coefficient vec-

tor x̂ with the largest possible step size until some other column in A has

the most correlation with the current residual. Then the algorithm proceeds

in the equiangular direction for all active columns until the next column will

became most correlated (soft thresholding). For more details please refer to

Algorithm 2 or to Efron et al. (2004); Tibshirani (1996).

3.3 Non-negativity Constraint

The regularization problems can be further extended with the constrains

tailored according to the a priori knowledge about the data model. Spectral

unmixing requires the coefficient vector x to be non-negative (Keshava, 2003;
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40CHAPTER 3. SPARSE APPROXIMATION – THE MAGIC METHOD

Algorithm 2: LARS/LASSO (Least Angle Regression LASSO)

Input: A, y, δ1

1 begin
2 initialize: set all x̂j,...,m = 0, V = ∅,Vc = ∅, r = y;
3 while ‖x‖1 ≤ δ1 do
4 calculate correlation vector ĉ = AT r;
5 update active set with the greatest current correlation

Ĉ = max|ĉj| and V = {j : |cj| = Ĉ} (3.19)

;
6 get a subset matrix AV = (· · · sjaj · · · ), where sj = sign{cj} for

j ∈ V ;
7 compute equiangular vector yV and the inner product vector d

yV = AVωV , d = ATyV (3.20)

where ωV = XVG−1
V 1V , GV = ATVAV and XV = (1TVG−11V)

1
2 ;

8 compute the step size

γ̂ = min+
j∈Vc

{
Ĉ − ĉj
XV − dj

,
Ĉ + ĉj
XV − dj

}
(3.21)

check for the sign violation;
γ̃ = min+{γj} where γj = −x̂j/kj, kj = sjωVj for j ∈ V ;

9 if γ̃ < γ̂ then
10 change γ̂ = γ̃;

11 remove j̃ = argmin+{γj} for j ∈ V from the set V ;

12 update the coefficient vector x and the residual r

x̂←− x̂+ γ̂d, r ←− (y − ATV x̂) (3.22)

;

13 return x̂;



Keshava and Mustard, 2002; Nielsen, 2001). The minimisation objective with

this constrain can be formulated as

x̂NNLS = argmin ‖y − Ax‖2
2 s.t. x > 0 (3.23)

This quadratic programming problem can be solved using the NNLS algo-

rithm (Bro and De Jong, 1997; Lawson and Hanson, 1974, p. 160-165). In

essence the NNLS algorithm iteratively estimates coefficient vector by calcu-

lating the solution using only positive elements from the least squares esti-

mation until the desired tolerance is met. However, the need of calculating

OLS at each iteration increases the computation time significantly. Unlike

OLS, NNLS under certain conditions (detailed discussion for the sparse re-

covery with NNLS will be provided in the next chapter) can guarantee the

uniqueness of the solution for underdetermined system of equation and can

provide sparse solution (Meinshausen, 2013).

Similarly, the non-negativity is often imposed on the sparse regularizes

(`0, `1). The `0 regularized minimization with the non-negativity prior can

be formulated as

min‖Ax− y‖2
2 + λ‖x‖0 s.t. x > 0 (3.24)

This problem can be solved after slight modification of the OMP Algorithm

(Algorithm 3) (Bruckstein et al., 2008).

In order to solve the non-negative Basis Pursuit Denoising (nBPDN)

min‖Ax− y‖2
2 + λ‖x‖1 s.t. x > 0 (3.25)

with the LARS/LASSO algorithm (Algorithm 2) a minor modifications has

to be done. First, change |ĉj| to ĉj in (3.20). Next, in step 6 set sj = 1.
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Algorithm 3: NOMP(Non-Negative Orthogonal Matching Pursuit)

Input: A, y, δ0, ε
1 begin
2 initialize: set all x̂j,...,m = 0, V = ∅,r = y;
3 for i = 1,...,δ0 do
4 calculate the following error for all 1 ≤ j ≤ m,

ε̂ = minxj≥0 ‖ajxj − r‖2
2 = ‖r‖2

2 −
max{aTj r,0}
‖aj‖22

;

5 update active set such V = {j : εj = min(ε̂j)};
6 get a subset matrix AV = (· · · sjaj · · · ), where sj = sign{|εj|}

for j ∈ V ;
7 update the coefficient vector x and the residual r

x̂←− min‖Ax− y‖2
2 s.t. x > 0, r ←− (y − AV x̂);

8 if if ‖x‖2
2 ≤ ε then

9 return x̂

10 ;

11 return x̂;

Finally, change the equation (3.21) to

γ̂ = min+
j∈Vc

{
Ĉ − ĉj
XV − dj

}
(3.26)

Unlike in the NNLS algorithm the change made in the LARS/LASSO or

OMP algorithm does not increase the complexity of the algorithm and the

same does not increase the computation time.

3.4 Joint Sparsity

Most methods for sparse recovery are addressed to approximate scalar func-

tions. However, often in signal and image processing applications there are

hundreds of such functions to be approximated. This is the case in e.g spec-

tral unmixing where the mixture has to be approximated for each pixel in

the image. Sometimes these signals are correlated and more importantly,

the linear models for the inverse problem are correlated too. In case when

this correlation results in common support in the approximated vector x one
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could think of joint approximation of these signals.

Suppose there exist J number of linear systems equations yi = Axi where

i ∈ 1, ..., J and all yi share a portion of the information. If the measurements

yi share some information then we can imply that each coefficient vectors xi

will share a portion of the support. Based on these assumptions a model for

jointly sparse signals can be formulated as

Y = ÃX (3.27)

where

Y =



y1

y2

y3

...

yJ


(3.28)

is a vector ensemble for joint signals y1, ...yJ , and

Ã =



A A 0 0 · · · 0

A 0 A 0 · · · 0

A 0 0 A · · · 0
...

...
...

...
. . .

...

A 0 0 0 · · · A


(3.29)

is a matrix containing copies of the matrix A and 0 matrix of same size as

A, with all elements equal to zero. Then the ensemble coefficient vector can

be written as

X =



xc

x′1

x′2
...

x′J


(3.30)

where the vector xc contains coefficients common for all j , i.e., having the

same support for all j. This is enforced by the design of Ã where the first
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supercolumn (m first columns of Ã) of Ã. Vectors x′1, ...x
′
j contain all differ-

ences and new elements recovered by supercolumns of Ã containing only one

copy of the dictionary A (Baron et al., 2005, 2009).

The concept of joint sparsity with application to spectral unmixing will be

further discussed in the next chapter.

3.5 Summary

In this chapter we have discussed the following concepts.

• An approach of finding information about the observed object from its

indirect measurements is called inverse problem. Often such approaches

are modelled as linear system of equations.

• To solve such problems approximation methods are used. All the dis-

cussed methods are based on the minimisation of the RSS.

• OLS has been proven to be sensitive to noise in the model. Therefore

it of advantage to use regularised approximation methods instead. An

example of regularized OLS is the ridge regression. If the regression

parameter grows the, approximated vector will shrink towards zero but

seldom will not become sparse.

• If the approximated vector is expected to be sparse, `0 or `1 regulari-

sation terms can be used.

• `0 regularisation is a non-convex function but it can be solved using

greedy search algorithms like OMP.

• The `1 regularisation has been reported to be alternative to `0 regular-

isation. This approach is less sensitive to correlation of columns in A.

An example of algorithm solving `1 approximation is the LARS/LASSO

algorithm.

• Often the approximated vector is constrained to be nonnegative. This

constrain transforms the OLS problem to be quadratic what signifi-

cantly increases the complexity of OLS and BPDN. In contrast, the
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introduction of the nonnegativity in the LARS/LASSO algorithm does

not increase the complexity of the algorithm.

• The joint sparsity model can be used for approximation of correlated

signals where the coefficient vectors are supposed to be sparse and have

common support.
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Part II

Sparse Spectral Unmixing and

Resolution Enhancement



4
Sparse Spectral Unmixing

Recent work on hyperspectral image unmixing has addressed the use of

overcomplete dictionaries by employing sparse models. In essence, this

approach exploits the fact that hyperspectral image pixels can be associ-

ated with a small number of constituent pure materials. Sparsity-based

techniques do not require endmember extraction or selection step and

are thus able to simultaneously estimate the underlying active materi-

als along with their respective abundances. However, sparse approxi-

mation methods have been reported to have problems using large spec-

tral dictionary where the coherence between endmembers is high. The

problem of sparse unmixing, dictionary coherence as well as reducing

the size of the dictionary will be discussed in this chapter. In addition,

this perspective will be extended so as to exploit the spatial homogene-

ity of abundance vectors and an alternative approach that captures

both similarities and differences between neighboring abundances will

be presented.
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4.1 Sparse Spectral Unmixing – The Concept

Spectral unmixing is a method for quantitative analysis of hyperspectral im-

ages. This analysis includes detection of endmembers and estimation of their

abundance in each pixel of the hyperspectral image. The usual approach

for spectral unmixing is first, to either extract endmembers from the im-

age or to use a preselected set of available known endmembers and second,

approximate the abundance using one of the least squares based methods.

Recent work on hyperspectral image unmixing has addressed the use of

overcomplete dictionaries by employing sparse models , i.e., sparse spectral

unmixing. In contrast to conventional methods, this model operates on a very

large set of endmembers usually given in advance , i.e., spectral dictionary.

In essence, this approach exploits the fact that each hyperspectral pixel can

be associated with only a small number of constituent pure materials. This

implies the use of a sparsity prior in the abundance vectors by applying

sparse approximation methods.

4.1.1 Sparsity Prior Model

Let us assume a LMM

yj = Axj (2.16)

where yj ∈ Rm is the measured spectrum from the jth pixel, A ∈ R[m×n]

is the mixing matrix containing endmembers and xi ∈ Rn is the abundance

vector. When A is overcomplete, i.e., it contains more endmembers than

spectral channels n > m or even n >> m one could expect x to be sparse

(see Figure 4.1). Considering the fact that hyperspectral sensors have usually

hundreds of channels and the spatial resolution of up to 30 m, the assumption

that x will be sparse is reasonable. This property brings a new look into the

unmixing problem where, instead of extracting endmembers from an image or

looking for endmembers manually, researchers can use hundreds of predefined

endmembers.
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Figure 4.1: Illustration of a mixing model with sparse prior. A hyperspectral
pixel can be described as a mixture of only few endmembers from a spectral dic-
tionary weighted by a sparse abundance vector.

4.1.2 Spectral Dictionary

The matrix A containing a large set of different endmembers will be then

called the spectral dictionary. Spectra in the dictionary can be either a

large collection of unique image endmembers or a collection of spectra of

materials measured in-situ e.g. in laboratory or by hand-hold spectrometers

in the field. In this thesis we define a spectral dictionary as a set of linearly

independent spectra. Note, that the spectral dictionary can contain several

measurements of the same material as long as they are not linearly dependent.

This is allowed due to the fact that spectra of the same material might differ

significantly depending on e.g. water content, age of the material or mineral

composition (see for example spectra of Andradite Figure 4.2).

When using spectral dictionaries containing measurements from various

sensors under different conditions one should be aware that these measure-
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Figure 4.2: Different spectral measurements of the same material - Andradite.
Taken from the spectral library splib06 (Clark et al., 2007).

ments also contain noise. Also, the dictionary might miss some endmembers

apearing in the image. As a result the space spanned by column vectors of

the dictionary might not obey completely the space spanned by hyperspec-

tral image data. Another case is that the dictionary contains pure spectra of

minerals (e.g. Alunite) as well as composites of these minerals (aluminium,

potassium and sulphate). Here, sparse approximation is of advantage because

it will promote sole spectrum instead of mixture of more spectra.

4.1.3 Abundance Estimation With Sparse Prior

The expected sparsity of the abundance vector implies the use of sparse

approximation methods. Hence, the abundance estimation problem can be

formulated as the non-negative version of the OMP

min‖Ax− y‖2
2 s.t. ‖x‖0 6 δ0 and x > 0 (4.1)

where δ0 is the upper bound set on the number of endmembers in the spec-

trum y. Alternatively, the sparsity can be controlled using the nLASSO

formulation

min‖Ax− y‖2
2 s.t. ‖x‖1 6 δ1 and x > 0 (4.2)

or equivalent nBPDN

min
1

2
‖Ax− y‖2

2 + λ‖x‖1 s.t. x > 0 (4.3)
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Since the `1-norm and `0-norm serves as proxy for sparsity, the penalty

parameter δ0, δ1 or λ can be used to trade sparsity of the solution for data

mismatch. Also, in order to ensure physical validity, the abundance vector

is constrained to be nonnegative. Additionally, the formulation 4.2 allows

more intuitive control of the minimisation considering sum-to-one property

of the spectral abundance. The minimization problem (4.2) is referred to

as nBPDN or equivalent nonnegative sparse LASSO (Efron et al., 2004).

The probability of reliable sparse unmixing, however, highly depends on the

properties of the matrix A and the noise present in the spectrum (Bieniarz

et al., 2012; Bioucas-Dias et al., 2012; Iordache et al., 2011, 2013).

Under certain conditions the NNLS is also able to approximate underde-

termined systems of equations (Donoho and Tanner, 2005). Additionally, in

certain cases NNLS can also recover sparse solution (Greer, 2012). For the

sake of explanation lets consider the case in only two dimensions , i.e., A

containing 2 endmembers. A measured spectrum y is a mixture of only one

endmember a1 (sparse mixture) and additive noise ε. Now, depending on the

influence of noise, OLS, NNLS and BPDN can yield different approximations

(for example see Figure 4.3).

(i) If ε added to y brings it outside the space spanned by A, both NNLS

and sparse approximation will recover the sparse solution while OLS

will instead compensate the noise by negative values of a2.

(ii) If ε added to y brings it inside the space spanned by A, only sparse

approximation will yield sparse solution. The OLS and NNLS will

compensate the noise with a2.

(iii) If y stays on a border of A all algorithms will result in the same ap-

proximation.

4.2 Related Work

Spectral unmixing together with abundance estimation is a concept for find-

ing the type and amount of endmembers mixed within a hyperspectral pixel
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Figure 4.3: Geometrical interpretation of sparse solution to the abundance esti-
mation problem. Black dots represent noisy measurements y while red circles are
the approximate solutions ŷ. In this example the noise free yo is known to lay on
a1.

(Ifarraguerri and Chang, 1999; Keshava and Mustard, 2002). Recently, re-

searchers came up with the idea of exploiting the sparse nature of abundance

vectors. In this section both traditional as well as new concepts of sparse

unmixing will be discussed.

4.2.1 Non-Sparse-Prior Unmixing

The traditional approach for estimating the abundance of endmembers is

to use a matrix A with endmembers extracted from the image and com-

puting the abundance vector by means of the OLS based methods. The

first approach to approximate abundance of endmembers was presented in

Settle and Drake (1993). In this work the authors additionally constrained

the OLS by the sum-to-one property of the abundance vector. Other early

methods were introduced in Chang et al. (1998); Settle and Drake (1993);

Shimabukuro and Smith (1991). However, none of these methods obey the

nonnegative nature of abundances. The nonnegativity, instead was imposed

by setting negative values to zero what means that these methods actually do

not converge to the optimal solution (Heylen et al., 2011a). In order to fulfil

the nonnegtivity property of abundances and at the same time obtain an

optimal solution Heinz and Chein-I-Chang (2001) used the NNLS algorithm

first introduced by (Lawson and Hanson, 1974, p. 165-167). Additionaly,

Heinz and Chein-I-Chang (2001) incorporated the sum-to-one constraint in

order to obey the physical property of the abundance vector. This algorithm

is known as FCLS. Although, the FCLS algorithm converges to the optimal
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Figure 4.4: Number of publications with keywords: ”sparse”, ”hyperspectral”
and ”unmixing” by year. The results are from search in IEEEXplorer .

solutions, when the number of endmembers is large or the data are noisy,

it tends to overfit the data (Heylen et al., 2011a; Pu et al., 2014). Other

recent approaches in abundance estimation include the Bayesian (Dobigeon

et al., 2009; Themelis et al., 2012) or nonnegative matrix factorisation (Jia

and Qian, 2009; Yang et al., 2011). These algorithms however, extract end-

members from the data and at the same time calculate abundances.

4.2.2 Sparse-Prior Unmixing

Sparse spectral unmixing is recently gaining more attention resulting in an

increasing number of publications on that topic (Figure 4.4). The sparsity-

based spectral unmixing methods estimate abundances in the presence of

overcomplete spectral dictionaries (Bieniarz et al., 2012; Iordache et al., 2011;

Tang et al., 2014b). These methods make use of the fact that there are

typically only few endmembers inside a pixel (depending on the pixel size)

compared to the large endmember spectral library (Iordache et al., 2011),

i.e., the abundance vector to be estimated is sparse and has only up to few

nonzero elements.

The model for linear unmixing with sparse prior was first proposed in the

work of Parente and Zymnis (2005). Authors used a spectral dictionary with

117 endmembers and solved the LASSO problem to estimate the abundance

vectors. This idea despite promising results has not been further developed

until Guo et al. (2009) and Iordache et al. (2009) again tried to use the sparse

regularisation methods for abundance estimation. However, Guo et al. (2009)
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applied the `1 minimisation using only 6 endmembers extracted from the

image. Iordache et al. (2009) on the other hand, used 20 simulated spectra

from which the mixtures were created. Using these data authors compared

application of `0, `1, OLS, and iterative spectral analysis (Rogge et al., 2006).

Despite the limited experimental part, these works were very significant and

brought back the attention to the sparsity in hyperspectral unmixing.

In Iordache et al. (2011) following the ideas from their previous paper a

new, more comprehensive comparison of applying OMP and BPDN to spec-

tral unmixing was performed. Including its non-negative versions as well as

the traditional NNLS and FCLS. To solve the BPDN problem the authors

used the newly proposed SUnSAL algorithm dedicated to spectral unmix-

ing from Bioucas-Dias (2009). Additionally for the first time overcomplete

dictionaries were used. This work proved the advantage of solving the abun-

dance estimation problem as BPDN over other methods when using large

spectral dictionaries. The results however, are highly dependent on the co-

herence of the dictionary and the fact that the spectra in the dictionary are

rarely acquired with the same conditions. These problems lead to errors in

the estimation. Additionally, an increase of the computational complexity

while using SUnSAL is pointed out.

Some researches tried other approaches also yielding sparse solutions. Themelis

et al. (2012), for example, targeted the sparse unmixing problem as a hier-

archical Bayesian model incorporating nonnegativity and sum-to-one con-

straint. The main advantage of these method is that the parameters for the

constraint as well as the sparsity parameters are selected by a new Bayesian

inference iterative scheme. Chen and Zhang (2013) tested sparse unmixig us-

ing several different `p sparsifying norms where p was in the range 0 < p < 1.

It has been shown that in certain cases this approach yields better results

than standard `1 minimization. However, this optimisation, due to its non-

convexity, often gets stuck into suboptimal solutions. Similarly Tang et al.

(2014a) used a logarithmic function in order to approximate the `0 norm.

Iordache et al. (2013) introduced the idea of collaborative sparse unmixing.

In this approach, the unmixing is done by minimizing the residual error for

all pixels in the image using the `2,1 mixed norm as regularizer. The mixed
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`2,1 norm promotes sparsity among columns of the abundance matrix while

minimizing the energy along the rows, i.e., the algorithm tends to select

common endmembers for all pixels in the image. This approach provides

good results for homogeneous areas with few active endmembers because the

regularization is performed globally. Tang et al. (2015) instead of using `2,1

mixed norm incorporates an additional regularization term to the unmixing

problem in order to enforce the abundance of endmembers known to be

present a priori.

The use of large dictionaries for spectral unmixing brings the advantage of

omitting the step of endmember extraction from the image. Frankly, its size

and especially similarities between spectra sometimes causes problems for the

approximation. This, according to Iordache et al. (2012a) and Iordache et al.

(2014), can be avoided by pruning the dictionary before applying the sparse

approximation methods. The authors propose first to use the HySIME algo-

rithm (Bioucas-Dias and Nascimento, 2008) to estimate the data subspace

and select only those spectra from the library which are most correlated with

that subspace. This approach improves the unmixing performance as well

as reduces the computational complexity. However, since this approach is

performed globally, the whole unmixing result is dependent on the initial

subspace estimation and pruning step. Tang et al. (2014b) presented a new

forward backward algorithm where the dictionary is preselected in a first step

by performing forward backward greedy algorithm and then used to calculate

abundances with NNLS. The forward backward greedy algorithm in essence

performs OMP in one direction and then in similar way like OMP adds

spectra to the working set by dropping ”unnecessary” spectra in backward

direction until the criterion of minimum error is met. Both algorithms (Ior-

dache et al., 2014; Tang et al., 2014b) are highly dependent from the initial

spectra preselection. Additionally, in (Tang et al., 2014b) the preselection

does not include the nonnegativity constraint.
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4.2.3 Spatial-Spectral Unmixing

Methods and algorithms presented in the previous section process either each

pixel separately or the whole image at a time concentrating only on the spec-

tral information. However, the information contained in the spatial domain

might be valuable for the spectral unmixing process. The incorporation of

spatial features in ’traditional’ spectral unmixing has been studied by many

researchers (see for example Jia and Qian (2007); Plaza et al. (2002) or Can-

ham et al. (2011)).

Recently, the spatial information has been also successfully incorporated in

methods using sparse spectral unmixing. Iordache et al. (2012b) in his work

assumed that the transition between neighbouring pixels should be smooth.

In order to promote the smoothness in the unmixing results an additional

regularisation term, so called total variation has been incorporated into the

sparse optimisation problem

min‖AX − Y ‖2
F + λ‖X‖1,1 + λTV TV (X) s.t X ≤ 0 (4.4)

where F denotes the Frobenius matrix norm, ‖X‖1,1 =
∑n

i=1 ‖xi‖1 and

TV (X) ≡
∑
i

∑
j∈ρ

‖xi − xj‖1 (4.5)

with ρ denoting the neighbourhood of the ith pixel. The authors claim that

if the parameter λTV = 0 the algorithm converges to the BPDN so the

minimisation (4.4) can be considered as the BPDN with yet additional reg-

ularisation. This approach has been proven to greatly improve the quality

of abundance estimation for images with low variations in the spatial distri-

bution of abundances. One of the main drawbacks of this approach is the

need of setting an additional parameter which makes the algorithm more

complicated in use.

Another way of adding information from surrounding pixel was proposed

by Tang et al. (2014b). The authors, additionally to the forward-backward

greedy algorithm mentioned in previous section, added the spatial contextual
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coherence cost function

G(X) =
1

2

∑
i

∑
j∈ρ

‖xi − xj‖2
2Wij (4.6)

where Wij weights the similarities between pixels. The function is enforced

in the step of solution update. Again, like in the pixel based version of the

algorithm, the sparse regularisation as well as the function G(X) are effective

in the dictionary preselecion step and the final abundance estimation is done

by means of the NNLS algorithm.

4.3 Research Questions

It has been proven that the use of a sparsity prior yields better results when

compared to traditional abundance estimation methods, especially when

overcomplete spectral dictionaries are used. However, many scientific ques-

tions in sparse spectral unmixing are still open, including:

• Researchers observed that the coherence between elements of the dic-

tionary (the concept of coherence will be further described in the next

section) causes many problems in correct estimation of abundances

(Iordache et al., 2011, 2012a, 2014; Tang et al., 2014b). Are all algo-

rithm similarly sensitive to the coherence problem? Can the coherence

in the dictionary be reduced and at the same the performance of the

estimation increased?

• Many sparse unmixing algorithms suffer from the high computational

time due to their high complexity. Most of the algorithms solve quadratic

programming problems, although very fast greedy algorithms solving

the same optimisation problem exist. Can greedy algorithms perform

with similar accuracy as the state of the art unmixing algorithms?

• Approaches for dictionary preselection usually select endmembers glob-

ally, i.e., the subspace of endmembers is estimated for the whole hy-

perspectral image. These approaches are known to be robust to noise,
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however they might omit or exclude rare endmembers, present e.g. only

in one pixel. Based on this fact, can pixel-based endmember preselec-

tion lead to an increase of performance for images with diverse content?

Additionally, preselection of endmembers from a coherent spectral dic-

tionary adds uncertainty of the preselection accuracy, which is later

propagated to the unmixing result. Is a selection of a whole group of

endmembers instead of just one able to increase the endmember esti-

mation accuracy?

• An incorporation of spatial information in the sparse unmixing pro-

cess has been proven to greatly improve the unmixing results (Iordache

et al., 2012a; Tang et al., 2014b). State of the art methods add an

additional regularisation term to the minimisation of the cost function

which increases the complexity and makes the algorithms less intuitive.

This type of regularisation imposes the spatial smoothness to the cal-

culated abundances which might not always be true. Is there another

way of exploiting intra pixel similarities and the fact of sharing some

endmembers by the neighbouring pixels, without forcing them to be

smooth and without introducing yet another cost function?

The following chapter will focus upon answering the above research ques-

tions.

4.4 Dictionary Coherence Problem - Derivative Un-

mixing

4.4.1 Dictionary Coherence

One of the most important condition in sparse approximation methods is

the mutual coherence of the dictionary A. Mutual coherence is a measure

of maximum correlation between pairs of endmembers ai of the dictionary

expressed as

µ = max
i 6=j
|ϕTi ϕj| (4.7)
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where ϕi = ai
‖ai‖1 is the normalised endmember. However, mutual coherence

is a worst-case measure and it reflects the most extreme correlations in the

dictionary.

There have been numerous theoretical works discussing the stability of the

solution recovery of the sparse vector depending from the mutual coherence

(Ben-Haim et al., 2010; Cands and Romberg, 2006; Donoho et al., 2006; Elad,

2007; Tropp, 2004). In essence, the smaller the coherence between the end-

members, the better the abundance vector can be approximated using the

`1 or `0 minimization (Starck et al., 2010). Following Donoho et al. (2006),

a stable solution for `0 minimisation can be guaranteed when the sparsity

k of the abundance vector is k < (µ−1 + 1)/2. Now, consider the case of

using a spectral dictionary containing 224 unique spectra selected from the

United States Geological Survey (USGS) spectral library (Clark et al., 2007).

The mutual coherence for this dictionary is equal µUSGS = 0.999 what in-

dicates that maximally k = 1 sparse solution can have a guaranteed unique

solution, i.e., only pure spectra can be approximated. Despite these limita-

tions, the sparse approximation methods have been reported to perform well

when used for spectral unmixing (Chen and Zhang, 2013; Guo et al., 2009;

Iordache et al., 2012a, 2010, 2009; Parente and Zymnis, 2005; Tang et al.,

2014b). However, many authors claimed that the correlated endmembers in

the dictionary cause problems in these approaches. In the next section we will

discuss a possible way of reducing correlations between endmembers in the

dictionary and simultaneously increase the performance of sparse unmixing.

4.4.2 Derivative Method for Coherence Reduction

Derivatives of spectra have been used in spectroscopy for years (Lawson and

Hanson, 1974). Applying 1’st, 2’nd or even 3’rd order derivatives helped

many researchers in detecting and comparing spectral features and has been

used in many applications including identifying plant stress (Smith et al.,

2004), landcover classification (Tsai and Philpot, 2002) or even in unmixing

for abundance estimation of spectrally similar materials (Debba et al., 2006).

The differentiation of a discrete function estimates the slope over the

59



0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.2
0.4
0.6
0.8

λ[nm]

y

a) Original spectra

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
−10
−5

0
5

λ[nm]

10
0
∂
y

∂
λ
i

b) Derivative spectra

Figure 4.5: Muscovite spectra selected from spectral library splib06 (Clark et al.,
2007). Although these are spectra of the same material they differ significantly
when considering reflectance spectra (a). After applying derivative significant
spectral features are easier identifiable (b).

changing independent variable. In case of spectral derivatives the indepen-

dent variable is the spectral band number. The derivative of a spectrum can

be calculated in the following way

∂y

∂λ
≈ y(λi)− y(λi+1)

∆λ
, (4.8)

where λi is the wavelength of a hyperspectral band i. Then ∆λ = λi−λi+1for

m spectral bands. The differentiation of spectra does not result in more

information contained in the original bands but it decreases background re-

flectance and can therefore considerably improve the detection of convoluted

weaker absorption features (Bieniarz et al., 2012; Talsky, 1994; Tsai and

Philpot, 1998). For example see Figure 4.5.

The property of amplifying fine spectral features by the spectral derivative
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can be used in reducing coherence in the spectral dictionary. The influence

of spectral derivative can be easily explained in the frequency domain. Low

frequencies in the reflectance spectrum have usually high amplitude (see Fig-

ure 4.6). Applying the derivative equation (4.8) to the reflectance spectrum

is equivalent to filtering out low frequencies [Figure 4.6 (b)]. This can be in-

terpreted as removing one common direction from a vector often responsible

for correlations between the spectra (for example see Figure 4.5). Apply-

ing spectral derivative to the spectral dictionary does not necessary reduce

the mutual coherence but it reduces the correlations in the dictionary. For

comparison between coherence of spectra and matrices computed for original

signal and after applying the derivative refer to Figure 4.7 and Figure 4.8.

Also, the amount of highly correlated spectra is significantly reduced using

the derivative (Figure 4.9).

The spectral derivative is calculated using a linear operator and therefore

can be written in a matrix form as

∂y

∂λ
= Sy (4.9)

where the spectral derivative operator S is defined as

S =



1
∆λ1

−1
∆λ1

0 0 · · · 0

0 1
∆λ2

−1
∆λ2

0 · · · 0

0 0 1
∆λ3

−1
∆λ3

· · · 0
...

...
...

...
. . .

...

0 0 0 · · · 1
∆λi

−1
∆λi


(4.10)

with ∆λ denoting forward difference operator for band numbers. It is also

easy to see that applying the spectral derivative to both sides of LMM equa-

tion

Sy = SAx (4.11)

does not change the properties of the abundance vector.

Another advantage of using the mixing model with spectral derivative

equation (4.11) is the fact that the derivative reduces the influence of the
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a) Fourier transform of the original
USGS Dictionary with 792 spectra

and 184 bands

b) Same as a) after derivative
transform

Figure 4.6: Comparison of the Fourier transform before and after applying spec-
tral derivative.

illumination conditions (Talsky, 1994). This is especially important when

using external dictionaries due to the fact that the consisted spectra were

usually collected under different conditions (Clark et al., 2007).

The main drawback in using spectral derivative is their sensitivity to noise.

This issue and performance of the derivative unmixing in presence of noise

will be shown in the experimental part of the thesis.

4.5 Large Dictionary - Endmember Pre-selection Un-

mixing

The high mutual similarities between spectra of many materials may lead

to unstable solutions. This effect can be reduced by pruning the dictionary.

Pruning is usually done by selecting the most reliable endmembers from a re-

dundant dictionary before performing actual abundance estimation (Iordache

et al., 2014; Tang et al., 2014b). However, one should note that selecting end-

members from a dictionary e.g. those the most correlated with the data does
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a) Original spectra. The coherence of these spectra pair equals 0.998
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b) Derivative Spectra. The coherence of these spectra pair equals 0.281

Figure 4.7: Comparison of original and derivative spectra of Nanohematite and
Smectite.

not guarantee selecting the correct ones. This leads to the same problem of

correlations as in the sparse unmixing , i.e., removal or selection of a wrong

endmember from the spectral dictionary. Additionally, when pruning of the

dictionary is done globally , i.e., the endmembers are selected for the whole

dataset at once, sometimes endmember which e.g. appear in only one pixel

might be neglected from the dictionary.

In this section a new algorithm for TSGU will be presented. In order to

avoid wrong endmember selection the algorithm, instead of selecting only

one endmember, selects a group of correlated endmembers which is done at

pixel level. From these groups a new pruned dictionary is constructed which

is used in a final step for abundance estimation.

4.5.1 Dictionary Clustering

Each spectrum is usually similar to more than one spectrum by sharing same

spectral features. This is often the case when the spectra belong to the same
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64 CHAPTER 4. SPARSE SPECTRAL UNMIXING

a) original USGS Dictionary with 792
spectra and 184 bands

b) original USGS Dictionary with
792 spectra and 184 bands after

derivative transform

c) reduced USGS Dictionary with
224 spectra and 184 bands

d) reduced USGS Dictionary with
224 spectra and 184 bands after

derivative transform

Figure 4.8: Comparison of the correlation matrices computed from different
dictionaries.
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Figure 4.9: Histograms showing the number of endmember pairs with specific
correlation. Correlations were computed for each endmember in the dictionary
against all other endmembers.
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Figure 4.10: Spectra of different materials related to the semantic group vegeta-
tion from the spectral library splib06 (Clark et al., 2007).

semantic group (see e.g. vegetation spectra Figure 4.10). Based on these

similarities a dictionary can be clustered in groups of similar materials by

means of a similarity measure (Hogan et al., 2009; Ramachandran et al.,

2014).

One of the most popular and robust clustering algorithm is K-Means. It

aims at minimizing the sum of squares in k number of clusters.

min
k∑
1

∑
Ci

‖a− µi‖ (4.12)

where Ci is a ith cluster containing similar endmembers and µi is the mean

of endmembers in this cluster.

4.5.2 Two Step Group Unmixing

As an initial step of the TSGU algorithm the clustering on a dictionary A

is performed with a predefined number of clusters k. Then the algorithm

operates on pixel level, i.e., each unmixing is performed for each pixel sep-

arately. For each pixel, first the initial unmixing using nLASSO or OMP is

performed. Next, a new dictionary is created containing clusters of endmem-

bers in which at least one endmember has a positive abundance. Using the

pruned dictionary a second unmixing using nLASSO is performed and the

final abundance vector is set. The pseudo code for this algorithm is shown
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in Algorithm 4.

Algorithm 4: TSGU (Two Step Group Unmixing)

Input: A, Y [m×p], δ1, δTSGU , ε, c

1 begin

2 Clustering: using K-means algorithm cluster dictionary A with n

elements {a1, a2, ..., an} in to a k sets of clusters where

L = {l(a)|a = 1, 2, ..., n} is the set of clusters labels of A;

3 initialize: set all x̂j,i for j ∈ 1, ...,m, p ∈ 1, ..., p to 0;

4 for i = 1,...,p do

5 compute the initial x
(0)
j abundance using the nLASSO or

NOMP;

6 find set of clusters C and labels of active endmembers

LC = {l(j)|j : x
(0)
j 6= 0};

7 construct a new pruned dictionary AC containing endmembers

labeled LC;
8 compute abundances x̂Ci using dictionary with selected clusters

AC using nLASSO;

9 set [X̂(j, i)|j ∈ C]←− x̂Ci ;

10 return X̂;

4.6 Spatial Information – Multi-Look Joint Spar-

sity Model

Until now the presented methods were considering each pixel as a separate

measurement. This concept was so far preferred as it is the traditional way

of dealing with the unmixing problem. However, we should keep in mind

that hyperspectral images besides the spectral information contain not less

relevant spatial information. Usually, the spectral information is related to

the spectral response of an object whereas spatial information is related to
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a) b)

Figure 4.11: Illustration of spatial correlation among neighboring hyperspectral
pixels. Pixels in the HyMap hyperspectral image (a) with a ground pixel size of 4 m
are very often mixed. The mixture is usually spatially correlated, i.e., neighboring
pixels contain common endmembers. E.g. all four neighboring pixels in (a) contain
spectra from the road as seen in the high resolution c©Google Earth Image (b).

the texture of that object. Both are affected by the fact that usually a

pixel will contain a mixture of some spectral signatures from its neighbours,

which is due to e.g. oversampling effects in line scanner images (Müller

et al., 2002). Therefore incorporating spatial information, i.e., neighouring

pixels can improve the unmixing results (Iordache et al., 2012b; Plaza et al.,

2002; Tang et al., 2014b). This however, should be done carefully because

the neighbouring pixels besides the shared information from common objects

might contain additional unique information (Figure 4.11).

4.6.1 Multi Look Joint Sparsity Model (MLJSR)

Based on the above facts a new model for spectral mixing including spatial-

spectral relation can be formulated. Consider a set of spatially neighbouring

pixels of size J . By applying the LMM, each pixel in this set can be for-

mulated as a combination of endmembers weighted by abundances of these

endmembers

yj = Axj, j ∈ J (4.13)
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Figure 4.12: Venn diagram describing composition of the coefficient vector Xj .
Modified from Baron et al. (2005)

Now, consider that every of the neighbouring pixel contains a portion of

shared endmember abundance i.e a common abundance xc for all 1 ≤ j ≤ J

and abundances present only in that jth pixel x′j. Then the model can be

reformulated to a new Multi-Look Joint Sparsity Model (MLJSM)

yj = Axc + Ax′j (4.14)

where the multiple neighboring pixels are hereinafter referred to as looks.

The concept of the common endmember xc is presented in Figure 4.12.

4.6.2 Multi-Look Joint Sparsity Reconstruction Algorithm

A new algorithm MLJSR can be formulated by applying the MLJSM and

the joint sparsity concept introduced in section 3.4. Given the reflectance

values of the jth hyperspectral pixel yj in m hyperspectral bands, the model

for MLJSM in a window with size of J pixels can be rewritten as

ỹj = Ãx̃j + ε̃j (4.15)
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where ε̃j ∈ RJm is an additive residual vector, ỹj ∈ RJm
≥0 is an ensemble of

neighbouring hyperspectral pixels,

ỹj = (y1, y2, y3 · · · yJ)> (4.16)

and Ã ∈ RJm×(J+1)n
≥0 is a new spectral Joint Sparsity Model (JSM) dictionary

composed of original spectral dictionaries containing endmembers arranged

in blocks as follows,

Ã =



A A 0 0 · · · 0

A 0 A 0 · · · 0

A 0 0 A · · · 0
...

...
...

...
. . .

...

A 0 0 0 · · · A


(4.17)

The first block column (ã11..., ãJm×n) of the dictionary Ã is responsible for

recovery of the common accounts for xc contained in all J pixels. The block

diagonal part of Ã reconstructs the endmembers, which are not present in

all pixels and are referred to as innovations. Then a new joint abundance

vector x̃ ∈ R(J+1)n
≥0 can be written as

x̃j = [xc, x
′
1, x
′
2 · · ·x′J ]> (4.18)

and the abundance for the jth pixel can be computed using

xj = xc + x′j. (4.19)

After the ensemble vectors and the JSM dictionary has been introduced a

minimisation problem solving the unmixing problem using MLJSM can be

formulated as follows

min
x̃j

1

2
‖Ãx̃j − ỹj‖2

2 + γ‖x̃j‖1 subject to Xj ≥ 0 (4.20)
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where again γ is responsible to trade sparsity for data mismatch. However,

unlike in a standard sparse unmixing equation (4.3) the `1 regularisation

influences the abundance of all pixels in the window. Due to the design

of the joint abundance vector equation (4.18), setting γ properly high, will

prune it to first recover common endmembers xc and second the differences

and unique endmembers in xc. This allows to keep ‖x̃j‖1 low. One of the

advantages of the above MLJSM formulation is the fact that it can be solved

using any BPDN method.

yi−1,j+1 yi,j+1 yi+1,j+1

yi−1,j yij yi+1,j

yi−1,j−1 yi,j−1 yi+1,j−1

i

j

a) J = 9

yi,j+1

yi−1,j yij yi+1,j

yi,j−1

i

j

b) J = 5

Figure 4.13: Schema describing how the ensemble pixel Yj is created.

Algorithm 5: MLJSR (Multi-Look Joint Sparsity Reconstruction)

Input: A, Y [m×p], γ, J

1 begin

2 initialize: set all X̂ [n×p] to 0, create the JSM dictionary Ã using

equation 4.17;

3 for k = 1,...,p do

4 construct ensemble ỹ by applying equation 4.16 where y1 = Yp

is the middle pixel in a window and y2,...,J are the neighbouring

pixels;

5 estimate x̃ solving minimisation 4.20;

6 set x̂k using equation 4.19;

7 return X̂;
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The algorithm to perform spectral unmixing using MLJSM is presented

in Algorithm 5 hereafter referred to as MLJSR. The unmixing is done in a

sliding window. In this thesis two window shapes are considered, namely, a

square-shaped [with J = 9, see Figure 4.13 a)] and a cross-shaped [with J =

5, see Figure 4.13 b)] window.

4.7 Complexity of the Discussed Algorithms

The algorithms for sparse unmixing, although all aim at finding sparse so-

lutions to the same linear mixing model can have great differences in their

computational complexity. Consider an unmixing problem with p pixels and

n endmembers in the dictionary A andm spectral channels. Below we present

the complexity analysis for selected algorithms.

• BPDN using LARS/LASSO algorithm for a single pixel the complexity

is of O(nmk+nk2) where k is the number of nonzero coefficients. When

the approximation is done for p pixels the pre-computation of the gram

matrix ATA can reduce the cost of p times previous complexity to

O(n2m + pn(m + k2)) for the whole minimization (Bach et al., 2011;

Mairal et al., 2010).

• MLJSM using LARS/LASSO algorithm: Accordingly, the MLJSM is

solved by the same solver as BPDN the complexity will be of O(ñ2m̃+

pñ(m̃ + k2)) where m̃ = mJ and ñ = n(J + 1) for the window of size

J .

• OMP: O(pnmk) exhibits very similar complexity to the LARS/LASSO

algorithm. The decrease in complexity is also achieved thanks to pre-

computation of the Gram matrix ATA (Mailhé et al., 2011).

• NNLS and FCLS: O(n2pi) where i is the number of iterations.
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• The complexity of TSGU consists of the preselection of O(n2m+pn(m+

k2)) and the final abundance estimation done by means of NNLSO(n′2pi).

Here, n′ denotes the number of endmembers after preselection and i it-

erations needed by the NNLS algorithm. Note that the complexity of

etimation varies in each pixel, because n′ is dependent from the prese-

lection step.

• BPDN using SUnSAL algorithm has the same complexity as NNLS

O(n2pi) where i is the number of iterations needed until convergence

(Iordache et al., 2010).

• SUnSAL-TV is an extension of SUnSAL algorithm. The algorithm ad-

ditionally computes at each step the total variation penalty. Therefore,

its complexity is of O(n2pi+mpi logm) (Iordache et al., 2012b).

• The complexity OLS is of O(n2p).

Algorithms LARS/LASSO, MLJSM, and OMP have significantly lower

complexity considering the case when the number of pixels is larger than the

number of bands, which is a reasonable assumption. The actual computa-

tional time additionally depends on the iterations needed by the particular

algorithm to converge. This will be tested in the experimental part of this

thesis.

4.8 Summary

In this chapter the sparse spectral unmixing problem has been addressed.

The following sumarizing remarks can be drawn

• The application of modern signal processing methods for sparse ap-

proximation allows a more automatized and intuitive approach to hy-

perspectral unmixing. However, unlike traditional least squares-based
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methods, sparsity-based techniques do not require a preselection of end-

members and are thus able to simultaneously estimate the underlying

active materials along with their respective abundances. So the ex-

pensive step of manual selection or extraction of endmembers can be

avoided.

• The results of the sparse approximation methods are highly dependent

on the properties of the dictionary e.g. mutual coherence. This limits

the usability of some dictionaries and causes errors in the results. A

proposed way to deal with this problem is to reduce the correlations

between endmembers in the dictionary by applying a derivative trans-

form to the data and dictionary. The problem of correlations has been

stated by many researchers and the proposed derivative method is a

first approach to deal with this problem.

• Another approach to precondition the unmixing problem is to reduce

the size of the spectral dictionary. The proposed TSGU method oper-

ates pixel wise by performing first a preselection of endmember groups

and second estimation of abundances for endmembers in these groups.

This method thanks to the group preselection, unlike other state of the

art algorithms, is less susceptible to removal of significant endmembers.

Additionally, the preselection reduces the size of the unmixing problem

what results in lower complexity of the second unmixing problem.

• Having in mind that hyperspectral images exhibit spatial correlations.

therefore the use of spatial along with the spectral information might

help in the unmixing process. One possible way to do so is to use the

new MLJSR algorithm for spectral unmixing. This approach is able to

relax, yet exploit, the assumption of spatial homogenity by introducing

a new MLJSM that captures both similarities and differences between

neighbouring abundances.

The above concepts as well as the new proposed algorithms will be assessed

with experiments in chapter 6.
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5
Hyperspectral Image

Resolution Enhancement

The relatively low spatial resolution of space-borne hyperspectral im-

ages is the main drawback to derive value added products. Recently,

several techniques have been proposed in order to enhance the spatial

resolution of the hyperspectral image by means of fusion with higher

spatial resolution multispectral images. In this chapter techniques for

resolution enhancement focused on utilising spectral unmixing results

enhancement are discussed. Also a new method based on the multi-look

joint sparse model is presented.
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a) Hyperspectral data cube b) Multispectral data cube

Figure 5.1: Comparison of hyperspectral and multispectral data cubes of the
same region.

5.1 Unmixing Based Hyperspectral Resolution En-

hancement - the Concept

As already mentioned in section 2.2 the spatial resolution of current and fu-

ture hyperspectral spaceborne sensors is severely limited due to the amount

of the light needed to be split to hundreds of spectral bands. As a result

many applications which require high spatial resolution will have limited us-

ability with these systems. This problem is typically addressed by resolution

enhancement methods, which aims at increasing the spatial resolution of

a hyperspectral image while preserving valuable spectral information. One

option for the resolution enhancement is to fuse information from the hyper-

spectral image with a higher spatial resolution image but with fewer bands.

For this purpose imagse from a multispectral sensor can be used. Recalling

Figure 2.7, e.g., the Hyperion sensor has 224 spectral bands and GSD of

30m, while WV2 samples the image with 8 spectral bands and GSD of 2m.

As a result of fusion of these two image types a high spatial and spectral

resolution imagery should be able to be generated.
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5.2 Related Work

5.2.1 Sharpening Methods

A typical and widely known example of fusion based resolution enhancement

is the sharpening of the multispectral image a high resolution panchromatic

image and is called pan-sharpening, where the lower spatial resolution of the

multispectral image is being sharpened using the spatial information from

the usually higher resolution pan image (Stathaki, 2011). There have been

dozens of pan-sharpening methods developed which are widely used in many

applications to increase the image quality of the space-borne color satellite

imagery, e.g. in services like google earth, bing maps or yahoo maps. A

common denominator for all sharpening methods is the requirement of the

temporal consistency (the images were acquired at the same time), spatial

range consistency (images of the same area) and spectral range consistency

(i.e. the PAN image SRF covers the same spectral range as the SRFs of the

sharpened multispectral bands) (Alparone et al., 2007; Ehlers, 2008; Thomas

et al., 2008).

Similarly to pan-sharpening, the resolution enhancement of the Hyper-

spectral image using a multispectral image is recently gaining more attention

from researchers. This is additionally driven by the large amount of planned

hyperspectral satellite missions as well as the rising number of applications

for these data. However, the multispectral-hyperspectral resolution enhance-

ment brings much more challenges to face than the pan-sharpening where

the key role plays the lack of a platform carrying both the hyperspectral and

the multispectral sensors. It also results in temporal in-consistency. Another

problem is caused by the significant increase of dimensionality of these data

where hundreds hyperspectral bands are being sharpened using few multi-

spectral bands. Additionaly, often some bands of the hyperspectral image

do not have overlaping multispectral bands in the corresponding spectral

range. In light of these facts, the direct use of the pan-sharpening methods
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for multispectral-hyperspectral resolution enhancement is limited. Therefore,

researchers developed new methods or modified existing ones (Chen et al.,

2014) in order to make them applicable to the hyperspectral image sharpen-

ing. Some of the new methods include the principle component sharpening

(Winter et al., 2002), Bayesian fusion (Hardie et al., 2004a; Wei et al., 2013;

Zhang et al., 2012) or simply blur transform (Mayumi and Iwasaki, 2011).

Some authors approached the resolution enhancement of the hyperspectral

images by fusion with panchromatic images (Capobianco et al., 2007; Lic-

ciardi et al., 2012; McKeown Jr et al., 1999). The problem of hyperspectral

image sharpening has also been approached using sparse regularisation meth-

ods. E.g. in Grohnfeldt et al. (2013, 2014) authors make use of the co-trained

high and low resolution multispectral dictionary containing patches of the im-

age. This dictionary is then used to estimate the low resolution multispectral

image by a linear combination of patches. Then the high resolution patches

are used to estimate the high resolution image.

5.2.2 Unmixing Based Methods

Another approach to resolution enhancment of the hyperspectral data is to

apply the information obtained from the hyperspectral unmixing. As it has

been described in chapter 4, usually the hyperspectral pixels are mixed i.e.

they consist of signals from more than one unique endmember. This fact, can

be used to allocate these endmembers in a new higher spatial resolution image

according to the information retrieved from the high resolution multispectral

image. The principle of spectral mixing for image resolution enhancement

has been first used by Zhukov et al. (1999) where the low resolution hyper-

spectral image has been unmixed in a window using information from the

classification of the high resolution multispectral image. Then the high res-

olution hyperspectral image was reconstructed by assigning endmembers to

the high resolution classification map. In this method it is assumed that the

classes in the multispectral image were related to endmembers in the multi-

spectral image. Even though the assumption seem to work in experiments the
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algorithm might have problems with more diversified images or where there

is no pure pixel. Another unmixing based method was proposed in Robinson

(1997) and Robinson et al. (2000). Here however the hyperspectral image

was sharpened using the unmixing results and the panchromatic image. A

different approach but also related to spectral unmixing was presented by Eis-

mann and Hardie (2005a) where instead of the popular linear mixing model

the stochastic mixing model (Eismann and Hardie, 2004) for the hyperspec-

tral unmixing was applied. This was used together with the maximum a

posteriori method by Hardie et al. (2004b) to estimate the high resolution

hyperspectral image. A simple algorithm for hyperspectral resolution en-

hancement has been shown by Bieniarz et al. (2011) where the endmembers

were extracted using the vertex component analysis method. The endmem-

bers were resampled to the spectral resolution of the mutispectral sensor and

used to estimate the abundances in the high resolution multispectral image.

Finally, abundances of the high resolution image were combined with hyper-

spectral endmembers to reconstruct the high resolution hyperspectral image.

The main drawback of this method was the limitation on the number of

endmembers constrained by the dimensionality of the multispectral image,

i.e., number of spectral bands. A similar model for resolution enhancement

was presented in Kawakami et al. (2011) where the abundance estimation

of the multispectral image is performed with a sparsity prior. Also Yokoya

et al. (2012) utilised a similar scheme in the CNMF method. However, here

the abundance of endmembers in the multispectral and hyperspectral image

was iteratively updated. The estimation was done using the non negative

matrix factorisation method. This method for initialisation used endmem-

bers extracted by vertex component analysis. Also Bendoumi et al. (2014)

showed that the limitation of the number of endmembers can be overcome

by subdivision of the hyperspectral image into regions.
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5.3 Research Questions

In previous related works it has been shown that the resolution enhancement

of hyperspectral images can be performed by fusion with higher resolution

multispectral images using the information from spectral unmixing. In this

chapter the actual state-of-the art in research is pushed forward by answering

following research questions:

• The endmembers extracted from the image at first point are not as-

signed to any materials, i.e., a supervised recognition of the spectral

features related to specific materials is required. This means that the

unmixing performed in the traditional resolution enhancement algo-

rithms serves rather as a decomposition than having a physical mean-

ing. However, spectra from external spectral dictionaries represent spe-

cific material. Based on that fact, is it possible to use these dictionaries

as an input to the resolution enhancement algorithm in order to retrieve

meaningful low as well as high resolution material abundance maps?

• The unmixing based methods for hyperspectral resolution enhancement

usually preform the abundance estimation on the multispectral image.

The low number of spectral bands severely limits the amount of the

endmebers which can be used. This fact is especially important for

large diversified scenes. Can the preselection of endmembers for the

multispectral unmixing allow the use of large amount of spectra in the

dictionary?

5.4 Multi-Look Jointly Sparse Fusion

In this section the MLJSF algorithm is presented. The algorithm utilises

previously presented concepts of sparse spectral unmixing (chapter 4) and in
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Figure 5.2: Scheme of the proposed method. MSI denotes multispectral image
and HSI hyperspectral image.

particular is using the LMM and MLJSM. The algorithm in contrast to the

state of the art methods does not extract endmembers from the image, but

performs the unmixing of the hyperspectral data using a spectral dictionary

and the nLASSO algorithm. Finally it fuses the result of the unmixing

with the multispectral image in a window based manner. The scheme of

the MLJSM is presented in Figure 5.2 and consists of the steps described in

following sections.

Spectral Unmixing

In a first step the low resolution hyperspectral image Yh is unmixed using

a spectral dictionary Ah containing spectral endmembers and the nLASSO

method using the linear model

yh = Ahxh + εh (5.1)
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where yh is the p’th pixel of Yh, xh is an abundance vector and εh denotes

the noise in the hyperspectral pixel. Note that the spectral dictionary in the

MLJSF method is not restricted to the external spectra but it also can be

retrieved from the image using any common endmember extraction algorithm

like in Bieniarz et al. (2011) or Yokoya et al. (2012). The main purpose of

this step is to detect endmembers mixed in each hyperspectral pixel.

Resampling and Window Based Endmember Selection

In order to use the dictionary Ah for the multispectral image it has to be

resampled to match the spectral resolution of the multispectral sensor (see

section 2.2.5). The new multispectral dictionary Am image is defined as

Am = RAh (5.2)

where R is a matrix of a size [mm × mh] containing SRFs of the mm mul-

tispectral bands sampled in the range or the hyperspectral sensor with mh

bands.

From now on the algorithm performs in a sliding window winh for all hy-

perspectral pixels ph. In each winh a set V = {j : xi 6= 0} of contributing

spectra is selected and a new pruned multispectral dictionary AVm is con-

structed. The step of selecting spectra is crucial for this method because it

reduces the complexity of the problem by excluding unused endmembers.

Unlike most of resolution enhancement methods the MLJSF algorithm has

been inplemented to be able to fuse not aligned images using only an affine

transformation matrix. This advantage is very useful when e.g. extensive

interpolation is needed for the co-registration. Additionally the window-

based selection of endmembers makes the algorithm relatively robust to the

co-registration error or small errors in the transformation matrix.
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Multispectral Unmixing - Fusion

The dictionary selected in the previous step is now used to perform the

abundance estimation in the corresponding window winm of the multispectral

image. The model for multispectral unmixing can be written as

ym = Awinmm xwinmm + εm (5.3)

The abundance estimation is done using the MLJSR algorithm. Since in the

higher resolution image the neighbouring pixels are more likely composed

of the same materials, they will share abundances and therefore the use of

MLJSM helps in the joint recovery for these materials. Additionally, the

decrease of the dimensionality in the spectral domain limits the applicability

of standard pixel based methods, where the MLJSR uses the surrounding

pixels to support the approximation.

High Resolution Hyperspectral Image Reconstruction

Once the abundance of the selected materials has been estimated the recon-

struction of high spatial and high spectral resolution pixels is performed in

a winm. The new high spatial and high spectral resolution pixel is recon-

structed again using the LMM

yhm = Ahxm (5.4)

The spatial structures as well as the material abundances are retrieved from

the high resolution abundance matrix Xm and the spectral information is

used from the hyperspectral dictionary. A pseudo code for the MLJSM

method is presented in Algorithm 6.
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Algorithm 6: MLJSF (Multi-Look Joint Sparsity Fusion)

Input: HSI Y
[mh×ph]
h , MSI Y

[mm×pm]
m , hyperspectral dictionary Ah,

signal response function of the MSI R

Output: High spatial resolution HSI Y
[mh×pm]
hm

1 begin

2 initialize: Compute the initial Xh abundance using the nLASSO;

3 Resample Ah to multispectral channels using equation

equation (5.2);

4 Set all elements of the multispectral abundance matrix Xm to 0;

5 for i = 1,...,ph do

6 find set of active endmembers V = {j : xi 6= 0} in winh(i);

7 get a subset Am for j ∈ V constructing a new pruned

dictionary AVm;

8 compute abundances XVwinm of the corresponding window winm

in a multispectral image using ACm and the MLJSR algorithm;

9 set [Xm(j, winm)|j ∈ V ]←− XVwinm ;

10 Reconstruct the high resolution HSI using equation (5.4);

11 return Yhm;

In case of MLJSF the abundance estimation is performed on both datasets

and therefore the portion of noise is removed from both yh and ym. Note, that

this assumption requires very good unmixing results as well as atmospheric

correction for both datasets.

5.5 Summary

In this chapter the MLJSF algorithm for resolution enhancement of hyper-

spectral image data has been presented. The following has been discussed
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Figure 5.3: Comparison between the spectral resolution of a hyperspectral and a
multispectral image. The dashed line represents the relative SRF of the Landsat 7
sensor.



• The growing amount of future hyperspectral spaceborne sensors and ap-

plications for high resolution hyperspectral data will require sharpened

hyperspectral data. However, often current pan-sharpening methods

can not be directly applied for this purpose and therefore developments

of new robust methods are needed.

• The presented algorithm utilises sparse spectral unmixing techniques

and high resolution multispectral image data to provide a high resolu-

tion hyperspectral image. The algorithm works with external libraries

which allows to avoid the endmember extraction process. Additionally,

as by-products, provides meaningful abundance maps referring to ac-

tual endmembers. These maps are produced in both high as well as

low resolutions.

• MLJSF uses sparse approximation methods for both unmixing steps.

These methods have been shown to outperform traditional abundance

methods (see chapter 4). Also LASSO and MLJSR are much faster

than other state of the art methods.
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Part III

Results and Conclusion



6
Evaluation of Sparse Spectral

Unmixing Models

In this chapter the comprehensive comparison of sparse approxima-

tion methods applied to spectral unmixing is presented. First, the

pixel based methods including the proposed approaches i.e. derivative

method for coherence reduction as well as TSGU will be compared to

the state of the art methods. The comparison will be performed using

simulated data. Second, the performance of the MLJSR in different

settings will be tested by comparison to pixel based methods and spa-

tial unmixing methods. Third, selected algorithms will be tested using

real hyperspectral scenes. Finally, the algorithms are compared for the

speed performance taking into account different settings
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6.1 Evaluation Criterion

The result of the spectral unmixing and the abundance recovery should be

evaluated considering both the accuracy of estimation of the abundance vec-

tor as well as the accuracy of the detection of endmembers. Since abundance

recovery aims at estimating the abundance vector x̂ and not reconstruct the

hyperspectral signal ŷ, in this chapter the performance measures of x̂ will

be advantageous. However, this can only be done when ground truth data

i.e. the true actual fractional abundance is available. Therefore, in case of

the real data experiments, due to the lack of ground truth data only quali-

tative analysis will be performed. In order to evaluate the results of tested

unmixing methods the following measures will be applied.

6.1.1 Abundance Mean Squared Error

To measure the error of the abundance estimation the A-MSE is used. Which

is defined as relative version of the Mean Squared Error (MSE)

A-MSE =
‖x− x̂‖2

2

‖x‖2
2

(6.1)

where x is the ground truth abundance and x̂ is the estimated abundance.

High values of A-MSE indicates high error while low A-MSE low error with

perfect reconstruction for A-MSE→ 0. Since A-MSE measures the power

of both signal and error, larger residuals contribute more to the error when

compared to small residuals.
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6.1.2 Reflectance Mean Squared Error

Similarly to A-MSE the R-MSE measures the error in reflectance. R-MSE is

defined as

R-MSE =
‖y − Ax̂‖2

2

‖y‖2
2

(6.2)

where A denotes the spectral dictionary used for unmixing. This measure is

used by many researchers but it is not able to directly measure the accuracy

of abundance estimation. However, comparing R-MSE with A-MSE can be

helpful in studding the results of abundance estimation. E.g. if R-MSE is low

and A-MSE is high this indicates that the algorithm might have had problems

in selecting correct endmembers due to e.g. coherence in the dictionary.

6.1.3 Mean Absolute Error

Table 6.1: Comparison between MSE and MAE. The original vector is sparse
and has only one nonzero value equal 1. ei denotes the residual error defined as
ei = |xoi − x̂i|.

Example No. 1 2 3 4 5 6

e1 0.2 0.1 0.1 0 0 0

e2 0.2 0.1 0.1 0 0 0

e3 0.2 0.3 0.1 0.4 0.1 0

e4 0.2 0.3 0.5 0.4 0.7 0.8

MSE 0.16 0.19 0.28 0.32 0.5 0.64

MAE 0.8 0.8 0.8 0.8 0.8 0.8

A-MSE tends to over-represent large errors and neglect values of small

errors. Therefore in case when all errors should be weighted equally the use

of MAE is of importance. This is especially useful to track small errors often

related to overfitting i.e. noise compensation. MAE measures the average

90



magnitude of errors weighted equally. The relative MAE is defined as

MAE =
‖x− x̂‖1

‖x‖1

. (6.3)

MAE can have values form 0 to ∞ the smaller MAE is, the better the esti-

mation. Additionally comparing MAE with A-MSE allows to indicate what

type of the error occurs. Low MAE and high A-MSE indicate presence of

very large errors while high MAE and low A-MSE suggests presence of many

small errors but not large errors. An example is given in Table 6.1.

6.1.4 Endmember Detection Accuracy

In order to evaluate the accuracy of detecting correct endmembers in the

abundance vector confusion matrix values are used. The confusion matrix is

calculated by comparing the binarized version of the estimated abundance

vector x̂b and the binarized ground truth vector xb defined as

xb(i) =

{
0 if x(i) = 0

1 if x(i) > 0
, x̂b(i) =

{
0 if x̂(i) = 0

1 if x̂(i) > 0
. (6.4)

The detection of an endmember i is considered as True Positive (TP) when

xb(i) = x̂b(i) = 1. When xb(i) 6= x̂b(i) the detection is labelled as False

Positive (FP). Similarly, when xb(i) = x̂b(i) = 0 detection is True Negative

(TN) and for xb(i) 6= x̂b(i) = 0 detection is False Negative (FN). Based on

the confusion matrix the following accuracy measures are considered:

Accuracy

ACC measures general accuracy of endmember detection considering both

TP and TN by comparing them to the ground truth values. The ACC is
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calculated as follows

ACC =

∑
TP +

∑
TN∑

P +
∑

N
(6.5)

Where P denotes xb(i) = 0 and N denotes xb(i) = 1.

Sensitivity

To measure how well the algorithm detects endmembers the SNT rate is

defined as

SNT =

∑
TP∑
P

(6.6)

The SNT can range from 0 to 1 and represents proportion of TP to the

ground truth. Where 0 means that there were no TP and 1 when all P have

been correctly detected i.e.
∑

P =
∑

TP.

Specificity

Similarly the SPC is defined as

SPC =

∑
TN∑
N

(6.7)

The SPC can have values from 0 to 1 where 1 indicates that all N were

detected and 0 indicates that there has been no TN. The measure of SPC

indicates how well the algorithm sets values to 0.

Note that ACC, SNT and SPC are used only to show the detection accu-

racy and they do not provide evaluation of the abundance accuracy. There-

fore, these measures should be interpreted carefully and taking into account

that e.g. very high SNT can result from very dense results i.e. many x̂b(i) = 1

or very high SPC can be caused by very sparse solutions i.e. many x̂b(i) = 0.
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6.2 Pixel Based Sparse Unmixing and Spectral Deriva-

tive Application

6.2.1 Experiment Settings

For the pixel based sparse unmixing the spectral dictionary was created us-

ing 432 selected spectra from the USGS spectral library (Clark et al., 2007).

Every spectrum has been resampled to match the original SRF of the Air-

borne visible/infrared imaging spectrometer (AVIRIS) sensor using formulas

described in section 2.2.5. The complete list of used spectra is presented in

Appendix B.

To simulate spectral mixtures the following simulation scenario is con-

structed

1. Form a mixing matrix M ∈ R[m×n′] by selecting n′ endmembers at

random from A,

2. Create an abundance vector x′[n
′] by randomly assigning elements such

as xi > .01 and ‖x‖1 = 1,

3. Generate a mixed spectrum by means of LMM y′[m] = Mx′+ ε′, where

ε′[m] is Gaussian noise with an SNR[dB] = 10log10
‖y′[m]‖22
‖ε′[m]‖22

.

The simulated data consisted of 10 000 spectra containing mixtures of 2 to 10

equally distributed endmembers. In such way 5 sets of data were generated

with SNRs of 20dB, 30dB, 40dB and 50dB.

In the experiment following algorithms were used to perform abundance

estimation

• nLASSO and nLASSOd where ”d” denotes use of the derivative method.

The solver used for this problems was from the software package SPArse
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Modeling Software (SPAMS) reported in Mairal et al. (2010) with plug-

in for python.

• NOMP and NOMPd implemented in python (see Algorithm 3).

• Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) and FISTAd

algorithm solving nBPDN problem (for details see (Jenatton et al.,

2010)). The algorithm was executed using the the software package

SPAMS in python.

• TSGU using nLASSO for preselection. The solver was implemented in

python following Algorithm 4.

• TSGU-NOMPd using NOMPd for preselection.

• NNLS using python built-in function scipy.optimize.nnls

• SUnSAL using the Matlab code from (Bioucas-Dias, 2012).

• FCLS using Matlab built-in function lsqlin

Every algorithm was run with 10 different parameter settings and the result

with the highest A-MSE was chosen. The algorithms were executed on In-

tel(R) Core(TM) i5-2520M CPU @ 2.50GHz processor with 8GB of RAM

using Python 2.7.3 and Matlab 7b.

6.2.2 Results and Discussion

Global Errors

First, the algorithms were compared globally by calculating the mean values

of A-MSE, MAE and R-MSE for all estimated abundance vectors in each

data set with different SNR. The results are shown in Figure 6.1.
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Considering the A-MSE measure, algorithms nLASSO, TSGU, SUnSAL

and FCLS perform similarly for SNR values equal 20dB and 30dB with

slightly lower mean A-MSE when using SUnSAL. For SNRs from 40dB to

60dB algorithm TSGU exhibit the lowest A-MSE followed by nLASSO and

FCLS. The NOMP method performs the worst showing the highest A-MSE

values for all test cases. However, for SNRs 50dB and 60dB and applying

the derivative method (NOMPd) seems to significantly improve the results

of the NOMP algorithm. This is also the case for SUnSALd and FISTAd.

Similarly to mean A-MSE, the mean MAE measure indicates the best perfor-

mance for TSGU in SNR range of 40dB to 60dB. Using the R-MSE measure

shows that the algorithm NNLS provide the best estimation of ŷ followed

by OMP, FISTA and FCLS. Note, that the algorithms NNLS and NOMP

have low R-MSE but high A-MSE and MAE values indicating very good

reconstruction of spectrum but poor estimation of abundance vector.

Errors With Respect to Number of Mixed Spectra

The Figure 6.2 shows A-MSE errors with regard to endmembers in the ground

truth for different SNR scenarios. For all algorithms the increase in the

contribution of endmembers results in an increase of the A-MSE error. In

the test cases with low SNR i.e. 50dB and 60dB, there is significant decrease

in A-MSE and MAE error for FISTA, NOMP and SUnSAL algorithm after

applying the derivative method (FISTAd, NOMPd and SUnSALd). Similarly

to the A-MSE error, the MAE error rises with the increase of the contributing

endmembers (Figure 6.3). The nLASSO algorithm exhibits a more stable

MAE curve than the A-MSE curve which indicates the presence of large errors

e.g. mixture of 5 endmembers in SNR 50dB case or mixture of 6 endmembers

for SNR equal 60dB. In all test cases considering both measures A-MSE

and MAE the algorithm TSGU outperforms LASSO. Similarly TSGU-OMPd

exhibit lower errors than OMP whereas for high SNR values it results in

similar A-MSE and R-MSE as the `1 regularized algorithms.
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Accuracy of Endmember Detection

The ACC of endmember detection, depending on the number of mixed spec-

tra in the ground truth and the SNR value is plotted in Figure 6.4. All

algorithms except FISTA exibit high values of ACC ranging from 0.93 for

spectra mixed of 10 pure spectra to 0.98 for mixtures of only two endmembers.

The ACC appears to remain similar for all SNR values. The FISTA algo-

rithm exhibits the worst accuracy ranging form 0.64 to 0.93. However, the

FISTAd algorithm exhibits similar ACC values to other algorithms, where as

for SNR=20dB it has the highest ACC along with the nLASSOd algorithm.

Algorithms TSGU and TSGU-NOMPd for all SNR are among the three with

the highest ACC.

Figure 6.5 shows the relation of the SNT and number of mixtures in the

ground truth for test cases with SNR values from 20dB to 60dB. For the test

scenario with low SNR=20dB all algorithms were able to detect only less than

a half of the endmembers with FISTA having the highest SNT values. For

SNRs 30dB and 40dB besides FISTA the algorithms TSGU, nLASSO and

FCLS show the highest SNT. Algorithms nLASSO and NNLS performed the

best for scenarios with high SNRs of 50dB and 60dB. Using the SNT measure

shows that the detection of the endmembers drastically decreases with the

increase of number of mixed endmembers. E.g. in the test case with SNR of

40dB using TSGU lagorithm the SNT is of 0.98 for mixture of 2 endmembers

and it decreases to 0.47 for the mixture of 10 endmembers.

Considering the SPC measure (Figure 6.6) it is clear that the all sparse

unmixing algorithms except FISTA outperformed NNLS with setting values

to zero. While LASSO has similar SPC as FCLS, TSGU and TSGU-OMPd

perform better for all test cases and number of mixtures.
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6.3 Spatial Unmixing

The proposed MLJSM algorithm has been tested using simulated and real

hyperspectral data. The algorithm LARS/LASSO used for the optimization

problems BPDN and MLJSR is reported in Mairal et al. (2010). Two sliding

windows for MLJSR were considered, namely, a square-shaped (with J = 9)

and a cross-shaped (with J = 5) window. For both, the unmixed pixel yj was

located in the center of the window. Additionally the results were compared

with the SUnSAL-TV algorithm using the solver from Bioucas-Dias (2012).

6.3.1 Experiment Settings

In this experiment, n=240 spectra selected from the USGS Digital Spectral

Library (splib06) Clark et al. (2007) were used to form the dictionary A ∈
R[m×n] with m = 224 spectral channels like in Iordache et al. (2012b). The

simulated images were created as follows:

1. form a mixing matrix M ∈ R[m×n′] by selecting n′=10 endmembers at

random from A,

2. create an abundance cube X ′(c, r, n′), where columns c and rows r are

c=r=100. For all layers n′ set randomly 144 elements to 1,

3. blur all layers n′ using gaussian filter with standard deviation σ =

0.025,

4. normalize ∀c, r, n′ : X ′(c, r, n′) = X′(c,r,n′)∑
nX
′(c,r,n′)

,

5. create a hyperspectral data cube Y ′(c, r,m) by means of LMM ∀c, r :

Y ′(c, r,m) = MX ′(c, r, n′) + ε′(c, r,m), where ε′(c, r,m) is gaussian

noise with a signal-to-noise ratio SREdB = 10log10‖Y ′(c, r,m)‖2
2/‖ε′(c, r,m)‖2

2
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In simulations four test cases with SRE values of 20, 30, 40 and 50 dB were

considered [Figure 6.7(a)-(h)]. The simulated images contained mixtures

from two to ten endmembers distributed as shown in Figure 6.7(i).

For each test case the solutions were calculated using NNLS, nLASSO,

SUnSAL-TV and MLJSR with sixty uniformly distributed γ parameter set-

tings such that, γ = ei, i ∈ 〈−1, 11〉. Additionally, since SUnSAL-TV re-

quires two regularization parameters, we have tested the second parameter

λTV(Iordache et al., 2013) with values 0.0001, 0.0005, 0.001, 0.005, 0.01 and

0.05 resulting in 360 different parameters settings for each test case.

6.3.2 Results and Discussion

Global Errors

Figure 6.8 shows the A-MSE for different γ settings using the MLJSR,

nLASSO and SUnSAL-TV methods. In this particular case, MLJSR ex-

hibits better performance than nLASSO and SUnSAL-TV. In Figure 6.9 the

mean A-MSE, MAE and R-MSE are shown as a function of SNR. For all

A-MSE values γ parameter has been chosen from the set of solutions so as to

favour each particular algorithm (see for example Figure 6.8). In terms of A-

MSE, both settings of MLJSR algorithm outperformed NNLS and nLASSO

at all noise levels. MLJSR with J=9 window is reported to have lower MAE

than SUnSAL-TV for low SNR 20dB and 30dB values and lower A-MSE

for SNR 30dB and 50dB. In sense of R-MSE all algorithms performed very

similarly. Only for the case with SNR 20dB NNLS shows lower R-MSE than

SUnSAL-TV, both MLJSR versions and LASSO, respectively.

104



Local Errors

To evaluate the accuracy of abundance estimation the A-MSE and MAE were

calculated at pixel level for whole abundance vectors. Figure 6.10 shows the

A-MSE of the estimated abundance vectors using different algorithms. The

`1 regularized algorithms outperform the NNLS [Figure 6.10 (r)-(u)] algo-

rithm for all test cases. Algorithms incorporating spatial information i.e.

the MLJSR [Figure 6.10 (a)-(h)] and SUnSAL-TV [Figure 6.10 (i)-(l)] signif-

icantly outperform the pixel based methods nLASSO [Figure 6.10 (m)-(p)]

and NNLS. The SUnSAL-TV and both settings MLJSR perform similarly

while errors having lower spatial variations. The errors produced by the

MLJSR with window size J = 9 appear to be smaller when compared to the

j = 5 version of the algorithm.

When considering MAE again the algorithms incorporating spatial infor-

mation outperformed nLASSO and NNLS Figure 6.9. The MAE error is

studied in more details in Figure 6.12 for the SNR 20dB case. The MAE was

calculated at pixel level for whole abundance vectors (Figure 6.12 left col-

umn), only abundance of present endmembers (Figure 6.12 middle column),

and false recovery of non-present endmembers i.e. endmembers present in

recovered abundance but not present in the ground truth abundance (Fig-

ure 6.12 right column). For the 20 dB test case all `1 regularized algorithm

exhibit significantly lower overall MAE than NNLS (mean MAE for the whole

test image was equal 1.43 for MLJSR with J=9, 1.44 for MLJSR with J=5,

1.47 for SUnSAL-TV, 1.49 for nLASSO and 3.42 for NNLS). Both settings

of MLJSR (mean MAE=0.38) along with nLASSO (mean MAE=0.34) have

lower MAE for non-present endmembers when compared to SUnSAL-TV

(mean MAE=0.48) and NNLS (mean MAE=2.36). All algorithms were able

to recover abundances of present endmembers with relatively similar MAE.



Accuracy of Endmember Detection

The accuracy of endmember detection measures are presented on Figure 6.13.

For all test cases nLASSO has the highest ACC followed by both MLJSM

settings. The SUnSAL-TV algorithm exhibits significantly lower ACC when

compared to other methods. On the other hand SUnSAL-TV exhibits the

highest SNT and at the same time the lowest SPC what indicates that the

results are not sparse i.e. there are many x̂b(i) = 1. When compared

to nLASSO and NNLS, both settings of MLJSM have higher SNT where

MLJSM with J = 9 is performing the best.

Visual Comparison of the Results

The results of abundance estimation of the ten contributing endmembers is

shown in Figure 6.14 for the SNR 20dB test case, Figure 6.15 for the SNR

30dB test case, Figure 6.16 for the SNR 40dB test case and Figure 6.17 for

the SNR 50dB test case.

The MLJSR algorithm with J = 9 when compared to other algorithms,

seems to recover endmembers most acurately for all SNR values. The MLJSR

algorithm with J = 5 results in slightly worse results i.e. the abundances

seem to be more noisy. Hovever, it still has visually more consistent results

when compared to other algorithms. E.g. the spatial details EM 1, EM

2, EM 4, EM 9 and , EM 10 were very well recovered using both MLJSR

settings while results of SUnSAL-TV seem to fail in recovery of spatial details

and values of many pixels are significantly different to the ground truth.

Results of both NNLS and nLASSO algorithms have significant problems

with recovering smooth transitions between pixels and fail in recovery of low
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abundances or set abundance values to high e.g. nLASSO EM 4. For all

algorithms the recovery improves with the increase of the SNR. However,

for NNLS the sparsity decreases with the increase of SNR. All algorithms

had problems in recovery of EM 3, EM 7 and EM 8. The algorithm MLJSR

was able to detect some pixels for EM 3 and EM 7 in all SNR cases. The

algorithm NNLS seems to detect all endmembers in the test case SNR 50 dB.

However,the results for SNR 50dB seem to do not match the ground truth

at all.

6.4 Real Data

To test the proposed algorithms and perform comparison two scenes with

real hyperspectral data have been used. First, a HyMAP sensor image of an

urban area is used with a dictionary containing endmembers specific to this

type of area. Second, a well investigated mineralogy study area of Cuprite

hills is used with a dictionary containing hundreds of mineral spectra. The

scenes have been selected so to assess the algorithms in two different scenarios

with different hyperspectral sensors and different libraries.

6.4.1 Hymap

In this real data experiment a hyperspectral scene acquired over Munich,

Nymphenburg district, with the airborne sensor HyMap (Cocks et al., 1998)

was used. The scene has a size of 100 × 100 pixels with originally 126 spec-

tral channels reduced to 96 after discarding noisy and absorption bands. The

image has been atmospherically (Richter and Schläpfer, 2011) and geometri-

cally Müller et al. (2002) corrected with a ground resolution of 4 m. To form

a spectral dictionary we used 90 man-made materials, vegetation, and soil

spectra selected from the splib06 library (Clark et al., 2007), merged with
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39 endmembers from a roof-material dictionary (Heiden et al., 2005). The

dictionary had finally m = 129 endmembers.

The reconstruction of abundances by means of NNLS, OMP with γ = 10;

nLASSO with γ = 0.5; TSGU; TSGU-OMPd; SUnSAL-TV with γ = e−3

and λTV = e−3 (Iordache et al., 2012b); and MLJSR with γ = 1.5 and J = 9

has been performed. Again, the regularization parameters have been chosen

so as to favor each particular algorithm and thus allow for a fair comparison.

All unmixing results have been overlaid on a high-resolution image (see Fig-

ure 6.18 and Figure 6.19), henceforth employed as a pseudo-ground truth.

NNLS, nLASSO, SUnSAL-TV, and MLJSR, OMP, OMPd,TSGU, TSGU-

OMPd have detected, respectively, 107, 22, 98, 38 114, 103, 32, 71 active

materials. Fig. Figure 6.18(a)–(d), Figure 6.18(e)–(g), and Figure 6.18(h)–

(k) show the estimated abundances for red roof shielding, lawn grass, and

trees.

When compared with pixel based methods, the MLJSR algorithm leads to

smoother transitions from one material to another, which is consistent with

the assumption of localized spatial homogeneity. For example, Figure 6.18(d)

shows a gradual decrease of the roof abundance from the middle of the roof

towards the edges. Noticeably, this is not the case for SUnSAL-TV [Fig-

ure 6.18(d)], which tends to exhibit very similar neighboring abundances.

Also, whereas nLASSO [Fig. 6.18(b)] is unable to detect the roof edges,

NNLS and both versions of OMP miss a great deal of roof endmembers [Fig-

ure 6.18 and [Figure 6.19]. Moreover, they seem to provide reliable results

only for abundances associated with tree spectrum [Figure 6.18(g) and Fig-

ure 6.19 (g), (h)]. Both, TSGU and TSGU-OMPd were able to detect roof

endmembers and seem to provide more consistant abundance maps compar-

ing to nLASSO and NNLS. Finally, note that, while NNLS [Fig. 6.18(i)] and

nLASSO [Figure 6.18(j)] fail for grass detection, MLJSR provides satisfactory

results [Figure 6.18(k)].
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6.4.2 AVIRIS

As second real data set image taken over Cuprite hills in Nevada, USA ac-

quired by the AVIRIS sensor has been used (JPL, 1997). From this image

we have selected a region of 364 × 364 pixels with 154 out of 224 spectral

bands [see Figure 6.20 (a)]. Like in experiment 6.2.1, the spectral dictionary

was created using 432 selected spectra from the USGS spectral library (Clark

et al., 2007). The complete list of used spectra is presented in Appendix B.

For comparison the image has been unmixed using algorithms OMP, OMPd,

TSGU-OMPd, nLASSO, TSGU, NNLS, MLJSM with j = 5 and J = 9.

The hyperspectral image of Cuprite hills has been studied by many re-

searchers and therefore the geological composition is well understood. In this

experiment the abundance maps of alunite (sample name ’Alunite+Dickite,

MV99-6-26b, s06av95a=c’), buddingstone (sample name ’Buddingtonite,

NHB2301, s06av95a=b’), kaolinite (sample name ’Kaolin/Smect, KLF511,

.12Kaol, s06av95a=b’) and playa (sample name ’Stonewall Playa, CU93-

52A, a11, s06av95a=a’) are investigated. The presence of these materials

has been confirmed by researchers (Clark et al., 2003; Swayze et al., 2014)

and is marked in Figure 6.20 (b).

Figure 6.21 presents resulting abundance maps of alunnotite for all tested

algorithms. The area in which the alunite is reported to occur is zoomed

in. All algorithms except OMP detect abundance of alunite. The algorithms

nLASSO, TSGU, NNLS the results in very similar abundance maps. MLJSM

in both settings results in significantly smoother transitions between abun-

dance values and appears to be less noisy. The derivative method OMPd has

improved the abundance detection when compared to OMP. However, the

abundance map appears to be incomplete when compared to results of other

algorithms. As a result of the pour results of OMPd, the TSGU-OMPd also

seems to perform worse but the detected pixels have more similar abundance
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values to other algorithms.

Buddingstone has been reported to be present in the image in the high-

est concentration in the center of the image east from the route 95 [see

Figure 6.20 (b)]. The results of abundance estimation for this mineral are

shown in Figure 6.22. The OMP algorithm detects only one pixel containing

buddingstone while OMPd shows more abundance of buddingstone for some

pixels. Comparing to both OMP and OMPd, TSGU-OMPd seems to im-

prove the detection of pixels with lower buddingstone abundance. All other

algorithms result in very similar abundances, where again MLJSM results in

more smooth i.e. less noisy abundance maps.

All algorithms were able to detect kaolinite in the expected area. How-

ever the values of the abundance vary strongly. The OMP reports the highest

values with many abundances over 1. Additionally, the abundances differ sig-

nificantly to all other algorithms. The OMPd algorithm and TSGU-OMPd

have lover abundances and are more comparable to results of other algo-

rithms. The abundance of kaolinite recovered by the MLJSM with J = 9

reports more pixels in which kaolinite has been found comparing to the J = 5

version. Both versions of the algorithms have less variations in neighbouring

bixels than other algorithms.

In Figure 6.24 the result for the playa is shown. Out of all tested algorithms

only OMPd and TSGU-OMPd exibit abundance for this mineral in the area

where it has been reported to occur. semilogy

6.5 Execution Time

To perform execution time comparison the simulated hyperspectral image

from section 6.3.1 with SNR of 30dB is used. The tested algorithms were
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executed with settings resulting in lowest A-MSE. To allow fair comparison

all algorithms were run in Matlab 7b on Intel(R) Core(TM) i5-2520M CPU @

2.50GHz processor with 8GB of RAM using algorithms reported in (Bioucas-

Dias, 2012; Mairal et al., 2010) as well as Matlab build in functions.

The results of the execution time comparison is shown in Figure 6.25. All

pixel based sparse regularised methods converge significantly faster than the

NNLS. The FCLS performs worst out of all algorithms needing over 20000

seconds. The `0 regularized method NOMP and NOMPd performed the

fastest with 0.01 second for the whole dataset. nLASSOd was the fastest

out of all `1 regularised algorithms, 0.09 seconds followed by the nLASSO

algorithm, 0.53 seconds. Both algorithms with preselection step TSGU and

TSGU-OMP performed slower than NOMP or nLASSO but were still sig-

nificantly faster than conventional approaches. SUnSAL was the slowest

algorithm out of the pixel based sparse regularized methods.

The spatial spectral unmixing methods are generally slower than the pixel

based unmixing. However, MLJSR with J = 5 outperforms some pixel based

sparse unmixing methods like TSGU-OMPd or SUnSAL. Both settings of

MLJSR converge significantly faster than SUnSAL-TV, FCLS or NNLS.

6.6 Summary

This chapter provided critical evaluation of the traditional, state-of-the-art

and proposed methods to perform spectral unmixing using large spectral

dictionaries. Following is the summary of results presented in this chapter:

• Pixel-based unmixing

It has been shown that sparse spectral unmixing exhibit better results

than the standard NNLS approach using different performance mea-

sures. Also, it exhibit similar results to FCLS with the execution time

reduced by several orders of magnitude. It is important to note that
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the LASSO algorithm provides similar results to the SUnSAL algo-

rithm which has been dedicated for spectral unmixing. Additionally

the application of the derivative method significantly decreases errors

in unmixing when using OMP or FISTA algorithms which are known

to be sensitive to correlations in the dictionary. The proposed TSGU

algorithm was able to achieve better results than the LASSO while

TSGU-OMPd is of advantage over the OMP algorithm. When look-

ing at real data both versions of TSGU algorithms provide reasonable

results abd qualitatively detect endmembers more correctly than oth-

ers. Moreover, TSGU and TSGU-OMPd where the only of the tested

algorithms to recover the playa abundance in the Cuprite image.

• Spatial-Spectral unmixing

The use of spatial information for unmixing significantly increases the

quality of unmixing results. Compared to the standard sparse nLASSO

or NNLS methods, experiments with simulated data demonstrate that

the proposed method restores abundances for pixels sharing common

endmembers more accurately in terms of the SRE measure and over-

all MAE. Compared to the SUnSAL method the proposed approach

exhibited higher SRE for SNR equal 20 and 30 dB. The fact that the

MLJSR method requires only one regularization parameter, shows it is

easier to use compared to SUnSAL-TV. Additionally MLJSR in both

settings performs faster than SUnSAL-TV, FCLS or NNLS. The out-

come of MAE comparison shows that the MLJSR approach recovers

endmembers with similar accuracy as state of the art algorithms with

low detection of non-present endmembers. The qualitative analysis of

the results for the HyMAP image shows the MLJSR approach to be

competitive with respect to nLASSO and NNLS or SUnSAL-TV meth-

ods and provides visually more consistent results.
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Figure 6.7: Simulated data. Subfigures (a)-(d) present a central pixel spectrum
from the simulated image (left plot) and the false color composition of bands 50,
100, 150 (on the right) with no noise (a) and with SNR of 40dB (b), 30dB (c)
and 20dB (d). The bar plot (e) shows the distribution of pixels according to the
number of endmembers mixed in it.
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Figure 6.8: Plot of the A-MSE values as a function of γ regularization parameter.
Results for SNR = 30 dB using nLASSO, SUnSAL-TV and MLJSR methods.
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(a) MLJSR (J=9)
SNR = 20 dB

(b) MLJSR (J=9)
SNR = 30 dB

(c) MLJSR (J=9)
SNR = 40 dB

(d) MLJSR (J=9)
SNR = 50 dB

(e) MLJSR (J=5)
SNR = 20 dB

(f) MLJSR (J=5)
SNR = 30 dB

(g) MLJSR (J=5)
SNR = 40 dB

(h) MLJSR (J=5)
SNR = 50 dB

(i) SUnSAL-TV
SNR = 20 dB

(j) SUnSAL-TV
SNR = 30 dB

(k) SUnSAL-TV
SNR = 40 dB

(l) SUnSAL-TV
SNR = 50 dB

(m)nLASSO
SNR = 20 dB

(n)nLASSO
SNR = 30 dB

(o) nLASSO
SNR = 40 dB

(p) nLASSO
SNR = 50 dB

(r) NNLS
SNR = 20 dB

(s) NNLS
SNR = 30 dB

(t) NNLS
SNR = 40 dB

(u) NNLS
SNR = 50 dB

Figure 6.10: Comparison of MLJSR(J = 9), MLJSR(J = 5), SUnSAL-TV,
nLASSO and NNLS algorithms (from top to bottom respectively) using the A-
MSE measure for all endmembers. Results for SNR 20dB, 30dB, 40dB and 50dB
are shown from left row right. The colorbar range, for all subfigures in a row, has
been set at maximum A-MSE of one of the `1 regularized methods.



6.6. SUMMARY 117

(a) MLJSR (J=9)
SNR = 30 dB

(b) MLJSR (J=9)
SNR = 40 dB

(c) MLJSR (J=9)
SNR = 50 dB

(d) MLJSR (J=5)
SNR = 30 dB

(e) MLJSR (J=5)
SNR = 40 dB

(f) MLJSR (J=5)
SNR = 50 dB

(g) SUnSAL-TV
SNR = 30 dB

(h) SUnSAL-TV
SNR = 40 dB

(i) SUnSAL-TV
SNR = 50 dB

(j)nLASSO
SNR = 30 dB

(k) nLASSO
SNR = 40 dB

(l) nLASSO
SNR = 50 dB

(m) NNLS
SNR = 30 dB

(n) NNLS
SNR = 40 dB

(o) NNLS
SNR = 50 dB

Figure 6.11: Comparison of MLJSR(J = 9), MLJSR(J = 5), SUnSAL-TV,
nLASSO and NNLS algorithms (from top to bottom respectively) using the MAE
measure for all endmembers. Results for SNR 20dB, 30dB, 40dB and 50dB are
shown from left ro right. The colorbar range, for all subfigures in a row, has been
set at maximum mse of one of the `1 regularized methods.
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(a) MLJSR (J=9)
all EM

(b) MLJSR (J=9)
present EM

(c) MLJSR (J=9)
non-present EM

(d) MLJSR (J=5)
all EM

(e) MLJSR (J=5)
present EM

(f) MLJSR (J=5)
non-present EM

(g) SUnSAL-TV
all EM

(h) SUnSAL-TV
present EM

(i) SUnSAL-TV
non-present EM

(j)nLASSO
all EM

(k) nLASSO
present EM

(l) nLASSO
non-present EM

(m) NNLS
all EM

(n) NNLS
present EM

(o) NNLS
non-present EM

Figure 6.12: Comparison of NNLS, nLASSO, SUnSAL-TV and MLJSR algo-
rithms using the SRE=20 dB test case and the MAE measure for all endmembers
(left column), endmembers present in the image only (middle column) and end-
members not present in the image i.e. false abundance recovery (right column).
The colorbar range, for all subfigures in a row, has been set at maximum MAE of
one of the `1 regularized methods.
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Figure 6.13: Plots of mean ACC, SNT and SPC for datasets witch different
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(a)

(b)

Figure 6.20: (a) AVIRIS image of the selected region. Composition of bands
96, 36, 16. (b) AVIRIS image with points of interests modified from Swayze et al.
(2014). The area of the selected region is marked with the red rectangle.
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(a) OMP (b) OMPd

(c) TSGU-OMPd (d) nLASSO

(e) TSGU (f) NNLS

(g) MLJSM J = 5 (f)MLJSM J = 9

Figure 6.21: Unmixing results using tested algorithms for the alunite spectrum.
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(a) OMP (b) OMPd

(c) TSGU-OMPd (d) nLASSO

(e) TSGU (f) NNLS

(g) MLJSM J = 5 (h) MLJSM J = 9

Figure 6.22: Unmixing results using tested algorithms for the buddingstone
spectrum.
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(a) OMP (b) OMPd

(c) TSGU-OMPd (d) nLASSO

(e) TSGU (f) NNLS

(g) MLJSM J = 5 (h) MLJSM J = 9

Figure 6.23: Unmixing results using tested algorithms for the kaolinite spectrum.
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(a)TSGU-OMPd (b)TSGU

Figure 6.24: Unmixing results using TSGU-OMPd and TSGU algorithms for
the playa spectrum. Other tested algorithms did not detect any abundance of this
mineral.
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7
Multi-Look Joint Sparsity Fusion -

Experiments

In this chapter the proposed resolution enhancement method will be

tested and compared to the state-of-the-art methods. First, the ex-

periment with simulated data will be performed to asses the proposed

resolution enhancement algorithm . Then, the algorithms are assessed

using low spatial resolution Hyperion hyperspectral image and high res-

olution AISA hyperspectral image. Finally the proposed algorithms are

tested using data from sensors of the Mars Reconnaissance Orbiter

(MRO), HiRISE and CRISM.
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7.1 Evaluation Criterion

The goal of the resolution enhancement is to increase the amount of spatial

information of the hyperspectral image preserving the spectral information.

Therefore, in order to evaluate the results, both the spectral and spatial do-

main have to be investigated. If the ground truth image, i.e., high spatial

resolution hyperspectral image, is available the resulting enhanced hyperspec-

tral image is compared to that image. Otherwise, the improvement of the

quality or preservation of information of the image after applying resolution

enhancement methods is examined.

7.1.1 Spectral Information Evaluation - Spectral Angle Dis-

tance

The SAD is one of the most commonly used similarity measure in hyper-

spectral applications. It has been introduced in Kruse et al. (1993). SAD

measures the angle between two spectra

SAD = cos−1

∑m
i=1 yoiyri√∑m

i=1 yoi
2
√∑m

i=1 yri
2

(7.1)

where, m denotes the number of spectral bands, yo is the original high res-

olution hyperspectral spectrum and yr is the spectrum of the corresponding

reconstructed high resolution hyperspectral pixel. The smaller the SAD is

the more similar the spectra are.
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7.1.2 Spatial Information Evaluation

To evaluate the spatial information three measures are applied. First, the

SSIM is defined as

SSIM(a, b) =
(2µaµb + C1)(2σab + C2)

(µ2
a + µ2

b + C1)(σ2
a + σ2

b + C2)
(7.2)

is used, where a denotes a window in a band of the reference image, b is a

corresponding window in a corresponding band of the reconstructed image,

σ2
a, σ

2
b and σab, µa, µb denote respectively the variance of a, variance of b, the

covariance between a and b, mean value of a and mean value of b, C1 and C2

denote the variables stabilising the division. The SSIM has been proposed in

Wang et al. (2004) as a method more consistent with the human eye as the

standard methods for the image similarity measure e.g. peak signal-to-noise

ratio or MSE. The SSIM assesses the quality of the image by the degradation

of structural information. This is done by comparing the luminescence and

structure at the same time; for more details refer to Wang et al. (2004).

Second, the normalised cross correlation (NCC) measure is used and de-

fined as

NCC(i) =
1

p

p∑
i=1

(yoj − yo)(yrj − yr)
σyoσyr

(7.3)

where σ is the standard deviation and p is the number of pixels. The NCC

gives the values in the interval [0, 1] where 0 means no correlation and 1 the

perfect match between images. The normalisation makes the NCC invariant

to the constant change in brightness in the whole spectral band. This measure

is pixel based and it is calculated at each spectral band i separately. Thus

the mean NCC provides a good feeling how well the complete reconstructed

hyperspectral image matches the reference image.

As a third measure the Normalised Root Mean Squared Error (NRMSE)
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is used,

NRMSE =
1

m

m∑
i=1

√
1

p

∑p
j=1(yoi,j − yri,j)2∑p

j=1 y
o
i,j

2 (7.4)

It is calculated over the complete image and can have values ranging form

0 to infinity where 0 means no error. However, NRMSE with values larger

than one mean that the difference between reconstructed and original image

of band i is larger the the original image from the same band.

7.2 Simulated Image Pair

7.2.1 Experiment Settings

In this experiments the AVIRIS hyperspectral image taken over Cuprite,

Nevada, USA (JPL, 1997), with originally 224 spectral channels in the range

of 0.4 to 2.4 µm was used. From this scene a region of size 198×300 pixels

[Figure 7.1(b)] have been selected and the noisy and water absorption bands

have been discarded, so as the final test scene had 184 spectral channels. To

produce a spectral dictionary, 240 spectra were selected from the USGS Dig-

ital Spectral Library (Clark et al., 2007). The low resolution hyperspectral

image was simulated by down-sampling the spatial resolution of the original

image from 5 m (Figure 7.1(b)) to 30 m (Fig. 7.1(a)) using a Gaussian filter

as PSF. Because the spatial down-sampling reduces noise in the image, the

zero-mean Gaussian noise has been added to the low resolution hyperspectral

image. The sigma has been chosen to

σ =

√√√√ 1

1000

1

p ·m

p∑
i=1

m∑
j=1

(y2
j ) (7.5)

where yj is jth hyperspectral pixel, p is the number of pixels in the image and

m is the number of spectral channels. This resulted in the decrease of SNR
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(a) Low resolution
AVIRIS image

(b) original high
resolution AVIRIS image

(c) high resolution
LANDSAT image

(d) CNMF result (e) MAP/SMM result (f) MLJSF result

(g) SA for CNMF (h) SA for MAP/SMM (i) SA for MLJSF

Figure 7.1: Comparison of original [(a)-(c)] and reconstructed images [(d)-(f)
(RGB from channels 96, 36 and 16 respectively). (g)-(i) presents SA between
original and reconstructed images scaled from 0 to the maximum value from the
three results.
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by 30 dB. A multispectral image of 5 m spatial resolution and 6 bands with

signal response function of LANDSAT (Figure 7.1(f)) has been simulated as

described in section 2.2.5.

7.2.2 Results and Discussion

The MLJSF algorithm was compared with the state of the art maximum a

posteriori stochastic mixing model (MAP/SMM) and the CNMF methods.

The parameters for all algorithms were set so to result in the best perfor-

mance. For more details please refer to Yokoya et al. (2011) and Eismann

and Hardie (2005b).

Table 7.1: Comparison of the resolution enhancement algorithms.

NRMSE [%] NCC SSIM SAD [rad] Time [s]
CNMF 3.3% 0.99 0.98 0.024 277.25
MAP/SMM 4.1% 0.97 0.91 0.034 56.43
MLJSF 3.2% 0.98 0.98 0.030 17.16

Table 7.2: Comparison of the resolution enhancement algorithms with coregis-
tration error of one pixel.

nRMSE [%] NCC SSIM SADrad
CNMF 3.6% 0.98 0.984 0.030
MAP/SMM 15.1% 0.61 0.510 0.059
MLJSF 3.3% 0.98 0.987 0.030

The results of NRMSE, NCC, SSIM and SAD analysis are shown in Table

7.3. The MLJSF method outperforms CNMF and MAP/SMM in the sense of
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Figure 7.3: Comparison of the SSIM values across the spectral bands of tested
algorithms.

R-MSE with 3.2%. When comparing NCC all methods performed similarly

with the best result of 0.99 for CNMF. All methods have very high SSIM

indices which indicates very good reconstruction of the spatial domain. A

detailed plot of the SSIM across all bands is shown in Figure 7.3. Figure 7.1

shows the results of each method (c)-(e) compared to the original high reso-

lution AVIRIS image (b). All algorithms were able to fairly recover spatial

details with very little change in the intensity values. Square artefacts vis-

ible in the bottom of the MAP/SMM reconstructed image [Figure 7.1(d)]

indicate the transmission of noise from the low resolution hyperspectral im-

age. Figure 7.1(g)-(i) show the SAD evaluation. Examples of reconstructed

spectra compared to the original ones are shown in Figure 7.7. The use of

external noise free spectra from the dictionary the MLJSF method results in

smoother spectra when compared to other methods. This also confirms the

denoising property of the MLJSF (Cerra et al., 2014). Again, MAP/SMM

transmitted most of the noise from the low resolution image. Additionally,

the algorithms were tested for their performance when the coregistration er-

ror is present. All algorithms were run on the same dataset with a vertical

shift of one hyperspectral pixel. The comparison results are reported in Ta-

ble 7.2. Both algorithms MLJSF and CNMF are relatively robust to small

coregistation errors when compared to MAP/SMM. The quality of recon-

struction for the MLJSF algorithm did not change when considering NCC,

SSIM and SAD. The quality of the CNMF reconstruction decreased consid-

ering all measures. The MAP/SMM method performed the worst and the
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quality decreased drastically.

7.3 Real Image Pair - Germany

7.3.1 Experiment Settings

To test the MLJSF algorithm with real data a pair of coregistered images

was used. A space borne Hyperion hyperspectral image (Ungar et al., 2003)

[Figure 7.5 b)] and an airborne AISA hyperspectral image [Figure 7.5 a)].

After band selection the Hyperion image was of a size 80× 70 pixels and 152

spectral channels. The AISA image had 774×684 pixels and 100 spectral

bands. Both datasets were geometrically as well as atmospherically corrected.

Both datasets were acquired the same day 10 km north west from Köthen

in Sachen-Anhalt, Germany. The high resolution multispectral image has

been simulated from the AISA image using the signal response function of

the LANDSAT 7 sensor. The resulting image had a 3m GSD and 6 spectral

channels. The GSD of the Hyperion image is of 30m. Additionally, for the

MLJSF algorithm a spectral dictionary containing 177 spectra was provided.

The dictionary was combined from 110 materials from the USGS spectral

library and 67 measurements of the wheat fields. The MLJSF algorithm

was run with λ1 = 2.24 × 10−4 and λ2 = 1.6710−5. The CNMF algorithm

has been run with 40 endmembers and parameter settings yielding the best

possible results (Yokoya et al., 2011).

7.3.2 Results and Discussion

Unlike in data simulated from one hyperspectral image like in the previ-

ous section or in Bieniarz et al. (2011, 2014); Eismann and Hardie (2005b);

Grohnfeldt et al. (2014); Robinson et al. (2000); Yokoya et al. (2012), an

ideal-case reference image is not available. Therefore, a direct comparison
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Figure 7.4: Comparison of the SSIM values across the spectral bands of tested
algorithms.

with a reference image is not possible. To assess the results of the resolution

enhancement we performed a classification of all datasets and compared the

results with the classification of the high resolution original AISA image. The

evaluation set-up has been designed as follows: at first, the location of 12

classes was defined with one training sample for each class. Next, the training

samples were collected for all datasets i.e. AISA, Hyperion, MLJSF result

and CNMF result. Finally, a Spectral Angle Mapper (SAM) classification

(Kruse et al., 1993) was run for all datasets using these training samples. The

resulting classification was compared to the classification of the AISA image.

The classification results are shown in Fig. 7.6. Both methods CNMF [Fig.

7.6 d)] as well as MLJSF [Fig. 7.6 c)] significantly improved the classification

performance when compared to the classification performed on the original

Hyperion image [7.6 b)]. The CNMF was able to improve the classification

overall accuracy (OA) by 22.16% and MLJSF by 36.87% when compared to

the Hyperion classification results. Also, the Cohen’s Kappa (κ) has been

improved from 0.36 for Hyperion to 0.59 for CNMF and to 0.76 for MLJSF

(for more details see Table 7.3). Fig. 7.7 shows the selected spectra from

the original AISA image, the Hyperion image and the reconstructed spectra

from the same locations. The identification of different materials is easier in

AISA as well as in images produced by MLJSF or CNMF. The MLJSF re-

sults in smoother spectra when compared to CNMF results or to the original

Hyperion image, which is reasonable considering the use of the a priori given
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spectral dictionary.

To measure the quality of reconstruction relative to the AISA image, we

resample the resulting images from CNMF and MLJSF to match the spectral

channels of the AISA sensor. For comparison we use the SSIM, SAD, NCC

and NRMSE measures. The results are presented as the average values for

the whole image and are shown in the Table 7.3. The plot showing the

SSIM of every band image is shown in Figure 7.4. Both methods exhibit

very high SSIM with a slight drop of value for band no. 20. Both algorithms

significantly improved the quality in both spatial as well as in spectral domain

when compared with the AISA reference image. Considering the execution

time the MLJSF algorithm was also much faster (46.87 s) when compared to

CNMF (388.62 s).

Table 7.3: Results of the comparison. As reference the measures for low resolution
Hyperion image are provided. The Hyperion image has been resampled to AISA
spectral and spatial resolution.

OA [%] κ SSIM SADrad NCC NRMSE [%] Time [s]
Hyperion 42.08 0.36 0.16 0.121 0.82 91.6 -
CNMF 64.27 0.59 0.95 0.061 0.98 6.8 388.62
MLJSF 78.95 0.76 0.96 0.067 0.97 7.8 46.87

7.4 Real Image Pair - Mawrth Vallis, Mars

7.4.1 Experiment Settings

In this experiment the data from the Mars Reconnaissance Orbiter sensors,

namely HiRISE and CRISM are used. The HiRISE sensor is capable of
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142CHAPTER 7. MULTI-LOOK JOINT SPARSITY FUSION - EXPERIMENTS

a) AISA bands 860.2,
649.3 and 552.1 nm

b) Hyperion bands 864.4,
650.7 and 548.9 nm

c) MLJSMF bands 864.4,
650.7 and 548.9 nm

d) CNMF bands
864.4 nm, 650.7 nm and 548.9 nm

Figure 7.5: False RGB composition of input Hyperion and AISA images and
resulting high spectral and spatial resolution images.
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Road Red roof 1 Red roof 2 White roof

Tree Field 1 Field 2 Field 3

Field 4 Soil 1 Soil 2 Water

a) classification result of
the AISA image

b)classification result of
the Hyperion image

c) classification result of
the MLJSMF image

d) classification result of
the CNMF image

Figure 7.6: Result of the SAM classification using original AISA, Hyperion and
fusion results of MLJSF and CNMF.
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Figure 7.7: Comparison of selected spectra from the AISA image, Hyperion
image and results of the resolution enhancement algorithms CNMF and MLJSF.
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Figure 7.8: Measured SRF of each HiRISE spectral band.

imaging with spatial resolution of 0.3 m at an altitude of 300 km. It has three

spectral bands available, at blue-green (400 - 600 nm), red (550 - 850 nm)

and near-infrared (NIR) (800 - 1000 nm) (McEwen et al., 2007). The SRF

of these bands are shown in Figure 7.8. The hyperspectral sensor CRISM

has 544 spectral bands ranging from 370 to 3920 nm and spatial resolution

of 18.4 m at 300 km in targeted mode (Murchie et al., 2007).

The region of Mawrth Vallis on Mars has been selected as the test area.

The Mawrth Vallis was selected as one of the possible landing sides of the

Mars Science Laboratory (MSL) (Michalski et al., 2010). A pair of images has

been selected from, the HiRISE image (ESP 012873 2045), and the CRISM

image (FRT000094F6). The images were co-registered using the XDibias

software (Müller et al., 1993) by manually selecting 9 ground control points.

The selected region and correspondences between the images are shown in

Figure 7.9 In order to reduce the resolution ratio between the images the

HiRISE has been down-sampled by the factor of 10 to a spatial resolution of

3 m using the method described in section 2.2.5 using a Gaussian filter as

the PSF of the lower resolution image.

Here, unlike in previous experiments, the two images are not georeferenced.

Therefore, in order to avoid interpolation of the images in the co-registration

process, the fusion is done on the original images using the affine transfor-
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a) HiRISE b) CRISM c) CRISM selected region

Figure 7.9: Images used in the resolution enhancement experiment. Subfig-
ures show the HiRISE ESP 012873 2045 image in a), the coregistered part of the
CRISM FRT000094F6 image in b) and the complete CRISM scene with the coreg-
istered region marked by a blue rectangle.

mation matrix computed in the co-registration process.

7.4.2 Results and Discussion

A dictionary with 9 endmembers extracted from the hyperspectral scene

was used. For the endmembers estimation the N-FINDR algorithm (Winter,

1999) was applied. The MLJSF algorithm has been applied to the HiRISE

and CRISM image pair with following settings λ1 = 4.53·10−5 and λ2 = 9.11·
10−4. Selected bands and band compositions of the resulting image is shown

in Figure 7.10. Comparing the CIR HiRISE image and CIR composition of

the MLJSF image the spatial structures are well preserved including the color

composition. However it should be noted that the width of the bands are

much different, very broad for HiRISE and narrow for CRISM, therefore color

comparison should be performed with caution. The zoomed area has been

described in Saper and Bishop (2011) as the region containing significant
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minerals as nontronite, altered volcanic glass and ferrous materials. The

geometrical resolution of this region is significantly improved. Figure 7.10

(c-e) shows the comparison of MLJSF result with the CRISM image. Note

that the bands at 1.43 µm and 1.91 µm are far beyond the HiRISE spectral

range and since the MLJSF algorithm was able to provide reasonable results

when compared to CRISM or spatial features in HiRISE image. Figure 7.11

shows comparison of the spectra of the MLJSF result with spectra from

the corresponding pixel in CRISM image. The upper three spectra were

picked from the regions indicated in Saper and Bishop (2011) while lower

three spectra were selected from regions where the SAD between CRISM

and HiRISE was relatively high.

To quantitatively analyse the preservation of the spatial features of the

MLJSF method the NCC has been calculated between the HiRISE image

and MLJSF image re-sampled to match the HiRISE SRF. Likewise, the NCC

was computed for the original CRISM image which was up-sampled using

nearest-neighbours interpolation and re-sampled to match the HiRISE SRF.

The NCC has been significantly improved using the MLJSM method from

0.04 for CRISM to 0.98 for HiRISE.

Similarly, the spectral preservation has been checked comparing the SAD

between the spatially up-sampled version of the CRISM image and the result

of the SSIM method. The low SAD value of 0.0576 indicates that the the

spectral information has been preserved in the reconstructed MLJSF image.

This value however, should be interpreted with caution because of the large

resolution difference and can be interpreted only as proof of the spectral

similarity between the MLJSF product to the original image.
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Figure 7.11: Upper three spectra from the top were selected from positions
indicated in the figure above (the figure is from Saper and Bishop (2011)). Lower
three spectra were selected from regions where the SAD was higher. The gray line
( ) indicates the spectrum from the corresponding region in CRISM. The black
spectra ( ) are from the fusion resulting image.



7.5 Summary

In this chapter the new method MLJSF for hyperspectral image resolution en-

hancement utilising sparse unmixing models has been presented. The method

was critically analysed and compared to the state of the art methods using

datasets from various sensors. The summary of the results presented in this

chapter is stated as follows:

• Using simulated data sets the performance of the MLJSF method has

been tested. The proposed algorithm performed similarly to the state

of the art methods exhibiting better reconstruction when the SSIM

or NRMSE methods are considered. For the tests with coregistration

error MLJSF showed the lowest decrease in the quality for NRMSE and

no loss in quality considering NCC, SSIM and SAD measures. Also, it

is important to note that unlike the competitors methods the MLJSF

used external spectral libraries resulting in an additional products, i.e.,

low resolution and high resolution unmixing maps of materials.

• Another evaluation has been done using a real spaceborne Hyperion im-

age and a simulated multispectral image from the airborne hyperspec-

tral AISA sensor. Here, the classification has been applied to the resolu-

tion enhancement products and original Hyperion image and compared

to the classification of the reference image. The MLJSF outperformed

the CNMF algorithm and significantly improved the classification ac-

curacy of the Hyperion image.

• Finally, the proposed algorithm has been tested using images of the

Martian surface from the ’same-platform’ satellite sensors of the MRO.

The MLJSF was able to increase the spatial resolution of the 544-band

hyperspectral CRISM image using the 3-band multispectral HiRISE

image by a factor of 6. The numerical and qualitative assessment of

the results show good results and the applicability of MLJSF to this

type of data.
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8
Conclusions and Future Work
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This thesis was motivated by the main shortcoming of hyperspectral data,

namely the decreased spatial resolution resulting from the physical properties

of the sensor. Lower spatial resolution often limits the applicability of these

data especially in regions with smaller objects, whose spectral responses are

mixed within one pixel. These limitations are tackled by resolution enhance-

ment techniques and spectral unmixing methods. Both are developed and

discussed in this thesis.

The standard approach to spectral unmixing consists of two steps. At first,

the spectra of pure materials from a hyperspectral image are recovered by

manual selection or using expensive geometrical or statistical approaches to

estimate or extract the endmembers. Then, their fractional abundances in

every pixel are computed. Recently, more robust sparse approximation meth-

ods for hyperspectral unmixing have been proposed. They allow skipping the

step of recovery of pure spectra and directly computing the fractional abun-

dances, using a large spectral dictionary containing a set of known measured

spectra. However, it has been shown that these methods suffer from several

shortcomings: they are sensitive to correlation in the spectral dictionary, do

not provide spatially consistent results and are often relatively slow.

The first aim of this thesis was to address the above problems. The main

conclusions can be stated in the following points.

• The spectral mixing problem has been targeted by proposing MLJSR

a new robust method for sparse spectral unmixing incorporating spa-

tial information and correlations from neighbouring pixels Ṫhe method

uses a specially designed dictionary that incorporates the joint recov-

ery of common endmembers but also accounts for the approximation of

non-common abundances. MLJSR, unlike most other spatial-spectral

unmixing methods, operates in a window what does not enforce com-

mon endmembers in the whole scene. The MLJSR algorithm has been

evaluated using real and simulated data exhibiting similar performance

to other spatial-spectral unmixing method with significantly shorter
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execution time and much better performance when compared to pixel-

based methods. The presented findings confirm that the inclusion of

the neighbouring information improves results of spectral unmixing.

In addition, because the spatial correlations are exploited only in the

direct neighbourhood, the endmembers are not enforced in the whole

image. This therefore indicates the advantage of using MLJSR in im-

ages in which the same endmember occurs in a neighbouring group of

pixels. Most notably, this is the first study to our knowledge to inves-

tigate the joint sparsity of endmember abundances in a window based

manner.

• In this thesis the performance of existing methods for sparse regression

was evaluated on hyperspectral data. The main focus here has been

to improve these algorithms by a prior transformation or preselection

within the spectral dictionary. In virtually all cases, the `1 minimisation

methods perform significantly better than the OMP or NNLS. However,

it has been shown that the performance of OMP or FISTA algorithms

can be improved by application of the derivative transform for data

with high SNR. The proposed derivative transform for sparse unmixing

can be used in applications requiring very fast processing times, as the

OMP was the fastest of all tested algorithms.

• It has also been shown that the preselection of the dictionary and par-

ticular use of the proposed TSGU algorithm can improve the results

of sparse spectral unmixing. Unlike in state-of-the-art methods, the

preselection is not done for the whole image, but it is performed in a

pixel wise manner using clustered dictionaries. This fact ensures that

rarely appearing endmembers will not be removed from the dictionary.

This is especially important with scenes containing many endmembers

and when using very large spectral dictionaries.

The second subject discussed in this thesis was the spatial resolution en-

hancement of hyperspectral images by means of fusion with multispectral
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images. Based on the findings from chapter 4 considering sparse spectral un-

mixing a new fusion algorithm (MLJSF) has been proposed, which operates

on external spectral dictionaries. The main findings can be summarised in

the following points:

• The use of external dictionaries makes the MLJSF algorithm more ro-

bust for cases in which the hyperspectral pixels are highly mixed. This

can be especially useful when considering hyperspecral images of urban

areas with lower resolution (e.g. Environmental Mapping and Analysis

Program (EnMAP) sensor with 30 m GSD).

• It has been shown that the MLJSF method is robust to small co-

registration errors. This fact makes the presented algorithm useful

when the hyperspectral and multispectral image are taken from differ-

ent platforms and a perfect co-registration is not possible.

• Because MLJSF algorithm has been shown to be the significantly faster

than other tested algorithms, this can be used in applications dependent

on the computational time e.g. crisis management.

• The spatial resolution of a hyperspectral image acquired by CRISM

has been enhanced by a factor of six. Such improvement can help the

mineralogical studies of the surface of Mars with better understanding

of spatial structures.

The evaluation presented in this thesis provides a baseline study for the

sparse unixing approaches as well as sparse unmixing based image fusion. As

an outlook the following future work is proposed:

• The potential of the MLJSM should be further developed by incorpo-

rating given different window shapes, and also by introducing weights

for the pixels in window according to e.g. the PSF of the hyperspectral

sensor.
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• The MLJSR builds ensemble vectors of pixels in the window and then

each one is separately processed. This makes the algorithm easily trans-

ferable for multithreading or GPU implementation which could yet sig-

nificantly improve the performance.

• On the one hand, it has been shown that the derivative transform ap-

plied to sparse spectral unmixing improves the detection of endmem-

bers, but is highly sensitive to noise. On the other hand, the MLJSM

has been proven to be very robust to noise. These two properties can

be combined by incorporating the derivative in the joint model for the

abundance recovery.

• The presented TSGU algorithm has been tested with OMP and LASSO

algorithms. However, it can work with different approximation meth-

ods as well as different mixing models (e.g. MLJSM). Additionally, it

should be tested using other dictionary clustering methods and cluster

sizes.

• As the spectral dictionary and image data are usually collected under

different conditions and might not contain exactly the same endmem-

bers as those in the image (this can be caused by e.g material age), it

might be of importance to perform update of the endmembers selected

in the first step in the TSGU accounting for this effects and differences.

• The PSF of both multispectral and hyperspectral sensors can be easily

included in the mixing models used in MLJSF. This should improve

both, the spatial performance by incorporation of the neighbouring

information as well as the spectral performance by more accurate un-

mixing results.
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A
List of Spectra Names Used in AVIRIS

Dictionary

Actinolite, HS116.3B, s06av95a=b,
Adularia, GDS57, Orthoclase, s06av95a=b,
Albite, GDS30, 74-250um, Plag, s06av95a=b,
Allanite, HS293.3B, s06av95a=b,
Almandine, HS114.3B, Garnet, s06av95a=b,
Alunite, AL706, Na , s06av95a=b,
Ammonio-Illite/Smectit, GDS87, s06av95a=b,
Ammonio-Jarosite, SCR-NHJ, s06av95a=a,
Ammonio-Smectite, GDS86, s06av95a=b,
Amphibole, NMNH78662, s06av95a=b,
Analcime, GDS1, Zeolite, s06av95a=a,
Andalusite, NMNHR17898, s06av95a=c,
Andesine, HS142.3B, s06av95a=c,
Andradite, GDS12, Garnet, s06av95a=c,
Anhydrite, GDS42, <250um, s06av95a=a,
Annite, WS661, Biotite, s06av95a=b,
Anorthite, GDS28, Syn, <74um, s06av95a=a,
Anthophyllite, HS286.3B, s06av95a=c,
Antigorite, NMNH17958, s06av95a=b,
Arsenopyrite, HS262.3B, s06av95a=c,
Augite, NMNH120049, s06av95a=b,
Axinite, HS342.3B, s06av95a=b,
Azurite, WS316, s06av95a=a,
Barite, HS79.3B, s06av95a=b,
Bassanite, GDS145, (syn), s06av95a=a,
Beryl, GDS9, <150um, gs, s06av95a=b,
Biotite, HS28.3B, s06av95a=b,
Bloedite, GDS147, s06av95a=a,
Bronzite, HS9.3B, Pyroxene, s06av95a=c,
Brookite, HS443.2B, s06av95a=b,
Brucite, HS247.3B, s06av95a=c,
Buddingtonite, GDS85, D-206, s06av95a=b,
Buddingtonite, NHB2301, s06av95a=b,
Bytownite, HS105.3B, Plagio, s06av95a=b,

Calcite, CO2004, s06av95a=b,
Carbon Black, GDS68, sm.ap., s06av95a=a,
Carnallite, HS430.3B, s06av95a=a,
Cassiterite, HS279.3B, s06av95a=c,
Celestite, HS251.3B, Barite, s06av95a=b,
Celsian, HS200.3B, s06av95a=d,
Chalcedony, CU91-6A, s06av95a=a,
Chalcopyrite, HS431.3B, s06av95a=b,
Chert, ANP90-6D, (White), s06av95a=?,
Chlorapatite, WS423, s06av95a=b,
Chlorite, HS179.3B, s06av95a=b,
Chromite, HS281.3B, s06av95a=b,
Chrysocolla, HS297.3B, s06av95a=b,
Chrysotile, HS323.1B, s06av95a=a,
Cinnabar, HS133.3B, s06av95a=c,
Clinochlore, GDS158, Flagst, s06av95a=b,
Clinochlore Fe, GDS157, s06av95a=a,
Clinoptilolite, GDS152, Zeolit, s06av95a=b,
Clinozoisite, HS299.2B, s06av95a=d,
Clintonite, NMNH126553, s06av95a=c,
Colemanite, GDS143, s06av95a=b,
Cookeite, CAr-1.a, 104-150um, s06av95a=b,
Copiapite, GDS21, s06av95a=b,
Coquimbite, GDS22, s06av95a=c,
Cordierite, HS346.3B, s06av95a=d,
Corrensite, CorWa-1, s06av95a=b,
Corundum, HS283.3B, s06av95a=c,
Covellite, HS477.2B, s06av95a=b,
Cronstedtite, M3542, s06av95a=b,
Cummingtonite, HS294.3B, s06av95a=c,
Cuprite, HS127.3B, s06av95a=b,
Datolite, HS442.3B, s06av95a=b,
Diaspore, HS416.3B, s06av95a=b,
Dickite, NMNH106242, s06av95a=b,

Diopside, HS15.3B, Pyroxene, s06av95a=c,
Dipyre, BM1959;505.HLsp, s06av95a=c,
Dolomite, COD2005, s06av95a=b,
Dumortierite, HS190.3B, s06av95a=c,
Elbaite, NMNH94217-1.a, 659, s06av95a=b,
Endellite, GDS16, s06av95a=b,
Enstatite, NMNH128288, s06av95a=c,
Epidote, BR93-33a, s06av95a=b,
Epsomite, GDS149, s06av95a=c,
Eugsterite, GDS140, Syn, s06av95a=b,
Europium Oxide, GDS33, s06av95a=a,
Fassaite, HS118.3B, s06av95a=c,
Ferrihydrite, GDS75, Syn;, F6, s06av95a=b,
Fluorapatite, WS416, s06av95a=a,
Galena, HS37.3, s06av95a=b,
Gaylussite, NMNH102876-2, s06av95a=b,
Gibbsite, HS423.3B, s06av95a=b,
Glauconite, HS313.3B, s06av95a=c,
Glaucophane, HS426.3B, s06av95a=c,
Goethite, GDS134, s06av95a=b,
Grossular, HS113.3B-HCL, Garnt,
s06av95a=d,
Gypsum, HS333.3B, (Selenite), s06av95a=a,
Halite, HS433.3B, s06av95a=a,
Halloysite, CM13, s06av95a=b,
Hectorite, SHCa-1, s06av95a=c,
Hedenbergite, HS10.3B, s06av95a=c,
Hematite, FE2602, s06av95a=b,
Heulandite, GDS3, s06av95a=a,
Holmquistite, HS291.3B, s06av95a=d,
Hornblende, HS16.3B, s06av95a=b,
Hornblende Fe, HS115.3B, s06av95a=c,
Hornblende Mg, NMNH117329, s06av95a=b,
Howlite, GDS155, s06av95a=a,
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Hydrogrossular, NMNH120555, s06av95a=b,
Hydroxyl-Apatite, WS425, s06av95a=b,
Hypersthene, NMNHC2368, s06av95a=b,
Illite, GDS4, (Marblehead), s06av95a=b,
Ilmenite, HS231.3B, s06av95a=b,
Jadeite, HS343.3B, s06av95a=b,
Jarosite, GDS100, Na;Sy, 90C, s06av95a=a,
Kainite, NMNH83904, s06av95a=a,
Kaolinite, CM3, s06av95a=a,
Kieserite, KIEDE1.a, coarse, gr, s06av95a=c,
Knebelite, HS419.3B, s06av95a=b,
Labradorite, HS17.3B, s06av95a=b,
Laumontite, GDS5, Zeolite, s06av95a=b,
Lazurite, HS418.3B, s06av95a=b,
Lepidocrosite, GDS80, (Syn), s06av95a=b,
Lepidolite, HS167.3B, s06av95a=b,
Limonite, HS41.3, s06av95a=b,
Lizardite, NMNHR4687.a, 280, s06av95a=a,
Maghemite, GDS81, Syn, (M-3), s06av95a=b,
Magnetite, HS195.3B, s06av95a=b,
Malachite, HS254.3B, s06av95a=b,
Margarite, GDS106, s06av95a=c,
Marialite, NMNH126018-2, s06av95a=b,
Mascagnite, GDS65.a, (coar), s06av95a=a,
Meionite, WS700.HLsp, s06av95a=b,
Microcline, HS103.3B, Feldspar, s06av95a=c,
Mirabilite, GDS150, Na2SO4, s06av95a=a,
Mizzonite, BM1931;12, Scapolte, s06av95a=c,
Monazite, HS255.3B, s06av95a=c,
Monticellite, HS339.3B, s06av95a=b,
Montmorillonite, CM20, s06av95a=b,
Mordenite, GDS18, s06av95a=b,
Mordenite+Clinopt., GDS151, s06av95a=b,
Muscovite, GDS107, s06av95a=a,
Nacrite, GDS88, s06av95a=c,
Nanohematite, BR93-34B2, s06av95a=b,
Natrolite, HS169.3B, Zeolite, s06av95a=b,
Neodymium Oxide, GDS34, s06av95a=a,
Nepheline, HS19.3, s06av95a=c,
Nephrite, HS296.3B, s06av95a=c,
Nickeline, HS264.3B, s06av95a=c,
Niter, GDS43, (K-Saltpeter), s06av95a=a,
Nontronite, NG-1.a, s06av95a=b,
Oligoclase, HS110.3B, s06av95a=c,
Olivine, GDS70.a, Fo89, 165um, s06av95a=b,
Opal, TM8896, (Hyalite), s06av95a=a,
Orthoclase, HS13.3B, s06av95a=c,
Palygorskite, CM46a, Attapulg, s06av95a=b,
Paragonite, GDS109, s06av95a=a,
Pectolite, NMNH94865.a, s06av95a=b,
Perthite, HS415.3B, s06av95a=c,
Phlogopite, GDS20, fine, fr, s06av95a=b,
Pigeonite, HS199.3B, s06av95a=b,
Pinnoite, NMNH123943, s06av95a=a,
Pitch Limonite, GDS104, Cu, s06av95a=?,
Polyhalite, NMNH92669-4, s06av95a=a,
Portlandite, GDS525, Ca(OH)2, s06av95a=a,
Praseodymium Oxide, GDS35, s06av95a=b,
Prehnite, GDS613.a, <60um, s06av95a=a,
Prochlorite, SMR-14.a, 115um, s06av95a=a,
Psilomelane, HS139.3B, s06av95a=b,
Pyrite, HS35.3, s06av95a=b,
Pyrolusite, HS138.3B, s06av95a=b,
Pyrophyllite, PYS1A, <850um, s06av95a=a,
Pyroxene, HS119.3B, s06av95a=c,
Pyrrhotite, HS269.3B, s06av95a=b,
Quartz, GDS31, 0-74um, fr, s06av95a=a,
Rectorite, ISR202, (RAr-1), s06av95a=?,
Rhodochrosite, HS338.3B, s06av95a=b,
Rhodonite, HS325.3B, s06av95a=c,
Richterite, HS336.3B, Amphibol, s06av95a=c,
Riebeckite, HS326.3B, Amphibol,
s06av95a=d,
Rivadavite, NMNH170164, Amph,
s06av95a=a,
Roscoelite, EN124, s06av95a=b,
Rutile, HS126.3B, s06av95a=c,
Samarium Oxide, GDS36, s06av95a=a,
Sanidine, GDS19, Feldspar, s06av95a=a,
Saponite, SapCa-1, s06av95a=b,
Sauconite, GDS135, s06av95a=b,

Schwertmannite, BZ93-1, s06av95a=b,
Scolecite, GDS7, Zeolite, s06av95a=b,
Sepiolite, SepNev-1, s06av95a=b,
Serpentine, HS318.4B, s06av95a=c,
Siderite, HS271.3B, s06av95a=a,
Siderophyllite, NMNH104998, s06av95a=b,
Sillimanite, HS186.3B, s06av95a=c,
Smaragdite, HS290.3B, Amphibol,
s06av95a=b,
Sodium Bicarbonate, GDS55, s06av95a=a,
Spessartine, HS112.3B, Garnet, s06av95a=b,
Sphalerite, HS136.3B, s06av95a=b,
Sphene, HS189.3B, s06av95a=b,
Spodumene, HS210.3B, s06av95a=c,
Staurolite, HS188.3B, s06av95a=b,
Stilbite, GDS8, Zeolite, s06av95a=b,
Strontianite, HS272.3B, s06av95a=b,
Sulfur, GDS94, Reagent, s06av95a=a,
Syngenite, GDS139, s06av95a=a,
Talc, GDS23, 74-250um, fr, s06av95a=a,
Thenardite, GDS146, s06av95a=c,
Thuringite, SMR-15.a, 115um, s06av95a=b,
Tincalconite, GDS142, s06av95a=a,
Topaz, Cameron Cone # 42, s06av95a=b,
Tourmaline, HS282.2B, s06av95a=c,
Tremolite, HS18.3, s06av95a=c,
Trona, GDS148, s06av95a=a,
Ulexite, GDS138, Boron;, CA, s06av95a=a,
Uralite, HS345.3B, s06av95a=b,
Uvarovite, NMNH106661, Garnet,
s06av95a=b,
Vermiculite, GDS13, Llano, s06av95a=a,
Vesuvianite, HS446.3B, Idocras, s06av95a=a,
Witherite, HS273.3B, s06av95a=a,
Wollastonite, HS348.3B, s06av95a=b,
Zircon, WS522, s06av95a=a,
Zoisite, HS347.3B, s06av95a=b,
Zunyite, GDS-241B, <150um, s06av95a=?,
Acid Mine Dr, Assemb2-Fe3+, s06av95a=b,
Actinolite-Hornfels, BR93-5a, s06av95a=c,
Actinolite-Tremolit, BR93-22C, s06av95a=b,
Actinolite Dolomit, BR93-60B, s06av95a=b,
Alun.33+Kaol.33+Musc.33, AMX2,
s06av95a=a,
Alun0.3+Musc0.4+Pyro0.3, AMX1,
s06av95a=a,
Alun366+.50PyroPYS1A, GDS222,
s06av95a=b,
Alun Na+Kaol+Hemat, MV00-11a,
s06av95a=c,
Alunite+Pyrophyl, SD1093A, s06av95a=b,
Alunite-K, CU91-217G1, HiTemp, s06av95a=b,
Alunite+Dickite, MV99-6-26b, s06av95a=c,
Alunite.5+MuscCU91-250A, AMX4,
s06av95a=a,
Alunite0.35K+.65Na, CU91-217H,
s06av95a=b,
Alunite0.5+Kaol KGa-1, AMX3, s06av95a=b,
Alunite K, CU98-5C, MedTemp, s06av95a=b,
Alunite K-Na, CU91-217H1, LowT,
s06av95a=b,
Alunite NH4+Jaro, NMNH145596A,
s06av95a=b,
Basalt fresh, BR93-46B, s06av95a=b,
Basalt weathered, BR93-43, s06av95a=b,
Beidellite+Montmor, GDS123, s06av95a=b,
Biotite-Chlorite Mx, BR93-36A, s06av95a=b,
Blue Efflorscnt Min, SU93-300, s06av95a=b,
Calc.25+Dolo.25+Ca-Mon, AMX7,
s06av95a=b,
Calc.25+dolo.25+mont.5, AMX18,
s06av95a=b,
Calcite+.33Muscov, AMX5, Ruby,
s06av95a=a,
Calcite+.50Ca-Mont, AMX6, s06av95a=b,
Calcite+Dolomite.5, AMX8, s06av95a=b,
Calcite+Talc, PC99-1G, s06av95a=c,
Calcite.33+Ca-mont.67, AMX19, s06av95a=b,
Calcite.33+Epidote.67, GDS311, s06av95a=a,
Calcite.67+Epidote.33, GDS310, s06av95a=a,
Calcite.7+Kaolwxl.3, AMX9, s06av95a=a,

Calcite.8+Ca-Montmor.2, AMX15,
s06av95a=b,
Calcite.80+Mont Swy-1, GDS212,
s06av95a=a,
Calcite.80wt+Kaol CM9, GDS213,
s06av95a=a,
Chabazite+Thom+Wair, HS193.3B,
s06av95a=b,
Chl.33+Epid.33+Cal.33, GDS319,
s06av95a=a,
Chlor+Goethite, CU93-4B, Phyl, s06av95a=a,
Chlor.2+Epid.2+Calc.6, GDS314,
s06av95a=a,
Chlor.2+Epid.6+Calc.2, GDS312,
s06av95a=a,
Chlor.6+Epid.2+Calc.2, GDS313,
s06av95a=a,
Chlorit.33+Calcite.67, GDS315, s06av95a=a,
Chlorite+Muscovite, CU93-65A, s06av95a=a,
Chlorite.33+Epidot.67, GDS318, s06av95a=a,
Chlorite.67+Calcit.33, GDS316, s06av95a=a,
Chlorite.67+Epidot.33, GDS317, s06av95a=a,
Chlorite Phyllite, CU91-238A, s06av95a=b,
Chlorite Serpentine, BR93-22B, s06av95a=b,
Dic.4+msc.3+gyp.2+jr.1, AMX20, s06av95a=a,
Dolomit+Calcite+Talc, PC99-1E, s06av95a=c,
Dolomite.5+Na-mont.5, AMX21, s06av95a=b,
Dolomite.50+Ca-Montmor, AMX10,
s06av95a=b,
Erionite+Merlinoite, GDS144, s06av95a=c,
Erionite+Offretite, GDS72, s06av95a=b,
Fe-Hydroxide, SU93-106, amorph,
s06av95a=b,
Goeth+qtz.5+Jarosite.5, AMX11, s06av95a=b,
Goethite0.02+Quartz, GDS240, s06av95a=a,
Goethite Phyllite, CU91-236A, s06av95a=b,
Gyp+jar+ill, BRCM1, Marysvale, s06av95a=b,
Gyp.3+jr.1+msc.4+dic.2, AMX22, s06av95a=a,
Gyp.4+jr20+msc.2+dic.2, AMX23,
s06av95a=a,
Gyp.5+Kjar.3+hAlmsc.2, AMX24, s06av95a=a,
Halloysite, CU91-242D, s06av95a=b,
Halloysite+Kaolinite, CM29, s06av95a=a,
Hematite.02+Quartz.98, GDS76, s06av95a=a,
Hematitic Alt. Tuff, CU91-223, s06av95a=b,
Hydrated Volc Tuff, CU01-4A, s06av95a=c,
Illite, CU00-5B, Hi-Al+Quartz, s06av95a=a,
Jarosite Rhyolite, CU91-20A, s06av95a=a,
Kalun+kaol+gth, mv2-ar3, s06av95a=b,
Kaol+Musc intimate, CU93-5C, s06av95a=a,
Kaol.5+MuscCU91-250A, AMX13,
s06av95a=b,
Kaol Wxl+0.5Musc Ruby, AMX12,
s06av95a=a,
Kaol wxl+others, CU00-19A, s06av95a=b,
Kaolin/Smect, KLF511, .12Kaol, s06av95a=b,
Kaolin Smect, H89-FR-2, .5Kaol, s06av95a=b,
Kaolwxl.75+Alun HS295, AMX14,
s06av95a=b,
Limestone, CU02-11A, s06av95a=a,
Magnesite+Hydroma, HS47.3B, s06av95a=a,
Magnetite skarn, BR93-5B, s06av95a=b,
Mesolite+Hydroxyapop, GDS6, s06av95a=b,
Montmorillonite+Illite, CM37, s06av95a=b,
Montmorillonite-Na, CU93-52A, s06av95a=c,
Muscov+Jaros, CU93-314, coatng,
s06av95a=b,
Muscovite+Pyrophyl, JH PYRP1, s06av95a=b,
Muscovite-low-Al, CU98-8H, s06av95a=b,
Muscovite-medhi-Al, CU91-252D,
s06av95a=c,
Muscovite-medlowAl, CU91-250A,
s06av95a=b,
Nontronite+others, CU00-13A, s06av95a=b,
Natrolite+Zeolite, HS168.3B, s06av95a=b,
Opalized, Tuff, CU00-15E, s06av95a=b,
Phlogopite Sand Mix, BR93-20, s06av95a=a,
Pyrite, LV95-6A, Weath, on, Tail, s06av95a=b,
Pyrophyl+Muscovite, JH PYRM1,
s06av95a=b,
Pyrophyl.25+wxlKaol.75, AMX17,
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s06av95a=b,
Pyrophyl.50+Ca-Mont.50, AMX16,
s06av95a=a,
Pyroxene Basalt, CU01-20A, s06av95a=a,
Stonewall Playa Dry Mud, 2001, s06av95a=a,
Stonewall Playa, CU93-52A, a11,
s06av95a=a,
Talc+Clinochlore, HS327.3B, s06av95a=a,
Teepleite+Trona, NMNH102798, s06av95a=a,
White Crust, LV30, starkeyite, s06av95a=c,
Zincite+Franklin, HS147.3B, s06av95a=b,
Blck Mn Coat Tailngs, LV95-3, s06av95a=b,
Desert Varnish, ANP90-14, s06av95a=a,
Goethite Thin Film, WS222, s06av95a=a,
Hematite Coatd Qtz, BR93-25B, s06av95a=b,
Hematite Coatd Qtzt, BR93-25A, s06av95a=b,
Hematite Thin Film, GDS27, s06av95a=a,
Jarosite Thin Film, GDS243, s06av95a=b,
Jarosite on Qtzite, BR93-34A2, s06av95a=b,
H2O-Ice, GDS136, 77K, s06av95a=a,
Melting snow, mSnw16+0.25 veg,
s06av95a=a,
Seawater Coast Chl, SW1, s06av95a=a,
Seawater Open Ocean, SW2, lwch,
s06av95a=a,
Water+Montmor, SWy-2+1.67g/l, s06av95a=a,
Ammonium Chloride, GDS77, s06av95a=a,
Asphalt, GDS376, Blck Road, old,
s06av95a=a,
Asphalt Shingle, GDS366, Tan, s06av95a=a,
Brick, GDS347, Paving, Tan, s06av95a=a,
Burlap Fabric, GDS430, Brown, s06av95a=a,
Cardboard, GDS371, Brn, Corgted,
s06av95a=a,
Nylon Carpet, GDS535, LtBrown,
s06av95a=a,
Cedar Shake, GDS357, Fresh, s06av95a=a,
Cinder Block, GDS356, Lg, Grey, s06av95a=a,
Coated Steel Girder, WTC01-8, s06av95a=a,
Concrete, GDS375, Lt, Gry, Road,
s06av95a=a,
Cotton Fabric, GDS437, White, s06av95a=a,
Cyanide Trihydrate, CT1, s06av95a=a,
Cyanide Zinc Potassium, s06av95a=a,
Cyanide Potassium Ferro, s06av95a=a,
Fiberglass, GDS337, Grn, Roofng,
s06av95a=a,
GalvanizedSheetMetal, GDS334,
s06av95a=a,
Green Slime, SM93-14A, Summitv,
s06av95a=a,

Kerogen, BK-Cornell, s06av95a=a,
Montmorill+Benzene, SWy, 1ml, s06av95a=a,
Montmorill+TCE, SWy, saturated,
s06av95a=a,
Montmorill+Toluene, SWy, .5ml, s06av95a=a,
Montmorill+Trichlor, SWy, 1ml, s06av95a=a,
Montmorill+Unleaded Gas, SWy, s06av95a=a,
Nylon Fabric, GDS431, Red, RpSt,
s06av95a=a,
Nylon Webbing, GDS428, OlvDrab,
s06av95a=a,
Painted Aluminum, GDS333, LgGr,
s06av95a=a,
Particle Board, GDS364, Fn, Gr, s06av95a=a,
Plastic, GGA-54, Grnhouse, Roof,
s06av95a=a,
Plastic HDPE, GDS351, BlkSheet,
s06av95a=a,
Plastic LDPE, GDS402, Clr, film, s06av95a=a,
Plastic PETE, GDS379, TrnslBrn,
s06av95a=a,
Plastic PVC, GDS338, White, s06av95a=a,
Plastic Pipe, GDS344, Blue, s06av95a=a,
Plastic Tarp, GDS339, Green, s06av95a=a,
Plastic Tyvek, GDS369, White, s06av95a=a,
Plastic Vinyl, GDS372, White, s06av95a=a,
Plastic Visqueen, GDS370, Clr, s06av95a=a,
Plywood, GDS365, Fresh, Pine, s06av95a=a,
Polyester Pile, GDS434, Blk, s06av95a=a,
Polyester Webbing, GDS429, Blk,
s06av95a=a,
Polystyrene, GDS345, BluInsul, s06av95a=a,
Renyolds TnlSldgWet, SM93-15w,
s06av95a=a,
Renyolds Tnl Sludge, SM93-15, s06av95a=a,
Roofing Felt, GDS377, Black, s06av95a=a,
Rusted Tin Can, GDS378, MV99-6,
s06av95a=a,
Sheet Metal, GDS352, crg, Galvn,
s06av95a=a,
Strand Board, GDS362, Oriented,
s06av95a=a,
Tar Paper, GDS285A, New, Blk, s06av95a=a,
Terrycloth Fabric, GDS537, Yl, s06av95a=a,
Wood Beam, GDS363, Nw, Pine, 2X4,
s06av95a=a,
WTC Dust Debris, WTC01-2, s06av95a=a,
Aspen, YNP-AS-1, s06av95a=b,
Aspen Leaf-A, DW92-2, s06av95a=a,
Aspen Leaf-B, DW92-3, s06av95a=a,
Bacterial-Mat, YNP-B1, s06av95a=b,
Blackbrush, ANP92-9A, leaves, s06av95a=a,

Blue Spruce, DW92-5, needle, s06av95a=a,
Cattail, YNP-CT-1, s06av95a=b,
Cheatgrass, ANP92-11A, s06av95a=a,
Conifer-Meadow-Mix, YNP-CM-1,
s06av95a=b,
Douglas-Fir, YNP-DF-1, s06av95a=b,
Dry Long Grass, AV87-2, s06av95a=a,
Engelmann-Spruce, ES-Needls-1,
s06av95a=a,
Espruce-Sfir, YNP-SF-1, s06av95a=b,
Fir Tree, IH91-2, s06av95a=a,
Grass-Fescue-Wheatg, YNP-FW-1,
s06av95a=b,
Grass-FescueNeedleg, YNP-FN-1,
s06av95a=b,
Grass-Smoothbrome, YNP-SB-1,
s06av95a=b,
Grass Golden Dry, GDS480, s06av95a=a,
Juniper Bush, IH91-4B, s06av95a=a,
Lawn Grass, GDS91, (Green), s06av95a=a,
Lodgepole-Pine, LP-Needles-1, s06av95a=a,
Maple Leaves, DW92-1, s06av95a=a,
Oak, Oak-Leaf-1, fresh, s06av95a=a,
Pinon Pine, ANP92-14A, needle, s06av95a=a,
Rabbitbrush, ANP92-27, s06av95a=a,
Russian Olive, DW92-4, s06av95a=a,
Sage Brush, IH91-1B, s06av95a=a,
Sagebrush, Sage-Leaves-1, dry, s06av95a=a,
Saltbrush, ANP92-31A, s06av95a=a,
Sedge, YNP-SE-1, s06av95a=b,
Tumbleweed, ANP92-2C, Dry, s06av95a=a,
Walnut Leaf, SUN, (Green), s06av95a=a,
Wetland, YNP-WT-1, s06av95a=b,
Whitebark-Pine, YNP-WB-1, s06av95a=b,
Willow, Willow-Leaves-1, dry, s06av95a=a,
Willow-Sedge-Mix, YNP-WS-1, s06av95a=b,
Antigorite+.2DryGrass, AMX26, s06av95a=a,
Antigorite+.33DryGrass, AMX25, s06av95a=a,
Grass dry.4+.6green, AMX27, s06av95a=a,
Grass dry.5+.5green, AMX28, s06av95a=a,
Grass dry.6+.4green, AMX29, s06av95a=a,
Grass dry.7+.3green, AMX30, s06av95a=a,
Grass dry.8+.2green, AMX31, s06av95a=a,
Grass dry.9+.1green, AMX32, s06av95a=a,
Lawn Grass, GDS91, shifted, 3nm,
s06av95a=a,
Stonwll Ply+.1grnGrass, AMX33, s06av95a=a,
Stonwll Ply+.2grnGrass, AMX34, s06av95a=a,
Willow Dead, FluvTailSite A, s06av95a=a
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B
List of Spectra Names Used in

HyMAP Dictionary

10a-o
10a-u
10b-o
10b-u
11
12
13
14
15
16
17
18
19-o
19-u
1
20
21
22
23
24
25
26
2a
2b
2c-o
2c-u
30-alc
31-alc
40
4a
4b-o
4b-u
5-o
5-u

6
7
8
9-o
9-u
Black tar paper
Black gloss paint
Plate Window Glass
Construction Concrete
Asphalt roofing shingle
Bare Red Brick
Olive green paint
Construction Concrete
Pine Wood
Red smooth-faced Brick
Terra cotta Tiles
Asphaltic concrete
Aluminum Metal
Asphalt Shingle
White fiberglass unspecified rubber
Construction Tar
Black gloss paint
Construction Asphalt
Copper Metal
Copper Metal
Construction Asphalt
Black paint
Black gloss paint
Oxidized Galvanized Steel Metal
Weathered Red Brick
Galvanized Steel Metal
Construction Tar
Pine Wood
Reddish Asphalt roofing shingle

White rubberized coating
Olive green gloss paint
Copper Metal
Cinders ashen
White Marble
Reddish asphalt Shingle
Construction Asphalt
Black tar paper
Construction Concrete
Olive green paint
Olive green gloss paint
Galvanized Steel Metal
Construction Concrete
Construction Concrete
Slate stone Shingle
Black unspecified rubber
Dry grass
Grass
Conifer
Decidous
Dark grayish brown silty loam
Brown to dark brown sand
Very dark grayish brown loam
Gray silty clay
Dark reddish brown organic-rich silty loam
Black loam
Dark brown interior moist clay loam
Brown sandy loam
Brown to dark brown sandy loam
Dark reddish brown fine sandy loam
Brown to dark brown clay
Reddish brown fine sandy loam
Brown loamy fine sand
Pale brown dry silty clay loam
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Dark yellowish brown micaceous loam
Brown to dark brown silt loam
Brown to dark brown loamy sand
Brown sandy loam
Very dark grayish brown silty loam
White gypsum dune sand
Brown fine sandy loam
Dark brown fine sandy loam
Vary dark grayish brown loam

Brown gravelly sandy loam
Reddish brown fine sandy loam
Light yellowish brown interior dry gravelly loam
Very pale brown to brownish yellow interior dry
gravelly silt loam
Light yellowish brown loamy sand
Brown to dark brown gravelly loam
Very dark grayish brown loam
Brown to dark brown gravelly fine sandy loam
Grayish brown loam
Very dark grayish brown silty loam

Very dark grayish brown loamy sand
Pale brown silty loam
Dark yellowish brown silty clay
Light yellowish brown loam
Light yellowish brown clay
Brown fine sandy loam
Brown silty loam
Gray/dark brown extremely stoney coarse
sandy

161



Bibliography

Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., and Bruce,
L. (2007). Comparison of pansharpening algorithms: Outcome of the 2006
grs-s data-fusion contest. Geoscience and Remote Sensing, IEEE Trans-
actions on, 45(10):3012–3021.

Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. (2011). Convex opti-
mization with sparsity-inducing norms. Optimization for Machine Learn-
ing, pages 19–53.

Bachmann, M. U. (2007). Automatisierte Ableitung von Bodenbedeck-
ungsgraden durch MESMA-Entmischung. PhD thesis, Bayerische Julius-
Maximilians-Universität Würzburg.

Baraniuk, R. (2007). Compressive sensing. IEEE Signal Processing Mag,
24:118–120.

Baraniuk, R., Candes, E., Nowak, R., and Vetterli, M. (2008). Compressive
sampling. Signal Processing Magazine, IEEE, 25(2):12–13.

Baron, D., Duarte, M. F., Sarvotham, S., Wakin, M. B., and Baraniuk, R. G.
(2005). An information theoretic approach to distributed compressed sens-
ing. In Allerton Conference on Communication, Control, and Computing.

Baron, D., Duarte, M. F., Wakin, M. B., Sarvotham, S., and Baraniuk, R. G.
(2009). Distributed compressive sensing. CoRR, abs/0901.3403.

Ben-Haim, Z., Eldar, Y.C., and Elad, M. (2010). Coherence-based perfor-
mance guarantees for estimating a sparse vector under random noise. Sig-
nal Processing, IEEE Transactions on, 58:5030–5043.

Bendoumi, M., He, M., and Mei, S. (2014). Hyperspectral image resolu-
tion enhancement using high-resolution multispectral image based on spec-
tral unmixing. Geoscience and Remote Sensing, IEEE Transactions on,
52(10):6574–6583.

162



Bieniarz, J., Aguilera, E., Zhu, X., Müller, R., and Reinartz, P. (2015). Joint
sparsity model for multilook hyperspectral image unmixing. Geoscience
and Remote Sensing Letters, IEEE, 12(4):696–700.

Bieniarz, J., D.Cerra, Avbelj, J., Reinartz, P., and Müller, R. (2011). Hy-
perspectral image resolution enhancement based on spectral unmixing and
information fusion. In ISPRS Hannover Workshop 2011.

Bieniarz, J., Müller, R., Zhu, X. X., Heiden, U., and Reinartz, P. (2014).
Hyperspectral image resolution enhancement based on jointly sparse spec-
tral unmixing. In Geoscience and Remote Sensing Symposium (IGARSS),
2014 IEEE International.

Bieniarz, J., Müller, R., Zhu, X. X., and Reinartz, P. (2012). On the use
of overcomplete dictionaries for spectral unmixing. In 4th Workshop on
Hyperspectral Image and Signal Processing. WHISPERS 2012.

Bioucas-Dias, J. (2009). A variable splitting augmented lagrangian approach
to linear spectral unmixing. pages 1 –4.

Bioucas-Dias, J. (2012). MATLAB code for SUnSAL-TV.

Bioucas-Dias, J. and Nascimento, J. (2008). Hyperspectral subspace iden-
tification. Geoscience and Remote Sensing, IEEE Transactions on,
46(8):2435–2445.

Bioucas-Dias, J. and Plaza, A. (2011). An overview on hyperspectral unmix-
ing: Geometrical, statistical, and sparse regression based approaches. In
Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE Inter-
national, pages 1135 –1138.

Bioucas-Dias, J., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N.,
and Chanussot, J. (2013). Hyperspectral remote sensing data analysis and
future challenges. IEEE Geoscience and Remote Sensing Magazine, 1:6–36.

Bioucas-Dias, J., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P.,
and Chanussot, J. (2012). Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches. Selected Topics in Ap-
plied Earth Observations and Remote Sensing, IEEE Journal of, 5(2):354
–379.

Bro, R. and De Jong, S. (1997). A fast non-negativity-constrained least
squares algorithm. Journal of Chemometrics, 11:393–401.

163



Bruckstein, A. M., Elad, M., and Zibulevsky, M. (2008). Sparse non-negative
solution of a linear system of equations is unique. In Proc. 3rd Int. Symp.
Communications, Control and Signal Processing ISCCSP 2008, pages 762–
767.

Candes, E. and Wakin, M. (2008). An introduction to compressive sampling.
Signal Processing Magazine, IEEE, 25(2):21–30.

Cands, E. J. and Romberg, J. (2006). Sparsity and incoherence in compres-
sive sampling. Inverse Problems, 23:969–985.

Canham, K., Schlamm, A., Ziemann, A., Basener, B., and Messinger, D.
(2011). Spatially adaptive hyperspectral unmixing. Geoscience and Remote
Sensing, IEEE Transactions on, 49(11):4248–4262.

Capobianco, L., Garzelli, A., Nencini, F., Alparone, L., and Baronti, S.
(2007). Spatial enhancement of hyperion hyperspectral data through ali
panchromatic image. In Geoscience and Remote Sensing Symposium, 2007.
IGARSS 2007. IEEE International, pages 5158–5161.

Cerra, D., Müller, R., and Reinartz, P. (2014). Noise reduction in hyperspec-
tral images through spectral unmixing. Geoscience and Remote Sensing
Letters, IEEE, 11(1):109–113.

Chang, C.-I. and Du, Q. (2004). Estimation of number of spectrally distinct
signal sources in hyperspectral imagery. Geoscience and Remote Sensing,
IEEE Transactions on, 42(3):608–619.

Chang, C.-I., Zhao, X.-L., Althouse, M., and Pan, J. J. (1998). Least
squares subspace projection approach to mixed pixel classification for hy-
perspectral images. Geoscience and Remote Sensing, IEEE Transactions
on, 36(3):898–912.

Chen, F. and Zhang, Y. (2013). Sparse hyperspectral unmixing based on
constrained lp - l2 optimization. Geoscience and Remote Sensing Letters,
IEEE, 10(5):1142–1146.

Chen, G. and Qian, S.-E. (2011). Denoising of hyperspectral imagery us-
ing principal component analysis and wavelet shrinkage. Geoscience and
Remote Sensing, IEEE Transactions on, 49(3):973–980.

Chen, S. S., Donoho, D. L., Michael, and Saunders, A. (1998). Atomic
decomposition by basis pursuit. SIAM Journal on Scientific Computing,
20:33–61.

164



Chen, Z., Pu, H., Wang, B., and Jiang, G.-M. (2014). Fusion of hyperspectral
and multispectral images: A novel framework based on generalization of
pan-sharpening methods. Geoscience and Remote Sensing Letters, IEEE,
11(8):1418–1422.

Clark, R., Swayze, G., Wise, R., Livo, E., Hoefen, T., R. Kok, R., and Sutley,
S. (2007). Usgs digital spectral library splib06a. Digital Data Series 231.

Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton,
J. B., McDougal, R. R., and Gent., C. A. (2003). Imaging spectroscopy:
Earth and planetary remote sensing with the usgs tetracorder and expert
systems. Journal of Geophysical Research, 108:5131.

Cocks, T., Jenssen, R., Stewart, A., Wilson, I., and Shields, T. (1998).
The hymap (tm) airborne hyperspectral sensor: the system, calibration
and performance. In 1 st EARSeL Workshop on Imaging Spectroscopy.
EARSeL.

Datt, B., McVicar, T., Van Niel, T., Jupp, D. L. B., and Pearlman, J.
(2003). Preprocessing eo-1 hyperion hyperspectral data to support the
application of agricultural indexes. Geoscience and Remote Sensing, IEEE
Transactions on, 41(6):1246–1259.

Debba, P., Carranza, E. J. M., van der Meer, F., and Stein, A. (2006).
Abundance estimation of spectrally similar minerals by using derivative
spectra in simulated annealing. Geoscience and Remote Sensing, IEEE
Transactions on, 44(12):3649–3658.

Dobigeon, N., Moussaoui, S., Coulon, M., Tourneret, J.-Y., and Hero,
A. (2009). Joint bayesian endmember extraction and linear unmixing
for hyperspectral imagery. Signal Processing, IEEE Transactions on,
57(11):4355–4368.

Donoho, D. L. and Elad, M. (2003). Optimally sparse representation in
general (nonorthogonal) dictionaries via 1 minimization. Proceedings of the
National Academy of Sciences of the United States of America, 100:2197–
2202.

Donoho, D. L., Elad, M., and Temlyakov, V. N. (2006). Stable recovery of
sparse overcomplete representations in the presence of noise. Information
Theory, IEEE Transactions on, 52(1):6–18.

165



Donoho, D. L. and Tanner, J. (2005). Sparse nonnegative solutions of un-
derdetermined linear equations by linear programming. In Proceedings of
the National Academy of Sciences, pages 9446–9451.

Drake, N. A., Mackin, S., and Settle, J. J. (1999). Mapping vegetation, soils,
and geology in semiarid shrublands using spectral matching and mixture
modeling of swir aviris imagery. Remote Sensing of Environment, 68:1225.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle
regression. Annals of statistics, 32(2):407499.

Ehlers, M. (2008). Multi-image fusion in remote sensing: spatial enhance-
ment vs. spectral characteristics preservation. In Advances in Visual Com-
puting, pages 75–84. Springer.

Eismann, M. and Hardie, R. (2004). Application of the stochastic mixing
model to hyperspectral resolution enhancement. Geoscience and Remote
Sensing, IEEE Transactions on, 42(9):1924–1933.

Eismann, M. and Hardie, R. (2005a). Hyperspectral resolution enhancement
using high-resolution multispectral imagery with arbitrary response func-
tions. Geoscience and Remote Sensing, IEEE Transactions on, 43(3):455–
465.

Eismann, M. and Hardie, R. (2005b). Hyperspectral resolution enhancement
using high-resolution multispectral imagery with arbitrary response func-
tions. Geoscience and Remote Sensing, IEEE Transactions on, 43(3):455
– 465.

Elad, M. (2007). Optimized projections for compressed sensing. Signal Pro-
cessing, IEEE Transactions on, 55(12):5695–5702.

Elad, M. (2010). Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. Springer Publishing Com-
pany, Incorporated.

Gonzalez, R. C. and Woods, R. E. (2001). Digital Image Processing. Addison-
Wesley Longman Publishing Co., Inc.

Greer, J. B. (2012). Sparse demixing of hyperspectral images. 21(1):219–228.

Gribonval, R. and Nielsen, M. (2003). Sparse representations in unions of
bases. Information Theory, IEEE Transactions on, 49:3320–3325.

166



Grohnfeldt, C., Zhu, X. X., and Bamler, R. (2013). Jointly sparse fusion
of hyperspectral and multispectral imagery. In Geoscience and Remote
Sensing Symposium (IGARSS), 2013 IEEE International. IEEE.

Grohnfeldt, C., Zhu, X. X., and Bamler, R. (2014). Hyperspectral resolution
enhancement using high resolution multispectral data - a comparison of
the state-of-the-art fusion methods. In Geoscience and Remote Sensing
Symposium (IGARSS), IEEE International.

Guo, Z., Wittman, T., and Osher, S. (2009). L1 unmixing and its appli-
cation to hyperspectral image enhancement. In Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, volume 7334 of Pre-
sented at the Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference.

Halimi, A., Altmann, Y., Dobigeon, N., and Tourneret, J.-Y. (2011). Nonlin-
ear unmixing of hyperspectral images using a generalized bilinear model.
Geoscience and Remote Sensing, IEEE Transactions on, 49:4153–4162.

Hardie, R., Eismann, M., and Wilson, G. (2004a). Map estimation for hyper-
spectral image resolution enhancement using an auxiliary sensor. Image
Processing, IEEE Transactions on, 13(9):1174–1184.

Hardie, R., Eismann, M., and Wilson, G. (2004b). Map estimation for hyper-
spectral image resolution enhancement using an auxiliary sensor. Image
Processing, IEEE Transactions on, 13(9):1174 –1184.

Heiden, U., Segl, K., Roessner, S., and Kaufmann, H. (2005). Determination
and verification of robust spectral features for an automated classification
of sealed urban surfaces. In Proceedings of the 4th EARSeL Workshop on
Imaging Spectroscopy in Warsaw.

Heinz, D. and Chein-I-Chang (2001). Fully constrained least squares linear
spectral mixture analysis method for material quantification in hyperspec-
tral imagery. Geoscience and Remote Sensing, IEEE Transactions on,
39(3):529 –545.

Heylen, R., Burazerovic, D., and Scheunders, P. (2011a). Fully constrained
least squares spectral unmixing by simplex projection. Geoscience and
Remote Sensing, IEEE Transactions on, 49(11):4112–4122.

Heylen, R., Burazerovic, D., and Scheunders, P. (2011b). Non-linear spectral
unmixing by geodesic simplex volume maximization. Selected Topics in
Signal Processing, IEEE Journal of, 5:534–542.

167



Hogan, R., Marzo, G., and Roush, T. (2009). A comparison of performance
between two cluster algorithms applied to mineral spectra. In Aerospace
conference, 2009 IEEE, pages 1–7.

Horwitz, H. M., Nalepka, R. F., Hyde, P. D., and Morgenstern, J. P. (1971).
Estimating the proportions of objects within a single resolution element of
a multispectral scanner. In In Proceedings of the 7th International Sym-
posium on Remote Sensing of Environment.

Ifarraguerri, A. and Chang, C.-I. (1999). Multispectral and hyperspectral
image analysis with convex cones. Geoscience and Remote Sensing, IEEE
Transactions on, 37(2):756 –770.

Iordache, D. M., Bioucas-Dias, J., and Plaza, A. (2011). Sparse unmixing of
hyperspectral data. Geoscience and Remote Sensing, IEEE Transactions
on, 49(6):2014–2039.

Iordache, D. M., Bioucas-Dias, J., and Plaza, A. (2012a). Dictionary pruning
in sparse unmixing of hyperspectral data. In 4th Workshop on Hyperspec-
tral Image and Signal Processing. WHISPERS 2012.

Iordache, M., Bioucas-Dias, J., and Plaza, A. (2010). Recent developments
in sparse hyperspectral unmixing. In IEEE International Geoscience and
Remote Sensing Symposium IGARSS.

Iordache, M.-D., Bioucas-Dias, J., and Plaza, A. (2009). Unmixing sparse
hyperspectral mixtures. volume 4, pages IV–85 –IV–88.

Iordache, M.-D., Bioucas-Dias, J., and Plaza, A. (2012b). Total variation
spatial regularization for sparse hyperspectral unmixing. Geoscience and
Remote Sensing, IEEE Transactions on, 50(11):4484–4502.

Iordache, M.-D., Bioucas-Dias, J., and Plaza, A. (2013). Collaborative sparse
regression for hyperspectral unmixing. Geoscience and Remote Sensing,
IEEE Transactions on, PP(99):1–14.

Iordache, M.-D., Bioucas-Dias, J., Plaza, A., and Somers, B. (2014). Music-
csr: Hyperspectral unmixing via multiple signal classification and collabo-
rative sparse regression. Geoscience and Remote Sensing, IEEE Transac-
tions on, 52(7):4364–4382.

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2010). Proximal Meth-
ods for Sparse Hierarchical Dictionary Learning. ICML 2010: Proceedings
of the 27th international conference on Machine learning, pages 1–8.

168



Jia, S. and Qian, Y. (2007). Spectral and spatial complexity-based hyper-
spectral unmixing. Geoscience and Remote Sensing, IEEE Transactions
on, 45(12):3867–3879.

Jia, S. and Qian, Y. (2009). Constrained nonnegative matrix factorization
for hyperspectral unmixing. Geoscience and Remote Sensing, IEEE Trans-
actions on, 47(1):161 –173.

JPL, A. (1997). http://aviris.jpl.nasa.gov/html/aviris.freedata.html.

Kawakami, R., Wright, J., Tai, Y.-W., Matsushita, Y., Ben-Ezra, M., and
Ikeuchi, K. (2011). High-resolution hyperspectral imaging via matrix fac-
torization. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 2329 – 2336.

Keshava, N. (2003). A survey of spectral unmixing algorithms a survey of
spectral unmixing. Lincoln Laboratory Jurnal, 14:55–78.

Keshava, N. and Mustard, J. (2002). Spectral unmixing. Signal Processing
Magazine, IEEE, 19(1):44 –57.

Kruse, F. A., Lefkoff, A. B., Boardman, J. B., Heidebrecht, K. B., Shapiro,
A. T., Barloon, P. J., and Goetz, A. F. H. (1993). The Spectral Image Pro-
cessing System (SIPS) - Interactive Visualization and Analysis of Imaging
Spectrometer Data. Remote Sensing of Environment, 44:145–163.

Lawson, C. L. and Hanson, R. J. (1974). Solving least squares problems. 3
edition.

Licciardi, G., Khan, M., Chanussot, J., Montanvert, A., Condat, L., and
Jutten, C. (2012). Fusion of hyperspectral and panchromatic images using
multiresolution analysis and nonlinear pca band reduction. EURASIP
Journal on Advances in Signal Processing, 2012(1):1–17.

Ma, W.-K., Bioucas-Dias, J., Chan, T.-H., Gillis, N., Gader, P., Plaza, A.,
Ambikapathi, A., and Chi, C.-Y. (2014). A signal processing perspective on
hyperspectral unmixing: Insights from remote sensing. Signal Processing
Magazine, IEEE, 31:67–81.
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