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Introduction

In this thesis we will present parallel algorithms for rational cones and affine
monoids which pursue two main computational goals:

e finding the Hilbert basis, a minimal generating system of the monoid of
lattice points of a cone, and
e counting elements degree-wise in a generating function, the Hilbert series.

The software Normaliz [7] implements these algorithms. The first version of
Normaliz was developed by Winfried Bruns and Robert Koch in 1997/98. In 2008
it was rewritten in C++ by Bogdan Ichim for version 2.0, and since version 2.1
it also contains the computation of Hilbert basis via a dual approach based on
Pottier’s algorithm [32]. Since then several improvements have been integrated
into Normaliz, including partial triangulations, the Hilbert series computation for
arbitrary Z-gradings, and various performance improvements.

Hilbert bases and Hilbert series have found applications in various areas of math-
ematics, like algebraic geometry, commutative algebra and combinatorial optimiza-
tion. We will give examples in the course of the thesis. There are also some unsus-
pected applications. For instance, the software package Regina [12, 13, 14] uses
Normaliz. Regina is for computational 3-manifold topology. Normaliz is even used
by theoretical physicists [26].

The goal of this dissertation is to document the improvement of existing algo-
rithms, the development of new and faster algorithms, and also the use of paral-
lelization for further speed up.

Parallel algorithms already play an important role in computing, and this trend
will increase further. In the 1990s advantages in computing performance were driven
by raising clock speed. But this strategy also increases the power consumption and
with it the heat generation, which in turn limits the performance gain. Therefore,
the development shifted to put multiple processing cores into a single chip and to
use multiple chips in a system. Nowadays basically all computers, from smartphones
over standard laptops and PCs to large servers, support the execution of multiple
threads at the same time. To profit from this development, it is vital to implement
efficient parallel algorithms.

Therefore one main theme is the parallelization of all relevant algorithms. In
some cases this was easy to achieve, in others it forced a restructuring of the algo-
rithms or the development of completely new ideas. Anyway, careful thoughts on
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the algorithm and the implementation are needed to achieve a good parallel perfor-
mance. We use the OpenMP programming interface [31] for the implementation of
the parallel algorithms in C+4+-.

Besides the time requirements, another critical point is the memory usage. We
have designed the software in such a way that intermediate data should not allocate a
too large part of the memory. All examples that are mentioned in this thesis require
less than 2 GB of RAM. Of course, the desired output can be almost arbitrarily
large, and in this case also more memory may be needed.

Consequently we are now able to compute significantly larger examples. One
might ask: ”Is it really useful to compute even bigger examples?“ We think it
certainly is. Sometimes it is possible to handle a mathematical problem for all but
some special cases, or it is shown that a problem can be reduced to few critical
cases. Then it is extremely meaningful to compute these cases explicitly. But
maybe even more importantly, examples are a basic tool for understanding the
structure of a problem and help to derive new conjectures and results. In this
way the possibility to compute examples faster and an increased range of examples
support mathematicians in their research.

The geometrical and algebraic objects of this thesis are defined in Chapter 1.
There we also introduce additional notations and conventions.

In Chapter 2 we describe the fundamental tools, first of all an algorithm for
dualizing the cone, i.e. computing the support hyperplanes from the extreme rays
and vice versa. Then we discuss the computation of a triangulation of the cone which
will be used in all following algorithms. A breakthrough for complicated examples
was the construction of triangulations, and also support hyperplanes, via pyramids,
see Section 2.4. The pyramid decomposition not only enables us to compute such
examples, but also makes high levels of parallelization possible. The last section
addresses how to create a disjoint decomposition of the cone out of the triangulation.

In the next two chapters these algorithms are utilized. The Hilbert basis com-
putation is the topic of Chapter 3. It is done in two steps: first a generating set
is created, then it is reduced to the Hilbert Basis. We describe the existing algo-
rithm and discuss its parallelization. There the triangulation is used to reduce the
problem to the simplicial case. Thus, we profit here already from the advances in
computing the triangulation. For some examples we can get a formidable improve-
ment from the use of a partial triangulation. As the name suggests, the partial
triangulation only covers parts of the cone and leaves out parts which do not con-
tribute new candidates for the Hilbert basis. Afterwards we particularize the use of
the disjoint decomposition in this case, especially in the interaction with the partial
triangulation.

Our second main goal, the computation of Hilbert series, is addressed in Chapter
4. Again the disjoint decomposition of the cone that we gain from the triangulation
is used. We discuss the semi-open simplicial case, which comes up in the disjoint de-
composition of a non-simplicial cone, and the fascinating connection between Hilbert
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series and Hilbert quasipolynomials. The chapter ends with the special case of com-
puting the leading coefficient of the Hilbert quasipolynomial, which is related to the
volume of a polytope in the cross-section of the cone.

In Chapter 5 we give more background on three examples, together with results
of our computations and some data on computation times. The chapter closes with
Section 5.4, where we compare timings of Normaliz version 2.2 and the current
development version, and also serial and parallel execution.

Finally we discuss bounds for the various computed values in Chapter 6. They
give an a priori estimate on the necessary precision of the arithmetic. In this way we
can ensure that a computation is doable on the computer with machine integers of a
fixed size. The machine integers give a significant performance advantage over types
that offer arbitrary precision by composing a flexible number of machine integers.
While these arbitrary precision types are great when they are really needed, in
calculations with them we observed a speed penalty factor of 10 and more for small
integers that would also fit in the fixed size of a machine integer. Therefore, it is very
useful to have these bounds and decide whether it is safe to use machine integers or
not.

In this thesis we will give proofs that are strongly connected to the algorithms,
since they will lay the foundation for them, even if there might be mathematically
more elegant proofs.

Before we start, a final note on the illustrating examples in the course of the
thesis. A general problem with geometric objects is that our imagination is limited to
three dimensions. This may lead us to the false impression that some computations
are easy. For instance, a lot depends on the face structure of the cone and this is
quite easy for 3-dimensional cones, since already the facets are always simplicial. But
do not underestimate the complexity in higher dimensions! Consider the examples
and illustrations from that point of view. Sometimes they seem trivial or do not
make sense since it could be done in an easier way. Rather see them as projections
of higher dimensional cases to a printable dimension.



CHAPTER 1
Preliminaries

This chapter introduces the basic objects, notations and conventions that will
be used in this thesis. We will not prove any of the facts in this chapter, a reference
for this is [4].

By Z, @ and R we denote the sets of the integer, rational and real numbers,
respectively. The nonnegative parts of these sets are Z,, Q. and R,.

1.1. Rational cones

The central geometric objects in this thesis are rational cones. For a clearer
understanding we introduce in this section the notation and recall some facts that
are used later on.

Definition 1.1. A (rational) cone C in R is the set of all R -combinations of
finitely many elements z1, ..., z, € Z%

C =cone(xy,...,x,) =Ryxy + -+ Rz, = {ayzy + -+ apzy, 1 a; € Ry}

The dimension of a cone C is the dimension of the linear subspace created by C
and is denoted by dim C. We call C pointed if x,—z € C implies x = 0. A cone
that is generated by linear independent vectors is called simplicial.

A linear form X : R? — R specifies a (linear) hyperplane
Hy = {z € R*: \(z) = 0}.
Additionally we define the closed halfspaces
Hi = {z € R*: \(=z) > 0}, Hy ={z € R*: \(x) <0}
and the open halfspaces
H; = Hy \ Hy, HY = H \ H,.

The only hyperplanes of interest to us are rational hyperplanes, their representing
linear forms can be chosen to have integral coprime coefficients, what we will always
do. This choice is unique up to sign. If a hyperplane occurs in the context of a cone
C, we will select A such that C C H;".

With this choice of the linear form A for a hyperplane H we say the height of
r € R? over H is |\(z)].
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Equivalently to the definition, a rational cone can be described as the intersection
of finitely many closed rational halfspaces
C=HIn---NH.

Hyperplanes H that satisfy C C H™ are called support hyperplanes and in this
case the intersection C' N H a face of C. Faces of cones are again cones. The
faces of dimension one less than the dimension of C' are called facets and faces
of dimension 1 extreme rays. Each extreme ray has a unique integral vector with
coprime coefficients. These vectors are the extreme integral generators of the cone.

In the following by support hyperplanes we only mean those that intersect C' in
a facet and denote the set of these support hyperplanes by H(C'). They are the only
relevant hyperplanes for the description of C' and in the algorithms. For later use
we also introduce

H(C,zx)={H € H(C) : z€ H'} forxe{+, — =<, >}

with H= = H. We will call >, H= and H< the positive, neutral and negative
hyperplanes, respectively.

A subset D of a cone C' C R? is wisible from a point z € R? if
pc |J E
HeN< (Cz)

This definition ensures that the line segment [y, x] intersects C' exactly in y for every
y € D and hence there is a “free view” from x to y.

To study a rational polytope generated by zq,...,x, € Q", i.e.
P =conv(xy,...,xn) = {a1xy + -+ aptn: a; €RL a1+ -+ a, =1} CRY,
we will often consider the cone over the polytope. This is the cone
C = cone((z1,1), ..., (z,,1)) C R
The intersection of C' with the affine hyperplane A; = {(y1,...,yas1) € R :
Yar1 = 1} is again P (embedded in R4).

1.2. Affine monoids and normalization

As discrete counterparts of cones we will consider monoids.

Definition 1.2. An affine monoid M is a submonoid of the free abelian group Z?
which is generated by finitely many elements 1, ..., z, € Z%

M=Z,xy+- - +Z,x, ={arxy + -+ apv,:a; € Z,}.
We call M positive if z,—x € M implies x = 0.
Evidently, we can generate a rational cone from an affine monoid M by C =

R, M. For the converse direction we use lattices, that are subgroups of Z.

Theorem 1.3 Gordon’s lemma. Let C C R? be a rational cone and L C Z% a
lattice. Then C'N L is an affine monoid.
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Affine monoids that arise in this way have a special property: they are integrally
closed with respect to L.

Definition 1.4. Let M be an affine monoid and L a lattice. The affine monoid

M\L:{xGL:meMforsomemEZ,m>O}

is the integral closure of M in L and if M = M\L, i.e. M coincides with its integral
closure, we call M integrally closed in L. In the case of L = ZM, the lattice
generated by M, the integral closure is called normalization and integrally closed
monoids normal. For L = Z we may omit “in Z”.

Computing the integral closure is one of the main topics in this thesis, another is
computing the number of elements in certain parts of the monoid. For this purpose
we define a Z-grading on the lattice L to be a surjective linear form deg : L +— Z
with deg(z) # 0 for all z € L, x # 0. This ensures that there is an element z in
L with deg(z) = 1. In connection with a positive monoid M C L we will only use
gradings that are positive on M, i.e. deg(M) C Z,. Such a grading exists if and
only if M is positive.

The connection to commutative ring theory is given by the following algebraic
object:

Definition 1.5. Let M be a commutative monoid. Its monoid algebra over the
commutative ring R is the free R-module with basis X™, m € M,

k
R[M] = {an’"i ‘1 € Rym; € M} ,

i=1
with the multiplication X™ - X™ = Xm+m'

In this perspective we will use algebra terminology of R[M] also for the monoid
M, for example in considering M as a N-module for a submonoid N C M. The
monoid of lattice points of a cone can be interpreted as the integral closure of a
monoid, or as the set of exponents of the monomials in the integral closure of a
monoid algebra.

1.3. Linear transformation

The input for the algorithms will be a cone C' C R? and a lattice L C Z%. The
main object of interest will be the affine monoid M = C'N L. First of all we may
assume that C' and L generate the same linear space, otherwise we restrict both to
the intersection vector space span(C') Nspan(L). Now a very useful preliminary step
is to apply a linear transformation ¢ : R? — R", such that

(i) r =dim C and ¢ is a bijection between C' and C" = ¢(C);
(i) (L) =127".
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Such a transformation can be found with the help of the elementary divisor algo-
rithm, see [10].

In the following, we will always assume that C' has maximal dimension and the
lattice is L = Z?. This is not relevant for the theory, but simplifies notations, the
algorithms and not least also the computations.



CHAPTER 2
Building the cone

This chapter describes the fundamental algorithms that build the cone genera-
tor by generator. The first two sections describe the computation of the support
hyperplanes. In this way a generator based description of the cone is turned into
a description by elements in the dual space. The same algorithm can be used in
the other direction by interpreting the linear forms of the support hyperplanes as
generators in the dual space. Therefore this process is also called dualizing.

In Section 2.3 we decompose the cone into simplicial cones via a triangulation.
For larger examples we introduce in Section 2.4 the decomposition into pyramids.
The last section presents how to get a disjoint union out of the triangulation. These
methods lay the foundation for the algorithms in the following chapters.

We will always first apply a linear transformation as described in Section 1.3 and
therefore assume the cone is full dimensional. For the algorithms in this chapter the
rationality of the cone is in principle not relevant. The only exceptions are the
modifications that allow us to use integer arithmetic.

2.1. Support hyperplanes of a simplicial cone

The computation of the support hyperplanes for a simplicial cone is easy, we just
have to invert the matrix of generators. Let the simplicial cone C' C R? be generated
by linearly independent vectors z1,...,x4s € Z* and let G be the matrix with rows
T1,...,24. Then the columns of G = (I;;) give linear forms \;(vy,...,vy) =
li jui+- - -+14 ;04 which evaluate to 1 for the z; and to 0 for the d—1 other generators.
Therefore they exactly describe the support hyperplanes H(C). The entires [; ; of
G~ ! are in Q. After multiplying by a common denominator, e.g. det(G), we get
coefficients in Z.

The computations implemented in Normaliz avoid calculations with fractions.
Extending fractions, checking for greatest common divisors, and similar operations
are costly. For that reason we stay in Z and use the information on the problem
that we want to solve in order to find a suitable common denominator. This has a
strong impact on the computation speed. Usually we can manage to multiply only
in one step of the computation by such a suitable factor and may divide at the very
end. We will demonstrate it in the case of inverting an integer matrix.

Suppose we want to invert the matrix G. An upper triangular matrix 7 with
positive diagonal elements and the accompanying matrix X such that T'= X G can

12
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be computed from G and the d-dimensional identity matrix Fy by using elementary
row operations over Z which do not change the absolute value of the determinant:

(i) exchange two rows,
(il) multiply a row by —1, and
(iii) add an integral multiple of a row to another row.

Starting with (p, q) = (1, 1) we use the following strategy to produce a triangular
matrix below and left from that position. If for p < k < n all entires Gy, , are zero,
increase ¢ by one and repeat (this cannot happen when G has full rank). Otherwise,
choose k such that G, has the smallest absolute value but is not zero, and exchange
rows p and k. For ¢ from p to n subtract a;-times row p from row i, where a; is the
next integer to G;,/Gp, which is smaller in absolute value. This ensures that for
p <1 < nall G;, are in absolute value smaller than G, ,. As long one of the G;,
is non-zero repeat the determination of k and the row subtractions. When we have
obtained zeros below Gy 4, increase p and ¢ by one and start the complete process
again until the matrix is in an upper triangular form. Finally, we can multiply rows
by —1 to get nonnegative diagonal entries.

Let (t1,...,tq) be the diagonal of T and § = ¢;...t4. In the classical Gaussian
elimination we now would have to divide by t;. To stay in Z we multiply 7" and X
with § and start to clean out the elements above the diagonal in the following way.
For row i from d to 1 we divide row i by ¢;, now the entry (i,4) is 6 and all entires
above are divisible by d, so we can add an integral multiple of row i to the rows
above to create zeros there. In this way we get the matrices 7" = § - E4 and X’ such
that 77 = X'G or phrased differently X' = § - G~

Example 2.1. For the simplicial cone with generators z; = (4,1,5), 5 = (6, 2, 3),
x3 = (2,1, 3) we compute the support hyperplanes.

|
ot
|

—_
I

4 1 5, 1 0 0
6 2 3, 0 1 O
2 1 3] 0 0 1
2 1 3] 0 0 1
T'=1011 X=|-1 0 2
2 1 3] 0 0 1 005’ 1 -1 1
0 -1 1 0 -2
0 0 1 1 -1
2 1 0 0 1
0 1 1 0 2
0 0 1 -1 1

Now we multiply by 6 = 10 and continue.
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20 10 30 0 0 10
0 10 10| —-10 0 20
0 0 50| 10 =10 10

20 10 0] -6 6 4
0 10 0] -12 2 18

3 2 -7
0 010 2 -2 2 , o[
20 0 0] 6 4 -14 X =10-G = ;2 _22 128

0 10 0] -12 2 18
0 0 10 2 =2 2
10 0 0 3 2 =7
0 10 0] -12 2 18
0 0 10 2 =2 2

The support hyperplanes are given by (3, —12,2), (1,1,—1) and (—7,18,2) € (R3)*.

2.2. Fourier-Motzkin elimination

Now we come to non-simplicial cones. Here there are different methods to com-
pute the support hyperplanes. Our approach bases on the Fourier-Motzkin elimi-
nation, see for example [4, pp. 11,12].

Theorem 2.2. Let C' = cone(zy,...,x,) and C' = cone(xy, ..., x,_1). Furthermore
let M\i,...,\s be linear forms that cut out C', i.e. C' = H;\rl N---N H;\rs With
P ={X\:N(z,) >0}, Z ={\ : Ni(zy) =0}, N ={\ : Ni(z,,) <0} the linear
forms in

PuZzZu {ui,j = )\z(xn)A] - )\](:En))\z : )\z € P, )‘j S N}
cut out C.

Obviously P U Z is exactly the set of old hyperplanes that remain valid for the
new cone. The theorem ensures that together with the p;; they cut out the new
cone C, but it does not have to be the minimal set of support hyperplanes H(C).
In the algorithm we want to maintain only this minimal set, so now assume that we
start with such a set H(C”) for C" and want to find H(C).

For that purpose let us analyze which generators lie in a hyperplane p; ;. The
hyperplane is constructed in such a way that y; ;(z,) =0, and for k =1,...,n —1
is p; j(xr) = 0 if and only if A\;(zx) = 0 and Aj(x;) = 0. In other words, the face of
C' defined by p; ; is generated by z, and {z) : z, € H), N Hy,k=1,....,n— 1}.
This face is a facet of C'if and only if C'N Hy, N H,, is a subfacet, i.e. has dimension
d — 2. A necessary condition for this is that there are at least d — 2 generators in
H,, N Hy,. If one of the facets contains exactly d — 1 generators this condition is
also sufficient. So to get only the relevant support hyperplanes we need to find the
subfacets which belong to a positive and to a negative hyperplane. The area of C
where positive and negative hyperplanes intersect can geometrically be interpreted
as the boundary of the part of C' that is visible from x,,.
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F1GURE 1. One step in the Fourier-Motzkin elimination in the cross
section of a 3-dimensional cone.

Example 2.3. In Figure 1 a Fourier-Motzkin step in the cross section of a 3-
dimensional cone is visualized. The gray shaded area is the previous cone C’ and
now x, is added as cone generator. The positive facets from H~(C’, x,) are green,
the neutral facets from H=(C’, z,,) are blue and the negative facets from H<(C’, x,,)
are red. In this case there is only one pair of negative and positive facets which
intersect and give rise to a new facet hyperplane.

Here we of course have a very simple example, but in this dimension it will not
get much more complicated. In 3-dimensional cones two facets intersect either in
{0} or in a subfacet, since subfacets are already of dimension 1. And there are at
most two pairs of negative and positive hyperplanes where the intersection defines
a subfacet. But in higher dimensions this changes dramatically.

The function FINDNEWFACETS in Algorithm 1 computes one Fourier-Motzkin
step. The negative and positive hyperplanes are paired and it is checked whether
their intersections are subfacets. This is determined by INTERSECTINSUBFACET
where two different criteria are used. For a large number of hyperplanes it is done
by a rank computation for the matrix whose rows are the generators of C’ in the
intersection. If the number of hyperplanes is small, it is faster to see if there is a
third hyperplane 7 which contains the intersection of A and v. This is the case if
and only if the intersection has a dimension lower than d — 2.

In Normaliz simplicial facets are handled separately. This was especially impor-
tant in earlier versions, where a shelling was used to compute the Hilbert series. In
this case most of the facets are simplicial, see [9].

As recognizable from the algorithm, the information which generators lie in a hy-
perplane is used multiple times. This can be computed by taking the scalar product
of the generator with the hyperplane linear form. For an efficient implementation
it is important to keep this information and not recompute it on every use. In Nor-
maliz every support hyperplane A is accompanied with the bitvector of n bits whose
entry on position 7 is 1 exactly if A(z;) = 0.
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Algorithm 1 Support hyperplane computation

Require: H(C') for a cone ¢’ = cone(zy,...,7,—1) C R x, € RY X =
{l‘l, ey IL‘n_l}
Return: H(C) for the cone C' = cone(xy,...,z,)
1: function FINDNEWFACETS(H(C'), X, z)
2 H(C) «— H>(C',x) UH=(C", x)
3 for H, € H<(C',z) do
4 for Hy € H~(C",z) do
5: if INTERSECTINSUBFACET (A, v, X, H(C")) then
6 p <— MAKECOPRIME(A(z)v — v(z))\)
7 H(C) «— H(C)U{H,}
8 return H(C)

Require: linear forms \, v € (R?)*, X, H(C") as above
Return: true if dim(C'N Hy N H,) = d — 2, false otherwise
9: function INTERSECTINSUBFACET(\, v, X, H(C"))

10: I+~ XNHNH, > generators in Hy N H,
11: if |I| < d —2 then
12: return false

13: if  XNH\|=d—1or |[XNH,|=d—1then > one facet is simplicial
14: return true
15 if 3-|H(C")| > d*-|I] then

16: return RANK(I) =d — 2

17: else

18: for H, € H(C")\ {H\,H,} do
19: if I C H, then

20: return false

21: return true

We will see in the next section that this support hyperplane algorithm works
very well together with our triangulation algorithm.

2.3. Triangulation

Many problems are easier to solve in the simplicial case, or it is not even clear how
to solve them directly for non-simplicial cones. The idea is to split a non-simplicial
cone into many smaller simplicial cones, solve the problem for every simplicial cone
and put the results together to a result for the complete cone. We will now make
this idea more precise.

Definition 2.4. Let C be a rational cone in R?%. A subdivision T of C' is a finite set
of cones in R? such that

(i) o' €T for all faces o’ of 0 € T,
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(ii) o1 N oy is a face of o1 and oy for all 01,05 € T, and
(iii) ¢ = U,y 0.

A triangulation is a subdivision where all cones are simplicial.

The lezicographical (or placing) triangulation A(zq,...,x,) of cone(xy,...,x,)
is build recursively by the following rules:

(i) The zero cone has the trivial triangulation A() consisting of the zero cone
itself.

(ii) When A(zy,...,2;_1) is the lexicographical triangulation of the cone C' =
cone(xy, ..., x;_1) then A(xq,...,x;) is defined by

A(zy,...,x;-1) U{cone(o,z;) : 0 € A(xy,...,x;-1), o is visible from z;}.

We will now present an algorithm to compute this lexicographical triangulation
together with the support hyperplanes as described in Section 2.2. In computations
subdivisions are represented by a list of the maximal cones. They contain all the
relevant information as you get the complete subdivision set by adding all faces of
the maximal cones. These maximal cones will always have the same dimension as
the cone C.

Our algorithm to compute a triangulation will start with d linearly independent
generators and then follow the definition of the lexicographical triangulation. For a
simpler description of the algorithm we will always assume that the first d generators
x1,...,xq are linearly independent. If this is not the case we will take the lexico-
graphical first set of d linearly independent vectors to the front. This reordering will
be hidden here to keep the presentation clear.

So we start with the simplicial cone Cy = cone(zy, ..., z4). Then we add one gen-
erator after another and for each C; = cone(xy,...,z;) we extend the triangulation
to I'; and compute the support hyperplanes.

To extend I';_; to the new triangulation I'; we use the restriction of I';_; to the
part of C;_; that is visible from x;. We get it by going over all visible support
hyperplanes of C;. If the hyperplane contains only d — 1 generators of C; this
hyperplane defines a simplicial facet and we add the cone generated by this facet
and x; to the triangulation. If not we select those o € I';_; that have d—1 generators
in the hyperplane and add the cones over this facets to the triangulation.

Example 2.5. In Figure 2 the process of extending the triangulation of a 4-dimen-
sional cone is visualized. Imagine that x1, x3, x4, g lie in one plane and only x5, and
x5 are elevated in such a way that xo, x3, x4, 5 lie in another plane. Then the only
facets of C' = cone(xy,...,x5) which are visible from x4 are Fy = cone(zy, 2, T3)
and Fy = (x93, x3, 74, x5). So far the lexicographical triangulation is

I'" = {0, = cone(xy, x9, T3, 24), 09 = cone(xy, To, T4, Ts5)}.

The extension procedure forms directly o3 = cone(F}, zg) from the simplicial facet
F} and adds it to the triangulation. But for F, a triangulation of the facet has to be
found first by matching F» with the existing lexicographical triangulation. The result
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of the matchings are the two additional simplicial cones o4 = cone(Fy N oy, x6) =
cone(xs, r3, Ty, Tg) and o5 = cone(Fy N oy, xg) = cone(xs, T4, Ty, Tg).

X5 Xy

F1GURE 2. Extension of the triangulation in the cross-section of a
4-dimensional cone.

Algorithm 2 Compute a triangulation

Require: {zy,...,7,} C Z% we assume that xy,..., 14 are linearly independent
Return: the support hyperplanes H and the lexicographical triangulation I'

1: function BUILDCONE({x1, ..., 2z, })

2 H «+ invert (z1,...,xq) over Z

3 I' < {cone(zy,...,24)}

4: for i< d+1tondo

5 I' + EXTENDTRIANGULATION(T, {x1, ..., 2,1}, H, ;)

6 H < FINDNEWFACETS(H, {z1,...,2i-1}, ;) > see Alg. 1
7

return H, I’

Require: a cone generated by X with support hyperplanes H and triangulation I"
Return: triangulation of cone(X, )

8: function EXTENDTRIANGULATION(I', H, X, )

9: for Hy, € H do

10: if A\(z) <0 then > visibility check
11: F+—{yeX : ANy) =0}

12: if |F| =d —1 then > simplicial case
13: I' <~ I' U {cone(F, z)}

14: else

15: for o €I' do

16: if oNF|=d—1 then

17: ' <~ T'U{cone(c N F,z)}

18: return [
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Algorithm 2 describes this procedure in the way it was used in Normaliz version
2.2. The most time-consuming part of this algorithm is the matching of the non-
simplicial facets with the triangulation. Here we added an improvement to exclude
parts of the triangulation that cannot be relevant for a given facet.

For this purpose we divide the triangulation into sections I'() = I'; \ I';_1, so
every section I'(7) contains the simplicial cones which were added in the EXTEND-
TRIANGULATION phase of generator z;. Now we examine which support hyperplanes
of Cy can contain a facet of ¢ € I'(k). The facet of o which does not include zj
cannot be on the boundary. (Except when o is the start simplicial cone, what we
will discuss later.) Every other facet F' has zy as a generator, and there are two
possibilities for the support hyperplane H containing F':

(i) H is a new hyperplane of Cy, i.e. H € H(Cy) \ H(Cr_1), or
(ii) H was a neutral hyperplane in step k, i.e. H € H=(Cyx_1, xx)

In both cases x; and at least d — 2 generators out of xy,...,x;_1 have to lie in H.

Every hyperplane H' which is created in a later step i of the algorithm cannot
contain a (d — 1)-dimensional facet of o, since the intersection H'NC;_4 is a (d — 2)-
dimensional subfacet.

Now let H € H<(C;_1) be a negative hyperplane in the triangulation extension
step 4, and let x;,,...,x;,, be the generators in H. Then the loop on line 15 in
Algorithm 2 only needs to run over the simplicial cones in I'(j4_1),...,T'(jm)-

For the start simplicial cone o, the argumentation does not hold completely.
Every facet of o, is on the boundary of Cj;. To include o4 as matching partner of a
hyperplane containing x1, ..., x4 1, we define that the start simplicial cone belongs
to ['(d) and to I'(d — 1).

2.4. Pyramid decomposition

The presented algorithms for the computation of support hyperplanes and the
lexicographical triangulating work well for examples up to a certain complexity.
With the continuous improvements of the algorithms and also of the hardware com-
puting power, it was possible to attack increasingly large examples. The complexity
of a step in those algorithms depends in a non-linear way on the size of the data.
For the Fourier-Motzkin elimination it is basically given by the number of negative
hyperplanes times the number of positive hyperplanes. An extension step of the
triangulation depends on the number of negative (non-simplicial) hyperplanes times
the size of the triangulation.

We have to match a negative hyperplane with positive hyperplanes or simplicial
cones in the triangulation. With growing numbers of matching partners, it became
more and more important to take a preselection of the partners. One attempt in this
direction is the sectioning of the triangulation as described in the previous section.
A more consequent approach to “localize” data are divide and conquer algorithms.
Here a big problem is divided into multiple smaller problems of the same kind which
are easier to solve. A classical divide and conquer approach for cones is not easy
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to implement because dividing a rational cone into pieces in a good way is difficult.
One could cut the cone by some hyperplane into two parts. But then we have to
compute the intersection of the hyperplane with the cone to get the additional cone
generators and it is not even clear if the separate cones are easier to handle. If one
takes cones generated by subsets of the generators, they have to be chosen in such
a way that their union is the original cone. Additionally they should not intersect
in parts that are too large because this would mean to process these parts multiple
times.

We will use a decomposition into a special kind of subcones which arise naturally
in course of our triangulation algorithm.

Definition 2.6. Let C" = cone(zy,...,7;_1) be a cone in R? and z; € Z¢. Consider
a negative hyperplane H € H<(C’, x;) and the corresponding facet F' = H N C;_;.
Then we call P = cone(F, x;) the pyramid over the base facet F with apex x;.

So far the triangulation for a pyramid P was obtained by first restricting the
existing triangulation to the base facet F' of the pyramid. This gives a triangulation

I'r ={o1,...,0,} of F. Note that the o, are simplicial cones of dimension d — 1.
Then the simplicial cones cone(o;, x;) for j = 1,...,m form a triangulation of the
pyramid P.

The general advantage and also disadvantage of the pyramid decomposition is
that we handle the pyramid independent of the rest of the cone. In this way we
get a more local data set of support hyperplanes and triangulation which makes the
algorithms faster. On the other hand, computations are redone or are only needed
to process a pyramid. For example, a support hyperplane of the pyramid may also
belong to another pyramid and therefore gets computed twice. But when the amount
of data in the original cone becomes large it is faster to compute information from
scratch in the local setting of the pyramid, instead of trying to find it in the large
data set.

Besides the advantage in the computation times, the pyramid decomposition
has additional benefits. One of them is the following: once we switch to pyramid
decomposition to build the triangulation, the existing triangulation is not needed
for this purpose anymore. Therefore it can be evaluated with the methods from the
Chapters 3 and 4 and can be deleted afterwards. This allows to limit the memory
used by the triangulation to a fixed value, since it is not necessary to store the
complete triangulation until the end of the computation.

A second important positive effect is that the pyramids are completely inde-
pendent from the cone which created them and also independent from each other.
Hence they can also be stored and BUILDCONE can be called at any time when it is
convenient.

In the hyperplane computation a pyramid decomposition can be useful as well. In
contrast to the use of pyramids to extend the triangulation we need the hyperplanes
in the next step, so their evaluation cannot be delayed but instead has to be done
directly in a recursive manner. Therefore we call them recursive pyramids.
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Algorithm 3 Compute support hyperplanes and triangulation with pyramid de-
composition

Require: {zi,...,7,} C Z% we assume that z1,..., x4 are linearly independent;
Booleans doHyp and doTri which indicate whether the support hyperplanes and
the triangulation of C' = cone(z, ..., x,) should be computed

Return: the support hyperplanes H and the lexicographical triangulation I' of C'

1: function BUILDCONE({x1, ..., z,}, doHyp, doTri)

2 H « invert (z1,...,xq) over Z

3 if doTri then

4 ' + {cone(xy,...,xq)}

5: fori<d+1tondo

6 doPyrHyp <« (doHyp or i # n) and |H~| > BoundPyrHyp

7 doPyr < doPyrHyp or (doTri and |I'| > BoundPyrTri)

8 if doPyr then

9: for Hy, € H< do

10: X — ({z1,...,2zi 0N Hy) U {x;} > pyramid generators

11: isLarge <— doPyrHyp and |X| > 2-d

12: if isLarge then

13: H", T" <— BUILDCONE(X, false, doTri)

14: H' < H' U FINDNEWFACETS(H” (), Hy, {1, .., xi1}, ;)
15: else

16: H(P),I” + BUILDCONE(X, doPyrHyp, doTri)

17: H — HU{H,eH(P) : p(x;) =0and pu(y) > 0Vy € X\{z;}}
18: «~Trur

19: if doPyrHyp then

20: H +— H>(ZL’Z)UH:(ZL‘Z)UHI

21: else if doTri then

22: [+ T' U EXTENDTRIANGULATION(I", H, {z1,..., 21}, ;)

23: if (doHyp or i # n) and not doPyrHyp then

24: H < FINDNEWFACETS(H, {z1,..., 21}, ;)

25: if not doHyp then

26: H <0

27: return H, I’

We let the decision whether to use recursive pyramids depend on the number of
positive support hyperplanes. If this number |H~| exceeds the bound BoundPyrHyp,
for every negative hyperplane H it is determined in which way to compute the new
support hyperplanes that originate from H. The possibilities are:

(i) match that negative hyperplane H with the positive hyperplanes in a
Fourier-Motzkin step, or
(ii) make a recursive pyramid.
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For simplicial facets it is faster to compute all hyperplanes of its pyramid, which is a
simplicial cone, directly by inverting, see Section 2.1. Similarly, for nearly simplicial
facets, i.e. those with not many more than d generators, it is best to use a recursive
call of BUILDCONE.

For larger pyramids, i.e. when the base facet has many generators, the recursive
call gets expensive and would probably include further recursive calls down to a high
level of recursion. This happens if there are many generators in a face of the cone of
a relatively small dimension. In this case the hyperplane structure that comes from
this small dimensional face is recomputed a lot of times. To avoid this, the large
pyramids are not handled recursively, but by method (i) above.

In recursive pyramids the triangulation is computed together with the support
hyperplanes if necessary. In this way recursive pyramids do not have to be consid-
ered again for the triangulation, and their support hyperplanes do not have to be
computed twice. If in this process pyramids are created which are only needed for
the triangulation, they are stored and processed later.

In line 17 the support hyperplanes H(P) of the pyramid P are inspected and
only those are taken which are additional support hyperplanes of the new cone
C; = cone(xy,...,x;). Among H(P) the only hyperplane which does not contain
x; is H_) and it cannot be a support hyperplane of C;. Now let u be the linear
form of one of the remaining hyperplanes, and let y a generator of C;_; but not of
P. Obviously u cannot be a hyperplane of C; if u(y) < 0. In the case u(y) = 0,
a subfacet of P N C;_; and also y lie in H,. We can conclude that H, is already
in H=(C;_1, z;). Hence we have to check if the linear form gives a strictly positive
value on all these generators y.

The call of FINDNEWFACETS on line 24 is to the function of Algorithm 1, whereas
on line 14 a slightly modified version is called, which does the Fourier-Motzkin
elimination step for just a single negative hyperplane.

As values for the bounds we have experimentally determined BoundPyrTri =
20,000 and BoundPyrHyp = 500 - d to give good a performance on a wide range of
examples.

As already mentioned, in Normaliz the non-recursive pyramids are not directly
evaluated, but stored in a buffer. The buffer has multiple levels. The pyramids from
the cone we start with are stored on level 0. In course of the evaluation a pyramid
of level i may create pyramids itself. Those pyramids are stored on level ¢ + 1. To
keep the memory usage of the algorithms small, the number of pyramids in one
level of the buffer is limited to 200.000. When the limit is reached, we interrupt the
current computation, evaluate the pyramids on the next level, and then return to
the previous level. The main advantage of this “store and evaluate later” principle
is that the evaluation of the pyramids is parallelizable. Their independence leads to
a highly efficient parallelization.

Table 2.1 compares computation times with and without the use of pyramids
and demonstrate the superiority for large examples. The examples A443, A543
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max. number time support hyperplanes

of hyperplanes with pyramids without pyramids

AbB53 317,387 118 sec 672 sec

lo7 face of cd 4 121,996 172 sec 264 sec

lo7 face of cd 3 803, 839 24 min 324 min
size of time triangulation

triangulation  with pyramids without pyramids

A443 2,654,272 6 sec 49 sec
A543 102, 538, 980 1 min 354 min
lo6 facet 163,674,912 1 min 162 min
lo6 5,745,903, 354 39 min —

TABLE 2.1. Pyramid decomposition timing comparisons (on x4450
with 20 threads)

and A553 are monoids of marginal distributions of contingency tables, see Section
5.1. The other examples are related to the linear order polytopes connected to the
inversion model of statistical ranking for n = 6 and n = 7, see [38], we use faces of
codimension 4 and 3 of 107, a facet of 106 and 106 itself. For even larger examples the
gap between the computation times increases further. The complete triangulation
without pyramids for lo6 was not even possible, because it exceeded the available
memory.

Note that the triangulation produced by Algorithm 3 is the lexicographical tri-
angulation, although we allow reordering of the generators to achieve linear inde-
pendence of x1, ..., 24 and use pyramids to extend the triangulation. See [8] for a
detailed discussion.

2.5. Disjoint decomposition

The triangulation is a very important tool in the algorithms to decompose a
problem into simplicial cases. This decomposition is not disjoint. Although this
is not always a problem, sometimes it is useful (see Sections 3.5 and 3.6), for the
Hilbert series computation it is even necessary (see Chapter 4), to get a disjoint
decomposition.

The maximal simplicial cones in the triangulation intersect in facets and lower
dimensional faces. Facets lie in exactly two simplicial cones or they are external
facets of the cone and therefore in just one simplicial cone. But faces of lower
dimension may belong to many simplicial cones. If we want a disjoint decomposition,
we have to make sure we do not count these parts multiple times.
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In the history of Normaliz different algorithms have been used to compute the
Hilbert series where the disjoint decomposition is of essential importance. All of
them base on a triangulation of C'. One helpful fact is that C'is the disjoint union
of the relative interiors of all (not only the maximal) simplicial cones in the triangu-
lation. The first versions of Normaliz used this fact and decided for each maximal
simplicial cone for which faces of it the interior should be considered, see [10]. In
this way a disjoint decomposition is achieved. Later the complexity could be con-
siderably reduced by the use of a shelling. A shelling is an order oy, ..., o, of the
simplicial cones where o; N (o1 U---Uog;_1) is a union of facets of o;. So the problem
is reduced to excluding facets (and not arbitrary faces) of the previous simplicial
cones. The computation of a shelling was done by lifting the cone in a proper way
into R4, triangulate it and then find a line shelling, see [9] for more details.

Both algorithms have a central weak point for big examples: To exclude faces
they need to compare simplicial cones in the triangulation. This gives rise to two
problems. The comparison gets very time consuming since the complexity is qua-
dratic in the size of the triangulation. Secondly, for a big triangulation it is even
impossible to store it in the memory.

Koppe and Verdoolaege showed that this inclusion-exclusion problem could be
solved in a simple way without comparisons of the simplicial cones [27, Thm. 3].
We state it here in an adapted form from [8, Lemma 10].

Lemma 2.7. Let O¢ be a vector in the interior of C' such that O¢ is not contained
in a support hyperplane of any simplicial o in a triangulation of C. For o choose S,
as the union of the support hyperplanes H<(o,Oc¢). Then the semi-open simplicial
cones o \ S, form a disjoint decomposition of C.

Definition 2.8. We will call a vector O¢ as in Lemma 2.7 order vector.

The idea of this criterion can be described as follows. For every simplicial cone
we exclude the region that is visible from Og. Since O¢ does not lie on any of the
hyperplanes, this region is a union of facets. In this way a point p € C'is considered
in the unique simplicial cone ¢ of the triangulation for which an ¢ > 0 exists such
that the part [p,O¢cl. = {p+ a(Oc —p) : 0 < a < e} of the line segment from p to
Oc is a subset of o.

In our algorithm we will choose the order vector O¢ to be some integral point
in the interior of the first simplicial cone in the triangulation. Of course it may be
contained in the support hyperplane of another simplicial cone. The simulation of
simplicity principle from computational geometry allows us to work with an infini-
tesimal perturbation O of O¢ without even computing the perturbation explicitly,
see [21, section 9.4].

We choose a perturbation Of, that behaves like O¢ for all hyperplanes which do
not contain Og¢, i.e. Op € H* if Oc € H* for x € {<,>}. For O¢c € H check the
first non-zero coordinate of the linear form of H. If it is positive, we have O, € H~
and otherwise Oy, € H<.
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Ficure 3. Using the order vector

Figure 3 depicts a triangulation with an order vector O¢. For every simplicial
cone its facets are marked with “—” if the facet is excluded and with “47 if it is
included in that simplicial cone.

For our later use, it is important to observe the following.

Remark 2.9. For a pointed cone C' and O¢ in the interior of C' we never exclude all
facets of a simplicial cone ¢ in the triangulation of C'. Suppose O¢ is in the negative
halfspace for all support hyperplanes of . Then —O¢ is in the positive halfspace
for all of them and —O¢ lies in ¢ C C'. This is a contradiction to our premise that
C' is pointed.



CHAPTER 3

Hilbert basis

This chapter is devoted to the computation of a minimal generating system of
the integral closure of a monoid, the Hilbert basis. For this purpose we will first
consider simplicial cones and then use triangulations for non-simplicial cones.

Afterwards Section 3.4 introduces the new concept of a partial triangulation, to-
gether with examples where it has an enormous effect. The last two sections discuss
the for large examples indispensable extension of effectively avoiding duplicates.

3.1. Hilbert basis

From now on we will always assume that the rational cone C' C R? is pointed and
full-dimensional, i.e. dim C' = d. Furthermore, we will work with the lattice L = Z¢.
This situation can always be achieved by a linear transformation from Section 1.3.

Definition 3.1. Let M be an positive affine monoid. An element x € M, x # 0, is
wrreducible if x = y + z with y,z € M implies y = 0 or z = 0. If there exist such a
sum with y # 0 and z # 0 we call x reducible and vy, z reducers of x.

Theorem 3.2. Let M be a positive affine monoid. Then there are only finitely
many 1rreducible elements, and they form the unique minimal system of generators

of M, the Hilbert basis Hilb(M).

For a proof see [4, Prop. 2.14]. Hilbert bases are used in various areas. They
can be interpreted as the set of minimal solutions of a homogeneous system of
diophantine equations, inequalities and congruences. The common case of homoge-
neous system of diophantine equations over the nonnegative integers relates them
to combinatorial optimization, see [23]

In this chapter we will describe how to compute Hilb(C) := Hilb(M) for the
integrally closed monoid M = C'N L, and in this way we will also prove Theorem 3.2
in this case. Note that the irreducible elements must be contained in every generating
system. For a cone C' we first find a triangulation I" as described in Chapter 2 and
then compute the Hilbert basis for each simplicial cone. The simplicial case will
be described in Section 3.3. Then we take the union of the Hilbert bases of the
simplicial cones to obtain the set of candidates

Cand(C) = | J Hilb(o).

Of course, Cand(C') depends on the used triangulation. In Normaliz we always
use the lexicographical triangulation (or parts of it, which lead to the same set

26
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Cand(C') as will discuss in Sections 3.4 and 3.6). The candidates generate the
monoid M =CN L.

Lemma 3.3. Let C be a cone with a triangulation I'. Then the set Cand(C) is a
finite superset of Hilb(C').

Proof. An element x € Hilb(C) C C lies in some o € I". Since there is no reducer
of z in C, there is certainly no reducer in o. Cand(C') is finite since the triangulation
and the Hilbert basis of the simplicial cones are finite, see 3.5 and 3.6, and therefore
also the union. O

3.2. Global reduction

From the set of candidates we have to exclude the reducible candidates to get
the Hilbert basis of C'. This is the task of the global reduction. In order to do it
efficiently we need the support hyperplanes of C' and a positive grading deg, which
is a linear form such that deg(z) > 0 for all z € M,z # 0. We can use the sum over
all support hyperplane linear forms as such a grading.

Lemma 3.4. Let C C R be a rational pointed cone with support hyperplane linear
forms Ay, ..., \s and M = CNZ%. An elementy € M, y # 0 is reducible if and only
if there exists a Hilbert basis element x with

(1) deg(x) < deg(y)/2, and
(11) Ni(x) < N(y) foralli=1,...s.

Proof. Condition (ii) is equivalent to y — x € M, which in turn is equivalent to
x being a reducer of y. Now it is sufficient to see that every element in M can be
written as a finite sum of Hilbert basis elements and not more than one can have
degree bigger than deg(y)/2. O

Condition (i) is very useful to decide which elements must be tested as possible
reducers and (ii) gives an efficient way to check reducibility.

To make effective use of condition (ii) we sort the candidates ascending by degree.
In a straightforward implementation with parallelization each thread would now take
the first available candidate and apply the Lemma 3.4. This would require a lot of
synchronization and bookkeeping because a newly found Hilbert basis element might
be a reducer of a candidate that is handled at the same time by another thread.
Algorithm 4 avoids this problem by sectioning the reducers into ranges of degrees.
At the same time it also does not make reduction tests multiple times. The degree
ranges are determined during the algorithm according to the degrees appearing.

The most work is done in the for loop that starts at line 12, and this loop can
easily be parallelized. Line 16 reflects a heuristic trick. Is a reducer found, it often
also reduces other candidates. We move it to the begin so that further candidates
will first be tested with it. To avoid the need for synchronization, each thread keeps
its own order of R.
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Algorithm 4 Reduce a candidate set to the Hilbert basis

Require: A generating set G of M, a positive grading deg, the support hyperplanes
)\17...,)\5 of C

Return: The Hilbert basis Hilb of M

1: function GLOBALREDUCTION(G, deg, A = (A1,...,A5))

2 for y € G do

3 compute and store deg(y)

4: sort GG ascending by degree

5: Hilb «+ 0 > collects the Hilbert basis
6 while G # () do

7 k <+ 2deg(y) where y is the first element of G > degree bound
8 R+ 0

9: for x € G : deg(z) < k do > irreducible elements
10: move z from G to Hilb

11: add v = (A(x),..., \s(z)) to R

12: for y € G do > Now the elements with deg(y) > k
13: for v = (vy,...,v5) € Rdo

14: if \i(y) >v; foralli=1,...,s then > (i) in Lemma 3.4
15: remove y from G

16: move v to the begin of R

17: return Hilb

3.3. Hilbert basis of a simplicial cone

For this section let o be a simplicial cone of dimension d with extreme integral
generators a1, ...,zq and M = o NZ%. In order to find the Hilbert basis of o we
first look for a finite generating set, also see [4, Prop. 2.43].

Theorem 3.5. Let o be a simplicial cone of dimension d with extreme integral
generators Ty, . ..,xq and M = ocNZ%. Furthermore let U be the sublattice generated
by x1,...,xq and N the monoid generated by x,...,xq. Then the set

E={quzi+ - +quq : 0< g <li=1,....d}nZ*

is a system of representatives of Z¢/U and also a basis of M as free N-module. In
particular we have that EU{z1,..., x4} generates M as a monoid.

Proof. Since z1,..., x4 are linearly independent, every y € Z¢ can uniquely be
written as a linear combination y = a1z1 + - - - + agxg, a; € R. The coefficients can
uniquely be decomposed into a; = |a;| + b; such that |a;] € Z and 0 < b; < 1 and
lead toy = z+m with z = bjx;+- - -+bgrg € Eand m = |ay |x1+- -+ |ag]xzqg € U. A
different decomposition y = 2z’ +m’ with 2’ € E, m’ € U cannot exist since it would
give y as a different linear combination of x1,...,z4. This shows the statement for
72 /U and it follows analogously that E is a basis of M as N-module. O
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Lemma 3.6. With the notation of Theorem 3.5 the Hilbert basis of o is given by
Hilb(o) = {z1,..., 24} U{x € E\ {0} : there exist no reducer y € E}.

Proof. The Hilbert basis of o is a subset of every generating set of M, in particular
of EU{xy,...,z4}. Now the reducible elements have to be removed from this set
to get the Hilbert basis. First observe that xi,..., x4 are irreducible because they
are the linear independent extreme integral generators of ¢ and x; = y 4+ z implies
that y,z € M are linear combinations of x1,..., x4y with nonnegative coefficients,
but their sum can uniquely be written as the linear combination 1-z;. On the other
hand no x; can be a reducer of any y € E, since the coefficient of z; in the linear
combination of y — x; in x4, ..., x4 would be negative. O

Example 3.7. Consider the cone C' = cone(xy, z3) with 1 = (3,1), 25 = (1,2).

0

FIGURE 1. The cone C with semi-open parallelogram (dark grey) and
set E (circled points).

We see from Figure 1 the set integer points in the semi-open parallelogram is

E= {(07 0)7 (17 1)7 (27 1)7 (27 2)7 (27 3)}
and can check that (1,1) is a reducer of (2,2) and (2,3), whereas (1,1) and (2,1)
are irreducible. So we get

Hilb(C) = {2y = (3,1), 25 = (1,2), (1, 1), (2, 1)}.

Now we will present an algorithm to generate the points in £ and test whether
they are reducible (in o) in a very efficient way.

Proposition 3.8. Let G and X be d x d-matrices with integer entries, such that
|det X| = 1 and T = XG is an upper triangular matriz with diagonal elements
t1,...,tqg > 0. Then the vectors in

S:{<Sla"'78d): O§81<t2}

form a system of representatives of Z2/U where U is the sublattice generated by the
rows of G. Especially we have (2% : U] = t; - - - tq = |det G.
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Proof. Since X is invertible over Z, the rows of T'= X G also form a Z-basis of
U. Every vector y € Z¢ reduces to a y' € S after subtraction of suitable multiples
of rows T; of the triangular matrix 7" via the recursion

Y=y, Y=y - |yt T fori=1,....d y=y"

Hence S generates Z¢/U.

Let v,w € S belong to the same residue class in Z?/U, i.e. v—w € U. Then there
exist ay,...,aq € Z such that v — w = a;Ty + - - - + a4Ty. Assume that v # w, then
there is a a; # 0. Let k be the smallest k € {1,...,d} with a; # 0. The triangular
structure of T" then implies v; —w; =0 fori=1,...,k—1 and vy — wy = agty. This
is a contradiction to |vy — wg| < tg. O

Definition 3.9. A simplicial cone whose extreme integral generators generate Z¢
is called unimodular.

The unimodular cones are exactly those with |det G| = [Z¢ : U] = 1. They have
E = {0} and the Hilbert basis consists only of the extremal integral generators.

Proposition 3.8 gives an efficient way to computationally construct a system
of representatives of Z%/U. According to Theorem 3.5 each class has exactly one
representative in . We now have to change from the representatives in S to the
ones in E. For s € S this can easily be done when we know how to write s as a linear
combination of xy,...,z4. For s = ¢jz1 + - - - + ¢}x4 we have to add integer values
to the coefficients ¢, such that for the resulting coefficients ¢; we have 0 < ¢; < 1, in
other words we have to reduce the coefficients mod 1.

Writing s as a linear combination of x1,..., x4 can be viewed as a basis change
from the standard basis to the basis x4, ..., 4. In this perspective the computations

¢ =s-G, g=q mod 1, v=gq-G

give us the v € E.

This step is done very often, so it is time critical and crucial to make it as fast
as possible. We will now present optimizations of this computations. In Section 2.1
we already discussed how to compute 7" and G~! using only integer arithmetic. To

continue the use of integers we multiply ¢ and ¢’ by § = |det G| and also reduce
modulo 4, so the computations are
V=s-(6-G1), b=V mods, v=(b-G)/I. (1)

In fact, after the computation of 7' one sees that not all rows of G~! are used,
but only those rows 4, that have ¢; > 1. In most cases the number of entries in the
diagonal of T" that are greater than 1 is very small. For example a cone in dimension
7 generated by 14 vectors with random entries between 0 and 9, in all 4134 simplicial
cones of the triangulation only 7135 diagonal elements greater than 1 appear. So in
average less than two diagonal entries different from 1.
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Example 3.10. We show the computations for Example 3.7. First we trigonalize
G to compute T and see that only the last row (G™!)s of the inverse is needed. Then
we solve the (transposed) system for only (G™1),.

3 1] 0
1 2] 1
3 1 1 2] 1
1 2 3 1] 0
1 2 1 2] 1
3 1 1 2 0 —5|-3 . 1
I 2 T:<0 5) T 21 (@ =513
0 =5 0 5| 3
1 2 5 10| 5
0 5 0 5| 3
5 0]—-1
0 5| 3

For each s in the system of representatives of Z¢/U according to Proposition 3.8,
s itself and the further steps in the computation are listed in the rows of the table
below.
s (0,0) (0,1) (0,2) (0,3) (0,4)
V=s-(5-G71) (0,0) (=1,3) (=2,6) (=3,9) (—4,12)
b=V mod5 (0,0) (4,3) (3,1) (2,4) (1,2)
v=(b-G)/5 0,0) (3,2) (2,1) (2,2 (1,1)

Of course in this small example it would have been no disadvantage to completely
invert the generator matrix.

But in general the presented method can be beneficial; especially in examples
were the number of diagonal elements greater than 1 is very small. Unimodular
simplicial cones have even no such diagonal entry and simplicial cones with low
determinant can maximally have so many as factors in the prime decomposition
of the determinant. The simplicial cones of the contingency tables considered in
Section 5.1 are either unimodular or have only exactly one diagonal entry that is
different from 1 while the dimension goes up to 43. Here a remarkably amount of
time can be saved by not inverting the matrix completely.

Table 3.1 shows the timings for 100.000 iterations of the trigonalize and solve
steps necessary and also for inverting the matrix as implemented in Normaliz. Note
that the matrix multiplication with the inverse to find a solution is not included
in the time for inverting. The first test examples are matrices in dimension 7, 12
and 20 with random entries for 0 to 9. The last two examples are the first non-
unimodular simplicial cones in the lexicographical triangulations of the monoids
related to 4 x 4 x 3 and 5 X 5 x 3 contingency tables. For the computation either
the 64 bit C++ integer type long long or the arbitrary precision type mpz_class
from the GMP library [40] are used.
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example dim. right sides integer type trigonalize solve invert
random?7 7 2 64 bit 0.17 sec  0.23 sec 0.32 sec
random?7 7 gmp mpz 3.13 sec  3.83 sec 7.45 sec

2
random12 12 1 64 bit 0.70 sec  0.77 sec 1.20 sec
random12 12 1 gmp mpz  15.75 sec 16.79 sec  42.47 sec
random20 20 2 gmp mpz  68.81 sec 76.87 sec 206.59 sec
A443-simp 30 1 64 bit 0.78 sec  0.90 sec 3.38 sec
A443-simp 30 1 gmp mpz 5.26 sec  7.54 sec  88.49 sec
A553-simp 43 1 64 bit 1.45 sec  1.68 sec 8.03 sec

TABLE 3.1. Comparison trigonalize and solve versus invert

One remark on the computation of ¥’ and b. The multiplication by dG~! can be
replaced by just adding a row of G~ to a previously computed value, since every
vector in S is a vector that has been created before increased in one position by 1
(starting with (0,...,0)). The reduction modulo § can be simplified by reducing
dG~! modulo ¢ first, then the reduction of ' can be done by subtracting § only one
time if necessary.

Now we compute the Hilbert basis of o using Lemma 3.6. To make this local
reduction of the candidate set £\ {0} we use a modified version of the GLOBALRE-
DUCTION method from Algorithm 4. The relevant information in the reduction are
the heights \;(v), these can be replaced by the values b;. They differ from \;(v) by a
constant factor that only depends on 7, and not on v, namely the greatest common
divisor of the i-th row of § - G=!. Therefore they can be used to check if a difference
lies within the cone and the linear forms of the support hyperplanes are not explic-
itly needed. As the degree function we use the sum of the coefficients of b. Thus
the reduction can completely be done with the b vectors and the multiplication by
G will only be done for Hilbert basis elements of o.

In principle this local reduction to a Hilbert basis is not necessary. One could
also take the union of all the sets E as input for the global reduction. But the
presented local reduction is very efficient since no extra scalar products have to be
computed. Also checking if an element reduces another only need dimensional many
comparisons, since o has that number of support hyperplanes, whereas C' can have
many more. Usually the local reduction removes a lot of reducible elements. For
the example small from the Normaliz distribution it removes 88.8% of the vectors
in the sets £\ {0}. In conclusion the local reduction is a very useful preliminary
step to the global reduction.
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3.4. Partial triangulation

In practice one big problem for the computation of Hilbert bases with the pre-
sented algorithm is that the triangulation can get huge, especially in large dimen-
sions. One example for this are some monoids which arise in algebraic statistics. In
[30] Hibi and Ohsugi examined the normality of the monoids of marginal distribu-
tions of contingency tables by taking line sums. They were able to decide it in all
but the three cases of 4 x 4 x 3, 5 x 4 x 3 and 5 x 5 x 3 contingency tables. The
generators of these monoids are the marginals of the contingency tables which con-
tain exactly one entry 1 and 0 otherwise. Therefore the generators are 0-1-vectors
with a fixed number of entries 1. More on these monoids in Section 5.1.

To decide the normality we tried to compute the Hilbert basis and compare it to
the given generators. For 5 x 5 X 3 contingency tables, the biggest example, we get
a 43-dimensional cone with 75 extreme rays. In 2009 it was not possible to compute
its Hilbert basis by available software like Normaliz v2.2 or 4ti2 v1.3.2 [1, 24] due
to the huge time and memory requirements of the used algorithms.

The main problem here is the huge triangulation. The lexicographic triangu-
lation of that example has more than 9 - 10° simplicial cones but most of them
are unimodular. That means their Hilbert basis consists of the integral extreme
generators and therefore they do not need to be considered in the computation of
the global Hilbert basis. To understand the structure of these cones we looked at
smaller contingency tables. In [30] it was also shown that for 3 x 3 x 3 tables and
all smaller examples the cones are compressed, what implies the existence of an
unimodular triangulation and therefore normality. A cone is compressed if every re-
verse lexicographic triangulation (or pulling triangulation) is unimodular. Another
characterization is that all extreme integral generators have height 1 over all support
hyperplanes which do not contain them, see [39]. The term compressed is appropri-
ate since the cone generators are “squeezed” between each support hyperplane and
the parallel affine hyperplane which is shifted by 1. A Normaliz computation shows
that also for 4 x 3 x 3 we get a compressed cone. For the three open cases this is
not true anymore. However, they are not too far away from it. The heights of the
generators over the support hyperplanes are at most 2.

One important ingredient to master this example is the use of pyramids as de-
scribed in Section 2.4, which allows us to not store the complete triangulation. But
the breakthrough was the partial triangulation: We exploited the idea of compressed
in a weaker form to omit pyramids whose non-extreme Hilbert basis elements are
contained in previously computed simplicial cones. The following lemma makes
more precise which pyramids can be excluded.

Lemma 3.11. Let C be a rational cone with extreme integral generators xy, ..., x,.
Suppose F' = cone(xy,...,x,_1) is a facet of C, X\ the linear form of F' and \(x,) =
1. Then the Hilbert basis of C' is

Hilb(F) U {z,}.
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Proof. We can write y € CNZ%asy = > ¢v; with ¢1...,q, € R. Since y is
an integral vector,

AMy) = A (Z qm) = Z GNT:i) = gy

is integral. In the case of ¢, = 0 we have y € F. Otherwise ¢, > 1 and =z, is a
reducer of y. This completes the proof. ([l

The partial triangulation now computes a superset of the Hilbert basis with the
pyramid decomposition techniques from Chapter 2 and uses the lemma above to
exclude parts of the triangulation.

Corollary 3.12. Let xy,...,x, € Z¢ such that C' = cone(zy,...,2,_1) has dimen-
sion d, and C' = cone(xy,...,x,). Let Fy,... Fy be the facets of C', let \,..., As
be the normal linear forms of these facets, and for i = 1...,s let C; be the cone
generated by F; and x,,. Then

Hilb(C") U {z,,} U J{HIIb(C)) : =Xi(z) > 2, i=1,...,s}
generates the monoid C N Z<.

Proof. If the condition in the union over the Hilbert bases of the pyramids
C4,...,Cy is changed to —\;(z,) > 1 we get the regular pyramid decomposition
from Chapter 2, since the other facets are not visible from z,. The cones with
—\i(x,) = 1 can be excluded by Lemma 3.11. Note that here the orientation of \;
is such that C" C Hy . O

Remarks 3.13. (a) The partial triangulation can exclude complete pyramids, not
only simplicial cones. These pyramids do not have to have a unimodular triangula-
tion. It is only important that the interior Hilbert basis lies in the base facet of the
pyramid.

(b) Nevertheless, the partial triangulation still produces exactly the same set of
candidates as the full triangulation.

Obviously the partial triangulation is of especially great use if the height of a
generator over the facets of the so far constructed cone is seldom greater than 1. A
large group of examples where this is often the case are monoids that encode some
combinatorial information. Such monoid mostly have generators whose entries are
in {0,1} or in {—1,0, 1}, like the monoids arising from contingency tables. Another
such example is the cone associated to the semi-graphoid for |[N| = 5, see [36]. It
was already shown in [25] that the corresponding monoid is not normal by explicit
construction of a single Hilbert basis element that is not one of the given generators
via a different method. The computation of the full Hilbert basis was not possible
at that time.

With the partial triangulation and parallelization of the algorithms we were able
to compute the Hilbert bases of these monoids. Data on the size of the examples
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and the computation times of Normaliz 2.9 with 20 threads on our Sun Fire X4450
are given in Table 3.2. The size of the full triangulation was counted by Normaliz in
a separated run without storing or evaluating the triangulation. The computation
shows that the monoid of the 5 x 5 x 3 contingency table is normal, which completes
the normality classification in [30]. The 6 x 4 x 3 contingency table is the next larger
monoid that is not normal, and we have computed the full Hilbert basis.

Contingency tables Semigraphoid
5XxXbx3 6 x4x3 N =5

dimension 43 42 26
# extreme rays 75 72 80
# Hilbert basis 75 4,392 1,300
# support hyperplanes 306,955 153,858 117,978
# full triangulation 9,248,527,905 3,100,617,276 1,045,346,320
# partial triangulation 364,862 206,064 3,109,495
# candidates 41,518 10,872 168,014
real time 21:46 min 3:46 min 9:09 min

TABLE 3.2. Data of challenging Hilbert basis computations

A different approach was independently given by R. Hemmecke and M. K&ppe.
They exploit symmetries to drop parts of the cone which were already considered
“up to symmetry”. Both approaches together with successful applications to the

examples in Table 3.2 and to cut monoids of graphs (see Section 5.2) were presented
in [6].

3.5. Avoiding duplicates

Candidates that are in the boundary of a simplicial cone can also appear in a
different simplicial cone. If a point is in a lower dimensional face, then there can
be even multiple simplicial cone sharing this face and therefore the point will be
created multiple times. When a point is created not for the first time, we will
call it duplicate. This terminology considers the point together with the simplicial
cone in which it was created. The duplicates can be omitted for the Hilbert basis
computation.

Of course it highly depends on the example how many duplicates we will get.
Combinatorial examples typically have small simplicial cone with a high percent-
age of the points in the boundary of the simplicial cone and hence have a lot of
duplicates. For some examples Table 3.3 shows the number of unique candidates,
the total number of candidates created (including duplicates) and the percentage of
duplicates. The numbers are given for both the full triangulation and the partial
triangulation from the previous section. In the partial triangulation many simplicial
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cone that would only give duplicates are excluded, as a result it has a lower amount
of duplicates.

The example random5 has 12 generators with random entries from 0 to 9 in
dimension 5; small is the cone over a polytope of dimension 5 with 190 vertices;
medium is generated by 40 0-1-vectors of dimension 17; lo6 is the linear order poly-
tope connected to the inversion model of statistical ranking for n = 6, see [38]. The
next example is the monoid of a base ring associated to a transversal polymatroid
provided by A. Stefan [35]. In this case the partial triangulation has no effect and
the numbers in Table 3.3 are just the Hilbert basis elements of degree 1. The total
number of Hilbert basis elements can be expected to be several times larger but we
did not compute them to avoid long computation times. The computation of the
degree 1 elements was practically not possible in Normaliz 2.7 since the duplicates
used too much memory. The cutgraph is the cut monoid of some graph with 8
vertices, see Section 5.2.

full triangulation partial triangulation
unique created duplicates created duplicates
randomb 158,007 158,562 0.35% 158,562 0.35%
small 221,333 253,182 12.58% 249,349 11.24%
medium 3,450 41,252 91.64% 19,493 82.30%
lo6 1,068,003 55,198,831 98.07% 8,444,340 87.35%

Stefan 1,322,271 353,838,470 99.62% 353,838,470 99.62%
cutgraph 8,483,905 180,589,842 95.30% 45,080,950 81.18%

TABLE 3.3. Candidates and duplicates

One technique to remove the duplicates is to sort the list of all created points and
delete the duplicates which are now next to each other, or keep the candidates as
an ordered set all the time. For a huge number of candidates this is time expensive.
In addition this approach is unfavorable for parallelization. Either one tries to keep
all candidates created unique which requires synchronization between the threads
and hurts the parallelization, or one handles the candidates from different threads
independently (at least for some time) which means increased memory usage.

But there is a more elegant and efficient way. If we compute a full triangulation
we can use the exclusion technique for facets from Lemma 2.7 to decide which
points are duplicates. This gives us a direct decision whether a created Hilbert basis
element of a simplicial cone should be considered for the set of all candidates or
should be threated as a duplicate.

Definition 3.14. Let C' be rational cone with extreme integral generators =1, ..., z,
and O¢ be an order vector of C' as in Lemma 2.7. Furthermore let D be a subcone
of C' whose extreme integral generators are a subset of x1,...,x,, and A{,..., \; the
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linear forms of the support hyperplanes of D. We define

ﬁIlJb(D) = {2 € Hilb(D) : A\;(z) > 0 for all j such that \;(O¢) < 0}
as the set of Hilbert basis elements that are not excluded by the order vector crite-
rion.

Lemma 3.15. Let 0q,...,0,, be the maximal simplicial cones in a triangulation of
a pointed cone C C R? and let O¢ be an order vector of C as in Lemma 2.7. Then

O Hilb(o;)
=1

is a disjoint union and generates the monoid C N Z°.

We use the criterion after the local reduction in the simplicial cones. A duplicate
point can still be a reducer of other candidates. It would not be necessary to try to
reduce the point but if it is reducible we do not have to check if it is a reducer of
another point.

Remark 3.16. The presented duplicate avoidance criterion marks every candidate
exactly once as “no duplicate”. In this way we get the same set of candidates as
before and do not have to make the list of gathered candidates unique.

How useful this technique is can already be seen in Table 3.3. We will now
extend it to partial triangulations.

3.6. Avoiding duplicates in partial triangulations

Unfortunately the duplicate avoidance criterion is not directly applicable to par-
tial triangulations as the following example shows.

Example 3.17. Consider the cone over the polytope generated by z; = (0,0),
xe = (1,1), z3 = (0,3), 24 = (—=2,3), 5 = (1,3), and 26 = (0,5). We now build
the partial lexicographical triangulation where the pyramids are again triangulated
with the partial triangulation.
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When generator x4 is added, the pyramid over x4, x3, x5 with x4 is formed. In this
pyramid the start simplicial cone has the vertices x3, x4, 6. Now the height of x5
over 3, xg is 1 and therefore the pyramid x3,zg, x5 is disregarded in the partial
triangulation. If now the duplicate avoidance approach is used with an order vector
O¢ inside xy, xo, z3 the point (0,4) is marked as a duplicate in z3, x4, 26 and the
simplical cone x3, x5, r¢ in which it should have been considered is not in the partial
triangulation.

The problem here is that the partial triangulation and the order vector crite-
rion use two different approaches to exclude duplicates. These approaches do not
harmonize with each other. To be more precise we use the notation of Corollary
3.12: The problem arises when a pyramid Cj; is excluded by the partial triangulation
because its interior Hilbert basis is contained in the base facet F; but the base facet
is excluded in the cone C’ by the order vector criterion. One solution to fix this is
to add all these cones to the partial triangulation.

Lemma 3.18. With the notation of Corollary 3.12 and an order vector O¢ as in
Lemma 2.7 we have

b(C") U {,} U {ﬁi‘ﬂ)(a) ) B gy =L .,5}

is a disjoint union and generates the monoid C N Z°.

This leads to the following recursive algorithm that returns a partial triangula-
tion which can be used together with the duplicate avoidance criterion.

The algorithm for the partial triangulation in the form of Lemma 3.12 can be
easily obtained from this algorithm by removing “or A(O¢) < 0” from the condition
on line 12.

Remarks 3.19. (a) At the top level the condition \;(O¢) < 0 is always fulfilled
since we choose O¢ in the start simplicial cone.

(b) The algorithm produces a partial triangulation that is a subset of the one that
would be produced using the partial triangulation criterion only on the top level
cone and making a full triangulation for every pyramid.

(c) On the other hand it is a superset of the strict partial triangulation as in Corollary
3.12.

(d) In practice we do not use the partial triangulation recursively to the end, but
switch back to the full triangulation at a certain recursion level because this method
is faster for small pyramids.

(e) Which parts appear in this partial triangulation now depends on the order vector.
(f) Regardless of all the variations, the set of unique candidates is always the same!

Table 3.4 shows that the number of simplicial cones to evaluate is not much higher
than in the standard partial triangulation. In some cases there are almost twice as
many simplicial cones, but still very few in comparison to the full triangulation.
And also the computation times are almost the same for the first examples in the
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Algorithm 5 Partial triangulation with duplicate avoidance

Require: G = {z1,...,2,} C Z%, we assume that z1, ..., x4 are linearly indepen-
dent

Return: The partial triangulation I’

1: function BUILDPARTIALTRIANGULATION(G)

2 H «+ invert (z1,...,xq) over Z

3 [' < {cone(xy,...,24)}

4 O <+

5: for i<~ d+1tondo

6 I' <~ ' U PARTIALTRIANGULATE(H, ;)

7 H < FINDNEWFACETS(H, z;) > see Algorithm 1

8

return [

Require: A cone generated by E with support hyperplanes H and order vector O
Return: The partial triangulation of cone(E, z)

9: function PARTIALTRIANGULATE(H, E, x)

10: for A € H do

11: if A\(z) <0 then > visibility check
12: if AM(z) # —1 or A(O¢) < 0 then > partial triangulation check
13: F+—{yeFE : \Ny) =0}

14: if |F| =d —1 then > simplicial case
15: I' <~ I" U {cone(F, z)}

16: else

17: I' <~ I' U BUILDPARTIALTRIANGULATION(F' U {x})

18: return ['

table. For the last two the duplicate avoidance starts do be important and therefore
leads to much better computation times. The cutgraph example has more than 8
million unique candidates and 45 million created points. Here the computation time
reduces from 26 minutes to 11 minutes.

The example Tnog corresponds to the claw tree with 7 leaves based on the group
Zo x Zs (3-Kimura model) from [20]. 4096 vectors generate a 22-dimensional cone
with 220 support hyperplanes. We stopped the counting of the full triangulation
after 24 hours on our compute server. Until then it had reached 109 - 10° simplicial
cones and we expect the complete triangulation to be 5 times as big. With the
standard partial triangulation we stopped it after 2 days because the removal of the
duplicates took to much time. The Hilbert basis computation with the duplicate
avoidance in the partial triangulation completed in about 4 hours. In the global
reduction 371,665,139 unique candidates had to be reduced, to find that 7nog is
normal. This result verifies the conjecture [20, Conj. 3.13] for any tree with vertices
of degree (at most) 7.
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number of simplicial cones in

full triangulation partial triangulation with duplicate avoidance

medium 60,928 12,646 21,046
A543 102,538,980 3,225 3,430
A553 9,248,527,905 364,862 481,466
106 5,745,903,354 3,350,516 5,390,175
semi5 1,045,346,320 1,164,210 2,150,654
cutgraph 758,457,886 36,101,158 58,734,801
Tnog > 100 - 10° 2.98 - 10° 4.11 - 10°

TABLE 3.4. Partial triangulation comparison

Another example were the avoidance of duplicates plays an important rule is the
linear order polytope for n = 7. The complete Hilbert basis computation is at the
moment not doable in a reasonable time, but tests with the partial triangulation
showed that after the first 1000 generators of 5040 we already have about 35 million
unique candidates out of 250 million.

In the presented combination the partial triangulation is extended in order to
make the duplicate avoidance via order vector applicable. Another possibility is
to adjust the order vector criterion. If we give each pyramid its own order vector
inside the pyramid, we can get the candidates of that pyramid without duplicates.
And the union of these sets again creates the monoid of the superior cone, but this
union is not disjoint. To get a disjoint union, the candidates in the boundary of the
pyramid must then be considered with respect to the order vector of the superior
cone. For this we not only have to compute which candidates in the pyramids are
in the boundary, but more importantly, we must keep track of the (sub-)pyramid
structure. In this way we would loose the independence of the simplicial cones and
the pyramids, which makes the parallelization so effective. Therefore we prefer the
extension of the partial triangulation.

The data collected from the examples shows that the duplicate avoidance ap-
proach is clearly preferable for large examples. And it also brings another advantage
when the number of unique candidates grows and it is not feasible to store them
all in the memory. In this case we we can do intermediate global reductions of the
candidate set and really forget about the reducible candidates. They will not come
into the candidate set again later thanks to the duplicate avoidance. This became
necessary for Tnog and also for cut monoids of graphs with 10 vertices, see Section
5.2.



CHAPTER 4
Hilbert series and function

In this chapter we will cover the topic of counting lattice points of certain degree
inside a cone. As for the Hilbert basis we start again with the simplicial case and
use a triangulation to put the result together for a non-simplicial cone. Section 4.5
handles the special case of computing the volume of a polytope.

4.1. Hilbert series computation with order vector

We use a degree function which is given by a surjective grading linear form
deg : Z% — 7 with deg(z) = 0 if and only if z = 0, see Section 1.2. We could
work with a sublattice of Z¢, but, as already discussed, for algorithmic purposes it
is better to apply a linear transformation first. Therefore in this section always the
lattice Z2 will be used.

Definition 4.1. For any subset C' C R? and i € Z we define
H(C,i) = |{zr € CNZ*: deg(x) = i}|.
If H(C,1i) is finite for all i € Z we call H(C, 1) the Hilbert function and

Ho(t)= Y 90 =" H(C,i)t’

zeCNZa i1€Z

the Hilbert series of C.

For a pointed cone C' we will assume that the generators of M = C'NZ? and thus
all elements in M \ {0} all have positive degree. The theory of Hilbert functions and
series is well developed, and therefore, we will in some cases just state the results
and refer to [5, Ch. 4] and [4, Ch. 6] for more background on the topic.

Example 4.2. Let P = conv(z1,...,,) C R¢ be a rational polytope. For the cone
over P, that is the cone C' = cone((zy,1),...,(z,,1)) C R4 and the projection
to the last component as the grading, the Hilbert function H(C, i) counts the lat-
tice points in the i-th dilation ¢P. This situation was studied by E. Ehrhart [22].
Therefore, in this context often the terms Ehrhart series and Ehrhart function are
used.

Now we want to describe the computation of the Hilbert series of a pointed cone
C. In Section 4.4 we will then discuss how we can get the Hilbert function from the



4.2. HILBERT SERIES OF A SEMI-OPEN SIMPLICIAL CONE 42

Hilbert series. If C' = J;*, D; is the disjoint union of Dy, ..., D, we directly get

Ho(t) =) Hp,(1).

Such a disjoint decomposition of C' can be obtained from a triangulation, which
is a non-disjoint decomposition of C, using the order vector criterion as described
in Section 2.5. Then the D; are simplicial cones with some facets excluded. The
Hilbert series for such objects is the topic of the next section.

4.2. Hilbert series of a semi-open simplicial cone

In this section D is a semi-open simplicial cone in which some facets are excluded.
Our goal is it to compute Hp(?).

In a simplicial cone o generated by z1,...,7s € R? we set the facet opposite of
x; to F; = cone({xy,..., x4} \ {:}). To exclude a union of facets S we define
e(y) = Z Z
ityeF;CS

which is used to shift y outside of S.

Theorem 4.3. Let o be a simplicial cone generated by x,...,24 € Z%, S a union
of some facets of o and D = o \ S. The Hilbert series of D is given by the rational
function

ZyeE des(y+e(y))
(1 —th) .o (1 — tha)
with B = {quo1+ -+ qarqg : 0< q < 1}NZ% and k; = deg(x;). If not all facets
are excluded, the degree of Hp as a rational function is negative.

Hp(t) =

Proof. Theorem 3.5 gives us the disjoint union
oNZ = U y+ N
yeE

where N is the free monoid generated by z1, ..., z4. Now we have to exclude S from
the components y + N. The intersection of y + N with the single facet F; is empty if
y & F; and otherwise (y+ N)NF, = {y+aix1+---+aqxq:ai,...,aq € Zy,a; = 0}.
Excluding these intersections for all F; C S gives the set
(y+N)\S={y+az1+---+agxqg:ay,...,aq9 € Zy,a; >0foralli: ye F, CS}
which can also be interpreted as shifting y + N by &(y),

(y+N)\S=y+e(y)+N.

Now the computation of the Hilbert series of D = UyeE y+e(y) + N is easy. It is
well known that the free monoid N has the Hilbert series

1
Hy(t) = (1 — thr) - (1 — tha)
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with deg(z;) = ki, see e.g. [4]. In the shifted version y+¢&(y)+ N we have to multiply
by tdee+e®)) hence we get the rational function Hp(t) as in the theorem.

For the condition on the degree of Hp(t) note that the coefficients in the linear
combination y + £(y) = qo1 + -+ + qarq satisfy ¢; < 1 for all ¢ and ¢; = 1 if
and only if y € F; C S. If not all facets are excluded, we have deg(y + e(y)) <
deg(xy + -+ x4) = k1 + -+ + kg and the degree of Hp(t) as a rational function is
negative. 0

Note that Remark 2.9 shows that the order vector criterion does not exclude
all facets of a simplicial cone, therefore Hp(t) will have a negative degree in our
applications.

The efficient creation of the points in F has already been discussed in Section
3.3. The only relevant information on the points in £ is the degree and the degree of
the shift. To compute those we do not need to know their representation in standard
basis, the vector b from (1) in Section 3.3 with respect to the basis %xl, o %xd is

sufficient. With this information we can compute

deg(y) = 3 biks and deg(ely) = Y )

1 yeF;CS

Example 4.4. We continue Examples 3.7 and 3.10 with the computation of the
Hilbert series of the semi-open cone D where the facet F; = cone(xs) is excluded.
As grading we use the total degree deg(y1,y2) = y1 + yo, thus k; = deg(x;) = 4 and
ky = deg(zy) = 3. To apply formula (2) one has to take the scalar products of the b
vectors with the vector of degrees (4,3) and divide the result by § = 5. To exclude
F} means to shift those vectors with b; = 0. In this example only (0,0) has to be
shifted by z; and deg(¢(0,0)) = deg(z;) = 4.

b (0,0) (4,3) (3,1) (2,4) (1,2)
deg(y) 0 5 3 4 2
deg(e(y)) 4 0 0 0 0
deg(y +¢e(y)) 4 5 3 4 2

Using Theorem 4.3 we get

" (t)_t2+t3+2t4+t5
P =t =)

4.3. Collecting the Hilbert series

In subsumption, for the cone C' with triangulation I" and monoid M = C' N Z4
we obtain M as a disjoint decomposition

M=) | y+ew)M,,

oel’ yeE,
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where the M, are free monoids of rank d, generated by the extreme integral gener-
ators of . Such a disjoint union is called a Stanley decomposition, named after R.
Stanley who proved its existence in 1982 [34].

For the Hilbert series this implies
Zy s tdeg(y+e(y))

He(t)=) Hp,()=) 1 _,fkl)...(l — tha)’

oel oel’

So we now have to sum all the Hp_(t) up to get He(t). In the homogeneous case,
i.e. all generators have the same degree, all denominators are the same and the task
is easy. But otherwise we have to extend the rational functions in order to add
them.

Example 4.5. Consider the positive orthant C' = cone((1,0), (0,1)) in R? with
lattice Z* and the standard grading deg(yy,y2) = y1 +y2. Here we easily see that the
Hilbert series is 1/(1 — t)2. To show how the algorithm works we will compute the
series in a different, more complicated way. We use the lexicographical triangulation
with the vertices x; = (0,1), 22 = (1,2),25 = (2,1), 24 = (1,0) which consists of the
simplicial cones C; = cone(xy, z3), Cy = cone(xq, x3), Cs = cone(xs, x4).

Oc

0 & (0 &

Let the order vector O¢ be inside the interior of Cy, e.g. O¢c = (4,3). Then in Dy no
facet of Cy is excluded, the elements in F are (0,0), (1, 1), (2,2) and both generators
have degree 3. In D; the facet to Cy is excluded so we must move (0,0) out of the
facet to (1,0). D3 is symmetric to Dy. Thus we get

t 14+t2+t4

Hp,(t) = ———

(1 —t)(l _t3)7 D2() (1 —t3)2 )
Ittt -t 1

Hc(t) = HDl(t) + HDz(t) + HDs(t) - (1 _ tl)(l _ t3)2 - (1 _ t)Q'

HD1(t) = HD3(t) =

The denominator for a semi-open simplicial cone depends only on the degrees
of the generators, and typically there are not so many different degrees occurring.
Therefore the denominators are the same for multiple semi-open simplicial cones.
To avoid the extension of the rational functions for each addition we collect the
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summands for each denominator separately and add these classes of denominators
at the end.

Example 4.6. The 24-dimensional example P, from Section 5.3 has 3928 generators
in the seven different degrees 2, 3, 4, 6, 8, 10 and 12. The size of the computed
triangulation is above 3 - 10! but only 3600 different denominators appear.

As said before, the rational functions must be extended in order to add them
up. We do not extend to the least common multiple of the denominators but to a
common multiple which is a product of terms 1 — ¢*. This is advantageous, since
the multiplication with 1 — t* is cheap. So we end up with a representation

f(t)
(1—tk1)---(1—tku) (3)

He(t) =

with some f € Z[t] and u > d.

In Example 4.5 the result of the summation could be simplified to 1/(1 — t)2.
This is a nice and simple representation, but in general it is not obvious which is
the best representation.

One possibility of course is to cancel as far as possible to get coprime numerator
and denominator. Recall that t* — 1 is the product of all cyclotomic polynomials ®;
where ¢ divides k£ and the ¢-th cyclotomic polynomial ®; is the normed, irreducible
polynomial (in R[X]) whose roots are the i-th primitive roots of unity. Thus, after
cancellation, the denominator will be a product of cyclotomic polynomials and we
can write 0

Holt) = o= (4)
i1 is
with numerator g € Z[t] that is coprime to ®;,,...,®,.. This representation is
easy to compute and the smallest in terms of the degrees of the numerator and
denominator polynomials.

Another possible representation of the Hilbert series is the following. For each
simplicial cone o the computed denominator of H\ g, (t) is [T, (1 — t%) where k;
is the degree of the i-th generator of . Let 7 be the least common multiple of the
degrees e; of the generators of C. By extending with suitable cyclotomic polynomials
we can get (1 — ¢™)? as the denominator of H,\g, (t) and therefore also for He(t).
This shows:

Theorem 4.7. Let C' be a pointed rational cone whose generators have positive
degrees ey, ...,e, and dimC = d. Then there exists a polynomial h € Z[t] and
ki,...,kq > 0 which divide lem(ey, ..., e,), such that

h(t)
(1 _tkl)...<1 _tk‘d)'

The degree of Ho(t) as a rational function is negative.

He(t) =

One possibility for the denominator is (1 — ¢™)¢ as just explained. But there
are other choices. We construct such a representation from the one with cyclotomic
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denominator q)iiq)iz as in (4). For j = 1,...,dlet I; = {i; : [; > j} and
kj = lem(l;). Then [];c, ®; divides (1 — tki). Therefore (1 — 1) ... (1 — th) is a
valid choice for the denominator.

Example 4.8. The cone C5 in Example 4.5 has the Hilbert Series

L+ +tt 1—t+¢ 1—t+¢?

Hey(t) = 32 2 - 3
= 8%, (1-01-p)
and the denominator can directly be rewritten as desired.

In general this method will not construct a representation with minimal denom-
inator degree among those fitting the description of Theorem 4.7.

Example 4.9. The Hilbert Series of a subcone of Example 4.6 has in the most
canceled form the denominator ®2*®33®L2PL5d 2. Here different choices are possible
to get 24 factors (1 — t*), but we have to use k > 6, otherwise we would get at least
16 + 12 = 28 factors. Our algorithm produces the degree 175 denominator

(L=6)(1 = )71 = tHH1 —t")*,

an alternative with lower degree is (1 — ¢4)12(1 — ¢5)8(1 — ¢!2)4,
4.4. Hilbert quasipolynomial

The values of the Hilbert function for & € Z. are the coefficients in the expansion
of the Hilbert series at ¢ = 0. We now want to show how to compute the Hilbert
quasipolynomial from the Hilbert series represented as a rational function.

We start with the simpler homogeneous case in which the generators are of
degree 1 and later reduce the general case to it. In this case Theorem 4.7 gives us
the denominator of the Hilbert series as (1 — ¢)¢. By the following lemma we see
that the Hilbert function then is a polynomial.

Lemma 4.10. Let a : Z, — Z be a function such that its power series A(t) =
> iz, a(i)t can be represented by

A(t) =

where h € Z[t] and deg A < 0.

Then there exists a unique polynomial P € Q[X| of degree less than d such that
a(i) = P(i) for alli € Z, .

Proof. It is enough to consider the case h(t) = t“. It is well known that

S E (S ()

1=w

We choose
X-w+d-1)(X-w+d-2)--- (X —w+1)
(d—1)!

PX) =
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and have P(i) = a(i) for all i € Z. O

Following the proof of Lemma 4.10, it is easy to see that P, (X) = Py(X — w)
when P; is the polynomial for h(t) = /.

Corollary 4.11. In the homogeneous case of a cone C' with Hilbert series

o ho + hlt —+ 4 hd_ltdil

He(t) (1= 1) :
the Hilbert function is a polynomial of degree d—1 with leading coefficient
ho+ -+ hg
(d—1)!

Proof. Together with Theorem 4.7 and Lemma 4.10 it is only left to see that
the potential leading coefficient is not zero. But that is assured since all the h; are
nonnegative in the homogeneous case. O

Back to the general case. Let m be the least common multiple of the degrees
e1,...,e, of the generators. Every 1 — t% divides 1 — t™, hence the Hilbert Series
can be written as ho)

t
He(t) = ————
with h € Z[t].

Now the Hilbert function is not a polynomial anymore, but a quasipolynomial.

Definition 4.12. A quasipolynomial () of period 7 is a polynomial with periodic
coefficients, in other words, a collection of polynomials Qy, ..., Q,_1 with Q(i) =
(;(i) when i = j mod .

Theorem 4.13. In the setting of Theorem 4.7 there is a quasipolynomial Q) of period
dividing ™ = lem(ey, . .., e,) such that

H(C,i)=Q(), forallieZy.

Proof. We give a constructive proof that reduces the problem to the homogeneous
case. For this purpose we decompose the monoid M = C N Z% into components
M/ = {x € M : deg(xr) = j mod 7} and equip each component a new grading
deg;(z) = (deg(z) — j)/m for x € M7. Note that the M’ are not monoids since they
are not closed under addition. But they are closed under addition with elements of
degree m, hence they are M, -modules.

The Hilbert function of M is then
H(M, i) = H(M, ' =

J) ifi=j modm,

and the Hilbert series

m—1 m—1

Hy(t) =Y HM, i)t =3 "N " H(M i)t™ =3 "t/ Hy,(t7).

USY/ j=0 i€Z 7=0
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This segmentation of course also holds for the representation of H),; as rational
function with denominator (1 — ¢™)¢ because multiplication with (1 — ™) does not
cause interferences between the 7 summands. Conversely we know from Theorem
4.7 that the Hilbert Series can be expressed as

h(t)
(1 —tm)d’
with h € Z[t] and deg(h) < dr. We decompose h(t) = Z?;ral hit' into gi(t) =
Z;.tol Riryt™ and get

g;(t)
(1—1¢m)d
Dividing by t/ and then substituting ¢™ by ¢ (this transformation corresponds to the
regrading), yields

tFH (7)) =

d—1

g;(t) . 2 : i

HMJ' (t) = (1 ]_ t)d, with g](t) = hiﬂJrjt .
1=0

Now apply Lemma 4.10 to get the H(M’, X) as a polynomial P{(X), so that
H(M,i) = P{(**) when i = j mod 7. In order to undo the regrading and get
the Hilbert quasipolynomial of M we apply two substitutions to P}'(X). First sub-
stitute X by X/m and on the resulting polynomial Pj apply the linear substitution
X + X — j to obtain P; such that P;(i) = P/'(*2).

The Hilbert quasipolynomial of M is then @ with Q(i) = P;(i) when i = j
mod 7. O

In the proof we outlined a way to compute the Hilbert quasipolynomial. Al-
gorithm 6 describes this computation using only integer arithmetic. The function
LINEARSUBSTITUTION uses the well-known Horner’s rule (see e.g. [41]) in the spe-
cial case of evaluating a polynomial at X — a.

Example 4.14. We compute the Hilbert quasipolynomial for the cone Cy of Ex-
ample 4.5. Its Hilbert Series is

1—t+t* 1+ +1¢
(1—t)(1—13)  (1—13)2"°
The algorithm produces go(X) =1, ¢1(X) = X, ¢2(X) =1 and F)(X) = P/(X) =
1+ X, P/'(X) = X and after the substitutions

HCQ (t) =

Py = 143X = 143X
P = (X-1) = —1+iX
P, = 1+3(X-2) = $+iX.

Now we can easily evaluate the Hilbert function at integers:

Q0) = K(0) =1, Q1) = A1) =0, Q2) = A((2) =1, QB) = K(3) =2,
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Algorithm 6 Compute the Hilbert quasipolynomial

Require: m,d € Z,, h = (ho, ..., har_1)
Return: the coefficients of (d — 1)!-7%1.Q

1: function HILBERTQUASIPOLYNOMIAL(h, 7, d)

2 for j« 0tom—1do

3 95 < (g hjms - B anyr)

4: p; < HILBERTPOLYNOMIAL(g;, d) > (d—1)!- P}, see Lemma 4.10
5: for i < 0 tod—1 do
6
7
8

i i > yield coefficients of (d — 1)!-7%~!- P/
p; < LINEARSUBSTITUTION(p;, j)

return (po,...,pr_1)

Require: coefficients f = (fo,..., fa—1) of a polynomial F'(X) € Z[X]| and a € Z
Return: the coefficients of F'(X — a)
9: function LINEARSUBSTITUTION( f, a)
10: for step < 0 to d—2 do
11: for i <+~ d—2 to step do
12: Ji< fi—a fin
13: return (fo, ..., fo_1)

We will now generalize Corollary 4.11 to arbitrary Z,-graded cones.

Theorem 4.15. Let C be a cone with Hilbert series
ho + hit + -+ + hggp_1t9™1
Hqo(t) = .

Then the coefficients in the numerator are nonnegative and hy = 1. Furthermore,
the Hilbert quasipolynomial of C' has degree d—1 and the constant leading coefficient
ho + -+ har—1
md(d —1)!

Proof. According to Theorem 4.3 the coefficients of the numerator polynomial are
nonnegative for a semi-open simplicial cone D. Moreover, ho(D) = 1 if and only if
the 0 vector is not excluded; this only happens in the start simplicial cone, where no
hyperplane is excluded. Otherwise we have ho(D) = 0. In order to change a factor
1 — t* in the denominator to 1 — ¢™, the numerator is multiplied by

(1—17)
(1—t%)

which has no influence on the statements about the coefficients.

:1+tk‘+t2k?+‘_+tﬂ'—k"

Since we have required that the group generated by M is Z? and the grading is

surjective, there is a degree 1 element v = Z?:l a;x; € 7% with a; € Z and z; € M.



4.5. MULTIPLICITY AND VOLUME 50

Adding a large enough element of M whose degree is divisible by 7, for instance
Ty iy |ail z;, gives y € M with degree congruent to 1 modulo 7, say deg(y) = 1+br.
Consider again the M7 from the proof of Theorem 4.13. The addition with y

gives us the following homogeneous sequence of inclusions:

MO M (—b) <Y M2 (—2b) <Y - M (— (= 1)b) <L MO(—nb).
Therefore we have the chain of inequalities of the Hilbert polynomial values
H(M° i) < HM",i+b) < H(M?,i4+2b) < --- < H(M",i+(7—1)b) < H(M", i+mb),

which shows that all the H(M/,4) exhibit the same behavior in the limit i — oo,
hence all the PJ(X) have the same degree and leading coefficient.

The same argument as in Corollary 4.11 shows that the P are of degree d — 1
with leading coefficient

d—1
S

1) where s; = thﬂ.
i=0

So the s; are the same for all j = 0,...,7—1 and with s = 27:01 hy = Z;:Ol S;
we have s; = s/m. The subsequent substitutions do not change the degree, but the
first one, X — X/m, multiplies the leading coefficient by 1/7%~!. This completes

the proof. 0

4.5. Multiplicity and volume

Theorem 4.15 ensures that the leading coefficient of the quasipolynomial is con-
stant. This interesting invariant characterizes the growth of the number of lattice
points and is an estimate how “large” the cone is. We will now make this more
precise.

Definition 4.16. Let C' be a subset of R™ which spans a linear space of dimension
d. We define, if the limit exists,

W(C) = (d—1)! - tim HER)

k—00 k’d_l

as the multiplicity of C.

Be aware that the multiplicity depends on the lattice, the grading and also the
dimension. For a cone C' it is (d — 1)! times the leading coefficient of its Hilbert
(quasi)polynomial. If the cone is generated by degree 1 elements, the multiplicity is
an integral value, see Corollary 4.11.

Now let C' ¢ R? be a full-dimensional cone and P = C' N A; be the rational
polytope at degree 1, in this context we also say u(C) is the normalized volume
of P. This term is justified. It is connected to the usual volume vol, ;(P) of P
in R*, which is the Riemann integral [, 1dz. We can compute the integral via
approximating P by (d — 1)-dimensional cubes with edge length 1/k and counting
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the cubes as k goes to infinity. We will use the cubes that sit between neighboring
lattice points of the lattice (1/k)Z and approximate P by those cubes whose lexico-
graphically smallest vertex is in P. This vertex is a lattice point in (1/k)Z. In this
way computing the integral becomes a lattice point counting problem. Each cube
has volume (1/k)?1, so

H(C k) p(C)

li1(P) = [1dz = i ‘Pm%zd‘—r ‘kpmzd‘—l' =
volg_1( )—/P R R P N G Y N S Y I

The multiplicity is normalized to the standard simplicial cone generated by the
unit vectors in R%. This cone has Hilbert series 1/(1 — ¢)? and Hilbert polynomial
H(R%,k) = (k+1)“*/(d —1)! and therefore normalized volume 1.

Fortunately it is possible to compute the multiplicity without computing the
complete Hilbert quasipolynomial.

Lemma 4.17. Let o be a simplicial cone generated by elements x1, ..., xq of degrees
ki,...,kq, S a union of some facets of 0 and D = o\ S. Furthermore, let G be the
matrix with the generators xy,...,xq as rows. Then we have
det G
M( ) - k:l . kd'

Proof. By Theorem 4.3, combined with Proposition 3.8, the Hilbert Series of D
has coefficient sum |E| = det G and denominator (1 — tk1) ... (1 — tka). Following
Theorem 4.13 the leading coefficient of the Hilbert quasipolynomial then is

det G T T det G

o d—1 "k ky kieekg- (d—1)

0

The lemma also shows that the multiplicity is independent of the excluded facets.
For a non-simplicial cone again the triangulation is used and the multiplicities of all
simplicial cones in the triangulation are added up.



CHAPTER 5
Challenging examples

In this chapter we want to give some challenging examples that have been mas-
tered with the algorithms in this thesis. The first two sections demonstrate the
utility of the partial triangulation by examples for which it was previously unknown
whether the monoids are normal. In Section 5.3 the volume and the Ehrhart series
are used to determine the probabilities of some events discussed in voting theory
that are related to Condorcet’s paradox. Finally, Section 5.4 demonstrates the im-
provements of the presented algorithms in conjunction with parallelization.

5.1. Contingency tables

Monoids related to 3-way contingency tables were the motivating examples for
the development of the partial triangulation in Section 3.4. Let us give some back-
ground.

A dy x --- x d, contingency table is an r-way array of nonnegative integers. We
will interpret it as an element of Zil"'d”". Contingency tables are used in statistics
to represent the sampling result of r discrete random variables X7, ..., X,, where
X, has d; possible outcomes. The entry at position iy, ...,%, counts how often the
combined outcome has occurred.

Example 5.1. Assume a statistical survey asks persons for their favorite color (out
of four) and their age (divided into three age groups). The result of such a survey
would be a 4 x 3 contingency table. If additionally the sex is recorded, the result
could be the 4 x 3 x 2 contingency table 5.1.

male female

age; ageo ages age; ageo ages

blue 14 7 8 11 15 3
red 2 11 4 13 3 2
orange 8 12 2 10 10 5)
green 2 2 10 4 11 0

TABLE 5.1. A 4 x 3 x 2 contingency table.

A marginal distribution of a contingency table to the index set F' C {1,...,7}
is the contingency table considering only the random variables X; with j € F.

52
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This corresponds to summing over the dropped random variables. In the examples
considered here, only one random variable is dropped and every resulting count is the
summation along every line, leading to an (r—1)-way contingency table. The monoid
of possible marginal distributions by taking line sums of d; x --- X d, contingency
tables is given by all these line sums to the index sets F; = {1,...,r} \ {j} for
g=1,...,7.

Example 5.2. For 2-way contingency tables the marginal distribution by taking
line sums is the combination of the two 1-way contingency tables which are the row
sums and the column sums.

The marginals by taking line sums of the 4 x 3 x 2 table from example 5.1 are
the combination of the three tables in Table 5.2.

age; ages ages male female male female
blue 25 22 11 blue 29 29 age; 26 37
red 15 14 6 red 17 18 ages 32 38
orange 18 22 7 orange 22 25 ages 24 10
green 6 13 10 green 14 15

TABLE 5.2. The marginals by taking line sums of Table 5.1.

The contingency tables of a fixed size form a monoid which is generated by the
tables with a single entry 1. Their marginal distributions are 0-1-vectors which have
a single entry 1 in each of the » components. They generate the monoid of possible
marginal distributions. Therefore, the monoid, derived from a x b X ¢ contingency
tables by taking line sums, is generated by a-b-c vectors in dimension a-b+a-c+b-c.
In this thesis such monoids were used multiple times as test examples and denoted
by Aabc.

Example 5.3. The monoid derived from 3 x 2 contingency tables by taking line
sums is generated by the following 6 generators.

1 0 01

0
0
1
0

OO = O
OO = =
— == 0 OO

SO = O O

0 110

Hibi and Ohsugi examined in [30] whether these monoids are normal. If such
a monoid is normal, it implies that the possible marginal distributions are only
restricted by linear equations and inequalities, and all integral tables inside the cone
defined by the constraints are actually marginals of contingency tables.

The normality classification of Hibi and Ohsugi [30, Theorem 6.4] left the cases
4x4x3,5x4x3andb x5 x3open. The computations of R. Hemmecke and
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M. Képpe [6] and those presented in Section 3.4 independently showed they are all
normal. Therefore we have the following theorem.

Theorem 5.4. Let dy > --- > d, > 2 be integer numbers. The monoid of taking
line sums of dy X dy X - -+ X d, contingency tables is normal if and only if its size is

(Z) d1><d2, 07”d1><d2><2><...><2, or
(7,7,) d1Xd2X3withd2§d1§5.

The computation times and additionally data on A553 and A643, which is not
normal, are given in Table 3.2.

5.2. Cut monoids of graphs

In this section we will examine the normality of cut monoids of graphs, which
are of interest in algebraic statistics.

In the following let G = (V, E) be a simple (without loops or multiple edges)
undirected graph on a vertex set V' with edges . We will use the vertex set V' =
{1,...,n} and label the edges E = {ey,...,e,}. We assume the reader is familiar
with the basic notations in graph theory and refer to [18] for more information.

Definition 5.5. A cut of G is a decomposition of the vertex set V = A B into
disjoint subsets A and B. Each cut {A, B} defines a 0-1-vector dg({A, B}) € Z*™
where, for 1 <i <m,

(i) the i-th entry is 1 if and only if the vertices of edge e; belong to different
sets of the cut, and

(ii) the (i +m)-th entry is 1 if and only if the vertices of edge e; belong to the
same set of the cut.

The cut monoid Mg is the monoid generated by all dg({A, B}).
Example 5.6. Consider the graph with vertex set V = {1,2,3,4} and edges e; =

{1,4}, ea = {2,3}, e5 = {2,4}, es = {3,4}, as pictured below. Its cut monoid is
generated by the eight vectors dg({A, B}) listed in the table below.

Ain cut {A, B} dg({A, B})

0 000O0T1T1T1°1

{1} 10000111

{2} 01101001

€3 €2 {3} 01 011010

{4} 10110100

O—©@— @ 1,2} 11100001
{1,3} 11010010

{2,3) 00111100

It is easy to see that the cut monoid of a graph with n vertices and m edges
has 2(*=Y generators in Z*™. The second half of the cut vectors is the same as the
first half with all bits flipped. This implies that the generators are homogeneous in
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degree m with respect to the total grading. Moreover we get an embedding of the
cut monoid into Z™! given by (ai, ..., asm) — (a1, .., am, (a1 + -+ + agm)/m).

In the literature cut monoids appear in terms of their cut ideals [37]. Also the cut
cone and the cut polytope which are generated by the first halves of §g({A, B}), are
well-studied, e.g. they are central objects in [16]. Here it is important to differentiate
between the “non-homogeneous” cut cone and the cone over the cut polytope, which
we will discuss. It is known that the cut polytope is full-dimensional, which implies
that the cut monoid has indeed rank m + 1.

Sturmfels and Sullivant ([37]) stated the following very interesting conjecture.
It uses the concept of a minor of a graph G, that is a graph which can be formed
from G by deleting edges and vertices and by contracting edges.

Conjecture 5.7. The cut monoid of a graph G is normal if and only if G is free of
Ky minors.

Here K3 is the complete graph on 5 vertices. A computation with Normaliz
showed that the cut monoid of Kj is not normal. In [6] we validated the conjecture
for all graphs up to 8 vertices directly by checking the normality of all cut monoids
of graphs without K5 minors and at most 8 vertices.

It is known that the following operations on a graph G preserve normality of the
cut monoid:

(i) deletion of a vertex with all attached edges, equivalently, taking an induced
subgraph [37, Lemma 3.2 (1)],
(ii) contraction of an edge [37, Lemma 3.2 (2)],
(iii) deletion of an edge [29, Theorem 2.3],
(iv) taking a minor (follows from (ii) and (iii)).

Furthermore, Ohsugi showed that the cut monoid of the clique sum, also called
k-sum, for k = 0,1 or 2 is normal if and only if the cut monoids of the summands
are normal [29, Theorem 3.2]. This allows to utilize a decomposition result from
graph theory, that characterizes the edge-maximal graphs with at least 3 vertices
and without K5 minors as 1 or 2 sums of K3, Ky, 4-connected plane triangulations,
and the Wagner graph, see Diestel [17, p. 181]. The cut monoids of K3 and K, are
known to be normal. The Wagner graph is a non-planar graph that is formed from
an 8-cycle by adding edges between opposing vertices in the cycle. Ohsugi used
Normaliz to show the normality of the Wagner graph’s cut monoid and concluded
that it is enough to show the following conjecture in order to prove Conjecture 5.7.

Conjecture 5.8. The cut monoid of a graph G is normal if G is a 4-connected plane
triangulation.

Plane triangulations are exactly the edge-maximal planar graphs. These graphs
have m = 3n — 6 edges if n is the number of vertices, see [18, Proposition 4.4.1].
Recall that planar graphs never have a K5 minor.

To give more evidence for the conjecture we have verified it computationally for
graphs with up to n = 10 vertices. The result of Ohsugi is here very helpful to
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reduce the number of graphs to check. There are 85, 767 non-isomorphic, connected
graphs without K5 minor on 9 vertices, but only 4 plane triangulations that are
4-connected. Also note that proving the Conjecture 5.8 for graphs up to n vertices
proves the original Conjecture 5.7 for graphs up to n vertices. This allowed us to
show computationally the following.

Proposition 5.9. Let G be a graph with not more than 10 vertices. Then the cut
monoid of G is normal if and only if G is free of K5 minors.

We use the software nauty 2.5 [28] to generate all maximal 4-connected planar
graphs with n vertices for n < 10. For n < 5 there exists no such graph and there
are 1 graph each for n = 6 and n = 7, 2 graphs for n = 8, 4 graphs for n = 9 and
10 graphs for n = 10. The command

geng n m:m -C -d4 | planarg > n_maxplanar

uses geng from nauty to generate all 2-connected graphs with n vertices, m = 3n—6
edges and minimal vertex degree of at least 4. Afterwards planarg writes only the
planar graphs into the file n_maxplanar. Then the command

labelg n_maxplanar | listg -A n_maxplanar.adj

labels them in some canonical way and prints the adjacency matrices to the file
n_maxplanar.adj.

The correct number of edges ensures that these graphs are maximal planar.
There can be graphs in the list that are not 4-connected, but all are at least 2-
connected and every vertex has at least 4 edges attached which are necessary con-
ditions. We tested the produced graphs with an own small program and found that
for n up to 8 all these were actually 4-connected and for n = 9 there was 1 of the 5
generated graphs not 4-connected. Figure 1 shows the 4-connected graphs for n = 9.

FiGURE 1. The 4-connected plane triangulations with 9 vertices.

To create the input for Normaliz we are going over all cuts {A, B} by starting
with the empty set A and its incidence vector (0,...,0), interpreted as a binary
representation of a natural number and increasing it by one to go over all subsets.
We take only those subsets with at most 1/2 elements whose complement was not
already considered. This ordering of the generators lead for the cut monoids of the
4 open graphs with 9 vertices to triangulations that generate more than 4 * 108
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(unique) candidates and more than 3 - 10% evaluated simplicial cones in the partial
triangulation with duplicate avoidance, see Section 3.6. The final cones have 100-300
support hyperplanes while during the computation the support hyperplane numbers
exceed 108, The computation for one example takes more than 16 hours with 20
threads on our Sun Fire X4450.

For these monoids it has proven useful to first compute the support hyperplanes
and use them as input to Normaliz. Normaliz will then compute the extreme rays
and use them as cone generators. This leads to another ordering of the generators
which in these cases gives a much simpler triangulation. The support hyperplane
numbers in the process stay below 10° and the candidates below 107. The prelimi-
nary support hyperplane computation for one example takes about 3 hours and the
following much easier Hilbert basis computation (including the preceding extreme
ray computation) takes only 30 minutes, which in total is much faster than the direct
computation.

It is not clear to us how we could find an order of the generators that yields an
easy (partial) triangulation and small computation times, but we often observe that
some kind of “natural” orderings of the generators give good computation times. Of
course this not a mathematical precise formulation and will be an interesting topic
for further investigations.

The small number of support hyperplanes at the end and the advantage of the
reordering suggest that it might be possible to find an even better ordering of the
generators. Tests showed that the following generation rule for the cuts leads to a
favorable order of the generators. We go over all subsets with the incidence vector as
before but now take all subsets that do not include the last vertex. Then the highest
number of support hyperplanes in the computations is 10,792 and all 4 examples
together need just 5 minutes.

With this ordering we were also able to show the normality for the cut monoids
of all 10 maximal planar 4-connected graphs with 10 vertices. The biggest of these
examples produced a partial triangulation with more than 15 - 10 simplicial cones
and almost 7 - 10® candidates for the global reduction. To handle the huge number
of candidates we had to make intermediate global reductions. For the intermediate
reductions the duplicate free creation of the candidates as described in Section 3.6
was a crucial point. The computation of this example took 30 hours.

One remark on the conjecture. Since the property “having a normal cut monoid”
is a minor-closed property, the theorem of Robertson and Seymour [18, Theorem
12.5.1] ensures that there is only a finite set of minimal forbidden minors. Since we
could not find another forbidden minor with n < 10 vertices it is quite possible that
the conjecture holds. Even if not, it would be possible to reformulate the conjecture
with a finite set of graphs that have to be excluded as minors.
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5.3. Condorcet’s paradox and related examples from voting theory

In this section we present voting schemes that were discussed by Schiirmann in
[33]. We compute the probabilities of interest via normalized volumes of cones and
additionally the Ehrhart series with Normaliz.

Consider an election with n candidates and k voters, where every voter 7 chooses
a linear preference ordering a;; >; --- >; a;, of the candidates. We record the
outcome of such an election by counting the multiplicities of the N = n! different
orderings in v = (vq,...,vnN).

For a fixed number of candidates n the possible outcomes are the integral points
in the cone RY. Those with k votes are exactly the integral points in the polytope

A NRY,

where A, is the affine hyperplane of degree k elements with respect to the grading
deg((vy,...,vn)) = v1 + -+ -+ vn. In this perspective the Ehrhart function counts
the number of possible outcomes depending on the number of voters.

There are different ways to decide which candidate wins the election. We say
candidate a beats candidate b when more voters prefer a over b than the other way
round, i.e.

|{za>zbz:1,,k}\>|{zb>zaz:1,,k}\,

and a is the Condorcet winner if a beats all other candidates. It is named after
the Marquise de Condorcet who observed that a Condorcet winner does not have
to exist, since the relation “beats” is not transitive in general. The possible non-
existence of a Condorcet winner is called Condorcet’s paradoz.

We now want to determine the probability of Condorcet’s paradox under the Im-
partial Anonymous Culture assumption which presupposes that all possible voting
results are equally probable. Under this assumption the computation of proba-
bilities translates to counting lattice points. With this in mind let ¢, x(a) be the
probability that candidate a is the Condorcet winner. Because the candidates are
interchangeable and the events are mutually exclusive, the probability that there
exist any Condorcet winner is ¢, ; = nc, x(a).

We will fix a = 1. Let C, be the semi-open cone, which includes all results
with Condorcet winner a. It is cut out in RY by the (n — 1) strict homogeneous
inequalities given by the conditions that a beats all other candidates. For n = 4
they are the inequalities A\;(v) > 0 with the first three linear forms in Table 5.3.
The preferences orders are sorted lexicographically, the first column corresponds to
1>2%3>4and thelast to4 >3 > 2 > 1.

Typically one is interested in the probabilities for a large number of voters. In
the limit for & — oo, the probability of a being the Condorcet winner is

. . |AvncC.nZN| . H(C. k) u(C)
cnla) = im enp(a) = lim A NRY N ZN| ~ koo HRY, k) p(RY) #(Cn).
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AM: 1111 11-1-1-1-1-1-111-1-11-1 1 1-1-1 1-1
1111111 1-1-11-1-1-1-1-1-1-1 1 1 1-1-1-1
A1 1111111 1-1-1-.1 11 1-1-1-1-1-1-1-1-1-1
A:-1-1-1-1-1-111111100O0O0O0O0O0O0O0O0O0TO
M0 0O0OOOOT711111-1-1-1-1-1-1 0 0 0 0 0 O
X 0 0O0O0O0O0O0O0O111111000O0O00-1-1-1-1-1-1

TABLE 5.3. Inequalities for Cy and Py

The semi-open cone C, has the same multiplicity as its closed version C,. One
way to see this is, that only full dimensional faces can contribute to the leading
coefficient of the Hilbert (quasi)polynomial, see also Section 4.5. Therefore we have
cn(a) = pu(Cy) = u(C,), and the probability for having a Condorcet winner is

cn = np(Cy).

For two candidates there always is a Condorcet winner (or a draw, what we
can neglect for large k) and for three candidates the probability 15/16 is easy to
compute. For n = 4 it is more challenging, but Normaliz can now compute it and
gives

— 1717 1717
=—— h = —— ~ (.8384.
w(Cy) S19y’ Dence ¢ = 500 0.838

The cone Cj is of dimension 24 and has 234 extreme rays. This computation is done
within seconds with Normaliz, see Table 5.5 for more information on the size of the
example and computation times.

A simpler and more widely used voting scheme is plurality voting. There the
voters only vote for their favorite candidate. In other words, the plurality winner is
the candidate who has more first places in the preference orderings than every other
candidate. The Condorcet efficiency of plurality voting is the conditional probability
that the Condorcet winner is also the plurality winner, under the precondition that
a Condorcet winner exists. We compute the complementary probability of a being
the Condorcet winner but another candidate b being the plurality winner. The cone
P, containing these outcomes for @ = 1 and b = 2 is a subcone of C,, with the
additional n — 1 inequalities ensuring that 2 wins the plurality vote against all other
candidates. For n = 4 these are given by A4, A5 and \g in Table 5.3.

Therefore, the Condorcet efficiency of plurality voting is

cp —n(n — 1)M(Pn).

Pn =

The computation of the normalized volume for P is significantly more complicated.
This cone has 3928 vertices and Normaliz computes

— 3694037185290163550681491

1(Fy) = :
205426954327818240000000000
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As a result the Condorcet efficiency for four candidates is

cy — 12u(Py) _ 10658098255011916449318509

= ~ (0.7426.
cy 14352135440302080000000000

In plurality voting versus plurality cutoff two rounds of plurality voting take
place. The first two candidates of the first round get into a run-off election. In this
voting scheme one asks for the probability that the second placed candidate of the
first round wins the run-off vote. We will work with the cone V' where we fix that
candidate 1 wins in the plurality vote (i.e. has the most first places), 2 is second,
and in general candidate a gets ranked a-th; but 2 wins the run-off vote. In the case
of four candidates the inequalities that are additional to those of RY are given in
Table 5.4.

1 111r11-1-1-1-1-1-1 0 0O O O O O O O O O O O
oo0o60o0o0o01711111-1-1-1-1-1-1 0 0 0 0 0 O
o o0oo06o0oo0o0000O0OO0OQOT1TI1T1111-1-1-1-1-1-1
-1-1-1-1-1-1111111-11-11-1 1-1 1-1 1-1 1

TABLE 5.4. Inequalities for Vj

In this case the cone has 1872 generators and normalized volume

 2988379676768359
©292162779488452608°

Since the outcome of the first plurality vote was fixed, we have to multiply this value
by n! to get the total probability that the winner of the first round looses the run-off
election. In this case it is 24 - p(Vy) ~ 0.2455.

All these three values have been determined also in other ways, see [33] for
references. Normaliz can even compute the complete Ehrhart series for the closures
of these cones. The size of the triangulation and the needed computation times are
presented in Table 5.5. The computations are done with the recent development
version of Normaliz, see the next section. Only the Ehrhart series computations
of P, and V} are done with earlier versions and not redone because of the high
computation times.

(Vi)

number of computation times
extreme rays simplicial cones volume Ehrhart series
Cy 234 1,344,671 3 sec 4 sec
E 3,928 361,150,173,336 78:14 h 218:14 h
Vi 1,872 257,744,341,008 59:58 h 175:11 h

TABLE 5.5. Cones of voting events (times on x4450 with 20 threads)



5.4. COMPUTATION TIME IMPROVEMENTS 61

The order of the generators changes the triangulation and, like in the cut monoid
examples from the previous section, this has a considerable influence on the compu-
tation times of these examples. We have observed that a good ordering is obtained
by sorting the generators by degree, but within a degree keeping the input order-
ing. Therefore we have added the sorting by degree as a general preliminary step in
Normaliz.

Schiirmann suggested in [33] to exploit the symmetry in the examples to sim-
plify the computations. This can reduce the dimension significantly, but instead of
“simply” counting the lattice points, they have now to be counted with the right
weight, which is given by a polynomial. For this kind of generalized Ehrhart series
computations we have developed NmzIntegrate, an offspring of Normaliz, see [11].

5.4. Computation time improvements

This section contains computation time comparisons to document the striking
effect of the presented algorithms. For this purpose we compare two versions of
Normaliz. The version 2.2 reflects the state of development before the author joined
the development team. We compare it with the recent development version from
November 21, 2013, available at github!.

Besides significant performance gains also the functionality was extended. Ad-
ditional input possibilities have been implemented: congruences to define a lattice,
and combinations of inequalities, equations and congruences. A very important ex-
tension is the possibility to use arbitrary Z-gradings to compute the multiplicity
and Hilbert series, which beforehand was only possible for monoids that were gen-
erated in degree 1. This was for example necessary to compute the multiplicities
and Ehrhart series for the voting schemes in the previous section. Furthermore,

Normaliz was connected to the computer algebra system CoCoA [15] via its library
CoCoALib [2].

Hilbert basis Hilbert Series both
v 2.2 now v 2.2 now v 2.2 Nnow
small 7.2 sec 2.8 sec 3.5sec 0.3 sec 17.0 sec 3.2 sec
medium 10.1 sec 2.3 sec 25.8sec 1.4 sec 23.9 sec 1.8 sec
big 3:02 min  3:18 min — 1.4 sec —  3:25 min
huge 4:52 min  2:58 min 7sec 0.7sec  3:00 min 2:23 min
A443 52 min 0.7 sec 51 min 49.9 sec 54 min 49.8 sec
A543 >3 days  39.9 sec — 43 min — 43 min

TABLE 5.6. Timing comparisons between Normaliz version 2.2 and
the recent development version (serial on x4450)

Thttps://github.com/csoeger/Normaliz
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The timing comparisons are listed in Table 5.6. The first four examples are from
the Normaliz distribution, additionally two contingency table monoids are used. All
computations are done using 64 bit arithmetic. The Hilbert series computation of
“big” fails in version 2.2 with the 64 bit arithmetic because of an overflow during the
lifting, see [9] for details on the lifting process. It is doable with higher precision,
but we do not include the time since it is not suitable for comparisons.

It is possible to compute the Hilbert basis of A543 with version 2.2, but it takes
some days and more than 50 GB of RAM. The Hilbert series computation was not
possible, because during the lifting, the number of hyperplanes explodes and quickly
exceed the 128 GB memory on our system. In contrast to this, Normaliz now needs
only 50 MB for the Hilbert basis computation and 600 MB for the Hilbert series.

In the successful computation of previously unreachable examples the paralleliza-
tion plays an important role. The theoretical aspects of the parallel algorithms have
already been discussed. On the implementation side, we use the OpenMP program-
ming interface [31]. It offers the possibility to make only small changes to the source
code and reduces the technical difficulty for the programmer. Nevertheless, one has
to exercise caution in the implementation to avoid performance problems. As com-
piler we use g++ from the GNU Compiler Collection [19], which implements the
OpenMP API.

Table 5.7 shows the times for serial execution, with 4 threads, and with 20
threads for some examples with acceptable serial time. Furthermore, the efficiency
of the parallelization, which is the factor of speedup per used thread, is given.

serial 4 threads 20 threads
computation time time effic. time effic.
A553 Hilbert basis 213:26 min 50:03 min 1.07 10:17 min 1.04
A543 both 43:24 min 12:32 min 0.87 3:04 min 0.71

lo6 facet Hilbert series 21:17 min 7:49 min  0.68 2:25 min  0.44

TABLE 5.7. Parallelization efficiency (on x4450)

In the A553 computation most of the time is spent in the global reduction.
Normally an efficiency of 1 would be optimal. But in this example, and to some
extent also in others, the global reduction profits overproportionally from the par-
allelization. From the algorithmic point of view there is no reason identifiable, see
Algorithm 4. Most probably it is due to some internal optimizations that happen
to work more efficiently with parallelization.

In the other two examples the time is almost completely spent with triangulating
the cone and evaluating the triangulation. For A543 the efficiency is still very good,
especially considering that the efficiency of our x4450 system is only about 0.9 when
running 20 serial computations at the same time. In the example “lo6 facet” we
observe lower efficiency. One reason is that it is simply too small to profit from high
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levels of parallelization, for example the number of hyperplanes does not exceed
12,000. Still the parallelization reduces the execution time of this example by a
factor of 8.8.

The combination of algorithmic improvements and parallelization already helped
to solve open problems, like the normality of monoids of marginal distributions of
contingency tables, and gave evidence for open conjectures, like Conjecture 5.7.
They also provide the possibility to increase the range of examples that can be
computed, and in this way support mathematicians in their research. In conclusion
we think these algorithms have proved to be very useful and successful.



CHAPTER 6
Bounds

Normaliz provides two different possibilities for the used integer type. One is the
(at least) 64 bit C++ integer type long long, the other is the arbitrary precision
type mpz_class from the GMP library [40]. Table 3.1 demonstrates how big the
advantage of machine integers over multiple precision integers is; machine integers
can be faster by a factor of 10 or more. Of course we can only use them if the
numbers in the calculations are small enough to fit into the 64 bit range.

Normaliz offers the possibility to perform checks for arithmetic overflow (via
command line option -e). In this case for most calculations one of the following two
checks are performed.

(i) The calculation is also done modulo a prime p and the results are compared
modulo p, e.g. for scalar products.

(ii) The result of the computation is validated directly, e.g. for solutions of
systems of linear equations it is checked if the result indeed solves the
system.

Since all algorithms have been detailed in this work we now want to examine
how big the integers in the algorithms can grow and give bounds that can be used
to decide whether it is safe to use machine integers. And also where, and where not,
tests for overflow are necessary to ensure correct results.

6.1. Bounds for the determinants

For a vector y = (y1, . ..,yq) € R? we will use the 2-norm ||yll, = /¥ + - + y2
and the maximum norm |[|y||_ = max{|y1],...,|ys|}. In order to take the norm of
a matrix we will consider the matrix as a single long vector.

As we saw in Section 3.3 the determinant ¢ of a d X d matrix G of generators
of a simplicial cone is an important size since most computations in that simplicial
cone can be done modulo §. The size of the determinant can easily be bounded by

det G| < d! - |G| %,

using for example the Leibniz formula. Two better bounds are given by Hadamard’s
inequality, see e.g. [41, Theorem 16.6].

Theorem 6.1. Let A € R¥™? be a matriz with row vectors x1,...,xq € RY. Then

d
[det A| < [l [ly - lzall, < d2 [|A]1S, -

64
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The prove of the first inequality uses the Gram-Schmidt orthogonalization and
the second one is the simple estimate ||z;, < Vd ||z ..

Consider the cone generated by z1, ..., z, € Z%. For the further analysis we de-
fine the maximal entry M = max{||z1||.,. .., ||zx||} and 2-norm of the generators
N; = ||x;|| fori =1, ..., n. In this chapter we will assume that Ny > Ny > --- > N,,.
The absolute values of all determinants that can occur in the course of the compu-
tation can be bounded with Hadamard’s inequality by D = Ny --- Ny, the product
of the d largest norms of the generators.

Example 6.2. In Table 6.1 we compare the presented determinant bounds for the
random examples that were also used in 3.3, random7x70 which are 70 generators
in dimension 7 with random entries from 0 to 9, and the 4 x 4 x 3, 5 x 5 x 3 and
6 x 4 x 3 contingency tables.

example dim. d\M ds: M D=N;---Ny
random?7 7 35 bits 32 bits 27 bits
random7x70 7 35 bits 32 bits 29 bits
random12 12 67 bits 60 bits 50 bits
random20 20 125 bits 107 bits 91 bits
A443 30 108 bits 74 bits 33 bits
Ab53 43 176 bits 117 bits 54 bits
A643 42 170 bits 114 bits 48 bits

TABLE 6.1. Comparison of determinant bounds

Note that the values are taken after the transformation into a full-dimensional
cone. For the contingency table examples in the original lattice we have |jv]|* = 3.
After transforming into lower dimension the norm of the vectors is not 3 anymore,
but the bound for the determinant is still smaller because of the smaller dimension.

In practice these bounds are still far of from the actual values most of the time.
In random7x70 the biggest determinant in the full triangulation is 1624079, which
has 8 bit less than the Hadamard bound. For A443 this is more extreme, there
biggest determinant is 2.

The Hadamard bound is significantly better than the other bounds and its com-
putation is very cheap in comparison to the steps that follow it. Therefore we will
always use it.

With this knowledge we can already bound the norms of most vectors in the
computation. All vectors v that appear as candidates for the Hilbert basis are
from some set E as in Theorem 3.5, i.e. they are of the form v = Zle ¢;xj, with
0 < ¢ < 1. Hence we have

[v]ly < Ny +---+ Ny < dN; and ||v]| < dM.
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The coefficients of s and b in the computation of the v, see Section 3.3, are reduced
modulo the determinant, so especially bounded by D.

6.2. Bounds for the support hyperplanes

Now we have a look at vectors in the dual space, namely the linear forms A
of support hyperplanes. One possibility to compute these is to solve the system
G\’ = e; with some unit vector ¢; and matrix of generators G as in Section 2.1. Then
Cramer’s rule gives the solution as A/ = (det G, ;)/(det G) where G ; is obtained
from G by deletion of row ¢ and column j. In the algorithm from Section 2.1
we compute the integer version N = detG - N’ = (det G, ;);=1,.. 4 and afterwards
divide by the greatest common divisor of the entries to get the coprime version
A= N/ (ged(N)).

Even if we do not use Cramer’s rule in practice, we have })\;} = |det G, | <
Ny -+ Ng_1. This bounds the norms by

Nl < Ny---Ngqand [N, < Vd-Ny--- Ny

These bounds certainly also hold for every support hyperplane A with coprime entries
that may occur.

When solving a system of linear equations Gy = b with a general vector b € Z¢
we get analogously ||y, < Ny --- Ng_q - ||b]|, for the integer vector y' = det G - y.

6.3. Bounds for scalar products

The most important values beside the entries of the vectors and hyperplane linear
forms are the scalar products between them, A(v) = (A, v). To bound these we use
the Cauchy-Schwartz inequality

(v, W) < vl - flwll, -

The value A(x) with a hyperplane A and a generator = appears in the Fourier-
Motzkin elimination and also as the height of a generator in the partial triangu-
lation criteria. The Cauchy-Schwartz inequality gives us [A(z)| < ||Al, - [|z]l, <

VAN -~ Ny_y - Ny. We can simplify and slightly sharpen it to
IA(z)| < VdD.

This uses the fact that when GA = e; we have A(z) = 0 whenever x is one of the
rows of G and not row 1.

In the global reduction for candidates v = Z?Zl giz;, with 0 < ¢; < 1 the values
A(v) are used to decide reducibility. Using the triangle inequality and previous
results we get

| —

x]z
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Two further types of scalar products come up in the algorithms. Firstly those
with a grading linear form deg. This grading can be user defined, or it is found by
Normaliz such that all generators of the cone have the same degree, or it is a grading
used in the global reduction. In any case it is a single linear form, and its norm can
be explicitly computed. We can bound the resulting scalar products by

|deg(v)] < [|deg]l, - (N1 + - - 4 Na) < [|deg]|, - dNy.

So we have that |deg(v)] is also bounded by dv/dD as long ||deg||, < VdN,--- N.
The second type is the evaluation of a hyperplane at the order vector O¢c. In
Normaliz the vector O¢ is chosen as linear combination of the generators of the start
simplicial cone with positive integer coefficients. If we choose the coefficients to be
1 it is also ensured that |A(O¢)| < dv/dD. Depending on how large the difference
between the allowed size and the bound is, we can also allow larger coefficients.

6.4. Bounds for intermediate values

From the last sections we know that the results of the algorithms and values
that are used in comparisons can be bounded by dvdD. But so far we have not
considered intermediate values, for example in the Gaussian reduction or in the
Fourier-Motzkin elimination. And, in fact, the bounds do not apply to them.

Large intermediate values which cause an overflow do not necessarily imply a
wrong result. In computation that only apply addition, subtraction, and multipli-
cation, i.e. do not divide, it is possible to calculate modulo 24 and the result will
be correct (in Z) as long its maximum norm is bounded by 2. But comparisons
between two numbers, divisions, and divisibility tests rely on the correct value and
not only on the congruence class.

For instance in the Fourier-Motzkin elimination, on computes
,u' = )\1(l‘))\2 — )\Q(l‘))\l

to find a new linear form p = u//ged(y') . We can ensure that the coefficients of
A, A2, 2, A (), Ag() and g are bounded by v/dD, but not A (z)Xa, Aa(x)A;, and
especially not p/'.

Example 6.3. We will show this effect on the cone C' generated by z; = (—1,a),
7y = (1,a) and 23 = (a,a — 1) with a large integer a. Then we have D < /2a?
and dvdD < 4a? and these are representable with 64 bits if we choose a = 2%.
Via inverting we get the hyperplanes A\; = (a,1) and Ay = (—a,1). In the first
Fourier-Motzkin elimination step we compute

o= Ai(w3) A — Aa(w3) )\
= (é®*+a—1)(-a,1) = (=a*+a—1)(a,1)
= (—a®—d*+a,a*+a—1)+(a®—ad*+a,a®>—a+1)
= (—2a* +2a,2d*) = 2a(—a+1,a)
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In this example the intermediate values would cause an overflow in 64 bit arithmetic,
but the result would still be correct, because ||i/|| = 2a* = 261 < 2%,

The intermediate values and i/ are bounded by
11l < Pa@)] - [allo + [Ao(@)] - 1Ml < 2VdAD - Ny -+~ Nooy.

If this bound is exceeded, we have to apply some control whether the result is correct.
More on this in Section 6.6.

When solving linear systems using Gaussian reduction the intermediate values
are more complicated to bound. But if we restrict to certain row operations it is
possible. Bareiss [3] showed that, when using only a special type of row operation,
the coefficients in the intermediate systems are all minors of the input matrix and
can therefore be bounded by the Hadamard bound D. Bareiss also gave more
advanced algorithms for which this bound applies, for instance the division free
two-step algorithm [3, (2.8)].

6.5. Bounds for the Hilbert series

In the Hilbert series computation the numerator is the critical component. The
denominator is very well controllable as we saw in Chapter 4. The degree of the
numerator in a simplicial cone generated by xi,..., x4 is bounded by

deg(y +e(y)) < deg(z1 + - -+ 24),

compare Theorem 4.3. A bound for this degree already has been discussed in Section
6.3.

The sum of the (nonnegative) coefficients in the numerator of the Hilbert series
of a simplicial cone is the determinant of the generator matrix, hence it is bounded
by D. Thereby the coefficients of the sum in one denominator class is bounded by
the sum of the determinants. But exceeding the precision limit here would mean to
enumerate and evaluate more points than the precision can store. At the moment
this is practically not possible in reasonable time. Basing on an evaluation speed of
20 million points per second on one core (measured speed on a modern system) it
would take 1000 such cores still 14 years to reach the limit of 64 bit integers.

When summing series with different denominators and calculating the (quasi)-
polynomial the situation changes. Because of multiplications and other operations,
the size of the coefficients can grow more quickly. Since those operations use only a
very small part of the time, we always use the arbitrary precision type here.

6.6. Application of the bounds in Normaliz

In Normaliz we want to use 64 bit signed integers since they give the best per-
formance on most modern computers. With this integer type we can represent all
values that are bounded in absolute value by B = 2%. In this chapter we have
gathered the following bounds.
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Theorem 6.4. Let C C RY be a cone generated by integer vectors X = {xy,...,1,}
and let the d largest 2-norms of the generators be Ny, ..., Ng. With D = Ny --- Ny
we have:

(i) |det G| < D for every matriz G of d generators,
(1t) | Mo £ Nv---Nqg < D for every support hyperplane Hy of a cone gen-
erated by a subset of X,
(i1i) |Nz)| < VdD  for every x € X, and
() |lvll, < dNy, |A(v)| < dVdD  for every candidate v for Hilbert basis,
especially for Hilbert basis elements.

If for a cone all bounds of Theorem 6.4 stay below the precision bound B, the
results will not cause arithmetic overflow. Otherwise we have to check the results
for correctness. A possible error check strategy is the following:

If 20/dD - Ny --- Ny (the bound for ||z/||, in a Fourier-Motzkin step) is bigger
than B, perform error checks in the Fourier-Motzkin elimination in the following
way. First test |A\i(z)| < By — |A2(z)| with By, = B/(Ny--- Ng_1). If this is not
the case there are two possibilities: Either do a second computation modulo p and
compare the results. Or take the scalar products with the involved generators to
verify the desired properties of the new linear form, i.e. u(x;) = 0 for the generators
in the intersection Hy, N H,, and p(z) > 0 for the new generator z.

If dv/dD > B, we have to verify the values A(v) in global reduction. For every
computed hyperplane A we first check ||A|l, < V/dNy--- Ny, also see Section 6.3. If
this is not the case, we do a second computation of every A(v) modulo a large prime
p and compare the results.

Is even VdD > B we have to check every computation or directly use higher
precision arithmetic.

For solving systems of linear equations one can use adequate algorithms as de-
scribed in Section 6.4. In the case that an algorithm is used for which the interme-
diate values cannot be bounded easily or the existing bounds exceed B, but still the
computation should be done with fixed precision, we can validate the solution in
the following way. First we check if the solution matches the norm bound; this has
to hold even if the intermediate values in the computation can grow larger. Then
we make a test multiplication with the input matrix, also here a bound was given
since it is a scalar product of bounded values. In this way we can verify the result
without the need of higher precision arithmetic.

If the values get too big we use the arbitrary precision arithmetic of the GMP
library. An alternative are modular algorithms, see e.g. [41]. Considering the timing
results of Table 3.1 it might be faster to do computation modulo a few primes than
with mpz_class directly. Here the bounds again play an important rule to see how
many primes are necessary to ensure the correct result.

In conclusion the presented bounds give the possibility to ensure from the begin-
ning that no overflow can occur for a wide range of examples. Even if it cannot be
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excluded completely, we have presented which computations are the critical ones,
that have to be checked. On the other hand the bounds give indications for which
examples it might be necessary to use arbitrary precision arithmetic.
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