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List of notations

ā = Equilibrium value of variable a.

a, b = The cost parameters.

c = The probability of an egg to develop into a young adult.
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pi = Growth factor of the gonads.
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xi(t) = Number of fish of age t in class i.

H = The Hamiltonian.

α = Measure of the density depenpdence in the model.
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τi = The survival probability for class i.
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τ 1
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Summary of the thesis

(Abstract)

In this thesis an age structured model of fish and harvesting of fish are studied.

This includes the basic properties as well as the analysis of equilibria and their

stability for various recruitment functions. The only nonlinearity of this model lies

in the juvenile stage in form of the recruitment function.

Recruitment is considered as recruitment into the first year fertile class. The Ricker

recruitment function will mostly be used . But we also discuss the Beverton-Holt

recruitment and compare its impact.

The main result is that monotone recruitment functions lead to a globally

stable equilibrium. For Ricker recruitment functions periodic solutions are possible,

but this model for cod and herring always leads to stable equilibria.

Harvesting occurs in all classes separately with no harvesting in the first class. We

describe harvesting in form of harvesting effort, resulting in an increase of mortality.

This approach allows to model the interference of natural mortality and fishing

mortality. Harvesting cost will be considered as a linear function of effort and the

corresponding maxima are determined. This has the advantage to keep the number

of parameters low. This makes the model more tractable and easier to apply to other

stocks or species of fish. Optimization of the harvest is determined and analyzed.

It is based on harvesting intensity and mesh size. We also show that harvesting

increases stability of the static model.

vi



This model is extended to a discrete optimal control model in order to deter-

mine optimal sustainable policies. The solutions are almost of the fastest approach

type to the equilibrium type solution. Periodic or pulse solutions do not arise. Near

optimal strategies are analyzed and other feasible strategies are also considered.

In last part of this thesis the problem of extinction of population is investigated.

The effect of various factors as well as natural factors on marine fish populations

are studied, which are described by the model in order to get some idea on the

size of various factors. Most fishing takes place near the break even intensity. It

is defined as the fishing mortality at which cost equals profit. As a further aspect

recovery scenarios are studied. Concrete numerical studies for optimal solutions are

determined for cod and herring. Care is taken to take into account all possible

realistic parameters but also to keep the model tractable for other species.
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Chapter 1

A Mathematical Model for fishery

1.1 Introduction

Two thirds of the earth are covered by the sea. Therefore marine fish could

be the most important source of food for men, if properly managed. This has not

been the case so far and many fish species have been driven to near extinction by

over exploitation. In[5] Boris Worm, a marine ecologist at Dalhousie University in

Nova Scotia,reported that the catches had dropped to less than 10% of the recorded

maximum. For currently fished species it had decreased to 29%. If this trend

continues the global collapse of all currently fished species will occur by the mid-

21st century(2048). In addition only 9% of European fish stocks will have achieved

a sustainable levels by 2022 [1].

In a recent article marine ecologist R. Froese gives a moving portrait of this

precarious situation [23]. He states that European fisheries has a profit margin of

3-6% compared to New Zealand where reformed fisheries reach profit margins of

up to 40%. The reasons for this deplorable situation are mainly political and eco-

nomical. They are political, because catch quotas will to be agreed upon almost

worldwide. Each nation not agreeing to such quotas will have an advantage over

the others. So there is little pressure to join into such negotiations, even less to

adhere to the recommendations. The fate of the International Whaling Commission

illustrates these problems. Even within the EU there is little interest to agree on

sensibly low catch quotas. The management of fishery in Europe is poor or totally
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absent. According to[1], in 2010,76% of the species commercially caught by Euro-

pean fleets were outside the fishing quotas. For example a complete ban could cost

about 20000 work places in the UK alone. For this reason agreements are usually

achieved at the cost of sensible solutions. In addition fish factories and fleets have

bound a considerable capital. Even the fact that fishing at low densities is economi-

cally senseless, because the catch does not pay for the cost is ruled out, because the

EU hands out considerable subsidies. In 2009 fishing sector subsidies totalled 3.3

billion Euro, three times more than typically quoted public figures. In addition more

than two-thirds of these subsidies are used either to enhance fishing and increase

overfishing or can be considered as obscure subsidies [1]. This is clearly another ex-

ample of shortsightedness of politicians and pressure from lobbyist. In addition to

outlandish quotas illegal fishing and the problem of the bycatch seriously undermine

the possibility of attaining a sustainable optimal equilibrium.

The idea to exploit the sea as much as possible and as cheaply as possible has led

to the employment of ever larger and more sophisticated fishing factories. These

hunt the fish with sonar, GPS spotter planes and gigantic fishing gear. That the use

of ground nets turns large domains of the sea floor into a waste is now well estab-

lished.These fishing factories can travel far from their homeland and thus endanger

the local fishing industry elsewhere ,e.g. some African coastal waters. Economic

realism shows that a species will be harvested to a level, where it is barely prof-

itable.Subsidies distort this and can drive a species near to extinction. Needed is

thus a complete stop of subsidies unless it is for the closing down of ships or factories

or employment of fishermen in other areas. New forms of negotiations, stricter en-

forcement of the catch quotas, limits on the fishing gear, control of the bycatch and

size restrictions on the fishing vessels are needed. All this belongs to the political

aspect of the fishing industry.

The difficulties to be encountered there can easily be envisaged when one considers

whaling and more recently the problem of carbon dioxide emission. Here the bio-

logical and to a lesser extent the economic aspects are only considered. But even

there serious problems arise because of the complexity of the marine ecosystem.
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The aim is to develop a strategy that leads to a sustainable fishery with an optimal

output. For a single isolated species this problem is well defined. A management

of one species, however, will affect others, which in turn influence the species to be

caught. Another problem in this connection is the bycatch, because the young fish

of the targeted species may appear as the bycatch of another species and conversely

the bycatch affects other species. Finally upgrading of a catch is a problem.

The FAO (Food and Agriculture Organization) thus demands to minimize the

capture and mortality of species and sizes which are not going to be used [25]. Other

suggestions require the bycatch to be counted with the catch. Another optimization

goal should thus be to maintain the diversity and structure of the marine ecosys-

tem. In the above article[25]. S.M. Garcia et al argue that this can only achieved

by a balanced harvesting, which distributes a moderate mortality from fish across

the widest possible range of species stocks and sizes in an ecosystem. The authors

support this by a number of simulations. Since only a few species are commercially

important such a concept is even less likely to be followed.

Summing up we see that the ecosystem ”sea” or ”marine fish” is far too complicated

to yield to simple analysis other than simulations. Economic influences make it even

more intractable. Topping all this is a completely ambiguous political process. For

this reason we shall pursue in this work a much more modest aim. Here a single

species will be studied with age structure subject to harvesting, thus extending sim-

ple age class models to include age structure. The vital parameters are then tested

with respect to their sensitivity. This approach is justified, because most parame-

ters come with fairly large errors. In addition most models are rather incomplete

because they neglect the interaction with other species, the influence of the envi-

ronment or simply the fact that they are not spatial. Therefore it is not surprising

that most more detailed models fail in making good predictions. In fact models with

more than 10 parameters with each an error of about 10 percent can obviously not

perform well. This work will be organized as follows:

In the first chapter, the introduction will be a review the most important

papers in this field study. A Leslie- type age class model for marine fish is then

developed. This is applied in particular to cod and later to herring. In order to keep

the necessary parameters low, many parameters are introduced via relations or well
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known laws. It also includes a discussion of the recruitment process as well as the

determination of the key parameters. The latter turns out to be more complicated

than expected. In particular fecundity, which is one of the key population variables,

is difficult to determine and data in this field are rather insecure.

In chapter 2 a general equilibrium model is developed, and its stability is

analyzed for various recruitment functions. This is done to fix the parameter ranges,

and study their sensitivity on the equilibria. It is shown that a monotone recruitment

functions always lead to globally stable equilibria.

In chapter 3 the model is enlarged to include harvesting. Harvesting is de-

scribed in the form of harvesting effort, resulting in an increase of mortality. This

approach allows to model the interference of natural mortality and fishing mortality.

Fishing requires a considerable investment in equipment, manpower and production.

For this more complex model the effect needs to be analyzed in detail. In a final

stage harvesting cost are considered and the corresponding maxima are determined.

In addition concrete numerical studies for harvesting models are then applied to

concrete fish population for example cod and herring.

In chapter 4, the model is extended to an optimal control system in order to

determine optimal sustainable policies. As expected the solutions are almost of the

fastest approach to equilibrium type solution. Other strategies are also analyzed.

Finally the importance of the results for more general fishery models are studied.

In the final chapter,chapter 5, the problem of extinction of populations is

analyzed. For obvious reasons this study is restricted to low reproduction numbers

and effect of overfishing as well as natural factors are studied. The environmental

factors are

1. Oviposition, which is influenced by temperature and salinity, is modeled by

c −→ ce−P0 with 0 ≤ P0 ≤ 0.2

2. The larval and juvenile phase: In this phase larvae have a high demand for

food. They are preyed upon as well as competition, sickness and cannibalism
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effect their progression. This phase is modeled by

τi = e−µ −→ e−(µ+P1) with 0 ≤ P1 ≤ 0.2

3. The adult phase ,in this phase the lack of food is the dominant factor as well

as competition with other species. The adult phase is expressed by

τi = e−µ −→ e−(µ+P2) with 0 ≤ P2 ≤ 0.2

1.2 Mathematical models and previous work

Because of the importance of fish as a food source, many articles have discussed

fish harvesting and its optimization. Because of the complexity of the problem most

papers discuss only simplistic type optimization models or concentrate on particular

aspects. But even these over simplistic papers give valuable insight in the dangers

of overfishing, which now in an unfortunate reality for many fish stocks.

The scientific literature abounds in articles deploying this unhappy situa-

tion. Yet the recommendation of biologists and fishery scientists are consistently

ignored[23]. Even the complete collapse of the cod fishery in Newfoundland twenty

years ago has not induced fishermen and politicians to correct their attitude. De-

spite a complete ban on cod fishing in this region the stock there has not recovered

yet. The same can be said about the spring spawning herring in Iceland, which has

not rebounded since the sixties. North sea cod is facing a similar peril. Since 1970

the number of spawning cod in the North sea has reached an all time low about

30000 t, which is about 15 % of that in 1970. According to H. Lassen, an Inter-

national Council for the Exploration of the sea (ICES) advisor, the stock is half of

the absolute minimum [19]. Most likely the North Sea cod fishery will then face the

same fate as its Newfoundland predecessor. Why then, is it difficult to implement

a sustainable harvesting policy?.

Mathematical models of fish have a very long tradition which are ranging from sim-

ple biomass -statistical- to rather detailed multi-class models. The fundamental

work on quantitative fisheries management was done mainly by Beverton and Holt

[3],Ricker[55, 56] and Shaefer [58, 60]. Clark[7, 8], provides a recent comprehensive
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account of the field. Previous control models have treated only single species with-

out age structure [7, 8] and there are a number of models with two classes which

nonetheless gave valuable insight into optimal fish harvesting [62, 64, 71, 73].

In [26] Getz presented an optimization harvesting model that distinguishes a har-

vesting season dynamics and the spawning season. All this is modeled by a system

of ordinary differential equations and difference equations respectively.His main con-

clusion, that a two age group harvesting strategy is optimal, is unrealistic because

most marine fish are caught with seines or long lines. In [27, 28] the Beverton-

Holt theory of harvesting a multi-cohort fish population is formulated in a Leslie

matrix frame work and conditions for the ultimate sustainable yield are derived

subject to constant recruitment. A Leslie type model was also employed by Levin

and Goodyear [40] or Wikan and Eide [71]. They, however, were mostly interested

in the appearance of periodic or chaotic solutions. These models hardly reflect bi-

ological reality and their conclusion about periodic or chaotic solutions are rather

problematic. The history of this development can be found in the surveys of Tahvo-

nen [66] or Wilen [72]. We also refer to the more recent papers by Diekert et al

[15, 16, 17],Li and Yakubu [42],and by Tahvonen [65, 67]. Tahvonen et al [68],and

Quaas et al [54]. They have developed specific age class models. But these apply

only to the Norwegian or Baltic cod stocks,and result in contradictory recommen-

dations. Tahvonen in [69, 67] states a model and gives the equations for an optimal

control. However, solutions and equilibria are only discussed and computed for a

two age class model favoring periodic or pulse fishing solutions. Also [15, 16, 54] are

of the lumped age class form. They give different results regarding the juvenile fish

class. Ding et al [14] considered an optimal harvesting with an age-structured model

and they derived the necessary conditions and the characterizations for the optimal

harvesting strategies. Hjermann et al [36] developed a statistical model. In recent

years some further autoregressive statistical model have come up describing the time

series of catches. The advantage of our approach is that it can easily adapted to

other stocks,whereas these models with very specific data or assumptions can not

be applied to other stocks or compared with other data easily.

Biological models typically depend on many parameters like size, growth, fecundity,

mortality and environmental parameters. For many of these approximate laws hold,

for example allometric laws or other relations which have been found by regression.
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These laws depend on few parameters and will be used as much as possible. In as

much as simplifying assumptions are used, these will be tested by sensitivity anal-

ysis. Details and comparison with the above mentioned papers will be made as the

model is developed. As noted above, the equilibrium model will first be studied.

This is done to fix the parameter ranges, and to study the equilibria.

The detailed study will be based mainly on cod, which is the most important species,

accounting for the largest part of the world catch. To begin with a few facts on the

biology of cod, more specially the north Atlantic cod are stated. These will be used

as a guideline for other species. Details can be found in the book by J.A Gulland

[31].

1.3 The North Atlantic Cod

Though this species (Gadus morhua ) is spread over a vast area in the north

Atlantic, and though there are no impenetrable barriers restricting the movement of

the individual cod there are a number of distinct stocks. This has been established

by genetic analysis and tagging. These stocks are mostly separated by regions of

deep water across which there is little movement. Tagging experiments and bio-

chemical analysis have shown that there is a little interchange between these stocks.

The ICES (International Council for the Exploration of the Sea distinguish about

20 distinct stocks of cod ). Each stock has a definite spawning area from where

the eggs drift downstream after spawning early in the year. By June in the south

to September further in the north the fish larvae(fingerlings) settle in their nursery

grounds in coastal regions. Thereafter the juveniles undertake seasonal migrations

until they return to the spawning area as mature fish.

The different stocks can thus be distinguished by their spawning area, nursery

grounds and habitat. Cod fishery is known since more than 1000 years. For ex-

ample the town of Bergen once was once the center for the stock fish in during

the Hanse days. Since about 150 years ago the catch was kept fresh on ice. This,

however, limited the travel times of the fishing ships to about 2 weeks, and only

one stock could be harvested at a time. The new fishing factories, which directly
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turn out fillets and other fish products, are not limited in this way and may there-

fore harvest several stocks per trip,and travel much farther. With modern gear and

equipment fish can be caught more effectively.

The Life Cycle of Marine Fish

Cod, Herring, or plaice and other marine fish follow an annual cycle. Marine

fish move from the open sea to the spawning grounds. There lay a very large number

of eggs. Most of these marine fish species lay as many as 104 to 107 eggs in each

spawning, cod for e.g, 5.105 eggs per kilo [10, 31], see table 1.1 . These are released

into the sea , where they are fertilized. After two or three weeks the fish larvae

hatch. Many of the larvae die of starvation, sickness or predation. Thus their

mortality may be as much as 5 percent per day [10]. After oviposition the adult fish

return to the open sea,which offers more food. Thus there is no density effect due

to competition among adult fish though cannibalism has been reported. Marine fish

have the following life cycle:

Spawning
←−−−−−−
migration−−−−−−→ Adult Fish

↓ ↑

Egg −→ Larvae −→ Juvenile Fish

←− Recruitment −→

The Yearly Cycle of Marine Fish

8



The Growth of Fish

The growth of fish is best described by the Von Bertalanffy growth equation[70],

which gives the Length L(t) and the weight W (t) as a function of the age t,

L(t) = L∞(1− e−K(t−t1)) (1.1)

W (t) = W∞(
L(t)

L∞
)3 (1.2)

here t is measured in years and L∞,W∞ are the maximum length and weight of the

fish respectively. This is important because the number of eggs produced by a fish

of age t is proportional to W (t). L(t) will also play a role in connection with the

size of the meshes of fishing nets, because one can expect the width of fish to follow

the same law. For cod we will choose the onset of fertility to be 4 years. The Von

Bertalanffy growth parameters of cod are K = 0.12,W∞ = 17, and t1 = 0 [41].

1.4 Fecundity

Fecundity is one of the most important aspects of fish reproductive biology. It

gives the key information for successful management of marine fish. In particular it

is a measure for the recovery of a population from very low levels[2]. The number of

eggs produced by a mature female is most likely proportional to its weight [3]. That

means, if the eggs are of the same size, bigger fish are more fecund than smaller ones.

If the eggs are mainly generated on the surface of the gonads an allometric exponent

of two thirds would be more plausible. But the gonads are heavily convoluted, which

again makes a proportionality to the weight more likely. Thus we use proportionality

to the weight, as this is commonly done. But one will have to take into account

some time for the full development of the gonads. If there are no available data

about fecundity, we will represent it as

Fi = c1piWi (1.3)

Here Wi denotes the average weight of fish in class i. The function

pi =

{
i−1
s1

: 2 ≤ i ≤ s1

1 : s1 < i ≤ k2

(1.4)
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describes the growth of the gonads in s1 years. In general we will choose s1 ' k2

4
.

Thus young fish produce comparatively less eggs than their weight would suggest.

This modification is well supported by data. It makes older fish even more valuable

for reproduction. This effect can be seen with actual data of striped bass in [40]

and cod in Diekert et al [15]. The constant c1 can be interpreted as the number of

eggs in one kilogram weight of fish. It should be added that in general such data are

rather insecure, because of the difficulties in measuring them directly. In particular

we neglect environmental factors such as temperature and the nutritional state of

the female fish. At low densities this might lead to larger and more robust eggs.

Species K Von Max. Max. Max. Onset of Weight at Mortality Fecundity

Bertalenffy Age Weight length fertility begin of per year number of

parameter fertility Eggs/ Gram

Herring 0.35 20-25 1000 gm 40 cm 3-7 125 gm 0.1-0.2 200-360

Cod 0.12 30 years 17kg 1.1m 4 years 3-8 kg 0.18-0.3 500

Plaice 0.095 15 years 2,867 kg 68.5 cm 4-5 years 210 gm 0.13-0.18 200

Haddock 0.20 20 years 1.209 kg 53 cm 2 years 89 gm 0.2 495

Hake 0.8 15 years 3.8 kg 79 cm 3 years 0.3 kg 0.2 –

Anchovy 0.43 5 years 35 gm 16 cm 2 years 24.2 gm 0.2 –

Sole 0.42 – 482 37.7cm 3 years – – 500 or 900

Table 1.1: biological parameters for some fish species[3, 13, 25, 41, 55, 56]

The mortality is generally taken to be constant. This is certainly not true and a

Gompertz like form would be more realistic for higher ages. Nonetheless a constant

mortality is used most commonly. Since the mortality for fish is very large, the

precise form is of lesser importance,because the higher age classes are comparatively

small. A survival of 0.8 for example implies that only 0.820.100 = 1.2% of cod reach

the age class of 24. A growth law, which is active only in the last third of the lifetime

will only effect the last classes of the cod population. For simplicity, however, we

will use a constant mortality µ, this can be extended to a monotonically increasing

function. For this reason one can set either µ(t) = 0.2 or µ(t) = 0.18 1 ≤ t ≤ 20,

µ(t) = 0.18 + 0.012(t − 20), for cod. A little thought,however, shows that this will
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hardly influence the main results. For other fish other similar considerations apply.

The more acceptable values of µ in cod fisheries lie between 0.18 and 0.22 per year.

It will be advantageous, however, to express survival through the factor e−µ = τ .

1.5 The Recruitment Process

The most important and most critical role in fish population dynamics is played

by the recruitment. This describes the development process from egg to juvenile fish

respectively adult fish. This, however leaves much room for interpretation. Thus

the definition of recruitment is not clear to begin with and depends on the class into

which recruitment leads. So when using recruitment, one has to be careful with the

definition. Here recruitment means recruitment into the adult class when fertility

begins. Despite its importance the recruitment process is as yet poorly understood.

Most of the marine fish species lay a very large number of eggs, as it was mentioned

before. These are laid directly into the sea, where they are fertilized. The large

number indicates that most of them perish or are eaten. Within several weeks

the larvae hatch from these eggs and begin to feed on plankton. So oviposition is

closely tied to the plankton cycles which in turn depend on the available sunlight.

Since fish larvae depend on plankton, there is a corresponding competition between

larvae leading to a depensation in the recruitment process. Cannibalism might

also be responsible for this depensation. This process is generally modeled by the

recruitment function R(x), where R(x) gives the number of adult fish which develop

out of x eggs. The most commonly used forms are

R(x) = cx(1 +
x

E0

)−1 Beverton−Holt (1.5)

R(x) = cxe
−x
E0 Ricker (1.6)

Other forms are also possible for e.g.[59, 33]

R(x) = cx(1 + (
x

E0

)α)−1 , α ≥ 1 Shepherd

R(x) = cx(1 +
x

E0

)−α , α ≥ 1 Hassell
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The main reason for these functions is their mathematical simplicity. So far

there is not yet a proper mathematical description of the recruitment process nor a

plausible derivation of these functions. The fit of these function to actual catch-data

is likewise inconclusive, because at the moment only low density data are available.

There are good indications that R is nearly linear for small x. i.e depensation at low

population levels has not been observed [44]. That there is a depensation at higher

population levels is plausible and generally accepted. This depensation is due to

competition among larvae and cannibalism against eggs or larvae. Even though the

study of Cushing and Horwood [9] gives good arguments for a dome shaped curve,

this is not conclusive yet, because there are too few high density catch data. Note

that the Ricker model leads to a dome shaped recruitment functions. In addition

climate variations, piracy and the bycatch make catch data difficult to analyze. In

these expressions x usually has the dimension of population or animals, because the

number of eggs produced is generally proportional to the body weight.

Thus, E0, will have to be interpreted as the population size or scaling parameter,

which measures the onset of depensation at higher densities. It has the dimension

of population and may vary from stock to stock. E0 appears as the maximum of

R for the Ricker recruitment and in concrete cases this would be the means to

determine it. This form of the Ricker recruitment thus separates the two properties

-fecundity at low density with the measure n(0), the net reproductive rate at zero

density, and depensation at high densities expressed through E0 in a product form.

Since we will concentrate in our analysis in general on a single stock, E0 acts as

a scaling parameter, roughly proportional to the size of stock. Thus its value has

no effect upon stability as we will see later. Even though E0 acts as a scaling

parameter, it is an important invariant for a particular stock. A small E0 will imply

bad survival conditions or much competition among the larvae, whereas a large E0

describes good environmental conditions for the larvae. In as much as there is a large

variation of n(0) one can also expect a similar large variation in E0. Ultimately E0

can only be determined from the maximum of catches. (1.5) and (1.6) have been

used mainly because of their simplicity. However, they differ greatly in their effect

on the dynamics of fish population as will be seen later. (1.6) and more generally

monotone recruitment functions will always lead to locally stable equilibria.
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Levin and Goodyear have shown, that Ricker recruitment with a high fertility and

high mortality may lead to oscillations and possibly even chaos[40]. The parameters

in that model are unrealistic, however list them . This will be illustrated by applying

various recruitment functions to the Levin Goodyear paper. This also applies to the

model of Wikan and Eide [71]. It is generally believed, that the recruitment function

is almost linear for low densities, with no depensation.

Depensation at higher levels is accepted likewise. If one writes R(x) = cxr(x) the

term c gives the probability that an egg or certain number of eggs will be turn into

a viable adult at low densities. So far there is no plausible explanation for form of

the recruitment function because data on landings of fish have a large error and are

difficult to interpret. In particular data for large x, where depensation is dominant,

are missing.

1.6 The Usher Model

The yearly cycle of marine fish suggests to describe their dynamics as a discrete

age class model.This can also be interpreted as a size or stage class model because of

(1.1). For this assume that we have the age classes 1, 2, ......, k of length T1,T2,......,Tk

years where, T1 is the duration of juvenile stage. We also set Tk = 1. Assume that

fertility begins with class 2. Let xi(t) denote the number of fish in age class i at

time t, with x(t) = (x1(t), x2(t), ......, xk(t)), the age distribution of the population

at time t. For convenience we also assume that the sex ratio is 1:1 in the eggs. Thus

the focus is on the females only. The number of eggs in year t is given by

E(t) =
k∑
i=2

Fixi(t) (1.7)

where Fi denotes the average fecundity (number of eggs) per females of class i. Note

that all eggs are treated in the same way independent of their parents age. With

this the number of recruits becomes

R(E) = cEr(E) (1.8)

While, c measures the probability of an egg to develop into a young adult, the

monotonically decreasing function r(E) describes the depensation at higher level
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densities due to competition, sickness, starvation and possibly cannibalism. The

factor r(E) is normalized to 1 for low densities[46], where these depensation effects

are not active. This can be achieved by a proper choice of c. Thus r(0) = 1. Then

x1(t+ 1) = τ1(1− 1

T1

)x1(t) +R(E(t)) (1.9)

xi(t+ 1) = τi−1
1

Ti−1

xi−1(t) + τi(1−
1

Ti
)xi(t) i = 2, ..., k

Here, τi = e−µi , where µi is the approximate mortality in class i. The term τi(1− 1
Ti

)

is the fraction of individuals in age class i which survive and remain in class i after

one year, and τi
1
Ti

is the fraction that survives and moves to the next age class. Note

that the equation for xk(t) with Tk = 1 implies that all fish in this class die within

the next year. This assumption is not a serious restriction, because the higher age

classes are very thinly occupied. To see this note that the probability of a 3 year

old cod to reach the age of 30 is only 0.827 ≈ 24 × 10−4. This model is thus of the

generalized Leslie form. The only nonlinearity of these models arises in the juvenile

stage, because density dependence in the life history of adult marine fish has not

been established yet. This is probably due to the vastness of the sea and the fact

that the fish migrate. Then the model (1.9) can be written as

x(t+ 1) = A(x)x(t) (1.10)

with

A(x) =



σ1 r2(x) r3(x) · · · rk(x)

τ̃1 σ2 0 · · · 0

0 τ̃2
. . .

... 0
... 0

. . . . . .
...

0 · · · 0 τ̃k−1 σk


(1.11)

with σi = τi(1− 1
Ti

), τ̃i = τi
Ti
, ri+1 = cFi+1r(E), i = 1, 2, ......, k−1 and σk = τk(1− 1

Tk
).

Models like (1.10),(1.11) have be discussed on detail in [6] or [11]. For the moment

assume the ri to be constant. The matrix A is nonnegative, so that the Perron-

Frobenius theory can be applied[38]. A is primitive if rk > 0 and some σi > 0 or

if rk, rk−1 > 0 [6]. In this case the spectral radius λA of A is an eigenvalue, which

dominates all other eigenvalues λ, λA >| λ |. The associated eigenvector xA has

positive components only. If the ri would not depend on E the population would
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eventually grow with the factor λA and the population profile would be given by

xA. Since λA is difficult to compute, Cushing and Yicang [12], have introduced

the concept of net reproduction number n. To define it, one writes A = T + F,

where T is the transition part and F the fertility part, all r′is of the matrix. Then

N = (I − T )−1F is well defined, because 0 ≤ σi < 1. Moreover it is nonnegative

and of rank one. The following lemma was first shown by Cushing and Yicang[12],

and it appeared in [50].

Lemma 1.6.1. The eigenvalue n of N = (I−T )−1F satisfies 1 < λA < n iff n > 1,

and λA = 1 iff n = 1. For λA < 1 one has n < λA < 1.

Proof. Let x be the normalized Perron Frobenius eigenvector for A i.e (x)1 = 1

and let x∗ be the corresponding vector for N∗ = ((I − T )−1F )∗.

Then Ax = (T + F )x = λAx shows (λA − 1)x + (I − T )x = Fx. Since (I − T ) is

invertible, this gives (λA − 1)(I − T )−1x+ x = (I − T )−1Fx = Nx.

Multiply by x∗ from right to get

< (λA − 1)[(I − T )−1 − I]x+ (λA − 1)x+ x, x∗ >=< x,N∗x∗ > .

Now (I − T )−1 − I = T + T 2 + T 3 + ...... is nonnegative. Since also x and x∗ are

nonnegative we get with N∗x∗ = nx∗ the inequality λA < x, x∗ >≤ n < x, x∗ > if

(λA − 1) ≥ 0. The other relations follow similarly.

The importance of the net reproductive value n lies in the fact, that it can be

computed directly. For this let y = (1, y2, ......, yk)
t be an eigenvector of N. Then

Fy = n(I − T )y, yields,

yi = τi−1......τ1
(1−σi)......(1−σ2)

= Li, i = 2, 3, ......, k, so that

n(E) = (1− σ1)−1

k∑
i=2

riLi, ri = cFir(E). (1.12)

Thus n = n(E) gives the average number of fish a typical fish will produce in

its life time.

Remark 1.6.2. In the remainder I shall specifically choose T1 = a, a is a duration of

juvenile stage and T2 = T3 = ...... = Tk = 1. So that the matrix A in model (1.9)

becomes
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A(x) =



σ1 r2(x) r3(x) · · · rk(x)

τ1 0 0 · · · 0

0 τ2
. . .

... 0
... 0

. . . . . .
...

0 · · · 0 τk−1 0


(1.13)

with σ1 = τ1(1− 1
T1

), σi = 0, τ1 = e−µ1

T1
, τi = e−µi and ri(x) = cFir(E), i = 2, ......, k.

1.7 Determining the parameters

In this thesis I will exemplarily treat the case of cod mainly. Other species

of fish will be dealt later in the same manner. Data on the size and age of fish

can be obtained by direct measurement. Much more difficult to estimate are the

fecundity,mortality and other developmental parameters of fish larvae. Here every

thing is based on individual fish. Most often authors use biomass or other units.

Since the fish have different weight the transition may not be easy. The widespread

choice of the Ricker recruitment functions is largely due to its mathematical simplic-

ity. The constant mortality ≈ 0.2 for cod is likewise not in accordance with general

biological mortality laws. Parameters for marine fish are generally inferred from

catch data and landings. Illegal fishing, misreporting and the by catch, however,

make these data rather insecure. From these catch data the population parameters

are then inferred via models. Another difficulty arises from the fact that different

authors use different units, for example, biomass, number of fish, fecundity index...,

which makes a comparison difficult. More often the terms used are not even defined

properly. Thus large errors are to be expected.

In this thesis xi(t) will always denote the number of fish in age class i at time

t. Despite some personal misgiving µ ≈ 0.2 will be used as a mortality for cod. A

more plausible linear function µi = 0.18 + i0.004 has a little effects on the results,

because a mortality of 0.2 already implies that the higher age classes are occupied

rather thinly. Actual data suggest that the fecundity of female cod is proportional

to the weight. At lower age the egg production is not quite up to that, because

the gonads may not be fully developed. This will be described by the function p
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introduced above. The number of young adult fish produced by xi fish in class i

at low density, where the depensation function r(E) is almost 1, is given by cFixi.

Here c gives the probability that an egg or certain number of eggs will be turn into

a viable adult. Note that this implies that all eggs are treated alike. Since different

fish stocks show considerable variations [31]. c will vary with the fish stock under

considerations. In this case c is a measure for the quality of the breeding area.

c is proportional to n(0), the net reproductive value at low density. n(0) is also a

measure how fast a population can recover from a precarious low density.

In this thesis n(0) is the key vital parameter, because it has a direct biological

meaning. It has been determined by R.Myers et al([29],[34],[45],[46],[47],[48],[49]),

for various fish stocks. It is more meaningful, since there exists an explicit for-

mula based on the matrix elements of A. In [48] R. Myers has determined the net

reproductive number n(0) at zero density for a number of different stocks of cod

he found a range of n(0) between 5 and 30, except a stock in the Irish sea with

n = 115. Values as high as that, however, seem to be statistical outliers. The diffi-

culty in estimating n(0) (α̂ there), comes from the fact that all natural cod stocks

are subject to harvesting. The paper of R.Mayer also contains data on other species.

These,however,are rather uncertain, caused by external natural factors like climate

or location and man induced factors like harvesting misreporting of the catch, piracy

together with ill reporting of landings. In general the data are obtained from esti-

mate of landings, rarely from direct counts. The most plausible values thus will lie

between 5 and 15,rarely 20. This allows to determine c from (1.12) because r(E) is

normalized to r(0) = 1.

For cod population the important parameter c will be determined from n(0),

namely c = n(0)(1−σ1)∑28
i=2 FiLi

. Later the optimal h, and optimal mesh width s will be

determined as well as the maximum sustainable yield for various values of n(0).

According to [41], the maximum age of cod is 30 years, the onset fertility is at age

4. The weight is approximately given by W (t) = 17(1− e−0.12t)3 kg. The mortality

rate µ will be approximately to 0.2. The author in [41], also gave E0 = 4.1 × 1014

for cod. So throughout these parameters will be used. But note that E0 is a scaling

parameter.
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If one wants to discuss the influence of mortality , one can consider either constant

mortality or variable mortality. For a constant mortality in all classes one gets for

c× 10−6.

Mortality µ ≈ 0.18 µ ≈ 0.19 µ ≈ 0.20 µ ≈ 0.21 µ ≈ 0.22

n(0)=3 c: 0.9384 1.0748 1.2267 1.3999 1.5908

n(0)=5 c: 1.5640 1.7913 2.0446 2.3333 2.6514

n(0)=7 c: 2.1910 2.5078 2.8624 3.2666 3.7119

n(0)=10 c: 3.1280 3.5825 4.0891 4.6665 5.3027

n(0)=15 c: 4.6921 5.3738 6.1337 6.9998 7.9541

Table 1.2: The constant c for cod population for different values of n(0)and µ.

For a variable mortality

µ(t) =

{
µ : 0 ≤ t ≤ 20

µ+ 0.3−µ
10
∗ (t− 20) : 20 < t ≤ 30

One gets for c× 10−6.

Mortality µ ≈ 0.18 µ ≈ 0.19 µ ≈ 0.20 µ ≈ 0.21 µ ≈ 0.22

n(0)=3 c: 0.9509 1.0867 1.2390 1.4093 1.5995

n(0)=5 c: 1.5849 1.8112 2.0650 2.3489 2.6659

n(0)=7 c: 2.2189 2.5357 2.8910 3.2885 3.7322

n(0)=10 c: 3.1698 3.6225 4.1300 4.6968 5.3318

n(0)=15 c: 4.7547 5.4337 6.1950 7.0467 7.9976

Table 1.3: The constant c for cod population for different values of n(0) by using a variable

mortality

Myers also gave the maximum reproductive rate for Atlantic herring [45]. It is

less than that for cod. Thus by the same method above one can also compute c for
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several values of n(0). Mortality is constant in all classes then one gets for c× 10−5.

Mortality µ ≈ 0.18 µ ≈ 0.19 µ ≈ 0.20 µ ≈ 0.21 µ ≈ 0.22

n(0)=3 c: 0.9647 1.0789 1.2027 1.3414 1.4916

n(0)=5 c: 1.6079 1.7981 2.0046 2.2357 2.4859

n(0)=7 c: 2.2510 2.5174 2.8064 3.1300 3.4803

n(0)=10 c: 3.2158 3.5962 4.0092 4.4714 4.9719

n(0)=13 c: 4.1805 4.6751 5.2119 5.8128 6.4635

Table 1.4: The constant c for herring population for different values of n(0)and µ.

According to[50], the maximum age of herring is 20-25 years and the weight of herring

can be approximated it by the Bertalanffy equation with K = 0.35, t1 = 1.01971

and W∞ = 1 kg. E0 = 108. The mortality rate µ ≈ 0.2 will also be used, and set

the onset fertility at 3. The maximum age is assumed to be 25 years.

In this model we have so far neglected the influence of the climate. Temper-

ature and salinity will act in two ways directly or through the prey. Its influence

through food abundance in the larval stage could be modeled through a time de-

pendent depensation function. Food availability in the adult stage would result in

a variable E0. The influence of the prey or competitors would also be important

factors.

19



Chapter 2

Nonlinear Matrix models and

their equilibria

2.1 The stability

The most important concept for an equilibrium x̄ in a dynamical system is its

stability. In general global stability can only be determined by means of Lyapunov

functions. From a practical point of view and for applications this is even more im-

portant because we are looking for sustainable solutions, which may be interpreted

as an equilibrium. These equilibria will have to be stable or locally stable at least,

because of fluctuations from the environment. Thus we are not only looking for

equilibria, but for stable equilibria.

So far no Lyapnuov functions are known, even though this model looks rather

innocent. In fact the existence of periodic solutions in the models of Levin and

Goodyear[40] and Wikan [71] show that such functions may be difficult to come by.

For the local stability one has to show that all eigenvalues of the Jacobian at the

equilibrium lie inside the unit disc. A general nonlinear dynamical system can be

written as

x(t+ 1) = g(x(t)) (2.1)

where g is a function g:Rk −→ Rk. Equilibrium solutions of equation (2.1) are

defined by

x̄ = g(x̄) (2.2)
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Then one defines :

Definition 2.1.1. An equilibrium vector x̄ is said to be

1. Stable if given ε > 0 there exists δ > 0 such that |x− x̄| < δ implies∣∣gk(x)− x̄
∣∣ < ε for all k ∈ Z+.

2. Attracting if there exists ε > 0 such that |x− x̄| < ε implies

limk→+∞ g
k(x) = x̄.It is globally attracting if ε is unrestricted.

3. Asymptotically stable if it is both stable and attracting. It is globally asymp-

totically stable if it is both stable and globally attracting.

4. Unstable if it not stable.

Local stability of a dynamical system (2.1), can be determined from the Jaco-

bian J (x̄) of the system. Jij = ∂xjgi(x̄). If all eigenvalues λ of J satisfy |λ| < 1,

the system is locally stable at x̄ [43]. Since the system (1.9) is linear in all but the

first coordinates. J is given by

J =



σ1 V2 V3 · · · Vk

τ1 σ2 0 · · · 0

0 τ2
. . .

... 0
... 0

. . . . . .
...

0 · · · 0 τk−1 σk


with Vi = dR

dE
dE
dxi

where R = cEr(E) =
∑k

i=2 cxiFir(E).

It is advantageous to replace the above model by an equivalent one, which is

more transparent and easier to handle. Let C denote the diagonal matrix C =

diag(1, c2, c3, ..., ck) ci > 0. Then M = C−1AC and A are matrices with identical

spectra. Let

ci = Li (2.3)
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Then

M =



σ1 r̃2 r̃3 · · · r̃k

τ̃1 σ2 0 · · · 0

0 τ̃2
. . .

... 0
... 0

. . . . . .
...

0 · · · 0 τ̃k−1 σk


is equivalent to system (1.10), with

τ̃i−1 = L−1
i τi−1Li−1 = (

1− σi
τi−1

) = 1− σi and τ̃i = riLi

Thus

τ̃i−1 + σi = 1 for i = 2, 3, ..., k.

The model, which we are using, has the properties T1 = a, where a is the duration

of juvenile stage, and T2 = ...... = Tk = 1, thusσ2 = σ3 = ...... = σk = 0.

In this case the matrix M becomes:

M =



σ1 r̃2 r̃3 · · · r̃k

1 0 0 · · · 0

0 1
. . .

... 0
... 0

. . . 0
...

0 · · · 0 1 0


(2.4)

with

r̃i = cFiLir(E) ≥ 0 i = 2, ..., k.

So r̃i gives the expected number of eggs, a female is going to produce in the year i,

because Li is just the probability to reach that age.

This model is completely equivalent to the original model, because A and

M = C−1AC describe the same dynamics.

y(t+ 1) = C−1AC(C−1x(t)) = (C−1AC)y(t) = My(t) (2.5)
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Thus it remains to express E in terms of yi(t). Now L−1
i xi(t) = yi(t) or

Liyi(t) = xi(t). Thus

E(t) =
k∑
i=2

Fixi(t) =
k∑
i=2

FiLiyi(t) (2.6)

is the expectation value of eggs a female produces in its lifetime.

To determined the equilibrium vector y = (y1, y2, ......, yk) of system (2.5), one

can solve y = C−1ACy = My. Clearly y = (0, 0, ......, 0) is always an equilibrium

vector. In the case y = (y1, y2, ......, yk) 6= 0, we get y1 = σ1y1 +
∑k

i=2 cFiLiyir(Ē),

and (1− σ1) =
∑k

i=2 cFiLir(Ē) with yi = yi−1 for i = 2, ......, k.

Hence y1 = y2 = ...... = yk = ȳ, and Ē(t) =
∑k

i=2 FiLiȳ(t).

Thus the net reproductive rates at zero density n(0) and ȳ are related by

1

n(0)
= r(

k∑
i=2

FiLiȳ)

This shows

r−1(
1

n(0)
) =

k∑
i=2

FiLiȳ or ȳ =
cr−1( 1

n(0)
)

n(0)(1− σ1)
(2.7)

Let us note that a positive equilibrium value exists if r−1( 1
n(0)

) > 0.

Below ȳ is expressed as a function of n(0) for various recruitment functions.

Ricker model: r(x) = e
− x
E0 r−1(x) = −E0 ln(x) ȳ =

c ln(n(0))E0
n(0)(1−σ1)

Beverton-Holt. model: r(x) = (1 + x
E0

)−1 r−1(x) =
(1−x)E0

x
ȳ =

cE0(n(0)−1)
n(0)(1−σ1)

Shepherd model: r(x) = (1 + ( x
E0

)α)−1 r−1(x) = E0( 1−x
x

)
1
α ȳ =

cE0(n(0)−1)
1
α

n(0)(1−σ1)

Hassell model: r(x) = (1 + x
E0

)−α r−1(x) = E0(x−
1
α − 1) ȳ =

cE0(n(0)
1
α−1)

n(0)(1−σ1)

Table 2.1: The equilibrium value for different recruitment functions
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Now the Jacobian matrix of system (2.5) is as above:

J =



σ1 V2 V3 · · · Vk

1 0 0 · · · 0

0 1
. . .

... 0
... 0

. . . 0
...

0 · · · 0 1 0


with Vi = dR

dE
dE
dyi

and R = cEr(E) =
∑k

i=2 cFiLiyir(E).

Thus Vi = cFiLir(E) +
∑k

i=2 cFiLiyi
dr(E)
dE

dE
dyi

= (r(E) + E dr(E)
dE

)cFiLi, i = 2, ..., k.

The eigenvalues of J are determined by J x = λx. Assume x = (1, x2, x3, .., xk), is

a λ eigenvector then

J x =



σ1 V2 V3 · · · Vk

1 0 0 · · · 0

0 1
. . .

... 0
... 0

. . . 0
...

0 · · · 0 1 0





1

x2

...

...

xk


= λ



1

x2

...

...

xk


this gives λx2 = 1, λx3 = x2, ....., xk−1 = λxk and σ1 +

∑k
i=2 Vixi = λ.

If with set x = λ−1 this becomes a polynomial equation in x

σ1x+
k∑
i=2

Vix
i − 1 = 0 (2.8)

So that the eigenvalues λ of J are determined by the roots of the character-

istic equation (2.8) through λ = 1
x
.

It is well known that any operator norm dominates the spectral radius ρ. A par-

ticularly useful operator norm can be derived from the sup-norm on Ck. It is then

given by ‖A‖∞ = max
i

k∑
j=1

|ai,j|, which is the maximum of the `1 norms of the rows
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Lemma 2.1.2. Let

B =



b1 b2 · · · · · · bk

1 0 0 · · · 0

0 1
. . .

... 0
... 0

. . . 0
...

0 · · · 0 1 0


if
∑k

i=1 |bi| < 1, then Bn → 0 and ρ(B) < 1, ρ(B) is the spectral radius of B.

Proof. Let

C =



1 0 · · · · · · 0

0 a 0 · · · 0

0 0 a2 ... 0
... 0

. . . . . .
...

0 · · · 0 0 ak−1


with a > 1

C−1BC =



b1 b2a b3a
2 · · · bka

k−1

a−1 0 0 · · · 0

0 a−1 . . .
... 0

... 0
. . . 0

...

0 · · · 0 a−1 0



Now let f(a) =
∑k

i=1 |biai−1|. It is clear that f(a) is continuous increasing function

of a and f(1) < 1,by assumption then for some a we get f(a) =
∑k

i=1 |biai−1| < 1

so that ‖C−1BC‖∞ < 1, thus ‖C−1BnC‖∞ → 0. This implies Bn → 0 and ρ(B) <

1.

Lemma 2.1.3. Assume the recruitment function R(x) = cxr(x) in (1.13) is bounded,

continuous and r(x) converges to 0 monotonically. Then all solutions are bounded

and there is at most one nontrivial equilibrium.
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Proof. Let P (t) =
∑k

i=1 xi(t) denote the total population size at time t.

Thus the system (1.13) can be written as a delay difference equation as follows:

xi(t) = Lix1(t − (i − 1)) for i = 2, 3, ......, k, t > k. Then x1(t + 1) = σ1x1(t) +

M1 where M1 = supR(E). This implies x1(t) ≤ M1

1−σ1
. Since xi(t + 1) = τixi(t)

any solution is uniformly bounded. For σ1 = 0 the proof is obvious. The second

claim follows from the fact that for an equilibrium vector ȳ the sum of the first

row in M(2.4) is 1. Since r is monotonically decreasing there can be at most one

equilibrium.

It follows that the equilibrium vector ȳ is given by ȳ = ȳ1(1, ......, 1) so that

1 = σ1 +
∑k

i=2 cFiLir(Ē) where Ē =
∑k

i=2 FiLiȳ1. With B1 =
∑k

i=2 cFiLi this can

be rewritten as

1 = σ1 +B1r(Ē) and Ē =
B1ȳ1

c
(2.9)

At this point one has to fix the recruitment function. In most cases the Ricker

recruitment function or Beverton-Holt recruitment function will be used with

r(E) = e
− E
E0 (2.10)

r(E) = (1 +
E

E0

)−1 (2.11)

Here E0 is a scaling parameter, which measures the onset of depensation at higher

level densities. Note that stability is independent of E0. It has the dimension of

population and may vary from stock to stock. E0 appears as the maximum of R

in the Ricker function and in concrete cases this would be the means to determine

it. This is form of recruitment thus separates the two properties, fecundity at low

density with the measure n(0) and depensation at high densities expressed through

E0 in a product form. With r(E) as in (2.10) or (2.11) one can get for the equilibrium

value r(Ē) = (1−σ1)
B1

or

Ē = E0 ln(
B1

1− σ1

), ȳ1 =
cE0

B1

ln(
B1

1− σ1

) (2.12)

and for Beverton-Holt recruitment

Ē = E0(
B1

1− σ1

− 1), ȳ1 =
cE0

B1

(
B1

1− σ1

− 1) (2.13)

The function for ȳ1 (2.12), has its maximum at B1

1−σ1
= e. For Beverton-Holt there
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is no maximum. Let Ω be an ω-limit set of a given state. Then Ω is compact. Thus

the function

E(y) =
k∑
i=2

FiLiyi (2.14)

for y = (y1, y2, ......, yk) ∈ Ω, is continuous and attains its maximum Emax(Ω) and

minimum Emin(Ω).

Lemma 2.1.4. If n(0) = (1 − σ1)−1
∑k

i=2 cFiLi, the low density net reproductive

value, satisfies n(0) ≤ 1, then the trivial equilibrium is globally stable.

Proof. We have n(0) = (1− σ1)−1
∑k

i=2 cFiLi. Thus
∑k

i=2 cFiLi ≤ (1− σ1).

Let |.|∞ be the sup.norm on Cn and let ‖.‖ be the corresponding operator norm.

Let y(0) be an arbitrary initial state and let Ω be its ω -limit set. Ω is compact

and E is a continuous function on Ω. Let Em be the minimal value on Ω. Em = 0

would imply y2 = ...... = yk = 0. Such states, however, are not in the range of M

in system(2.5). Thus Em > 0 and the first row in M , σ1 +
∑k

i=2 cFiLi < 1. Now

lemma(2.1.2) shows Mn → 0. This implies Ω = 0, because Ω is M invariant.

Lemma 2.1.5. For model (2.5) we have:

1. If dR
dE

(Ē) ≥ 0, then the equilibrium value is locally stable.

2. If dR
dE

(Ē) ≤ 0,−
∑k

i=2(2r(Ē) + Ē dr(Ē)
dE

)cFiLi < 0, then the equilibrium value is

locally stable.

Proof. 1. One has for i = 2, 3, ......, k that Vi = dR
dE

dE
dyi

= (r(E) + E dr(E)
dE

)cFiLi,

then the term in the brackets is nonnegative. The equilibrium condition gives

(1− σ1) =
∑k

i=2 cFiLir(Ē).

So that σ1 +
∑k

i=2
dR
dE

dE
dyi

< σ1 +
∑k

i=2 cFiLir(Ē) = 1

2. Let −
∑k

i=2(2r(Ē) + Ē dr(Ē)
dE

)cFiLi < 0, with the equilibrium condition

1 = σ1 +
k∑
i=2

cFiLir(Ē)
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Thus −
∑k

i=2 Ē
dr(Ē)
dE

)cFiLi < 2(1− σ1), and 2σ1 −
∑k

i=2 Ē
dr(Ē)
dE

cFiLi < 2,

then

σ1 −
k∑
i=2

cFiLir(Ē)−
k∑
i=2

Ē
dr(Ē)

dE
cFiLi < 1

so that

σ1 − (r(Ē) + Ē
dr(Ē)

dE
)

k∑
i=2

cFiLi < 1

but dR
dE

(Ē) = c(r(Ē) + Ē dr(Ē)
dE

) ≤ 0, hence σ1 +
∑k

i=2 |Vi| < 1, and the result

follows from lemma 2.1.2.

Proposition 2.1.6. Consider a general fishery model(1.9) with a smooth monotone

increasing bounded recruitment function R(x) = xr(x) such that its depensation

part r converges monotonically to 0, and if n(0) > 1 then the unique nontrivial

equilibrium is globally stable.

The proof is based on a result of Hautus and Bolis as presented on the book

of Elaydi[20, Theorem 5.17].

Proof. We use the standard representation and have

x1(t+ 1) = σ1x1(t) +R(E(t)) with E(t) =
∑k

i=2 FiLixi(t) and

xi(t+ 1) = xi−1(t), i = 2, ...., k. For t > k this can be written as

xi(t+ 1) = xi−1(t) = ...... = x1(t− i+ 1) and with y(t) = x1(t) this gives

y(t+ 1) = f(y(t), y(t− 1), ......, y(t− k + 1)) = σ1y(t) + cE(t)r(E(t)) (2.15)

where E(t) =
∑k

i=2 LiFiy(t − i + 1). By assumption we have σ1 + c
∑k

i=2 LiFi > 1

and the equilibrium x̄ = x̄1(1, 1, ..., 1) is define uniquely by 1−σ1 = c
∑k

i=2 LiFir(Ē)

with Ē = x̄1

∑k
i=2 LiFi = ȳ(

∑k
i=2 LiFi). The function defined by (2.15) is mono-

tone, because R(E(t)) is. Now let u > ȳ then with Eu = u
∑k

i=2 LiFi we have

f(u, u, ..., u) − u = (σ1 − 1)u + u(c
∑k

i=2 LiFi)r(Eu) < (σ1 − 1)u + (1 − σ1)u = 0.

This shows(ii)in the theorem for u > ȳ. The same proof also works for u < ȳ. Now

apply the theorem.
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This proof and a continuity argument indicate that recruitment functions with

a very large curvature for which r decays slowly will also be globally stable. This

is borne out by a numerical study of the Levin-Goodyear[40] data analyzed with

Shepherd and Hassell recruitment functions with weaker domes, even though the

Ricker function leads to periodic solutions. The following plot demonstrates this

effect. The data correspond to those given by Levin-Goodyear with natural mortality

µ = 0.7769 and n(0) = 15.
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Figure 2.1: The striped bass model for different recruitment functions, n(0) = 15. Hassell

and Shepherd recruitment functions with α = 2. E0 = 400 (B.H),E0 = 1000 (R,H,S) and

its value has no effect upon stability.

29



0 50 100 150
0

2

4

6

8

10

12

Time t

W
ik

an
 m

od
el

, c
la

ss
 2

 

 
Ricker
Beverton
Shepherd
Hassell

Figure 2.2: These plots are based on cod population model,Wikan model, with too high

mortality 0.7769. n(0) ≈ 20 with β1 = 1, β2 = 0.2, β3 = 0.1. α is 2 for Shepherd and

Hassell recruitment functions.

Remark 2.1.7. In order to understand the appearance of periodic or chaotic solu-

tions I have also analyzed the Levin-Goodyear data [40], and model of Wikan and

Eide[71], for various recruitment functions. Periodic solutions appeared only for

Ricker recruitment and for large n(0) with high mortality. The explanation is as

follows. A high population density leads to a small r(E) and thus a small subsequent

population. This in turn makes r(E) ≈ 1 so that the large n(0) makes the follow

up population large. Thus the Ricker recruitment function has been the darling of

dynamical system theorists because of its simplicity and because it easily leads to

30



periodic or even chaotic solutions. This also shows that attempts to explain seem-

ingly periodic behavior of fish catches are weakly founded, because data for large

population densities are difficult to come by and are rather insecure so that our

knowledge of the recruitment function is at best sketchy. In particular it is unclear

how wide the dome in the recruitment function is. The next plots indicate that the

model(1.9) for cod or herring with small mortality always leads to stable equilibria

even for n(0) as large as 20.
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Figure 2.3: Stability for cod population model based on model (1.9). n(0) = 21. with

E0 = 1.64×1014 for Beverton-Holt and 4.1×1014 for others, and α is 2 for Shepherd and

Hassell recruitment functions. These plots are based on cod population model with natural

mortality 0.2224. Note that Ricker recruitment leads to a more oscillatory behavior and a

lower equilibrium level. This plot also indicates that Beverton-Holt recruitment leads to

more rapid convergence with larger equilibria.
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Figure 2.4: The parameter c has been adjusted to give n(0) = 21. with E0 = 4× 107 for

Beverton-Holt and 108 for others. α is 2 for Shepherd and Hassell recruitment functions.

These plots are based on a herring population model with natural mortality 0.2224.

The following lemma can be found in[40].

Lemma 2.1.8. For the Ricker recruitment function the nontrivial equilibrium value

is locally stable if 0 < ln(n(0)) < 2

Proof. Let ln(n(0)) < 2, then

0 <
Ē

E0

< 2

and −2 < − Ē
E0
< 0, so − 1 < 1− Ē

E0
< 1,

therefore −r(Ē) < (1− Ē
E0

)r(Ē) < r(Ē),

thus∣∣r(Ē) + Ēŕ(Ē)
∣∣ < r(Ē) hence σ1 +

∑k
i=2 |Vi| < σ1 +

∑k
i=2 cFiLir(Ē) = 1, and the

result follows.
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2.2 The Fine Model

One might argue that it is an unjustified simplification to lump the juveniles

into one class. The model with T1 = T2 = ....... = Tk = 1, will be called the fine

model. Basically nothing changes. Now,however r2(x) = ....... = rT1−1(x) = 0 and

of course σ1 = ....... = σk = 0. Now the model becomes

x(t+ 1) = Ax(t) (2.16)

with the basic matrix

A(x) =



0 · · · 0 rT1(x) · · · rk(x)

τ1 0 0 · · · · · · 0

0 τ2
. . . 0 0 0

... 0
. . . . . . . . .

...
... 0 0

. . . . . . 0

0 · · · 0 0 τk−1 0


.

Here, τi = e−µi , ri = cFir(E) and E(t) =
∑k

i=T1
Fixi(t). In fact we can use all

previous results if we put F2 = ...... = FT1−1 = 0 and σ1 = 0. Thus n(0) =∑k
i=T1

riLi =
∑k

i=T1
cFir(E)Li where Li = e−µ1 ......e−µi−1 . Of course the simpler

version with Ã = C−1AC is easier to work with. It is likewise clear that the Lemmata

2.1.3 to 2.1.8 remain valid. Now (2.9) becomes

B1 =
k∑

i=T1

cFiLi, B−1
1 = r(Ē) and cĒ = B1ȳ1

The local stability of the equilibrium ȳ is again determined by the roots of the

characteristic polynomial

P (λ) = −λk + VT1λ
k−T1 + .......+ Vk

In a numerical study no serious changes were found in the dynamics. It should be

noted, however, that the characteristic polynomials for both models are distinct, so

there must be small differences in the dynamics. So far the lumping of age classes

in models has not been studied systematically. This would be desirable, because
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aggregation into age classes is a standard technique for modelers, see eg.[15, 16, 54,

67, 68]. In particular it is not clear if a two age class model-juvenile and adults, leads

to realistic predictions. The next plots are based on a cod population, model(2.16)

with natural mortality 0.2224 and n(0)=15 as the same above E0 = 1.64 × 1014

for Beverton-Holt and 4.1 × 1014 for others, and α is 2 for Shepherd and Hassell

recruitment functions.
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Figure 2.5: Stability for cod population based on the Fine model

2.3 The road to equilibrium

Since nowadays most fish stocks a severely depleted one should also consider

how this model describes the return to equilibrium from low levels e.g. 10% of

its equilibrium density. It ranges from about 20 to 60 years for different values of

n(0). Values of n(0) ≥ 10, however, are connected with an increasing oscillatory

convergence to the equilibrium. The explanation for this is the same as in the

Remark 2.1.7. It also shows that the largest eigenvalue has a large imaginary part.
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From this point of view it is not surprising that the cod fishing in Newfoundland is

not recovered yet [4, 52, 57].
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Figure 2.6: The approach to equilibrium is more oscillatory for large n(0)

35



0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3
x 108 x(i,1)=equilibrium /10 

t-time 

C
od

 p
op

ul
at

io
n 

Fi
ne

 m
od

el
 w

ith
 R

ic
ke

r r
ec

ru
itm

en
t  

cl
as

s-
- 7

--

 

 
n(0)=5
n(0)=10
n(0)=15

Figure 2.7: The approach to equilibrium in the fine model has the same behaviors as

above
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Chapter 3

Harvesting

3.1 The effects of harvesting

This section is devoted to the description of harvesting. Basically harvesting

acts as a modification of mortality. The ultimate goal is to determine a stable

optimal equilibrium solution. This means we are looking for an equilibrium with

a maximal yield. Since small external perturbation are expected for any natural

population, we are even looking for a stable equilibria. These equilibria depend on

the harvesting intensity h and mesh parameter s. In a final step the total harvest

H1 as a function of the harvesting intensity h and mesh parameter s will have to be

maximized. This results in a sustainable equilibrium with maximal yield.

The simplest method describes harvesting as an impulse harvesting. Fishing starts

with the second class and acts in all classes separately at the end of the season. If

hi is the harvesting intensity of class i, then H = diag(0, h2, ..., hk) describes the

harvesting matrix and (1−H)A the escape matrix. The system then becomes

x(t+ 1) = (1−H)A(t)x(t) (3.1)

with

(I −H)A(t) =



σ1 r2 r3 · · · rk

τ̃1 0 0 · · · 0

0 τ̃2
. . .

... 0
... 0

. . . . . .
...

0 · · · 0 τ̃k−1 0


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where τ̃i−1 = (1−hi).τi−1, i = 2, ......, k, ri = cFir(E(t)) andE(t) =
∑k

i=2 Fixi(t).

The matrix (I−H)A has the same structure as A. Thus the components of the non-

trivial equilibrium vector are

x̄i =
cLi(hj)r

−1( 1
n(hj)

)

n(hj)(1− σ1)

where Li(hj) = τ1(1− h2)τ2(1− h3)...τi−1(1− hj), and

n(hj) = (1− σ1)−1
∑i=k

i=2 cFiLi(hj), i = 2, 3, ......, k, j = 2, 3, 4, ......, k.

The aim is to determine an optimal sustainable stable fishing strategy, that means

an equilibrium x̄ of (3.1) with a maximal harvest. Thus we are looking for an x̄ =

(1−H)Ax̄ with < HAx̄,W >→Max, where W = (W1,W2, ......,Wk) is the weight

vector and <,> is the inner product. Such an approach is unrealistic for several

reasons. It neglects the interactions between natural mortality and fishing mortality.

In fact this form describes pulse harvesting at the end of the year. Secondly hi = 1

would imply that all fish of class i are caught. This is unrealistic because fishing

becomes more difficult as the sea is depleted[9].

There are good arguments that a two class model will be much more prone to

periodic solutions than a model with more than 20 classes. A similar argument

might be made for pulse fishing, when it is derived from a two class model. This

form of fishing mortality (1− hi) will require all sorts of constraints on the hi. For

optimal control models a linear control usually leads to bang-bang solutions, which

are difficult to realize in practice.

Thirdly, it is hardly possible to relate fishing effort, i.e number of boats, form and

size of gear,..., with hi. For these reasons we will employ a method which was

introduced by Getz [28], which we call the semi-continuous description and the idea

that mortality equals fishing mortality plus natural mortality. It is based on a no

harvest season of duration tc just after oviposition. In general tc will be 1/4 or

1/3 year. If x(t) denotes the number of fish in a population class and if h is the

harvesting intensity, one has

dx(t)

dt
=

{
−µx : 0 ≤ t ≤ tc

−(µ+ h)x : tc < t ≤ 1

From this one easily gets

x(t+ 1) = x(t)e−µ−h(1−tc) (3.2)
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This expression also shows, why it is advantageous to express survival in an expo-

nential form. Let hi denote an fishing effort in class i. Then the model becomes

x(t+ 1) = A(t)x(t) (3.3)

with

A(t) =



σ1 r2 r3 · · · rk

τ̃1 0 0 · · · 0

0 τ̃2
. . .

... 0
... 0

. . . . . .
...

0 · · · 0 τ̃k−1 0


.

τ̃i = e−µi−(1−tc)hi+1 , i = 1, 2, ..., k − 1, ri = cFir(E(t)) and E(t) =
∑k

i=2 Fixi(t).

The harvested amount in class i is then

Hi =

∫ 1

tc

xi(t)hiWidt =
hiWixi(t)e

−µitc

µi + hi
(1− e−(µi+hi)(1−tc)).

This shows that in the model only the mortality has changed .In particular all results

of previous chapter on equilibria and stability carry over. For a given harvesting

strategy
−→
h = (0, h2, h3, ......, hk) one can therefore write n(h), x̄(h), y(h), ȳ1(h) for

the corresponding quantities. Fishing with seines has the consequence that all fish

of a size less than `1 (in length) escape, while all fish above the size `2 are caught.

The gear selectivity described in[15, 16] suggests a linear interpolation between `1

and `2. Knife edge selectivity means `1 = `2. Relating the forms of selectivity to

age classes leads to harvesting intensity pattern.

hi =



0 : i < s

γ1h : i = s

γ2h : i = s+ 1

γ3h : i = s+ 2

h : s+ 3 ≤ i ≤ k

(3.4)

with γ1 < γ2 < γ3. I will mostly only use the knife edge harvesting with

hi =

{
0 : i < s

h : i ≥ s
(3.5)
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because numerical results (Table 3.1) have shown that there are no substantially

differences between knife edge and gear selectivity. We shall speak of an (h, s)

fishing strategy in this case. The total sustainable harvest becomes

H1(h, s) =
k∑
i=s

(µi + γih)−1Wiγihxi(t)e
−µitc(1− e−(µi+γih)(1−tc)) (3.6)

where, γs+i = 1 for i ≥ 4. For an equilibrium value x̄ respectively ȳ = ȳ(h, s) this

means

H1(h, s) =
k∑
i=s

(µi + γih)−1WiγihLi(h, s)ȳe
−µitc(1− e−(µi+γih)(1−tc)) (3.7)

If the price of one unit fish in class i is qi, one will have to replace Wi above by

qiWi. It is obvious that older and larger fish give a higher price because they have

considerably more meat. Unfortunately it is not so easy to get the price per kilogram

of an ungutted fish. The following data for cod population have been extracted from

[15, 51]. Regression gives in relative units that

qi =

{
0.18 + 0.09i : 2 ≤ i ≤ 9

1.08 : i ≥ 10
(3.8)

A higher price of large fish will clearly move the optimal mesh size s up. So the

results of [15], ” save the young fish ” are basically the result of the price list. Note,

however, that [54] does not really ”save the young ones”. For herring population

one can use qi = 1 for all i. For ȳ, ......, one can write now ȳ1(h, s), B1 = B1(h, s) =∑k
i=2 cFiLi(h, s), and Li(h, s) = τ̃1(h, s)......τ̃i−1(h, s). With Ricker recruitment this

gives

Ē = E0ln(
B1(h, s)

1− σ1

) and ȳ1(h, s) =
cE0

B1(h, s)
ln(

B1(h, s)

1− σ1

) (3.9)

and for Beverton-Holt gives

Ē = E0(
B1(h, s)

1− σ1

− 1) and ȳ1(h, s) =
cE0

B1(h, s)
(
B1(h, s)

1− σ1

− 1) (3.10)

In addition we have
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n(h, s) = (1− σ1)−1

k∑
i=2

cFiLi(h, s) (3.11)

There is a nontrivial equilibrium value with nonzero harvest only if n(h, s) > 1.

This will be locally stable with Ricker recruitment if ln(n(h, s)) < 2. In general one

would expect that harvesting increases stability. For this one will have to study the

characteristic polynomial of CJC−1. This is given by

−λk + σ1λ
k−1 + V2λ

k−2 + .......+ Vk = 0 (3.12)

with Vi = (r + E dr(E)
dE

)cFiLi(h, s), i = 2, 3, ......, k. Even though the Vi become

smaller with increasing h, standard tests on the characteristic polynomial do not

readily yield that the maximal eigenvalue decreases with increasing h. In most

cases the largest eigenvalue λ was found to satisfy | λ |< 0.96. Since n(h, s) =

(1 − σ1)−1
∑k

i=2 cFiLi(h, s), the natural reproductive number n, will decrease with

increasing mortality which includes fishing mortality. So once n(h, s) < e2 a fur-

ther increase of h will at least preserve the local stability. We have seen above,

Proposition(2.1.6), that the recruitment function has a profound effect on the dy-

namics. It has also a serious effect on the harvesting. To see this consider (2.9) in

the form r(Ē) = (1−σ)
B1

, and ȳ1 = cĒ
B1

. Thus depensation functions with a faster decay

will lead to a smaller equilibrium solution and thus to a lower harvest. This indicates

a dilemma with the recruitment process. Ultimately R respectively r can only be

determined by actual data. These, however, allow at most a proper determination

of n(0), the slope at the origin. The highly scattered higher density can be fitted

easily and equally well by Beverton-Holt or Ricker functions. These,however, will

give quite distinct optimal harvest results.

It remains to discuss various other quantities as functions of the harvesting intensity

h and mesh parameter s. It is clear that the transition probabilities τi are decreasing

with increasing h. Thus the conditional probabilities Li(h, s) will decrease strongly

for larger age indices i. Thus also n(h, s) is a decreasing function of h. Arguing

similarly one can see that n(h, s) increases with increasing s, because a large s im-

plies that the first s− 1 age classes are spared. The same applies to Ē. Since E0 is

a scaling parameter populations in an environment with a large supply of food will

also lead to a large Ē. The function x−1ln(x) on (0,∞) increases monotonically for
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x < e, and has a maximum at x = e. Beyond x = e it decreases monotonically

to 0. Thus ȳ1(h, s) will have a single maximum at B1(h,s)
1−σ1

= n(h, s) = e. Thus

for Ricker function ȳ1(h, s) will initially increase as a function of h. For large h,

however, n(h, s) tends to a value less or equal 1. In this case one would get ȳ1 = 0.

A larger net parameter s implies a larger value of n(s, h). For larger s the decrease

of n(s, h) with h is slower. This holds for other values of n(0) likewise. An increase

of µ or a monotonically increasing mortality will obviously decrease the Li and n.

Likewise it will decrease the optimal harvest. Thus there is no need to study sen-

sitivity with respect to µ any further. n(s, h) is clearly a decreasing function of h.

But the decrease is less pronounced for larger s.

In general for Ricker recruitment ȳ1(h, s) will increase at first and attain its maxi-

mum at B1 = (1−σ1)e. Then it will decrease rapidly - more rapidly for small s - to

0. For large s, B1 will never reach (1− σ1)e, so ȳ will be increasing monotonically.
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Figure 3.1: n(h, s) is a decreasing function for h. For small s a few fertile classes will

remain, the function n(h, s) as a function of h will decrease stronger than for large s. The

same holds for other values of n(0)
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Figure 3.2: y1(h, s) as a function of h×10−2 and s with n(0) = 10, the function becomes

zero fast for small s with higher h. For larger s the influence of h is less pronounced. Since

x−1ln(x) has maximum at e, ȳ1(h, s) will initially increase as h increases until n(h)

reaches a value beyond e then it will decrease and hit 0 when n(h) becomes less than one

for further increasing of h. This decrease is steeper for small s. The same thing holds for

other values of n(0).

The expression H1(h, s) is a sum of terms ȳ1Li(h, s) which decrease with h at

least for n(h, s) ≥ e and terms which increase with h. This makes it likely that

the optimal harvesting level h will be such ȳ1 has a level slightly below its maximal

value. The function H1(h, s) will in general have the form
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Figure 3.3: The general form of H1(h, s) for different s.

because for h = 0 we have H1 = 0. Then the initial increase of H is checked by

the rather rapid decrease of Li(h, s) in particular those for large i. The fact that even

for small harvesting rates h the higher age classes are rather thinly occupied implies

also that the optimal s will not be too large. The fact that harvesting decreases the

chance of finding large price fish has been observed with many other species.

For Beverton-Holt recruitment y1(h, s) (3.10) will be a decreasing function with h

as well as n(h, s). But H1(h, s) has the same behavior as Ricker recruitment. The

same thing holds for herring populations. It is clear that a small parameter n(0)

will require a large value s, because otherwise too many fertile fish are harvested.
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Figure 3.4: The function n(h, s) for cod population with Beverton-Holt recruitment. It

has the same behavior as the Ricker recruitment.The same holds for other values of n(0).
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Figure 3.5: y1(h, s) as a function of h× 10−2 and s with n(0) = 10 for Beverton-Holt

function has no maximum.

3.2 Stability of the equilibrium value with har-

vesting:

For an analysis of the local stability with present harvesting one has to compute

the roots of the characteristics polynomial of the Jacobian matrix of the system

J =



σ1 a2 a3 · · · ak

1 0 0 · · · 0

0 1
. . .

... 0
... 0

. . . . . .
...

0 · · · 0 1 0


(3.13)
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with ai = cFiLi(h, s)r(E) +
∑k

i=2 cFiLi(h, s)
dr(E)
dE

dE
dyi

= (r(E) + E dr(E)
dE

)cFiLi(h, s),

and E(t) =
∑k

i=2 FiLi(h, s)y1(h, s). Then the characteristics polynomial is,

σ1λ
k−1 +

∑k
i=2 aiλ

k−i − λk = 0. By using Ricker function this gives

σ1λ
k−1 + (1−ln(n(h))

n(h)
)
∑k

i=2 cFiLi(h, s)λ
k−i − λk = 0. Now consider f(λ) = −λk, it is

clear that all roots of f(.) are located inside the unit circle. So for |λ| = 1 we have

|g(λ)| =
∣∣∣σ1λ

k−1 + (1−ln(n(h))
n(h)

)
∑k

i=2 cFiLi(h, s)λ
k−i
∣∣∣ ≤ σ1+

∣∣∣(1−ln(n(h))
n(h)

)
∑k

i=2 cFiLi(h, s)
∣∣∣

< σ1 + |1− σ1| = 1 = |f(λ)| , whenever |ln(n(h))− 1| < 1. By Rouche’s the-

orem [61], the equations f(λ) + g(λ) = 0 and f(λ) = 0 have the same number

of zeros located inside unit circle whenever 0 < ln(n(h)) < 2. It is clear that

ln(n(h)) < ln(n(0)). So that in general one can say harvesting improves stability of

the positive equilibrium value.

3.3 Numerical examples with harvesting and the

influence of parameters

In this section the optimal harvesting is studied for h and s. Here h stands

for the harvesting intensity or effort, for example the number of boats, people em-

ployed,... . The net parameter s measures the width of the meshes of the fishing

nets. As argued above data with knife edge harvesting will mainly be studied be-

cause extensive computations with gear selective harvesting have only resulted in

small changes. The aim is to determine the optimal mesh width s and the maximum

sustainable yield (MSY). This will be studied for cod first and later for other species.

In addition the local stability is studied of the model in case of harvesting for cod

first and later for other species by computing the eigenvalues of Jacobian matrix for

various values of h, s, and n(0).

1-Cod

As before according to [41], all parameters for cod population are chosen as above,

namely maximum age ,fecundity Fi, weight Wi, mortality µ and scaling parameter

E0. As stated above a modified mortality has a little effect on the harvesting. Set

tc = 1/4 in all computations. So the values for H, are relative values. In the actual

computations it turns out that for small s , s = 2 or 3, the equilibrium value
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ȳ(h) = 0 is reached quickly for rather moderate harvesting intensities. So s = 2, 3

will never be optimal and will therefore not be considered. This holds for the fine

model too. If one uses prices increasing with weight in (3.8) this will be even more

pronounced so that actually only s > 3 will be relevant. Similarly net parameters s

larger than 11 are inefficient, because they spare too many fish of weight larger than

9 or 10 kg. In the table below a comparison between gear selective harvesting and

knife- edge harvesting is given for various net reproductive rates n(0). Gear selective

harvesting is based on γ1 = 0.40, γ2 = 0.60 and γ3 = 0.80. The corresponding knife

edge harvesting is based on s.

n(0) sm n(hmax, s) n(hmax, s) H(h, s) H1(h, s)

gear sel. knife edge gear sel. knife edge

3 10 1.79 1.79 1.33 ×108 1.33 ×108

5 9 2.76 2.62 2.13 ×108 2.19 ×108

7 8 3.87 3.08 2.94 ×108 3.01 ×108

10 7 3.89 3.53 3.94 ×108 4.01 ×108

15 6 4.48 3.90 5.26 ×108 5.36 ×108

22 5 4.50 3.63 6.80 ×108 6.89 ×108

Table 3.1: Comparing the optimal harvesting for gear selective harvesting γ1 = 0.40, γ2 = 0.60 and γ3 = 0.80

for cod population with knife edge harvesting. Maximum effort is 3

We put a limit on the maximal harvesting intensity, because the graphs for

H1(h, s) for s ≥ 6 are monotonically increasing. But for h = 3 values close to the

maximal value are attained. Needless to say that h ≥ 1 is rather unrealistic.
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Figure 3.6: A typical plot of total harvested amount H1(h, s) as a function of h, s with

n(0) = 7. For small s an increase in h will have strong effect on n(h, s), ȳ1(h), and thus

the total harvesting. But for large s the total harvested amount may stay at a high level

different from 0, because it is preserved by the remaining small age classes. The same

holds for others values of n(0).
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Figure 3.7: The total harvest as a function of h× 10−2 with n(0) = 10

For small s an increase in h will have strong effect on n(h, s), ȳ1(h), and then

the total harvesting. The harvested amount will initially increase rapidly, until ȳ1(h)

decreases. As ȳ1(h) hits 0 the total harvesting becomes 0 likewise. For large s the

remaining small age classes preserve ȳ1(h) and it may never tend 0. Thus the total

harvest may stay at a nonnegative level. As expected the price plays an important

role in harvesting. It is obvious that larger fish are relatively more valuable, because

they give more meat. Likewise it is clear that a higher price for older fish will

increase the optimal s and the higher the price more it is in advantageous to use

nets with larger meshes. From a conservation point of view it is also advantageous

to save the young fish.

As expected the maximal harvest increases with n(0), while s decreases with n(0).

According to the table 3.1,there is no important difference between the knife-edge

strategy and gear selective strategy. Thus throughout the remainder only knife-edge

selectivity will be used. Extensive calculations with the fine model also showed that

there is no substantial difference between the fine model and the model above.
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In the following tables some numerical values for various quantities are presented.

These are the largest eigenvalue of the the Jacobian i.e the largest root in (2.8), the

net reproductive rate n(h) and the equilibrium value as a function of h and s.

The mesh width s=3

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.902 0.742 0.926 0.967 0.999 0.946 0.900 0.811 0.751 0.680

the reproductive rate n(h) 7 2.882 1.578 1.241 1.004 0.699 0.518 0.293 0.196 0.118

the equilibrium point ×108 : 6.992 9.238 7.272 4.379 0.09660 0 0 0 0 0

The mesh width s=4

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.902 0.784 0.851 0.895 0.925 0.967 0.997 0.952 0.921 0.886

the reproductive rate n(h) 7 3.337 2.106 1.774 1.534 1.217 1.019 0.756 0.632 0.524

the equilibrium point ×108 : 6.992 9.083 8.895 8.127 7.018 4.053 0.4626 0 0 0

The mesh width s=5

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.902 0.808 0.673 0.791 0.831 0.875 0.901 0.937 0.960 0.973

the reproductive rate n(h) 7 3.804 2.685 2.377 2.151 1.847 1.655 1.394 1.268 1.156

the equilibrium point ×108 6.992 8.834 9.252 9.167 8.956 8.356 7.657 5.993 4.708 3.149

The mesh width s=6

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.902 0.833 0.747 0.703 0.611 0.746 0.789 0.834 0.853 0.8697

the reproductive rate n(h) 7 4.245 3.248 2.968 2.761 2.480 2.301 2.053 1.932 1.824

the equilibrium point ×108 6.992 8.566 9.123 9.219 9.252 9.212 9.109 8.813 8.574 8.287

The mesh width s=7

Harvesting intensity h : 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue : 0.902 0.855 0.815 0.795 0.773 0.729 0.680 0.606 0.693 0.733

the reproductive rate n(h) : 7 4.650 3.773 3.526 3.3338 3.084 2.919 2.691 2.578 2.476

the equilibrium point ×108 6.992 8.313 8.852 8.991 9.083 9.185 9.231 9.251 9.240 9.210

Table 3.2: The net reproductive rate n(0)=7. One can see for s = 3 or 4 The net reproductive rate becomes

less than one for an increase in h, but for s ≥ 5 the n(0) will never reach one and the equilibrium will take a

positive value.The equilibrium point as a function of h will increase first until n(0) becomes less than e then it will

decreasing.
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The mesh width s=3

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.9152 0.8192 0.824 0.894 0.938 0.999 0.952 0.859 0.794 0.717

the reproductive rate n(h) 10 4.117 2.255 1.773 1.434 0.9991 0.741 0.419 0.280 0.169

the equilibrium point ×108 8.274 12.35 12.96 11.61 9.033 0 0 0 0 0

The mesh width s=4

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue: 0.915 0.845 0.708 0.741 0.819 0.888 0.928 0.986 0.981 0.946

the reproductive rate n(h) 10 4.767 3.008 2.534 2.192 1.738 1.456 1.080 0.903 0.748

the equilibrium point ×108 8.274 11.77 13.155 13.18 12.87 11.43 9.267 2.564 0 0

The mesh width s=5

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.915 0.866 0.799 0.758 0.705 0.661 0.762 0.835 0.865 0.889

the reproductive rate n(h) 10 5.434 3.836 3.395 3.073 2.639 2.364 1.991 1.811 1.651

the equilibrium point ×108 8.274 11.19 12.59 12.94 13.13 13.21 13.08 12.43 11.78 10.91

The mesh width s=6

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.915 0.885 0.850 0.832 814 0.777 0.741 0.649 0.523 0.657

the reproductive rate n(h) 10 6.065 4.640 4.240 3.945 3.544 4.049 2.933 2.760 2.605

the equilibrium point×108 8.274 10.68 11.88 12.248 12.50 12.83 13.09 13.18 1.322 13.21

The mesh width s=7

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.915 0.901 0.883 0.875 0.867 0.852 0.839 0.815 0.799 0.781

the reproductive rate n(h) 10 6.643 5.391 5.034 4.769 4.405 4.171 3.844 3.683 3.537

the equilibrium point×108 8.274 10.24 11.23 11.54 11.77 12.10 12.30 12.57 12.72 12.83

Table 3.3: The same vital parameters are used but the net reproductive rate n(0)=10
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The mesh width s=3

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.933 0.879 0.758 0.676 0.826 0.924 0.982 0.920 0.850 0.765

the reproductive rate n(h) 15 6.175 3.382 2.660 2.151 1.499 1.111 0.628 0.419 0.253

the equilibrium point ×108 9.735 15.89 19.42 19.82 19.19 14.55 5.100 0 0 0

The mesh width s=4

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.933 0.896 0.829 0.785 0.729 0.675 0.798 0.894 0.937 0.977

the reproductive rate n(h) 15 7.150 4.513 3.801 3.288 2.607 2.183 1.620 1.354 1.123

the equilibrium point ×108 9.730 14.83 18.00 18.93 19.51 19.81 19.28 16.05 12.07 5.554

The mesh width s=5

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.933 0.912 0.876 0.857 0.838 0.797 0.756 0.639 0.537 0.699

the reproductive rate n(h) : 15 8.152 5.754 5.093 4.609 3.958 3.546 2.987 2.717 2.477

the equilibrium point ×108 9.730 13.87 16.39 17.23 17.87 18.73 19.24 19.75 19.83 19.74

The mesh width s=6

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.933 0.926 0.910 0.902 0.924 0.879 0.865 0.838 0.820 0.799

the reproductive rate n(h) 15 9.097 6.960 6.360 5.917 5.315 4.930 4.400 4.141 3.908

the equilibrium point ×108 9.730 13.08 15.02 15.68 16.19 16.94 1.744 18.15 18.50 18.80

Table 3.4: The net reproductive rate n(0)=15

2-Herring

In chapter 1 all vital parameters were fixed namely fecundity Fi, weight Wi, mortal-

ity µ, maximum age, scaling parameter E0. c was also computed for various values

of n(0). As expected the results are not much different than those for cod and as

before the key variable for a fish stock are n(0), the modification of prices, and the

choice of the recruitment function. It is quite clear that this model can be adapted

easily to other species of fish with similar results. Thus the fluctuations observed

with fish landings will most likely be caused by climatic and other external influ-

ences.
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This model also shows that such harvesting systems considered in isolation are ex-

pected to be sustainable and stable. But stability may be endangered through

other species (bycatch),environmental deterioration and subsidies of the fishing in-

dustry.The data for Beverton-Holt recruitment look quite similar, though the MSY

for n(0) = 10 is considerably larger, as expected. Multi decade variation of the equi-

librium and n(0) will lead to a slow variation of the equilibrium. High harvesting

intensities and bad climate conditions might then even lead to a collapse of fisheries,

at least in the low n(0) regime.It will be one of the challenges to buffer natural fish

populations against climatic variations and excessive harvesting.

In the table below a comparison between gear selective harvesting and knife-

edge harvesting is given for various net reproductive rates n(0). Gear selective har-

vesting is also based on γ1 = 0.40, γ2 = 0.60 and γ3 = 0.80. The corresponding knife

edge harvesting is based on s. All computations are based on herring population

n(0) sm n(hmax, s) n(hmax, s) H(h, s) H(h, s)

gear sel. knife edge gear sel. knife edge

3 8 1.68 1.62 46.0172 46.9441

5 7 2.29 2.18 104.0443 108.0685

7 6 2.40 2.21 163.7329 168.1948

10 5 2.33 2.29 245.2344 244.7242

15 5 3.45 3.08 364.4324 382.4892

22 4 2.94 2.47 528.5488 532.8835

Table 3.5: Comparing the optimal harvesting for gear selective harvesting γ1 = 0.40, γ2 = 0.60 and γ3 = 0.80

for herring population with knife edge harvesting. Maximum effort is 5

Here one has also to put a limit on the maximal harvesting intensity, because

the graphs for H1(h, s) for s ≥ 6 are also monotonically increasing.
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Figure 3.8: Total harvest H1(h, s) as a function of h, s with n(0) = 5 for a herring

population with Ricker recruitment function. Initially increased harvesting increases the

harvest. But when n(0) declines to much the total harvest decreases. It reaches 0 when

n(0) = 1.
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Figure 3.9: The total harvest H1(h, s) of a herring population with Ricker recruitment

as a function of h× 10−2 with n(0) = 7
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In the following tables we present some numerical values of various quantities,

the largest eigenvalue, the net reproductive rate and the the equilibrium value which

are depend on the harvesting intensity h and the mesh width s, for different values

of net reproductive rate at zero density n(0).

The mesh width s=4

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.863 0.639 0.875 0.909 0.934 0.972 0.999 0.952 0.923 0.893

the reproductive rate n(h) 5 2.735 1.852 1.598 1.411 1.159 0.999 0.789 0.690 0.607

the equilibrium point ×103 1.076 1.23 1.112 0.980 0.815 0. 424 0 0 0 0

The mesh width s=5

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.863 0.739 0.795 0.833 0.859 0.893 0.915 0.949 0.967 0.984

the reproductive rate n(h) 5 3.088 2.306 2.074 1.900 1.658 1.500 1.281 1.174 1.079

the equilibrium point×103 1.076 1.220 1.211 1.175 1.129 1.019 0.90 0.645 0.456 0.235

The mesh width s=6

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.863 0.767 0.615 0.713 0.758 0.801 0.826 0.858 0.874 0.889

the reproductive rate n(h) : 5 3.424 2.758 2.557 2.404 2.187 2.044 1.837 1.733 1.637

the equilibrium point×103 1.076 1.201 1.229 1.227 1.219 1.196 1.169 1.106 1.060 1.006

Table 3.6: The n(h, s) and the equilibrium point as a function of h and s have the same behavior as before. All

results applied on herring population with Ricker function. The net reproductive rate n(0)=5
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The mesh width s=4

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.891 0.834 0.726 0.626 0.693 0.804 0.853 0.916 0.948 0.979

the reproductive rate n(h) 9 4.923 3.332 2.877 2.540 2.085 1.799 1.419 1.243 1.093

the equilibrium point×103 1.468 1.947 2.172 2.209 2.207 2.120 1.963 1.48 1.051 0.488

The mesh width s=5

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.896 0.859 0.805 0.773 0.738 0.648 0.521 0.736 0.777 0.811

the reproductive rate n(h) 9 5.559 4.151 3.734 3.420 2.984 2.700 2.305 2.112 1.942

the equilibrium point×103 1.468 1.856 2.062 2.122 2.163 2.204 2.213 2.18 2.129 2.055

The mesh width s=6

Harvesting intensity h 0 0.2 0.4 0.5 0.6 0.8 1 1.5 2 3

The largest eigenvalue 0.896 0.880 0.854 0.840 0.827 0.801 0.777 0.725 0.682 0.623

the reproductive rate n(h) 9 6.164 4.965 4.603 4.327 3.937 3.678 3.307 3.119 2.945

the equilibrium point×103 : 1.468 1.775 1.941 1.995 2.036 2.094 2.130 2.175 2.194 2.206

Table 3.7: The net reproductive rate n(0)=9

3.4 Effect of cost in semi-continuous harvesting :

Harvesting incurs a considerable amount of cost. These are fixed cost in terms

of boats and processing factories. The cost proportional to the harvesting intensity

arise from fuel, wages and depreciation of boats and gear. In addition there are costs

arising from processing the fish. These are proportional to the harvested amount

and can be taken care of through the price. Thus we write

C(h) = a+ bh (3.14)

for the cost. Here a describes the fixed cost and b is the cost parameter of the

harvesting effort h. In order to determine the parameters a and b, we assume that

the cost amount to a fixed percentage of the maximal yield. In general we would

expect the cost to be to about 60% to 80% of the total yield. It will be very difficult

to determine the real cost because of subsidies, taxation and other economic factors.

This is even more complicated because in reality fishing is not of the sole owner type

as the model suggests. It is obvious that for the optimization only the term bh is
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relevant. Since H1(h, s) increases only little for larger h, the effect of harvesting cost

amounts to a decrease of the optimal h. We will always assume that the non fixed

cost are proportional to the total yield and one can write bhmax = k1H1max, with

k1 = 0.3 or 0.4. For simplicity we set a = bhmax. This restricts k1 to less than 0.5.

If bh amounts to a fixed percentage of H1(h, s). b is defined only implicity and has

to be determined by a fixed point algorithm. For the moment this seems the most

reasonable way to fix the cost parameters. The main effect of the cost is to reduce

the optimal h. The net gain is then the difference between the yield H1(h, s) and

the total cost C(h) i.e.

NH(h) = H1(h, s)− C(h) (3.15)

This also shows that subsidies for fuel or wages, which decrease b, will lead to a

larger optimal harvesting intensity. This has already been observed with single class

models [8]. This effect is stronger if the cost term h is larger. The importance for

this is that it keeps the harvested populations more stable. Subsidies for fuel and

wages will decrease b and thus increase the optimal fishing mortality. Thus all in all

subsidies have a detrimental effect on the stock in particular on a severely depleted

stock. In particular subsidies may lead to harvesting intensities beyond the break

even intensity.

n(0) s0

I II

hopt b1 NH(hopt) hopt b2 NH(hopt)

3 9 0.323 8.43 ×107 3.63 ×107 0.244 1.35 ×108 1.65×107

5 8 or 7 0.391 1.37 ×108 7.13 ×107 0.252 3.56×108 3.22 ×107

7 7 0.395 2.48 ×108 9.91 ×107 0.299 3.01×108 4.49×107

10 6 0.41 2.49 ×108 1.33 ×108 0.307 3.94 ×108 6.05×107

15 5 0.421 3.18 ×108 1.78 ×108 0.326 5.00×108 8.16×107

Table 3.8: The optimal harvesting intensity for I: hoptb1 = 0.3H1(h, s) and II: hoptb2 = 0.4H1(h, s) with

NH(h, s) = H1(h, s)−a− bh. s is likewise optimized. All these results based on data for cod population with Ricker

recruitment
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n(0) s0

I II

hopt b1 NH(hopt) hopt b2 NH(hopt)

3 6 0.265 45.0558 15.920 0.220 67.7935 7.4574

5 5 0.36 76.4054 36.6749 0.298 115.1861 17.1629

7 5 0.499 85.9247 57.1690 0.389 132.6979 26.4071

10 5 or 4 0.678 94.1195 85.0845 0.424 188.0900 39.8753

13 4 0.63 134.061 112.6115 0.516 203.471 52.4959

Table 3.9: The optimal harvesting intensity for I: hoptb1 = 0.3H1(h, s) and II: hoptb2 = 0.4H1(h, s) with

NH(h, s) = H1(h, s) − a − bh. s is likewise optimized. All these results based on data for herring population with

Ricker recruitment
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Figure 3.10: The net gain as a function of h × 102.The cost parameters are a = 0.3H1

and bhop = 0.3H1 with n(0) = 10.
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Figure 3.11: The net gain as a function of h × 102.The cost parameters are a = 0.3H1

and bhop = 0.3H1 with n(0) = 7.

A larger cost parameter b will lead to a lower harvesting intensity. Typical

optimal fishing mortality then will be about 0.4 to 0.6. Remember that the effective

fishing mortality is only (1− tc)h, i.e 0.75× h in most cases.

It is obvious that a higher price for larger fish will shift the net parameter to higher

values. A higher price will of course also lead to higher revenues. The above graphs,

however, are not altered substantially.

3.5 The influence of the recruitment function

So far the choice of the recruitment functions has played little role in the

literatures, even though their impact on the dynamics can be dramatic as we have

seen with proposition 2.1.6 and the results of Levin Goodyear (Figure 2.1). Thus it
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remains to analyze the influence of the recruitment function on the total harvest.

A little thought shows that the Beverton-Holt function should result in a higher

yield, because it describes a lower competition at a higher densities. Nevertheless

the choice of recruitment function has played no role up to now in the literature even

though there is a strong pressure for more precise and accurate models. The problem,

however, is even more serious because we do not even know what the correct Ricker

counterpart to a given Beverton-Holt function is. One invariant is clearly n(0) i.e the

slope of R at zero density. If one chooses the same E0, the parameter which describes

the onset of depensation we have from (2.9) with B1 =
∑k

i=2 cFiLi, r(Ē) = (1−σ1)
B1

and ȳ1 = cĒ
B1

. Since σ1, c, Fi and Li are constants the equilibrium value is essentially

determined by the equation r(Ē) =constant. Since r is monotonically decreasing

the equilibrium will be smaller for those r , which decrease faster. Thus with the

same E0 the Ricker equilibrium will be smaller than the Beverton-Holt equilibrium,

because e−x < (1 + x)−1 for x > 0. Since Beverton-Holt recruitment has a larger

impact for large x, the corresponding mesh parameter will be larger. Beyond this it

is clear that all statements made for Ricker recruitment function will extend to the

Beverton-Holt realm too. Thus the optimal harvesting intensity is reduced when

cost are taken into account, or that a higher price for larger fish tends to increase s.

Beyond this the recruitment function will have an impact on s and the total yield.

Since the Beverton-Holt recruitment has lesser effect for higher densities, we expect

the optimal s to increase for Beverton-Holt recruitment (table 3.10). Thus more

care should be taken with its choice. The following results for optimal harvesting

show the importance of the recruitment function. Thus the choice of it has more

influence than gear selectivity, the weight distribution or even the price.
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n(0)
Ricker function Beverton-Holt function

hopt so NH(hopt) hopt so NH(hopt)

5 0.391 8 7.13×107 0.314 9 1.21×108

7 0.395 7 9.91 ×107 0.345 9 1.95 ×108

10 0.401 6 1.33 ×108 0.309 8 3.065×108

15 0.421 5 1.78 ×108 0.326 8 4.96×108

Table 3.10: The results of optimal harvesting are based on cod population for different recruitment functions

with the same other parameters

Another more realistic way of comparing the recruitment is to use n(0), the

slope of the recruitment function at zero density, and Ē as invariants. Both con-

stants have a direct biological meaning. From (2.9),(2.10) we obtain r(E)−1 = n(0)

so that E0Rln(n(0)) = ĒR and ĒBH = (n(0) − 1)E0BH . Here R respectively BH

stands for Ricker respectively Beverton-Holt. If n(0) and Ē are used as invariants

one can get (n(0)− 1)E0BH = E0Rln(n(0)) and E0BH = E0Rln(n(0))
(n(0)−1)

.

The following table we use the same parameters as in table 3.10. But E0BH =
E0Rln(n(0))

(n(0)−1)

n(0)
Ricker function Beverton-Holt function

hopt so NH(hopt) hopt so NH(hopt)

7 0.395 7 9.91 ×107 0.345 9 6.3194×107

10 0.401 6 1.33 ×108 0.309 8 7.8413×108

Table 3.11: The results of optimal harvesting are based on cod population for different recruitment functions.

All other parameters are the as before but E0BH =
E0Rln(n(0))

(n(0)−1)

The discrepancy of these results shows that also this method does not yield accept-

able results. So the question of a proper choice of recruitment function remains

open. For this either a model based derivation or precise measurements at high den-

sities are needed. Because of a lack of high density data this question will probably

be open for long time.
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Chapter 4

Optimal harvesting of fish

populations with other strategies

4.1 The optimal control harvesting model

In the previous chapters of this dissertation the essential vital parameters of

the model have been determined and the harvesting parameters s and h, where

determined for the optimized equilibrium model. The aim in the following chap-

ter is to treat s and h as dynamic variables and to compute an optimal control

solution. The key parameters are n(0), E0, µ, and Wi. E0 as a scaling parameter

played no dominant role. From these the optimal harvesting role hopt and the

optimal net parameters so as well as the cost parameters a and b will be derived.

Another important factor in optimal control is the discount factor δ. From actual

data δ = (1 + po
100

)−1, po = 4 or 5 seems to be reasonable. They will be used as

inputs for the optimal control model. The larger δ, the larger the impact of the fu-

ture. The extension to such an optimal control model is necessary, because by now

many fish species have reached a catastrophically low level so that a good policy is

needed to reach an optimal sustainable solution.In addition δ > 0 may be needed

for convergence.

Mathematically this is a well defined problem of optimal control, which only

depends on the time horizon T considered. Beyond that, however, other solutions

will be considered, which are close to optimal, but politically and economically more

acceptable. To put it bluntly : A bang-bang solution with h = 0 for a time interval
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of about 10 years or so, is not acceptable politically or economically. Finally the

results will have to be interpreted with respect to feasibility. An important aspect

in optimal control is the shadow price interpretation of the covariables, which has

been used successfully in understanding economic or epidemic problems.

In this section, we will study the discrete time optimal control problem in order

to maximize the total yield (profit) of fishing in the time interval [0, T ]. In principle

we have two parameters to control (s, h). The class parameter s describes the width

of mesh of fishing nets in as much as all fish of age more or equal to s, are caught.

Note that selective gear fishing does not yield substantially different results than

knife-edge fishing. h(t) denotes the harvesting intensity. In practical situations s

would arise in the form of restrictions of fishing gear. While the bounds for h(t)

would amount to a fishing quota. As noted above h(t) can be understood as limited

by the fishing industry, i.e the number of boats, their size, people employed,..etc.

The static equilibrium model was mainly analyzed to fix the range of parameters

and to study their sensitivity. In addition we expect the static equilibrium model

to appear as the limit or singular solution in the general optimal control model.

Our strategy of optimal control is as therefore as follows: Fix the key vital

parameters n(0), µ, Fi,Wi, the mesh parameter s and the recruitment function. De-

termine the optimal equilibrium solution for these parameters and from these derive

the cost parameters a and b. It is the aim of the optimal control theory to determine

a harvesting strategy h = (h1, h2, ......, hT ) on [0, T ] which gives rise to a maximal

revenue J(h). It is known that for optimal control problems which are linear in the

control the solutions are quite often of bang-bang type. For more details in this

particular field see [8],[14],[37]. In our case bang-bang solutions are not expected,

because the equations are not linear in h(t).

Let h = (h1, h2, ......, hT ) be a given harvesting strategy, where T is the total num-

ber of years of fishing considered. Then the evolution of the population is uniquely

determined. Compute xi(t) for i = 1, 2, ..., k and t=1,....,T

x1(t+ 1) = σ1x1(t) +R(E) (4.1)

xi(t+ 1) = τi−1xi−1(t) 2 ≤ i ≤ s
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xi(t+ 1) = τ̃i−1xi−1(t) s < i ≤ k

where τ1 = e−µ1

3
, τi = e−µi , for i = 2, 3, .., s, τ̃i = e−µi−(1−tc)hi(t) for i = s + 1, s +

2, .., k, R(E) = cEr(E) =
∑k

i=2 cFixi(t)r(E). The Ricker recruitment function

will mostly be used ,but Beverton-Holt recruitment functions will be employed too

in order to determine the influence of the recruitment function. The Beverton-Holt

recruitment function was used by Tahvonen [67] and Diekert et al [15] solely without

qualms.

In optimal control theory the vector −→x (t) = (x1(t), x2(t), ...., xk(t)) is called

the state vector and the individual components xi are called the state variables. The

vector
−→
h = (h1, h2, ...., hT−1) is called the control vector and the (hj)

T−1

j=1 are called

the control variables.

Throughout we assume that µ1 = µ2 = ...... = µk−1 = µ, and hs(t) = hs+1(t) =

...... = hk(t) = h(t), i.e the mortality and the harvesting amount are fixed for all

classes. The reason for this is that it makes no sense to change the nets or gear from

one year to the next. Then it follows that τ1 = e−µ

3
, τi = e−µ, and τ̃i = e−µ−(1−tc)h(t)

for i = 2, 3, .., s and i = s + 1, s + 2, .., k respectively. The net return in the year t

is given by

NH(t) =
k∑
i=s

(µ+ h(t))−1(qi(t)h(t)Wi(t)xi(t)e
−µtc(1− e−(µ+h(t))(1−tc)))− a− bh(t).

The total yield from fishing with discounting factor δ in the time interval [0, T ], is

J(h) =
T∑
t=1

NH(t)δt, δ = (1 +
po

100
)−1 (4.2)

Treating fishery as a sole owner problem, the optimal control problem is to choose

a harvesting strategy h which maximizes J . For general differential equations op-

timal control problem the existence proof is rather more difficult which involves a

measurable choice of the control variable see [22]. Here the problem is rather sim-

ple. Assume the harvesting intensity is restricted to some interval [0, k3]. Then the

function

[0, k3]T 3 (h(t)) =⇒ J(h) (4.3)
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depends continuously and differentially on h. Since [0, k3]T is compact, this function

has at least one maximum h∗. There are good reasons that in this case h∗ is unique.

In that case the Lagrange method of a constrained extremum comes into play. Thus

there exist covariables (λi(t))
k
i=1, the Lagrange multipliers , so that the corresponding

Lagrange function can be used to determine h∗ and the corresponding state x∗i (t))
k
i=1.

Since all this describes a discrete dynamical system a more elegant formulation is

given through the Pontryagin Maximum Principle (PMP). For details and derivation

of the result, the reader is referred to the excellent book of S.Lenhart and J.T.

Workman[37]. For more details refer to ([18],[30],[32],[37],[43],[53],[63],).

In this theory one defines the Hamiltonian as follows

H(t) =
k∑
i=s

[qih(t)Wixi(t)e
−µtc(µ+ h(t))−1(1− e−(µ+h(t))(1−tc))− a− bh(t)]δt

+ λ1(t+ 1)(σ1x1(t) +R(E)) +
s∑
i=2

λi(t+ 1)e−µxi−1(t)

+
k∑

i=s+1

λi(t+ 1)e−µ−(1−tc)h(t)xi−1(t), for t ≤ T − 1

The Hamiltonian is thus made up of the yield term NH(t) and the dynamic equa-

tions with the corresponding covariables. This can be rewritten as follows

H(t) =
s∑
i=3

[λi(t+ 1)e−µxi−1(t) + λ1(t+ 1)cFixi(t)r(E)] + λ1(t+ 1)cF2x2(t)r(E)

+ λ1(t+ 1)σ1x1(t) + λ2(t+ 1)
e−µ

3
x1(t) +

k∑
i=s+1

[λi(t+ 1)e−µ−(1−tc)h(t)xi−1(t)+

δtxi(t)qiWih(t)e−µtc(1− e−(µ+h(t))(1−tc))(µ+ h(t))−1 + λ1(t+ 1)cFixi(t)r(E)]

+ δtxs(t)qsWsh(t)e−µtc(1− e−(µ+h(t))(1−tc))(µ+ h(t))−1 − aδt − bδth(t).

Here the Ricker function is used. The covariables λi, satisfy

λi(t) =
∂H(t)

∂xi(t)
(4.4)

The equations of the covariables λi, are thus given by

λ1(t) =
∂H(t)

∂x1(t)
= λ1(t+ 1)σ1 + λ2(t+ 1)τ1
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λ2(t) =
∂H(t)

∂x2(t)
= λ1(t+ 1)cF2e

−E(t)
E0 (1− E(t)

E0

) + λ3(t+ 1)τ2.

λs−1(t) =
∂H(t)

∂xs−1(t)
= λ1(t+ 1)cFs−1e

−E(t)
E0 (1− E(t)

E0

) + λs(t+ 1)τs.

λs(t) =
∂H(t)

∂xs(t)
= (µ+ hs(t))

−1(δths(t)qsWse
−µtc)(1− e−(µ+hs(t))(1−tc))

+ λ1(t+ 1)cFse
−E(t)

E0 (1− E(t)

E0

) + λs+1(t+ 1)τ̃s+1.

λk−1(t) =
∂H(t)

∂xk−1(t)
=
δths(t)qk−1Wk−1e

−µtc

µ+ hs(t)
(1− e−(µ+hs(t))(1−tc))

+ λ1(t+ 1)cFk−1e
−E(t)

E0 (1− E(t)

E0

) + λk(t+ 1)τ̃k.

λk(t) =
∂H(t)

∂xk(t)
= (δths(t)qkWke

−µtc)(µk + hk(t))
−1(1− e−(µ+hk(t))(1−tc))

+ λ1(t+ 1)cFke
−E(t)

E0 (1− E(t)

E0

).

These covariables measure the sensitivity of the value functional J with respect

to the state variables xi. In the literature they are commonly called the shadow

prices[8, 37]. The PMP now states

H(t, x∗, λ, h∗) ≥ H(t, x, λ, h)

where (x, h) is any other solution system for the harvesting strategy h. The appli-

cation of the PMP is complicated by the fact that the state variables are uniquely

determined by the initial conditions at 1 and the dynamics (4.1), while the covari-

ables have no initial conditions and have fixed final time conditions λi(T ) = 0. In

addition they depend on the (xi(t))
k
i=1 and the dynamics (4.4). So the solution of

both systems will have to be determined by an iterative gradient type algorithm.

This is described in [37] and will be outlined below through the following steps :

1. Define all parameters namely T , k, s,W, µ,E0, and the initial conditions for

the states (xi(1))ki . Compute the equilibrium solution as well as a and b.

2. Guess an initial harvesting strategy hin = (hin(t)). Mostly we take hin(t) =

0.02 for t < 11 and hin(t) = hopt for 11 ≤ t ≤ T − 1.
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3. Solve the state equations (4.1) forward with hin, which gives ~xin(t)

for all t = 1, 2, ...., T .

4. Solve the adjoint equations (4.4) backward with hin, and ~xin(t). This gives

~λin(t) for all t = T − 1, ......, 1.

5. Form the Hamiltonian function H(t, ~xin, ~λin, u) and maximize it with respect

to u(t) subject to the constraints for the harvesting strategy u. This gives

u(t) for all t = 1, 2, ......, T − 1.

6. If hin(t)−u(t) is sufficiently small for all t = 1, 2, ......, T −1 stop. Then hin(t)

is the desired solution and go to Step 7. Otherwise use a convex combination

between hin(t) and u(t) as the new input in step 3 and repeat this process.

This averaging is introduced to stabilize this recursion procedure. In many

cases this recursive determination of h(t) will converge to a desired solution.

7. Use the optimal harvesting with corresponding solution to compute the opti-

mal total yield and other results.

4.2 Optimal harvesting strategies

Many one class models of optimal harvesting, in epidemiology or even in mar-

keting lead to solution of the fastest approach type [8] . In this case the optimal

control problem consists of three phases. The first phase leads to the optimal equi-

librium solution, which for differential equation models agrees with the singular

solution. In the middle phase the solution is constant, while in the last phase the

control is extremal.

In epidemiology the last phase is usually the no care no vaccination phase, while

in the Nerlove- Arrow advertising model the last phase means no advertisement.

For multi-classes models with a nonlinear control a fastest approach has no direct

meaning. Nevertheless all solutions encountered with this model are of this three

phase type, see Fig 4.1,4.3. Phase 1, the recovery phase is a time interval with no

harvesting in which the population recovers from a precariously low level. This is

followed by a constant harvesting rate h = h1 until in the last phase, unrestricted

harvesting sets in.
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The first and the last phase are typically of the order 0.2 × k2. The duration and

form of the first phase depends of course on the initial value. That h1 ≈ hopt is

plausible, but in all cases we found h1 > hopt. However,in the middle phase they are

the same if δ = 1. From the results it is obvious that h1 − hopt is a decreasing func-

tion of δ. It is clear that the optimal control solution leads to a lower net parameter

so, because the constants a and b are based on the optimized equilibrium model. If

one makes so lower that means one permits to catch more fish at lower cost. But

for n(0) ≥ 10 or greater one can not reduce so more than 1 since the fertile classes

will not be large enough to produce more eggs in order to get a better results. The

same argument holds for making so higher. This means there is not enough fish to

balance the higher cost, particularly for n(0) = 3 or less. That h1 is larger than hopt

follows from the fact that with a smaller δ the future of the ecosystem is of lesser

importance. The extreme case δ = 0 for example results in h, to be maximal.

Unexpected,however, is a dip in the harvesting intensity to low levels before maximal

harvesting sets in. It could possibly be explained by an additional population growth

before all out harvesting sets in. As expected, the last phase harvesting profiles are

mostly independent of T , if T is large enough. The first phase,however, depends

on the initial conditions and will be longer if the initial population is smaller. Thus

the solutions are almost of the fastest approach type. The difference to differential

equation models is of course also a consequence of the built in time delay. It is

important to note that there is no indication for periodic or pulse fishing solutions.

Pulse fishing solutions are excluded, because a reduction of a stock to almost zero

require h to be extremely large and corresponding cost to be very large. For periodic

solution the argument is similar, because a reduction of the population to low levels

requires a large h. This is not easy compensated by the low h phases, because the

marginal effect of h decreases with in increasing h. This can easily be seen from the

H1(h, s) curves.

The following tables give the main results for J as a function of n(0) = 5, 7, 10, 15.

and so the optimal mesh parameter with k1 = 0.3. This means a profit of 40%.

Where hoptc is the solution from optimal control with hin = 0.02 for t ≤ 10 hin =

hopt for t ≥ 11, δ = 0.96 and initial condition of the xi equal to 25 percent of the

equilibrium solution. We denote this by xi(1) = eq
4

. For illustration purpose one
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can also use other initial condition namely xi equal to 10 percent of the equilibrium

or random but small initial conditions. The idea here is, that even with excessive

harvesting the population has attained a form of equilibrium.

n(0) so hopt J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

5 8 0.391 7.4487×108 6.7798×108 5.1866×108 2.8179×108

7 7 0.395 1.1768×109 1.1370×109 9.6051×108 6.6894×108

10 6 0.401 1.7136×109 1.7407×109 1.5712×109 1.2342×109

15 5 0.421 2.4105×108 2.5986×109 2.4615×109 2.0778×109

Table 4.1: All vital parameters are applied for cod population with Ricker function which are fixed in the

previous chapter. As one expects that J is increasing function of n but s0 is decreasing function of n. T = 3k2 and

δ = 0.96.

The following table gives the results for n(0) = 5, 7, 10, 15 by using all parameters

as above but T = 4k2.

n(0) so hopt J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

5 8 0.391 7.7578×108 7.0964×108 5.4799×108 3.0597×108

7 7 0.395 1.2174×109 1.1796×109 1.0010×109 7.0370×108

10 6 0.401 1.7631×109 1.7955×109 1.6250×109 1.2818×109

15 5 0.421 2.4690×109 2.6655×109 2.5318×109 2.1418×109

Table 4.2: The same parameters as before but T = 4k2. J has the same behavior as before and it is independent

of T .

The following table gives the results for n(0) = 5, 7, 10, 15 by using all parameters

as above but xi(1) = eq
10

. It is obvious that in this case the total yield is smaller.
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n(0) so hopt J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

5 8 0.391 2.9795×108 2.4375×108 1.1780×108 -6.8056×107

7 7 0.395 6.6349×108 6.2904×108 4.8129×108 2.3890×108

10 6 0.401 1.1483×109 1.1703×109 1.0227×109 7.3043×108

15 5 0.421 1.7976×109 1.9626×109 1.8395×109 1.4958×109

Table 4.3: Results of total yield for cod population with xi(1) = eq
10

, k1 = 0.3 and T = 3k2

The following table gives the results for n(0) = 5, 7, 10, 15 by using all param-

eters as above but the initial state conditions are taken as xi(1) = eq
10

+ k0
eq
10

where

k0 is a random number between 0 and 1.

n(0) so hopt J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

5 8 0.391 4.8351×108 4.0329×108 2.5057×108 6.5176×107

7 7 0.395 8.6586×108 8.6649×108 6.8770×108 4.2020×108

10 6 0.401 1.3749×109 1.4236×109 1.2711×109 9.6465×108

15 5 0.421 2.0303×109 2.2918×109 2.0168×109 1.7455×109

Table 4.4: Results of total yield for cod population with xi(1) = eq
10

+ k0
eq
10

, k1 = 0.3 and, T = 3k2

The following table gives the results for n(0) = 7, 10 by using all parame-

ters as above but δ = 0.98 and xi(t) = eq
4

. Obviously the total harvest depends

monotonically on the discount factor.

T n(0) so hopt J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

3k2 7 7 0.395 2.9279×109 2.8774×109 2.5593×109 2.0037×109

4k2 7 7 0.395 3.2834×109 3.2477×109 2.9077×109 2.3016×109

3k2 10 6 0.401 4.0242×109 4.0997×109 3.7968×109 3.1646×109

4k2 10 6 0.401 4.4715×109 4.5772×109 4.2606×109 3.5743×109

Table 4.5: Results of total yield for cod population with xi(1) = eq
4

, k1 = 0.3 and δ = 0.98
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The following table gives the results for n(0) = 7, 10 by using all parameters

as above but δ = 0.98 and xi(1) = eq
10

.

T n(0) so hopt J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

3k2 7 7 0.395 2.2823×109 2.2334×109 1.9461×109 1.4475×109

4k2 7 7 0.395 2.6402×109 2.6035×109 2.2941×109 1.7446×109

3k2 10 6 0.401 3.3399×109 3.4026×109 3.1242×109 2.5424×109

4k2 10 6 0.401 3.7872×109 3.8819×109 3.5878×109 2.9515×109

Table 4.6: Results of total yield for cod population with xi(1) = eq
10

, k1 = 0.3 and δ = 0.98

These results indicate that the optimal control solution leads to a lower net param-

eter as was noted before. In addition if one reduces so by more than 2 units, the

total harvest decreases. The results will be presented as the next table for n(0) = 7,

but the same situation prevails for other values of n(0) and δ.

T so hopt J(so − 3, hoptc) J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

3k2 7 0.395 2.7143×109 2.9279×109 2.8774×109 2.5593×109 2.0037×109

4k2 7 0.395 3.0306×109 3.2834×109 3.2477×109 2.9077×109 2.3016×109

Table 4.7: Results of total yield for cod population with xi(1) = eq
4

, k1 = 0.3 and δ = 0.98.
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The following plots give typical harvesting profiles.As we noted before the first

phase is a time for recovering to population from low level,then harvesting at rate

≈ hopt and the final phase,the unrestricted harvesting sets in.
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Figure 4.1: Optimal harvesting for cod populations and Ricker function with xi(1) =
eq
4 , bhopt = 0.3H, δ = 0.96, T = 3k2 and n(0) = 10.
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Figure 4.2: Cod population for several age classes after harvesting, Ricker function with

xi(1) = eq
4 , bhopt = 0.3H1, δ = 0.96, T = 3k2 and n(0) = 10.

Note that even for moderate fishing intensities the higher classes i > 18 are

very thinly occupied. Remember that harvesting essentially set in for i > k2

3
. Thus

with optimal harvesting there will be much fewer large fish. The results for the

various classes indicate that it seems to be advantageous to build up the middle

classes i = 9 to 16 for higher egg production first in all out harvesting. It would be

interesting if this phenomenon also arises in the recovery phase.
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Figure 4.3: The optimal harvesting is independent of T . Here T = 4k2. The last 11 years

give the same profile as T = 3k2.

We have noted above that the optimal model with discount factor 0 < δ < 1

will lead to a higher h1, the equilibrium of the optimal control model. Numerically

h1(δ) is monotone decreasing. Likewise one expects this effect to be more dominant

for larger n(0).
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Figure 4.4: The first phase depends on the initial value of population. Optimal harvesting

for cod populations and Ricker function with the same parameters but xi(1) = eq
10
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Figure 4.5: Optimal harvesting for cod populations and Ricker function with xi(1) =
eq
10 + k0

eq
10 , bhopt = 0.3H1, δ = 0.96, T = 3k2 and n(0) = 10.
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Figure 4.6: Optimal harvesting for cod populations and Ricker function with xi(1) =
eq
4 , bhopt = 0.3H1, δ = 0.96, T = 3k2 and n(0) = 5. Note that the dip in the last phase is

smaller if n(0) is smaller.
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Figure 4.7: Optimal harvesting for cod populations and Ricker function with the same

parameters but xi(1) = eq
10 and T = 3k2.

For completeness sake we also compare Ricker and Beverton-Holt optimal con-

trol harvesting for n(0) = 5, 7, 10, 15, T = 3k2, δ = 0.96, s0 − 1 and s0.

All computation based on cod population.
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n(0)
Ricker function Beverton-Holt function

hopt so J(so − 1, hoptc) J(so, hoptc) hopt so J(so − 1, hoptc) J(so, hoptc)

5 0.391 8 6.7798×108 5.1866×108 0.314 9 9.5334×108 6.2094×108

7 0.395 7 1.1370 ×109 9.6051 ×108 0.345 9 1.8269 ×109 1.2420 ×109

10 0.401 6 1.7407×109 1.5712×109 0.309 8 3.1095×109 2.4506×109

15 0.421 5 2.5986×109 2.4615×109 0.326 8 5.5114×109 4.3647×109

Table 4.8: The results of optimal harvesting for different recruitment functions with the same other parameters

.As we noted before the Beverton-Holt recruitment gives a higher results than Ricker function.

For using E0BH = E0Rln(n(0))
(n(0)−1)

the results for Ricker and Beverton-Holt optimal

control harvesting are also given for n(0) = 7, 10, T = 3k2, δ = 0.96, s0 − 1 and s0.

n(0)
Ricker function Beverton-Holt function

hopt so J(so − 1, hoptc) J(so, hoptc) hopt so J(so − 1, hoptc) J(so, hoptc)

7 0.395 7 1.137 ×109 9.6051 ×108 0.345 9 5.9249×108 4.0278 ×108

10 0.401 6 1.7407×109 1.5712×109 0.309 8 7.9550×108 6.2699×108

Table 4.9: The results of optimal harvesting for different recruitment functions with the same other parame-

ters,but E0BH =
E0Rln(n(0))

(n(0)−1)

This result also shows that the discrepancy for adjusted recruitment functions pre-

vails.
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Figure 4.8: Optimal harvesting for cod populations and Beverton-Holt function with

xi(1) = eq
10 , bhopt = 0.3H1, δ = 0.96, T = 3k2 and n(0) = 10. The same as before there are

three phases of optimal harvesting the first one is a short time to recover of population

from low density, then the harvesting with rate h1 and the last phase is the unrestricted

harvesting. Note that the constant middle phase is lower than for Ricker recruitment.

4.3 Near optimal strategies

The general optimal harvesting strategy is approximately of the following form:

For some initial time interval [0, n1] = I the harvesting intensity is nearly zero. On

an interval I2 = [n1 + 1, n2], n1 ≈ k2

3
, n2 ≈ T − k2

3
, the harvesting rate is almost

constant with h1 ≈ hopt, while it is maximal on the final interval [n2, T ]. In the

interval I1 the population is built up to a sufficiently high level. In I2 this level is
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kept, while is it optimal to exploit the stock as much as possible in the last interval,

because no one cares what happens after T . The solution is thus of the almost

fastest approach type. It is quite clear that a considerable no harvest interval I1 is

economically and politically not feasible. for that reason we propose the following

near optimal strategies :

Step 1:

Fix all parameters as above and determine an optimal harvesting intensity hopt based

on the equilibrium model .

Step 2:

For the time horizon T define the harvesting strategy as

ht =

{
α1hopt : 1 ≤ t ≤ n1 α1 = 0.2 or 0.3

hopt : n1 + 1 ≤ t < T
(4.5)

T should be large, at least 3k2. We will compute the total yield ht and compare

it with the optimal control solution.

A few remarks can be made to begin with. n1 should be approximately k2

3
to k2

2
. Once

the second stage is reached the solution should approach the equilibrium optimal

harvest rate rather rapidly because most of the eigenvalues λ of the equilibrium

Jacobian are ≤ 0.96.

The following tables give the main results of intensive computations for n(0) =

3, 5, 7, 10, 15, and so the optimal mesh parameter with k1 = 0.3, δ = 0.96. The

initial conditions are xi equal to 25 percent of the optimal solution and n1 = 10.

The idea here is, that even with excessive harvesting the population has attained

some form of an equilibrium.
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n(0) so hopt J(so, hoptc) J(ht, α1 = 0.2 J(ht, α1 = 0.3)

3 9 0.323 1.0236×108 8.4559×107 8.0175×107

5 8 0.391 5.1866×108 5.0577×108 4.9802×108

7 7 0.395 9.6051×108 9.4889×10 9.4207×108

10 6 0.401 1.5712×109 1.5402×109 1.5416×109

15 5 0.421 2.4615×109 2.3588×109 2.3828×109

Table 4.10: Results of total yield for cod population and Ricker function with k1 = 0.3, T = 3k2

From the results in the table(4.10), one can see that for small n(0) choosing

α1 = 0.2 strategy is better than α1 = 0.3 because it gives the population time to

recover. But for large n(0) i.e n(0) ≥ 10 the α1 = 0.3 is much better.

The following table gives the results for n(0) = 3, 5, 7, 10, 15 by using all parameters

as above but T = 4k2.

n(0) so hopt J(so, hoptc) J(ht, α1 = 0.2) J(ht, α1 = 0.3)

3 9 0.323 1.1693×108 1.0082×108 9.6437×107

5 8 0.391 5.4799×108 5.3769×108 5.2994×108

7 7 0.395 1.0010×109 9.9326×108 9.8645×108

10 6 0.401 1.6250×109 1.5997×109 1.6011×109

15 5 0.421 2.5318×109 2.4387×109 2.4627×109

Table 4.11: Results of total yield for cod population and Ricker function with k1 = 0.3, T = 4k

The following table gives the results for n(0) = 5, 7, 10 with T = 3k2 and T = 4k2

respectively by using δ = 0.98.
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T n(0) so hopt J(so, hoptc) J(ht, α1 = 0.2 J(ht, α1 = 0.3)

3k 5 8 0.391 1.6072×109 1.5640×109 1.5478×109

4k 5 8 0.391 1.8588×109 1.8269×109 1.8107×109

3k 7 7 0.395 2.5593×109 2.5131×109 2.4982×109

4k 7 7 0.395 2.9077×109 2.8785×109 2.8636×109

3k 10 6 0.401 3.7968×109 3.7151×109 3.7108×109

4k 10 6 0.401 4.2606×109 4.2053×109 4.2009×109

Table 4.12: The same parameters are used for cod population and Ricker function, but δ = 0.98

The following table gives the results for cod population for n(0) = 5, 7, 10,

δ = 0.96 with T = 3k2 and T = 4k2 respectively but Beverton-Holt function is used

.

T n(0) so hopt J(so, hoptc) J(ht, α1 = 0.2 J(ht, α1 = 0.3)

3k 5 9 0.314 6.2094×108 5.6660×108 5.7073×108

4k 5 9 0.314 6.6937×108 6.2093×108 6.2506×108

3k 7 9 0.345 1.2420×109 1.1143×109 1.1311×109

4k 7 9 0.345 1.3207×109 1.2012×109 1.2179×109

3k 10 8 0.309 2.4506×109 2.3175×109 2.3417×109

4k 10 8 0.309 2.5727×109 2.4548×109 2.4790×109

Table 4.13: The same parameters are used for cod population and Beverton-Holt function, but δ = 0.96

These results indicate that such a policy would give the fishing industry suf-

ficient time to adapt and restructure. This should involve result in lower subsidies,

adequate fishing gear, reduction of the fleet and reduction of the work force.

The following tables give results of another strategy which is more politically ac-

ceptable and more realistic because most of fish stocks are a very low level far from

equilibrium, so all results are given here with the same vital parameters and the

same harvesting intensity but n1 = 15 with α1 in (4.5) will be 0.3 or 0.4 and the

initial conditions are xi ≈ 17% of the equilibrium solution. The idea is also here
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to search and choose a better strategy which is more applicable politically and eco-

nomically ,because one can not say that a stop of fishing and close fishery for n1

years.

n(0) so hopt J(so, hoptc) J(ht, α1 = 0.3 J(ht, α1 = 0.4)

5 8 0.391 3.2352×108 2.6672×108 2.4023×108

7 7 0.395 7.3364×108 6.4035×10 6.1728×108

10 6 0.401 1.3179×109 1.1305×109 1.1284×109

15 5 0.421 2.1825×109 1.7889×109 1.8387×109

Table 4.14: All results applied on cod population with k1 = 0.3, T = 3k2

The following table gives the results for a cod population with n(0) = 5, 7, 10, 15

by using all parameters as above but T = 4k2.

n(0) so hopt J(so, hoptc) J(ht, α1 = 0.3) J(ht, α1 = 0.4)

5 8 0.391 3.5276×108 2.9865×108 2.7215×108

7 7 0.395 7.7408×108 6.8472×108 6.6165×108

10 6 0.401 1.3714×109 1.1900×109 1.1879×109

15 5 0.421 2.2525×109 1.8688×109 1.9186×109

Table 4.15: The same parameters as above but, T = 4k2
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The following table gives the results for cod population for n(0) = 7, 10, δ =

0.96 with T = 3k2 and T = 4k2 respectively but Beverton-Holt function is used.

T n(0) so hopt J(so, hoptc) J(ht, α1 = 0.3 J(ht, α1 = 0.4)

3k 7 9 0.345 6.6975×108 5.7630×108 5.3548×108

4k 7 9 0.345 7.4883×108 6.6359×108 6.2276×108

3k 10 8 0.309 1.6517×109 1.4693×109 1.4295×109

4k 10 8 0.309 1.7742×109 1.6066×109 1.5667×109

Table 4.16: The same parameters are used for cod population with Beverton-Holt function.

4.4 Some numerical results for herring

The main results of intensive computations are presented for herring popula-

tions for n(0) = 3, 5, 7, and 10 as well as all vital parameters are chosen as before

with k1 = 0.3. Here we also denote that hoptc is the solution from optimal control

with initial input hin = 0.02 for t ≤ 10, hin = hopt for t ≥ 11, δ = 0.96 and initial

condition of the xi(1) equal to 25 percent of the equilibrium solution. Other initial

conditions will be used namely xi(1) equal to 10 percent of the equilibrium. One

can also see that even with excessive harvesting the population has attained a form

of equilibrium.

n(0) so hopt J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

3 6 0.265 158.9959 142.1745 95.7644 25.5892

5 5 0.36 440.4588 458.9407 377.5458 206.1034

7 5 0.499 824.9086 853.5809 683.8780 354.9264

10 5 0.678 1.4628×103 1.4865×103 1.1348×103 569.0673

Table 4.17: Results of total yield based on herring population with Ricker function and k1 = 0.3, T = 3k2

The following table gives the results for n(0) = 5 by using all parameters as above

but xi(1) = eq
10
T = 3k2, and T = 4k2. It is also in this case the total yield is smaller

than before.
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T n(0) so hopt J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

3k 5 5 0.36 231.0874 244.6137 178.1270 39.7865

4k 5 5 0.36 253.3328 269.9631 202.7933 58.8149

Table 4.18: The same parameters with k1 = 0.3, T = 3k2,and T = 4k2 for n(0) = 5, but xi(1) = eq
10
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Figure 4.9: The optimal harvesting profile for herring population has the same behavior as

for cod population. Ricker function is used with xi(1) = eq
4 , bhopt = 0.3H1, δ = 0.96, T =

3k2 and n(0) = 7.
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Figure 4.10: Herring population for several age classes after harvesting, Ricker function

with xi(1) = eq
4 , bhopt = 0.3H1, δ = 0.96, T = 3k2 and n(0) = 7.
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Figure 4.11: As before the optimal harvesting is independent on T . T = 4k2. The first

and the last 11 years give the same profile as T = 3k2

Some results will be presented for near optimal strategies which based on

herring population. The following tables give results for n(0) = 3, 5, 7, 10 and

s0 the optimal mesh parameter with k1 = 0.3, δ = 0.96, δ = 0.98, T = 3k2, and

T = 4k2. The initial conditions are xi(1) equal to 25 percent of the optimal solution.
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n(0) so hopt J(so, hoptc) J(ht, α1 = 0.2 J(ht, α1 = 0.3)

3 6 0.265 95.7644 85.5454 82.5975

5 5 0.36 377.5458 355.4343 352.2861

7 5 0.499 683.8780 639.2437 642.6193

10 5 0.678 1.1348×103 1.0331×103 1.0546×103

Table 4.19: The total yield for near optimal strategy with k1 = 0.3, T = 3k2, δ = 0.96

The following table gives the results for n(0) = 3, 5, 7, 10 by using all parame-

ters as above but T = 4k2.

n(0) so hopt J(so, hoptc) J(ht, α1 = 0.2) J(ht, α1 = 0.3)

3 6 0.265 105.8719 97.4584 94.5099

5 5 0.36 402.3794 382.8855 379.7373

7 5 0.499 723.9822 682.0348 685.4104

10 5 0.678 1.1956×103 1.0968×103 1.1182×103

Table 4.20: The same all parameters as above but T = 4k2
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The following table gives the results for n(0) = 3, 5, 7 with T = 3k2 and

T = 4k2 respectively by using δ = 0.98.

T n(0) so hopt J(so, hoptc) J(ht, α1 = 0.2 J(ht, α1 = 0.3)

3k 3 6 0.265 298.5738 271.2311 264.8985

4k 3 6 0.265 362.4683 340.5807 334.2454

3k 5 5 0.36 893.5978 854.3392 846.9929

4k 5 5 0.36 1.0456×103 1.0141×103 1.0068×103

3k 7 5 0.499 1.5061×103 1.4407×103 1.4417×103

4k 7 5 0.499 1.7475×103 1.6898×103 1.6908×103

Table 4.21: The same parameters aa above but δ = 0.98 is used.

The following tables give results for n(0) = 3, 5, 7 by using Beverton-Holt

function and s0 the optimal mesh parameter with k1 = 0.3, δ = 0.96, T = 3k2,

and T = 4k2. The initial conditions are xi(1) equal to 25 percent of the equilibrium

solution.

T n(0) so hopt J(so − 2, hoptc) J(so − 1, hoptc) J(so, hoptc) J(so + 1, hoptc)

3k2 3 7 0.256 246.5031 190.9195 103.5260 -1.7514

4k2 3 6 0.265 259.9937 205.1952 116.7521 8.4515

3k2 5 6 0.2870 776.3458 685.7707 480.0812 199.6436

4k2 5 6 0.287 813.0615 724.6400 516.0599 227.7294

3k2 7 6 0.339 1.4929×103 1.3136×103 924.3678 413.9924

4k2 7 6 0.339 1.5611×103 1.3837×103 986.7503 460.7569

Table 4.22: The results by using Beverton-Holt function. The negative sign indicates the harvesting is uneco-

nomic
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Chapter 5

Life near extinction

5.1 Life at the limit

The fact that most commercial marine fish stocks are near collapse in mean-

while common knowledge. The sharply reduced landings are clear evidence for this.

Despite the fact that fishery scientists propose moderate fishing quotas or different

gear, these suggestions are consistently ignored by politicians acting on the advice

of a well entrenched lobby [23]. The threat of ten thousand or more unemployed

fishermen alone generally suffices to lay the ground for irrational behaviour. On

the other hand it has to be admitted that scientists are most often too cautious in

their statements and the complex world of fishery science teems with contradictory

statements to what extent overfishing, environment or climate are responsible for

the decline in landings. Froese at al [24] argue vehemently that the decline is largely

due to overfishing and in a model calculation they show that even a rather moderate

change in fishing policy might yield higher returns within a 5 year interval. These

calculations, however, are based on a bulk model and will not stand up to calcula-

tions based on this model. Fernandes and Cook [21] argue that the status of fish

stock is not as bad as anticipated and is even rebounding. Some authors attribute

the population variability mostly to environmental effects, while Hilborn et al [35]

see the parent stock as the main factor. Thus there are a large number of models to

explain various aspects of the marine fish ecosystem. On top of this one has a very

insecure data basis, based on landings and a few trawler surveys. As an example for

this state of affairs consider the rather rudimentary understanding of the recruit-
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ment process which is rather important for the life cycle of marine fish. Another

important aspect in this analysis is depensation at low densities (Allee effect). So far

there are good indications that there is no depensation at low densities. Nonetheless

there are rather large insecurities in setting up a good causal predictive model. The

only reasonable predictive models so far are multivariate autoregressive statistical

models[39], which are hardly based on the biology of marine fish. Nonetheless we

will study here the effect of various factors on marine fish populations, which are

described by the above model in order to get some idea on the size of various factors.

First these factors will be studied separately in order to determine their impact and

their sensitivity. Then various combinations will be analyzed and then a further

aspect recovery scenarios will be studied. The fine model based on year classes will

be used in all computation throughout this chapter.

5.2 Fishing:

Most people see overfishing as the main danger, and even when quotas are set,

these are generally too high. In addition illegal fishing and piracy take their toll.

An important aspect in the bycatch which may threaten the young fish. Froese [23]

estimated the profit margin in the EU as 3 to 6%. Together with the piracy and

substantial subsidies it is therefore plausible to set the actual harvesting intensity

near the break even intensity. The break even intensity is defined as the fishing

mortality at which cost equals profit. This seems to be justified in view of the

subsidies for fuel, unemployment benefit, and the fact that piracy, illegal fishing and

the bycatch etc. amount to 5-10% of the harvest. Thus it seems plausible that most

of the European cod fishery is run near the break even intensity.

Another aspect is highgrading. This occurs because mature fish are more valuable

than younger ones. Thus fishermen will discard the part of a catch consisting mainly

of younger fish, in order to stay within the allowed quotas. Highgrading occurs

because the harvest of young fish is too high and because the mesh width is too

small. Overfishing thus has two aspects, the quotas are too high and the meshes of

the fishing nets are too fine. As expected fishermen will opt for smaller mesh width.

For this reason we will also have to consider the use fishing nets with finer meshes.

We model this as s0 −→ s0 − 1, s0 − 2.
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5.3 Environmental factors

That the environment plays an important role for marine fish can be seen from

the large variation in the net reproductive number. Environmental factors act in

various phases of the life cycle

1-Oviposition:

Oviposition is influenced by the temperature of the water, its salinity, presence of

predators and status of the environment. The general increase in temperature in

recent years and the damage inflicted by aggressive fishing gear (ground nets) will

certainly have a negative effect. We will model these negative effects by

c −→ ce−P0 (5.1)

Problematic is of course to estimate P0 properly. In view of the large variation of

n(0), we can expect

0 ≤ P0 ≤ 0.2 (5.2)

and model calculations will be made for P0 = 0, 0.1, 0.2. Note that the oviposition

effect reduces n(0) to approximately n(0)exp(−P0). Thus the sensitivity of P0 will

be essentially proportional of n(0). The effect of P0 is only to reduce the optimal

intensity hopt as well as the net gain. In the remainder we will speak of a perturbed

model, if the perturbation c −→ ce−P0 is applied. This applies similarly to other

perturbations introduced below.

2-The larval and juvenile phase:

The larval stage is the most important phase in the life of marine fish. Since the

larvae have a high demand for food. Competition and lack of food and their fate

as bycatch determine their development. In addition the larvae and young fish are

preyed upon and sickness and cannibalism take their toll. Thus in bad years their

progression can be severely curtailed. We model this by

τi = e−µ −→ e−(µ+P1) with 0 ≤ P1 ≤ 0.2 (5.3)

for i = 1, 2, 3, 4. It is obvious that this rather global factor influences the develop-

ment of the population more than P0, because it acts over several years.

96



3-The adult phase

Lack of food and being preyed upon will be the dominant factor influencing marine

fish in the adult phase. Again, this can be caused by environmental effects and

the competition with other species or increased harvesting through piracy illegal

harvesting. Misreporting will also influence our picture. We express it in general as

τi = e−µ −→ e−(µ+P2) with 0 ≤ P2 ≤ 0.2 (5.4)

Note that the fishing mortality is about 0.3 to 0.4.

5.4 Harvesting near the break even point

Unrestricted competitive harvesting of fish will continue until is not profitable

any more. With subsidies fishing will even go beyond that. Currently harvesting of

fish in the EU is close to that and the profit margin is 3-6% [23], though even that

is uncertain because of the many forms of subsidies handed out by the European

Union. So in this section we will take a 4% profit margin as our baseline scenario.

That means the cost parameters a and b are equal to 0.48 from the total harvested

amount H i.e k1 = 0.48, because the fishermen have agreed to harvest as much as

it is economically feasible. On the other hand we have additional perturbations

coming from the environmental factors. Likewise we will determine the sensitivity

with respect these parameters. This will be studied for the environmental factors

P0, P1 and P2 separately for values between 0 and 0.2. In addition we will take a

reduction in the width of fishing nets into account. But generally these factors may

operate together. Thus if the fish stocks continue to suffer from a high harvesting

intensity, their state may be out of safe biologically as well as economically limits

[24]. The environmental factors will be considered via oviposition, juvenile or larval

phase and adult phase as we noted above. The basic questions are then the influence

on the profit (NH) and survival of species n(0). The negative effects listed above

will in general lead to a negative net gain. To be sure, this will be made up by

subsidies. This, however, is not part of our model. Thus we will rather concentrate

on the population and n as a function of h, P0, P1, and P2. It is obvious that

n(h, P0.P1, P2) ≈ e−P0n(h, 0.P1, P2)
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This, however, holds only approximately, because P0 will shift the optimal h. Since

P1 acts for 4 or 5 years its effect will be stronger than that of P0. The greatest

effect,however, is due to P2, which acts throughout the whole adult life.

It is also clear that this model can not predict a total collapse of a population.

Even moderate n ≥ 2. will lead to an eventual recovery of the population. The

main reason is that we treat the population as a continuous variable. At very low

densities we might in fact have an Allee effect, which then would lead to extinction.

This, however, is no reason to rejoice, because a longer period of low density will

have a severe effect on the food web. This applies in particular to cod, which is

the top predator. So the effect of low density might in fact result in an extinction

because cod might be replaced by another predator, leaving little room for recovery.

This, however, goes beyond this model.

The computations will be made for cod only and µ ≈ 0.2 as well as the weight

distribution Wi will be fixed. So the only factor that distinguishes a stock is n(0)

the natural reproduction rate. It clear that a stock with n(0) larger than 6 or 7 will

recover more rapidly from disaster and will not go extinct than a stock with small

n(0). Thus we will also limit ourselves to 2 ≤ n(0) ≤ 5.
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The results in the following table based on cod population with Ricker recruit-

ment. Here the cost terms a and b will be defined by a 4% profit. Otherwise we

use the same vital parameters namely µ, Fi, and Wi, which have been used in the

previous chapters.

n(0)

Unperturbed model with optimal s0 Perturbed model P0 = 0.1

so hopt n(hopt)
∑30
i=4 x̄i x̄12 hopt n(hopt)

∑30
i=4 x̄i x̄12

2 10 0.1092 1.6149 3.113×108 9.469 ×106 0.0923 1.5014 2.684×108 8.309×106

3 10 0.1765 2.2080 4.809×108 1.357×107 0.1603 2.0386 4.395×108 1.264×107

4 9 0.1930 2.6836 5.884×108 1.446 ×107 0.1785 2.4801 5.492×108 1.386×107

5 9 0.2239 3.2164 6.751×108 1.566 ×107 0.2103 2.9631 6.363×108 1.514×107

n(0)
Perturbed model P0 = 0.2

hopt n(hopt)
∑30
i=4 x̄i x̄12

2 0.0757 1.3979 2.2491×108 7.0811×106

3 0.1438 1.8855 3.9789×108 1.1657×107

4 0.1638 2.2954 5.0974×108 1.3209×107

5 0.1963 2.7336 5.9741×108 1.4592×107

Table 5.1: All quantities here are a decreasing function of parameter P0. All results based on cod populations

with Ricker function, k1 = 0.48 from total harvested amount P0 = 0, 0.1 and 0.2 with P1 = P2 = 0.
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The following table gives results based on cod populations with Ricker function

with the same vital parameters as above but values P1 = 0.1, and 02 are used.

n(0)

Unperturbed model with optimal s0 Perturbed model P1 = 0.1

so hopt n(hopt)
∑30
i=4 x̄i x̄12 hopt n(hopt)

∑30
i=4 x̄i x̄12

2 10 0.1092 1.6149 3.113×108 9.469 ×106 0.0436 1.2168 1.390×108 4.417×106

3 10 0.1765 2.2080 4.809×108 1.357×107 0.1101 1.6215 3.206×108 9.531×106

4 9 0.1930 2.6836 5.889×108 1.446 ×107 0.1341 1.9748 4.398×108 1.174×107

5 9 0.2239 3.2164 6.751×108 1.566 ×107 0.1673 2.3368 5.311×108 1.337×107

n(0)
Perturbed model P1 = 0.2

hopt n(hopt)
∑30
i=4 x̄i x̄12

2 0.00001 0.8987 0×108 0×106

3 0.0444 1.2214 1.4483×108 4.4918×106

4 0.0758 1.4837 2.7655×108 7.9538×106

5 0.108 1.7364 3.7485×108 1.0218×107

Table 5.2: This table shows that the larval and juvenile factor has more severe effect on results than the

oviposition factor because it operates for several years. All results based on cod populations with Ricker function,

a and b are 0.4% profit, P1 = 0, 0.1 and 0.2 with P0 = P2 = 0.

Note that for large values of P1 will make the n(0) less than one, especially for

n(0) = 2, then the population will die out and this will effect on other quantities

likewise.

The following table gives result based on cod populations with Ricker function with

the same vital parameters but P0 = 0, P1 = 0, and P2 = 0.1, 0.2. In case n(0) = 2,

or 3 and for large values of P2 > 0.1 the n(hopt) becomes less or equal 1, then the

population will die out, on the other hand as soon as the n(hopt) is less than 1.02 or

1.03 , the population is principle in danger to die out.
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n(0)

Unperturbed model with optimal s0 Perturbed model P2 = 0.1

so hopt n(hopt)
∑30
i=4 x̄i x̄12 hopt n(hopt)

∑30
i=4 x̄i x̄12

2 10 0.1092 1.6149 3.113×108 9.469 ×106 0.0163 1.0399 4.119×107 8.640×105

3 10 0.1765 2.2080 4.809×108 1.357×107 0.1390 1.3870 3.171×108 5.680×106

4 9 0.1930 2.6836 5.884×108 1.446 ×107 0.1785 1.7056 5.030×108 7.584×106

5 9 0.2239 3.2164 6.751×108 1.566 ×107 0.2307 2.0407 6.457×108 8.746×106

n(0)
Perturbed model P2 = 0.2

hopt n(hopt)
∑30
i=4 x̄i x̄12

2 0.00001 0.8987 0×108 0×106

3 0.00001 0.6587 0×108 0×106

4 0.1079 1.2083 2.6165×108 2.6040×106

5 0.1989 1.430 4.6874×108 3.8413×106

Table 5.3: All results based on cod populations with Ricker function, k1 = 0.48, P0 = 0, 0.1 and 0.2 with

P1 = P2 = 0. One can see the effect of P2 on results is more pronounced than others because it acts on the whole

life .

In the following table, one can study the sensitivity of hopt, and n(hopt), with

respect to P0, P1, and P2.
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n(0)
4hopt
4P0

4hopt
4P1

4hopt
4P2

4n(hopt)

4P0

4n(hopt)

4P1

4n(hopt)

4P2

2 -0.169 -0.656 -0.929 -1.135 -3.981 -5.75

3 -0.162 -0.664 -0.375 -1.694 -5.865 -8.21

4 -0.145 -0.589 -0.145 -2.035 -7.088 -9.78

5 -0.136 -0.566 0.068 -2.533 -8.796 -11.757

Table 5.4: As expected P2 acts most severely on h and n. All results based on cod populations with Ricker

function, k1 = 0.48, and 4P0 = 0− 0.1,4P1 = 0− 0.1 and 4P2 = 0− 0.1

Next figure exhibits the effect of the environmental factors on the total harvesting

amount for n(0) = 3. As expected P2 acts most severely on n, and h followed by P1 and

finally by P0. For other values of n(0), it has the same behavior.
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Figure 5.1: The total harvesting H is based on cod population with Ricker function with n(0) = 3, so =

10, and k1 = 4% profits. Here P represents the case when P0 = P1 = P2 = 0. The behavior of total harvesting

amount which is decreasing function of P0, P1 and P2. One can also see that the adult environmental factor has

more effect on total harvesting amount than oviposition as well as juvenile environmental factor. All environmental

factors are done separately
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To complete our investigation on the results when one reduces the optimal mesh

width s0 to s0 − 1 and s0 − 2 respectively. The following tables give results for n(0)=2,

3,4,5. All standard parameters are the same as before and the environmental factors are

done separately.

n(0)

so − 1 Unperturbed model Perturbed model P0 = 0.1

hopt n(hopt)
∑30
i=4 x̄i x̄12 hopt n(hopt)

∑30
i=4 x̄i x̄12

2 9 0.0910 1.5985 3.093×108 9.088×106 0.0767 1.4906 2.670×108 8.029×106

3 9 0.1508 2.1474 4.749×108 1.260×107 0.1360 1.9927 4.348×108 1.184×107

4 8 0.1653 2.5875 5.781×108 1.359×107 0.1519 2.4049 5.406×108 1.313×107

5 8 0.1951 3.0588 6.603×108 1.443×107 0.1818 2.8359 6.237×108 1.409×107

n(0)
Perturbed model P1 = 0.1 Perturbed model P2 = 0.1

hopt n(hopt)
∑30
i=4 x̄i x̄12 hopt n(hopt)

∑30
i=4 x̄i x̄12

2 0.0361 1.2149 1.387×108 4.344×106 0.0125 1.0398 4.113×107 8.598×105

3 0.0918 1.6048 3.186×108 9.144×106 0.1073 1.3748 3.158×108 5.496×106

4 0.1125 1.9421 4.353×108 1.133×107 0.1400 1.6746 4.988×108 7.447×106

5 0.1417 2.2750 5.237×108 1.273×107 0.1852 1.9762 6.378×108 8.432×106

Table 5.5: All results based on cod fish populations with Ricker function. The same parameters are used but

P0 = 0.1, P1 = 0.1 and P2 = 0.1 with the optimal mesh width s0 − 1.
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n(0)

so − 2 Unperturbed model Perturbed model P0 = 0.1

hopt n(hopt)
∑30
i=4 x̄i x̄12 hopt n(hopt)

∑30
i=4 x̄i x̄12

2 8 0.0759 1.5869 3.073×108 8.883×106 0.0639 1.4830 2.656×108 7.877×106

3 8 0.1271 2.1018 4.691×108 1.208×107 0.1141 1.9589 4.302×108 1.142×107

4 7 0.1400 2.5144 5.676×108 1.320×107 0.1282 2.3485 5.319×108 1.280×107

5 7 0.1671 2.9340 6.452×108 1.385×107 0.1548 2.7370 6.108×108 1.360×107

n(0)
Perturbed model P1 = 0.1 Perturbed model P2 = 0.1

hopt n(hopt)
∑30
i=4 x̄i x̄12 hopt n(hopt)

∑30
i=4 x̄i x̄12

2 0.0301 1.2136 1.383×108 4.303×106 0.0097 1.0397 4.106×107 8.577×105

3 0.0765 1.5929 3.166×108 8.935×106 0.0829 1.3662 3.144×108 5.455×106

4 0.0943 1.9186 4.306×108 1.115×107 0.1096 1.6522 4.943×108 7.514×106

5 0.1193 2.2293 5.162×108 1.245×107 0.1466 1.9275 6.296×108 8.481×106

Table 5.6: The same as before but P0 = 0.1, P1 = 0.1 and P2 = 0.1 with the optimal mesh width s0 − 2.

By the same way in the next tables the sensitivity is studied for hopt, n(hopt) and

Nopt with respect to P0, P1 and P2, but for s0 − 1.

n(0) s0 − 1
4hopt
4P0

4hopt
4P1

4hopt
4P2

4n(hopt)

4P0

4n(hopt)

4P1

4n(hopt)

4P2

2 9 -0.143 -0.549 -0.785 -1.079 -3.836 -5.587

3 9 -0.148 -0.590 -0.435 -1.547 -5.426 -7.726

4 8 -0.134 -0.528 -0.253 -1.826 -6.454 -9.129

5 8 -0.133 -0.534 -0.099 -2.229 -7.838 -10.826

Table 5.7: All results based on cod populations with Ricker function, k1 = 0.48,4P0 = 0 − 0.14P1 = 0 − 0.1

and 4P0 = 0− 0.1, but s0 − 1
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n(0) s0 − 2
4hopt
4P0

4hopt
4P1

4hopt
4P2

4n(hopt)

4P0

4n(hopt)

4P1

4n(hopt)

4P2

2 8 -0.120 -0.458 -0.662 -1.039 -3.733 -5.542

3 8 -0.130 -0.506 -0.442 -1.429 -5.089 -7.356

4 7 -0.118 -0.457 -0.304 -1.659 -5.958 -8.622

5 7 -0.123 -0.478 -0.205 -1.97 -7.047 -10.065

Table 5.8: All results based on cod populations with Ricker function, k1 = 0.48,4P0 = 0 − 0.14P1 = 0 − 0.1

and 4P0 = 0− 0.1, but s0 − 2

To conclude our study of the effect of environmental factors, we will combine all

these factors together. That means we will introduce perturbation P0 = P1 = P2 = 0.1.

We will also combine P0 = P1 = 0.1 and P2 = 0.2. The following tables give the result of

a cod population with Ricker function. All other vital parameters are the same as before

but n(0) = 4. The net gain is based on 4% profits. The optimal mesh width s0 is also

modified to s0 − 1 and s0 − 2.

n(0) = 4

Unperturbed model Perturbed model P0 = P1 = P2 = 0.1

hopt n(hopt)
∑30
i=4 x̄i x̄12 hopt n(hopt)

∑30
i=4 x̄i x̄12

s0 0.1930 2.684 5.884×108 1.446×107 0.0560 1.184 1.787×108 3.347×106

s0 − 1 0.1653 2.588 5.781×108 1.359×107 0.0433 1.183 1.783×108 3.333×106

s0 − 2 0.14 2.514 5.676×108 1.320×107 0.0339 1.181 1.779×108 3.342×106

Table 5.9: All results based on cod fish populations with Ricker function. Here the perturbations are P0 =

P1 = P2 = 0.1 with n(0) = 4.

Note that we found in all cases that the net reproductive rate n(hopt) becomes less

than one when we used P0 = P1 = 0.1 and P2 = 0.2. Thus the equilibrium value will

become 0.

105



we also computed the time development of a population with a harvesting rate of

hopt at 4% profit. We used x̄i , the equilibrium value of the static 4% profit margin model

as the initial value. This describes how a population evolves which has been harvested for

long time at rate hopt at the 4% profit level. The following table gives the evolution of such

a population with P0 = P1 = P2 = 0.1. So we will assume that the stock will suffer from

these factors for short time e.g. 5 years with harvesting rate hopt at 4% profits. The initial

value is the equilibrium value with n(0) = 3, 4 respectively. All other vital parameters are

the same as before. The optimal mesh width s0 is also modified to s0 − 1 and s0 − 2. All

results based on cod population with Ricker function.

s

hopt Unperturbed model Perturbed model P2 = P1 = P0 = 0.1∑30
i=4 xi(5) x12(5)

∑30
i=4 xi(5) x12(5)

s0 0.1765 4.7912×108 1.3571×107 3.2117×108 9.0971×106

s0 − 1 0.1508 4.7259×108 1.2596 ×107 3.1678×108 8.4436×106

s0 − 2 0.1271 4.6625×108 1.2078×107 3.125×108 8.0964×106

Table 5.10: All other vital parameters are the same but P0 = P1 = P2 = 0.1 and n(0) = 3.

s

hopt Unperturbed model Perturbed model P2 = P1 = P0 = 0.1∑30
i=4 xi(5) x12(5)

∑30
i=4 xi(5) x12(5)

s0 0.193 5.9614×108 1.446×107 3.996×108 9.691×106

s0 − 1 0.1653 5.854×108 1.3594 ×107 3.968×108 9.112×106

s0 − 2 0.1400 5.7448×108 1.3204×107 3.851×108 8.851×106

Table 5.11: All other vital parameters are the same but P0 = P1 = P2 = 0.1 and n(0) = 4.
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As a final example we study a crash scenario evolution of a population with s0 −
2, P0 = P1 = 0.1 and P 2 = 0.2 lasting for 5 or 10 years for various n(0) = 2, 3, 4, 5. The

initial value is the equilibrium value at 4% profit. The time evolution total population∑30
i=4 xi is computed with harvesting rate at the 4% profit level. Note that in this scenario

the net reproductive rate n(0) is less than one in the static model. The crash scenario

results are given in the following tables .

n(0)

hopt Unperturbed model Perturbed model P0 = P1 = 0.1, P2 = 0.2∑30
i=4 xi(5) x5(5) x12(5)

∑30
i=4 xi(5) x5(5) x12(5)

2 0.0759 3.0173×108 5.3126×107 8.8815×106 1.7211×108 3.5612×107 3.9907×106

3 0.1271 4.6625×108 8.4244×107 1.2078 ×106 2.688×108 5.6471×107 5.427×106

4 0.1400 5.7448×108 1.0633×108 1.3204×107 3.350×108 7.1274×107 5.933×106

5 0.1671 6.6688×108 1.2346×108 1.3850×107 3.919×108 8.2756×107 6.223×106

Table 5.12: All other vital parameters are the same but P0 = P1 = 0.1 and P2 = 0.2. and so − 2
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n(0)

hopt Unperturbed model Perturbed model P0 = P1 = 0.1, P2 = 0.2

II x5(10) x12(10) II x5(10) x12(10)

2 0.0759 2.868×108 4.865×107 8.882×106 9.167×107 1.884×107 1.793×106

3 0.127 4.588×108 8.200×107 1.208 ×107 1.638×108 3.580×107 2.439×106

4 0.1400 5.923×108 1.118×108 1.320×107 2.255×108 5.166×107 2.666×106

5 0.1671 7.226×108 1.408×108 1.385×107 2.884×108 6.774×107 2.796×106

n(0)

hopt Perturbed model P0 = P1 = 0, P2 = 0.2

II x5(10) x12(10)

2 0.0759 1.487×108 3.287×107 2.190×106

3 0.1271 2.678×108 6.224×107 2.979×106

4 0.1400 3.706×108 8.974×107 3.256×106

5 0.1671 4.756×108 1.175×108 3.415×106

Table 5.13: All other vital parameters are the same but P2 = 0.2. and so − 2. II=
∑30
i=4 xi(10)

The results indicate that illegal fishing is more dangerous than environmental factors.

It is clear that with our model any effect needs a long time to be seen. The next figure

indicates that the effect of environmental factors.
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Figure 5.2: The total cod population with P0, P1 and P2 for n(0) = 4. with Ricker function The net profit is

4% from total harvesting amount.
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Appendix A

Compute the parameter c from n(0).

1- Parameters and Initialization

k = 28;n(0) = 10;µ = 0.223;q=0;Y=0; σ1 = e−µ ∗ 2
3 ;(The number of age classes,

the net reproductive rate and mortality)

p(2)=0.01;p(3)=0.13;p(4)=0.63;p(5)=0.96;p(6:k)=1;(The growth of the gonads in

s1 years)

2- Compute the weight,survival rate,and fecundity in each class

W(1)=0;t(1) = e−µ; l(1)=1;

for i=2:1:k; t(i) = exp(−µ); l(i)=t(i-1)*l(i-1); W (i) = 17 ∗ (1 − e−0.12∗(i+2))3;

d(i)=p(i)*W(i)*250000; q=q+d(i); T(i)=p(i)*W(i)*l(i)*250000; Y=Y+T(i); end

3- c = n(0)∗(1−σ1)
Y
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Appendix B

Convergent model program

1- Parameters and Initialization

k=28; n(0)=10; E0 = 4.1 ∗ 1014, µ = 0.223; The number of age classes, Scaling

parameter and Mortality

q=0;Y=0; σ1 = e−µ ∗ 2
3 ; t(1) = e−µ; W (1) = 0; p(2) = 0.01; p(3) = 0.13; p(4) =

0.63; p(5) = 0.96; p(6 : k) = 1; (The growth of the gonads in s1 years)

x(1 : k, 1) = equilibrium value
4 ; l(1)=1; Initial value

2- Compute the weight,survival rate and fecundity in each class

for i=2:1:k-1; t(i) = exp(−µ); end for i=2:1:k; l(i)=t(i-1)*l(i-1); W (i) = 17 ∗
(1 − e−0.12∗(i+2))3;d(i)=p(i)*W(i)*250000; q=q+d(i); T(i)=p(i)*W(i)*l(i)*250000;

Y=Y+T(i); end

3- for s=1:1:280; r(s)=0; Tem=0; for i=2:1:k; Tem=Tem+d(i)*x(i,s); end E(s)=Tem;

Number of eggs

g(s) = E(s)
E0

; c=n(0)∗(1−σ1)
Y ; r(s) = exp(−g(s)); Ricker function

A =



σ1 c ∗ d(2) ∗ r(s) c ∗ d(3) ∗ r(s) · · · c ∗ d(k) ∗ r(s)
t(1) 0 0 · · · 0

0 t(2)
. . .

... 0
... 0

. . .
. . .

...

0 · · · 0 t(k − 1) 0


x(:,s+1)=A*x(:,s); end

5- Plots

i=1:1:80; B(i)=x(14,i); plot (i,B(i));

ylabel (’Model with n(0)=10 age class x(14,t)’); xlabel (’t-time ’);
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Appendix C

Determine the cost parameters a and b.

1- Parameters and Initialization

k = 28; tc=0.25; s=6; (The number of age classes, the duration of no harvesting

and the optimal mesh width)

E0 = 4.1 ∗ (10)14;µ = 0.223 ( Scaling parameter and Mortality)

p(2)=0.01;p(3)=0.13;p(4)=0.63;p(5)=0.96;p(6:k)=1; (The growth of the gonads in

s1 years)

σ1 = exp(µ) ∗ 2
3 ; t(1) = exp(−µ) ∗ 1

3 ; c = 0.000004089100217777939; (The survival

rate and the parameter c )

T=0; l(1)=1;d(1)=0;Q(1)=0;BB=0;D=0;F=0; h = 1 (Initial guess )

2- check=1; count=1; while(check > 0);

oldh=h; To save the initial guess in oldh

(Compute the weight, fecundity,and price function)

for i=2:1:s-1; t(i)=exp(-mu); end for i=s:1:27; t(i)=exp(-mu-(h*(1-tc))); end for

i=2:1:k; if i < 10; q(i)=0.18+0.09*i; else; q(i)=1.08;

l(i) = t(i−1)∗l(i−1); W (i) = 17∗(1−e−0.12(i+2))3; d(i) = l(i)∗p(i)∗W (i)∗250000;

end; BB = BB + d(i);Q(i) = q(i) ∗ w(i) ∗ l(i);

for i=s:1:k; T=T+Q(i); end n = (c∗BB)
G ; if n > 1 y = (log(n)∗E0)

BB ; else y=0; end

NN = (exp(−mu) ∗ 2/3) + c ∗BB ∗ exp(−(y∗BB)
E0 ); (Equilibrium condition)

A = h
(mu+h) ; S=1-exp(-(mu+h)*(1-tc)); H=A*T*y*S*exp(-mu*tc); a = k1 ∗ H;

b = (k1∗H)
h ; M(count) = H;M1(count) = a;M2(count) = b;

3- Compute the net gain

for h1=1:1:2000; T1(h1)=0; l1(1)=1; d1(1,h1)=0; Q1(1,h1)=0; BB1(h1)=0;

L1(h1) = h1 ∗ 10−3;D1(h1)=0;F1(h1)=0;S1(h1)=0;

for i=2:1:s-1; t1(i)=exp(-mu); end

for i=s:1:27; t1(i) = exp(−mu− (L1(h1) ∗ (1− tc))); end
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for i=2:1:28; l1(i)=t1(i-1)*l1(i-1); d1(i,h1)=p(i)*w(i)*l1(i)*250000;

BB1(h1)=BB1(h1)+d1(i,h1); Q1(i,h1)=q(i)*w(i)*l1(i); end

for i=s:1:28 T1(h1)=T1(h1)+Q1(i,h1); end

n1(h1) = (c∗BB1(h1))
G ; (the net reproductive rate at h1)

if n1(h1) > 1 y1(h1) = (log(n1(h1))∗E0)
BB1(h1) ; else y1(h1)=0; end

NN1(h1) = (exp(−mu) ∗ 2/3) + c ∗ BB1(h1) ∗ exp(−(y1(h1)∗BB1(h1))
E0) ; (Equilibrium

condition)

A1(h1)=L1(h1)/(mu+L1(h1)); S1(h1)=1-exp(-(mu+L1(h1))*(1-tc));

H1(h1)=A1(h1)*T1(h1)*y1(h1)*S1(h1)*exp(-mu*tc); end

4- Compute the net gain

for i=1:1:2000; Z(i) = H1(i)− a− b ∗ L1(i); end [W,Y ] = max(Z);

Y 1 = Y ∗ 10−3; ( the rate of harvesting which maximize the net gain)

YY(count)=W; ( maximum net gain)

Y2(count)=Y1; test=abs(oldh-Y1)-0.000005;check condition

h=0.5*Y1+0.5*oldh; if count > 100 break; end

count=count+1; end

a = M1(count− 1)

b = M2(count− 1)

hopt = Y 2(count− 1)

NH=YY(count-1).
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Appendix D

Optimal control program and Near optimal strategy

1- Parameters and Initialization

n(0) = 10 (The net reproductive rate)

Time-step=90 (The number of time steps )

k = 28; tc=0.25; s=6; (The number of age classes, the duration of no harvesting

and the optimal mesh width)

a=9.9657e+007; b=2.4852e+008; δ = 0.96, (The cost parameters a and b with

discount factor)

hopt = 0.401;α = 0.3,(The optimal harvesting rate from static model,alpha is related

to the near optimal strategy)

E0 = 4.1 ∗ (10)14;µ = 0.223 (Scaling parameter and Mortality)

p(2)=0.01;p(3)=0.13;p(4)=0.63;p(5)=0.96;p(6:k)=1; (The growth of the gonads in

s1 years)

σ1 = exp(µ) ∗ 2
3 ; c = 4.0891× 10−6; (The survival rate and the parameter c)

x=zeros(k,time-step-1);lambda=zeros(k,time-step); h(1 : 10) = 0.02, h(11:time-

step-1)= hopt; (Initial guess)

x(1 : k, 1) = equilibrium value
4 ; y(1 : k, 1) = equilibrium value

4 ; lambda(1:k,time-step)=0

(Initial value and tranversality condition)

2- Compute the weight, fecundity,and price function

for i=1:1:k; if i < 10; q(i)=0.18+0.09*i; else; q(i)=1.08;

W (i) = 17 ∗ (1− e−0.12(i+2))3;F (i) = p(i) ∗W (i) ∗ 250000; end;

3- check=1; count=1; while(check > 0);

oldh(1:time-step-1)=h(1:time-step-1); To save the initial guess in oldh

4- Compute the state variables forward xi(t) by using system 4.1 for all t

for t=2:1:time-step-1;
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Tem=0; for i=1:1:k; Tem=Tem+F(i)*x(i,t);end;

E(t)=Tem; (The number of eggs at each t)

r(t) = exp(−E(t)
E0

); (The Ricker function)

x(1, t+ 1) = σ1 ∗ x(1, t) + c ∗ E(t) ∗ r(t); x(2, t+ 1) = exp(−µ)
3 ∗ x(1, t);

for i=3:1:s; x(i, t+ 1) = exp(−µ) ∗ x(i− 1, t); end;

for i=s+1:1:k; x(i, t+ 1) = exp(−µ− (1− tc) ∗ h(t)) ∗ x(i− 1, t); end;

end;

5- Compute the covariables λi(t) backward from 4.4

for L=time-step-1:-1:1; λ(1, L) = λ(1, L+ 1) ∗ σ + λ(2, L+ 1) ∗ t(1);

for j=2:1:s-1; λ(j, L) = λ(1, L+1)∗c∗F (j)∗r(j)∗ (1− E(L)
Eo

)+λ(j+1, L)∗exp(−µ);

end; for j=s:1:L-1;λ(J, L) = h(L) ∗ (µ + h(L))−1 ∗ q(j)W (j) ∗ exp(−µ ∗ tc) ∗ (1 −
exp(−(µ+ h(L)) ∗ (1− tc)))∗δL+λ(1, L+1)∗c∗F (j)∗r(j)∗(1− E(L)

Eo
)+λ(j+1, L)∗

exp(−µ− h(L) ∗ (1− tc)); end; λ(k, L) = h(L)∗q(k)∗W (k)∗exp((−µ ∗ tc))∗((µ+

h(L))−1) ∗ (1 − exp(−(mu+ h(L)) ∗ (1− tc))) ∗ δL +λ(1, L + 1) ∗ c ∗ F (k) ∗ r(L) ∗
(1− E(L)

Eo
); end;

6- Define the Hamiltonian as a function of h and find the maximizer of it for each t

for t=1:1:time-step-1;

u(t)=0; A1(t)=0; A3(t)=0; R1(t)=0; R2(t)=0; R3(t)=0; A3(t) = λ(1, t + 1) ∗ c ∗
F (2) ∗ x(2, t) ∗ r(t) + (λ(2, t+ 1) ∗ x(1, t) ∗ t(1) + λ(1, t+ 1) ∗ σ1 ∗ x(1, t);

for i=3:1:s; A1(t) = A1(t) + λ(1, t+ 1) ∗ c ∗ F (i) ∗ x(i, t) ∗ r(t) + (λ(i, t+ 1) ∗ x(i−
1, t) ∗ exp(−µ); end;

DDD1(t) = x(s, t) ∗ q(s) ∗W (s) ∗ exp(−µ ∗ tc);
for i=s+1:1:k; R1(t) = R1(t) + x(i, t) ∗ q(i) ∗W (i) ∗ exp(−µ ∗ tc); R2(t) = R2(t) +

λ(i, t+ 1) ∗ x(i− 1, t); R3(t) = R3(t) + λ(1, t+ 1) ∗ c ∗ F (i) ∗ x(i, t) ∗ r(t); end;

H = @(N)−(A1(t)+((R1(t)+DDD1(t))∗( N
µ+N )∗(1−exp(−(µ+N) ∗ (1− tc))))∗

δt+R2(t)∗exp((−µ− (1− tc) ∗N))+R3(t)+A3(t)−(a+b∗N)∗δt); u(t)=fminbnd(H,0,5);end;

7- h=u*0.1+oldh*0.9; (A convex combination to update a new vector at each t)

8- Compute the optimal net yield J for each iterate by using the new h

for t=1:1:time-step-1; Tem1=0;

for j=2:1:k; Tem1=Tem1+F(j)*y(j,t); end

EE(t)=Tem1; rr(t) = exp(−EE(t)/E0);y(1, t+ 1) = σ1 ∗ y(1, t) + c ∗EE(t) ∗ rr(t);
y(2, t+ 1) = exp(−µ)

3 ∗ y(1, t);

for i=3:1:s;y(i, t+ 1) = exp(−µ) ∗ y(i− 1, t); end
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for i=s+1:1:k; y(i, t+ 1) = exp(−µ− (1− tc) ∗ h(t)) ∗ y(i− 1, t); end

G(t)=0; for j=s:1:k;

G(t) = G(t) + (q(j) ∗W (j) ∗ h(t) ∗ y(j, t) ∗ exp(−µ ∗ tc) ∗ (1− e−(µ+h(t))∗(1−tc)) ∗ δt ∗
(µ+ h(t))−1); end uu1(t) = (a+ b ∗ h(t)) ∗ δt; end

Joptc(count) = sum(G− uu1);

9- Test=norm(u-oldh)-0.05*norm(u); check=Test;(Convergence test, one can also use

0.01 or less)

if count> 100 break; end count=count+1; (Account new iterate)

end ( This end for loop while in step 3)

10- To compute the net yield for the near optimal solutions initialize as above with

ht(1 : 10) = α ∗ hopt;ht(11:time-step-1)= hopt;xn(1 : k, 1) = equilibrium value
4 ; for

t=1:1:time-step-1; Tem2=0; for j=2:1:k; Tem2= Tem2+F(j)*xn(j,t); end

En(t)=Tem2; rn(t) = exp(−En(t)/E0); xn(1, t+1) = σ∗xn(1, t)+c∗En(t)∗rn(t);

xn(2, t + 1) = exp(−µ)
3 ∗ xn(1, t); for i=3:1:s; xn(i, t + 1) = exp(−µ) ∗ xn(i − 1, t);

end for i=s+1:1:k; xn(i, t + 1) = (exp(−µ− (1− tc) ∗ ht(t))) ∗ (xn(i − 1, t)); end

Gn(t)=0; for j=s:1:k; Gn(t) = Gn(t) + (q(j) ∗W (j) ∗ ht(t) ∗ xn(j, t) ∗ exp(−µ ∗ tc) ∗
(1−exp(−(µ+ ht(t)) ∗ (1− tc)))∗δt ∗ (µ+ht(t))

−1); end un(t) = (a+ b∗ht(t))∗δt;
end Jnearopt = sum(Gn− un)

11- Plot the optimal u and several age classes

for i=1:1:9; subplot(3,3,i) plot(t1,x(3*i,:),’-’);

xlabel(’time’); ylabel(strcat(’population class:-’,num2str(3*i))); if i==1

title(’xi(1) = eq/4′); else end end figure i=1:1:time-step-2;

plot(i,u(i),’-’); xlabel(’time,Iteration=36 times,:hOpt = 0.401so = 6′);

ylabel(′hoptc for cod populations with Ricker function’);

title(′xi(1) = eq/4, bhopt=0.3H,T=3k,and n(0)=10’);

Remark1: One can also find the maximizer of the Hamiltonian in step 6 by

another way as following, but we used the way in step 6

for t=1:1:time-step-1; u(t)=0; A2(t)=0; A3(t)=0; R1(t)=0; R2(t)=0; R3(t)=0;DDD1(t)=0;

A3(t)=λ1(t+ 1) ∗ c ∗F2 ∗x2(t) ∗ r(t) + (λ2(t+ 1) ∗x1(t) ∗ exp(−µ) ∗ 1
3 +λ1(t+ 1) ∗σ ∗x1(t);

for i=3:1:s;

A2(t) = A2(t) + λ1(t+ 1) ∗ c ∗ Fi ∗ xi(t) ∗ r(t) + (λi(t+ 1) ∗ xi−1(t) ∗ exp(−µ)); end

DDD1(t) = xs(t) ∗ qs ∗Ws ∗ exp(−µ ∗ tc); for i=s+1:1:k;

R1(t) = R1(t) + (xi(t) ∗ qi ∗Wi ∗ exp(−µ ∗ tc));
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R2(t) = R2(t) + λi(t+ 1) ∗ xi−1(t);

R3(t) = R3(t) + λ1(t+ 1) ∗ c ∗ Fi ∗ xi(t) ∗ r(t);
end

for e=1:1:5× 104; N(e) = e ∗ 10−4;

H(e, t) = A2(t) + (((R1(t) +DDD1(t)) ∗ ( N(e)
(mu+N(e))) ∗ (1− exp(−(µ+N(e)) ∗ (1− tc)))) ∗

δt) + R2(t) ∗ exp(−µ − (1 − tc) ∗N(e)) + R3(t) + A3(t) − ((aa + bb ∗N(e)) ∗ δt); ( Each

column represents the Hamiltonian function at each t

end end

[rrr, uu] = max(H, [], 1); To find the maximum value and maximizer for The Hamiltonian

at each t

for t=1:time-step-1

u(t)=uu(t)*0.0001; end.
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