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A B S T R A C T

Machine learning plays an increasingly important role in modern sys-
tems. The ability to learn from data enhances or enables many appli-
cations. Recently, quick in-stream processing of possibly a huge or
even infinite amount of data gains more attention. This thesis deals
with such on-line learning systems for regression that learn with ev-
ery example incrementally and are reliable even in presence of uncer-
tainties.

A new learning approach, called IRMA, is introduced which di-
rectly incorporates knowledge about the model structure into its pa-
rameter update. This way it is aggressive to incorporate a new ex-
ample locally as much as possible and at the same time passive in
the sense that the global output is changed as little as possible. It
can be applied to any model structure that is linear in its parame-
ters and is proven to minimize the worst case prediction error in each
step. Hence, IRMA is reliable in every situation and the investigations
show that in every case a bad performance is prevented by inherently
averting overfitting even for complex model structures and in high
dimensions.

An extension of such on-line learning systems monitors the learn-
ing process, regarding conflict and ignorance, and estimates the trust-
worthiness of the learned hypothesis by the means of trust manage-
ment. This provides insight into the learning system at every step and
the designer can adjust its setup if necessary. Additionally, the trust
estimation allows to assign a trustworthiness to each individual pre-
diction the learning system makes. This way the overall system can
react to uncertain predictions at a higher level and increase its safety,
e. g. by reverting to a fallback.

Furthermore, the uncertainties are explicitly incorporated into the
learning process. The uncertainty of the hypothesis is reflected by al-
lowing less change for more certain regions of the learned system.
This way, good learned knowledge is protected and a higher robust-
ness to disturbances is achieved. The uncertainty of each example
used for learning is reflected by adapting less to uncertain examples.
Thereby, the learning system gets more robust to training examples
that are known to be uncertain.

All approaches are formally analyzed and their characteristic prop-
erties are demonstrated in empirical investigations. In addition, a real
world application to forecasting electricity loads shows the benefits of
the approaches.
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Z U S A M M E N FA S S U N G

Maschinelles Lernen wird in modernen Systemen immer wichtiger.
Die Möglichkeit, aus Beispieldaten zu lernen, verbessert viele Anwen-
dungen oder ermöglicht diese überhaupt erst. Aktuell gewinnen Sys-
teme an Bedeutung, die mit einem Strom (unendlich) vieler Daten
umgehen können. Diese Arbeit befasst sich mit solchen online lern-
fähigen Systemen zur Regression, die mit jedem einzelnen Beispiel
inkrementell lernen und dabei mit Ungewissheiten umgehen.

Ein neues Lernverfahren namens IRMA wird vorgestellt, welches
bei der Aktualisierung der Parameter Wissen über die Modellstruk-
tur nutzt. IRMA ist einerseits aggressiv, um das vorgegebene Beispiel
möglichst gut zu berücksichtigen, und andererseits passiv, um die
globale Veränderung der Ausgabe möglichst klein zu halten. Der
Ansatz kann auf jegliche Modellstruktur angewandt werden, die lin-
ear in den Parametern ist. Es wird nachgewiesen, dass durch IRMA
der schlimmstmögliche Vorhersagefehler in jedem Schritt minimiert
wird. Damit ist IRMA in jeder Situation verlässlich und die Unter-
suchungen zeigen, dass schlechte Ergebnisse stets verhindert werden,
da auch für komplexe Modellstrukturen und in hohen Dimensionen
Überanpassung inhärent unterbunden wird.

Des Weiteren wird das online lernfähige System erweitert, um den
Lernprozess in Bezug auf Konflikt und Unwissen zu überwachen.
Dazu wird die Vertrauenswürdigkeit der erlernten Hypothese im
Sinne des Trust Management eingeschätzt. Auf diese Weise ist ein
tieferes Verständnis des lernfähigen Systems möglich und der En-
twickler kann, wenn nötig, Einstellungen daran anpassen. Die Ein-
schätzung der Vertrauenswürdigkeit ermöglicht es, außerdem auch
jeder einzelnen Vorhersage des lernfähigen Systems eine Vertrauens-
würdigkeit beizumessen. Damit kann dann das Gesamtsystem auf un-
gewisse Vorhersagen auf höherer Entscheidungsebene reagieren und
somit die Sicherheit erhöhen.

Darüber hinaus werden die Ungewissheiten explizit beim Lernen
berücksichtigt. Die Ungewissheit der Hypothese beeinflusst das Ler-
nen so, dass sicheres Wissen dabei weniger angepasst wird. Dadurch
wird gut erlerntes Wissen geschützt und das Lernen ist robuster ge-
gen Störungen. Die Ungewissheit jedes einzelnen Beispiels wird da-
durch berücksichtigt, dass weniger zuverlässige Beispiele einen gerin-
geren Einfluss haben. Somit wird das lernfähige System robuster
gegen Beispiele, von denen bekannt ist, dass sie störungsbehaftet
sind.

Alle Ansätze werden formal analysiert und ihre charakteristischen
Eigenschaften werden in empirischen Untersuchungen demonstriert.
Zudem zeigt eine reale Anwendung zur Vorhersage von Stromver-
bräuchen die Vorteile der Ansätze.
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In times of profound change, the learners inherit the earth,
while the learned find themselves beautifully equipped

to deal with a world that no longer exists.

— Eric Hoffer

When you know a thing, to hold that you know it;
and when you do not know a thing, to allow that you do not know it
- this is knowledge.

— Confucius
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1
I N T R O D U C T I O N

1.1 motivation

The ever increasing complexity of systems results in an engineering
bottleneck for the developer. Thus the need for systems that can learn
to improve their functional behavior arises. Consider, for example, the
influence of weather conditions on the consumption of electricity in
the power grid. Acquiring data of this influence is relatively easy, but
its analysis by experts to build a system model is highly tedious. Yet,
an expert is able to derive a generalized concept from the acquired
data and use this concept as a model in new situations. Therefore,
an automation of this process of building a model from data could
reduce the manual effort severely. This way, one single learning pro-
gram could learn to handle a variety of tasks.

Machine learning deals with such systems that can learn from train-
ing examples based on induction and then be used to predict the out-
come on evaluation data for new unlabeled instances (see Fig. 1). Its
two main principles are representation and generalization. On the
one hand, the training examples need to be represented properly by
some kind of model structure, i. e. in general one hypothesis chosen
from a set of hypotheses. On the other hand, the model needs to gener-
alize well to unseen inputs. The idea dates back to the first learning
system, called the Perceptron, introduced by Rosenblatt in 1958 [95]
followed by the first work on computational learning theory by Novikoff
in 1962 [90]. Since then, many different branches of machine learning
have developed.

One branch, called regression, deals with learning a continuous rela-
tionship between a dependent variable and one or more independent
variables from training examples. Particularly this means, the output
value, i. e. the dependent variable, has an ordinal relation, e. g. 1 Wh

Training examples

(instances,labels)

Set of hypotheses

Learning Hypothesis Prediction

Evaluation data

(instances)

Predicted labelsUnknown target 

function

Figure 1: Flowchart of a general machine learning setting.
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Figure 2: For LIP models, the model structure transforms data from input
space to feature space where a hyperplane is used to approximate
the training examples.

of consumed electricity is more than 0.8 Wh of consumed electricity.
Generally, a model f̃ can be described by

y = f̃(x,ω(l),ω(n)) =ω(l)
T ·ψ(x,ω(n)) (1)

with the dependent variable y ∈ Y ⊆ R, the vector of independent
variables x ∈ X ⊆ Rd and two parameter vectors ω(l) and ω(n).
The latter has a non-linear influence on the relation X → Y, as it pa-
rameterizes a non-linear mapping ψ, whereas the first has a linear
influence on the relation X → Y (see Section 1.4.2 of [48] for more
details). As shown by [17], a model that is non-linear in its param-
eters can achieve squared errors of order O( 1d), while a model that
is linear in parameters (LIP) is bounded by O( 1

n2/d
) for n parameters

and d independent variables. So in principle, a lower error is possible
for d > 2 using non-linear parameters. But, learning these parame-
ters ω(n) is a much more complex task due to local minima of the
error functional to be optimized than learning the linear parameters
ω(l). Additionally, the influence of non-linear parameters is hard to
understand for an expert using such a learning system.

Thus, this work focuses on the class of LIP models, also known as
generalized linear models [22, 48, 88], henceforth written as

y =ωT ·φ(x) (2)

with the parameter vector ω representing the hypothesis about the
correct model and a non-linear transformation of the input vector x
through a set of basis functions {φi(x)}

n
i=1.

As shown in Fig. 2 a non-linear relationship between the depen-
dent variable (output) and the independent variables (inputs) is trans-
formed in such a way that it can be approximated linearly in fea-
ture space. The choice of the basis functions determines the model
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Figure 3: Two examples for LIP model structures, i. e. a fifth order polyno-
mial (left) and a GLT with 6× 7 nodes (right), approximating the
same input-output relation.

structure used for approximation and consequently its expressive-
ness. Two LIP model structures, i. e. a polynomial and a grid-based
lookup table (GLT) with linear interpolation, are shown as examples
in Fig. 3. It is important to note that the resulting continuous relation-
ship between the dependent variable and the independent variables
may just as well be non-linear, depending on the model structure.

Within regression, an important machine learning approach is on-
line learning [32]. While classical batch learning is based on training a
model on some batch of data, and evaluating it on other data, on-line
learning continuously learns on a stream of data, one example at a
time, and has to make predictions continuously as well.

This approach has several benefits. The training examples are not
collected but only incorporated each on its own. This way, the mem-
ory demand as well as the computational effort are not only low,
but also fixed at design time. Thus, an on-line learning algorithm is
suited for real-time applications and embedded systems with low compu-
tational power. Because of this simplicity, on-line learning algorithms
are typically much more easy to understand and an expert can set
up the algorithm efficiently and plan ahead its behavior beforehand.
Its computational simplicity further allows to apply on-line learning
algorithms in the realm of big data where a batch approach is not feasi-
ble even with modern high performance machines. Besides these ad-
vantages in complexity, the incorporation of new examples as they ar-
rive makes an adaptation to changing conditions, i. e. in non-stationary
environments, possible. Consequently, it enables adaptiveness to time
variant system properties and life long learning.

This in-stream learning is natural on certain tasks like the power
grid example. New measurements of the electricity consumption are
available all the time and a model can be updated, to adapt to varying
weather conditions, new consumers, new generators, or otherwise
altered generation and consumption profiles. Similarly in time series
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Figure 4: Overfitting on sparse data (black dots) may lead to random effects
on generalization (red line) whereas a smooth approximation is
less sensitive (black line).

prediction or adaptive control, new examples are always available as
a stream of data.

But for successful on-line learning several challenges have to be
met as well. As only a single example is used to revise a hypothesis,
it gives only local information in two ways. On the one hand, the
example is local in the input space, i. e. it defines one point of the
input-output relation to be learned. On the other hand, it is local in
time, i. e. it defines the input-output relation at one point in the data
stream. Most on-line learning approaches directly regard locality in
time, as the example is incorporated into the model at the time of
occurrence and will be forgotten if a new example arrives at the same
or a similar point in input space. Yet, with this example the global
relation of the model is adapted and locality in input space hence
needs to be assured by the learning algorithm.

Due to the local information of a single example, minimizing the
model error on this example alone is an ill-posed problem. So further
constraints need to be set to define how to incorporate a new example.
Typically these constraints somehow require the current hypothesis
about the model to be changed only as little as possible. This way,
the additional constraints determine the on-line learning algorithm.
Different approaches will be discussed in Chapter 2.1 in more detail.

At the beginning of learning, the examples are sparse and the hy-
pothesis is not yet converged suitably. Still the learning algorithm
has to adapt quickly to the sparse data without overfitting [46] and
perform well right from the start. Especially in high dimensional in-
put spaces, this initialization with sparse data may occur at any time
during learning as shifts or drifts in the underlying process occur. Fig-
ure 4 illustrates how overfitting can lead to random predictions due
to bad generalization capabilities.

Furthermore, the examples within the stream often strongly de-
pend on each other. Data of a dynamic system or from a time series
typically comes along a continuous trajectory. Therefore, it cannot be
expected to get examples randomly and equally distributed across
the input space.
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Despite all these challenges, the on-line learning system has to pro-
vide a reliable prediction at any time for any input. The prediction usu-
ally influences a system directly or indirectly. For example a time se-
ries prediction is used to make decisions [14, 34], a learned model of
a system might be used for model predictive control [30], or the learn-
ing system itself is an adaptive controller [48, 101]. So the prediction
is critical for the system’s safety, and erroneous predictions have to
be prevented. Consequently, any uncertainties influencing the learn-
ing system are dangerous and a well determined reliable prediction
as well as robust learning must be assured. Reliability of a learning
system, defined as "the ability to perform certain tasks conforming to re-
quired quality standards" [40], in this context comprises the following
qualities:

• Recall If an example (xt,yt) was presented for learning, a
label similar to yt is expected close to xt for prediction later
on. Even if other examples are presented this should hold until
a new example is presented close to xt. So there should be no
fatal forgetting.

• Compliant generalization If in some region no examples
were presented, the prediction should lie in between neighbor-
ing examples. So overfitting causing false generalization must
be prevented.

At the same time, robustness of a learning system to malicious in-
fluences, defined as "that the distribution of the estimator changes only
slightly if the distribution of the observations is slightly altered" [56], in
this context comprises:

• If an information (e. g. training example or parameter vector) is
fluctuating or uncertain, the influence on the result should be
low, i. e. a low variance at the outcome.

• If the presented examples are noisy, an averaging output should
be given.

• If an uncertain example is presented, it should have low influ-
ence on the adaptation of the model.

1.2 on-line learning setting

The on-line learning setting is characterized by learning on a sequence
of data which can be described in steps (see Fig. 5). In each step t the
learning algorithm is presented an instance xt ∈ X ⊆ Rd which is
transferred from input space X to feature space F by the model struc-
ture through a vector of basis functions φ(xt) : X → F ⊆ Rn. This
input is then used to predict its label ŷt ∈ Y ⊆ R through a LIP
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Figure 5: Flowchart of the on-line machine learning setting.

model ŷt = ωTtφ(xt) with the parameter vector ωt ∈ Ω ⊆ Rn, which
is the hypothesis maintained by the learning algorithm. Afterwards,
the correct label yt is given and the learning algorithm suffers an
instantaneous loss L(yt, ŷt) > 0 reflecting how wrong the prediction
was. With the new pair of an instance and its corresponding label,
henceforth called an example (xt,yt), the learning algorithm updates
its hypothesis to ωt+1 with the aim to minimize the cumulative loss

Lc =

nd−1∑
t=0

L(yt, ŷt) (3)

where nd is the length of the data sequence provided so far.
In a static case, there is one target vector ω∗ ∈ Ω that minimizes

the cumulative loss. Whereas in presence of time variance, the target
vector is subject to shifts or drifts and thus a time dependent sequence
of target vectors ω∗t ∈ Ω, t = 0, . . . ,nd− 1 minimizes the cumulative
loss.

Variations of this basic on-line learning setting include a time delay
between the presentation of an instance for prediction and the pre-
sentation of the true label, i. e. the prediction for instance xt is done
with a parameter vectorωj with j < t. Or they require more than one
prediction between the presentation of two examples, i. e. not every
instance is presented with a label. For example in the power grid sce-
nario, a prediction of the power consumption for every quarter of the
next 24 hours would require a total of 96 = 24 · 4 predictions every
15 minutes. But only one new example would be presented in that
time. Hence, not only the cumulative loss of (3) is important to be
small but the global model error to the unknown true target function
should also be small to ensure reliable predictions for multiple ran-
dom instances to be labeled. Especially this global error is severely
affected by overfitting.

Depending on the on-line learning task, the loss function and pre-
diction model differ. For the task of regression, a common choice for
the loss function is the squared error

Lr(yt, ŷt) = (yt − ŷt)
2. (4)

For a LIP model, the squared error loss of one example thus defines
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Figure 7: On-line learning of a hypothesis (blue dashed) depicted in input
space. The new hypothesis (red solid) is chosen to meet the exam-
ple (asterisk) with fatal forgetting (left) in contrast to securing the
global knowledge (right).

a hyperplane

yt =ω
T ·φ(xt) . (5)

of possible solutions ω in parameter space Ω which all satisfy a zero
loss on the example. Accordingly, a typical scenario within a sequence
of examples is depicted in Fig. 6 for a two-parameter case within
the parameter space. After the current hypothesis ωt was selected
based on the last example at t− 1, a new example is presented (black
line) and a new hypothesis ωt+1 chosen without knowledge about
any other examples (gray lines). Together all examples specify some
target region due to noise or a restricted set of hypotheses. In the
ideal case of no noise and an exactly representable target function,
all examples would intersect at one point in parameter space, i. e. the
optimal hypothesis.

In input space the scenario looks quite different. The example con-
tains only local information about the target input-output relation.
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Learning system
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Parameter vector ω 

Evaluation instance x
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Figure 8: Overview of a learning system and its influences which introduce
uncertainties.

Hence, when adapting the global model based on this local example,
fatal forgetting can occur, but should be prevented. Two different up-
dates of the parameter vector are shown as an example in Fig. 7. In
both cases the example is learned perfectly, but the influence on the
global model differs significantly. While the left plot shows a high
global change of the model especially far away from the local exam-
ple, the global model is kept as far as possible in the right plot and
fatal forgetting is prevented when updating the parameter vector.

1.3 uncertainties in learning systems

The hypothesis of a learning system about the correct model is al-
ways afflicted with uncertainty. Indeed, it is typical that more than
one hypothesis may explain the presented examples, which means
that the validity of a chosen hypothesis and its predictions can usu-
ally not be sure. Apart from this, a learning system is subject to addi-
tional sources of uncertainty as well, both at training and prediction,
which altogether may result in a possibly wrong prediction and thus
increase the risk of an unsafe system behavior.

There are two inherently different kinds of uncertainty, called alea-
toric and epistemic [58, 99]. Aleatoric uncertainty refers to variability,
e. g. from noise or unobserved influences. In contrast, epistemic un-
certainty refers to missing knowledge, e. g. due to faults or a lack of
training examples. So epistemic uncertainties can be reduced through
learning by acquiring more examples, whereas aleatoric uncertainties
are irreducible.

An abstract view regarding uncertainties in clustering and classifi-
cation is presented in [57]. In this thesis, the sources of uncertainty are
categorized according to [7] regarding their possible consequences
for on-line learning (see Fig. 8). On the one hand the training ex-
amples and the instances for prediction are subject to uncertainties.
And on the other hand the learning algorithm and the learned model
introduce uncertainties as well. All these sources of uncertainty ac-
cumulate at a given prediction. From this perspective, the sources of
uncertainty can be structured into the following five categories.
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Figure 9: Uncertainty of the training example, e. g. due to noise or failures.
The model is shown as a black curve and the uncertain example
as an asterisk. The numbering refers to the numbered uncertainty
categories in the text.

1. Uncertainty of training instance The training instance
xt defines where in input space the model is trained to give a
certain label yt. As these data are often given by sensor readings
or as output signals of prior processing modules, the training
instances might be uncertain. For sensors it is possible that e. g.
sensor-noise, drift or a fault lead to a gradually or totally wrong
instance xt. Or, prior processing modules, e. g. other learning
systems in a cascaded structure, result in an uncertain output
generating the next uncertain input. Thus it gets ambiguous,
where the model should be trained within the input space using
the given example (see Fig. 9).

2. Uncertainty of training label The training label yt de-
fines the desired output value, the model should give at a cer-
tain point xt in the input space. In regression tasks, these train-
ing labels yt may be subject to similar uncertainties as the train-
ing instances xt. Again, this results in an uncertainty, but about
what the model should be trained to using the example (see
Fig. 9).

3. Uncertainty of model structure The approximation is
done by some model structure restricted by the basis functions
φ and its input vector x. Hence it is only capable of represent-
ing a limited set of functions, e. g. polynomials of a certain or-
der or piecewise linear functions with fixed number and posi-
tion of reference points (see Fig. 10). Either this model structure
is not expressive enough causing conflicting information about
the correct choise of a parameter vector ω. Or the structure is
too expressive causing either the well known overfitting prob-
lem or some parts of the parameter vector ω not to be set up
correctly. Just as well, the input vector may be either chosen too
small, i. e. there are unobserved influences, or too big, i. e. there
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Figure 11: Uncertainty of the evaluation instance. The model is shown as a
black curve and the uncertain range of the instance for evalua-
tion in red. The numbering refers to the numbered uncertainty
categories in the text.

are irrelevant features. Consequently, it is uncertain, how well
the approximation of the target function can be achieved with the
chosen model structure φ.

4. Uncertainty of parameter vector Corresponding to the
model structure, the parameter vector ω determined by the
learning algorithm is influenced in many ways. The learning
algorithm, which chooses ω ∈ Ω, and its optimization criterion
might by inappropriate. The settings of this learning algorithm,
e. g. the learning rate or a regularization term, can be chosen
suboptimally and thus lead to systematic remaining errors. Ad-
ditionally, the training instances xt need not cover the complete
input space, so that some parameters might not be set up prop-
erly as not enough information is present. Similarly, the train-
ing data may contain conflicts, i. e. different labels yt at close
instances xt. Hence, it is uncertain, how well a parameter vectorω
fits to the optimal target vector (see Fig. 10).
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5. Uncertainty of prediction instance In contrast to train-
ing, at prediction, the input x defines for which instance a la-
bel should be predicted. These instances again may have the
same sources of uncertainty as the training instance xt. But now
for a fixed parameter vector ω, there is uncertainty, where the
model should be evaluated (see Fig. 11). The uncertainty of the
instance does not necessarily define a closed interval as shown
in Fig. 11. Other uncertainty representations are possible as dis-
cussed in Section 1.5.

All sources of uncertainty mentioned above influence the model
evaluation and hence the risk of a wrong prediction ŷ. This risk can
be divided into two categories. Either the uncertainties result in (some
degree of) ignorance so that it is not known which prediction ŷ should
be given as not enough examples supplied information for the respec-
tive point x in input space. This means there is epistemic uncertainty
about the prediction. Or the uncertainties result in (some degree of)
conflict so that multiple labels ŷ are possible as the examples or the
model evaluation are contradictory. Hence, there is aleatoric uncer-
tainty about the prediction. Both categories are gradual in nature as
ignorance increases with the distance of the evaluation point x to
training instances xt in input space and conflict increases with the
amount of plausible labels in output space. This notion of conflict
and ignorance was introduced in [61] for classification problems, but
can also be easily applied for regression tasks as presented in [11].

If the predicted label ŷ is uncertain and its uncertainty cannot be
compensated within the learning system, an additional information
about its degree of uncertainty is valuable to increase safety by suc-
cessive processing modules. This way it is possible to explicitly react
to uncertainties of a prediction, irrespective of their source, and main-
tain a safe operation of the whole system. Hence it is of interest not
only to minimize the uncertainty of the learning system, but also to
express remaining degrees of uncertainty of the predicted label ŷ.

1.4 requirements

From the different aspects discussed in this chapter, the following
list of requirements for a reliable on-line learning system can thus be
derived.

a) Fast adaptation The learning system has to perform well right
from the start. So a fast adaptation to the examples is necessary
which is reflected in the cumulative loss to be minimized.

b) Continuous adaptation In non-stationary environments the
input-output relation changes through time by shift and/or drift.
Hence, the learning system has to adapt to new data and forget
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older data when necessary to account for those changes. This is
reflected as well in a low cumulative loss.

c) Protection of gathered knowledge With the incorporation of
new examples into the learning system, typically the global model
is affected and it is important to make only local changes and to
protect the global model as one example only gives local informa-
tion. This property is reflected in the reproduction of the training
examples.

d) Low limited computational demand The computational de-
mand with respect to memory and time complexity should be lim-
ited and low to allow learning on embedded systems, high speed
data streams, and big data.

e) Robustness against uncertain examples Outliers and noise
of the presented examples should affect the learning system as
little as possible. Examples that are uncertain should be faded out
(gradually) from learning accordingly.

f) Robustness against wrong parameters A wrong parameter
vector should not affect the quality of learning, i. e. the learning
system should not try to keep the knowledge of wrong parameters.
Additionally it should still yield a reliable prediction in presence
of wrong parameters.

g) Robustness to an inappropriate model structure A model
structure that is too expressive or not expressive enough for the
true input-output relation should not affect the predictive relia-
bility but only its quality. So overfitting should be prevented and
stability in case of underfitting achieved.

h) Robustness to uncertain instances If an uncertain instance
is presented to predict its label, a reliable prediction should be
given. This means the prediction must be insensitive to variations
of the values for uncertain input dimensions.

i) Reflect uncertainty of model The learned model, i. e. the pa-
rameter vector, is subject to various uncertainties during learning.
These uncertainties must be estimated on the one hand to allow
supervision by an expert and on the other hand to react to these
uncertainties at learning and prediction.

j) Reflect uncertainty of prediction If the above robustness to
several uncertainties cannot sufficiently increase the reliability of
a prediction, its remaining uncertainty must be reflected to allow
other processing modules or a supervisor to utilize this additional
information. So if the uncertainty cannot be dealt with at this low
level, a higher level should be able to deal with it. Consequently, a
reliability measure for each individual prediction is necessary.
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1.5 representing uncertainty

It was argued in the previous sections that uncertainties have a se-
vere influence on learning systems that cannot be neglected. Thus, the
learning system has to deal with its uncertainties internally and pro-
vide additional information about its uncertainties to its user. While
the notion of uncertainty is immediately associated with probability,
various other uncertainty measures have been developed. An abstract
view on these uncertainty measures is presented here in the follow-
ing. A general survey trying to summarize all representations within
the common framework of generalized information theory is presented
in [68].

1.5.1 State of the Art Methods

The simplest way of representing the uncertainty of a piece of in-
formation is to attribute the information with a scalar (Fig. 12 (a)).
The scalar expresses the certainty of an information. This method
is rarely used, but some research has been done starting with cer-
tainty factors [100] modeling the belief in a hypothesis in the range
of [−1, 1]. Another scalar approach is introduced with pain levels by
[50] to gradually model sensor failures at runtime. The fault status
of each sensor in a system is estimated gradually based on the his-
tory of its measurements resulting in an additional signal attribute
given to an injury agent declaring that the sensor is either working or
broken. In this approach, each sensor with a pain level above some
defined threshold is discarded from further processing and it is pos-
sible for a sensor to recover and being reintegrated into processing.
More recently, health signals [9, 29, 67] are used to attribute the infor-
mational and operational health status of system modules in robotics.
They represent the degree of all kinds of uncertainties in a unified
way normalized to the range of [0, 1]. This approach is generalized to
the trust management approach in [1, 2, 3, 13] attributing potentially



14 introduction

any information within a system architecture with a trust signal. With
this simple attribution the engineering and processing complexity in-
creases only minimally.

The next more complex way of representing the uncertainty of an
information is to form a set of all possible values (Fig. 12 (b)) or, as
a special case, to require the value to lie within an interval through
interval analysis [84]. The use of this technique has been formalized
in info gap decision theory [19]. It allows to consider all possible values
of an information and their respective results, but it has several draw-
backs. Depending on the restrictions on the used sets, the complexity
of calculations increases and additional information is necessary to
estimate the set of possible values, e. g. from a single measurement.
Furthermore, in the end of processing the set of possible values has
to be projected in a meaningful way to a single scalar value as the
output.

Further representations elaborate on the set of possible values by
giving each possible value a weight (Fig. 12 (c)). The most well-known
approach is probability theory, where each value of the set is given a
probability similar to the frequency of occurrence [69]. This approach
gives a well-defined theory of calculation, but again generally the
calculations get much more complex and additional knowledge is
necessary to map a measurement to a certain probability distribution.
Often a simplifying assumption is used, namely that of a normally
distributed random variable. In this case the additional assumption
only needs to give an estimate of the mean value and its standard
deviation, hence the calculations remain in their original complexity.
Yet, with a normal distribution only bounded random variables like
noisy measurements can be represented properly, but not all sources
of uncertainties can be considered adequately this way [1].

Similar to probability theory, fuzzy set theory gives weights to the
elements of a set but with a different semantical meaning [66, 122],
which can be viewed as a possibilistic approach, representing the
vagueness of an information. The fuzzy membership function is hence
not restricted to a total of one over all elements of the set. Again the
characteristic function, which represents the degree of membership
across the set has to be derived from additional information, e. g. by
the designer, and the complexity of calculations increases.

In recent years, another layer of uncertainty is added for increased
expressiveness and the weights of the set’s elements are viewed as a
weighted set as well, i. e. a second order of weighting (Fig. 12 (d)). In
the case of probability theory this results in imprecise probabilities, e. g.
Dempster-Shafer theory [43, 111, 113] where each probability gets an
upper bound called plausibility and a lower bound called belief. Sim-
ilarly fuzzy sets are extended to type-2 fuzzy sets [31]. But obviously,
the extensions increase the complexity even more, both for calcula-
tion and for additional assumptions to derive and to engineer the
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distributions. And the designer is hampered in controllability and
interpretability of the uncertainty measure.

In a nutshell, the four abstractions of uncertainty measures have
different amounts of expressiveness, but with increased expressive-
ness the computational complexity as well as engineering complexity,
i. e. necessary amount of data or a priori knowledge, increases, too.
Whereas the scalar attribute still uses the original value, the other ab-
stractions open up a set of values which typically has to be merged
finally to a single value at some point of processing, e. g. if a controller
accesses an actuator or a certain amount of energy has to be bought
for the power grid. Furthermore, it complicates the understandability
of the outcome for an expert. That is why many applications of these
uncertainty measures revert to simplifications, e. g. closed intervals,
normal distributions, trapezoidal sets, interval valued probability, or
interval type-2 fuzzy sets, instead of using the full expressiveness of
the respective method.

Consequently, in this work the simplest uncertainty measure, i. e.
a scalar attribute, is used to represent uncertainties in learning sys-
tems by the means of trust management. The relevant details of this
approach will be introduced in the next section. And finally, it will
be shown if and how far this simple kind of uncertainty handling
is suited to deal with all five categories of uncertainty listed in Sec-
tion 1.3.

1.5.2 Trust Management Approach

The aim of trust management [1, 2] is to incorporate the knowledge
about uncertainties in a way that allows a system to flexibly adapt to
dynamic uncertainties, but which is easily calculated and intuitively
engineered. The intention is to find a generic and general mechanism
for considering the uncertainties of information explicitly throughout
the system but with low overhead. With this concept different signal
and uncertainty qualities are combined in a way such that the effect
of uncertainty handling is uniform and comprehensible. This way,
an expert can easily incorporate his knowledge about uncertainties
into the system and understands what the system does in uncertain
situations.

Trust management was originally developed for embedded sys-
tems but can be applied to any other system architecture the same
way. The basic concept is to model the uncertainties explicitly with
a unified semantics. This is done by an additional attribute, which is
associated to the respective signal carrying the uncertain information.
This attribute is called trust signal. A trust signal is a meta-information
to a normal signal, e. g. an input or output of a learning system, which
depends on uncertain information and is processed along the signal
flow. It has a scalar value from the interval [0, 1], called the trust level,
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Figure 13: Schematic Trust Management Architecture.

and indicates the trustworthiness of the signal it is associated with
(compare Fig. 12 (a)). The trust level of a signal is used explicitly in its
further processing. If the trust level of a signal is zero, the signal must
have no influence on the further calculations. Because it corresponds
to no trustworthiness, a safe and robust fallback strategy should be
used then. In contrast to that, the effect of a signal should be normal
if its trust level is equal to one, because it relates to absolute trustwor-
thiness, i. e. there is no doubt about the correctness of the respective
signal value. The influence should be gradual in between.

This way, a unified description of different kinds of uncertainty, i. e.
aleatoric as well as epistemic, with one representation is possible. For
example a single sensor measurement can be influenced by different
factors. The sensor’s basic noise or additional noise dependent on the
temperature cause aleatoric uncertainty. Whereas a measurement at
the limit of its range or a sensor failure cause epistemic uncertainty.
All of them influence the certainty of the resulting measurement and
hence the information about the true value and are combined in one
estimate of its trustworthiness.

Because the trustworthiness of input signals in general influences
also the trustworthiness of a module’s output, the relevant trust sig-
nals are fused to an outgoing trust signal that accompanies the pro-
cessing result. Additionally, such trust signals can be used by higher
decision layers to change the system behavior or for external monitor-
ing like in the ORCA- [28, 29, 85] and COBRA-architecture [3]. This is
illustrated by the schematic trust management architecture in Fig. 13.
At the bottom is the system’s input-output interface, e. g. the hard-
ware layer of an embedded system, i. e. its sensors and actuators. For
every sensor signal Si, a trust signal ϑi is generated. In the simplest
case, it reflects for instance the noise amplitude. The vagueness or
trustworthiness, respectively, of a particular signal is then expressed
through a trust level according to the signal to noise ratio. It is im-
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portant to note that no modification of the particular signal value is
performed in order to maintain transparency and generality.

All in all by accompanying potentially every signal in the signal
flow with a trust signal, the influence of untrusted sources should be
faded out in order to increase the general robustness. Whereas there
is no loss of precision under fully trustworthy conditions. The trust
signal flow thus extends over the whole system’s architecture until
the outputs, e. g. actuators, have to be addressed with concrete values
without a trust level.

1.5.3 Using Trust Signals

One use case of a trust signal is to provide it for external monitoring,
e. g. by a supervisory system or system operator. But to get a benefit
from the modeling of uncertainties within the system itself, the trust
signals need to influence the internal processing. This means they
change the local and global behavior of the system by utilizing the
knowledge about the uncertainties or trustworthiness, respectively.
To enable this, either redundant information, to replace the uncertain
information, or redundant actions, to choose a more robust action,
need to be available in a system. This can be done either by switching
between alternative strategies, or by adapting a strategy gradually.
Switching the whole strategy can pose a more powerful tool but it
may lead to complex dynamic interaction patterns between trust sig-
nals and the underlying dynamic system.

The gradual adaption to trust signals is based on the two above
mentioned axiomatic cornerstones. If the trust level of a signal is zero,
its value must not influence the calculation. And if the trust level is
one, the value should have its normal influence on the result. Between
these two cases, a processing algorithm should yield a continuous,
monotone gradual blending. So the less trustworthy a value is the
less it should impact the processing results. If none of the relevant
signals is trustworthy at all, the algorithm should provide a worst
case result, e. g. a default value which does not change the system
state or brings the system into a safe state. Handling this worst case
fallback on an architectural level is discussed in [3].

1.5.4 Propagation and Fusion of Trust Signals

Along the signal flow, the output of a module should be accompanied
by a trust signal as well. So the trust signals of the used information
have to be fused for the trust signal of an output with respect to the
present calculation of the algorithm. There are three different cate-
gories of trust signal processing. If non-redundant signals are used
and every information is crucial to the result, the trust at the output
must not excel the lowest trust level of any used information, but
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might even be lower. In contrast, if a module fuses redundant infor-
mation to get a more reliable result, the trust level can increase within
the module depending on the degree of conflict or conformance be-
tween the redundant sources. So these categories directly map to the
trustworthiness of the outcome:

a) non-redundant relevant information → decreasing trust,

b) redundant conflicting information → averaging trust,

c) redundant conforming information → increasing trust.

There exist only two restrictions on such trust signal fusion. The
fusion must be monotone and continuous. This means that the fused
trust level for a set of used trust levels {ϑi} is equal to or lower than
the trust level for another set {ϑ̃i} with at least one higher trust level
and that it makes no abrupt changes. The second restriction is that a
module cannot produce trust out of nothing. So, if all trust levels of
relevant information are zero the outgoing trust level must be zero,
too.

Thus the fusion of nI trust signals can be done by a continuous
function F : [0, 1]nI → [0, 1] which satisfies the following properties
for two sets of trust levels {ϑi}nI and {ϑ̃i}nI :

ϑi 6 ϑ̃i ∀ i ∈ {1, . . . ,nI} → F({ϑi}nI) 6 F({ϑ̃i}nI) (6)

ϑi = 0 ∀ i ∈ {1, . . . ,nI} → F({ϑi}nI) = 0 (7)

The monotony property directly leads to the conclusion that a max-
imal trust in the result is achieved if all input values are fully trusted.
This maximal trust might not be equal to one because of internal un-
certainties of the processing module, e. g. a learning module might
not be fully trusted due to a restricted expressiveness.

A special function class that meets properties a) and c) are t-norms
and s-norms [82]. A t-norm is a suitable fusion method for process-
ing of signals without redundancy (a) and s-norms for redundant
conforming information (c). Complementary to those norms, compen-
satory operators lie in between and produce an averaged trust level
[83], which relates to redundant conflicting information (c). Hence
these functions constitute suitable fusion methods for the above men-
tioned categories, to determine the trust level of an output signal.

1.5.5 Properties of Trust Management

Representing the trustworthiness or uncertainty, respectively, by a sin-
gle scalar attribute is a way to incorporate uncertainties which still
only needs to process the sole value of the information. The trust
level attribute can then be used to rate and control the trustworthi-
ness of the system’s behavior. Thus the engineering and processing
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complexity increases only minimally. The influence of a trust signal
is easy to understand and interpret and leads to a comprehensible
behavior of the uncertainty treatment. With its unified semantics the
trust management approach is applicable throughout a system and
constitutes a good trade-off between computational effort and engi-
neerability. In case of redundancy of the in- or output an increased
quality can be expected. Otherwise it is reflected that the output again
cannot be trusted if a reduction of the uncertainty is not possible. Any
processing module can be extended to incorporate trust signals either
by fusing the trust levels aside the entire processing or by integrating
them into it. And any extended module can then be integrated uni-
formly in a system wide trust management architecture.

1.6 goal and outline of the thesis

The goal of this work is to develop an on-line learning system meet-
ing all the requirements of Section 1.4 that can be embedded in the
framework of trust management. This comprises a reliable and robust
on-line learning algorithm, a supervision of the model’s trustworthi-
ness and an assessment of the trustworthiness of each individual pre-
diction.

In the next chapter on-line learning is discussed for the certain
case, i. e. for all data and the parameter vector being certain. First an
overview of state of the art approaches to on-line learning is given in
Section 2.1 before the incremental risk minimization algorithm (IRMA)
is introduced in Section 2.2. IRMA is formally analyzed in Section 2.3
and empirically investigated on synthetic data in Section 2.4 as well
as on a real world application in Section 2.5. The chapter concludes
with discussing the properties of the approach in Section 2.6.

In Chapter 3 the on-line learning setting is extended to explicitly
represent uncertainties of the learning system. First the state of the
art regarding uncertainty estimation in learning systems is reviewed
in Section 3.1. Then the trusted parameters approach is introduced
in Section 3.2 and formally analyzed in Section 3.3. Again empirical
investigations and an application to the same real world example as
before are presented in Section 3.4 before concluding with a discus-
sion of the properties in Section 3.5.

In Chapter 4 the discussion of on-line learning is extended to the
uncertain case with respect to the uncertainty categories presented
in Section 1.3. Section 4.1 extends the IRMA approach to incorporate
knowledge about the uncertainty of the parameter vector and the
training example into the second order incremental risk minimiza-
tion algorithm (SIRMA). This extension is as well formally analyzed
in Section 4.2 and empirically investigated and applied to the real
world example in Section 4.3. Finally, the consequences for the uncer-
tain case are discussed in Section 4.4.
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The last chapter provides an overall conclusion of this thesis with
a discussion of the proposed approaches in relation to the state of
the art in Section 5.1 and summarizes the main results in Section 5.2.
Afterwards Section 5.3 gives an outlook on future directions, as this
field of research still poses a plethora of relevant open questions.



2
O N - L I N E L E A R N I N G – T H E C E RTA I N C A S E

In this chapter, the classical on-line learning case without any explicit
treatment of uncertainties is examined. An overview of state of the
art learning algorithms reveals an essential deficit which is covered
by the presented approach. It accounts for the locality of an example
and secures the globally gathered knowledge inherently. This way,
reliable on-line learning is possible with any LIP model structure.

2.1 state of the art on-line learning algorithms

2.1.1 General Framework

Most on-line learning algorithms have been developed for binary clas-
sification, i. e. the distinction of two non-ordinal labels. But they are
often applicable (with slight variations) for regression, i. e. an ordinal
real valued label, as well. Thus, an overview of on-line learning in
general is given here to provide the key concepts.

The basic idea of each approach is based on a general functional

F(ω) = wL · L(yt,ωTφ(xt)) +wD ·D(ωt,ω) +wC ·C(ω) (8)

consisting of two to three weighted parts and choosing the new pa-
rameter vector such as to minimize this functional, i. e.

ωt+1 = arg min
ω

F(ω). (9)

The primary goal of the minimization is to be corrective, i. e. to min-
imize the instantaneous loss L on the example (xt,yt) presented in
a step. The secondary goal is to be conservative, i. e. to minimize the
distance D between the previous hypothesis and the new one. Obvi-
ously, these two goals are contradictory if the current hypothesis does
not already fulfill the presented example. Optionally, in addition the
complexity C of the chosen hypothesis is minimized. The importance
of these goals is weighted by wL, wD, and wC, respectively. Depend-
ing on the choice of the measures L, D, and C, different learning
algorithms can be derived. These on-line learning algorithms can be
distinguished by their update type regarding multiplicative or additive
updates of the parameter vector.

2.1.2 Multiplicative Updates

The algorithms using a multiplicative update of the parameter vector
assume the predicted label to be a weighted sum of "experts" which

21
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each give their own prediction about the label. So the parameter vec-
tor represents the weights and consequently it is restricted to a convex
combination of the "experts", i. e. ωi > 0 ∀ i = 1, . . . ,n,

∑n
i=1ωi = 1.

For each example the error of each "expert" is observed. The more
wrong an "expert" is, the more its weight is reduced in a multiplica-
tive way. This idea was first introduced as the winnow algorithm [75]
and the weighted majority algorithm [76]. But the restriction on the
weight vector to be convex clearly also restricts the predictive ability
of the algorithm. Hence, the exponentiated gradient [64] introduces an
algorithm which allows positive and negative weights. For that pur-
pose, two weight vectors are maintained simultaneously, one with
positive, and one with negative influence, which are both restricted
to a convex combination each. The multiplicative update rule can be
derived with the distance D being the relative entropy, also known as
Kullback-Leibler divergence [70]

DKL(ωt,ω) =

n∑
i=1

ωi ln
ωi
ωt,i

. (10)

As stated in [64, 75], due to upper bounds on the loss the main
advantage of multiplicative algorithms comes into play if the param-
eter space is high dimensional and only a sparse parameter vector,
depending on a small number of features, is necessary for the ap-
proximation. Consequently, a multiplicative update is not suited for
learning a low to medium dimensional function with a fixed model
structure but rather in high dimensional cases where more features
are available than necessary and no model structure is used. A typical
application domain is text analysis through a bag of words where the
instances are vectors of several thousand inputs and only some are
relevant for the text analysis task at hand [72]. Additionally, the re-
strictions of a convex linear approximation and that zero parameters
never get back any influence are very strong. Thus, additive updates
are of greater importance for regression with LIP model structures.

2.1.3 First Order Additive Updates

In contrast to the multiplicative updates, additive updates of the pa-
rameter vector add (or subtract) each presented instance to the pa-
rameter vector. They date back to the perceptron algorithm [20, 90, 95]
and the Widrow-Hoff algorithm, also known as least mean squares [115].

These algorithms can be divided into first order and second order
learning algorithms [18]. First order algorithms directly update the
parameter vector with first order information, i. e. no derivative, us-
ing the example in the same way all the time. This way, the algorithm
has no memory except the parameter vector ω. So the same exam-
ple and the same parameter vector at different time steps t in the
data sequence will result in the same update to the new parameter
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Table 1: Variants of the passive-aggressive algorithm.

Variant β

PA 1

‖φ(xt)‖2

PA-I min
(
Ca, 1

‖φ(xt)‖2

)
PA-II 1

‖φ(xt)‖2+ 1
2Ca

vector ωt+1. In contrast, second order algorithms also adapt their
adaptation dynamically and data dependent. This means, the effect
of incorporating an example into the parameter vector is changed as
well during learning.

First order algorithms are based on a gradient descent on the loss
function [121]. This results in a general parameter update of the form

ωt+1 = α ·ωt +β · (yt − ŷt) ·φ(xt) (11)

with the two coefficients α for weighting the old parameter vectorωt
and β for the gradient step size.

The perceptron algorithm [20, 90, 95] adapts its parameter vector
according to (11) with α = 1 and an adjustable step size β as a
hyper-parameter. This method is extended in the work on the passive-
aggressive algorithm (PA) [36] for classification but it can be readily
applied to regression. The idea is to minimize the change in the pa-
rameter vector (passiveness) while getting a zero loss for the current
example (aggressiveness), resulting in a projection of the current pa-
rameter vector onto the hyperplane of all possible solutions (compare
Fig. 6). The notion of passiveness corresponds to minimizing the dis-
tance D while aggressiveness corresponds to minimizing the loss L in
(8).

For PA the weight of the old parameter vector is again α = 1 and
three different variants of the step size β were proposed (see Table 1).
The first (PA) normalizes the step size so that a zero loss for the exam-
ple is achieved through a full projection. The other two variants (PA-I
and PA-II) allow to decrease the influence of an example through a
hyper-parameter Ca > 0. It therefore reflects the aggressiveness of
the algorithm.

In all cases the distance D between the new and old parameter
vector is measured with respect to the squared Euclidean norm ac-
cording to

DE(ωt,ω) = ‖ωt −ω‖2 =
n∑
i=1

(ωt,i −ωi)
2. (12)

The same learning algorithm was also derived in the framework of
follow the proximally regularized leader [80, 81].
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Another distinct first order approach is the relaxed online maxi-
mum margin algorithm (ROMMA) [74] which was developed only for
exact binary classification. It is based on the idea of choosing the
new parameter vector ωt+1 such that all previous examples are still
correctly classified resulting in constraints that define a convex poly-
hedron [22, 107]. This convex polyhedron is approximated by the last
parameter vector. In this case, a special feature of the binary classifi-
cation task is used, i. e. that one example is correctly classified by a
complete half space of the parameter space, so no transfer to regres-
sion is possible.

The family of p-norm algorithms [52, 65] generalizes additive and
multiplicative updates in one framework, using the generic Bregman
divergence [26] as a distance measure. The Kullback-Leibler diver-
gence (10) as well as the squared Euclidean distance (12) are special
cases of the Bregman divergence and are thus subsumed in this frame-
work.

2.1.4 Second Order Additive Updates

As first order methods always adapt uniformly to new examples, they
can quickly adapt to changing conditions but are thus prone to noise
and outliers. To cope with these, second order algorithms extend the
approach of first order algorithms by introducing second order infor-
mation through an additional matrix Σt into the update by

ωt+1 = α1 ·ωt +β1 · (yt − ŷt) · Σtφ(xt) (13)

Σt+1 = α2Σt +β2Σtφ(xt)
Tφ(xt)Σt (14)

thus adapting the influence of an example on the different parameters
dynamically and individually. The matrix Σt can be interpreted as
parameter-wise adaptive learning rates which decrease over time, i. e.
the amount of examples presented.

Following up on the idea of ROMMA, the ellipsoid method [119] main-
tains an ellipsoid approximation of the polyhedron of parameter vec-
tors consistent with all previous examples. Likewise, it is not directly
transferable to regression. The ellipsoid is represented by the matrix
Σt. A similar idea views the parameter vector not as a single vec-
tor but as a random variable drawn according to a normal distri-
bution N(ωt,Σt). This approach is known as confidence weighted
learning (CW) [47] as it keeps track of the confidence of each param-
eter vector being the target vector, represented by its probability. It
uses the Kullback-Leibler divergence (10) of the new parameter dis-
tribution to the old one as a measure of distance D between the new
hypothesis and the previous one. In contrast to the multiplicative
update where the parameter vector itself is the distribution whose
divergence is minimized, CW uses the normal distribution of the pa-
rameter vector DKL(N(ωt,Σt),N(ω,Σ)). As in its classical form it is
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only applicable for binary classification, further development of this
method led to Exact Convex Confidence Weighted Learning [37] and Ex-
act Soft Confidence Weighting [112] making the method applicable for
regression as well.

This approach is extended by the adaptive regularization of weights
(AROW) [38, 105] which additionally minimizes the amount of uncer-
tainty about the parameter vector in each learning step by a complex-
ity measure C = φ(xt)

TΣφ(xt), i.e it forces the normal distribution
to sharpen. In the case of regression, AROW results in similar update
equations as the widespread recursive least squares (RLS) algorithm
[21, 48, 62] where Σt is interpreted as the covariance matrix of the
parameter estimation error. RLS thus minimizes (by definition) the
squared error to all presented examples, regardless of their age. To
reduce the influence of older examples and allow for a continuous
adaptation, a forgetting factor 0 < λ 6 1 is introduced in RLS, known
as recursive least squares with exponential forgetting [77]. RLS with
forgetting results in the update with

α1 = 1 , β1 = (λ+φ(xt)
TΣtφ(xt))

−1 (15)

α2 = λ
−1 , β2 = (λ2 + λφ(xt)

TΣtφ(xt))
−1. (16)

With a forgetting factor close to one, the noise stability is high, but it is
badly suited for continuous adaptation. Lowering the forgetting fac-
tor in principle allows for better continuous adaptation, but decreases
the stability at the same time [88].

Alternatively, to allow RLS to adapt to non-stationary situations,
the covariance matrix is reset to the identity after a given number of
examples was presented, thus increasing the adaptiveness again [35,
53, 96]. Similarly the AROW approach is extended with a covariance
reset [106], but here resetting of the second order information is done,
based on spectral properties of the covariance matrix, i. e. if the lowest
eigenvalue drops below a lower bound.

A different second order approach is the second order perceptron
(SOP) [33]. It performs a whitening transform on the input data to
reduce the correlation matrix of the transformed data to the identity.
Thus, every example can be used more effectively to update the pa-
rameter vector. The resulting update equation again is similar to that
of RLS and AROW.

Another second order approach, called Gaussian herding (GH) [39],
replaces the Kullback-Leibler divergence in such a way that the move-
ment of the parameter vector distribution is led by a velocity field,
thus reducing quick changes in the distribution and becoming more
robust to high noise levels in the data. Here, often not the complete
matrix Σt is stored but only a diagonal projection (see e. g. [37, 39])
in order to reduce the computational complexity.
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2.1.5 Consequences

The above dicussion of the state of the art leads to the conclusion that
of all additive algorithms, the gradient based PA and its variants are
most suitable, if the data are not subject to strong noise and if a con-
tinuous adaptation to changing conditions is needed in a regression
task. If the noise level on the data is high, a second order approach is
more suitable. Then AROW, SOP, and RLS are possible choices which
are very similar. RLS is the most widespread method as it is optimal
regarding the mean squared error. Furthermore, GH is especially suit-
able for high noise levels [39]. With the forgetting factor of RLS, a
trade-off between robustness to noise and adaptability to changes is
possible. Yet, practically a good setup of the forgetting factor is hard
to find as it is very sensitive [88]. Typically the forgetting factor is
chosen from λ ∈ [0.9, 1] and slight changes on the third decimal point
affect the stability severely.

But all approaches have a common drawback. The parameter adap-
tation is chosen in the realm of parameter space. As described in
Section 1.1, usually a model structure is used to transform from in-
put space to parameter space to get a more expressive linear model.
This results in a non-linear influence of the input vector on the out-
put value. Yet, a common basic characteristic is that all state of the
art methods treat every parameter in the same way regardless of its
influence on the output. But if the mapping from input to parameter
space consists of non-local basis functions, e. g. polynomials, or basis
functions with different amounts of influence on the output, e. g. a
GLT with not equally spaced grid positions, treating the parameters
equally is not likely to result in the desired behavior and will not sat-
isfy all of the requirements of Section 1.4. That is because the passive
part of all methods always tries to change the parameter vector as
little as necessary. Consequently, the parameters with the highest im-
pact on the output are changed the most and the global input-output
relation is likely to change much more than necessary, especially also
apart from the validity of the example. Therefore, fatal forgetting as
well as overfitting is very likely to occur which is dangerous to the
performance and robustness of the learning system. Especially first
order algorithms like PA show a poor performance when learning a
polynomial model structure, i. e. with globally effective parameters.
The second order improvement of RLS helps to deal with these model
structures on the long run, but neither is it reliable at every step in the
learning process nor is it stable with forgetting enabled. So a reliable
continuous adaptation is not possible with these methods.

One countermeasure against overfitting is regularization. The third
term of (8), i. e. the complexity measure C, accounts for this. A widely
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applied technique is Tikhonov regularization [42, 86, 104] which incor-
porates the complexity penalty

C(ω) = ‖Γω‖2 (17)

with a suitably chosen Tikhonov matrix Γ which is often set to the
identity matrix Γ = 1. This way the resulting functional behavior can
be shown to be as flat as possible, thus preventing overfitting [93]. But
as this regularization does not include any knowledge about prior
learning examples, it is usually only suited for learning with a set of
training data and not for on-line learning and hinders the predictive
quality.

2.2 incremental risk minimization approach

2.2.1 General Approach

The basics of the incremental risk minimization algorithm (IRMA)
were introduced in [5, 12]. It is inspired by the risk functional for batch
learning [107]

R(h) =

∫
X

L(y,h(x)) dF(x,y) (18)

that describes the risk of loss for a chosen hypothesis h ∈ H given the
data distribution F(x,y). For a set of examples (xi,yi), i = 1, . . . ,nd
drawn independently form the distribution F(x,y), the integral can
be approximated by the empirical risk [107]

Re(h) =
1

nd

nd∑
i=1

L(yi,h(xi)) (19)

=
1

nd

nd−1∑
i=1

L(yi,h(xi)) +
1

nd
L(ynd ,h(xnd)). (20)

In the on-line case older examples, i. e. i = 1, . . . ,nd − 1 are not avail-
able. But they are embedded in the hypothesis ht, especially its en-
coded input-output relation, as they were learned before. So the out-
put resulting from the current hypothesis ht can be used to describe
the risk of a loss regarding those examples for a newly chosen hy-
pothesis h. Hence, IRMA uses the change of the model output as a
distance

D(h) =
σt

2
·
∫
X

L(ht(x),h(x))dx (21)

on a bounded input space X as the distance measure for the newly
chosen hypothesis. In contrast to the state of the art, the change of the
hypothesis is thus not measured by the change of the parameter vec-
tor itself, but its influence on the change of the global input-output
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relation. This way, fatal forgetting is prevented effectively. Together
with the example loss the incremental approximation of the risk func-
tional is given by

Rinc(h) =
σt

2
·
∫
X

L(ht(x),h(x))dx+
1

2
L(yt,h(x)) (22)

with a weighing factor σt > 0 to choose the new hypothesis according
to

ht+1 = arg min
h

Rinc(h) . (23)

The factor σt can be seen as to steer the stiffness of the model. The big-
ger its value is, the more a change of the model output is punished. If
a lot of previous examples are subsumed by the parameter vector and
hence the contribution of the current example is comparably small, a
big value of σt accounts for this evidence. In contrast, in the initial
learning phase with no or only low data background, this weighing
factor should be low, thus putting more weight on the present exam-
ple. Consequently it should be chosen as a monotonically increasing
value (σt > σt−1) as the learning process progresses.

2.2.2 Application to LIP Regression

So far the definition of IRMA in (22) is generally applicable for any
learning system maintaining a hypothesis h. Using the squared loss
of (4) for regression and the general LIP model given by (2) as the
hypothesis h, the risk functional (22) takes the form

Rinc(ω) =
σt

2
·
∫
X

((ωt−ω)Tφ(x))2dx+
1

2
(yt−ω

Tφ(xt))
2 . (24)

Minimizing this incremental risk functional yields the update of the
parameter vector in each step. Solving the equation for a zero partial
derivative

∂Rinc
∂ωi

= 0 ∀ i ∈ [1;n] (25)

to minimize (24) results in

∂

∂ωi

σt

2
·
∫
X

((ωt −ω)Tφ(x))2dx+
1

2
(yt −ω

Tφ(xt))
2

= σt ·
∫
X

(ωt −ω)Tφ(x)φi(x)dx+ (yt −ω
Tφ(xt))φi(xt) = 0 (26)

which can be rewritten in vector form:

σt ·
∫
X

(ωt −ω)Tφ(x)φ(x)dx+ (yt −ω
Tφ(xt))φ(xt) = 0 (27)
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Using the definition of matrices A

(A)i,j =

∫
X

φi(x)φj(x)dx (28)

and B(xt)

(B(xt))i,j = φi(xt)φj(xt), (29)

this gets

σtA(ωt −ω) +φ(xt)yt −B(xt)ω = 0 (30)

σtAωt − σtAω+φ(xt)yt −B(xt)ω = 0 (31)

σtAωt +φ(xt)yt = σtAω+B(xt)ω (32)

Aωt +
1

σt
φ(xt)yt = (A+

1

σt
B(xt))ω (33)

as a condition for the critical point. Furthermore, as

∂2

∂ω2
σt

2
·
∫
X

((ωt −ω)Tφ(x))2dx+
1

2
(yt −ω

Tφ(xt))
2

= σt ·
∫
X

φ(x)Tφ(x)dx+φ(xt)
Tφ(xt) > 0 (34)

the critical point minimizes the incremental risk functional.
Hence, the update of IRMA is given by

ωt+1 = (A+
1

σt
B(xt))

−1

[
Aωt +

1

σt
φ(xt)yt

]
. (35)

With the basis {φi(x)}
n
i=1 in the function space L2(X), A is the

Gramian matrix given by the standard inner product on functions.
Hence the matrix A is positive definite for linearly independent φi(x)
and has an inverseA−1. Choosing the substitution u = v = 1√

σt
φ(xt),

the second part of (35) can be expressed as 1
σt
B(xt) = uv

T . Thus the
Sherman–Morrison formula yields the entire inverse1

(A+uvT )−1 = A−1 −
A−1B(xt)A

−1

σt +φ(xt)TA−1φ(xt)
. (36)

So the minimization has a unique solution and as the matrix A is
constant for any given model structure and can be inverted off-line,
(36) poses a numerically cheap way to compute the inverse for each
learning step [93].

1 This numerically cheap parameter update is based upon a contribution of Nils Rose-
mann from a collaboration in [12].



30 on-line learning – the certain case

This results in the following algorithm for on-line learning by IRMA:

Listing 1: Incremental Risk Minimization Algorithm

Parameter: stiffness σt, initial parameter vector ω0
for t = 0 to nd − 1 do{ //i.e. for each learning step

receive instance xt
predict label ŷt =ω

T
tφ(xt)

receive true label yt
suffer loss L(yt, ŷt)
use Sherman-Morrison to calculate (A+uvT )−1

update parameter vector ωt+1 = (A+uvT )−1(Aωt +
1
σt
φ(xt)yt)

}end

2.3 formal analysis of irma

2.3.1 Local Convergence and Stiffness

For a formal analysis of the approach, first the influence of IRMA on
the local error is presented to show the local contraction of each learn-
ing step. If the parameter vector ω is not changed, the incremental
risk functional has the value

Rinc(ω =ωt) = (yt −ω
T
tφ(xt))

2 (37)

which is equivalent to the local error of the approximation. In this
case, the partial derivative

∂Rinc(ω =ωt)

∂ωi
= 2(yt −ω

T
tφ(xt))φi(xt) (38)

shows that the gradient is zero, only if the target value yt is already
met by the approximation, as φ is a basis and thus at least one
φi(xt) 6= 0. In this case, no adaptation of the parameter vector is
needed to incorporate the new example (xt,yt). Otherwise, a change
of parameters ∆ωt = ωt+1 −ωt 6= 0 minimizes the risk functional
leading to

0 < σt ·
∫
X

((∆ωt)
Tφ(x))2dx

⇔

((ωt +∆ωt)
Tφ(xt) − yt)

2 < σt ·
∫
X

((∆ωt)
Tφ(x))2dx (39)

+((ωt +∆ωt)
Tφ(xt) − yt)

2

< (ωTtφ(xt) − yt)
2 .

Consequently, by learning from an example (xt,yt) the local error on
that example with the new parameter vector ωt+1 is less than before
withωt. Thus learning converges locally with respect to the example.
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The amount of local convergence depends on the stiffness σt. For
σt →∞, a learning step as shown in (35), results in

ωt+1 = A
−1Aωt =ωt (40)

and hence keeps the old parameter vector and the local error is the
same afterwards. On the other hand, for σt → 0 (35) takes the form

B(xt)ωt+1 = φ(xt)yt

⇔
n∑
i=1

φj(xt)φi(xt)ωt+1,i = φj(xt)yt ∀ j ∈ {1, . . . ,n} (41)

⇔
ωt+1

Tφ(xt) = yt

resulting in a new parameter vector that reproduces the example
(xt,yt) exactly, i. e. decreasing the local error to zero. In between,
the stiffness σt allows to choose how much the parameter vector and
consequently the functional behavior is changed to decrease the local
error.

To see the influence of a new example (xt,yt) on the parameter
update ∆ωt, (35) can be rewritten to

∆ωt =

[
A−1 +

A−1B(xt)A
−1

σt +φ(xt)TA−1φ(xt)

]
φ(xt)

σt
(yt −ω

T
tφ(xt)) (42)

showing that the error on the example has a linear influence on the
resulting change in parameters. The stiffness has an influence of 1

c+σt
on the magnitude of a parameter update. For σt → 0 the update has
a defined limit

lim
σt→0

∆ωt =
A−1

φ(xt)TA−1φ(xt)
φ(xt) · (yt −ωTtφ(xt)) (43)

which can be derived using l’Hôpital’s rule. In this case, the update
is similar to the update of PA shown in Table 1, except for the trans-
formation through the matrix A−1.

2.3.2 Worst Case Minimization

Globally the error cannot be expected to decrease with every exam-
ple because a single example only gives local information at xt. But
to incorporate it properly some global change is necessary. This goes
along with the no-free-lunch theorem for supervised learning [117, 118],
stating that there are no a priori distinctions between learning algo-
rithms regarding the off-training-set error, i. e. the predictions in the
on-line case. Any learning algorithm might produce a correct lucky
guess for the next prediction.
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But looking at the global approximation error, for IRMA the follow-
ing inequality holds:∫

X

(ωTt+1φ(x) − f(x))2dx (44)

=

∫
X

[
ωTtφ(x) − f(x) + (∆ωt)

Tφ(x)
]2
dx (45)

=

∫
X

[(ωTtφ(x) − f(x))2 + ((∆ωt)
Tφ(x))2

+2 · (ωTtφ(x) − f(x)) · ((∆ωt)Tφ(x))]dx (46)

=

∫
X

(ωTtφ(x) − f(x))2dx+

∫
X

((∆ωt)
Tφ(x))2dx

+2 ·
∫
X

(ωTtφ(x) − f(x)) · ((∆ωt)Tφ(x))dx (47)

6
∫
X

(ωTtφ(x) − f(x))2dx+

∫
X

((∆ωt)
Tφ(x))2dx

+2 ·
∫
X

∣∣ωTtφ(x) − f(x)
∣∣ · ∣∣(∆ωt)Tφ(x)

∣∣dx (48)

6
∫
X

(ωTtφ(x) − f(x))2dx+

∫
X

((∆ωt)
Tφ(x))2dx

+2 ·Cm ·
∫
X

∣∣(∆ωt)Tφ(x)
∣∣dx (49)

6
∫
X

(ωTtφ(x) − f(x))2dx+

∫
X

((∆ωt)
Tφ(x))2dx

+2 ·Cm · c(X) ·

√∫
X

((∆ωt)Tφ(x))2dx (50)

Starting with the global squared error of the approximation ωt+1
to an unknown optimal target function f(x) in (44), an expansion in
(45) relates the global error at step t+ 1 to the previous error at step t.
Factoring out the square in (46) and exchanging sum and integration
in (47) allows to limit the global error upward in (48). If the approxi-
mation is changed in a region not supported by the current example,
i. e. anywhere except at xt, it is unknown what the true value of the
target function is. A learning algorithm can only guess and depend-
ing on the unknown optimal target function f(x), this is better or
worse. Hence, it is not possible to be good in every case but it is pos-
sible to be safe from making it worse in every case. Thus the estimate
assumes that any change fromωt toωt+1 in the worst case increases
the error, i. e. the change has the same sign as the previous error of
ωt and thus is upper bounded by its absolute value.

As the absolute prior error is constant for a learning step, an upper
bound can be estimated restricting it to its maximum value

Cm = max
x∈X

(
∣∣(ωTtφ(x) − f(x))

∣∣) (51)

in (49). Additionally, as it is not always possible to minimize the ab-
solute error and the squared error simultaneously, the absolute error
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is bounded in (50) by the squared error through the inequality of arith-
metic and geometric means with a constant c(X) depending on the input
space [102].

With the upper bound of (50) on the global squared error of the ap-
proximation ωt+1, the first term is fixed by the previous approxima-
tion of ωt and can thus not be influenced by any learning algorithm.
The second term as well as the third term are minimized by IRMA for a
given improvement on the current example (xt,yt) as they are equiv-
alent to the change D of (21). Consequently, while locally decreasing
the error by a certain amount depending on the stiffness (see (39)),
IRMA minimizes the worst case development of the global approxima-
tion error in each step. Hence, it incorporates the new knowledge of
the example as local as possible into the approximation in contrast to
any other learning algorithm and is reliable in every step. Since this
analysis is true for any model structure φ, IRMA is a reliable learning
algorithm independent of the chosen model structure.

2.3.3 Independence of Specific Model Structure

With the way IRMA incorporates a new example, it gets independent
of the specific formulation of the model structure. Taking different
model structures that represent the same class of functions, but with
different parameters to represent this class, will result in the same
way of adapting the model. Other learning algorithms yield different
results, as they do not respect the influence of the model structure.
As IRMA incorporates knowledge about the transformation φ, in this
case the global input-output relation is the same after adapting to an
example, regardless of the specific formulation of the model struc-
ture.

An example is shown in Fig. 14 where on the one hand a GLT with
linear interpolation is used as a model structure, with two parameters
representing the height at −10 and 10. On the other hand, a first order
polynomial is used, with two parameters representing the offset and
slope. Both model structures represent the same class of functions,
i. e. straight lines, on the input domain [−10, 10]. But, starting with a
parameter vector of zero, PA yields two different results for learning
on the same example whereas IRMA results in the same line in both
cases. Hence, for IRMA only the input-output relation is relevant and
not the inner model structure.

2.3.4 Complexity

With respect to the computational complexity, IRMA learning takes
more effort than usual first order learning algorithms. As the ma-
trix inverse can be obtained efficiently with the Sherman-Morrison
Formula ([93], Sec. 2.7), the calculation takes O

(
n2
)

steps, mainly be-
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Figure 14: Comparison of the results of IRMA and PA on two model struc-
tures which represent the same class of functions. For IRMA the
result is the same in both cases, whereas PA results in two differ-
ent approximations.

cause of matrix multiplications. It uses O
(
n2
)

amount of memory,
again for storing the matrix. In comparison, state of the art first or-
der learning algorithms like PA take O (n) calculation steps and O (n)

memory. But still the complexity of IRMA is fixed depending on the
complexity of the model structure with n basis functions and does
not increase with increasing amounts of examples.

2.4 investigations of irma

2.4.1 General Setup

To support the principal analysis with quantifiable results and to fur-
ther investigate the behavior of the presented approach, selected em-
pirical investigations are presented in the following. Additional more
specific investigations that do not fit into the focus of this chapter are
presented in Appendix B. For the investigations two different model
structures are used (see Appendix A.3.3 for details of the implemen-
tation). On the one hand, a GLT (see [88, Section 10.3] and [108]) with
either linear or Gaussian interpolations is used. This model struc-
ture has the advantage that each parameter only influences the input-
output relation locally in input space. But this local influence comes
at the cost of the curse of dimensionality with respect to the number
of parameters [88]. On the other hand, a polynomial [88, Section 10.2]
without mixed terms, i. e. only linear combinations of different poly-
nomial orders of single input dimensions, is used. Here the number
of parameters increases only linearly with the number of dimensions.
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But this comes at the cost of a complex interaction of the parameters
and a global effect of each parameter on the input-output relation.
Consequently, these model structures present two extremes of the
design space of model structures and allow to generalize from the
empirical investigations.

For evaluation of the performance of a learning algorithm, three
measures are relevant. First, and most important, the cumulative loss

Lc(τ) =

τ−1∑
t=0

(yt −ω
T
tφ(xt))

2 (52)

on the sequence of examples (xt,yt) evaluates the predictive perfor-
mance, i. e. how good the on-line learning performs on the sequence
of data presented. Second, the data loss

Ld(τ) =
1

τ

τ−1∑
t=0

(yt −ω
T
τ−1φ(xt))

2 (53)

evaluates the quality on all examples (xt,yt) seen up to the respec-
tive step, i. e. how well the general relationship of the examples was
learned. Third, for comparison with ground truth information, ad-
ditional test examples (x̃i, ỹi) are directly drawn on a fine-grained
regular grid covering the complete input space regardless of the den-
sity of training examples and without any disturbance. With these
data the ground truth loss

Lg(τ) =
1

ng

ng∑
i=1

(yi −ω
T
τ−1φ(xi))

2 (54)

evaluates the ability to generalize and cancel noise, i. e. how well the
learned approximation suits undisturbed and regularly sampled ex-
amples of the optimal target. Measuring this ground truth loss is only
possible for a known analytic target function.

All investigations are set up using the unified online-learning sys-
tems library (UOSLib) [8] which supports an easy comparison of learn-
ing algorithms and reproducible experiments (see Appendix A for an
overview of the features). Within this framework, all experiments are
uniquely described by footprints which are defined in Appendix A.

2.4.2 Basic Empirical Investigation

As a first example, the on-line approximation of a non-linear function
is investigated, to show the behavior of IRMA throughout the learning
process. A typical problem with on-line learning is the interaction
of model structures with different expressiveness and a low exam-
ple density, e. g. in the beginning of learning. To investigate this, for
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Figure 15: Resulting functional behavior of on-line learning by IRMA after
different amounts of data are presented to model structures with
differing complexities.

training, 150 instances xt are drawn randomly from a uniform dis-
tribution on [−10, 10]. For each the target value is generated by the
function yt = (xt + 10) · exp(−xt+102 ) + ξ with normally distributed
noise ξ ∼ N(0, 0.05) to form an example2. IRMA3 is set up with a stiff-
ness σ = 0.1 and polynomial model structures of different orders
are used4. With 4

th order, the expressiveness is too small to learn
the target function properly. The 6

th order polynomial is appropriate
for the target function, whereas the 10

th order normally would tend
to overfitting because it is too expressive. Snapshots of the resulting
functional behavior are taken after 10, 80, and 150 examples of the
same sequence have been presented to see the effect of data density.

Figure 15 shows the resulting input-output relation. Additional nu-
merical results of a ground truth comparison on 100 equally spaced,

2 UOSLib-scenario: mode = REG, func = nonlinhalf, ND = 150, NG = 100, noise = 0.05,
minPath = false, rSeed = 1234567

3 UOSLib-learn: IRMA, variant = 0, stiff = 0.1
4 UOSLib-model: Poly, order = [4,6,10]
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Table 2: Ground truth loss compared for on-line and batch learning with
different amounts of examples on model structures with differing
complexities.

No. of examples 4
th order 6

th order 10
th order

10 (on-line) 9.4 · 10−2 7.8 · 10−2 1.3 · 10−1

10 (batch) 1.2 · 10−2 2.4 · 10−1 5.1 · 107

80 (on-line) 5.6 · 10−2 1.8 · 10−2 2.1 · 10−2

80 (batch) 5.9 · 10−3 5.0 · 10−4 2.5 · 10−4

150 (on-line) 5.6 · 10−2 2.2 · 10−2 2.6 · 10−2

150 (batch) 5.5 · 10−3 3.8 · 10−4 1.7 · 10−4

undisturbed test points are shown in Table 2 for the on-line learning
system as well as a batch fit using the Vandermonde matrix of the
complete data sequence with the Matlab® backslash operator, i. e. a
least squares fit. With low data density, the higher expressiveness is
used to fit to these few examples but even for the 10

th order polyno-
mial which could yield values that are orders of magnitude bigger
than the output range of the target function, the oscillations are only
moderate and result in a low ground truth loss of 1.3 · 10−1. In this
case, batch learning results in a high ground truth loss of 5.1 · 107
as it is more affected by overfitting. With increasing data density, the
approximation fits closely to the target function and the influence of
the example noise is small. Thus a stable approximation of the tar-
get function is achieved. Though higher than for batch learning, the
resulting ground truth losses of on-line learning are very low with
higher data densities, but at a lower computational demand. With
the low expressiveness of the 4

th order polynomial, the leftmost part
of the target function is not met due to the low amount of data, i. e.
only four of the total 150 examples.

In summary, IRMA results in a reasonable approximation in every
case, regardless of the model expressiveness or the data density, with-
out drastic influence on the approximation in areas not supported by
examples, resulting in a compliant generalization without overfitting.
Consequently, there are no large errors at any time during learning.

2.4.3 Comparison of On-line Learning Methods

To quantify the quality of learning in comparison to other on-line
learning methods, a more complex analytic function with several
changes of monotonicity is learned on-line. For this task, IRMA is com-
pared with the state of the art on-line learning methods PA and RLS.
Using the two model structures introduced above, the exemplary in-
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Figure 16: Comparison of IRMA, PA, and RLS on learning a sine target func-
tion without noise, using a GLT with 16 regularly distributed grid
nodes.
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Figure 17: Comparison of IRMA, PA, and RLS on learning a sine target func-
tion with noise, using a GLT with 16 regularly distributed grid
nodes.

vestigations presented here allow to generalize the results to other
model structures. For training5, nd = 300 instances xt are randomly
selected from a uniform distribution on [−10, 10] and the respective
target value yt is generated by a sinusoidal yt = sin(xt) + ξ with
normally distributed noise ξ. For comparison with ground truth in-
formation, ng = 300 additional equally spaced test examples are
used. IRMA6 is set up with a stiffness of σ = 0.1, PA7 needs no hyper-
parameter in its basic version, and RLS8 has an initial covariance ma-
trix Σ0 = 1 · 103 and a forgetting factor of λ = 1.

Figure 16 shows the resulting losses for a GLT model structure with
Gaussian interpolation and 16 regularly distributed grid nodes9 with-
out noise (ξ = 0) and Fig. 17 with noise ξ ∼ N(0, 0.1) on the ex-
amples. In every case, the cumulative loss increases quickly in the
beginning when not enough knowledge about the target function is
present. After this initialization phase, the cumulative loss increases
less, depending on the amount of noise and residual approximation
error. Without noise, the cumulative losses of the three algorithms
are comparable and RLS is better suited in presence of noise as it has
a lower slope of the cumulative loss. On the data loss, all algorithms
achieve a low loss in the end which increases in presence of noise. RLS

5 UOSLib-scenario: mode = REG, func = sine, ND = 300, NG = 300, noise = [0, 0.1],
minPath = false, rSeed = 12345

6 UOSLib-learn: IRMA, variant = 0, stiff = 0.1
7 UOSLib-learn: PA, variant = 0

8 UOSLib-learn: RLS, Sinit = 103, forget = 1

9 UOSLib-model: GLT, num = 16, base = gauss
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Figure 18: Comparison of IRMA, PA, and RLS on learning a sine target func-
tion without noise, using a polynomial of 15

th order.
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Figure 19: Comparison of IRMA, PA, and RLS on learning a sine target func-
tion with noise, using a polynomial of 15

th order.

is designed to minimize the data loss and thus outperforms the other
methods. But as a consequence of this minimization, the ground truth
loss of RLS is higher in the beginning due to overfitting. This overfit-
ting leads to the risk of a high prediction error like the one at time
step t = 80 in the cumulative loss. These high prediction errors are
usually rare events in a learning sequence, but as it is unpredictable
when a high error occurs, they are especially dangerous to the overall
system behavior. Hence, the reliability of RLS is low. In comparison of
the first order methods, IRMA is slightly better than PA but does not
show a significantly different development.

In contrast to the local GLT model structure, Fig. 18 shows the re-
sulting losses (mind the logarithmic scale) for a polynomial model
structure of 15

th order10 without noise and Fig. 19 again with noise.
The polynomial model structure leads to a different behavior of the
state of the art algorithms. The cumulative error of PA increases ever-
more and similarly the high example and ground truth losses show,
that the general relationship of the examples is not learned properly.
With RLS, the general relationship can be learned on the long run but
the ground truth loss in the beginning is much higher with this com-
plex model structure. This indicates overfitting and an increased risk
of high prediction errors in between, therefore reducing the reliability.
Thus, the cumulative error also increases much more. However, IRMA

shows nearly the same results as with the GLT model structure that
are orders of magnitude better than that of PA and RLS. It learns the
general relationship while minimizing the risk of high prediction er-

10 UOSLib-model: Poly, order = 15
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Table 3: Final results of the losses after all examples were presented for the
comparison of IRMA, PA, and RLS on learning a sine target func-
tion. Losses > 1015 are marked in gray.

Lc(nd) Ld(nd) Lg(nd)

IR
M

A

GLT 10.5 1.0·10
-2

1.2·10
-2

GLT noise 15.9 2.9·10
-2

1.9·10
-2

Poly 6.4 1.3·10
-6

1.6·10
-6

Poly noise 12.9 1.8·10
-2

8.5·10
-3

PA
GLT 11.1 1.2·10

-2
1.5·10

-2

GLT noise 17.3 3.4·10
-2

2.4·10
-2

Poly 1.1·10
27

5.3·10
22

5.6·10
22

Poly noise 1.4·10
27

2.3·10
22

2.4·10
22

R
LS

GLT 9.6 6.8·10
-3

8.3·10
-3

GLT noise 11.9 1.5·10
-2

9.2·10
-3

Poly 1.1·10
16

3.3·10
-7

8.5·10
-7

Poly noise 2.8·10
15

1.0·10
-2

1.4·10
-3

rors in each step. With additional noise, the principal behavior stays
the same but all losses increase as expected.

The final losses after the complete sequence of examples was pre-
sented are shown in Table 3. The polynomial model structure allows
to achieve a lower cumulative loss, if used properly. Especially for
IRMA each loss decreases with this model structure, even though the
expressiveness with respect to VC-dimension is the same as with the
GLT model structure [107]. In contrast PA performs worse than IRMA in
every case and cannot use the expressive polynomial model structure.
However, RLS has low data and ground truth losses which improve as
well in combination with the polynomial model structure. So it is able
to learn it adequately on the long run, but its on-line performance is
bad with a polynomial model structure as Lc shows.

The main advantages of IRMA shown in this investigation are two-
fold. On the one hand, as it minimizes the worst case error as shown
in Section 2.3.2, it prevents high cumulative losses as they occur with
RLS. Thus not only low data and ground truth losses are achieved but
as well a low cumulative loss. On the other hand, the incorporation
of knowledge about the non-linear transformation φ allows to learn
any model structure that is linear in its parameters, even if the pa-
rameters interact globally, as demonstrated on the extreme case of a
polynomial model structure.
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Figure 20: Comparison of IRMA, PA, and RLS on learning a sine target func-
tion with noise over 100 random sequences of examples using a
GLT (left) or a polynomial (right, logarithmic scale) model struc-
ture. The average performance is shown as a line and the respec-
tive minimum and maximum as error bars.

As the chosen sequence of examples influences the results, the
same experiment is repeated 100 times for different randomly drawn
sequences (randomizer seeds: 12345 to 12444) to compare the vari-
ance of the results. The average cumulative loss for these sequences
is shown in Fig. 20 together with its minimum and maximum as error
bars. On average again all algorithms perform comparably with a GLT

model structure, but RLS shows a high variance resulting in the best
performance on some sequences, but also at the risk of a high loss for
other sequences. With a polynomial model structure, this variability
of RLS is even higher and PA even fails to learn in every case as the
minimum is very high. But IRMA keeps the lowest average cumulative
loss together with a low variability and achieves results comparable,
albeit slightly better, to the GLT model structure. So IRMA shows a
low variance of the results with both model structures, which is as-
sociated with the minimization of the worst case, and consequently
provides a reliable on-line learning performance.

2.4.4 Influence of the Stiffness

The only hyper-parameter of IRMA is the stiffness σ, adjusting be-
tween keeping old knowledge and following a new example. Hence,
to investigate the influence of the stiffness σ the previous investiga-
tion is run again with the same setup but for different values of σ.
For comparison, the final cumulative loss is plotted in Fig. 21.

The results show that a single minimum for the cumulative loss, i. e.
an optimal value of the stiffness, is present in every case. The poly-
nomial model structure again results in a lower loss and especially
without noise, a stiffness of σ ≈ 0 is optimal, in contrast to the other
cases where the optimum is different from zero. This is explained by
the fact that noise on the training examples has the same influence as
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Figure 21: Influence of the stiffness on the resulting cumulative loss for dif-
ferent model structures and noise levels. The minimum of every
case is marked by a cross.

a model structure that cannot express the optimal target function ad-
equately. The GLT model structure has a residual error and thus even
with exact examples the parameter update appears random. Thus,
the optimal stiffness increases with increasing amount of noise of the
examples or decreasing expressiveness. And, choosing a slightly dif-
ferent value for σ has only low influence on the resulting cumulative
loss. Hence, the influence of the hyper-parameter σ is easy to under-
stand and easy to adjust to a problem at hand and should be set
up according to the expected noisiness, i. e. the higher the noise the
higher the stiffness should be chosen.

2.4.5 Higher Dimensional Problems

The investigations so far dealt with one-dimensional regression prob-
lems. Thus, to investigate the results of IRMA on regression prob-
lems of higher dimensionality, the concrete compressive strength data
set [120] obtained from the UCI Machine Learning Repository [16] is
used. The dataset contains eight input dimensions to predict the com-
pressive strength of concrete and consists of 1030 examples. In eight
dimensions, the curse of dimensionality shows a significant disad-
vantage of GLT model structures. With only five grid points in each
dimension, this model structure consists already of about 400,000 pa-
rameters to be learned. This is not reasonable with only 1030 exam-
ples available and the computational demand is quite high as well.
But, using a polynomial model structure, the number of parameters
increases only linearly, i. e. a fifth order polynomial leads to 41 pa-
rameters which is of reasonable complexity.
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Figure 22: Comparison of IRMA, PA, and RLS on learning the higher dimen-
sional concrete compressive strength dataset. The cumulative loss
of RLS increases drastically and is thus omitted for higher values.

Table 4: Final cumulative and data loss of IRMA, PA, and RLS after learning
the higher dimensional concrete compressive strength dataset.

Measure PA RLS IRMA

Final cumulative loss 100.8 429.1 34.3

Final data loss 0.25 0.02 0.06

For this data set, again the three learning methods are compared.
PA11 and RLS12 with initial covariance matrix Σ0 = 1 and forgetting
factor λ = 1 are compared to IRMA13 with a stiffness of σ = 2 ·10−9. As
the amount of functional change measured by IRMA increases with the
dimensionality, this stiffness is comparable to a stiffness of σ ≈ 1.28
in a single input dimension. Using a polynomial model structure of
4

th order14, the results of Fig. 22 are obtained with the final losses of
Table 4. The cumulative loss of IRMA increases only moderately and
achieves by far the lowest result and a low data loss as well in the
end. PA results in a higher cumulative and data loss, whereas RLS is
able to get the lowest data loss in the end but again at a significantly
higher cumulative loss. Consequently, the benefits of IRMA generalize
well to higher dimensions.

In this case a GLT model structure, like any model structure with
locally effective parameters, is not feasible due to the curse of dimen-
sionality. Hence, it is especially beneficial that IRMA is able to learn
polynomial model structures, or any other model structure with glob-

11 UOSLib-learn: PA, variant = 0

12 UOSLib-learn: RLS, Sinit = 1, forget = 1

13 UOSLib-learn: IRMA, variant = 0, stiff = 2 · 10−9
14 UOSLib-model: Poly, order = 4
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ally effective parameters, because they give a higher degree of expres-
siveness without being subject to the curse of dimensionality.

2.4.6 Non-stationary Environments

All previous investigations dealt with a fixed target function, i. e. a
stationary input-output relation of the examples. But on-line learn-
ing has the advantage of a continuous adaptation to changes in this
relation over time. Typically two kinds of changes are distinguished.
Either a shift occurs, characterized by a sudden change, or a drift
occurs, where the relation slowly changes.

For the investigation of non-stationary environments, again IRMA,
PA, and RLS are compared. The GLT model structure with Gaussian
interpolation and 16 regularly distributed grid nodes as well as the
polynomial model structure of 15

th order are used again. For the shift
investigation, nd = 300 instances xt are randomly selected from a
uniform distribution on [−10, 10] and the respective target value yt is
generated by the polynomial

yt =

3∑
i=0

pix
i (55)

with parameters p = (−0.198, 0.06, 0.003,−0.0015) for the first 150 ex-
amples and p = (0.198,−0.06,−0.003, 0.0015) for the last 150 exam-
ples15. For the drift investigation, the same two target polynomials
are used, but the first 100 examples are drawn with the first param-
eter set, the last 100 examples with the second parameter set, and in
between the parameter set is linearly blended16. To evaluate the influ-
ence of the randomly chosen sequence of examples, the experiment
is run 100 times as above with different random seeds.

As the examples are not subject to noise, and the first order meth-
ods can directly deal with changes, the stiffness for IRMA17 is set to
σ = 0.0 and PA is used in its basic form18. RLS19 is initialized with the
covariance matrix Σ0 = 1 · 103. To deal with changes, the forgetting
factor is lowered to λ = 0.96 as the setting achieving the best results.

The resulting cumulative losses of the shift scenario are shown in
Fig. 23. For the GLT model structure (Fig. 23 left), the performance of
IRMA is nearly the same as that of PA. Both can deal with the shift
at learning step 150 but the initial adaptation to the first target is
quicker than relearning the second target in all three cases. RLS per-
forms better on the first target, but consequently adapts to the second

15 UOSLib-scenario: mode = REG, func = shift, ND = 300, NG = 30, noise = 0.0, minPath
= false, rSeed = [12345 - 12444]

16 UOSLib-scenario: mode = REG, func = drift, ND = 300, NG = 30, noise = 0.0, minPath
= false, rSeed = [12345 - 12444]

17 UOSLib-learn: IRMA, variant = 0, stiff = 0

18 UOSLib-learn: PA, variant = 0

19 UOSLib-learn: RLS, Sinit = 103, forget = 0.96
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Figure 23: Comparison of IRMA, PA, and RLS in presence of a shift in the
input-output relation on 100 randomly drawn example sequences
using a GLT (left) or a polynomial (right, logarithmic scale) model
structure. The average performance is is shown together with the
respective minimum and maximum as error bars.
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Figure 24: Comparison of IRMA, PA, and RLS in presence of a drift in the
input-output relation on 100 randomly drawn example sequences
using a GLT (left) or a polynomial (right, logarithmic scale) model
structure. The average performance is is shown together with the
respective minimum and maximum as error bars.

target more slowly and in this second phase of adaptation the perfor-
mance strongly depends on the sequence of examples as the worst
case is much bigger than the average. With the polynomial model
structure, the known results of the more suitable learning with IRMA

being orders of magnitude better can be seen as well. Especially the
dependence of RLS on the sequence of examples is apparent by the
high variability of its results.

The resulting losses of the drift scenario in Fig. 24 are similar to the
shift scenario, but with a lower final cumulative loss. The impact on
the worst case of RLS is lower in this case, but still significant.

The investigation shows that first order methods are more appro-
priate than second order methods to deal with non-stationary envi-
ronments. Furthermore, IRMA is not only able to learn any model
structure reliably, but also keeps reliable when the underlying data
changes over time and learning has to adapt continuously.
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Figure 25: Power feed of the city of Kiel (Germany) on the medium voltage
energy supply network level for the years 2008 and 2009.

2.5 application to electricity load forecasting

2.5.1 Problem Domain

Power companies rely on accurate electricity load forecasting to mini-
mize financial risk and optimize operational efficiency and reliability.
Figure 25 illustrates that such load forecasting is a typical applica-
tion for continuously adapting predictive models in a non-stationary
environment [15, 49, 55]. The weekly profile of electric load changes
continuously, i. e. drifts, throughout a year, e. g. due to weather con-
ditions or new small consumers or generators, on the one hand. On
the other hand, rapid changes, i. e. shifts, of the conditions, e. g. due
to holiday seasons or new big consumers or generators in the power
grid, might occur at any time. Usually, a prediction of the next 24

hours is of interest for scheduling power plants or trading on the
electricity market. The measurements as well as the predictions are
done mostly on a fifteen minute basis.

2.5.2 Investigation Setup

The application of IRMA to load forecasting has been first published
in [6]. For the investigation, data of the German city Kiel from the
years 2008 and 2009 [63] is used (see Fig. 25). The recordings contain
measurements of every 15 minutes for the complete two years, i. e. a
total amount of 70080 examples. Based on this dataset, two scenarios
are compared. First, the predictive model is required to predict the
next 15 minute measurement in each step. Second, it predicts the se-
quence of measurements for the next 24 hours ahead, i. e. a total of
96 measurements, again in each step. Then the next measurement is
used to adapt the model. In order to build a model that can learn fast
and still reliably, here a rather small set of input values is chosen. De-
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Table 5: Best setup of the hyper-parameter of the learning methods PA-II,
RLS, and IRMA for electricity load forecasting.

PA-II (C) RLS (λ) IRMA (σ)

GLT, step ahead 1.0 0.9999 0.0

GLT, 24h ahead 0.1 0.9999 2.6

Polynomial, step ahead 0.0 0.9999 0.0

Polynomial, 24h ahead 0.0 1.0 1.1

pending on the weekday and time of day as inputs the load demand
is predicted as the output for different time horizons.

The investigation is done using the UOSLib as well because it sim-
plifies the comparison of different on-line learning algorithms. As a
model structure, a local GLT with Gaussian interpolation and eight
nodes per dimension20 is compared with a global polynomial struc-
ture of 7

th degree21. Both structures have a comparable expressiveness
for each input dimension, i. e. eight parameters. But the GLT has a to-
tal of 64 parameters due to the curse of dimensionality whereas the
polynomial has a total amount of 15 parameters. The training exam-
ples are normalized according to the UOSLib standard to have inputs
in [−10, 10] and the output in [−1, 1]. All model parameters are initial-
ized to zero resulting in a zero prediction.

The IRMA approach is compared with pa-ii as the state of the art
first order learning method with adjustable aggressiveness and RLS

with forgetting as the state of the art second order learning method.
For each algorithm the best setup of its hyper-parameter was deter-
mined by a grid-search to achieve the lowest prediction error on the
dataset (see Table 5). As a baseline comparison a naive steady predic-
tion was performed. In this case, the last measurement is taken for
the single step ahead prediction and the measurements of seven days
ago, i. e. the same day of the week before at the same time, are taken
to predict the next 24 hours.

2.5.3 Results

The resulting prediction error is measured in percent of the output
range to relate the results to an accuracy of the load prediction inde-
pendent of its absolute value. The initial zero prediction of both mod-
els, i. e. a medium power consumption as the output is normalized to
the interval [−1, 1], results in an error of 19.75% for step ahead predic-
tion and 19.77% for the 24 hours ahead sequence. So any successful
learning algorithm should at least improve beyond this performance.

20 UOSLib-model: GLT, num = 8, base = gauss
21 UOSLib-model: Poly, order = 7



48 on-line learning – the certain case

0 2 4 6

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4 GLT step ahead

# Examples

C
u

m
u

la
ti
v
e

 l
o

s
s

0 2 4 6

x 10
4

0

1

2

3

4

5

6

7
x 10

6 GLT 24h ahead

# Examples

C
u

m
u

la
ti
v
e

 l
o

s
s

0 2 4 6

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4 Poly. step ahead

# Examples

C
u

m
u

la
ti
v
e

 l
o

s
s

0 2 4 6

x 10
4

0

1

2

3

4

5

6

7
x 10

6 Poly. 24h ahead

# Examples

C
u

m
u

la
ti
v
e

 l
o

s
s

 

 

RLSPA−IIIRMA

Figure 26: Comparison of the development of the cumulative loss for IRMA,
PA-II, and RLS for electricity load forecasting. The left column
shows the results for a GLT model structure and the right col-
umn shows results for a polynomial model structure. The upper
row refers to step ahead prediction, while the lower row refers to
predicting the sequence for 24 hours ahead.

Table 6: Comparison of the prediction accuracy for electricity load forecast-
ing. The learning methods PA-II, RLS, and IRMA are compared to a
steady prediction. The mean error is given in percent of the output
range and best results are marked bold.

Scenario Steady PA-II RLS IRMA

GLT, step ahead 1.04 2.83 12.39 2.30

GLT, 24h ahead 9.66 8.92 12.97 8.32

Polynomial, step ahead 1.04 19.75 12.92 1.79

Polynomial, 24h ahead 9.66 19.77 48.69 7.85
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Figure 26 shows the cumulative loss for the different learning al-
gorithms over time. For step ahead prediction, IRMA and pa-ii show
a similar performance using the local GLT model structure, but a sig-
nificant improvement is given with IRMA for the global polynomial
model structure. RLS performs similarly with both model structures
but yields significantly worse results. The overall relative prediction
errors in percent of the output range are presented in Table 6. Us-
ing the GLT structure, IRMA achieves the best accuracy of all learn-
ing methods. But, no method is able to beat the steady prediction.
The best setup here is to choose a hyper-parameter achieving a quick
adaptation on each example, as it is not relevant to learn the general
input-output relation, but to adapt quickly close to the next instance.
This means a high aggressiveness of C = 1.0 for pa-ii and a stiffness
of σ = 0.0 for IRMA (see Table 5). For RLS the best results are achieved
with a forgetting factor λ slightly below one, but it is still not able
to adapt adequately to the non-stationary nature of the problem and
gets the worst result. The setup of the forgetting factor is highly sen-
sitive. Further lowering it results in very high prediction errors, de-
creasing the overall accuracy. Using the polynomial structure, pa-ii

is not able to learn at all and the best results are achieved with zero
aggressiveness, i. e. no learning. However, IRMA further increases its
accuracy with the polynomial model structure, again using a stiffness
of σ = 0.0.

For the 24 hours ahead prediction, it is necessary to correctly learn
the general input-output relation to give good long term predictions.
Here, the performance in Fig. 26 with a GLT structure again is compa-
rable for IRMA and pa-ii. RLS again cannot adapt to the non-stationary
data and gets instable with a lower forgetting factor. Its accuracy with
a polynomial model structure even decreases for any forgetting factor
below one. This shows that the stability of RLS is severely affected if
forgetting is enabled at all. With a polynomial model structure the
prediction of RLS suffers from severe overfitting in the beginning and
has a higher slope on the long run as well. But for 24 hours ahead
prediction IRMA and pa-ii also outperform the steady prediction us-
ing the GLT model structure. As seen in Table 5, the optimal hyper-
parameters decrease the influence of every new example by lower-
ing the aggressiveness and accordingly increasing the stiffness. IRMA

again shows a significant improvement using the global polynomial
model structure achieving the lowest prediction error of all methods.

In general, the results demonstrate that RLS is not suited for non-
stationary data even with forgetting as it either cannot adapt contin-
uously or gets instable. pa-ii is able to learn local model structures,
but fails with the global polynomial model structure. Only IRMA is
able to learn this globally active model structure adequately and
achieves better results than with the GLT structure, even though much
less parameters are available there. Consequently, the best prediction
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is possible with a polynomial structure using IRMA as a learning
method. It significantly outperforms the steady prediction even with
only low input information, i. e. the daytime and weekday.

2.6 consequences

In a nutshell, along with the minimal local error every on-line learn-
ing approach optimizes different optimization criteria regarding the
distance of the newly chosen hypothesis to the old one. While PA

learning minimizes the change of the parameter vector measured by
the norm of its difference, RLS learning minimizes the parameter’s
variance measured by its Kullback-Leibler divergence. In both cases
the model structure is not considered in the parameter adaptation.
Yet, a model structure is needed if the input-output relation of the
presented examples is non-linear (see Section 1.1). The newly intro-
duced IRMA minimizes the change of the global functional behavior.
This measure of change of the output regarding input space and not
parameter space, as done by IRMA, directly uses the information about
the model structure to adjust the parameter adaptation. This way, dif-
ferent realizations of the same model, e. g. a first order polynomial
or a GLT with two nodes, are updated the same way with a training
example and not differently, as argued in Section 2.3.3.

The real-world scenario as well as the synthetic examples show that
state of the art learning methods have several principal drawbacks.
First order methods like PA allow a continuous adaptation on incre-
mental data, but cannot deal with every kind of model structure and
are prone to fatal forgetting. This affects especially globally active
model structures, even though these structures sometimes allow to
achieve better approximation results than locally active model struc-
tures. In contrast to PA, second order methods like RLS can learn such
complex model structures, but only on the long run. With low data
density, RLS is prone to overfitting which results in high prediction
errors and consequently a high cumulative loss. Furthermore, RLS is
not able to reliably adapt to continuous changes of the data as in this
case there never is a "long run". With a decreased forgetting factor to
achieve long term adaptability, its stability deteriorates as stated in
[88] as well.

In contrast to these methods, IRMA deals reliably even with com-
plex globally active model structures. This was demonstrated for the
example of polynomial model structures. But the worst case mini-
mization property extends this result to any model structure. IRMA

preserves reliability even though it is able to incrementally adapt to
non-stationary environments and results in a high prediction accu-
racy. The investigations on synthetic problems showed that this leads
to a very different way of incorporating new examples into the param-
eter vector and consequently prevents overfitting and fatal forgetting
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on low data densities. Hence, the advantage of IRMA is that it enforces
a localized learning which does not depend on whether the basis φ
consists of localized or global functions. If the basis φ consists of lo-
cal functions that all have the same amount of influence on the global
functional behavior, the result of IRMA is similar to that of PA.

Global model structures have the advantage that a higher dimen-
sionality does not affect the number of parameters as much as with
local model structures. While local model structures are not feasi-
ble in high dimensions, the example of Section 2.4.5 showed that on-
line learning in higher dimensions is possible with IRMA using global
polynomials without mixed terms. Furthermore, global model struc-
tures like polynomials generally are highly adaptive to the problem
at hand, even though the model structure is fixed. At the same time,
IRMA is robust against choosing an overly expressive model structure,
as it systematically prevents overfitting. IRMA is proven to minimize
the worst case loss in each step and is thus reliable at any time during
learning while it is locally just as adaptive to new examples as other
methods.

An important hyper-parameter is the stiffness of IRMA. Since it bal-
ances between quick adaptation to changes and robustness against
noise, it has to be chosen depending on the problem at hand. The
higher the noise level, the higher the stiffness should be set. But the
more and the faster the input-output relation of the examples changes
over time, the lower the stiffness should be. The investigation showed
that the influence of the stiffness on the cumulative loss is smooth
and has a unique minimum growing with higher noise levels. This is
a consequence of the general bias-variance trade-off. So engineering
this parameter is intuitively done. A more specific investigation on
increasing the stiffness during learning is presented in Appendix B.2.
In case of quick learning required in the beginning and if only small
long term changes occur, a sigmoidally increasing stiffness is appro-
priate to tune this trade-off during learning. Yet, it does not have the
capability to adapt to the noise level at hand in a data dependent way,
like second order methods, and an ideal setup of an adequate stiffness
for each step is not possible a priori. But as the power grid applica-
tion shows, a fixed stiffness already yields good results. Typically, an
estimation of the expected noise level and the amount of change in
a non-stationary environment is possible for a given problem before-
hand and the stiffness can be set up accordingly. Furthermore, the
update with a zero stiffness shows a high accuracy, e. g. for the step
ahead prediction in the power grid application and other investiga-
tions, again with both kinds of model structures. So even with glob-
ally active parameters learning with the highest possible adaptation
is still reliable, as still the worst case is minimized.

Consequently, the performance of IRMA is not necessarily the best
in every investigation presented here because any method can make
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a lucky guess. But more importantly the performance does not dete-
riorate in any setting at all by preventing too unlucky guessing, thus
making IRMA the most reliable on-line learning method. Altogether,
IRMA allows on-line learning of any LIP model structure by respecting
the influence of the non-linear transformation. The learning process is
reliable in every step because it minimizes the worst case and thus pre-
vents fatal forgetting. And it still has low computational and memory
complexity while the resulting quality is comparable to batch learn-
ing. Hence, it is applicable for embedded systems as well as big data
applications in stationary and non-stationary environments.



3
O N - L I N E U N C E RTA I N T Y E S T I M AT I O N

In this chapter, the on-line learning setting of Chapter 2 is extended
to explicitly represent uncertainties of the learning system. Thereto,
the learning system is monitored to estimate its uncertainties during
learning. This way, knowledge about the uncertainty of the parameter
vector as well as the uncertainty of every individual prediction can be
assessed.

3.1 state of the art uncertainty estimation

3.1.1 Basics of Uncertainty Estimation

An on-line learning system adapts its knowledge during the ongo-
ing operation of a system and might influence the system behavior
directly again. Hence, the system safety can be affected if the result-
ing prediction of a learning system is incorrect. In other words, any
on-line learning system can be or get uncertain and thus cannot be
trusted in every situation. Knowledge about this uncertainty is a use-
ful information for successive system modules, as it gives an estimate
whether the prediction can be safely used or not. This way the total
system gets more reliable and trustworthy. That is why a dynamic un-
certainty estimation of an on-line learning system is necessary which
covers all sources of uncertainty described in Section 1.3 at any time.
It should further be easily interpretable and computationally cheap
to get.

An overview of estimating the uncertainty or reliability, respec-
tively, in machine learning is presented in [25]. The uncertainty of a
prediction can be categorized into conflict if different labels are likely

Input x
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Figure 27: Illustration of the two main causes of uncertainty in a prediction,
namely conflict (left) and ignorance (center).

53
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to be true and ignorance if the true label is not known. These cate-
gories are illustrated in Fig. 27. If the examples are noisy like on the
left side, conflict about the true label arises. But likewise in the right-
most part, the examples are subject to noise, albeit less drastically.
If examples are missing in some region of the input space like in the
center, ignorance about the true label arises. Again, some degree of ig-
norance exists wherever no example is presented like in the leftmost
part. At the same time, ignorance not only arises from low example
density but just as well from a too high expressiveness of the model.
Likewise, conflict depends on the variance of the example’s labels as
well as a too low expressiveness of the model.

3.1.2 Model Specific Batch Approaches

The most widespread machine learning technique assessing the un-
certainty of its model is the field of Gaussian processes, where the un-
certainty is treated by normally distributed random variables [94].
Classically, Gaussian processes are learned on a batch of training ex-
amples, hence increasing the computational load with more exam-
ples, but sparse approximations have been proposed to reduce this
problem [41, 89]. A Gaussian process defines a distribution over func-
tions and inference takes place directly in function space, in contrast
to second order learning algorithms like CW or AROW which also deal
with a distribution over functions but in parameter space. Such a dis-
tribution is specified by a mean function and a covariance function as
the prior which results in a posterior distribution conditioned by the
training examples. The usual formulation with a squared-exponential
covariance function allows to set parameters for input noise (signal
variance), output noise (noise variance) and a length scale to adjust
the algorithm [94]. But this way the uncertainties are fixed design pa-
rameters and not extracted on-line from the examples to supervise
the learning process. The only data-driven uncertainty here is the
scarcity of examples, hence the reflection of ignorance. Yet, Gaussian
processes allow for the expression of this uncertainty for each indi-
vidual prediction by a confidence interval deduced from its normal
distribution.

Two uncertainty measures were introduced for the validity index net-
work which learns a radial basis function network based on a set of
training examples [71]. The first measure calculates the local density
of training examples contributing to a particular radial basis function,
giving information about its ignorance. The other measure estimates
the conflict by a confidence limit of the output, given as a symmetric
interval. This is derived through leave-one-out cross-validation over
all examples. So conflict and ignorance can be estimated for each in-
dividual prediction, but this is not feasible for on-line estimations as
the complete dataset is needed and especially cross-validation is very
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time consuming. A similar extension of general multi layer percep-
trons is presented in [114]. An additional output neuron is introduced
which yields the variance of the prediction, i. e. the two outputs of the
network are then mean and variance, similar to the output of Gaus-
sian processes. This additional output is trained by traditional back-
propagation using the local variance of a batch of training examples
as its target value. Recently, this idea was generalized to the analysis
of the sensitivity of a local regression model either by adding a test
instance to the training set and retraining the model with perturbed
labels for that instance [24], or again by leave-one-out cross-validation
[23]. All of these approaches result as well in a huge computational
overhead and thus are not applicable in an on-line setting.

Another approach of making uncertainties in function approxima-
tion explicit uses evidence theory, i. e. a form of imprecise probability,
as a representation [44]. Here the uncertainty of a multi layer per-
ceptron is expressed, similarly to the confidence interval of Gaussian
processes, by lower and upper expectations. The width of this interval
reflects the uncertainty resulting from the relative scarcity of training
examples, i. e. ignorance of the learning system, but the prediction
interval is not influenced by conflict. With an extension in [92] con-
flict of the prediction (called nonspecificity) is estimated as well. Yet,
the training examples even have to be reduced to representative proto-
types to accommodate the increasing computational effort with larger
datasets for both approaches.

3.1.3 Model Independent Batch Approaches

In contrast to these methods that depend on a certain kind of model,
[27] presents two model independent methods that estimate the re-
liability of a prediction by confidence intervals. Based on the local
properties of nearby training examples, these intervals contain the
true label with a certain probability. The first, called CONFINE, uses
the mean squared error between the model and the true labels of the
nearest neighbors of an evaluation instance in the training examples
as an estimate of the confidence in the prediction. The higher this er-
ror is, the lower is the confidence of a prediction in that input region.
The second, called CONFIVE, measures the variance of the labels for
the same neighborhood in the training examples. Again, the higher
this variance, the less confident is a prediction. Both measures reflect
the uncertainty regarding conflict but not ignorance of the learned
model and again depend on a full dataset.

The same holds for uncertainty representation through fuzzy in-
stead of crisp numbers. The main application of fuzzy uncertainty
representation is to transfer expert knowledge to computational meth-
ods in a fixed manner and not an on-line learning of the output fuzzi-
ness. But some work has been done on fuzzy regression analysis for
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uncertain approximation of training data [45, 60]. These methods are
again dataset based which results in a high computational demand.
In addition, the uncertainty representation itself by fuzzy member-
ship functions increases the computational demand as well.

Another recent branch of research deals with conformal prediction
[51, 109, 110]. Using the training examples and any model that makes
a point prediction, i. e. a single predicted label, conformal prediction
produces a set of labels that contains the true label with some pre-
defined probability. This allows to give growing prediction regions for
increasing probabilities and even the influence of this probability on
the growth of the set can be evaluated. It is designed for the on-line
setting, but only in case of i.i.d.1 examples. Consequently it is not
suited in non-stationary environments. Additionally, it is based on
the accumulated set of training examples and accordingly the com-
putational complexity grows over time, despite the on-line setting.

3.1.4 On-line Approaches

All above mentioned uncertainty estimations are generated based on
a complete training dataset and cannot be transfered to on-line learn-
ing with a low and fixed complexity. The problem of huge datasets
is addressed only by the assumption of some data reduction to rep-
resentative prototypes or sparsity in the learned model. At the same
time, the uncertainty measures are not able to adapt dynamically to
time variant situations with increasing and decreasing uncertainty as
they always take into account the complete dataset.

A more general approach to integrate the estimation of uncertainty
in each step into a learning scenario was proposed for reinforcement
learning by the means of knows what it knows (KWIK) learning [73].
In this framework, a learning algorithm is allowed to opt out of pre-
dicting with "I don’t know" and thus asserts its own knowledge. A
KWIK algorithm for on-line linear regression was presented in [103]. It
is based on least squares regression, e. g. by RLS, and measures the un-
certainty of the least squares estimate due to ignorance. But again, in
this framework uncertainty due to conflict is assumed to be averaged
out by learning and thus not reflected anymore.

The only approach to on-line uncertainty estimation reflecting con-
flict and ignorance is applied for evolving Takagi-Sugeno fuzzy sys-
tems [79]. It produces local confidence levels taking into account con-
fidence deterioration due to extrapolation and interpolation of the
local models which form the consequence part of the fuzzy system.
Therefor, the covariance matrix of an RLS learning algorithm is used to
estimate the example density in combination with a global variance
estimation based on a small regularly updated batch of data to add

1 Independent and identically distributed, i. e. each example is drawn from the same
probability distribution as the others and all examples are mutually independent.
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local error bars to the output. But the variance estimate poses a com-
putational overhead and has the drawback that a global variance is
used to estimate local uncertainties. Recently, this work was extended
to on-line conflict and ignorance estimation but only for classification
[78]. Yet, this approach requires learning by RLS and is not applicable
for any other on-line learning algorithm.

3.1.5 Consequences

No approach is available to estimate the uncertainty of a general LIP

model structure, independent of the learning algorithm used, that sat-
isfies all requirements. Several approaches are based on one specific
model structure or do not represent all sources of uncertainty and
hence cannot form a general approach to the problem of uncertain
function approximation. With most approaches, the computational
complexity is too high or even increases with the amount of exam-
ples and thus cannot be applied in an on-line learning system. The
on-line capable approaches either deal only with ignorance or depend
on RLS as a learning algorithm. But still, the overview of uncertainty
estimations shows that the core idea of all approaches is based on at
least one of the two principles of conflict and ignorance.

3.2 trusted parameters approach

3.2.1 General Approach

An on-line estimation of a learning system’s uncertainties is neces-
sary to assess the reliability of each individual prediction at all times.
As discussed before, information about the conflict and ignorance of
the learning system allow to observe the uncertainty. The approach
presented here is based on [10, 11] and estimates these uncertainties
by monitoring the parameter vector and assigning a trustworthiness
to each parameter, on-line dependent on the learning process. This
way uncertainty source 4 presented in Section 1.3 is the central point
to monitor all other sources of uncertainty in a learning system.

Two general principles allow to observe these uncertainties. On the
one hand, the variability of a parameter over time shows how uncer-
tain a parameter is regarding its conflict. The sources 1 – 3 of uncer-
tainty affect the variability of a parameter. Input noise, output noise,
or unobserved variables all result in examples that contain different
labels for the same instance. Hence, the parameters are adapted all
the time to incorporate these different labels. In addition, a model
structure that is not expressive enough cannot incorporate all exam-
ples adequately at the same time. So here as well the parameters are
adapted continuously. These influences can in principle be detected
through the variability of the parameter vector, but it is important
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to note that the particular cause cannot be distinguished, i. e. it is
known that the prediction is uncertain but not why it is uncertain.
On the other hand, the density of training examples gives information
about the amount of knowledge substantiating a parameter. In case of
a low number of presented examples, or a model structure that is too
expressive, the data density per parameter is low. Thus the sources of
uncertainty 1 and 3 are covered monitoring the density.

Especially for on-line learning, a probabilistic uncertainty treatment,
i. e. by a statistical analysis of the examples, is inappropriate, as only
one new training example is available at a time. Additionally, the
example density varies significantly within the input space in practi-
cal applications and ignorance resulting from low density cannot be
represented properly by probability [59, 116]. Hence, the trust man-
agement approach is more suited in this case and is computation-
ally cheap at the same time. Based on the variability- and density-
principle, three measures for a general LIP model structure are pro-
posed here to give meta-information to every learned parameter.

3.2.2 Ignorance Uncertainty Estimation

First, to estimate the density of training examples for a certain pa-
rameter, its activity φ̂i for each presented example is summed up.
The activity of a parameter is given by its relative contribution to the
output

φ̂i(x) =
|φi(x)|∑n
j=1

∣∣φj(x)∣∣ . (56)

Thus, for each instance xt a total activity of
∑n
i=1 φ̂i = 1 is dis-

tributed to the different parameters, reflecting the responsibility of
a parameter for the respective prediction. With this activity φ̂i, the ig-
norance measure Φ is updated on-line with each example’s instance
xt to be

Φi(T) =

T−1∑
t=0

φ̂i(xt) (57)

after the sequence of T examples was presented. This measure Φ in-
creases throughout learning and the bigger its value, the more exam-
ples substantiate the parameter’s setup and the less uncertainty due
to ignorance about the parameter is present. Accordingly, to map this
ignorance measure Φ to a trust level ϑ, a monotonically increasing
function should be used. Two selected variants of this mapping are
proposed. Either, a linear mapping

ϑIl(Φ, δΦt , δΦs ) =


0 if Φ 6 δΦt

1 if Φ > δΦs
Φ−δΦt
δΦs −δΦt

otherwise

(58)
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with a minimal δΦt > 0 and maximal δΦs > δΦt amount of summed
activity is used. This method needs two hyper-parameters to be set by
the designer. But their influence is self-evident. The first (δΦt ) selects
how much activity is necessary to get any trust at all and the second
(δΦs ) selects how much activity suffices to fully trust the parameter.
This way, the trust estimation ϑIl is sensitive to the ignorance measure
Φ only in this defined region and otherwise is not influenced.

As an alternative with sensitivity for any increasingΦ, a hyperbolic
mapping

ϑIh(Φ,ηI) =
ηIΦ

1+ ηIΦ
(59)

with a single hyper-parameter ηI > 0, selecting how quickly the trust
increases with the summed activity, is used. This way, a smooth de-
pendence of the trust ϑIh on the activity is achieved with less param-
eterization but full trustworthiness is only achieved in the limit.

3.2.3 Conflict Uncertainty Estimation

Second, the variability is estimated based on the average absolute ad-
justment of a parameter per activity throughout the learning process.
The conflict measure ∆̄ is updated on-line with each example (xt,yt)
to be

∆̄i(T) =
1

Φi(T)

T−1∑
t=0

|∆ωi(xt,yt)| (60)

after the sequence of T examples was presented with the parameter
adjustment ∆ωi(xt,yt) = ωt+1,i −ωt,i. Thus the average amount of
applied absolute adjustments for every parameter is monitored. The
higher this average adjustment is, the more fluctuating is the infor-
mation about the parameter and the more uncertainty due to conflict
about the parameter is present. Accordingly, to map this conflict mea-
sure ∆̄ to a trust level ϑ, a monotonically decreasing function should
be used. As the division in (60) is not defined in case of no training
examples, i. e. Φ = 0, the trust is then defined as zero. Two variants
of the trust mapping analogous to (58) and (59) are proposed. Either,
a linear mapping

ϑCl(∆̄, δ∆̄t , δ∆̄s ) =


1 if ∆̄ 6 δ∆̄t

0 if ∆̄ > δ∆̄s
δ∆̄s −∆̄

δ∆̄s −δ
∆̄
t

otherwise

(61)

with a minimal δ∆̄t > 0 and maximal δ∆̄s > δ∆̄t amount of average ad-
justment is used. Here again, the influence of these hyper-parameters
is self-evident, i. e. some variability that is tolerated and an upper
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Figure 28: Principle of the direct incremental trust estimation of a parame-
ter based on its activity φ̂i(xt) and adjustment |∆ωi|. The four
extreme cases of the resulting new trust ϑt+1 are given in the
corners and in between the trust is monotone.

limit of variability that is not trustworthy at all. Again the trust ϑCl

is only sensitive within this predefined range. Alternatively, a hyper-
bolic mapping

ϑCh(∆̄,ηC) =
1

1+ ηC∆̄
(62)

with a single hyper-parameter ηC > 0 selecting how quickly the trust
decreases with average adjustment is used. This way, again a smooth
dependence of the trust ϑCh on the activity is achieved with less pa-
rameterization.

3.2.4 Incremental Uncertainty Estimation

Both measures Φ and ∆̄ take the whole sequence of examples into
account incrementally. But, in a non-stationary environment, a direct
trust estimation with short term memory is more appropriate as the
underlying data changes over time and a region learned well before
might be uncertain later. Therefor, the activity of a parameter and its
adjustment through the learning algorithm in each learning step are
considered to update its trustworthiness with each presented exam-
ple. Three boundary cases as shown in Fig. 28 describe the behav-
ior of this direct incremental estimation. A high activity φ̂i(xt) with
low necessary adjustment |∆ωi| (upper left corner) leads to full trust
ϑt+1 = 1 as the parameter ωi is verified as being correct, i. e. it was
highly responsible for the respective prediction and no change was
necessary. Whereas with a low activity and low adjustment (lower left
corner) the trust is not changed (ϑt+1 = ϑt) as the training example
gives no information about the parameter’s correctness, i. e. other pa-
rameters were responsible for the respective prediction. Contrariwise,
if the parameter adjustment |∆ωi| is high (right side), the trust is re-
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duced regardless of the activity as the parameter ωi is not confirmed
yet. In between these cases, the trust is blended monotonically.

Two plausible variants of such a blending are again a linear and
a hyperbolic update of the trust level. The linear update of the trust
level ϑDlt,i is given by

ϑDlt+1,i = ∆̂i ·
[
φ̂i(xt) + ϑ

Dl
t,i ·

(
1− φ̂i(xt)

)]
(63)

with the normalized parameter adjustment

∆̂i(∆ωi(xt,yt), δDt , δDs ) =


1 if |∆ωi(xt,yt)| 6 δDt

0 if |∆ωi(xt,yt)| > δDs
δDs −|∆ωi(xt,yt)|

δDs −δDt
otherwise

(64)

parameterized by a minimal amount of adjustment δDt > 0 tolerated,
i. e. it should not affect the trustworthiness, and a maximal amount
of adjustment δDs > δDt allowed, i. e. it cannot be trusted beyond,
thus defining low and high adjustment in Fig. 28. Alternatively, the
hyperbolic update of the trust level ϑDht,i is given by

ϑDht+1,i =
1

1+ ηA |∆ωi(xt,yt)|
·

(
1−

1− ϑDht,i

1+ φ̂i(xt)

)
(65)

with one hyper-parameter ηA > 0 weighting the influence of the pa-
rameter adjustment |∆ωi|.

Both approaches to a direct incremental estimate of the uncertainty
result in a combined monitoring of ignorance and conflict as the ac-
tivity and adjustment reflect the two uncertainty categories. A param-
eter can only gain trust, if it has been highly active for some training
example, i. e. if there is no ignorance, and if the necessary adjustment
was low, i. e. if there was no conflict.

3.2.5 Combination

In order to rate the total uncertainty of the on-line learning system,
trust management is used to combine the different presented trust
signals, regarding long term and short term aspects of ignorance and
conflict, to one single trust estimation ϑ?. The two trust signals of con-
flict ϑC and ignorance ϑI yield partly redundant information about
the long term uncertainty of a parameter2. For the fusion of such
partly redundant information, a compensatory operator like the aver-
age is used. In contrast, the direct estimate ϑD reflects the combined

2 The procedure is the same for the linear and hyperbolic variants. Thus the respective
indices are omitted.
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short term uncertainty of a parameter regarding conflict and igno-
rance which is non-redundant to the long term estimates. For the
fusion of non-redundant information, a t-norm like the minimum is
used. Hence, to calculate the combined trust signal a fusion according
to

ϑ?i = min
{
ϑDi ,

ϑCi + ϑIi
2

}
(66)

is done. Any other combination of a compensatory operator and a
t-norm would be possible. But the advantage of the average is that its
result it is neither optimistic nor pessimistic, and any other t-norm
than the minimum has the disadvantage that it quickly decreases to
zero, i. e. it is pessimistic.

Accordingly, if the short term estimate assigns a low trust, the com-
bined trust is low regardless of the long term performance, thus fit-
ting to the influence of the most recent update of the parameter vec-
tor. Contrariwise, if the short term trust is high just because of an
example that fitted to the parameter vector by chance, the combined
trust is dominated by the long term estimate. Yet, the importance
of short and long term estimation might vary depending on the task.
For tasks in non-stationary environments with high time-variance, us-
ing only the direct estimate is more appropriate. Otherwise, without
time-variance, using only the combined long term estimates suffices.

Using this monitoring of the parameter vector trustworthiness, it is
possible to assess the trustworthiness of each individual prediction.
Therefor, each parameter’s trust influences the trust of a prediction
according to its responsibility for the predicted value. This means,
the more active a parameter is, the more influence its trust level has
on the resulting trustworthiness. Each of the above parameter based
trust estimates, i. e. ϑI, ϑC, ϑD, or ϑ?, can be combined according to

ϑŷt(xt) =

n∑
i=1

φ̂i(xt)ϑt,i (67)

to give the prediction trust ϑŷt . This way, it is possible to evaluate the
total uncertainty of each prediction by using ϑ? or to distinguish the
reason of uncertainty into ignorance and conflict on long and short
term by evaluating only the respective trust signal.

3.3 formal analysis of trusted parameters

3.3.1 Influence of Hyper-Parameters

The three measures regarding ignorance ϑI, conflict ϑC and a direct
combination ϑD are derived from presenting a sequence of examples
that are subject to some disturbance. The most significant properties
of the examples for the trust estimation are given by the amount of
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examples presented and the noisiness of the presented labels. Look-
ing at the influence of the hyper-parameters on this estimation, for
the linear long term variants of the trust estimation, engineering the
hyper-parameters is straight forward. They directly define lower and
upper bounds on the amount of examples needed or the amount of
noise tolerated. The setting of the hyper-parameters of the hyperbolic
variant is not as obvious. Therefore, an analysis of the expected value
of the respective trust signal depending on the properties of the pre-
sented examples helps to engineer the hyper-parameters.

hyperbolic ignorance The hyperbolic ignorance measure ϑIh

depends on the amount of activity Φi(T) of a parameter ωi by all
presented examples up to time T . With no activity, the resulting trust
is

ϑIhi (Φi = 0) = 0. (68)

With increasing activity the trust is strictly increasing and its limit is
given by l’Hôpital’s rule as

lim
Φi→∞ ϑIhi (Φi) =

ηI
ηI

= 1. (69)

Assuming that throughout the sequence of examples the activity is
a random variable φ̂i(xt) ∼ D drawn from some fixed distribution
D with expected value E [D] = cD, the expected value of the sum of
activities after a sequence of T examples is

E

[
T−1∑
t=0

φ̂i(xt)

]
=

T−1∑
t=0

E
[
φ̂i(xt)

]
= cDT . (70)

This results in a trust of

ϑIhi =
ηIcDT

1+ ηIcDT
(71)

and consequently to get an ignorance based trust ϑIhi = 0.5 after τ
presented examples drawn from D, the hyper-parameter should be
chosen as

ηI =
1

cDτ
. (72)

So, the hyper-parameter ηI allows to steer the growth of the trustwor-
thiness with the amount of examples. It increases more rapid, i. e. a
higher trust with a lower amount of examples, the bigger the hyper-
parameter ηI is chosen.

hyperbolic conflict The hyperbolic conflict measure ϑCh de-
pends on the variability ∆̄i(T) of a parameter ωi resulting from all



64 on-line uncertainty estimation

presented examples up to time T . With no variability, the resulting
trust is

ϑChi (∆̄i = 0) = 1. (73)

With increasing variability the trust is strictly decreasing and its limit
is

lim
∆̄i→∞ ϑ

Ch
i (∆̄i) = 0. (74)

Assuming again that the activity is a random variable φ̂i(xt) ∼ D

drawn from some fixed distribution D, its expected value is given by
(70). Further assuming the adaptation to be a normally distributed
random variable ∆i(xt) ∼ N(0,σ2) throughout the sequence of exam-
ples due to noise on the labels with variance σ2, the expected value
of the sum of absolute adaptations after a sequence of T examples is

E

[
T−1∑
i=0

|∆i(xt)|

]
=

T−1∑
i=0

E [|∆i(xt)|] = Tσ
2

√
2

π
. (75)

This results in a total expected value of the variability measure of

E
[
∆̄i
]
=

1

cDT
Tσ2

√
2

π
= σ2

√
2

πc2D
(76)

which is independent of the number of examples presented. Thus, to
get a conflict based trust ϑChi = 0.5 for examples with variance σ2,
the hyper-parameter should be chosen as

ηC =
1

σ2
√

2
πc2D

(77)

So, the hyper-parameter ηC allows to steer the decline of the stiffness
with increasing noise. It declines more rapid, i. e. a smaller trust with
a higher noisiness, the bigger the hyper-parameter is chosen.

3.3.2 Fixed Point of Direct Estimation

hyperbolic direct estimate The hyperbolic variant of the di-
rect measure ϑDht is defined recursively. So the limit of this sequence
of recursive updates for a fixed activity φ̂ and a fixed absolute adap-
tation |∆| is of interest to analyze the steady state behavior of the
estimation. The fixed point ϑ̌Dh of the sequence is given through (65)
by

ϑ̌Dh =
1

1+ ηA |∆|

[
1−

1− ϑ̌Dh

1+ φ̂

]
(78)
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resulting in

ϑ̌Dh =
1

ηA|∆|

φ̂
+ ηA |∆|+ 1

. (79)

Abbreviating α = 1
1+ηA|∆|

and β = 1+ φ̂, the following holds:

ϑDht+1 = α−
α

β
+
α

β
ϑDht > ϑDht ⇔(

1−
α

β

)
ϑDht 6 α−

α

β
⇔

ϑDht 6
α− α

β

1− α
β

= ϑ̌Dh (80)

So, if the current value ϑDht is less or equal to the fixed point ϑ̌Dh , the
sequence is monotonically increasing. Furthermore

ϑDht+1 = α−
α

β
+
α

β
ϑDht 6 ϑ̌Dh =

α− α
β

1− α
β

⇔

ϑDht 6
β

α

α− α
β

1− α
β

+ 1−β =
α− α

β

1− α
β

= ϑ̌Dh (81)

shows that the new value ϑDht+1 is less or equal to the fixed point
ϑ̌Dh if the current value ϑDht was so. The same holds vice versa with
inverted inequalities if the current value ϑDht is above the fixed point.
Consequently, the sequence converges to its fixed point in every case.

linear direct estimate The linear variant of the direct mea-
sure ϑDlt is defined as well recursively. So again its limit for a fixed
activity φ̂ and a fixed normalized absolute adaptation ∆̂ is of interest
to analyze the steady state behavior of the estimation. The fixed point
ϑ̌Dl of the sequence is given through (63) by

ϑ̌Dl = ∆̂
(
φ̂− ϑ̌Dl

(
1− φ̂

))
(82)

resulting in

ϑ̌Dl =
∆̂φ̂

1− ∆̂+ ∆̂φ̂
. (83)

Using this fixed point, the following argumentation similar to the
hyperbolic direct measure holds:

ϑDlt+1 = ∆̂φ̂+ ϑDlt
(
∆̂− ∆̂φ̂

)
> ϑDlt ⇔

∆̂φ̂ > ϑDlt
(
1− ∆̂+ ∆̂φ̂

)
⇔

ϑDlt 6
∆̂φ̂

1− ∆̂+ ∆̂φ̂
= ϑ̌Dl (84)
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Figure 29: Limit of the direct incremental trust estimation using the linear re-
cursive update (left) and the hyperbolic recursive update (right).

So, if the current value ϑDlt is less or equal to the fixed point ϑ̌Dl , the
sequence is monotonically increasing. Furthermore

ϑDlt+1 = ∆̂φ̂+ ϑDlt
(
∆̂− ∆̂φ̂

)
6 ϑ̌Dl =

∆̂φ̂

1− ∆̂+ ∆̂φ̂
⇔

ϑDlt 6

[
∆̂φ̂

1− ∆̂+ ∆̂φ̂
− ∆̂φ̂

]
1

∆̂− ∆̂φ̂
=

∆̂φ̂

1− ∆̂+ ∆̂φ̂
= ϑ̌Dl (85)

shows that the new value ϑDlt+1 is less or equal to the fixed point ϑ̌Dl

if the current value ϑDlt was so. The same holds again vice versa with
inverted inequalities if the current value ϑDlt is above the fixed point.
Consequently, the sequence converges as well to its fixed point in
every case.

The fixed points thus reflect the steady state behavior of the direct
measures and show the influence of the hyper-parameters. For the
hyperbolic direct measure ηA reflects the magnitude with which an
adjustment of the parameter decreases the trust in (79) (similar to the
conflict measure). For the linear direct measure the sensitivity to ad-
justments in (83) is bounded by the hyper-parameters the same way
as with the linear conflict measure. The resulting fixed points of the
two direct estimation variants are compared in Fig. 29. As expected,
in both cases the influence of activity and adjustment on the trust es-
timation is monotone. An activity of zero leads to a trust of zero, in-
dependent of the adjustment. And the trust increases with increasing
activity. Likewise, a zero adjustment leads to a trust of one, indepen-
dent of the activity. Here it is important to note that the fixed point
represents only the steady state behavior, but the convergence to this
fixed point is much slower with less activity. The main difference is
the clearly restricted range of adjustments where any trust is assigned
at all for the linear variant which is defined by the hyper-parameters.
Compared to that, the hyperbolic variant decreases to no trust only in
the limit of infinite adjustment. Typically, the adjustments that occur
in a real application are bounded. So the hyperbolic trust will never
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decrease to zero and consequently is less expressive as it cannot use
the full range of trust levels.

3.4 investigations of trusted parameters

3.4.1 Basic Empirical Investigation

The trust estimation of a learned model should correctly reflect erro-
neous predictions due to conflicting information about the setup of a
parameter as well as due to ignorance about the parameter’s value. To
demonstrate the typical behavior of the proposed method, two exam-
ples will be examined. First, an analytic function is learned on-line,
using a GLT model structure3 and then using an 8

th order polyno-
mial4. The GLT model structure is set to have different expressiveness
throughout the input range with nodes at

x = (−10,−5,−2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) . (86)

For training with IRMA5, nd = 400 instances xt are randomly selected
from a normal distribution N(π, 4) to get locally varying example
densities. The respective target value yt is generated by a sinusoidal
function

yt = sin(xt) + ξ

with normally distributed noise ξ ∼ N(0, 0.1)6.
The parameterization of the linear ignorance trust is set to δΦt =

0.2, δΦs = 10 to require at least 10 examples for each parameter to be
fully trusted. Equivalently the hyperbolic ignorance trust is parame-
terized with ηI = 0.4, i. e. assuming a uniformly distributed activity
the trust rises to 0.5 after about 5 examples. The linear conflict trust
is parameterized with δ∆̄t = 0.05 and dsens∆̄ = 0.8 just like the lin-
ear direct estimate with δDt = 0.05 and δDs = 0.8 to tolerate very low
noise and to not trust any noise above 40% of the output range. The
hyperbolic conflict trust is similarly parameterized with ηC = 1.5 and
the hyperbolic direct estimate the same with ηA = 1.5, i. e. it rises to
0.5 at a noise of 20% of the output range.

The resulting approximation and its corresponding trust estimation
are shown in Fig. 30 for the GLT model structure. The benefit of this
structure is the locality of its parameters, thus allowing for a reason-
able local trust estimation as well. The conflict trust is high in the area
with dense examples and a fine grained model (around x ≈ π) and
decreases with the coarse grid and lower example density. The igno-
rance trust is comparable but slightly higher in the coarse grained

3 UOSLib-model: GLT, loc = (−10,−5,−2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), base = gauss
4 UOSLib-model: Poly, order = 8

5 UOSLib-learn: IRMA, variant = 0, stiff = 0.1
6 UOSLib-scenario: mode = REG, func = sineloc, ND = 400, NG = 100, noise = 0.1,
minPath = false, rSeed = 12345
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Figure 30: Resulting approximation of a GLT model structure after learning
(top) and the corresponding trust estimation for the linear variant
(middle) and the hyperbolic variant (bottom).

part with high example density (around x ∈ [−2, 0]) and results in
full trust with dense examples regardless of the noise. The direct es-
timate dominates the combined trust with a slightly lower trust, e. g.
at x = −2 and x = 4, where recent changes were necessary, as it is
a short-term estimate. But it also results in a high trust if the last ex-
ample was met quite well, e. g. around x = −8 even if the resulting
approximation is not ideal. But the combined trust consequently re-
flects the total uncertainty very well. The main difference between the
hyperbolic and linear variant is that a wider trust range is used by the
linear mapping, as it can be set up through two parameters and thus
allows to specify a narrower range of sensitivity. And, the hyperbolic
estimates result in a lower trust as they are more pessimistic than the
linear estimates.

In comparison, the results for the polynomial model structure are
shown in Fig. 31 with the same parameterization. One big difference
is that the trust estimate is symmetric due to the symmetric nature
of the absolute influence of the polynomial’s parameters. So the high
example density on the right half increases the trust on the left half
as well. Furthermore, the responsibility of each parameter varies a
lot throughout the input space, resulting in much more activation of
the higher order monomials. Thus the trust increases quickly to one



3.4 investigations of trusted parameters 69

−10 −5 0 5 10

−1

−0.5

0

0.5

1

Input x

O
u
tp

u
t 
y

 

 

Ground Truth

Training Data

Resulting Approximation

−10 −5 0 5 10

0

0.5

1

Input x

L
in

e
a
r 

tr
u
s
t 

ϑ

 

 

Conflict

Ignorance

Direct

Combined

−10 −5 0 5 10

0

0.5

1

Input x

H
y
p
e
rb

o
lic

 t
ru

s
t 

ϑ

Figure 31: Resulting approximation of a polynomial model structure after
learning (top) and the corresponding trust estimation for the lin-
ear variant (middle) and the hyperbolic variant (bottom).

apart from x ≈ 0. Consequently, an appropriate trust estimate cannot
be given locally with this global model structure and therefore it is
less informative. So, even though the trust estimate is applicable to
all kinds of LIP model structures and reflects the trustworthiness of
the parameters to some degree, it quickly loses its local interpreta-
tion with more globally active model parameters. Hence, a local trust
estimation necessitates a local model structure.

3.4.2 Influence of Disturbances

To demonstrate and investigate the different measures in a more elab-
orate way, the same target function is learned by IRMA using a linear
GLT model structure now with 17 equally spaced nodes7 covering the
input range adequately. nd = 300 instances are chosen uniformly dis-
tributed for learning to present sufficient examples throughout the
input space. This way, the basic setting allows a good learning result
and the influence of added disturbances can be evaluated. In the be-
ginning of learning only sparse data are available and convergence
properties can be evaluated in the end. Six scenarios, representing
the first three uncertainty categories of Section 1.3, are employed for

7 UOSLib-model: GLT, num = 17, base = linear
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investigation, namely the ideal case with no disturbances, four types
of disturbances, and all four disturbances at once. These four distur-
bances are:

• Type (i): An input disturbance is emulated by a normally dis-
tributed noise NI(0, 0.1) which is added to the instance given to
the learning algorithm (uncertainty category 1).

• Type (ii): An output disturbance is simulated similarly by an
additive normal distribution NO(0, 0.1) to the target label given
to the learning algorithm (uncertainty category 2).

• Type (iii): The influence of an unobserved variable is done by an
additive disturbance of 0.5y2 to the label with random y ∼ U(0, 1),
which is not known by the learning algorithm (uncertainty cat-
egory 3).

• Type (iv): Lastly, an inexact approximation is simulated by us-
ing a GLT with only seven nodes (uncertainty category 3).

All these disturbances influence the conflict of the learning system.
Ignorance is covered by the varying density of training examples
throughout the progress of learning as the density increases with the
number of incrementally presented examples. For the evaluation, ev-
ery scenario is run 20 times (randomizer seeds: 12345 to 12364) for the
linear and the hyperbolic variant in order to eliminate the influence
of the randomness of the examples. After every presented example,
the model is evaluated at nt = 100 equally distributed undisturbed
test points (xj,yj) and compared to the target function by a weighted
mean squared error ew (87). The MSE is weighted by the respective
trust, thus considering the knowledge about potential errors. Hence
a low trust, does not increase ew as opposed to the MSE. As still for a
low ew the trust should be as high as possible, additionally the mean
trust ϑ of the model is evaluated by (88). Thus for ϑ = 1, ew is equal
to the MSE.

ew =
1

nt

nt−1∑
j=0

ϑ(xj) · (f(xj) − ŷj))2 (87)

ϑ =
1

nt

nt−1∑
j=0

ϑ(xj) (88)

The trust estimation is parameterized the same way as before, i. e.
δΦt = 0.2, δΦs = 10, ηI = 0.4, δ∆̄t = 0.05, δ∆̄s = 0.8, δDt = 0.05, δDs =

0.8, ηC = 1.5, ηA = 1.5.
The plots of all results are presented in Appendix B.3 for complete-

ness. But, as the course of ew and ϑ over the number of examples for
every scenario and trust estimation shows the same qualitative behav-
ior, the results are here reduced to their characteristic properties for
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Figure 32: Qualitative development of trust weighted error (left) and mean
trust (right). Characteristic numbers for these curves are shown
only principally (see text for details).

ease of analysis. Figure 32 shows the principal behavior of the two
measures. Because of learning from scratch, the weighted error ew
(Fig. 32 left) always starts at zero as the trust is initialized with zero.
Then it increases and converges on the long run to a characteristic
value E. As not every measure is able to reflect the low density of
training examples in the beginning, ew possibly overshoots indicated
by the hight H which is zero in case of no overshoot. The mean trust
ϑ of the model (Fig. 32 right) starts at zero as well and converges
monotonously to a boundary value K. An overall example density D,
i. e. the necessary number of incremental learning steps to reach 63%
of the boundary value K, characterizes the convergence speed.

Table 7 summarizes the characteristic numeric values to compare
the performances in a condensed way. As a reference, the learning sys-
tem principally is able to achieve a low residual error E in the undis-
turbed case. Accordingly, all trust levels converge to a high value of
K as the learning proceeds and thus reflect the successful learning.

As a result, the conflict trust ϑ∆̄ decreases for every disturbance and
has a boundary value K < 1 of the mean trust according to the sever-
ity of its influence, e. g. the lowest trust is given for all disturbances
at once. Hence, it reflects the uncertainty about the target value due
to conflicts very well on the long run. But, in all scenarios the conflict
trust ϑ∆̄ gets the highest overshoots H of the weighted error, i. e. it is
not able to recognize the ignorance due to low example density.

Expectedly, the ignorance trust ϑΦ gets low or no overshoots H,
indicating that the example density is correctly recognized. On the
long run, the linear ignorance trust ϑΦ converges to a mean trust of
K ≈ 1.0 and the hyperbolic variant to a high value of K ≈ 0.86 despite
the disturbances as it cannot reflect the remaining variability. Thus, it
gets the highest error E.

The direct trust estimate ϑD partly reflects the density of training
examples. As the model has to be adapted more in the initial learning
phase depending on the difference between the target values and the
initial value of the model, this lowers the estimated trust, but cannot
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Table 7: Experimental results of the trust estimation for different distur-
bances (index h for the hyperbolic mapping variant and l for the
linear mapping variant).

Uncertainty Linear estimate Hyperbolic estimate

measure El Hl Kl Dl Eh Hh Kh Dh

U
nd

is
tu

rb
ed Conflict 0.04 0.03 0.82 76.00 0.04 0.05 0.79 36.00

Ignorance 0.05 0.00 0.98 104.00 0.04 0.01 0.85 55.00

Direct 0.05 0.02 0.98 34.00 0.04 0.01 0.82 42.00

Combined 0.04 0.01 0.90 91.00 0.04 0.02 0.80 47.00

D
is

tu
rb

ed
in

pu
t

Conflict 0.05 0.02 0.73 74.00 0.05 0.04 0.73 29.00

Ignorance 0.07 0.00 0.98 104.00 0.06 0.01 0.85 55.00

Direct 0.07 0.01 0.92 32.00 0.05 0.01 0.72 36.00

Combined 0.06 0.00 0.84 90.00 0.05 0.01 0.71 39.00

D
is

tu
rb

ed
ou

tp
ut

Conflict 0.06 0.02 0.67 75.00 0.06 0.04 0.69 27.00

Ignorance 0.09 0.00 0.98 104.00 0.07 0.00 0.85 55.00

Direct 0.07 0.01 0.87 31.00 0.06 0.01 0.66 32.00

Combined 0.07 0.00 0.80 90.00 0.06 0.01 0.66 36.00

U
no

bs
er

ve
d

va
ri

ab
le

s

Conflict 0.10 0.02 0.56 76.00 0.12 0.02 0.64 22.00

Ignorance 0.18 0.00 0.98 104.00 0.16 0.00 0.85 55.00

Direct 0.14 0.00 0.78 29.00 0.10 0.00 0.58 29.00

Combined 0.13 0.00 0.72 88.00 0.10 0.00 0.58 31.00

In
ex

ac
t

ap
pr

ox
. Conflict 0.11 0.05 0.50 36.00 0.14 0.05 0.62 7.00

Ignorance 0.24 0.00 1.00 56.00 0.22 0.00 0.92 34.00

Direct 0.16 0.01 0.72 13.00 0.12 0.00 0.55 13.00

Combined 0.15 0.00 0.67 46.00 0.12 0.00 0.55 15.00

A
ll

di
st

ur
b.

Conflict 0.09 0.04 0.32 34.00 0.17 0.03 0.55 6.00

Ignorance 0.31 0.00 1.00 56.00 0.29 0.01 0.92 34.00

Direct 0.18 0.02 0.61 13.00 0.14 0.01 0.47 12.00

Combined 0.17 0.00 0.56 46.00 0.14 0.01 0.47 12.00
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reflect the density directly. Hence, it results in low overshoots H and
as well reflects the severity of disturbances by a lowered trust K < 1.0.
As this measure is incrementally estimated, it gets to its boundary
value the fastest as seen by the low values of D.

Summing up, the ignorance trust ϑΦ reflects the long-term local
density very well, whereas the conflict trust ϑ∆̄ reflects the long-term
variability. The direct trust estimate ϑD allows a combined, yet less
accurate, short-term estimation for both effects with quick adaptation.
Consequently, the combined trust estimate ϑ? covers all cases and
gives an overall informative measure of the local trustworthiness of
the model. It results in nearly no overshoot H, a low trust weighted
error E, and a final trust K reflecting the severity of the disturbances.
In comparison between the linear and hyperbolic variant, again the
main difference is that the resulting trusts of the hyperbolic variant
are in a narrower range and are overall more pessimistic.

3.4.3 Application to Electricity Load Forecasting

As a real-world application the electricity load forecasting of Chap-
ter 2.5 is extended with trust estimation. The previous investigations
showed that the most suitable model structure for trust estimation
is a GLT structure8. Hence, this investigation focuses on this case us-
ing the same optimal hyper-parameters of IRMA as before, i. e. either
a stiffness of σ = 0.0 for the step ahead prediction or a stiffness of
σ = 2.6 for the 24h ahead sequence prediction according to Table 5.

The trust estimation is done using the linear variant, as it results in
a more comprehensible setup and allows a wider spread of the result-
ing trust levels with principally similar behavior. For step ahead pre-
diction, the ignorance estimation is parameterized by δΦt = 0.2, δΦs =

25. This way, the ignorance trust rises to one after about half a month
of examples is presented because in this time 24 · 4 · 16 = 1536 ex-
amples are presented which is about 25 per parameter. The conflict
trust tolerates some low long-term noise by parameterization δ∆̄t =

0.02, δ∆̄s = 0.3, whereas the direct estimate is more sensitive to low
short-term noise with δDt = 0.0, δDs = 0.3.

In consequence, using the combined trust estimate of (66) for the
trust evaluation of (67), every prediction is assessed with a trust level.
One possibility to deal with this trust level is to discard every predic-
tion below a certain trust threshold similar to KWIK learning. In these
cases for example the steady prediction could be used as a fallback.
So measuring the prediction error only for the remaining predictions
with a trust level above the threshold, the resulting accuracy can be
adjusted by this trust threshold.

Figure 33 shows the result of this experiment. In the upper plot,
the step ahead prediction error of trusted predictions is plotted de-

8 UOSLib-model: GLT, num = 8, base = gauss
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Figure 33: Improvement of the step ahead prediction accuracy by rejection
of predictions below a given trust threshold (top) and the respec-
tive remaining ratio of predictions made (bottom).

pending on the threshold. The error decreases monotonically with an
increasing trust threshold. Only with a very high threshold the influ-
ence is not monotone due to the small sample size influencing the
averaged prediction error. Thus, as expected, the trust correlates with
the accuracy of the predictions and a higher threshold adequately
discards the more uncertain predictions. Additionally, with a high
enough threshold of about 0.74, the accuracy exceeds that of the
steady prediction. But in this case more than 92% of the predictions
are rejected. So in most cases, the learned model cannot give better
predictions about the load development than a steady prediction.

Still, this investigation shows that the learned model successfully
knows what it does not know, hence preventing erroneous predic-
tions. And with the supplementary trust estimation even the single
step ahead prediction can be improved to outperform the steady pre-
diction baseline. The correct threshold can be adapted dynamically
on-line as well. After the true label of a prediction is revealed, it is pos-
sible to evaluate if the steady prediction was better than the learned
one. In combination with the prediction trust, the threshold can be
chosen to include only predictions which enhanced the accuracy in
the past.

Looking at the 24h ahead sequence prediction of the electric load,
the ignorance estimation is parameterized the same way as for step
ahead prediction by δΦt = 0.2, δΦs = 25. The conflict trust still toler-
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Figure 34: Mean and maximum average trust assigned to 24h ahead se-
quence predictions depending on their respective prediction error.
A linear fit (dotted) shows the corresponding trend.

ates some low long-term noise but is more sensitive to lower noise
levels due to the increased stiffness in this setup by parameterization
δ∆̄t = 0.02, δ∆̄s = 0.1. The direct estimate again does not tolerate low
short-term noise and is as well more sensitive to lower noise levels
with δDt = 0.0, δDs = 0.1. As a result of the trust estimation, every se-
quence can be assigned with an average trustworthiness of its single
predictions.

To investigate the effectiveness of this trust estimation, the predic-
tion error of the total sequence is divided into 40 equally spaced bins.
For each bin, the maximum and average trust assigned to the respec-
tive predicted sequences is calculated. So this trust should decrease
with increasing prediction error if the trust is meaningful.

The results of the investigation are shown in Fig. 34 together with
a linear fit of the data. Both curves are roughly decreasing as ex-
pected. So the more inaccurate predicted sequences are assigned with
a lower trustworthiness and its upper bound by the maximum also
decreases. Yet, the mean trust underestimates the predictive quality
for a medium prediction error. Therefore, Fig. 35 shows the results
partitioned into the first and second year of the investigation period.
In the first year, the prediction accuracy is underestimated mainly
due to ignorance. So even as the predictive quality is sufficient, the
model is not sure about this estimate yet. In contrast, the results of
the second year show a clear nearly linear tendency of the assigned
trust to the respective prediction error. Furthermore, no errors above
39% occur at all in the second year.

With the additional trust information, e. g. the decision for buying
additional energy on the energy market or powering up additional
power stations is enhanced. Either the prediction about future loads
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Figure 35: Partition of the mean and maximum trust assigned to 24h ahead
sequence predictions depending on their respective prediction er-
ror into the two years of the investigation period. The first year is
shown in the upper plot and the second year in the lower plot. A
linear fit (dotted) shows the corresponding trend.

made by the learning system can be trusted and allows an optimized
decision, or the prediction is not trustworthy and a safer, less optimal
decision can be made. In conclusion, the real-world application shows
as an example that the trust estimation is appropriate and serves as
an adequate reflection of the predictive quality. This way it allows to
reject predictions with a too low trustworthiness and a safe fallback
strategy can be used to ensure the overall system’s safety with an
increased performance at the same time.

3.5 consequences

Using a learning system can be enhanced by monitoring its uncer-
tainty and thus providing an uncertainty estimate for each individual
prediction as well as for the system in total. The hypothesis in form
of the parameter vector is central to estimating this uncertainty as it
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is affected by the learning process as well as the setup of the set of
hypotheses, i. e. the model structure. The approach presented here as-
signs each parameter of the parameter vector a trustworthiness. Both,
uncertainty due to ignorance and due to conflict are monitored and
represented in a unified manner through trust signals. In addition to
the long term estimation of uncertainty which is more robust to sin-
gular lucky guessing of a correct prediction, a short term incremental
estimate reflects the most recent uncertainty of an on-line learning
system. The combination of these different trust signals through trust
management yields a single uncertainty estimation for each individ-
ual prediction subsuming all kinds of uncertainty regardless of their
source. So the complexity for other system modules reacting to the
uncertainty of the learning system can be kept low, i. e. they get to
know that the learning system’s prediction can or cannot be trusted
but not why. So they cannot and do not have to diagnose the source
of uncertainty but know when to use a more safe fallback.

The formal analysis of the trust estimations showed how to choose
the hyper-parameters. The linear estimation of uncertainty is based
on a lower and an upper limit defining the extreme cases of no or
full trust. This way the designer of an on-line learning system can set
for the ignorance based trust how much training examples are neces-
sary to gain any trust and how much are sufficient to fully trust the
result. For the conflict based trust, the setup of the hyper-parameters
defines how much variance can be tolerated and how much variance
is too much to trust the result at all. The direct incremental estimate
of uncertainty is set up similarly to rate the necessary adjustment of
a parameter. Using the smooth hyperbolic trust estimation, only one
parameter adjusts the in- or decrease rate of the trust regarding the
summed activity or the average adjustment of a parameter, respec-
tively. But despite its smoothness, this restriction limits the expres-
siveness. Hence, the linear variant turned out to be the more adequate
choice.

As the interpretability of each parameter’s influence is better for
a model structure with local influence of the parameters, it is also
more suited to assign a local trustworthiness to each individual pre-
diction. This was also demonstrated in the basic empirical investiga-
tions. Otherwise, the trust estimate can only be as local in input space
as the basis functions are. Additionally, a different parameterization
of the trust estimation for each parameter of global model structures
is more adequate, to reflect the different influences of the parameters.
But this would drastically increase the number of hyper-parameters
to be set up by the designer and thus is not feasible. Yet, for a lo-
cal GLT model structure, the trust estimation successfully reflected all
sources of uncertainty which were introduced into the learning sys-
tem. Furthermore, the application of this approach to electricity load
forecasting demonstrated an improvement of the prediction quality
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in two ways. The on-line learning system knows when its predictions
are accurate. And using a threshold on the prediction’s trust level, the
part of predictions which is better than some reliable but suboptimal
fallback can be identified. Consequently, the learning system can be
used when its predictions are accurate to increase the performance
and otherwise the fallback, like the steady prediction in this case, is
taken to be safe. In this manner an on-line learning system can be
integrated into any system using the trust management approach to
define fallbacks and further increase the overall reliability and safety
of the system while enhancing the performance when possible. Like-
wise, the trust estimation of the 24 hours ahead prediction correlates
with the accuracy of the respective prediction thus allowing a better
informed decision.

In a nutshell, the meta-information regarding the trustworthiness
of each individual prediction opens up the possibility for advanced
integration of an on-line learning system into a system architecture.
Hence, more application areas of learning systems are possible where
otherwise an uncertain prediction would endanger the system safety,
as this case can be intercepted at a higher level. Yet, the approach
for producing an uncertainty estimation for each individual predic-
tion presented here is sensible only for local model structures and a
suitable approach for global model structures would be of interest.

An information about the certainty of a learning system could be
useful in other learning scenarios, not presented here, as well. As
discussed in [73], such an enhancement is beneficial for active learn-
ing where the learning algorithm gets to choose an instance to be
labeled for training. Here it could choose an instance for which its
uncertainty is high to better train its prediction for this case. Further-
more, reinforcement learning needs to know which situations should
be explored, as they are uncertain, and which are already known or
certain, respectively. Or in anomaly detection where a distinction be-
tween new data that the algorithm knows nothing about, i. e. it has
high uncertainty of the prediction, and abnormal data that the algo-
rithm expected to be different has to be made. Thus, an application of
the presented approach in these areas might provide further fruitful
insights.



4
O N - L I N E L E A R N I N G – T H E U N C E RTA I N C A S E

In this chapter, the on-line learning setting of Chapter 2 is extended
to deal explicitly with uncertainties. On-line learning depends on the
current parameter vector and the presented example, both of which
may be more or less certain. Accordingly, the extension is twofold.
First, the learning algorithm is extended to incorporate knowledge
about the uncertainties of the parameter vector from Chapter 3. This
yields a second order IRMA algorithm (SIRMA) which adapts itself to
the situation at hand. Second, a general extension to incorporate ex-
plicit knowledge about the uncertainty of each training example is
introduced.

4.1 uncertainty in incremental risk minimization

4.1.1 Trustworthiness of the Parameter Vector

The stiffness of IRMA reflects the adaptiveness to new examples. The
more examples already have been presented, the less important a new
example is. Thus, the stiffness of IRMA should be chosen to reflect the
amount of examples already subsumed in the current approximation,
i. e. its uncertainty due to ignorance. As different amounts of exam-
ples accumulate over time in different parts of the input space, the
stiffness of IRMA should be a local influence on the learning algorithm
as well. The basic idea as presented in [10] is pictured in Fig. 36. Here,
for simplification, a linear approximation with two reference nodes is
learned. If the example density is equal (a), both parameters should
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Figure 36: Three cases for learning a simple linear approximation (black
line) on the same example (red asterisk) but with different data
densities to give a new approximation (dotted line). Either both
parameters have the same data density (a), the left density is
higher than the right (b), or the right density is higher than the
left (c).
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be adjusted similarly, but the left one more due to its closeness to
the example. If the right node has a low and the left a high example
density (b) the current setup of the later is less trustworthy and thus
should be adapted more. Contrariwise, if the left node has a much
lower example density (c), it should be adapted more. These different
situations can be reflected using a local stiffness regarding the local
ignorance.

Hence, the incremental risk functional is extended with a local stiff-
ness σt(x) > 0 to

Rinc2(ω) =
1

2
·
∫
X

L(ωTtφ(x),ωTφ(x)) · σt(x)dx (89)

+
1

2
L(yt,ωTφ(xt))

so as to change the functional behavior less in regions where a lot of
examples already have been presented [4, 5].

To get the local stiffness regarding the example density the igno-
rance measure Φi(t) of (57) can be used. Every example increases the
ignorance measure more for parameters that have a higher influence
in the respective part of the input space. The local density ζt(x) is
then derived from the parameter’s ignorance Φi(t) through a linear
combination regarding each parameter’s activity

ζt(x) =

n∑
i=1

Φi(t) · φ̂i(x). (90)

So the local density estimate depends on the parameter’s densities in
the same amount that the output depends on the parameters. This
local density ζt(x) then influences the local stiffness of the model by
increasing it linearly from an initial stiffness σ0 with growth rate τ
through

σt(x) = σ0 + τ · ζt(x) . (91)

This way, the initial stiffness σ0 allows to express how much the
model adapts to an example initially and the growth rate can be used
to steer how fast the stiffness increases with an example. So for SIRMA

the adaptation for an example is changed throughout the learning
process data dependently and the amount of adaptation is based on
the example density in a local way. Consequently, if some region A
in the input space has a high and another region B a low density, a
new example will be incorporated into the model in such a way that
basis functions with big influence in region A will be used less than
basis functions with a bigger influence in region B (compare Fig. 36).
This way, fatal forgetting is penalized more where the example den-
sity is high. With this approach the minimization of the incremental
risk functional comes even closer to minimizing the risk functional
of the batch version of (18), as the influence of the data distribution
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is reflected, and a more robust and data dependent behavior can be
expected.

For the minimum of the second order risk functional (89) follows
∀ i ∈ [1;n]

∂

∂ωi

1

2
·
∫
X

(σ0 + τΦt
T φ̂(x))((ωt −ω)Tφ(x))2dx+

1

2
(yt −ω

Tφ(xt))
2

=

∫
X

(σ0 + τΦt
T φ̂(x))(ωt −ω)Tφ(x)φi(x)dx+

(yt −ω
Tφ(xt))φi(xt) = 0 (92)

which can be rewritten in vector form:∫
X

(σ0 + τΦt
T φ̂(x))(ωt −ω)Tφ(x)φ(x)dx+

(yt −ω
Tφ(xt))φ(xt) = 0 (93)

Using the definition of the matrix A

(At)i,j =

∫
X

φi(x)φj(x) ·

(
σ0 + τ ·

[
n∑
m=1

Φm(t) · φ̂m(x)

])
dx (94)

as well as (29), this gets

At(ωt −ω) + (φ(xt)yt −B(xt)ω) = 0 (95)

Atωt −Atω+φ(xt)yt −B(xt)ω = 0 (96)

Atωt +φ(xt)yt = Atω+B(xt)ω (97)

Atωt +φ(xt)yt = (At +B(xt))ω (98)

as a condition for the critical point. Furthermore, as

∂2

∂ω2
1

2
·
∫
X

(σ0 + τΦt
T φ̂(x))((ωt −ω)Tφ(x))2dx+

1

2
yt −ω

Tφ(xt))
2

=

∫
X

(σ0 + τΦt
T φ̂(x))φ(x)Tφ(x)dx+φ(xt)

Tφ(xt) > 0 (99)

the critical point minimizes the incremental risk functional.
Hence, the resulting update of the parameter vector is given by

ωt+1 = (At +B(xt))
−1 [Atωt +φ(xt)yt] . (100)

It is similar to that of IRMA in (35) but with a different, now time-
dependent matrix At. Practically, this matrix is given by the linear
combination

At = A
(0) +

n∑
m=1

τ ·Φm(t) ·A(m) (101)
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with an initial matrix

(A(0))i,j = σ0 ·
∫
X

φi(x)φj(x)dx (102)

and a linear combination according to the parameter ignoranceΦm(t)

of matrices

(A(m))i,j =

∫
X

φi(x)φj(x)φ̂m(x)dx, m = 1, . . . ,n . (103)

With σ(x) > 0 ∀ x ∈ X the functions {
√
σ(x)φi(x)}

n
i=1 are linearly

independent for linearly independent φi(x) and form a basis in the
function space L2(X). Hence, At is again the Gramian matrix given by
their standard inner product and the matrix At is positive definite
and has an inverse A−1

t .
All matrices can be computed off-line in advance. But the linear

combination has to be done on-line. Hence, the resulting algorithm
for on-line learning by SIRMA is as follows:

Listing 2: Second Order Incremental Risk Minimization Algorithm

Parameter: initial stiffness σ0, growth rate τ,

initial parameter vector ω0
for t = 0 to nd − 1 do{ //i.e. for each learning step

receive instance xt
predict label ŷt =ω

T
tφ(xt)

receive true label yt
suffer loss L(yt, ŷt)
build matrix At = A

(0) +
∑n
i=1Φi(t) ·A(m)

update parameter vector ωt+1 = (At +B(xt))
−1 · (Atωt +φ(xt)yt)

update parameter density ζt+1 = ζt + φ̂(xt)

}end

As the ignorance measure Φ is a strictly increasing function, the
stiffness of SIRMA increases as well. In order to keep some adaptability
in non-stationary environments, a trade-off to the robustness has to
be made. Therefor, a mapping of the ignorance measure ψ(Φ) is used
with the properties

ψ(Φ) 6 ψ(Φ ′) for Φ 6 Φ ′ (104)

ψ(Φ) > 0 ∀ Φ > 0. (105)

In this notion, the approach introduced above used ψ(Φ) = τ ·Φ.
As an alternative with a saturating stiffness, a sigmoidal increasing
stiffness

ψ(Φ) =
σ̂

2

[
1+ cos

(
min

(
1,
Φ

τ

)
π+ π

)]
(106)

is used with a growth constant τ and a maximal stiffness of σ̂. This is
better suited for non-stationary environments and allows for contin-
uous adaptation.
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4.1.2 Trustworthiness of the Example

The uncertainty of an example influences how important the loss L on
the current example is for minimization. Both, the information where
and to what value the model should be trained are important and
hence non-redundant. So, assuming a trust annotation of each exam-
ple (xt,yt) with ϑxt and ϑyt the total trustworthiness of the example
is given by a t-norm ϑxt,yt = T(ϑxt , ϑyt). If no information about the
example’s uncertainty is available, it is treated as fully trustworthy,
i. e. ϑxt,yt = 1.

This total trustworthiness is then used to linearly blend between
the contribution of the example loss and the change of the output in
the risk functional according to

Rinc3(ω) =
σ0 + 1− ϑxt,yt

2
·
∫
X

L(ωTtφ(x),ωTφ(x))dx

+
ϑxt,yt
2

L(yt,ωTφ(xt)) (107)

with an additional offset of the weight for the change by the stiffness
σ0. With this blending, (107) reduces to the normal incremental risk
functional of (22) in case of full trustworthiness ϑxt,yt = 1.0, a risk
functional only minimizing the change of the functional behavior for
ϑxt,yt = 0.0, and a linear influence of the trustworthiness in between.
This extension results in the IRMA update with a modified stiffness of

σ =
σ0 + 1− ϑxt,yt

ϑxt,yt
. (108)

Consequently, with a vanishing trust ϑxt,yt → 0 the stiffness increases
to infinity and thus no adaptation is done if the example is not trusted.
On the other hand, a fully trusted example is incorporated with stiff-
ness σ0, i. e. normal learning is performed. Thus, the more an exam-
ple cannot be trusted, the lower is its influence on learning. So with
this extension, the trustworthiness of an example can be readily used
in each learning step. The trustworthiness can be incorporated into
the SIRMA update presented in the previous section the same way by
modifying the stiffness σ0 in the initial matrix of (102) according to
(108).

4.2 formal analysis of sirma

4.2.1 Worst Case Minimization

With the extension of a local data dependent stiffness, most basic
properties of IRMA still hold. The local convergence proof of (39) is
satisfied by SIRMA as well. But while locally contracting, the influence
on the different parameters varies depending on the local stiffness.



84 on-line learning – the uncertain case

Regarding the minimization of the worst case development of the
global approximation error, with SIRMA a variation considering the
example density can be found. Assuming that all examples are drawn
independently and are identically distributed (i.i.d.) according to a
density x ∼ ρ(x), the global error of (44) can be rewritten as∫

X

(ωTt+1φ(x) − f(x))2 · ρ(x)dx (109)

in compliance with the well known batch risk functional [107]. Here
the prediction error at an input x is weighted by the respective den-
sity as an error for predictions that are less likely to occur is less im-
portant to be minimized. For this density weighted global error, the
argumentation of (44) to (50) still holds and it can be upper bounded
by ∫

X

(ωTt+1φ(x) − f(x))2 · ρ(x)dx (110)

6
∫
X

(ωTtφ(x) − f(x))2 · ρ(x)dx+
∫
X

((∆ωt)
Tφ(x))2 · ρ(x)dx

+2 ·C · c(X) ·

√∫
X

((∆ωt)Tφ(x))2 · ρ(x)dx (111)

Again, the first term is fixed by the previous approximation of ωt
and can thus not be influenced by any learning algorithm. As the
local stiffness reflects the example density, the second term as well as
the third term are minimized by SIRMA for a given improvement on
the current example (xt,yt) which depends on the overall stiffness σ,
if the local stiffness is proportional to the density, i. e. σ(x) = σ · ρ(x).

So looking at the expected value of the local stiffness

E [σ(x)] = E

 n∑
i=1

φ̂i(x) · T∑
j=1

φ̂i(xj)

 · τ+ σ0
 (112)

=

 n∑
i=1

φ̂i(x) · T∑
j=1

E
[
φ̂i(xj)

] · τ+ σ0 (113)

=

(
n∑
i=1

(
φ̂i(x) · T

∫
φ̂i(v)ρ(v)dv

))
· τ+ σ0 (114)

!
= σ · ρ(x) (115)

the appropriateness of the density estimation depends on the nor-
malized basis functions φ̂i. If these basis functions are in the form of
window functions [91], they perform a blurring of the true density and
thus yield an adequate approximation. This is for example the case
for GLT model structures or polynomials on the positive half space.
In these cases, the density estimation is equivalent to the well known
Parzen window approach [91].
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Figure 37: Comparison of different learning algorithms in parameter space
(left; start at (0.5, 0.5); target at (0, 0.1)) and the resulting cumula-
tive change of the output (right). Top shows first order algorithms
PA and IRMA. Bottom shows second order algorithms RLS and
SIRMA.

4.2.2 Complexity

With respect to the computational complexity, the extended learning
algorithm of SIRMA takes O

(
n3
)

steps, because of building the sum
of matrices. It uses as well O

(
n3
)

amount of memory, which is domi-
nated by storing the nmatrices. In comparison, state of the art second
order learning algorithms take O

(
n2
)

calculation steps and O
(
n2
)

memory, but still the complexity of SIRMA is fixed depending on the
complexity of the model structure with n basis functions and does
not increase with increasing amounts of examples.

4.3 investigations of sirma

4.3.1 Comparison of Learning in Parameter Space

As a first basic investigation, a simple setup shows how the learning
process progresses in parameter space to demonstrate the differences
between IRMA and SIRMA and state of the art methods. In one input
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dimension x ∈ [−10, 10] nd = 100 examples are generated equally
distributed on the input of a linear target function1

y = 0.1 · x+ ξ

. The additive noise ξ is drawn according to a normal distribution
with standard deviation 0.1. Using these examples a first order poly-
nomial2, with the parameters offset (ωt,1 with φ1(x) = 1) and slope
(ωt,2 with φ2(x) = x), is learned starting with ω0,1 = ω0,2 = 0.5.

Figure 37 shows the progress of the parameter vector (left) and the
cumulative global change of the output it causes (right) for different
learning algorithms based on the same sequence of randomly chosen
examples. As state of the art first and second order algorithms PA3

and RLS4 were chosen. With these mainly the slope is adapted at first
and only then the offset is adapted to yield the correct parameter vec-
tor. As expected, the first order algorithm is prone to noise and cannot
find a stable solution whereas RLS converges quickly despite the noise.
In contrast to this, IRMA5 does not adapt the slope that much as it has
more impact on the resulting output, but adapts the offset as well in
the beginning, thus resulting in a completely different trajectory in pa-
rameter space. Likewise, this preference is reflected in the remaining
random adaptation of the first order algorithms around the target in
parameter space. PA especially adapts the slope with every new noisy
example and IRMA uses the offset to follow the noise. Similarly to
RLS, SIRMA6 increases the robustness to noise and thus converges to
the target despite of the noise. The steps taken in parameter space by
IRMA and SIRMA are bigger than for PA and RLS. But in output space
these bigger steps still result in less adaptation. This is reflected by
the cumulative change which is lower for IRMA as well as for SIRMA.

Therefore, the incorporation of the model structure into the risk
minimization results in a different preference for parameters that are
used to adapt to an example. In contrast to the state of the art meth-
ods which mainly adapt the parameters with high local influence ir-
respective of the global influence, the methods proposed here mainly
adapt the parameters with low global influence. Obviously, the fi-
nally resulting parameter vector is the same and SIRMA successfully
increases the robustness to noise.

1 UOSLib-scenario: mode = REG, func = lin, ND = 100, NG = 10, noise = 0.1, minPath =
false, rSeed = 12345

2 UOSLib-model: Poly, order = 1

3 UOSLib-learn: PA, variant = 0

4 UOSLib-learn: RLS, Sinit = 105, forget = 1

5 UOSLib-learn: IRMA, variant = 0, stiff = 0.1
6 UOSLib-learn: SIRMA, variant = 1, stiff = 0.1, growth = 0.035
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Figure 38: Comparison of IRMA and SIRMA on learning a simple target
function with noise over 100 random sequences of examples us-
ing a GLT (left) or a polynomial (right) model structure. The aver-
age cumulative loss is shown with the respective minimum and
maximum as error bars.

4.3.2 Comparison of IRMA and SIRMA

In a more difficult setup, the investigation of learning a sinusoidal
target with additive noise ξ ∼ N(0, 0.1), as shown in Fig. 20 of Sec-
tion 2.4.3, is repeated with SIRMA7 using a sigmoidal growth of the
stiffness. The initial and maximal stiffness are chosen to be σ0 = 0.01,
σ̂ = 5 to start with a low stiffness for quick adaptation and get ro-
bust to noise later on. The density needed for maximal stiffness is
τ = 10 for the GLT model structure, as the 300 examples are equally
distributed across the parameters and hence every parameter has an
expected activation of 300

16 ≈ 18. For the polynomial model struc-
ture the higher order monomials are activated much more than the
lower order ones. Thus, to permit learning these parameters for a sim-
ilar amount of examples, maximal stiffness is reached at a density of
τ = 150.

The results are shown in Fig. 38. In both cases, IRMA and SIRMA

show a similar behavior but with a lower cumulative loss using the
polynomial model structure (Fig. 38, right). SIRMA is just as robust
as IRMA to varying sequences of examples as the error bars are quite
small. In the beginning, i. e. for the first 50 examples, both approaches
perform comparably but after initial learning, SIRMA is more robust
to noise due to its increasing stiffness as the cumulative loss has a
smaller slope.

This improved handling of noise can also be seen in Fig. 39. Here
the same setup is used but with different magnitudes of normally
distributed noise. The final cumulative loss after presentation of the
same sequence of 300 examples (except for the noise magnitude) is
shown depending on the noise level, i. e. the variance of the normal
distribution. For low noise levels, IRMA gets the best result with a low

7 UOSLib-learn: SIRMA, variant = 2, stiff = 0.01, growth = [10,150], maxstiff = 5
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Figure 39: Comparison of the performance of IRMA with different fixed
stiffnesses and SIRMA with adaptive stiffness on different noise
levels.

stiffness (green solid line) but consequently worse results at higher
noise levels. On the contrary, with high noise levels the best results
are achieved with a high stiffness (red dashed line). With the adaptive
stiffness of SIRMA (black solid line) an overall low cumulative loss can
be achieved without the need to adapt the hyper-parameters to the
noise level at hand. So a more robust learning is possible also with
respect to engineering the hyper-parameters.

4.3.3 Benchmark Datasets

To cover a broader set of examples, IRMA and SIRMA are investigated
in comparison to PA and RLS on several benchmarks from different do-
mains. The benchmark datasets are part of the NIST non-linear regres-
sion archive [87] and the more difficult motorcycle dataset [54]. The se-
lection of datasets contains different properties of training examples
and thus covers typical learning situations. They differ with respect
to the amount of non-linearity, how many changes in monotony oc-
cur, the overall noisiness of the examples, and locally differing noise
levels and example densities. The properties are summarized in Ta-
ble 8 with a minus, circle or plus indicating a low, medium or strong
occurrence of the property, respectively. For comparability of the re-
sults, the datasets are scaled to the UOSLib standard, i. e. on the input
to [−10, 10] and on the output to [−1, 1].

The basic PA8 algorithm has no hyper-parameter to be set, RLS9 is
used with an initial covariance matrix Σ0 = 1 · 106 and forgetting
factor λ = 1 as the benchmarks are only static datasets, i. e. forget-

8 UOSLib-learn: PA, variant = 0

9 UOSLib-learn: RLS, Sinit = 106, forget = 1
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Table 8: Properties of the benchmark datasets with a minus, circle or plus
indicating a low, medium or strong occurrence of the respective
property. The datasets are ordered roughly by increasing difficulty
of the learning problem.
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No. of Examples 24 154 151 214 236 33 37 54 250 133

Non-linearity ◦ - + ◦ + + + ◦ + +

Non-Monotony - - - - - ◦ ◦ - + +

Noisiness - - - ◦ - - - ◦ ◦ +

Local noisiness - - - - - - - ◦ ◦ +

Local sparsity - + - - ◦ - + + - -

ting is not necessary. IRMA10 uses a fixed low stiffness σt = 0.01 and
SIRMA11 a stiffness increasing sigmoidally from σ0 = 0.01 to σ̂ = 2

with a growth of τ = 20.0. For the approximation again a Gaus-
sian GLT with 16 nodes12 and a 15

th order polynomial13 starting at
ω0,i = 0 ∀ i ∈ [1; 16] are used.

The important features of the learning algorithms investigated here
are on the one hand the quality of on-line prediction, i. e. the cumu-
lative loss of (52), and on the other hand as the datasets are static the
correct representation of all examples by the final parameter vector,
i. e. the mean data loss of (53).

The results of the experiments with the local GLT model structure
are shown in Table 9 for the cumulative loss and in Table 10 for
the mean data loss. Regarding the cumulative loss, PA, IRMA, and
SIRMA perform quite similarly in this case. RLS sometimes achieves
high losses due to overfitting but also may be lucky resulting in low
losses. So its predictions are not reliable. And regarding the data loss
(Table 10), a clear ranking of the methods is given even though the
performance is quite similar as well. PA results in the highest data
loss, followed by the same but sometimes lower data loss of IRMA,
then SIRMA and RLS outperforms the other methods on every dataset.
Yet, with this local model structure no significant advantage of any
method can be seen on the data loss.

The results of the experiments with the global polynomial model
structure are shown in Table 11 for the cumulative loss and in Ta-

10 UOSLib-learn: IRMA, variant = 0, stiff = 0.01

11 UOSLib-learn: SIRMA, variant = 2, stiff = 0.01, growth = 20, maxstiff = 2

12 UOSLib-model: GLT, num = 16, base = gauss
13 UOSLib-model: Poly, order = 15
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Table 9: Final cumulative loss of different learning algorithms on the bench-
mark datasets using a GLT model structure. The lowest error for
each dataset is marked in bold.

Dataset PA RLS IRMA SIRMA

Lanczos3 6.4 51.9 7.2 6.9

Bennett5 3.9 3.7 4.1 3.9

Kirby2 5.0 17.2 5.3 4.8

Chwirut1 8.4 190.0 8.9 7.8

Hahn1 6.0 11.2 6.4 5.9

MGH17 5.4 53.5 5.7 5.7

Thurber 6.6 15.8 7.1 6.8

Chwirut2 6.1 6.0 6.5 6.4

Gauss1 6.0 90.1 6.3 5.5

Motorcycle 16.3 158.0 16.4 14.1

Table 10: Final mean data loss of different learning algorithms on the bench-
mark datasets using a GLT model structure. The lowest error for
each dataset is marked in bold.

Dataset PA RLS IRMA SIRMA

Lanczos3 5.1 · 10−2 6.2 · 10−4 4.2 · 10−2 1.7 · 10−2

Bennett5 1.8 · 10−3 7.3 · 10−4 1.7 · 10−3 8.6 · 10−4

Kirby2 1.7 · 10−3 6.6 · 10−4 1.7 · 10−3 9.7 · 10−4

Chwirut1 8.1 · 10−3 5.3 · 10−3 8.1 · 10−3 6.6 · 10−3

Hahn1 1.8 · 10−3 1.1 · 10−3 1.8 · 10−3 1.2 · 10−3

MGH17 1.4 · 10−2 1.1 · 10−3 1.4 · 10−2 3.7 · 10−3

Thurber 5.0 · 10−3 1.0 · 10−3 3.9 · 10−3 2.0 · 10−3

Chwirut2 1.9 · 10−2 4.3 · 10−3 1.9 · 10−2 8.1 · 10−3

Gauss1 5.4 · 10−3 3.2 · 10−3 5.3 · 10−3 3.9 · 10−3

Motorcycle 6.6 · 10−2 4.4 · 10−2 6.6 · 10−2 5.3 · 10−2
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Table 11: Final cumulative loss of different learning algorithms on the bench-
mark datasets using a polynomial model structure. The lowest er-
ror for each dataset is marked in bold.

Dataset PA RLS IRMA SIRMA

Lanczos3 1.0 · 1023 4.6 · 1019 8.6 9.9

Bennett5 6.2 · 1023 2.0 · 1015 6.6 7.4

Kirby2 6.9 · 1023 7.7 · 1017 9.4 12.7

Chwirut1 1.4 · 1027 1.5 · 1022 13.7 14.6

Hahn1 7.0 · 1025 7.1 · 1016 9.0 9.5

MGH17 4.4 · 1023 2.6 · 1010 10.0 10.4

Thurber 2.1 · 1025 1.7 · 1019 20.3 17.4

Chwirut2 1.3 · 1026 1.1 · 1022 7.2 7.1

Gauss1 5.0 · 1026 8.6 · 1015 6.7 8.0

Motorcycle 3.0 · 1025 1.2 · 1013 15.0 11.2

Table 12: Final mean data loss of different learning algorithms on the bench-
mark datasets using a polynomial model structure. The lowest er-
ror for each dataset is marked in bold.

Dataset PA RLS IRMA SIRMA

Lanczos3 3.4 · 1024 1.1 3.4 · 10−2 4.8 · 10−2

Bennett5 5.2 · 1019 8.8 · 10−6 1.5 · 10−4 3.3 · 10−3

Kirby2 4.4 · 1022 4.8 · 10−8 4.8 · 10−4 2.7 · 10−3

Chwirut1 4.2 · 1023 1.1 7.5 · 10−3 1.0 · 10−2

Hahn1 8.2 · 1022 6.0 · 10−5 1.4 · 10−3 1.4 · 10−3

MGH17 2.9 · 1022 1.6 · 10−2 3.5 · 10−2 4.2 · 10−2

Thurber 7.9 · 1023 1.2 1.9 · 10−2 5.3 · 10−2

Chwirut2 6.4 · 1023 5.4 6.2 · 10−2 2.6 · 10−2

Gauss1 1.0 · 1020 1.6 · 10−3 2.8 · 10−3 1.8 · 10−3

Motorcycle 4.6 · 1024 4.2 · 10−2 8.1 · 10−2 4.8 · 10−2
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ble 12 for the mean data loss. Here, IRMA and SIRMA successfully
prevent high cumulative losses for low data densities even if such
global model structures are used and thus can achieve a low cumu-
lative loss. Especially on the motorcycle dataset a significantly lower
cumulative loss is achieved by SIRMA. This dataset has locally differ-
ing noise levels and thus the robustness of SIRMA to the need of a
fittingly selected stiffness helps to deal with the data. But the increas-
ing stiffness of SIRMA is not always beneficial. RLS and PA have a high
cumulative loss for all datasets and cannot handle the global model
structure well, conforming previous investigations.

The first order method PA also gets high data losses on every dataset.
Hence, it is not suitable for global model structures. But the data
loss indicates that RLS, IRMA, and SIRMA converge and learn an ade-
quate representation of the datasets. So the high cumulative loss of
RLS is a result of aggressive parameter adaptation in between. For
several datasets RLS even achieves a lower data loss, hence a bet-
ter approximation in the end, but for some datasets like Lanczos3,
Chwirut1, Thurber, and Chwirut2 the amount of examples were not
sufficient for RLS to converge. Even though Chwirut1 consists of 214

examples in contrast to 54 for Chwirut2, these are only noisy exam-
ples for the same discrete instances. With these, RLS cannot converge
as fast. Hence, RLS again cannot handle every dataset reliably, but
IRMA and SIRMA are reliable in every case regarding as well the final
hypothesis as every learning step in between and always achieve low
losses.

4.3.4 Uncertain Examples

Lastly, the influence of respecting the trustworthiness of each train-
ing example is investigated. Therefor, again the sine function is used
as a scenario14. It is learned by a 15

th order polynomial model struc-
ture15 using IRMA as the basic learning algorithm16 to investigate the
influence of the trust without additional stiffness adaptation. Based
on this setup, different disturbance cases of the instance xt and the
label yt are simulated.

Two basically different kinds of disturbances are simulated in this
setting. Either, the data are subject to noise with zero-mean. This
means that even though the data are disturbed, their mean value pro-
vides information about the true value. Or, the data are subject to
noise with nonzero-mean. This means that the disturbance has some
unknown bias. Both disturbances are applied either to the instance
xt or the label yt. Yet, it should be noted that from the perspective

14 UOSLib-scenario: mode = REG, func = sine, ND = 300, NG = 20, noise = 0.0, minPath
= false, rSeed = [12346:12376]

15 UOSLib-model: Poly, order = 15

16 UOSLib-learn: IRMA, variant = 0, stiff = 0.01
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of the learning system, the effect of instance and label noise is the
same. But for most input-output relations, i. e. non-linear ones, zero-
mean noise on the instance results in nonzero-mean noise of the label.
The trustworthiness of the instance or label is lowered according to
the severity of the disturbance to simulate knowledge about the ex-
ample’s trustworthiness. This simulates ideal knowledge about the
example’s trustworthiness which might not be given in a real appli-
cation where the trustworthiness has to be determined somehow and
might be subject to disturbances on its own. Yet, this allows to ana-
lyze how the approach can perform in the best case.

For all experiments each example is disturbed with a 50% chance
or otherwise left exact so that about half of the examples can be used
for normal learning. First to simulate zero-mean noise, the instance
xt is disturbed with an additive normally distributed noise. Its mag-
nitude is altered by the variance. A zero variance corresponds to full
trust, a variance of 0.3 corresponds to no trust and in between the
trust is blended linearly. Second to simulate nonzero-mean noise, the
instance xt is disturbed by randomly drawing an input value form
[−10, 10] to replace the correct input value of the example. The mag-
nitude of this disturbance is altered by the probability with which
a random value replaces the correct input. A zero probability is as-
signed with full trust in the example, a 25% probability leads to zero
trust and in between the trust scales linearly. The other two scenarios
disturb the label yt the same way by an additive normally distributed
noise or by randomly drawing a replacement form [−1, 1]. Finally, af-
ter the total sequence of 300 training examples was presented, the
ground truth loss of the learned model is measured, i. e. how well the
true target was learned.

This experiment was repeated with 30 different random seeds to
analyze the robustness and 30 different disturbance magnitudes for
each and accordingly selected trust levels. For comparison, learning
was done either with IRMA and full trust in every example, i. e. with-
out respecting the trustworthiness, or with the extended influence of
the trustworthiness on learning where every example that might be
disturbed is assigned with the corresponding trust level and every
undisturbed example is fully trusted.

The results, shown in Fig. 40, present the average ground truth loss
and its variance over the thirty different random seeds as error bars.
The disturbance significantly increases the ground truth loss for nor-
mal learning without trust. With respecting the trust it increases only
a little or even is about the same. Thus, the advantage of respecting
the trustworthiness of each example at learning is clearly apparent.
The performance is expected to decrease with increasing disturbance,
but as the examples with a lower trust influence the learning less,
the learning system is still able to achieve a good ground truth loss
just on the 50% trustworthy training examples. Furthermore, the vari-
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Figure 40: Comparison of the performance of IRMA with and without re-
specting each example’s trustworthiness. The two disturbance
cases of random values (left column) or additive noise (right col-
umn) are simulated for the instance uncertainty (upper row) and
label uncertainty (lower row). The scales of the y-axis differ due
to different impacts on the resulting quality.

ance of the results without respecting the trust is very high in case
of nonzero-mean noise. This variance is significantly lower when the
trust is used, i. e. no variance can be seen at all. On average over all
four cases, it is only 30% of the variance without respecting the exam-
ple’s trust. Hence, it is robust to different sequences of training data
and different disturbances. The influence of nonzero-mean noise on
the ground truth loss of normal learning is significantly higher than
that of zero-mean noise as seen by the different scales of the y-axis.
But with respecting the trustworthiness, both disturbances are han-
dled equally well.

Consequently, influencing the stiffness with the trustworthiness of
the presented example helps to make the learning system more ro-
bust. But this approach has its limits. If all examples cannot be trusted,
obviously there is not enough information to learn at all. Further-
more, as usually the correct trust is not known but itself only an
estimate, it may underestimate or overestimate the true trustworthi-
ness. If the trustworthiness is underestimated, i. e. the example could
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be trusted more, learning will be slower but it will still work on the
long run. On the contrary, if the trustworthiness is overestimated, i. e.
the example should be trusted less, the robustness deteriorates to
normal learning as the disturbance is not known. But in this case it
never gets worse than normal learning. Therefore, the improvement
through respecting the trust depends on an adequate estimation of
the trustworthiness of an example, but in the worst case it only slows
down learning.

4.3.5 Application to Electricity Load Forecasting

The electricity load forecasting task presented in Section 2.5 is non-
stationary. Thus, the learning algorithm needs to be adaptive through-
out the whole learning process which is achieved by SIRMA with a
sigmoidally increasing stiffness. So the same investigations on step
ahead and 24 hours ahead prediction with GLT and polynomial model
structure as in Section 2.5 are repeated with SIRMA. It is set up to start
with full adaptivity using an initial stiffness of σ0 = 0.0 and grows
up to a maximal stiffness that is equal to the optimal fixed stiffness
of IRMA in Table 5. Hence, it only is used to locally improve initial
learning.

For step ahead prediction with both model structures and 24 hours
ahead prediction with a GLT model structure, the results are the same
as for IRMA with a fixed stiffness. An improvement of the load predic-
tion is achieved by SIRMA only for 24 hours ahead prediction with the
polynomial model17. In this case, SIRMA achieves a prediction error of
7.79 in contrast to IRMA with 7.85.

With the polynomial model structure, each parameter has a global
influence. As SIRMA increases the stiffness locally where more exam-
ples have been presented, it adapts the globally effective parameters
such that fatal forgetting is prevented in the beginning even better
than with IRMA. That is why there is no significant improvement
when using a GLT on the same task, as the model structure itself helps
to prevent fatal forgetting through its locally effective parameters.

An increase time of the stiffness τ = 168 yields the best results. This
equals about one month of training examples with the 15 parameters
(168 · 15 = 2520 ≈ 2688 = 4 · 7 · 24 · 4). As this first month accounts for
only about 4% of the whole data sequence, the overall improvement
through SIRMA is quite low in this case.

4.4 consequences

In the uncertain case, the on-line learning algorithm typically is sub-
ject to an uncertain hypothesis as well as uncertain training examples.
To deal with the uncertainty of the hypothesis, the trust estimation

17 UOSLib-learn: SIRMA, variant = 2, stiff = 0.0, growth = 168, maxstiff = 1.1
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of the parameter vector presented in Chapter 3 was included in the
learning algorithm. The extension of IRMA to incorporate knowledge
about the uncertainty of the parameter vector by trust levels for each
parameter prevents fatal forgetting dynamically. The same learning
situation with different underlying data densities, and hence uncer-
tainties due to ignorance, is thus resolved differently. Moreover, the
density increases the stiffness in such a way that at first with a low
number of examples a quick adaptation is possible to gain knowledge
and reduce ignorance. And when more examples are presented, the
adaptiveness decreases yielding a higher robustness to noise and to
reduce conflict. But this higher robustness leads to a lower adaptive-
ness in non-stationary environments, which is a principal trade-off.
Therefor, a sigmoidal mapping of the ignorance measure makes it
possible to combine the initialization performance of SIRMA locally
and data dependent with the long-term adaptiveness of IRMA which
also further increased the performance of electricity load forecasting,
albeit slightly.

But the investigations showed that the improvement of SIRMA is
comparably low. At the same time, the additional computational com-
plexity is high even though it is still limited. Hence, it should be con-
sidered if SIRMA is necessary when setting up an application. The
main benefits of SIRMA come into play when the target function is
static and a high noise level is present, the noise level varies signifi-
cantly throughout the input space, or the data density in input space
varies significantly during the learning process. Otherwise IRMA al-
ready provides a good approach with lower complexity. Further im-
provement on choosing an adequate local stiffness throughout the
learning process would be of interest for future developments. Ide-
ally, the stiffness should not only increase to be robust to noise, but
it should also be capable of decreasing again if a shift or drift oc-
curs in non-stationary environments. This way the trade-off between
adaptability and robustness could be treated dynamically.

To deal with uncertain examples that are known to be uncertain,
learning by IRMA and SIRMA was extended to incorporate the trust
level of each example. Incorporating this information makes the learn-
ing algorithm more robust to disturbances. The presented approach
significantly improves the robustness not only to zero-mean noise but
also to the more severe disturbance of nonzero-mean noise. It was
shown that the performance deteriorates only gently with increas-
ing uncertainty of the training examples when these uncertainties are
known. Otherwise the disturbances severely affect the predictive qual-
ity and hence the learning system’s reliability. But this improvement
is only possible, if a good estimate of the uncertainty of examples is
available. Yet, a wrong uncertainty estimation is not perilous for the
learning system. If the uncertainty estimation is wrong, the robust-
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ness just may not improve as much or the learning progress may be
slowed down.

So with this extension, the learning system is able to use trust sig-
nals of the training examples. This way, it can be integrated better
into a system wide trust management architecture where the trust-
worthiness of every information is provided.





5
C O N C L U S I O N

5.1 discussion

5.1.1 On-line Learning by IRMA

On-line machine learning in general and especially regression help to
make modern systems intelligent. The new approach to on-line learn-
ing, called IRMA, presented in this work, improves the state of the art
with a reliable learning behavior. It respects the locality of a single
example, on the one hand in time by adapting to the most recent
examples presented, and on the other hand in input space by chang-
ing the global model as little as possible. Therefore the influence of
a non-linear model structure is directly incorporated into the learn-
ing algorithm. As all state of the art on-line learning algorithms only
minimize the change of the parameter vector, this influence has not
been studied before, even though it has an important impact on the
predictive quality of an on-line learning system. In contrast to state of
the art learning algorithms the resulting behavior with IRMA depends
less on the specific chosen model structure but only on its expressive-
ness. Thus, as shown by the worst case analysis in Section 2.3.2, it can
be applied reliably to any model structure suited to the data, whereas
other learning algorithms have significant drawbacks especially with
globally effective parameters.

Hence, IRMA meets all the requirements of Section 1.4. The inves-
tigations showed that the cumulative loss of IRMA is low in every
setting. Therefore, IRMA always learns quickly and reliably a good ap-
proximation (Requirement a) and achieves a good predictive quality.
Its cumulative loss is not necessarily minimal in every case, because
a "lucky guess" is always possible with any learning algorithm in the
predictive on-line setting. Yet, in addition to lucky guesses, unlucky
guesses are just as possible with other algorithms. But in contrast to
that, IRMA is proven to minimize the worst case loss in every step.
This way, it prevents the learning system from too unlucky guessing
which means fatal forgetting is inhibited in contrast to state of the art
algorithms (Requirement c). That is why IRMA never shows a bad per-
formance in any investigation. However, other learning algorithms
are prone to fatal forgetting and result in a high cumulative loss at
least in some settings.

The main drawback of RLS as the best representative of second or-
der learning is that it is impossible to know a priori if a setting will
result in high prediction errors and thus in a high cumulative loss.
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Especially on low data densities, i. e. in the beginning of learning or
when new regions of the input space are reached due to shifts or
drifts in the underlying data, RLS is not reliable. On the other hand,
the main drawback of PA as the best representative of first order learn-
ing is that it can learn only local model structures adequately and
otherwise is prone to fatal forgetting. In these cases, IRMA prevents
overfitting and is inherently robust against overly expressive model
structures (Requirement g), thus easing the design of a learning sys-
tem. At the same time, a continuous adaptation to non-stationary
environments is provided as the learning does not decrease over time
(Requirement b). This allows learning in situations where no fixed op-
timal knowledge is available and consequently a learning system is
inherently necessary.

The only hyper-parameter that has to be set up is the stiffness. It
has a smooth influence on the predictive quality with a distinct op-
timal setting which is proportional to the noise level present in the
examples. So engineering of this hyper-parameter is straightforward
as opposed to the forgetting factor of RLS. It is comparable, albeit
inverse, to the aggressiveness of PA. Besides, the complexity of the
algorithm is low which makes it on the one hand easy to understand
and on the other hand easy to apply to big data or in systems with
low computational power like embedded systems (Requirement d).

Consequently, IRMA can be applied in a wide range of settings.
With IRMA, it is possible to choose the model structure depending
on the task and not depending on the restrictions imposed by the
learning algorithm because IRMA has no restrictions. It allows to learn
non-linear input-output relations with the simplicity of a linear learn-
ing scheme. Thus it can deal with tasks, e. g. the higher dimensional
concrete dataset, that needed more elaborate non-linear learning sys-
tems like multi layer perceptrons or support vector regression before.
Furthermore, it enhances the reliability, as an adequate recall of pre-
sented examples is ensured, i. e. no fatal forgetting occurs, as far as
the model structure is capable of representing them, and generaliza-
tion is compliant due to robustness to overfitting.

5.1.2 Trust Estimation

Learning from examples is inherently uncertain. Hence, knowledge
about this uncertainty is important to increase the reliability of a
learning system and its integration into a system architecture. With
monitoring the parameter vector throughout learning, the inherent
uncertainties of the learning system can be estimated. No general
uncertainty estimation for on-line learning of LIP model structures
has been proposed before. The uncertainty measures introduced here
estimate epistemic uncertainties through ignorance of the learning
system as well as aleatoric uncertainties through conflict within the
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learning system. For both influences, short term and long term moni-
toring is provided.

This way, every parameter of the parameter vector is attributed by
a trust signal reflecting its trustworthiness at each learning step (Re-
quirement i). This allows a designer of a learning system to supervise
the learning process and to adjust its setup. If the parameter vector is
uncertain, the expressiveness of the model structure can be changed
(Requirement g). In case of too much ignorance, the model structure
might be chosen too complex and should be reduced. Contrariwise,
in case of too much conflict, the model structure might not be ex-
pressive enough and it should be increased. But the cause of conflict
might not be the model complexity but just as well the noise on the
examples. Then an increased stiffness of IRMA stabilizes the learning
system against the noise.

Moreover, the trust estimation of the parameter vector allows to re-
flect the trustworthiness of each individual prediction (Requirement j).
So in addition to the prediction itself, a trust level is provided as a
meta-information for other processing modules or a supervisor. Yet,
the approach is limited as the trustworthiness of each individual pre-
diction is most meaningful only for local model structures like a GLT.
With global model structures, the trust estimation of individual pre-
dictions is less sensible.

Such an extended on-line learning system can be integrated with
other processing modules according to the trust management ap-
proach, e. g. in the COBRA-architecture [3]. This further increases the
reliability of the overall system as uncertainties of the on-line learn-
ing system can be dealt with at higher system levels or subsequent
system modules. If the prediction is too uncertain, a fallback strat-
egy can be applied as demonstrated in the electricity load prediction.
Then the resulting total system performance is enhanced when pos-
sible but still safe in presence of uncertainties. With this extension,
on-line learning can be considered even in safety critical applications.

5.1.3 On-line Learning by SIRMA

To deal with known uncertainties at learning, the algorithm should
be able to adequately handle uncertain information. With SIRMA, the
information about the uncertainty of the parameter vector due to ig-
norance is used to influence the learning algorithm (Requirement f ).
It thus increases the stiffness locally the more, the lower the ignorance
is. Thereby, the learning algorithm adapts itself to the data seen so far
and fatal forgetting is prevented even better than with IRMA in case
of varying data densities. This advantage is particularly significant
with global model structures whereas local model structures are bet-
ter in dealing with varying data densities by construction. This way,
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the predictive quality increases throughout learning as the influence
of noise decreases.

Additionally, the increasing stiffness of SIRMA enhances initial learn-
ing. It enables a quick adaptation in the beginning and is robust to
varying noise levels on the long run, similar to other second order
learning algorithms like RLS. But the growing stiffness comes at the
cost of a declining adaptiveness. This is a principal trade-off that has
to be considered when solving a task with an on-line learning system.
When a shift or drift occurs, forgetting is necessary which contradicts
robustness to noise. So in a non-stationary environment the designer
needs to adjust the learning system to this trade-off. This dilemma of
non-stationarity and noise is also addressed in RLS through the for-
getting factor, but the setup of this hyper parameter is very sensitive
making RLS instable.

Moreover, incorporating the trustworthiness of an example to lower
its influence if it is uncertain further increases the reliability (Require-
ment e). In case of a system that is enhanced by trust signals, the infor-
mation about an example’s trustworthiness can be respected by the
learning algorithm. Thus the learning system is more robust to dis-
turbed examples that are known to be uncertain and the knowledge
is protected. Consequently, the predictive quality is not harmed.

5.1.4 Consequences

A guideline for choosing an on-line learning algorithm from the set
of PA, RLS, IRMA, and SIRMA is presented in Fig. 41. This guideline
aims at good predictive quality and low computational complexity.
The main distinction is whether the target function is static or time
variant. If in case of a static target function a reliable prediction is not
necessary at every step, i. e. only the final result is important, RLS is
the best suited algorithm. Otherwise, if a time variant target function
is learned with a local model structure with roughly equal influences
of all parameters, PA is suitable due to its low computational demand,
but IRMA might further improve the performance. In all other cases,
IRMA provides a better solution as long as the noise level is not too
high and the examples are more or less uniformly distributed. In
presence of higher noise or varying example densities, SIRMA with
linearly increasing stiffness for a static target or sigmoidally increas-
ing stiffness for a time variant target enables further improvement. So
RLS is a good solution in a special case and otherwise the other algo-
rithms meet increasing demands but with increasing computational
complexity at the same time. Yet in all cases, IRMA and SIRMA are sure
not to fail as the worst case is minimized in each learning step which
is not guaranteed with other learning algorithms.
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Figure 41: Flow chart for selecting the most suitable on-line learning algo-
rithm for LIP regression.

5.2 summary

This thesis deals with the on-line learning problem as an important
research field of machine learning. The challenges of on-line learn-
ing were discussed and a categorization of uncertainties influencing
a learning system was presented. With IRMA a novel approach to on-
line learning was introduced, resulting in a plausible and reliable
update of the model with every presented example regardless of the
specific model structure used. With this approach, the local validity
of each example is respected, even with global model structures, by
keeping the global change of the input-output relation as low as possi-
ble. Hence, fatal forgetting due to overfitting is prevented inherently.

An extension to reflect the uncertainties due to ignorance and con-
flict of such a learning system on-line by trust levels enhances the
interpretability. It also assesses the uncertainty of each individual pre-
diction. This way, it enables the safe integration of an on-line learning
system into a system architecture that deals with uncertainties explic-
itly. At the same time, this mechanism is used to improve the learning
algorithm by incorporating knowledge about ignorance into the up-
date of the learning system to reduce fatal forgetting. Furthermore, to
increase the robustness to disturbed training examples the trustwor-
thiness of each presented example is incorporated into learning and
reduces its influence according to its uncertainty.
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All contributions were analyzed theoretically and their properties
were demonstrated in empirical investigations and in a real world ap-
plication on electricity load forecasting. The new approach to on-line
learning clearly outperforms state of the art methods in several situ-
ations. A guideline for choosing a learning algorithm clarifies when
state of the art methods might be more suited or when the presented
learning algorithms should be used. Furthermore, the analysis of the
trust estimation shows that ignorance and conflict are adequately re-
flected. As shown in the step ahead electricity load forecasting, this
additional trust information enhances the applicability of learning on
a system level. No other approach for on-line uncertainty estimation
is known that can be applied to LIP model structures with any learn-
ing algorithm.

Altogether, the main contribution of this work are the on-line learn-
ing algorithms IRMA and SIRMA together with the trust estimation of
the parameter vector and following from this a trust estimation for
each individual prediction. They yield a reliable on-line learning sys-
tem for LIP model structures with more insight for an engineer and a
reliable prediction assessing its own uncertainty to react accordingly
on a system level.

5.3 outlook

Not all aspects of on-line learning could be handled within this work.
The solution to robustness against uncertain instances at prediction
(Requirement h), was not presented in this thesis. A first approach to
deal with this problem has been investigated in a masters thesis [98]
and first results were published in [3]. The basic idea is to fade out
the influence of an uncertain input dimension by averaging the pre-
dicted label along the uncertain dimension. This way, the influence
of the uncertain value diminishes until a totally uncertain dimension
has no influence on the prediction at all. The influence of this fading
on the trustworthiness of the prediction is also accounted for by con-
sideration of the conflict it causes. But an extensive analysis of this
approach is still pending. The same work presented an approach for
reliable interpolation and extrapolation by blending out the influence
of uncertain parameters of the parameter vector. So far this approach
is only computationally feasible for GLT model structures.

Some further interesting future directions can be derived from the
presented work. One remaining problem that was discussed is the
trade-off between robustness and adaptiveness in on-line learning.
One recently presented approach uses an adaptive learning rate for
a stochastic gradient descent in multi layer perceptron learning [97].
There the learning rate decreases in presence of noise to improve
the robustness and it increases again in presence of shifts or drifts
in order to readapt. A similar adaptive stiffness for IRMA would be
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possible. Likewise, the second order version SIRMA might be extended
to incorporate not only the ignorance measure but also the conflict
measure into its update, to achieve a similar result.

Moreover, the basic IRMA principle presented in Section 2.2.1 is
even more widely applicable. In this work it was applied to regres-
sion with LIP model structures. It could also be used the same way
for other tasks like classification or density estimation or for other
model structures that are non-linear in the parameters. But it is not
clear whether an analytical solution of the minimization of the risk
functional exists in this case or if a suitable approximation could be
found. Yet, such a system would provide the same benefits of pre-
venting fatal forgetting and overfitting, but in other domains.

The trust estimation presented here has limited validity for trust
prediction with polynomial model structures. Hence, an extension of
this approach that is meaningful for any LIP model structure, e. g.
polynomials, would expand the applicability. Furthermore, such a
trust estimation of on-line learning systems poses research questions
on an architectural level as well. Here, an incorporation of a learning
system with a trust attribute for its prediction into the system with
a safe fallback strategy is of interest. A first idea of such an applica-
tion was presented with the step ahead electric load forecasting. But
the integration of the predicted trust on an architectural level could
also influence higher decision levels that trigger specific countermea-
sures instead of just resorting to a fallback. This way the presented
on-line learning system could be used reliably even in safety-critical
applications.





A
U O S L I B

a.1 motivation

In the raise of this work, the unified online-learning systems library
(UOSLib) [8] was developed. It is an open source library of on-line
learning algorithms for Matlab®. The intention of this library is two-
fold. On the one hand, it is possible to compare different approaches
to on-line learning within a common framework, e. g. to see how new
approaches rank in comparison to the state of the art. On the other
hand, a task at hand can be solved easily with different learning algo-
rithms to find the most suitable approach. The UOSLib is focused on
the two tasks of generalized linear classification and regression which
are two of the most important learning tasks. It contains several learn-
ing algorithms and provides different model structures.

It features a suitable common framework which is easily extensi-
ble with new learning algorithms and model structures in order to
systematically evaluate new methods. Furthermore it allows an easy
setup of investigations with different properties of a learning scenario,
e. g. degree of data noisiness, data linearity, or independence of con-
secutive data. Just as well, the model structure is exchangeable to
evaluate its impact on the resulting performance.

Depending on the learning task the evaluation of the output and
the loss function differ. For regression the evaluation is given by

ŷt =ω
T
tφ(x) (116)

with ŷt ∈ R. A commonly used loss function is the squared loss

Lr(ŷt,yt) = (ŷt − yt)
2. (117)

For binary classification the evaluation is given by

ŷt = sgn(ωTtφ(x)) (118)

with ŷt ∈ {−1,+1}. Here a commonly used loss function is the hinge
loss

Lh =

0 if ŷt · yt > 1

1− ŷt · yt otherwise .
(119)

Within this scope of the on-line learning setting the UOSLib provides a
basis to compare a variety of model structures φ(x) and learning al-
gorithmsωt× (xt,yt)→ωt+1 together with a collection of different
learning scenarios for both tasks.
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Figure 42: Block diagram of the UOSLib modules.

a.2 uoslib architecture

To support the development of new learning algorithms with the
UOSLib, Matlab® was chosen as a widespread basis on the one hand
to allow for rapid prototyping and easy analysis with onboard tools
for plotting and evaluation and on the other hand because it is op-
timized for linear algebra operations which is the core of LIP model
structures. The concept of the UOSLib is based on three modules as
shown in Fig. 42. The scenario generator provides the examples that
are presented to the learning algorithm. The learning process consists
of the learning algorithm with its model structure and the trust es-
timation. Finally, an automatic evaluation measures the performance
and visualizes the results. Most importantly, a setup can be uniquely
specified by a footprint consisting of one tuple specifying the scenario,
one specifying the model structure, and one specifying the learning
algorithm, thus making it reproducible as well by other researchers.
These footprints will be introduced in the following sections.

The scenario generator can be set up to generate synthetic data sets in
a reproducible way to test the algorithms in different situations based
on exactly the same data. The scenario generator hence allows to ad-
just specific properties of the learning scenario like the target function,
noise level on the target labels, example density, independence of
consecutive examples, etc. This way, the influence of these properties
on the different learning algorithms can be evaluated systematically.
Through a fixed random seed, the complete setup is reproducible
and can be applied to different combinations of learning algorithm
and model structure. Additionally, an interface to load (benchmark)
datasets from a file is provided for an easy junction to external data
sources. For external data some properties can be adjusted system-
atically as well, like added noise and the order of presentation. All
generated learning scenarios are easily mapped either to a regression
task or to a binary classification task by taking the sign of the output.

For the learning process common interfaces to different model struc-
tures as well as learning algorithms are provided to easily exchange
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the structure or algorithm in use for comparison. This allows to test
different combinations of

• learning task: regression or classification

• learning scenario: different properties of the data

• model structure: mapping input to parameter space Rd → Rn

• learning algorithm: update of the parameter vector

by exchanging or systematically varying one of the four parts. In all
cases, the learning process is monitored by the trust estimation as it
is independent of the learning algorithm and model structure.

The learning process is evaluated with different measures that are
tracked over time. As on-line learning is a continuous process, a cu-
mulative performance measurement in a single number cannot present
all relevant information. Rather, the progress of different measures
over time is important in order to analyze the behavior. Therefor,
the UOSLib incorporates the same three measures as presented in Sec-
tion 2.4. They are updated after every learning step t. The cumulative
loss Lc in (120) corresponds to the on-line performance, i. e. how well
the predictive quality is at the respective step. In contrast to that, the
mean data loss Ld in (121) corresponds to the quality on all exam-
ples seen up to the respective step, i. e. how well the examples were
learned. Furthermore, for synthetic data it is possible to estimate the
mean ground truth loss Lg in (122), i. e. how well the learned ap-
proximation suits undisturbed and regularly sampled examples, thus
covering the ability to generalize and cancel noise. To determine this,
additional test examples (x̃i, ỹi) are directly drawn on a fine-grained
regular grid covering the complete input space regardless of the den-
sity of training data and without any disturbance.

Lc(t) =

t∑
τ=0

L(ωTτφ(xτ),yτ) (120)

Ld(t) =
1

t

t∑
τ=0

L(ωTtφ(xτ),yτ) (121)

Lg(t) =
1

Ng

Ng∑
i=0

L(ωTtφ(x̃i), ỹi) (122)

With this framework, it is simple to set up different investigations
of on-line learning systems and to easily compare different algorithms.
The three measures give deeper insight than using only the cumu-
lative loss and help to comprehend the learning process. Moreover,
each investigation is easily reproducible.
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a.3 main uoslib modules

a.3.1 Scenario Generator

The scenario generator provides a set of examples which is used for
training in a sequential order. For this purpose, it is given to the
model structure as well as to the learning algorithm (see Fig. 42). An
according set of ground truth data is provided for the performance
evaluation. All scenarios are scaled to enforce that the instances lie in
the interval [−10,+10] and the label is in [−1,+1]. By fixing the seed
rSeed of the random number generator, the examples are fully re-
producible. The generator is called through the function icl_loadDS

which has the following interface:

[data groundTruth dim] =

icl_loadDS(mode, func, ND, NG, noise, minPath)

The setup specifies the learning task with the parameter mode which
selects either regression or classification. The underlying function used
to generate the examples is given by the string func that selects
one of several predefined test functions (see Tab. 13) that differ in
their amount of non-linearity and changes of the monotonicity. If this
string starts with dataset, it is interpreted as a path to a file from
which the examples are loaded. Parameter ND specifies the number
of examples to generate for learning and parameter NG the number
of regularly sampled ground truth data per dimension for evalua-
tion. The parameter noise sets the standard deviation of normally
distributed noise on the training labels. Lastly, the parameter minPath
selects whether the examples are ordered randomly or in a sequen-
tial way, resembling a continuous movement within input space. If
the parameter minPath is true, the randomly generated examples are
ordered in such a way that, starting at the lowest value in each dimen-
sion, i. e. −10, the next value in the sequence is chosen from the re-
maining set of randomly drawn examples to have a minimal distance
in input space to the current value (see Fig. 43 for an example). This
simulates for instance the behavior of dynamic systems, i. e. moving
on a trajectory in input space.

The scenario generator function returns the examples in data as
a two dimensional matrix with one example in each row and the
ground-truth data for comparison in groundTruth the same way. De-
pending on the function selected for generation, the dimensionality
of the scenario differs which is returned in dim. All in all, the learning
scenario hence can be uniquely identified by the following footprint:

(mode, func, ND, NG, noise, minPath, rSeed)



A.3 main uoslib modules 111

Table 13: Provided scenarios of the UOSLib. The fine grained parametriza-
tion is due to the normalization of the target labels to [−1, 1].

func Description Dim.

linear straight line 1

f(x) = 0.1x, x ∼ U(−10, 10)

nonlin exponential function 1

f(x) = 2 |x| e−
|x|
2 − 1, x ∼ U(−10, 10)

nonlinhalf positive half-space of exponential function 1

f(x) = (x+ 10)e−
x+10
2 , x ∼ U(−10, 10)

poly polynomial 1

f(x) = 1
14(4− 0.2x+ 3 · 10

−2x2 − 1 · 10−3x3 + 2 · 10−4x4 − 4 · 10−5x5 − 2 · 10−6x6)
x ∼ U(−10, 10)

sine sine function 1

f(x) = sin(x), x ∼ U(−10, 10)

sineloc sine function with local data density 1

f(x) = sin(x), x ∼ N(π, 4)

linear2 linear plane 2

f(x) = 0.03x1 + 0.07x2, xi ∼ U(−10, 10)

twocircles minimum of distance to two corners 2

f(x) = 1
11.3

(
min((x1 + 10)2 + (x2 − 10)

2, (x1 − 10)2 + (x2 + 10)
2) − 11.39

)
xi ∼ U(−10, 10)

crossedridge crossed ridge function 2

f(x) = 1.6211 ·max(exp(−0.3x21), exp(−0.09x22), 1.25 · exp(−0.1(x21 + x
2
2))) − 1

xi ∼ U(−10, 10)

spiral spiral loop (typical classification task) 2

highdimlin linear hyperplane 20

f(x) = wTx, wi ∼ N(0, 1), xi ∼ U(−10, 10)

highdimnonlin squareroot hyperplane 20

f(x) = wT
√
x, wi ∼ N(0, 1), xi ∼ U(−10, 10)

shift 3d-order-polynomial changing sign after half of train-
ing data

1

ft(x) = wt · (−0.198+ 0.06x+ 0.003x2 − 0.0015x3)
wt = 1 if t < ND

2 ,wt = −1 if t > ND
2 , x ∼ U(−10, 10)

drift 7th-order-polynomial drifting after one third of train-
ing data

1

f(x) = wt(−0.094187+ 0.11262x− 0.00059436x2 − 0.00012187x3 − 7.9019 · 10−7x4

−1.385 · 10−5x5 + 7.86 · 10−7x6)(1−wt)(−0.5471− 0.069x+ 0.0037x2

+0.00067908x3 + 0.00010338x4 + 7.5788 · 10−6x5 − 6.0123 · 10−7x6)
wt = min(1, max(0, 3tND − 1)), x ∼ U(−10, 10)

dataset... If the string starts with dataset, it will be interpreted
as a relative path to a file. The file should contain arbi-
trary many columns of input dimensions and one last
column of the target label with space-separation.
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Figure 43: Example of a randomly generated set of 40 examples with its
according minimal path shown by the connections reflecting the
order of presentation.

a.3.2 Learning Algorithms

The main goal of the UOSLib is to easily implement and compare a
variety of new and existing state of the art learning algorithms for re-
gression as well as for classification. The learning algorithm receives
examples from the scenario generator and the parameter vector of the
model structure which then is updated (see Fig. 42). On the one hand,
the learning algorithms can be divided into the groups of first and
second order learning algorithms. On the other hand, they are distin-
guished regarding their applicability to regression and/or classifica-
tion. Currently the list of implemented learning algorithms contains
the following.

First order algorithms are:

• Perceptron: Classical on-line learning algorithm [95]
Footprint: (Perceptron)

• PA: Passive-aggressive algorithm in three variants [36]:

– PA: Parameter update fully aggressive
Footprint: (PA, variant=0)

– PA-I: Limited aggressiveness (linear slack variable)
Hyper-parameter: aggressiveness aggr

Footprint: (PA, variant=1, aggr)
– PA-II: Limited aggressiveness (quadratic slack variable)

Hyper-parameter: aggressiveness aggr

Footprint: (PA, variant=2, aggr)

• IRMA: Incremental Risk minimization algorithm in four vari-
ants [6, 12]:

– Fixed stiffness
Hyper-parameter: stiffness stiff

Footprint: (IRMA, variant=0, stiff)
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– Additive growing stiffness
Hyper-parameter: initial stiffness stiff, addend growth

Footprint: (IRMA, variant=1, stiff, growth)
– Multiplicative growing stiffness

Hyper-parameter: initial stiffness stiff, factor growth
Footprint: (IRMA, variant=2, stiff, growth)

– Sigmoidal growing stiffness
Hyper-parameter: initial stiffness stiff, growth constant
growth, maximum stiffness maxstiff

Footprint: (IRMA, variant=3, stiff, growth, maxstiff)

Second order algorithms are:

• CW: Confidence weighted learning [47]
Hyper-parameter: probability of correct classification probab

Footprint: (CW, probab)
• AROW: Adaptive regularization of weight vectors [38, 105]

Hyper-parameter: aggressiveness r

Footprint: (AROW, r)
• GH: Gaussian herding in four variants [39]:

Hyper-parameter: aggressiveness aggr

– Full matrix
Footprint: (GH, variant=0, aggr)

– Exact diagonal matrix
Footprint: (GH, variant=1, aggr)

– Drop off-diagonal elements of matrix
Footprint: (GH, variant=2, aggr)

– Project diagonalized inverse matrix
Footprint: (GH, variant=3, aggr)

• RLS: Recursive least squares [21]
Hyper-parameter: factor of initial covariance matrix Sinit, for-
getting factor forget
Footprint: (RLS, Sinit, forget)

• SIRMA: Second order incremental risk minimization algorithm
in two variants [4]:

– Linear growing stiffness
Hyper-parameter: initial stiffness stiff, addend growth

Footprint: (SIRMA, variant=1, stiff, growth)
– Sigmoidal growing stiffness

Hyper-parameter: initial stiffness stiff, growth constant
growth, maximum stiffness maxstiff

Footprint: (SIRMA, variant=2, stiff, growth, maxstiff)

Of these algorithms Perceptron, PA, AROW, and GH are applicable to
regression and classification, IRMA, RLS, and SIRMA are applicable
for regression, and CW is applicable for classification.
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As a common interface, two interface function are necessary for
every learning algorithm. The first provides algorithm specific initial-
izations, e. g. the covariance matrix of RLS, based on the algorithm
setup algSetup containing the above hyper-parameters of the foot-
prints. It therefor receives the structure ILS as it is generated by the
model structure setup and the input dimensionality. Any information
to be saved is changed within the returned ILS structure.

ILS = icl_initILS(ILS, dim, algSetup)

The second function is used to update the ILS structure, i. e. its pa-
rameter vector and if necessary further information, with one single
example incrementally. It receives again the ILS structure, as well as
the example (x, y), the label yp predicted beforehand, and the mode

reflecting whether the task is regression or classification.

ILS = icl_learn(ILS, x, y, yp, mode)

a.3.3 Model Structures

The model structure is used to keep the parameter vector and per-
form predictions. Therefore, it receives the examples and reports the
results to the performance measurement (see Fig. 42). It is determined
by the vector of basis functions φ : Rd → Rn. The UOSLib provides
three different model structures. First, an additive polynomial of the
form

f(x,ω) = ω0 +

d∑
k=1

No∑
m=1

ω(k,m) · (xk)m (123)

is given as an example for model structures with globally effective pa-
rameters by the function icl_genPoly. It produces an additive com-
bination of polynomials of order No in every component xn of the
input vector (see Fig. 3 for an example). This model structure has
the advantage of increasing only linearly in complexity with the sce-
nario dimensionality at the cost of highly interacting parameters. The
according function has the interface

ILS = icl_genPoly(order, dim)

receiving the polynomial order and the dimensionality. It returns a
structure, containing the vectors of basis functions φn,m(x) and the
parameter vector ω.

In contrast to that, two variants of a local model structure are im-
plemented as a grid-based lookup table (GLT), one with an equally
spaced grid (Fig. 44 left) and one with a spacing which can be set
arbitrarily (Fig. 44 right).

In this case, the linear combination

f(x) =

n∑
i=1

φi(x) ·ωi (124)
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Figure 44: Example of a grid-based lookup table with linear interpolation
for two dimensions. The grid-points are either equally spaced,
here with five points per dimension (left), or specified dimension-
wise here at {−10,−5,−2, 0, 2, 5, 10} for the first dimension and
{−10,−3, 0, 3, 10} for the second (right).

consists of local basis functions φi which are given by the multiplica-
tive combination

φi(x) =

d∏
j=1

φkj(i),j(xj) (125)

of their dimension-wise local functions. These are either triangular

φk,j(xj) = max
(
0, min

(
x− pk,j

pk+1,j − pk,j
,

pk,j − x

pk,j − pk−1,j

))
(126)

for linear interpolation or Gaussians

φk,j(xj) = exp
(

ln(0.5)(pk,j − xj)
2

σ2

)
(127)

with a width σ = 1
2d

∑d
i=1 pk+1,j − pk−1,j as the mean distance be-

tween all neighboring grid-points. The locations pk,j define the kth
grid-point in the jth input dimension.

On such a grid in input space, the output is thus defined by the
height of the model at the grid-points and either a linear or a Gaus-
sian interpolation in-between. Linear interpolation ensures total lo-
cality of the parameter influence, whereas Gaussian interpolation re-
sults in a smooth surface. The parameters of a GLT thus only have
local influence on the output and hence do not interact as much.
But with such a local structure, the curse of dimensionality leads to
an exponentially increasing number of parameters with increasing
dimensionality which makes it infeasible in higher dimensions. For
implementing this structure either icl_genGLT can be used with the
interface

ILS = icl_genGLT(num, dim, base)
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to get a regularly spaced grid in input space with the parameters num
for the number of grid positions in each of the dim dimensions and
base to choose between linear and Gaussian.

Alternatively, a more application specific setup of a GLT structure
is possible with the function icl_genGLTarb by defining an arbitrary
grid structure through

ILS = icl_genGLTarb(loc, dim, base)

where an array of locations loc is specified containing one location
array for each input dimension. For the example of Fig. 44 (right) this
array has the form {[−10,−5,−2, 0, 2, 5, 10] , [−10,−3, 0, 3, 10]}.

The used model structure is uniquely identified as well by:

(Poly, order) or (GLT, num, base) or (GLT, loc, base)

These model structures hence allow for an easy comparison of learn-
ing algorithms with globally or locally effective parameters. This dis-
tinction is especially significant for on-line learning as a single exam-
ple only presents local information for the parameter update.

a.3.4 Trust Estimation

Along with the normal on-line learning, the UOSLib allows for track-
ing the trustworthiness of the parameter vector and evaluating the
trustworthiness of each individual prediction as described in Sec-
tion 3.2, regardless of the model structure and learning algorithm
used. The trust estimation interacts with the model structure and the
learning algorithm (see Fig. 42) and updates its information by keep-
ing track of every update made by the learning algorithm. For that
purpose, the initialization function

ILS = icl_initCAROLA(ILS,trustSetup)

receives the structure ILS and setup information of the trust estima-
tion trustSetup. This defines either the parameters for a linear trust
estimation by (58), (61), and (63)

(Lin, Ilow, Ihigh, Clow, Chigh, Dlow, Dhigh)

with Ilow and Ihigh as the ignorance parameters, Clow and Chigh

as the conflict parameters, and Dlow and Dhigh as the adjustment
parameters of the direct estimate. Or it defines the parameters for a
hyperbolic trust estimation by (59), (62), and (65)

(Sig, etaI, etaC, etaA)

with etaI as the ignorance parameter, etaC as the conflict parameter,
and etaA as the adjustment parameter of the direct estimate.

The trustworthiness is then automatically tracked during learning
for supervision and trust estimation of each prediction.



B
E X T E N D E D I N V E S T I G AT I O N S

Some more specific investigations and detailed results are omitted
from the main part of this thesis to focus on the most important re-
sults. These specific investigations are presented here for complete-
ness.

b.1 expressiveness of the model structure

Designing a learning system poses several challenges. One is to de-
cide on the expressiveness of the model structure to use. With a
model structure that is not expressive enough, the examples cannot
be learned adequately but using a too expressive model structure
might result in slow convergence or bad generalization due to over-
fitting. To look at the behavior of the different on-line learning algo-
rithms in these cases, the same scenario is learned here with model
structures of increasing expressiveness.

For training, 300 random instances xt ∼ U(−10, 10) are drawn. For
each the target value is generated by the function

yt = (xt + 10) · exp(−
xt + 10

2
) + ξ

with normally distributed noise ξ ∼ N(0, 0.05) to form an example1.
Both variants, polynomial model structures2 and GLT3 model struc-
tures are used with one to sixteen parameters. The final cumulative
loss is taken after learning with IRMA4 using a stiffness σ = 0.1, PA5,
and RLS6 with an initial covariance matrix Σ0 = 1 · 103 and a forget-
ting factor of λ = 1.

The results of Fig. 45 show that with less than eight parameters
the expressiveness is not sufficient which results in a high cumula-
tive loss. As the basic PA tries to learn every example exactly, it has
difficulties with too low expressiveness and gets the highest cumu-
lative loss with the GLT model structure. RLS again has the problem
that a high cumulative loss might occur as happened in this case with
four or seven parameters of the GLT model structure. In this case RLS

tends to overfit the model structure with low expressiveness to the

1 UOSLib-scenario: mode = REG, func = nonlinhalf, ND = 300, NG = 100, noise = 0.05,
minPath = false, rSeed = 12345

2 UOSLib-model: Poly, order = [0;15]
3 UOSLib-model: GLT, num = [1;16], base = gauss
4 UOSLib-learn: IRMA, variant = 0, stiff = 0.2
5 UOSLib-learn: PA, variant = 0

6 UOSLib-learn: RLS, Sinit = 103, forget = 1

117
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Figure 45: Comparison of IRMA, PA, and RLS on the same scenario with
model structures of different expressiveness. High cumulative
losses are cut off for better visibility of the lower losses.

singular examples which causes false generalization. With more than
eight parameters a significantly lower loss is achieved with all learn-
ing algorithms. So the quality of learning is not hampered by a higher
expressiveness. But with the polynomial model structure PA and RLS

again receive high cumulative losses. On the contrary, IRMA is able to
learn both model structures nearly equally well and neither suffers
from too low nor from too high expressiveness.

b.2 growing stiffness

In the IRMA investigations of Section 2.4 the stiffness was chosen to
be constant throughout the sequence of examples. But if only some
examples are present, i. e. at initial learning, there is no old knowl-
edge and a low stiffness allows to learn quickly from the examples.
As soon as more examples have accumulated, a higher robustness
to noise and hence keeping the old knowledge is more appropriate.
Consequently, the stiffness should increase with the amount of exam-
ples presented. Therefore, a time dependent stiffness σt should be
monotonically increasing: σt 6 σt+1.

Three different approaches to a growing stiffness starting with an
initial stiffness σ0 are compared here. First, an additive growth

σt = σt−1 + τa (128)

increases the stiffness linearly by τa > 0with each presented example.
Second, a multiplicative growth

σt = σt−1 · τm (129)

increases the stiffness exponentially with a factor τm > 1 after each
example. Third, a sigmoidal growth function

σt = σ0 +
1

2

[
1+ cos

(
min(1,

t

τs
) · π+ π

)]
· (σ̂− σ0) (130)
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Figure 46: Comparison of different growth functions of the stiffness for the
first 1200 examples (left) and after a shift for the next 1200 exam-
ples (right) of the sequence. The lower plots show the growth of
stiffness along the sequence of examples (high stiffnesses are cut
off for better visibility). The upper plots show the accompanying
development of the cumulative loss.

increases the stiffness from σ0 up to a maximum value σ̂ in time τs.
To compare these growth functions of the stiffness, the shift investi-

gation of Section 2.4.6 with polynomial model structure is performed
again7, but now with noise ξ ∼ N(0, 0.05) and on a longer sequence
of nd = 2400. As a baseline, the fixed stiffness σ = 0.5 is chosen8

to balance between adaptability and robustness to noise. The addi-
tive growth9 starts with σ0 = 0.0 and τa = 0.01, the multiplicative
growth10 starts with σ0 = 0.01 and τm = 1.02, and the sigmoidal
growth11 starts with σ0 = 0.0 and τs = 200. For the maximum value,
a high value of σ̂ = 2.2 is compared with a low value σ̂ = 0.5 which
is equal to the fixed stiffness.

In the left plot of Fig. 46 the resulting cumulative losses and the
stiffnesses are shown for the first half of the sequence of examples, i. e.
the first static target function of the shift scenario. Basically, with all
approaches the input-output relation is learned well. In the beginning,
they perform comparably. But on the long run, the growing stiffness
helps to deal with the noisy examples and decreases the cumulative
loss in all cases, compared to the fixed stiffness (see also Table 14).

7 UOSLib-scenario: mode = REG, func = shift, ND = 2400, NG = 300, noise = 0.05,
minPath = false, rSeed = 123

8 UOSLib-learn: IRMA, variant = 0, stiff = 0.5
9 UOSLib-learn: IRMA, variant = 1, stiff = 0.0, growth = 0.01

10 UOSLib-learn: IRMA, variant = 2, stiff = 0.01, growth = 1.02

11 UOSLib-learn: IRMA, variant = 3, stiff = 0.0, growth = 200, maxstiff = {2.2, 0.5}
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Table 14: Cumulative loss for the first target function and after relearning
for different growth functions of the stiffness.

Growth function lc(1200) lc(2400)

Fixed 7.48 23.81

Additive 6.58 72.94

Multiplicative 6.54 437.50

Sigmoidal (high) 6.72 28.28

Sigmoidal (low) 7.21 23.54

For the first 1200 examples, the upper left graph shows a bigger slope
for the fixed stiffness than for all growing variants. The best perfor-
mance is achieved by a multiplicative growth with lc(1200) = 6.54
and nearly the same for an additive growth with lc(1200) = 6.58 as
they increase the robustness to noise the most. The two different max-
imal stiffnesses of the sigmoidal growth either just improve the initial
learning (low), yielding only a slight improvement, or additionally in-
crease robustness to noise (high) with results comparable to the ever
increasing growth functions.

But the multiplicative and additive growth lead to a stiffness al-
lowing for nearly no adaptation after some time, which is not suited
for non-stationary environments. Consequently, they are not able to
relearn when the target function shifts and the cumulative loss in-
creases drastically. The right plots of Fig. 46 show the second half
of the learning sequence, now with logarithmic scale due to highly
different results. Here, the low fixed stiffness again enables to adapt
quickly to the change and gets better results. The sigmoidal growth
allows for a continuous adaptation as well. With a high maximal stiff-
ness, the final performance after the shift occurred is slightly worse
than with the fixed stiffness (see also Table 14). But, with a low maxi-
mal stiffness it gets the best result at the end of the complete sequence
as well as an improvement for the first half of examples, but the im-
provement is only low.

So, the sigmoidal growth function combines the advantages. It in-
creases quickly to stabilize against noise after the initial learning
phase is done and its growth is bounded to enable a continuous adap-
tation throughout longer sequences of examples. Depending on the
maximal stiffness a trade-off between improved robustness to noise
and higher adaptivity can be achieved but always with the advantage
of an improved initial learning. Consequently, an increasing stiffness
is especially beneficial in presence of noise and if the initial learning
requires a faster adaptation, i. e. a lower stiffness, than it is necessary
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later on to adapt to changes. Yet, it is not easy to find an adequate
trade-off for a given problem a priori.

b.3 detailed results of trust estimation

In the main part of the trust estimation investigation in Section 3.4.2
the results were reduced to their characteristic properties for ease of
analysis. In the following, the complete resulting progress of the trust
weighted mean squared error (87) and the average trust (88) for the
different disturbance types are presented. The notation of all plots is
the same according to:
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Figure 47: Trust weighted mean squared error (top) and mean trust (bottom)
with linear trust estimation (left) and hyperbolic trust estimation
(right) in case of no disturbance.
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Figure 48: Trust weighted mean squared error (top) and mean trust (bottom)
with linear trust estimation (left) and hyperbolic trust estimation
(right) in case of input disturbance.
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Figure 49: Trust weighted mean squared error (top) and mean trust (bottom)
with linear trust estimation (left) and hyperbolic trust estimation
(right) in case of output disturbance.
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Figure 50: Trust weighted mean squared error (top) and mean trust (bottom)
with linear trust estimation (left) and hyperbolic trust estimation
(right) in case of unobserved variables.
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Figure 51: Trust weighted mean squared error (top) and mean trust (bottom)
with linear trust estimation (left) and hyperbolic trust estimation
(right) in case of inexact approximation.
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Figure 52: Trust weighted mean squared error (top) and mean trust (bottom)
with linear trust estimation (left) and hyperbolic trust estimation
(right) in case of all disturbances together.





C
G L O S S A RY

adaptation

part of the learning process, i. e. due to a single example

aleatoric uncertainty

uncertainty due to variability of the knowledge

basis function

part of the model structure, i. e. a fixed transformation from
input space to one feature

batch learning

learning based on an (finite) set of examples

classification

estimation of an input-output relation with discrete non-
ordinal output values

epistemic uncertainty

uncertainty due to missing knowledge

fatal forgetting

change of the input-output relation apart from a presented
example due to adaptation to that example

feature space

space in which the examples, transformed by the basis func-
tions, are represented linearly in the parameters

first order learning

direct update of the parameter vector without additional in-
formation

hyper-parameter

user defined parameter setting up an algorithm, i. e. a pa-
rameter that is not learned

hypothesis

one input-output relation learned from data

input / independent variable

input interface of the learning system

instance

concrete value of the inputs

label

concrete value of the output

learning

overall process of forming a hypothesis from data

lip model

model structure that is linear in the parameters
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126 glossary

loss

rating of an erroneous prediction

machine learning

construction and study of systems that can learn from data

model structure

fixed transformation from input to feature space

non-stationary

changing input-output relation throughout learning

on-line learning

learning based on a (infinite) sequence of examples

output / dependent variable

output interface of the learning system

overfitting

bad generalization due to a model describing only the ex-
amples instead of the underlying relation

parameter vector

hypothesis of a model structure

prediction

assigned label of the learning system for an instance

regression

estimation of an input-output relation with continuous ordi-
nal output values

reliability

ensuring that predictions conform with presented examples,
i. e. by conforming to recall and a compliant generalization

robustness

ensuring only slight changes of the output distribution for
a slightly altered input distribution

second order learning

adaptive update of the parameter vector based on condensed
information of past examples

training example

representative combination of an instance and a label

trust level

concrete value of a trust signal

trust signal

meta-information to a normal signal reflecting the trustwor-
thiness



B I B L I O G R A P H Y

[1] W. Brockmann, A. Buschermoehle, and J. Huelsmann. A
generic concept to increase the robustness of embedded sys-
tems by trust management. In Proc. Int. Conf on Systems Man
and Cybernetics, pages 2037–2044. IEEE Press, 2010.

[2] W. Brockmann, A. Buschermoehle, J. Huelsmann, and N. Rose-
mann. Trust Management – Handling Uncertainties in Embedded
Systems, pages 589–591. Autonomic Systems. Springer, 2011.

[3] W. Brockmann, A. Buschermoehle, and J. Schoenke. COBRA
- a generic architecture for robust treatment of uncertain infor-
mation. In INFORMATIK 2013: Informatik angepasst an Mensch,
Organisation und Umwelt, pages 2727–2741. GI, Bonner Köllen
Verlag, 2013.

[4] A. Buschermoehle and W. Brockmann. Stable on-line learning
with optimized local learning, but minimal change of the global
output. In Proc. Int. Conf. on Machine Learning and Applications,
pages 21–27. IEEE Press, 2013.

[5] A. Buschermoehle and W. Brockmann. On-line learning with
minimized change of the global mapping – optimized local
learning by incremental risk minimization. Evolving Systems,
2014. (in press).

[6] A. Buschermoehle and W. Brockmann. Reliable localized on-
line learning in non-stationary environments. In Proc. Int. Conf.
on Evolving and Adaptive Intelligent Systems, pages 1–7. IEEE
Press, 2014.

[7] A. Buschermoehle, J. Huelsmann, and W. Brockmann. A struc-
tured view on sources of uncertainty in supervised learning. In
Proc. Int. Conf. on Scalable Uncertainty Management, volume 7520,
pages 566–573. Springer, 2012.

[8] A. Buschermoehle, J. Huelsmann, and W. Brockmann. UOSLib
– a library for analysis of online-learning algorithms. In Proc.
Workshop on Computational Intelligence, pages 355–369. KIT Sci-
entific Publishing, 2013.

[9] A. Buschermoehle, N. Rosemann, and W. Brockmann. Stable
classification in enviroments with varying degrees of uncer-
tainty. In Proc. Int. Conf on Computational Intelligence for Mod-
elling, Control and Automation, pages 447–452. IEEE press, 2008.

127



128 bibliography

[10] A. Buschermoehle, J. Schoenke, and W. Brockmann. Trusted
learner: An improved algorithm for trusted incremental func-
tion approximation. In Proc. Int. Symp. on Computational Intelli-
gence in Dynamic and Uncertain Environments, pages 16–24. IEEE
Press, 2011.

[11] A. Buschermoehle, J. Schoenke, and W. Brockmann. Uncer-
tainty and trust estimation in incrementally learning function
approximation. In Proc. Int. Conf on Information Processing and
Management of Uncertainty, pages 32–41. Springer, 2012.

[12] A. Buschermoehle, J. Schoenke, N. Rosemann, and W. Brock-
mann. The incremental risk functional: Basics of a novel incre-
mental learning approach. In Proc. Int. Conf. on Systems Man
and Cybernetics, pages 1500–1505. IEEE Press, 2013.

[13] J. Huelsmann, A. Buschermoehle, and W. Brockmann. Incorpo-
rating dynamic uncertainties into a fuzzy classifier. In Proc. Int.
Conf. of the European Society for Fuzzy Logic and Technology, pages
388–395. EUSFLAT, Atlantis Press, 2011.

[14] N. Rosemann, A. Buschermoehle, and W. Brockmann. Beschleu-
nigung der Selbstoptimierung durch Selbstsimulation. In Proc.
Workshop on Computational Intelligence, pages 114–128. KIT Sci-
entific Publishing, 2009.

[15] H. K. Alfares and M. Nazeeruddin. Electric load forecasting:
Literature survey and classification of methods. Int. J. of Systems
Science, 33(1):23–34, 2002.

[16] K. Bache and M. Lichman. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2013.

[17] A. R. Barron. Universal approximation bounds for superpo-
sitions of a sigmoidal function. Trans. on Information Theory,
39(3):930–945, 1993.

[18] R. Battiti. First- and second-order methods for learning: Be-
tween steepest descent and Newton’s method. Neural Computa-
tion, 4(2):141–166, 1992.

[19] Y. Ben-Haim. Info-Gap Decision Theory: Decisions Under Severe
Uncertainty (2nd edition). Academic Press, Oxford, UK, 2006.

[20] H. Block. The perceptron: A model for brain functioning. Re-
views of Modern Physics, 34(1):123–135, 1962.

[21] M. Blum. Fixed memory least squares filters using recursion
methods. IRE Trans. on Information Theory, 3(3):178–182, 1957.

http://archive.ics.uci.edu/ml


bibliography 129

[22] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algo-
rithm for optimal margin classifiers. In Proc. Workshop on Com-
putational Learning Theory, pages 144–152. ACM, 1992.
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