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for my family

'I headed down the track

my baggage on my back

I left the city far behind

walking down the road

with my heavy load

trying to �nd some peace of mind

father said:

you'll be sorry son

if you leave your home this way

and when you realize

the freedom money buys

you'll come running home some day'

Gary Cowton





Contents

1 Introduction 1

2 Theoretic background 3

2.1 Thin �lms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1.1 Types of thin �lm growth . . . . . . . . . . . . . . . . . . . . . 3

2.1.1.2 Categorization of crystal structures . . . . . . . . . . . . . . . . 4

2.1.2 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2.1 Ferromagnetism of Fe, Co and Ni . . . . . . . . . . . . . . . . . 8

2.1.2.2 Magnetic anisotropy of thin �lms . . . . . . . . . . . . . . . . . 10

2.1.2.3 Magnetic domains and reversal process . . . . . . . . . . . . . . 13

2.1.2.4 Determination of anisotropy constants from magnetization curves
of di�erent sample directions . . . . . . . . . . . . . . . . . . . 15

2.2 Investigation of thin �lm magnetism via magnetooptic Kerr e�ect . . . . . . . . 18

2.2.1 Magnetooptic Kerr e�ect . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1.1 Principles of magnetooptic Kerr e�ect . . . . . . . . . . . . . . 19

2.2.1.2 Origin of magnetooptic Kerr e�ect . . . . . . . . . . . . . . . . 20

2.2.1.3 Description of magnetooptic Kerr e�ect by re�ection coe�cients 22

2.2.2 Vectorial magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2.1 Basic types and setup geometries of magnetooptic Kerr e�ect . 26

2.2.2.2 Quadratic magnetooptic Kerr e�ect . . . . . . . . . . . . . . . 28

2.2.2.3 Description of magnetooptic Kerr e�ect by permittivity tensor 29

2.2.2.4 Magnetooptic Kerr e�ect of tetragonal and cubic crystal structure 32

2.2.2.5 Determination of the separate components of the magnetization 35

2.3 Investigation of thin �lm structure via x-ray radiation . . . . . . . . . . . . . . 37

2.3.1 X-ray re�ectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1.1 Principles of x-ray re�ectivity . . . . . . . . . . . . . . . . . . . 37

2.3.1.2 Re�ectivity of a multilayer system . . . . . . . . . . . . . . . . 39

2.3.1.3 In�uence of interface roughness . . . . . . . . . . . . . . . . . . 40

2.3.2 X-ray di�raction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2.1 Principles of x-ray di�raction . . . . . . . . . . . . . . . . . . . 42

2.3.2.2 Specular di�raction . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2.3 Grazing incidence x-ray di�raction . . . . . . . . . . . . . . . . 47

2.3.2.4 Grazing incidence wide angle x-ray scattering . . . . . . . . . . 48

i



3 Investigated materials 51

3.1 Co on glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Fe on MgO(001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Co50Fe50 on MgO(001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Experimental details 55

4.1 Sample preparation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Molecular beam epitaxy for Co on glass and Fe on MgO(001) . . . . . . 55

4.1.2 Sputter deposition for Co50Fe50 �lms on MgO(001) . . . . . . . . . . . . 56

4.2 Determination of magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Principle MOKE setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Measurement procedure including calibration of Kerr rotation . . . . . . 60

4.2.3 Proportionality between measured signal and MOKE . . . . . . . . . . . 61

4.3 Determination of structural properties . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Beamline W1 and BW2 at HASYLAB (DESY) . . . . . . . . . . . . . . 62

4.3.2 Beamline BL9 at DELTA . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Uniaxial magnetic anisotropy for thin Co �lms on glass studied by magne-

tooptic Kerr e�ect PREPRINT 67
T. Kuschel, T. Becker, D. Bruns, M. Suendorf, F. Bertram, P. Fumagalli, and J. Wollschläger
Journal of Applied Physics 109, 093907 (2011)

6 Vectorial magnetometry using magnetooptic Kerr e�ect including �rst- and

second-order contributions for thin ferromagnetic �lms PREPRINT 69
T. Kuschel, H. Bardenhagen, H. Wilkens, R. Schubert, J. Hamrle, J. Pi²tora, and
J. Wollschläger
Journal of Physics D: Applied Physics 44, 265003 (2011)

7 Magnetic characterization of thin Co50Fe50 �lms by magnetooptic Kerr e�ect

PREPRINT 71
T. Kuschel, J. Hamrle, J. Pi²tora, K. Saito, S. Bosu, Y. Sakuraba, K. Takanashi, and
J. Wollschläger
Journal of Physics D: Applied Physics 45, 495002 (2012)

8 Magnetization reversal analysis of a thin B2-type ordered Co50Fe50 �lm by

magnetooptic Kerr e�ect PREPRINT 73
T. Kuschel, J. Hamrle, J. Pi²tora, K. Saito, S. Bosu, Y. Sakuraba, K. Takanashi, and
J. Wollschläger
Journal of Physics D: Applied Physics 45, 205001 (2012)

ii



9 Structural and magnetic properties of Fe �lms on MgO(001) 75

9.1 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 Summary and Outlook 81

Bibliography 85

List of Figures 92

iii



iv



1

1 Introduction

The discovery of the giant magneto resistance (GMR) in 1988 by Peter Grünberg [1] and simul-
taneously by Albert Fert [2] was one of the most important preconditions for the development
of the spintronic research. This spin-dependent e�ect in a magnetic/non-magnetic/magnetic
layer system is for example applied in computer hard drives.

If the non-magnetic layer is replaced by an insulating spacer the resulting spin-dependency of
the electron tunneling probability is called tunneling magneto resistance (TMR). This e�ect
was discovered by Michel Jullière in 1975 [3] and is the base of spin-dependent devices like
magnetic tunnel junctions (MTJs), which are for example key components in magnetoresistive
random access memory (MRAM) devices [4, 5].

In MTJs the tunnel barrier acts as a spin valve [6, 7] demonstrating the basic idea of spintron-
ics. Here, the information carrier is the electron spin not the electron charge as in classical
electronics. This concept led to further discoveries of spin-dependent e�ects in the recent
years, for example the spin Hall e�ect [8, 9] and the inverse spin Hall e�ect [10]. The latest
discovered spin-dependent e�ect is the spin Seebeck e�ect discovered by Ken-ichi Uchida in
2008 [11]. This spin caloric e�ect induces a spin current by a temperature gradient. Fur-
thermore, a Seebeck e�ect can also be detected in MTJs which is called magneto Seebeck
e�ect [12].

The most common materials of MTJ electrodes are based on transition metals like Co and
Fe or on intermetallic compounds as Co50Fe50 [13, 14] due to their high Curie temperatures
and huge spin polarizations. Epitaxial alloys used as electrode materials even increase the
TMR e�ect of the MTJs [15, 16, 17]. Therefore, it is necessary to analyze the structural and
magnetic properties of such magnetic �lms.

In the present work the properties of amorphous, polycrystalline and monocrystalline thin
�lms composed of the transition metals Co and Fe are investigated. Here, the main focus of
the research is on the magnetic anisotropy of the �lms and the magnetization reversal process
if an external magnetic �eld is applied. The �lms are mainly probed by x-ray radiation and
magnetooptic Kerr e�ect.

In order to extent the scienti�c �eld of the group of Prof. Wollschläger to magnetic thin �lms, a
magnetooptic Kerr e�ect setup was built up during the diploma work of the present author [18].
In the current work this setup is further extended to perform vectorial magnetometry. Thus,
the separated components of the magnetization vector can be obtained to determine the
magnitude and the direction of the magnetization. Therefore, the complete magnetic reversal
process can be reconstructed.

The theoretic background of magnetic thin �lms and of the main analysis techniques including
magnetooptic Kerr e�ect, x-ray re�ectivity and x-ray di�raction is explained in Chap. 2. While
the investigated material systems are introduced in Chap. 3, the experimental details of the
setups in Osnabrück and in Hamburg (DESY) are described in Chap. 4. Here, also the sample
preparation techniques in Osnabrück and in Sendai (Japan) are presented.

The results are published in di�erent scienti�c journals and included in the present cumulative
thesis. The uniaxial magnetic anisotropy in amorphous and polycrystalline Co �lms of di�erent
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thicknesses on glass is investigated in Chap. 5 (Ref. [19]). The improvement of the vectorial
magnetometry technique including second order e�ects is presented in Chap. 6 (Ref. [20]).
The processing is done by the example of crystalline Fe �lms on MgO. Here, an additional
theoretic derivation veri�es the developed measurement technique.

The magnetic properties of di�erent annealed Co50Fe50 �lms on MgO are characterized in
Chap. 7 (Ref. [21]) by a detailed magnetooptic Kerr e�ect analysis including vectorial mag-
netometry and anisotropy studies using the Stoner-Wohlfarth model. Anomalous anisotropy
behavior for a certain Co50Fe50 �lm is discussed in Chap. 8 (Ref. [22]).

Further structural and magnetic results for the Fe �lms on MgO are additionally presented in
Chap. 9. The thesis is concluded by a summary of the most important results and closed by
an outlook to future investigations.
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2 Theoretic background

In the theoretic part of the present thesis, the physical and mathematical background of the
main analysis techniques used in this work are introduced. Magnetic thin �lms are investigated
by magnetooptic Kerr e�ect to obtain magnetic properties (Chap. 2.2) and by x-ray radiation
to determine the structural details of the �lm (Chap. 2.3). But �rst of all the typic structural
and magnetic properties of thin �lms are reported in Chap. 2.1.

2.1 Thin �lms

Thin �lms are typically characterized by a �lm thickness of several micrometers down to the
nanometer range including �lms of only one atomic layer, so-called monolayers. These thin
�lms often have di�erent structural and magnetic properties compared with bulk material.
The structural classi�cation of these �lms is summarized in Chap. 2.1.1 whereas thin �lm
magnetism is described in Chap. 2.1.2.

2.1.1 Structural properties

Structural properties of thin �lms like the growth mode and the atomic lattice ordering are
introduced in this chapter. The di�erent types of growth a�ect the roughness of the �lm,
which can be analyzed by x-ray re�ectivity. The atomic structure in bulk samples and also
in thin �lms can be amorphous, polycrystalline or monocrystalline. Additionally, the crys-
talline structure can be classi�ed. The experimental technique for determination of the crystal
structure used in this work is x-ray di�raction.

2.1.1.1 Types of thin �lm growth

There are three di�erent basic types of thin �lm growth in a classic model of epitactic growth.
These types di�er in relation of surface tensions between adsorbate, substrate and interface.
In Fig. 2.1(a) the surface tensions of adsorbate (γA), substrate (γS) and interface between
adsorbate and substrate (γG) are shown.

substrate substrate substrate substrate

adsorbate

A

S

G

γ

γ

γ

surface tensions σ Volmer-Weber Frank-van-der-Merve Stranski-Krastanov

γ γ γ< +AS G γ γ γ> +AS G γ γ γ+≅ AS G

δ

(a) (b) (c) (d)

Figure 2.1: (a) De�nition of the surface tensions γ and the contact angle δ. The di�erent
basic growth modes are (b) Volmer-Weber, (c) Frank-van-der-Merve and (d) Stranski-
Krastanov.



4 2 THEORETIC BACKGROUND

For thermodynamic equilibrium it is given

γS = γA + γG cos(δ) (2.1)

with contact angle δ between γA and γG. If γS < γA + γG, then the bondings between the
adsorbate atoms are relatively strong compared to the bondings between the substrate atoms.
Hence, the formation of adsorbate islands is favored which is pictured in Fig. 2.1(b) and called
Volmer-Weber growth mode [23].

If γS > γA + γG, the bondings between the adsorbate atoms are relatively weak compared to
the bondings between the substrate atoms. This leads to a layer-by-layer growth, the so-called
Frank-van-der-Merve growth mode [24] as presented in Fig. 2.1(c).

A mix of both growth modes can occur in the case of similar surface tensions (γS ∼= γA + γG).
If the surface tension of the adsorbate is increasing during growth of the �rst layers due to
relaxation of the atomic lattice, the initial layer-by-layer growth converts into an island growth.
This type of growth mode is shown in Fig. 2.1(d) and named Stranski-Krastanov [25].

The surface tension of transition metals is relatively large compared to typic substrates used
here (e.g. MgO(001) [26]). Thus, the Volmer-Weber growth is the most common type of thin
�lm growth for these systems. Therefore, these �lms have a certain roughness which can be
analyzed by x-ray re�ectivity and atomic force microscopy.

2.1.1.2 Categorization of crystal structures

Each crystal structure can be expressed as a repeated set of atoms called atomic base. This
base is ordered in a periodic three dimensional lattice as sketched in Fig. 2.2. The smallest
arrangement of this lattice which can be repeated by de�ned translation operations is the unit
cell. The characteristic lattice parameters are the length of the unit cell edges and the angles
between them.

set of atoms
(atomic base)unit cell

Figure 2.2: De�nition of the crystal structure by an atomic base and a periodic lattice.
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Bravais bulk lattices

In order to categorize the di�erent crystal lattices one can distinguish them by their symmetry
concerning rotation and inversion operations of the unit cell.

For example a cubic unit cell has a four-fold symmetry with respect to a rotation axis which
connects the centers of two opposed sites, since the unit cell can be rotated by 90◦ to obtain
the same structure. This rotation can be repeated four times until each atom is on its initial
position, so it is called four-fold. There are three such four-fold symmetry axes in a cubic unit
cell as shown in Fig. 2.3(a).

Furthermore, a cubic unit cell contains four three-fold symmetry axes (Fig. 2.3(b)). Each of
them connects two opposed cubic summits. At last there are six two-fold symmetry axes in
the cubic unit cell (Fig. 2.3(c)), which connects the centers of two opposed edges.

(a) (b) (c)

four-fold symmetry axes three-fold symmetry axes two-fold symmetry axes

Figure 2.3: Rotation symmetries for a cubic unit cell including (a) three four-fold sym-
metry axes, (b) four three-fold symmetry axes and (c) six two-fold symmetry axes.

Considering all rotation and inversion operations one can de�ne 14 volume lattices named af-
ter Bravais, who assigned these 14 Bravais lattices into seven systems concerning the di�erent
symmetry properties [27]. These systems are triclinic, monoclinic, orthorhombic, rhombohe-
dral, tetragonal, hexagonal and cubic. Since only the latter three systems are of importance
in the present thesis, let us focus on them.

body-centered
tetragonal

simple
tetragonal hexagonal

simple
cubic (sc)

body-centered
cubic (bcc)

face-centered
cubic (fcc)

a=b≠c

= = =90°α γβ

a=b≠c

α β γ= =90°, =120°

a=b=c

α β γ= = =90°

a=b=c

α β γ= = =90°

a=b≠c

= = =90°α γβ

b a

a
a

b

b

a=b=c

α β γ= = =90°

c c c

γ

β
α

γ

α β
γ

α
β

(a) (b) (c)

Figure 2.4: Six of the 14 Bravais lattices assigned in three of seven lattice systems:
a) tetragonal system, (b) hexagonal system and (c) cubic system.
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There are two types of tetragonal systems, a simple tetragonal lattice and a body-centered
tetragonal lattice with square basal faces (lengths of unit cell a = b 6= c) as well as orthogonal
edges (angles between them α = β = γ = 90◦) as sketched in Fig. 2.4(a). There is no base- or
face-centered tetragonal unit cell, since they can also be expressed as simple or body-centered
tetragonal unit cells, respectively. In the present work, this type of crystal lattice occurs when
a cubic lattice of a thin �lm is tetragonal distorted due to pseudomorph growth on a slightly
mismatched adsorbate.

The hexagonal unit cell with a = b 6= c, α = β = 90◦ and γ = 120◦ is shown in Fig. 2.4(b). It
represents one of two typic crystalline Co structures.

The cubic system in Fig. 2.4(c) shows a simple cubic lattice (sc), a body-centered cubic lattice
(bcc) and a face-centered cubic lattice (fcc). Here, all edges of the unit cell have the same
length (a = b = c) and are orthogonal (α = β = γ = 90◦). The favored crystalline structure
of Fe is bcc and the second typic structure of crystalline Co is fcc.

Miller indices

The di�erent directions in a certain lattice are indicated by Miller indices. These integer
values denote a multiple of the length of the unit cell for each direction x1, x2 and x3 along
the edges of the unit cell. Thus, the described direction can always be expressed as a vector.

The common notation of directions in crystal lattices using Miller indices are square brackets.
As an example the direction [1 2 1] for a simple cubic lattice is sketched in Fig 2.5(a). The
plane perpendicular to this vector is the (1 2 1) plane, named after the normal direction.

The Miller indices of a plane can also be calculated by the points of intersection between
the plane and the x1-, x2- and x3-axes. In the example of Fig 2.5(a) the axes are intersected
at x1 = 2, x2 = 1 and x3 = 1. After determination of the reciprocal intersection values 1/x1 =
1/2, 1/x2 = 1 and 1/x3 = 1 the smallest set of integer values with the same ratios as the
reciprocal intersection values is calculated. The obtained Miller indices are (1 2 1) which is
consistent with the de�nition by the normal vector of the plane.

(b)(a)

12

x

x

x

0
1

[1 2 0]
2

(1 2 0)

3

1

2

(b)

12
0

1

1

[1 2 1]

2

(1 2 1) x

3

1

12
0

1

1

[1 2 1]

2

(1 2 1)

x

x3

1

2

1

Figure 2.5: De�nition of Miller indices. (a) First example is the direction [1 2 1] for a
simple cubic lattice corresponding to the (1 2 1) plane which intersects the axes at x1 = 2,
x2 = 1 and x3 = 1. (b) Second example shows [1 2 0] corresponding to the (1 2 0) plane
which intersects the axes at x1 = 2, x2 = 1 and x3 =∞ (no intersection with the x3-axis).
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A second example is shown in Fig 2.5(b). The direction [1 2 0] corresponds to the (1 2 0) plane
which intersects the axes at x1 = 2 and x2 = 1. There is no intersection with the x3-axis.
Thus, the intersection value x3 =∞ with 1/x3 = 0 can be used to obtain the Miller indices.

Additional common notations are 〈1 2 0〉 for all equivalent directions with respect to [1 2 0] and
{1 2 0} representing all equivalent planes with respect to (1 2 0).

(a)

x2

x1

x3

x4
(b)

x1

x2

x3

+1

+1 -2 [1 1 2 0]
_

Figure 2.6: De�nition of Miller indices for hexagonal crystal structures. (a) An additional
in-plane axis is introduced (sideview). (b) As an example the [1 1 2̄ 0] direction is described
(topview).

For hexagonal crystal structures there is an additional axis de�ned as presented in Fig. 2.6(a).
The three in-plane axes x1, x2 and x3 are connected by x3 = −(x1 + x2) [27]. Therefore,
the direction of the negative x3 axis has to be expressed by the Miller indices [1 1 2̄ 0] as
constructed in Fig. 2.6(b). Generally, negative Miller indices are displayed by an overbar.

Bravais surface lattices

Surfaces can have di�erent structural properties compared to the bulk structure of the same
material. For example unsaturated bondings at the surface can result in reconstructions of
the surface lattice. If these reconstructions change the surface lattice with respect to the
unreconstructed surface, then the structure is called superstructure.

The surface lattices are classi�ed into �ve Bravais lattices as summarized in Fig. 2.7. These
lattices are square, rectangular, centered rectangular, hexagonal and oblique.

γ γ γ
γ

γ

a a a
a

a

b b b b
b

square

a=b, =90°γ

(a) (b) (c) (e)(d)

rectangular

a b, =90°≠ γ

centered rectangular

a b, =90°≠ γ

hexagonal

a=b, =120°γ

oblique

a b, 90°≠ ≠γ

Figure 2.7: The �ve Bravais lattices for the classi�cation of surface structures: (a) square,
(b) rectangular, (c) centered rectangular, (d) hexagonal and (e) oblique.
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Fig. 2.8 presents an example of a square surface lattice on the (001) surface of a fcc lattice
with bulk lattice constant aB. Since the edges of the surface unit cell is rotated by 45◦ with
respect to the edges of the fcc lattice edges, the lattice constant of the surface unit cell is
aS = aB/

√
2.

(a) (b)

fcc bulk lattice square surface lattice

aB

aS

aB

x
x

x3

1

2

x1

x2

Figure 2.8: Square surface unit cell of the (001) surface of a fcc lattice. (a) Sideview
of the fcc lattice with bulk lattice constant aB. (b) Topview onto (001) surface of the fcc
lattice with surface lattice constant aS = aB/

√
2.

2.1.2 Magnetic properties

Thin �lms have di�erent magnetic properties compared to bulk material. This is originated in
contributions of the surface and in properties of the thin �lm itself as explained in this chapter
in the context of magnetic anisotropies. The magnetization of the �lm, which is a�ected by
these magnetic anisotropies, is composed by the magnetic moments of magnetic domains in
the sample. In this chapter the in�uence of magnetic domains during the reversal process of
the sample magnetization is discussed.

As an introduction into thin �lm magnetism the ferromagnetism of the transition metals Fe,
Co and Ni is described.

2.1.2.1 Ferromagnetism of Fe, Co and Ni

The electron con�guration of Fe, Co and Ni is based on the Argon con�guration. Furthermore,
the complete 4s shell and at least half the 3d shell are occupied by electrons. The exact
con�guration is [Ar]3d64s2 for Fe, [Ar]3d74s2 for Co and [Ar]3d84s2 for Ni.

In solid states the energy niveaus overlap and form energy bands. For Fe, Co and Ni solids the
3d and 4s bands are decisive for the electric conductivity. The electrons within these bands
contribute to the ferromagnetism by uncompensated spin states. Since these electrons are
conduction electrons and therefore, not bound to the atomic cores, the orbital momentum is
mainly irrelevant for the magnetic properties. Thus, the main contribution to the magnetic
moments is yield by the spin of the conduction electrons.

The ferromagnetism of matter is originated in the parallel alignment of these magnetic mo-
ments which are generated by uncompensated spins of the electrons. The quantum mechanical
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origin of this parallel spin orientation is the exchange interaction explained in the following.

The Pauli principle signi�es that the overall wave function of two electrons, which consists of
spatial and spin part, has to be antisymmetric. Thus, either the spin part of the wave function
has to be symmetric and the spatial part has to be antisymmetric or vice versa.

An antisymmetric spin part represents antiparallel spin orientation in connection with a sym-
metric spatial part which means electrons being localized very closely together. This is energet-
ically unfavored due to the Coloumb repulsion between the charged particles which increases
the potential energy. Therefore, an antisymmetric spatial part in connection with a symmetric
spin part is favored at �rst sight.

But a symmetric spin part means parallel alignment of the spins. If several electrons have par-
allel spin, then they have to occupy di�erent energetic states than for antiparallel alignment,
since two particles with antiparallel spin can occupy the same energetic state. The occupation
of more energy states increases the kinetic energy of the particles which is also not favored.

In conclusion, parallel alignment of the spin increases the kinetic energy, antiparallel alignment
the potential energy. Thus, both alignments compete with each other. The system tries to
minimize the total energy which is achieved either by totally compensated spins or by partially
uncompensated spins.

Ferromagnetic material systems have partially uncompensated spins and therefore, a energet-
ically di�erent electronic structure for the di�erent spin states (↑ and ↓) resulting in shifted
density of states as sketched in Fig. 2.9. Thus, a majority of one spin state is obtained, if the
Fermi level is adequate positioned. This is the base of ferromagnetism.

The transition metals Fe, Co and Ni ful�ll these properties of the electronic structure and
therefore, they are ferromagnetic.

energy

Fermi level

density of states

Figure 2.9: Schema for the density of states of a ferromagnetic material. The shifted
density of states for the di�erent spins (↑ and ↓) leads to a majority of one spin state, if
the Fermi level is adequate positioned.
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2.1.2.2 Magnetic anisotropy of thin �lms

The direction of the magnetization in a ferromagnet depends on several contributions which
are summarized under the topic of magnetic anisotropy. These contributions de�ne the energy
density E. The magnetization ~M is aligned in the direction of the local minimum of E. This
classic Stoner-Wohlfarth model [28] is valid for coherent rotation of the magnetization, i.e.
the �lm has monodomain state and the magnitude of the magnetization vector is constant.

The energy density E is de�ned as

E = − ~H · ~M +
∑
i

Ei (2.2)

with Zeeman term − ~H · ~M and anisotropy contributions Ei. For the minimum of E of isotropic
media the magnetization ~M is aligned parallel to the external magnetic �eld ~H. In anisotropic
media the anisotropy contributions change the energy landscape and a di�erent direction
from ~H can be favored for ~M .

The main anisotropy contributions for magnetic thin �lms are shape anisotropy, magnetocrys-
talline anisotropy, growth-induced uniaxial anisotropy, magnetoelastic anisotropy, interface
anisotropy, and exchange bias, which are introduced in the following.

Shape anisotropy

Elongated samples prefer to be magnetized along the largest spatial expansion. For example,
an iron bar prefers a magnetization direction along the elongation of the bar and thin �lms
have in-plane magnetization, i.e. parallel to the sample surface. This e�ect is generated by
the shape anisotropy which comes from the demagnetization �eld ~Bdemag at the surface of the
sample.

Here, the magnetic dipoles at the surface are uncompensated and form the demagnetization
�eld, which is opposed to the external magnetic �eld. The contribution to the energy density E
is

Edemag = −
∫

~Bdemag d ~M . (2.3)

The demagnetization �eld ~Bdemag can be described by

~Bdemag = −µ0 ℵ̂ ~M (2.4)

with vacuum permeability µ0 and demagnetization tensor ℵ̂. For a thin �lm the magnetization
component M⊥ which is directed out-of-plane (normal to the sample surface) is decisive.
Therefore, the integral of Eq (2.3) is solved with ~Bdemag = −µ0M⊥ to

Edemag =
1

2
µ0M

2
⊥ . (2.5)

The out-of-plane component M⊥ of the magnetization can be expressed using saturation
magnetization MS , which equates to the magnitude of the magnetization vector and the
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angle ϑ⊥ between ~M and the normal of the sample surface. The result is

Edemag =
1

2
µ0M

2
S cos2 ϑ⊥ . (2.6)

Since the shape anisotropy of thin �lms expressed in Eq. (2.6) is maximized for ϑ⊥ = 0◦ and
minimized for ϑ⊥ = 90◦, the magnetization ~M is preferred in-plane aligned, if there are no
other anisotropy contributions. If the magnetization vector is completely directed in-plane
during the reversal process the shape anisotropy has no contributions to the energy density E,
since Edemag is zero for ϑ⊥ = 90◦. This is the case for the samples investigated in the present
work.

Magnetocrystalline anisotropy

The crystalline structure of the �lm induces an additional anisotropy due to the spin-orbit
interaction. If there are no other anisotropy contributions the magnetocrystalline anisotropy
makes the magnetization align along a de�ned direction with respect to the crystal structure.

For a hexagonal crystal structure, e.g. for crystalline Co �lms, the magnetocrystalline contri-
bution is [29]

Ehex = K1 sin2 ϑhex +K2 sin4 ϑhex (2.7)

with the angle ϑhex between magnetization ~M and the hexagonal c-axis (cf. Chap. 2.1.1.2).
Furthermore, K1 and K2 are material- and temperature-dependent anisotropy coe�cients.
For positive K1 and K2 the c-axis (ϑhex = 0◦) is the preferred direction for ~M , if no other
anisotropy contributes. Then the anisotropy is called uniaxial.

The magnetocrystalline anisotropy for cubic crystal structures is de�ned as [30]

Ecub = K1

(
α2

1 α
2
2 + α2

2 α
2
3 + α2

3 α
2
1

)
+K2 α

2
1 α

2
2 α

2
3 (2.8)

using the direction cosines α1, α2 and α3 with respect to the edges of the cubic structure.
For example, the [100] direction in the bcc lattice of crystalline Fe structures is the energetic
favored direction for ~M , while in the fcc lattice of crystalline Ni the favored direction for ~M
is the [111] direction. This anisotropy is fourfold due to the cubic crystal structure.

If the sample magnetization is strictly in-plane aligned due to the shape anisotropy, the three
dimensional magnetocrystalline anisotropy converts into a two dimensional one. Therefore,
one magnetization component is permanently zero. Thus, for a cubic crystal structure Eq. (2.8)
is simpli�ed to

Ecub = K1

(
α2

1 α
2
2

)
= K1

(
cos2 ϑ sin2 ϑ

)
=
K1

4
sin2 2ϑ . (2.9)

Here, the angle ϑ describes the direction of ~M with respect to a speci�c crystal direction.

Growth-induced uniaxial anisotropy

A permanent preferred axis for the magnetization can be induced during sample preparation
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by oblique deposition or external magnetic �elds [31, 32]. But also substrate shape, vicinal
surfaces or strain in the substrate can cause this growth-induced anisotropy [33, 19]. In most
cases it can be described by a uniaxial anisotropy contribution, which is

Euni = KU sin2(ϑ− ϑU ) . (2.10)

Here again, the angle ϑ describes the direction of ~M with respect to a speci�c crystal direction
and ϑU de�nes the direction of energetic minimum for the uniaxial anisotropy. The uniaxial
anisotropy coe�cient KU expresses the strength of this contribution to the energy density E.
A detailed analysis of the uniaxial anisotropy for amorphous and polycrystalline Co on glass
is part of the present thesis and presented in Chap. 5 (published in Ref. [19]).

Magnetoelastic anisotropy

If a crystal is deformed by shearing, a magnetoelastic anisotropy can be induced. The contri-
bution to the energy density is [30]

Eela = B1

(
α2

1 ε
ela
11 + α2

2 ε
ela
22 + α2

3 ε
ela
33

)
+B2

(
α1 α2ε

ela
12 + α2 α3ε

ela
23 + α3 α1ε

ela
31

)
(2.11)

using the magnetoelastic coupling coe�cients B1 and B2 and the elements of the elasticity
tensor ε̂ela. The magnetoelastic anisotropy can be neglected in the present study, since we only
obtain tetragonal distortion of some sample lattices which results in a cubic magnetooptical
in-plane anisotropy due to the shape anisotropy.

Interface anisotropy

For ultra thin �lms there is a interface anisotropy generated by the spin-orbit interaction
due to symmetry break of the crystal structure at the interfaces. This anisotropy can be
stronger than the shape anisotropy and cause a preferred out-of-plane magnetization for ultra
thin �lms. If this is valid, the magnetocrystalline anisotropy coe�cient K1 is composed by a
volume contribution Kvol

1 and an interface contribution K if
1 depending on the thickness D of

the �lm. One can summarize both contributions to an e�ective magnetocrystalline anisotropy
coe�cient Ke�

1 which is

Ke�
1 = Kvol

1 +
2

D
K if

1 . (2.12)

Since the here investigated samples are mostly in-plane aligned, the interface anisotropy is
irrelevant compared to the shape anisotropy and can be neglect. Therefore, the samples are
not thin enough to show an in�uence on the interface anisotropy.

Exchange bias

If an antiferromagnetic layer is coupled to the investigated ferromagnetic �lm, the exchange
bias e�ect can occur. The magnetic moments are pinned in one direction and the reversal
process of the magnetization is asymmetric with respect to the sign of the external magnetic
�eld, i.e. the external �eld for reaching the magnetic saturation has a di�erent absolute
value for positive and negative �eld. This e�ect is unidirectional, which describes a one-fold
anisotropy. Since no antiferromagnetic layers are used here, exchange bias is neglected.
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Energy density used in the present work

Summarizing the relevant anisotropies mentioned above for the present study, the resulting
energy density for a thin �lm with cubic structure is [34]

E = − ~H · ~M + Ecub + Euni = − ~H · ~M +
K1

4
sin2 2ϑ+KU sin2(ϑ− ϑU ) . (2.13)

There are several ways to obtain the anisotropy constantsK1 andKU for speci�c directions ϑU
of the uniaxial anisotropy. One of these processing methods will be introduced in Chap. 2.1.2.4
after the reversal process of the magnetization is described in more details.

2.1.2.3 Magnetic domains and reversal process

The magnetic moments of a ferromagnet are arranged in magnetic domains, so-called Weiss
domains. Within such a domain all magnetic moments are parallel aligned in the direction
of the minimum energy density. Neighboring domains have di�erent alignment of magnetic
moments. They are separated by walls where the magnetic moments rotate from the alignment
of one neighboring domain to the alignment of the other neighboring domain. If this rotation
is completely in-plane the domain wall is called Neel Wall. If during rotation the magnetic
moments are aligned out-of-plane the domain wall is a Bloch wall. Weiss domains have an
expansion of about 10−8 m to 10−6 m. The domain wall between them can have a thickness
of 10−9 m [29].

If an external magnetic �eld is applied the domain walls between the magnetic domains move.
Thus, magnetic domains can change their size. They also can appear or disappear, if the
external �eld is varied. The existence of di�erent magnetic domains is called multidomain
state. For a very large external magnetic �eld the magnetic moments are all aligned parallel
to the external �eld direction. This is a monodomain state with no Bloch or Neel walls
anymore. In this situation, all anisotropy contributions are overcome and only the Zeeman
term of the energy density (cf. Eq. (2.2)) de�nes the minimum of the energy density.

The movement of the domain walls can be in�uenced for example by defects in the crystal
structure. Thus, changing the external magnetic �eld is a partially irreversible process. This
hysteretic behavior can be visualized by a magnetization curve which presents the magnetiza-
tion M in dependence on the external magnetic �eld H. A typical magnetization curve for a
magnetic reversal process is shown in Fig. 2.10 labeled by the signi�cant values of saturation
magnetization MS , magnetic remanence MR, switching �elds HS , and coercive �eld HC . The
di�erent curves for increasing and decreasing external �eld represent the hysteretic behavior
of the magnetization curve.

In saturation magnetization MS all magnetic moments are parallel aligned, which is the mon-
odomain state. If the external �eld is decreased, the magnetization also decreases. The origin
is the formation of multidomain states. The magnetic moments are aligned in di�erent direc-
tions and hence, the magnetization as the sum of the magnetic moments is decreased. For
non-integrable measurement techniques (as for example for magnetooptic Kerr e�ect) there
can be a second cause for the decrease of magnetization. Since only one magnetization compo-
nent is detected in some cases, the decrease of magnetization can be originated by a coherent
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Figure 2.10: Typic magnetization curve with hysteretic behavior. The saturation mag-
netizationMS , the magnetic remanenceMR, the coercive �eld HC and the switching �eld
HS are marked.

rotation of the magnetization (keeping the monodomain state). Thus, the projection of the
magnetization to the sensitive detection direction reduces the measured magnetization value.

If the external �eld vanishes the remaining magnetization is the magnetic remanence MR.
After applying a reversed external �eld the magnetization switches into another direction. The
external �eld which causes this switching is named switching �eld HS . When the external �eld
is increased, the magnetic moments can be summed up to zero, since the opposed directions
of magnetic moments in the di�erent domains annihilate themselves during summation. The
external �eld which induces this vanishing magnetization is called coercive �eld HC . There is
also a second interpretation for non-integrable measurement techniques. The magnetization
can be aligned perpendicular to the sensitive detection direction. Thus, the projection is zero.

If the external �eld is further increased in the reversed direction, monodomain state is formed
again and the opposed saturation magnetization is reached. The second part of the magneti-
zation curve can be explained in the same way. In order to distinguish coherent rotation of the
magnetization and formation of multidomain states as an interpretation of the magnetization
decrease, vectorial magnetometry should be performed. This technique can reconstruct the
magnetization vector including direction and magnitude as will be explained in Chap. 2.2.2.

The magnetic anisotropy contributions introduced in Chap. 2.1.2.2 form an energy landscape
with preferred directions for the magnetization (magnetic easy axes) and energetic disadvan-
tageous directions (magnetic hard axes). Typic magnetization curves in a magnetic easy and
hard axis are presented in Fig. 2.11. A magnetic easy axis (Fig. 2.11(a)) is characterized by
a large remanence and a large coercive �eld. The magnetization curve has square-like shape.
The state of the magnetization in magnetic remanence is the same as in saturation magne-
tization. One can write MR ≈ MS in magnetic easy direction. In magnetic hard direction
(Fig. 2.11(b)) both magnetic remanence and coercive �eld are smaller than in magnetic easy
direction. The magnetization curve has no square-like shape anymore, but is more rounded.



2.1 Thin �lms 15

The magnetic remanence di�ers signi�cantly from the saturation magnetization.

easy axis(a) hard axis(b)

Figure 2.11: Typic magnetization curves for (a) magnetic easy and (b) magnetic hard
axis.

2.1.2.4 Determination of anisotropy constants from magnetization curves of dif-

ferent sample directions

In the present work, the anisotropy constants are obtained by measuring magnetization curves
of di�erent sample directions of the investigated thin �lms with cubic crystal structure. From
the energy density of Eq. (2.13) one can determine the anisotropy constants KU of the uniaxial
magnetic anisotropy (UMA) and K1 of the cubic magnetic anisotropy (CMA). This processing
is described in detail in Chap. 7 (Ref. [21]) and summarized in the following for the case of
UMA parallel to one of the magnetic easy axes of the CMA.

In Fig. 2.12 a CMA superimposed by a UMA parallel to one of the magnetic easy axes of
the CMA is sketched resulting in a more easy axis and less easy axis. This parallel alignment
de�nes the CMA angle ϑU = 0◦ of Eq. (2.13). Three relevant angles are de�ned. The angle ϑ is
the common magnetization angle (cf. Eq. (2.13)) between the magnetization ~M and a speci�c
crystal axis which is one of the magnetic easy axes of the CMA and de�ned as 0◦ direction of
crystal structure. The angle γ = α−ϑ is the rotation angle of ~M with respect to the external
�eld ~H and the angle α is the azimuthal sample angle between the 0◦ direction of crystal
structure and ~H.

Determination of UMA constant KU

For determination of KU we convert Eq. (2.13) into an equation E(ϑ) by using ~H · ~M =
HMS cos(α− ϑ). The result for ϑU = 0◦ is

E(ϑ) =
K1

4
sin2 2ϑ+KU sin2(ϑ)−HMS cos(α− ϑ) . (2.14)
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Figure 2.12: Magnetic axes for a UMA parallel to one of the magnetic easy axes of the
CMA. This results in a more easy axis and a less easy axis. Three relevant angles are
de�ned: ϑ between ~M and the 0◦ direction of the crystal structure, γ between ~H and ~M)
as well as α between ~H and the 0◦ direction of the crystal structure.

The energy for a magnetic switch from one magnetic easy axis to another can be obtained
by Eq. (2.14), if the start and the end of the switching can be described by a monodomain
state, since Eq. (2.14) is only valid for monodomain states. This energy is the domain wall
pinning energy which is the energy concerning the nucleation of a multidomain state and can
be calculated by the di�erence of the energy at the beginning and the end of the switching
[35].

The domain wall pinning energy ε90◦ for a 90◦ switching of the magnetization vector from ϑ =
0◦ to ϑ = 90◦ (upper signs) and from ϑ = 90◦ to ϑ = 0◦ (lower signs) is

ε90◦ =± E(ϑ = 0◦)∓ E(ϑ = 90◦) = ∓KU ∓H0◦−→90◦/90◦−→0◦

S MS(cosα− sinα) (2.15)

with switching �eld H0◦−→90◦/90◦−→0◦

S using upper signs in Eq. (2.15) for the switching 0◦ −→
90◦ and lower signs for the switching 90◦ −→ 0◦.

The domain wall pinning energies of the other 90◦ switchings can be calculated in the same
way. Therefore, the switching �elds for all eight possible switchings are

H
0◦−→90◦/90◦−→0◦

S (α) =
∓ε90◦ −KU

MS(cosα− sinα)
,

H
90◦−→180◦/180◦−→90◦

S (α) =
∓ε90◦ +KU

MS(cosα+ sinα)
,

H
180◦−→270◦/270◦−→180◦

S (α) =
±ε90◦ +KU

MS(cosα− sinα)
and

H
270◦−→0◦/0◦−→270◦

S (α) =
±ε90◦ −KU

MS(cosα+ sinα)
. (2.16)
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These eight switching �elds can be summarized to two independent switching �elds as pre-
sented in Chap. 7 (Ref. [21]) due to symmetry reasons. Thus, the reciprocal residual switching
�elds HA and HB depending on the azimuthal sample angle α describe a sine shaped behavior.
We obtain

1

HA/B(α)
=AA/B sin(

π

4
+ α) (2.17)

with the amplitudes

AA/B =−
√

2MS

ε90◦ ±KU
. (2.18)

After �tting the experimentally obtained reciprocal switching �elds HA/B, the scaled domain
wall pinning energy ε90◦/MS and UMA constantKU/MS can be calculated by these amplitudes
AA/B via

ε90◦

MS
=− 1√

2

(
1

AB
+

1

AA

)
and

KU

MS
=

1√
2

(
1

AB
− 1

AA

)
. (2.19)

Determination of CMA constant K1

For determination of K1 we convert Eq. (2.14) from E(ϑ) into an equation E(γ) using γ =
α− ϑ. For ϑU = 0◦ (UMA parallel to one of the CMA easy axes) we obtain

E(γ) =
K1

4
sin2(2(α− γ)) +KU sin2(α− γ)−HMS cos γ . (2.20)

The rotation angle γ in Eq. (2.20) can be exchanged by cos γ =: m and consequently sin γ =√
1−m2. For equilibrium condition ∂E/∂m = 0, there is

H(m) =
K1

MS

[
(2m− 4m3) cos 4α+

1− 8m2 + 8m4

2
√

1−m2
sin 4α

]
−KU

MS

[
2m cos(2(α− ϑU )) +

1− 2m2

√
1−m2

sin(2(α− ϑU ))

]
. (2.21)

This equation is solved for H(m), since there is no analytical solution for m(H), which is the
standard form of the magnetization curves. Nevertheless,m(H) can be determined numerically
and thus, one can �t m(H) to a set of experimentally determined magnetization curves with
di�erent azimuthal sample angles α for the curve parts of coherent rotation (monodomain
state).

The scaled UMA constantKU/MS in Eq. (2.21) is small compared to the scaled CMA constant
K1/MS . Therefore, KU/MS should not be treated as a �tting parameter, but kept constant
using the determined values of the switching �eld �tting. The �t procedure delivers the CMA
constant K1/MS .
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2.2 Investigation of thin �lm magnetism via magnetooptic Kerr e�ect

The magnetooptic Kerr e�ect (MOKE) is a well examined physical phenomenon which can
be utilized to investigate the magnetic character of matter. Especially, magnetic properties of
thin �lms like magnetic anisotropies, the reversal process of the magnetization in the �lm and
magnetic domain states can be obtained by this technique. Nevertheless, there are still some
open theoretic questions as mentioned in this chapter.

One has to distinguish between a simple analysis of the hysteretic behavior of the �lm mag-
netism and a detailed reconstruction of the magnetization reversal process. Therefore, the
basic physical theory of MOKE is presented in Chap. 2.2.1, while the theoretic part which
consists of the distinction to the di�erent components of the magnetization vector is summa-
rized as vectorial magnetometry in Chap. 2.2.2.

Within the present thesis, the MOKE technique was extended using a combination of di�erent
vectorial magnetometry techniques. The developed theoretic background for this extension
is summarized in this chapter and reported in detail in Chap. 6 which is also published in
Ref. [20].

2.2.1 Magnetooptic Kerr e�ect

In order to introduce the MOKE, the principles and the origin of the e�ect are described in
this chapter. The dependence of the MOKE on the re�ection coe�cients is presented as a
basic connection for the con�rmation of the relationship between MOKE and magnetization in
the examined magnetic �lm, which is then discussed in the context of vectorial magnetometry
in the next chapter.

sample

lin. polarized
ellipt. polarized

& rotated

ΘK

εK

magnet

Figure 2.13: Principle description of MOKE. If linear polarized light is re�ected by a
magnetized sample, the polarization of the re�ected light is rotated by the Kerr angle ΘK

and elliptic which is indicated by the Kerr ellipticity angle εK .
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2.2.1.1 Principles of magnetooptic Kerr e�ect

The MOKE was named after the Scottish physicist John Kerr who �rstly reported his discovery
in 1877 [36]. He observed a change in polarization state when linear polarized light is re�ected
from a magnetized sample. In general, the polarization of the re�ected light is elliptic and
the major axis of the ellipse is rotated with respect to the direction of the polarization of the
incident light as sketched in Fig. 2.13. Furthermore, MOKE can cause a change in intensity
of the re�ected light.

The rotation of the polarization is described by the Kerr angle ΘK which is the angle between
the direction of the linear polarization of the incident light and the major axis of the elliptic
polarization of the re�ected light (cf. Fig. 2.13). The change of polarization from linear to
elliptic state is characterized by the Kerr ellipticity which depends on the ratio between the
minor and the major axes of the ellipse. The Kerr ellipticity can be expressed by an angle εK
which is marked in Fig. 2.13.

Both Kerr angle and Kerr ellipticity have a well de�ned dependence on the magnetization
in the sample. In simplest case they are direct proportional to the magnetization of the
illuminated part of the sample. But in most cases this relationship is more complicated and
and can only be expressed by a superposition of di�erent types of MOKE which are introduced
in Chap. 2.2.2. In Fig. 2.14 the di�erent physical values which de�ne the Kerr angle and the
Kerr ellipticity are pictured.

Kerr rotation
Kerr ellipticity

ΘK

εK

reflection
coefficients

permittivity
tensor

magnetization
partial light

waves
4x4 matrix
calculus

Chap. 2.2.1.3 Chap. 2.2.2.3

crystal
structure

Chap. 2.2.2.4

Figure 2.14: Relationship between MOKE and magnetization in the investigated �lm.
The di�erent connections between the physical values are labeled by the chapters in the
present thesis where these connections are discussed.

The characteristic Kerr quantities depend on the change of properties of partial light waves
which describe the incident light (Chap. 2.2.1.3). This change during re�ection of light from the
sample is expressed by the re�ection coe�cients which can be related to the permittivity tensor
by the 4 × 4 matrix calculus (Chap. 2.2.2.3). Di�erent crystal structures generate di�erent
permittivity tensors. Hence, the magnetization in a �lm with certain crystal structure de�nes
the permittivity tensor and therefore, the relationship to the characteristic Kerr quantities
(Chap. 2.2.2.4).

The information depth of the MOKE technique is restricted to the penetration depth of the
incident light. In case of metallic �lms the penetration depth can be supposed to be at least
20 nm [37]. Therefore, the �rst 140 layers of an exemplary Fe �lm with layer distance of 1.43Å
are probed. Nevertheless, the in�uence of thicker �lms can also be examined indirectly, since
the magnetization in the probed part of the sample is a�ected by the magnetism of the residual
part of the �lm.



20 2 THEORETIC BACKGROUND

2.2.1.2 Origin of magnetooptic Kerr e�ect

Linear polarized light can be described by the superposition of two circular polarized light
waves (right and left circular polarized). Therefore, the rotation of linear polarization is the
consequence of a phase shift between the two circular polarized light waves. This phase shift
is called circular birefringence and can be generated for example by di�erent velocities for the
right and left circular polarized light waves in a medium. If this e�ect is caused by a magnetic
�eld, it is named magnetic circular birefringence. The well known manifestation of this e�ect
is the Faraday e�ect [38], when linear polarized light propagates through a medium and the
polarization rotates in dependence of the external magnetic �eld.

The change of polarization state from linear to elliptic can be explained by the change of the
ratio of the amplitudes of the superposed circular polarized light waves. This so-called circu-
lar dichroism can be generated by di�erent absorption coe�cients for right and left circular
polarized light in a medium. For example optic active molecules can change the polarization
state by di�erent absorption of right and left circular polarized light. If this e�ect is based on
magnetism, it is called magnetic circular dichroism.

In most cases, the MOKE contains both magnetic circular birefringence (causing the Kerr
rotation) and magnetic circular dichroism (generating the Kerr ellipticity). The precondi-
tions for these e�ects in a magnetized sample are the spin-orbit coupling and the exchange
interaction. The spin-orbit coupling describes the interaction between the spin of an electron
and its angular momentum leading to a splitting of the electron energy levels. The exchange
interaction between the electron spins is based on the Pauli principle and induces an energy
gain for parallel and an energy loss for antiparallel spin alignment. If one of both e�ects
either spin-orbit coupling or exchange interaction would be absent, no circular dichroism or
birefringence would occur and therefore, no MOKE takes place as explained in the following
using the example of circular dichroism.

In Fig. 2.15 electric dipole transitions of a magnetic material from d to p states are schemat-
ically presented. The transitions for spin up (↑) and spin down (↓) are shown on the left
side. The resulting absorption spectra of left and right circular polarized light is presented
on the right side. The notation |lm ↑〉 and |lm ↓〉 denotes the energy levels with l as orbital
quantum number (l = 1 for p states, l = 2 for d states) and m as magnetic quantum number
(m = −l, ..., l). The transition energy without exchange interaction and spin-orbit coupling is
Et. The exchange splitting of the d states shifts the energy levels for spin up and spin down by
the exchange energy Eex, while the spin-orbit coupling splits the energy levels by the coupling
energy Eso in dependence on the alignment of the spin indicated by the magnetic quantum
number m. The exchange splitting of the p states is neglected here.

The absorption spectrum for exchange interaction and spin-orbit coupling (Fig. 2.15(a))
demonstrates that the absorption is energetically shifted for left and right circular polar-
ized light which is magnetic circular dichroism. The absorption spectrum for only spin-orbit
coupling (Fig. 2.15(b)) and for only exchange interaction (Fig. 2.15(c)) have no complete sep-
aration of absorption energies for left and right circular polarized light. Hence, no magnetic
circular dichroism and therefore, no birefringence occurs. In conclusion, both e�ects spin-orbit
coupling as well as exchange interaction are necessary for the MOKE.
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Figure 2.15: Schematic drawing of the absorption of left and right circular polarized
light for the electric dipole transitions from d to p states indicated by arrows. On the right
side the absorption spectra of left and right circular polarized light is presented (inspired
by Ref. [39, 40]). (a) Absorption for both exchange interaction and spin-orbit coupling.
(b) Absorption for only spin-orbit coupling. (c) Absorption for only exchange interaction.
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2.2.1.3 Description of magnetooptic Kerr e�ect by re�ection coe�cients

Superposition of circular polarized light waves

If the linear polarization of the incident light is described by a superposition of right and left
circular polarized light waves, the Kerr amplitude can be expressed by the complex re�ection
coe�cients r+ and r− for left and right circular polarized light, respectively, as explained in
the following.
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Figure 2.16: (a) Linear polarization of the incident light (superscript i). (b) Elliptic and
rotated polarization of the re�ected light (superscript r). The polarizations Ei/r with the
polarization angle ϕi/r are described by superposition of right and left circular polarized
light waves (Ei/r− and E

i/r
+ with phase ϕi/r− and ϕ

i/r
+ , respectively). Furthermore, the

Kerr angle ΘK and the Kerr ellipticity εK as well as the minor axis Emin and the major
axis Emax of the ellipse are marked.

The polarization state of the incident and the re�ected light is presented in Fig. 2.16. The
Kerr angle ΘK can be described by the di�erence of the polarization angle of the incident and
the re�ected light, ϕi and ϕr, respectively. The Kerr ellipticity angle εK depends on the ratio
of the minor and major axis of the ellipse, Emin and Emax, respectively. This leads to

ΘK = ϕr − ϕi and (2.22)

εK = arctan

(
Emin
Emax

)
. (2.23)

The description of the polarization states by circular polarized light waves can be performed
by complex values with amplitude and phase. Therefore, right and left circular polarized light
is de�ned as

E− = |E−| e−iϕ− and E+ = |E+| eiϕ+ . (2.24)

In Fig. 2.16(a) the incident linear polarization is described by the polarization angle ϕi which
depends on the phases ϕi− and ϕi+ of the circular polarized light waves. For linear polarization
the amplitudes

∣∣Ei−∣∣ and ∣∣Ei+∣∣ of the superposed circular polarizations are the same. We
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conclude for incident light

ϕi =
ϕi+ − ϕi−

2
+ 180◦ and (2.25)∣∣Ei+∣∣ =

∣∣Ei−∣∣ . (2.26)

The rotated and elliptic polarization of the re�ected light is shown in Fig. 2.16(b). The
polarization angle ϕr of the re�ected light is given with respect to the direction of the major
axis Emax of the ellipse. It can again be expressed by the phases ϕr− and ϕr+ of the circular
polarized light waves. Here, the amplitudes

∣∣Er−∣∣ and ∣∣Er+∣∣ are di�erent due to the circular
dichroism which leads to the elliptic polarization with minor axis Emin and major axis Emax.
We conclude for re�ected light

ϕr =
ϕr+ − ϕr−

2
+ 180◦ , (2.27)

Emin =
∣∣Er−∣∣− ∣∣Ei+∣∣ and Emax =

∣∣Er+∣∣+
∣∣Ei−∣∣ . (2.28)

We want to express the Kerr rotation ΘK dependent on the phase shifts between incident and
re�ected light waves ∆− = ϕr−−ϕi− and ∆+ = ϕr+−ϕi+ corresponding to left and right circular
polarized light, respectively. After insertion of Eq. (2.25) and Eq. (2.27) into Eq. (2.22) we
obtain

ΘK = ϕr − ϕi =
ϕr+ − ϕr−

2
−
ϕi+ − ϕi−

2
=

∆+ −∆−
2

. (2.29)

The Kerr ellipticity angle εK can be described by the ratio of the amplitudes of the circular

polarized light waves |r±| =
|Er±|
|Ei±|

using Eqs. (2.23) and (2.28). Since the amplitudes of the

circular polarized incident light waves are the same (cf. Eq. (2.26)) the result for small εK is

εK =
Emin
Emax

=

∣∣Er−∣∣− ∣∣Er+∣∣∣∣Er+∣∣+
∣∣Er−∣∣ =

|r−|
∣∣Ei−∣∣− |r+|

∣∣Ei+∣∣
|r+|

∣∣Ei+∣∣+ |r−|
∣∣Ei−∣∣ =

|r−| − |r+|
|r+|+ |r−|

. (2.30)

For the mathematical description of the Kerr e�ect a complex Kerr amplitude ΦK = ΘK−i εK
is de�ned [41, 42] with the Kerr angle ΘK as the real part and the Kerr ellipticity angle εK as
the imaginary part. Using Eqs. (2.29) and (2.30) the resulting Kerr amplitude for small Kerr
e�ects is

ΦK = ΘK − i εK =
∆+ −∆−

2
− i |r−| − |r+|
|r+|+ |r−|

= i
r+ − r−
r+ + r−

(2.31)

as calculated in more detail in Ref. [18]. Here, r± = |r±| ei∆± are the re�ection coe�cients
summarizing the phase shift ∆± and the ratio of the amplitudes of the circular polarized light
waves |r±|. Beside these description of MOKE by re�ection coe�cients of circular polarized
light waves, a second description is more common.



24 2 THEORETIC BACKGROUND

Superposition of linear polarized light waves

The polarization of light can also be described by superposed linear polarized light waves,
which are parallel (p) and perpendicular (s) polarized with respect to the incidence plane of
light. Therefore, the Kerr rotation and the Kerr ellipticity can be expressed by the elements
of the re�ection matrix r̂ which is de�ned as

r̂ =

(
rss rsp
rps rpp

)
. (2.32)

This matrix is integrated in the Jones matrix calculus [43] describing the polarization of light
by Jones vectors and optical components (including the re�ection by a sample) by Jones
matrices.
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Figure 2.17: (a) Linear polarization of the incident light (superscript i). (b) Elliptic
and rotated polarization of the re�ected light (superscript r). The polarizations Ei/r are
described by superposition of s- and p-polarized light waves (Ei/rs and E

i/r
p , respectively).

Furthermore, the Kerr angle ΘK and the Kerr ellipticity εK are marked.

As sketched in Fig. 2.17 the polarization vectors of the incident and the re�ected light, ~Ei and
~Er, respectively, are de�ned as

~Ei =

(
Eis
Eip

)
and ~Er = r̂ · ~Ei =

(
rssE

i
s + rspE

i
p

rpsE
i
s + rppE

i
p

)
=

(
Ers
Erp

)
(2.33)

with Eis and Eip as the complex components of the incident polarization ~Ei for s- and p-
polarized light, respectively. The components of the re�ected polarization vector are expressed
by using the superscript r instead of i. In Fig. 2.17(a) the example of s-polarized incident

light is shown. Here,
∣∣∣ ~Ei∣∣∣ equates the component Eis, since E

i
p = 0, for p-polarized incident

light vice versa. Therefore, we obtain for the ratio of the components Erp and E
r
s in Eq. (2.33)

Erp
Ers

=
rps
rss

for incident linear s-polarized light and (2.34)

Ers
Erp

=
rsp
rpp

for incident linear p-polarized light. (2.35)
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The elliptic and rotated polarization of the re�ected light in Fig. 2.17(b) can further be
described as an ellipse [44] with the Jones vector E0(cos ε, i sin ε) which is rotated by the
matrix

R̂(α) =

(
cosα − sinα
sinα cosα

)
(2.36)

for any rotation angle α. For the polarization of the re�ected light generated from incident
s-polarized light we obtain

~Er = R̂(−Θs) ·E0

(
cos εs
i sin εs

)
= E0

(
cos Θs cos εs + i sin Θs sin εs
− sin Θs cos εs + i cos Θs sin εs

)
(2.37)

using the Kerr rotation Θs and the Kerr ellipticity angle εs generated from incident s-polarized
light. The ratio of the components Erp and E

r
s in Eq. (2.37) for small Kerr e�ects yield

Erp
Ers

= −sin Θs cos εs − i cos Θs sin εs
cos Θs cos εs + i sin Θs sin εs

= − tan Θs − i tan εs
1 + i tan Θs tan εs

≈ − (Θs − i εs) . (2.38)

For incident p-polarized light the polarization of the re�ected light is

~Er = R̂(−Θp) · R̂(−90◦) ·E0

(
cos εp
i sin εp

)
= E0

(
− sin Θp cos εp + i cos Θp sin εp
− cos Θp cos εp − i sin Θp sin εp

)
. (2.39)

The ratio between the components Erp and Ers in Eq. (2.39) can also be calculated for small
Kerr e�ects, which leads to

Ers
Erp

=
sin Θp cos εp − i cos Θp sin εp
cos Θp cos εp + i sin Θp sin εp

=
tan Θp − i tan εp

1 + i tan Θp tan εp
≈ Θp − i εp . (2.40)

Comparison between Eq. (2.34) and Eq. (2.38) for s-polarized incident light as well as between
Eq. (2.35) and Eq. (2.40) for p-polarized incident light results in

Φs = Θs − i εs ≈ −
rps
rss

and Φp = Θp − i εp ≈
rsp
rpp

(2.41)

with Φs and Φp as complex Kerr amplitude for s- and p-polarized incident light, respectively.
This is the description of MOKE by elements of the re�ection matrix.

2.2.2 Vectorial magnetometry

The orientation of the magnetization in the sample a�ects the way, how the Kerr rotation and
the Kerr ellipticity are composed by di�erent types of MOKE. These basic types as well as the
phenomenon of second-order e�ects are explained in this chapter. Both linear and quadratic
parts of MOKE in�uence the permittivity tensor, which varies for di�erent crystal structures.
The measured Kerr signals can be adequately scaled and processed in order to separate the
course of the components of the magnetization. This processing is developed experimentally
and theoretically in the present thesis and explained in this chapter for tetragonal and cubic
crystal structures including second order e�ects and all possible directions of the magnetization
vector.
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2.2.2.1 Basic types and setup geometries of magnetooptic Kerr e�ect

The three di�erent magnetization vector components of the sample have distinct contributions
to the MOKE. Therefore, one distinguishes between three basic types of MOKE: longitudinal,
polar and transversal. These basic types of MOKE which depend on the direction of the
magnetization ~M should not be confused with the three di�erent geometries of MOKE setups
which depend on the direction of the external magnetic �eld ~H. Here, one distinguishes also
between longitudinal, polar and transversal setup geometry. For better understanding, the
di�erences between the basic types and the setup geometries of MOKE are explained in the
following.

Basic types of magnetooptic Kerr e�ect

The di�erent basic types of MOKE are pictured in Fig. 2.18 and can be classi�ed by the
orientation of the magnetization ~M with respect to the incidence plane of light as well as to
the sample surface. Here, the incidence plane of light is always perpendicular to the sample
surface. It has to be emphasized that this classi�cation of MOKE types is independent on the
direction of the external magnetic �eld ~H.

longitudinal
MOKE

polar
MOKE

transversal
MOKE

sampleM M M

(c)(b)(a)

surface of the sample
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ence
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ht
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Figure 2.18: Basic types of MOKE dependent on the orientation of the magnetization ~M
with respect to the incidence plane of light and to the sample surface. The incidence angle β
is with respect to the surface normal. (a) LMOKE. (b) PMOKE. (c) TMOKE.

Longitudinal MOKE type

The longitudinal MOKE (LMOKE) occurs, if the magnetization ~M is aligned parallel to the
plane of incidence of light and also parallel to the sample urface (cf. Fig. 2.18(a)). This
in-plane magnetization generates a change in polarization (Kerr rotation and Kerr ellipticity),
but no change of intensity. The LMOKE for s-polarized incident light has a di�erent sign than
for p-polarized incident light, i.e. the Kerr rotation and Kerr ellipticity have opposed rotation
sense. The strength of LMOKE depends on the incidence angle β (with respect to the surface
normal). The e�ect is weaker for smaller β and vanishes for β = 0◦ (normal incidence).

Polar MOKE type

The polar MOKE (PMOKE) is generated by the out-of-plane magnetization component (per-
pendicular to the sample surface) as sketched in Fig. 2.18(b). Like the LMOKE, the PMOKE
causes a change in polarization, but no change of intensity. However, there is no switching of
sign between s- and p-polarized incident light. The strength of PMOKE is larger for smaller β
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and reaches maximum for β = 0◦. Furthermore, for normal incidence the strength of PMOKE
is independent from the polarization state (s- or p-polarized incident light).

Transversal MOKE type

The transversal MOKE (TMOKE) occurs for magnetization ~M perpendicular to the incidence
plane of light (cf. Fig. 2.18(b)). Therefore, it is in-plane aligned. In principle, no Kerr rotation
or Kerr ellipticity is generated, but the intensity of p-polarized light is changed as explained
below. Comparable to LMOKE the strength of TMOKE depends on β. For smaller β the
e�ect is weaker and vanishes for β = 0. Since in this work only the change of polarization
(Kerr rotation and Kerr ellipticity) is detected, we do not measure any TMOKE.

Setup geometries of magnetooptic Kerr e�ect

In contrast to the di�erent basic types of MOKE one can distinguish between di�erent setup
geometries as shown in Fig. 2.19. The de�nition for longitudinal, polar and transversal setup
is the same as for the basic types but with respect to the orientation of the external magnetic
�eld ~H instead of the magnetization direction. For all setup geometries the magnetization ~M
can be aligned in every possible direction, especially for small ~H the magnetization has not to
be aligned parallel to the external �eld. Therefore, one can detect all three types of MOKE
in all three setup geometries, e.g. one obtains both LMOKE and PMOKE as a superposition
of Kerr rotation and Kerr ellipticity, if the magnetization has components in-plane and out-
of-plane.
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setup
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setup
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sampleH H H
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Figure 2.19: Setup geometries of MOKE dependent on the orientation of the external
magnetic �eld ~H with respect to the incidence plane of light and to the sample surface.
The incidence angle β is given with respect to the surface normal. (a) Longitudinal setup.
(b) Polar setup. (c) Transversal setup.

If samples with preferred in-plane magnetization reversals are investigated, the longitudinal
and the transversal setup geometries are used in order to saturate in-plane the sample magneti-
zation. For samples with energetically favored out-of-plane direction the polar setup geometry
is used, since the magnetization in these samples is very hard to saturate in-plane. In the
present work the longitudinal and the transversal setup geometry is applied, because only
samples with in-plane saturation magnetization are investigated.
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Consequences for the detection of the di�erent types of MOKE

The measured signal is a combination of the di�erent MOKE types. One can write the
re�ection matrix r̂ from Eq. (2.32) in dependence of LMOKE, PMOKE and TMOKE as

r̂ =

(
rss rsp(LMOKE, PMOKE)

rps(LMOKE, PMOKE) r
(0)
pp + r

(mag)
pp (TMOKE)

)
. (2.42)

It has to be noted, that rss is independent from magnetization and that rpp is composed by
a constant term r

(0)
pp and a term r

(mag)
pp which depends on TMOKE. This is the reason, why

TMOKE changes only the intensity of p-polarized incident light.

Comparison of Eq. (2.42) with the description of the complex Kerr amplitudes Φs and Φp

(Eq. (2.41)) using re�ection coe�cients yields

Φs = −rps(LMOKE, PMOKE)
rss

and Φp =
rsp(LMOKE, PMOKE)

r
(0)
pp + r

(mag)
pp (TMOKE)

. (2.43)

Since the in�uence of r(mag)
pp to Eq. (2.43) is a contribution of the second order in o�-diagonal

elements, it is negligible compared with r(0)
pp . Therefore, we can conclude that Φs and Φp are

exclusively de�ned by LMOKE and PMOKE. The TMOKE has no appreciable contribution to
the Kerr rotation and to the Kerr ellipticity. Thus, when measuring the change of polarization,
we only detect contributions of the magnetization components parallel to the incidence plane of
light (LMOKE, PMOKE) and we cannot detect the in�uence of the component perpendicular
to the incidence plane of light (TMOKE). When measuring the change of intensity, it is the
other way round.

2.2.2.2 Quadratic magnetooptic Kerr e�ect

In principle, MOKE is direct proportional to the magnetization of the sample as already
mentioned in Chap. 2.2.1.1. However, in 1965 Metzger et al. [45] predicted that there could
also be a dependence on higher order between Kerr e�ect and magnetization. The �rst reported
experimental MOKE magnetization curve including second order e�ects was reported in 1990
by Zhong et al. [46] for Ni-Fe bilayers. This quadratic MOKE (QMOKE) contributes to the
linear part in the magnetization curve and results in an asymmetric behavior. While QMOKE
has an even course in magnetization the linear MOKE is odd.

In Fig. 2.20 a principle curve including linear MOKE and QMOKE is shown. The MOKE
signal which demonstrates the experimental data is composed of a linear part which equates
to the linear MOKE as well as a quadratic part which consists of the QMOKE and an o�set
due to experimental details. The experimentally determined MOKE curve can be separated
into its odd and even part in order to obtain the linear MOKE and the quadratic part.

The symmetry of the magnetic reversal process can be described as ~Minc( ~H) = − ~Mdec(− ~H)
with ~Minc as magnetization vector for increasing external �eld ~H and ~Mdec for decreasing exter-
nal �eld. This symmetry is valid if exchange bias e�ects can be ruled out. Thus, symmetriza-
tion and antisymmetrization (odd and even part) of the measured Kerr rotation curve Θ result
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exp. data
= MOKE

quad. part
= QMOKE
+ offset

lin. part
= lin. MOKE

Figure 2.20: Principle curve (blue line) composed of a linear part (green line, linear
MOKE) and a quadratic part (red line, QMOKE and experimental o�set).

in the linear and quadratic part using [47]

Θ
lin/quad
K =

[
Θinc

(
~H
)
∓Θdec

(
− ~H

)]
/2 . (2.44)

Here, Θinc and Θdec are the Kerr rotations for increasing and decreasing external magnetic
�eld, respectively. The strength of QMOKE is larger for smaller incidence angles β and
reaches its maximum for β = 0◦ comparable to PMOKE. This behavior is opposed to the
angular dependence of LMOKE and TMOKE.

QMOKE was reported for magnetic systems like Fe �lms on MgO [48], Mo/Al2O3 [49],
Au/Fe/GaAs [50] and Ag/Au/GaAs/Ag [51]. Furthermore, the magnetization curves of Co
�lms [49, 52] and Co-based Heusler alloys [47, 53, 54] are in�uenced by QMOKE. Although
the origin of QMOKE is not completely understood up to now, it is supposed that the e�ect
can mainly be traced back to spin-orbit coupling of second order [55, 56].

For vectorial magnetometry we only use the linear MOKE. Hence, the quadratic part of
the magnetization curves has to be separated from the linear part, before further processing
is performed. The exact composition of the linear MOKE and the QMOKE, i.e. which
component of the magnetization vector contributes to the linear and to the quadratic part,
respectively, is calculated in the next chapter.

2.2.2.3 Description of magnetooptic Kerr e�ect by permittivity tensor

Permittivity tensor

The interaction between light and matter can be described by the permittivity tensor ε̂. For
isotropic media ε̂ has zero ranking and is a scalar. For anisotropic media ε̂ depends on the
orientation of the sample and therefore it is a matrix (second-order ranked tensor). For a
detailed de�nition of ε̂ we need a coordinate system in the laboratory frame of reference. This
is x1, x2 and x3 presented in Fig. 2.21.
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Figure 2.21: De�nition of the coordinate system of the laboratory frame of reference x1,
x2 and x3. The polarization of incident (superscript i) and re�ected light (superscript r)
with wave vector ~k can be described by s- and p-polarized partial light waves (Es and Ep,
respectively). β denotes the incidence angle of light.

In this laboratory frame of reference x1 is transversal aligned (in-plane and perpendicular to
incidence plane of light), x2 has longitudinal direction (in-plane and parallel to incidence plane
of light) and x3 is directed polar (out-of-plane) pointing away from the observer. Therefore,
we can write the permittivity tensor relating to x1, x2 and x3 as

ε̂ =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 . (2.45)

For a usual non-magnetic material the o�-diagonal elements of ε̂ are zero. If the material is fer-
romagnetic, the o�-diagonal elements are non-zero and generate a rotation of the polarization
as explained in the following on the example of electric displacement.

Electric displacement

The permittivity tensor ε̂ de�nes the dependence of the electric displacement ~D on the electric
�eld ~E. If ~E is the electric �eld of the incident light, then ~D reveals the in�uence of ε̂ to the
rotation of polarization of the incident light. In a �rst simple approach we want to calculate ~D
for s- and p-polarized incident light using

~D = ε0 ε̂ ~E (2.46)

with vacuum permittivity ε0. In Fig. 2.21 it is shown, that the polarization of the incident
light is described by the linear polarized light waves Eis and Eip as already introduced in
Chap. 2.2.1.3. Now, we want to de�ne this polarization in the laboratory frame of reference.
Obviously, Eis is parallel to the x1 direction and Eip is aligned in the x2x3-plane. Therefore,
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one can write for s- and p-polarized incident light

~Es = E0

 1

0

0

 and ~Ep = E0

 0

cos(β)

sin(β)

 , respectively. (2.47)

where E0 is the initial amplitude of the electric �eld and β denotes the incidence angle. Hence,
insertion of Eq. (2.45) and Eq. (2.47) into Eq. (2.46) yields

~Ds = ε0E0

 ε11

ε21

ε31

 and ~Dp = ε0E0

cos(β)

 ε12

ε22

ε32

+ sin(β)

 ε13

ε23

ε33


 . (2.48)

The electric displacement ~Ds for s-polarized incident light is only rotated compared with ~Es
when ε21 and/or ε31 are non-zero, so that ~Ds gains further components in x2 and/or x3

direction. For p-polarized incident light the electric displacement ~Dp is obviously rotated
compared with ~Ep when ε12 and/or ε13 are non-zero, because then ~Dp gains an additional
component in x1 direction.

In conclusion, without non-zero o�-diagonal elements in the permittivity tensor no rotation of
polarization would occur. For s-polarized incident light the important o�-diagonal elements
for rotation are ε21 and ε31, for p-polarized incident light the o�-diagonal elements ε12 and ε13

are essential to generate a rotation.

4× 4 matrix calculus

In order to calculate a mathematical relationship between the complex Kerr amplitude Φs/p

and the permittivity tensor ε̂, we have to relate the re�ection coe�cients to the elements of
the permittivity tensor. This is done using the 4 × 4 matrix calculus basically developed by
Yeh [57] for anisotropic media. Here, the propagation of light through an anisotropic medium
is described by four proper mode waves having proper polarizations by the layered medium.
Proper polarization means that the light polarization does not change during propagation
through a given medium. However, the intensity of a given mode can change due to absorption.

Each layer in the sample is described by a propagation matrix which consists of the infor-
mation of propagation (dispersion, absorption) of the four proper mode waves. Furthermore
at the interface, the tangential components of the electric and magnetic �eld are continuous.
Hence, the interfaces of the layers are represented by so-called dynamic matrices which convert
intensities of the proper modes into the tangential components of the electric and magnetic
�eld.

Vi²¬ovský has extended this calculus to magnetic media [58] and described PMOKE [59] as
well as LMOKE [60] by these 4 × 4 matrices. Also Zak et al. [61] used this formalism to
derive analytical MOKE expressions in ferromagnetic multilayers. A complete calculation for
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a general permittivity tensor is reported by You and Shin [62]. In most cases the ultra thin
ferromagnetic layer approximation is assumed which signi�es that the �lm thickness of the
ferromagnetic layer is much smaller than the wavelength of the probing light. For the re�ection
coe�cients rps and rsp one can obtain [63]

rps = −Ñ
(
N3 ε21 −

N3 ε23ε31

εd
+
N2N

2 ε31

εd

)
and

rsp = Ñ

(
N3 ε12 −

N3 ε32ε13

εd
− N2N

2 ε13

εd

)
(2.49)

with N2 and N3 as components of the normalized wave vector of light ~k/|~k| = (N1, N2, N3).
N1 is zero, since the incidence plane of light is de�ned in the x2x3-plane (cf. Fig. 2.21). Fur-
thermore, N is the complex refraction index for the non-magnetic surroundings like substrate
(or capping layer) and εd describes the permittivity of zeroth order of the magnetic layer.
The prefactor Ñ depends on wavelength and incidence angle of light as well as the optical
surroundings, but is independent on o�-diagonal elements of the permittivity tensor.

As already mentioned in Chap. 2.2.2.1, the MOKE is assumed to have negligible in�uence to
the diagonal re�ection coe�cients rss and rpp concerning complex Kerr amplitude. Therefore,
after insertion of Eq. (2.49) into Eq. (2.41) the complex Kerr amplitude for s- and p-polarized
incident light can be written as

Φs = −rps
rss

= As

(
ε21 −

ε23ε31

εd

)
+Bsε31 and

Φp =
rsp
rpp

= −Ap
(
ε12 −

ε32ε13

εd

)
+Bpε13 (2.50)

using the complex weighting coe�cients

As =
Ñ N3

rss
, Bs =

Ñ N2N
2

εd rss
,

Ap = −Ñ N3

rpp
and Bp = −Ñ N2N

2

εd rpp
. (2.51)

Eq. (2.50) shows which elements of the permittivity tensor give rise to the Kerr rotation. As
already estimated by rotation of the electric displacement in Eq. (2.48), the elements of the
permittivity tensor which are responsible in �rst order are ε21 and ε31 for s-polarized incident
light as well as ε12 and ε13 for p-polarized incident light.

In conclusion, Eq. (2.50) is the resulting description of the complex Kerr amplitude for s- and
p-polarized incident light by the o�-diagonal elements of the permittivity tensor, which can
be used to calculate the Kerr e�ect for a speci�c crystal structure.

2.2.2.4 Magnetooptic Kerr e�ect of tetragonal and cubic crystal structure

After the presentation how the complex Kerr amplitude is related to the o�-diagonal elements
of the permittivity tensor, we want to calculate the Kerr e�ect for a speci�c crystal structure.
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In Ref. [47] the complex Kerr amplitude for cubic crystal structure was calculated including
second order MOKE. Furthermore, the magnetization was restricted to in-plane reversal, i.e.
no out-of-plane component was supposed.

In Chap. 6 of the present thesis and published in Ref. [20] the complex Kerr amplitude for
tetragonal (and cubic) crystal structure was calculated including second order MOKE in com-
bination of all common directions of the magnetization (in-plane and out-of-plane). Here, the
theoretic explanations are summarized, since the detailed derivations are presented in Chap. 5.

x1 x’ =[100]1

x2

x’ =[010]2

x  =3 x’ =[001]3

magnet
α

Figure 2.22: De�nition of the coordinate system of the crystal frame of reference x′1 =
[100], x′2 = [010] and x′3 = [001] with respect to the laboratory frame of reference x1, x2

and x3. α denotes the azimuthal sample angle between x′2 and x2.

We introduce a second coordinate system in the crystal frame of reference which is de�ned as
x′1 = [100], x′2 = [010] and x′3 = [001] (cf. Fig. 2.22). This coordinate system is independent
from the position of the sample in the setup. Compared to the laboratory frame of reference
introduced in Chap. 2.2.2.3 the out-of-plane directions x′3 and x3 are parallel pointing away
from the observer. The azimuthal sample angle α describes the rotation of the sample with
respect to the incidence plane of light and therefore, between x′2-axis and x2-axis.

The magnetization ~M can be expressed in both frames of reference. On the one hand, in the
laboratory frame of reference ~M is described by the components M1, M2 and M3 which are
related to TMOKE, LMOKE and PMOKE (cf. Chap. 2.2.2.1). On the other hand, in the
crystal frame of reference the components of ~M are parallel to the crystal axes and independent
from the orientation of the sample in the setup.

Since the magnetization ~M = (M1,M2,M3) a�ects the elements εij of the permittivity tensor
depending on the crystal structure, we want to evolute εij with respect to the components
of ~M . Thus, the elements εij of the permittivity tensor can be expressed as

εij = ε
(0)
ij +KijkMk +GijklMkMl + · · · (2.52)

with constant elements ε(0)
ij of the non-magnetic permittivity tensor ε̂(0)

ij , the elements Kijk of
the linear magnetooptic tensor K̂, the elements Gijkl of the quadratic magnetooptic tensor Ĝ
and the Einstein summation convention. The indices i, j, k can take the values of 1, 2 and 3
representing the three directions in space x1, x2 and x3, respectively.
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Taking into account the general symmetry arguments for ε̂(0), K̂ and Ĝ [64] and for tetragonal
crystal structure [20], we can express the permittivity tensor as a function of the magnetization
~M ′ = (M ′1,M

′
2,M

′
3) in the crystal frame of reference. This is

ε̂ =



G11M
′2
1 +G12M

′2
2 2G66M

′
1M

′
2 +K12M

′
3 2G44M

′
3M

′
1 −K31M

′
2

+G13M
′2
3 + εd

2G66M
′
1M

′
2 −K12M

′
3 G12M

′2
1 +G11M

′2
2 2G44M

′
2M

′
3 +K31M

′
1

+G13M
′2
3 + εd

2G44M
′
3M

′
1 +K31M

′
2 2G44M

′
2M

′
3 −K31M

′
1 G31

(
M
′2
1 +M

′2
2

)
+G33M

′2
3 + εd33


. (2.53)

This tensor is valid for a non-rotated sample, i.e. azimuthal sample angle α = 0. In order
to obtain a general tensor for all azimuthal directions of the sample, one has to rotate the
involved tensors ε̂(0), K̂ and Ĝ [20]. The results show that ε̂(0) and K̂ for tetragonal symmetry
do not change after rotation. However, the quadratic magnetooptic tensor Ĝ changes.

Using Eq. (2.52) for the rotated tensors ε̂(0), K̂ and Ĝ the results for the o�-diagonal elements
of the permittivity tensor in the laboratory frame of reference are

ε12/21 =

[
2G66 +

∆G

2
(1− cos (4α))

]
M1M2 −

∆G

4
sin (4α)

(
M2

2 −M2
1

)
±K12M3 ,

ε23/32 =2G44M2M3 ±K31M1 and

ε31/13 =2G44M3M1 ±K31M2 (2.54)

with ∆G = G11−G12−2G66 as the magnetooptic anisotropy parameter. The diagonal elements
are not important, since the complex Kerr amplitude depends only on the o�-diagonal elements
of the permittivity tensor (cf. Eq. (2.50)). Insertion of Eq. (2.54) into Eq. (2.50) yields the
complex Kerr amplitude up to second order in magnetization which is

Φs/p =±As/p
[
2G66 +

∆G

2
(1− cos (4α))− K2

31

εd

]
M1M2

∓As/p
∆G

4
sin (4α)

(
M2

2 −M2
1

)
+Bs/pG44M3M1

±Bs/pK31M2 −As/pK12M3 . (2.55)

This expression of the complex Kerr amplitude contains linear terms proportional to M2 and
M3 (corresponding to LMOKE and PMOKE, cf. Chap. 2.2.2.1) as well as second-order terms
proportional to M1M2, M2

2 −M2
1 , and M3M1.

In order to convert Eq. (2.55) into cubic crystal symmetry, Eq. (2.55) mainly remains the
same, but one can use K12 = K31, G12 = G13 = G31 and G44 = G66 [64] due to higher
symmetry of cubic crystal compared to tetragonal crystal.
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Eq. (2.55) shows that the initial statement in Chap. 2.2.1.1 (the Kerr e�ect is proportional
to the magnetization) has to be observed in more detail. The pure proportionality between
Kerr e�ect and magnetization is only valid if there is no QMOKE and one of the following
conditions are ful�lled. Either the magnetization is strictly in-plane (M3 = 0) or there is
no magnetization component parallel to the external magnetic �eld (M2 = 0) as proved by
Eq. (2.55). For magnetization in all residual directions the pure proportionality is not given
anymore due to the superposition of LMOKE and PMOKE. If QMOKE occurs, the measured
Kerr signal is even more complex.

The description of the Kerr e�ect in Eq. (2.55) can be used to separate the components M1,
M2 and M3 of the magnetization from the measured signal as shown in the next chapter.

2.2.2.5 Determination of the separate components of the magnetization

Based on Eq. (2.55) the components of the magnetization vector can be separated by mea-
surement of the Kerr e�ect for both s- and p-polarized incident light as well as the use of
di�erent external magnetic �eld directions. The development of this theoretical description
concerning the experimental processing is also part of the present thesis and published in
Ref. [20] (Chap. 6).

The linear and the quadratic part of the measured MOKE signal can be separated as explained
in Chap. 2.2.2.2 by symmetrization and antisymmetrization of Eq. (2.55). The result is

Φquad
s/p =±As/p

[
2G66 +

∆G

2
(1− cos (4α))− K2

31

εd

]
M1M2

∓As/p
∆G

4
sin (4α)

(
M2

2 −M2
1

)
+Bs/pG44M3M1 and

Φlin
s/p =±Bs/pK31M2 −As/pK12M3 . (2.56)

The quadratic part Φquad
s/p is not required for vectorial magnetometry. Thus, we focus on the

linear part Φlin
s/p.

The weighting coe�cients As and Ap (as well as Bs and Bp) depend on the angle of incidence β.
For small β there is As = Ap and Bs = Bp and the course of M3 and M2 can easily be
determined by the sum and the di�erence of Φlin

s/p [65]. For larger β (as it is the case in this
study) there is As 6= Ap and Bs 6= Bp. Therefore, we need another processing to separate the
components.

During our work we developed a scaling to separate the components even for larger β. For this
propose the mean saturation value of s- and p-polarized signal is determined. During external
magnetic saturation �eld Φlin,sat

s/p = ±Bs/pK31M2 is valid since it is M3 = 0 in magnetic
saturation. Therefore, one can write the scaling factor ks/p as

ks/p = ±Φlin,sat
s − Φlin,sat

p

2Φlin,sat
s/p

=
Bs +Bp

2Bs/p
. (2.57)
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The calculation of the sum and the di�erence of Φlin,scaled
s/p using Eqs. (2.56) and (2.57) yields

Φ+ =− Φlin,scaled
s + Φlin,scaled

p

2
= −

ksΦ
lin
s + kpΦ

lin
p

2
=
Bs +Bp

2
CK12M3 and

Φ− =
Φlin,scaled
s − Φlin,scaled

p

2
=
ksΦ

lin
s − kpΦlin

p

2
=
Bs +Bp

2
K31M2 . (2.58)

Here, As/Bs = Ap/Bp =: C was used which is valid as provable by Eq. (2.51). The processing
explained here results in two curves: Φ+ proportional to M3 and Φ− proportional to M2.
Thus, the separation of magnetization components is ful�lled just by the right scaling.

For cubic crystal structure this processing is also valid, but one has to exchange K31 by K12

in Eq. (2.58) due to the higher symmetry compared to tetragonal crystal structure.

However, the processing is valid for complex description of Kerr e�ect. In the experiment we
measure Kerr rotation which is the real part of the complex Kerr amplitude. Nevertheless,
Eq. (2.58) can be used for separating the magnetization components M2 and M3. An error
estimation can be found in Ref. [20].

In order to obtain the magnetization component M1 the external magnetic �eld and the sam-
ple have to be rotated by 90◦. Thus, the coordinate system in Fig. 2.21 also rotates. The x1

direction is after rotation longitudinal instead of transversal andM1 now causes the LMOKE.
Therefore, the Kerr rotation is now generated byM1 andM3. The x2 direction is now transver-
sal and not longitudinal anymore. So, after rotation the M2 component causes the TMOKE,
which has only evanescent in�uence on the Kerr rotation as explained in Chap. 2.2.2.1. Hence,
the Kerr rotation and therefore our measurements are now sensitive to the magnetization com-
ponent perpendicular to the external �eld.

All equations in this chapter are now valid withM2 exchanged byM1 except the scaling, since
the component perpendicular to the external �eld is not saturated during the reversal process.
Hence, the scaling factor from external �eld parallel to the incidence plane of light is also used
for the curves measured with perpendicular external �eld. Both components M2 (measured
with external �eld parallel to plane of incidence) and M1 (obtained with external �eld per-
pendicular) have the same proportionality constant between Kerr rotation and magnetization
because both are determined with the same Kerr e�ect, the LMOKE. The complete processing
can also be done for this kind of setup to separate the linear part from the quadratic one as
well as to separate the in-plane component from the out-of-plane component.

In conclusion, all components of the magnetization can be obtained in units of Kerr rotation.
The complete reversal process can be reconstructed by calculating the magnitude and the
direction of the magnetization vector from the determined magnetization components. Thus,
conclusions concerning the domain states (monodomain and multidomain state) can be made
as exemplarily performed in Ref. [20].
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2.3 Investigation of thin �lm structure via x-ray radiation

In order to characterize thin �lms structurally they are examined by re�ection and di�raction
of x-rays. Therefore, x-ray re�ectivity (XRR) and x-ray di�raction (XRD) are introduced in
Chap. 2.3.1 and Chap. 2.3.2, respectively.

2.3.1 X-ray re�ectivity

XRR measurements of thin �lms and multilayer systems reveal structural properties like layer
thicknesses, refractive indices and interface roughnesses. The principles of this technique and
exemplary re�ectivity curves are presented in this chapter. Furthermore, the in�uence of
surface roughness on the re�ected re�ectivity is discussed.

2.3.1.1 Principles of x-ray re�ectivity

Incident light with wave vector ~ki is re�ected from an interface as pictured in Fig. 2.23. It
has to be noted, that the incidence angle ϑi of the incoming light is de�ned with respect
to the surface plane in contrast to the incidence angle in common optics where it is de�ned
with respect to the surface normal. While the re�ected part of the light with wave vector ~kr

propagates with the re�ection angle ϑr=ϑi, the residual part (with wave vector ~kt) is refracted
with the transmission angle ϑt.

n1

n2

ϑ
i

ϑ
r

ϑ
t

interface

q=    -kr k i

krk i

kt

x3

x1

Figure 2.23: Re�ection and transmission of an incident wave (wave vector ~ki with inci-
dence angle ϑi) at an interface between two optically di�erent media with the refraction
indices n1 and n2. One part of the incident wave is re�ected (wave vector ~kr with re�ection
angle ϑr = ϑi) and the residual part is refracted (wave vector ~kt with transmission an-
gle ϑt). The scattering vector ~q = ~kr−~ki is varied during XRR measurements by changing
the incident angle ϑi and keeping ϑr = ϑi. The x1 axis is in-plane aligned parallel to the
incidence plane and the x3 axis is normal to the surface pointing into the sample.

Here, all wave vectors ~k are directed in the propagation direction of the respective light. The
magnitude of ~k is de�ned as |~k| = k = 2π/λ with the wavelength λ. Since ϑi = ϑr and
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|~ki| = |~kr| due to energy conservation, the magnitude of the scattering vector ~q = ~kr − ~ki can
be expressed as

q = 2 k sin(ϑi) =
4π

λ
sin(ϑi) . (2.59)

Hence, the scattering vector ~q is always normal to the surface and can be varied during XRR
measurements by changing the incident angle ϑi and keeping ϑr = ϑi.

The transmission angle ϑt depends on the incidence angle ϑi and on the refraction indices n1

and n2 of the two optically di�erent media. This relation can be expressed by the Snell's law

cos(ϑi)

cos(ϑt)
=
n2

n1
. (2.60)

In the classical image of harmonic oscillating atoms, the refractive index n for x-rays is given
by [66]

n = 1− δ + i β with dispersion δ =
λ2

2π
re ρ and absorption β =

λ

4π
µ . (2.61)

Here, re is the classical electron radius, ρ the electron density and µ the absorption coe�cient.
Eq. (2.61) is valid for small incidence angles of light and x-ray photons with an energy far
away from the absorption edges. A derivation in more detail can be found for example in
Ref. [67].

Since the dispersion δ can only be positive (in the range of 10−6), the real part of the refractive
index n for x-rays is always slightly smaller than one. Thus, for x-ray re�ection at an interface
between air/vacuum (n = 1) and matter there is always total re�ection at small incidence
angles. No light is transmitted until the critical angle ϑc ≈

√
2 δ is reached. Above ϑc the

re�ected intensity is decreasing due to partially transmitted light.

If the re�ected intensity Ir is scaled to the incident intensity Ii, it equates to the re�ectivity
R = Ir/Ii = |rs/p|2 with rs and rp as complex re�ection coe�cients for s- and p-polarized
light, respectively. In the same way, the transmittivity T = |ts/p|2 is connected to the complex
transmission coe�cients ts/p.

The tangential components of the electric and magnetic �eld of the light must be continuous
at the surface. Thus, the re�ection and transmission can be described by the Fresnel formulas.
Since for x-rays s- and p-polarized light behaves in a similar way due to n ≈ 1 for x-rays, the
optical coe�cients can be expressed as

rs/p =
ki3 − kt3
ki3 + kt3

and ts/p =
2 ki3

ki3 + kt3
, respectively. (2.62)

Here, ki3 = k sin(ϑi) and kt3 = nk sin(ϑi) = k
√
n2 − cos2(ϑi) denote the x3 component of ~ki

and ~kt, respectively. The x3 axis is aligned normal to the surface as shown in Fig. 2.23, while
the x1 axis is directed in-plane parallel to the incidence plane.

The re�ected intensity depending on the scattering vector q for a pure substrate is shown in
Fig. 2.24(a). The inset shows the total re�ection and the critical angle ϑc followed by the
decrease of intensity proportional to q−4.
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footprint

critical angle
ϑc

Figure 2.24: Re�ectivity curves for the re�ection at a surface (a) without footprint and
(b) with footprint. The inset presents the curves (a) and (b) for small scattering vector q.
The curves are shifted for clarity.

For small incidence angles the sample surface is only illuminated by a part of the x-ray beam
due to spatial extension of the beam and �nite size of the sample. By increasing the incidence
angle this e�ect causes a linear increase of the intensity up to the point of complete illumination
as presented in Fig. 2.24(b). This e�ect is called footprint.

2.3.1.2 Re�ectivity of a multilayer system

For a multilayer system the re�ected intensity is a more complicated expression. Part of
the transmitted beam can be re�ected at the next interface in the multilayer system and
transmitted back at the �rst interface. Therefore, this part contributes to the part which is
directly re�ected at the topmost interface. In 1954 Parratt developed a recursive approach in
order to calculate the total re�ectivity of a multilayer system [68].

This algorithm for N layers can be described by the recursive expression of the re�ectivity of
the interface between the j-th and the (j − 1)-th layer which is denoted by Rj−1,j . Using the
Fresnel coe�cient rj−1,j for the interface between the j-th and the j − 1-th layer as well as
the layer thickness Dj and the scattering vector qj of the j-th layer, one can write [69]

Rj−1,j =
rj−1,j +Rj,j+1 eiDj qj

1 + rj−1,j Rj,j+1 eiDj qj
for j ∈ {1, ... , N} . (2.63)

Furthermore, the re�ectivity of the lowest interface between the N -th layer and the substrate
is denoted by RN,N+1 = rN,N+1. By successive insertion of Rj−1,j in Eq. (2.63) the re�ectivity
of the complete system is given by the re�ectivity of the topmost interface R = Ir/Ii = |R0,1|.
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For a substrate and one layer of a speci�c thickness D the re�ected intensity is pictured in
Fig. 2.25(a). The oscillations are due to interference of the di�erent contributions of the beam
re�ected at the surface and the part which is �rst transmitted and afterwards re�ected at
the interface. The thickness of the layer D can be obtained by determination of the distance
between two oscillations ∆q, since D = 2π/∆q.

Δq

Figure 2.25: Re�ectivity curves for the re�ection at a substrate (a) with a thin layer and
(b) with two thin layers of di�erent thicknesses. The distance between two oscillations ∆q
reveals the thickness of the layer D = 2π/∆q. The curves are shifted for clarity.

For a multilayer system on a substrate the oscillations are more complicated as exemplarily
shown in Fig. 2.25(b) for two thin layers of di�erent thicknesses on a substrate. Therefore, the
re�ected intensity has to be simulated using an expected layer system. By �tting the modeled
re�ectivity to the experimental data the layer thickness, the dispersion and the absorption of
each layer can be identi�ed. In the present work, the in-house developed analysis tool iXRR
was used for the �tting [67]. A further �tting parameter is the roughness of each interface
which is introduced in the following.

2.3.1.3 In�uence of interface roughness

Up to here, the re�ectivity model has sharp interfaces with an abrupt change of the refraction
index from one layer to the next. In nature, the interfaces are rough which leads to a more
continuous change of the refractive index. This e�ect can be considered by a distributed
height x3,j of the j-th layer.

Thus, the constant refractive index is replaced by a continuous distribution nj(x1, x2, x3).
Since the scattering vector ~q contributes only in x3 direction (cf. Fig. 2.23), the refractive
index can be laterally averaged depending on the x3 direction. One obtains the refractive
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index

nj(x3) =

∫ ∫
nj(x1, x2, x3) dx2 dx1 . (2.64)

We assume a Gaussian distribution

Pj(x3) =
1√

2π σj
e
− x23

2σ2
j (2.65)

of the interface heights with standard deviation σj . Therefore, the continuous change of
refractive index from the j-th layer to the (j + 1)-th layer can be described by

nj(x3) =
nj + nj+1

2
− nj − nj+1

2
erf

(
x3 − x3,j√

2σj

)
(2.66)

using the error function

erf(x3) =
2√
π

x3∫
0

e−t
2
dt . (2.67)

The continuous variation of the refractive index results in a modi�cated Fresnel coe�cient

r̃j−1,j = rj−1,j e
−2 k3,j−1 k3,j σ

2
j , (2.68)

which has to be replaced in the recursive formula of Eq. (2.63). The exponential factor is
called the Nevot-Crocet factor [70].

background

Figure 2.26: Re�ectivity curves for the re�ection at a substrate (a) with a thin layer,
(b) considering the roughness of substrate and layer, (c) considering the roughness and the
background. The curves are shifted for clarity.
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The in�uence of the interface roughness is presented in Fig. 2.26 for the re�ectivity of a
substrate with a thin layer. Compared to the re�ectivity of a sharp interface (Fig. 2.26(a))
the re�ectivity of a rough interface (Fig. 2.26(b)) shows oscillations which are damped for
larger scattering vectors q. Furthermore, a rough substrate interface ampli�es the decrease of
the re�ected intensity for increasing q values.

The consideration of surface roughness is implemented in the analysis tool iXRR [67] as well
as the insertion of an intensity background which is generated by di�use background and by
the �ank of the �rst di�raction peak. This intensity background a�ects only the last part of
the re�ectivity curve with low intensity values due to the huge amount of intensity decades.
An exemplary re�ectivity curve including an intensity background is shown in Fig. 2.26(c).

2.3.2 X-ray di�raction

The structural parameters of a crystalline �lm like lattice constants and crystallite sizes can
be obtained by XRD measurements. The principles of this technique are explained in this
chapter. Additionally, specular di�raction and grazing incidence x-ray di�raction (GIXRD)
is described. The latter technique is very sensitive to thin �lms compared to the substrate
due to small incidence angles. For amorphous or polycrystalline �lms grazing incidence wide
angle x-ray scattering (GIWAXS) was used which is also introduced in this chapter.

2.3.2.1 Principles of x-ray di�raction

X-rays are di�racted at the electrons of the atoms in matter. Therefore, periodically ordered
atoms in crystalline structures lead to constructive interference of the di�racted light. These
characteristic di�raction patterns can be correlated to the speci�c atomic lattices. In order to
obtain such di�raction patterns the wavelength of the di�racted light must be in the range of
the atomic layer distances which is of the order 10−10 m. Therefore, x-rays with a wavelength
from 0.8Å to 1.24Å are used.

Bragg and Laue conditions

The principle of di�raction can be explained by the Bragg condition which relates to the
atomic layer distance d, the wavelength λ and the incidence angle ϑ of the x-ray beam to
determine constructive interference. Therefore, the path di�erence ∆ for the re�ection of light
at two parallel lattice planes is shown in Fig. 2.27.

The path di�erence can expressed by

∆ = ∆2 −∆1 with the paths ∆1 = ∆2 cos(2ϑ) and ∆2 =
d

sinϑ
. (2.69)

For constructive interference the path di�erence has to equate to an integer multiple n of
the wavelength λ. Using the trigonometric rule 1 − cos(2ϑ) = 2 sin2 ϑ we obtain the Bragg
condition

nλ = 2 d sinϑ . (2.70)
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ϑlattice plane ϑ
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Δ= -Δ Δ d
Δ2
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Figure 2.27: Determination of the path di�erence ∆ = ∆2−∆1 for the re�ection at two
parallel lattice planes. The incidence angle is ϑ and the atomic layer distance is d.

The Bragg condition is extended to three dimensions and leads to the Laue condition for
elastic scattering

~q = ~G , (2.71)

which describes constructive interference, if the scattering vector ~q (cf. Chap. 2.3.1.1) corre-
sponds to a reciprocal lattice vector ~G. A reciprocal lattice is de�ned in the reciprocal space
which is introduced in the following.

Reciprocal space

The reciprocal space describes the periodicity in real space. Thus, parallel lattice planes in
real space corresponds to a point in the reciprocal space and its higher orders, for example. A
lattice in real space with primitive lattice vectors ~a, ~b and ~c can be converted into a reciprocal
lattice with reciprocal primitive lattice vectors

~a ∗ =
2π

VUC
(~b× ~c) , ~b ∗ =

2π

VUC
(~c× ~a) and ~c ∗ =

2π

VUC
(~a×~b) . (2.72)

Here, VUC = ~a · (~b× ~c) is the volume of the unit cell in real space.

Any reciprocal lattice vector ~G can now be expressed by a linear combination of ~a ∗, ~b ∗ and ~c ∗.
This leads to another expression of the Laue condition in three dimensions

~q ·~a = 2π h , ~q ·~b = 2π k and ~q ·~c = 2π l . (2.73)

Here, h, k and l are integer values which means ~q is directed on a reciprocal lattice point.
Thus, the Laue condition is ful�lled leading to constructive interference. The integers h, k
and l are identical to the Miller indices already introduced in Chap. 2.1.1.2. At these reciprocal
lattice points also the Bragg condition is ful�lled for the speci�c directions. Therefore, these
points are called Bragg peaks.

As an example, a simple cubic lattice in real space with lattice constant a converts into a simple
cubic lattice in reciprocal space with a∗ = 2π/a. However, a bcc and an fcc lattice in real
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space convert into an fcc and a bcc lattice in reciprocal space, respectively, with a∗ = 4π/a
in both cases. Generally, larger distances of periodic structure in real space yield smaller
distances in reciprocal space and vice versa.

In Fig. 2.28(a) an exemplary reciprocal lattice of simple cubic bulk structure is shown. The
coordinate axes are labeled by the reciprocal directions H, K and L. The Bragg peaks are
placed on the integer positions H = h, K = k and L = l with h, k, l ∈ N.

(a)

K

L

H

(b) (c)

bulk semi-infinite layer crystal truncation rods
(00)(01)(02) (10)

(20)

Figure 2.28: Reciprocal space of (a) bulk, (b) a semi-in�nite layer and (c) a semi-in�nite
layer considering the limited penetration depth yielding the crystal truncation rods. These
rods are labeled by (HK).

The crystalline sample can be treated as semi-in�nite crystal lattices because of the symme-
try break of the lattice at the surface. Above the surface no atomic layer contributes to the
interference of the di�racted light. Thus, in reciprocal space the distance between the di�rac-
tion points in out-of-plane direction becomes in�nitesimal and di�raction rods are formed. In
Fig. 2.28(b) the reciprocal space including the di�raction rods of a thin �lm with simple cubic
structure is sketched in comparison to the reciprocal space of a bulk sample (Fig. 2.28(a)).

Theoretically, the intensity of the Bragg peaks is in�nite due to the semi-in�nite crystal. But
the incident x-rays have a limited penetration depth and therefore, the Bragg peak intensity
is also limited. These peaks which have a Lorentzian shape and the di�raction rods form the
crystal truncation rods, which are pictured in Fig. 2.28(c) and labeled by (HK).

Kinematic di�raction theory

In order to describe the di�racted intensity mathematically the kinematic di�raction theory
is used. In a simpli�ed model of the di�raction process the following assumptions are made.

1. Multiple scattering is neglected. It is assumed that each x-ray photon is scattered only
once.

2. Absorption e�ects are not taken into account for thin �lms. Therefore, the di�erent
atomic layers are illuminated with the same intensity independent from their depth in
the �lm. Furthermore, the energy of the x-ray light is far away from the absorption
edges of the material.



2.3 Investigation of thin �lm structure via x-ray radiation 45

3. Refraction is ignored. This assumption is only valid for incidence angles larger than the
critical angle.

The amplitude A(~q) of the light which is di�racted at the electrons of the atoms depending
on the scattering vector ~q is given by

A(~q) = A0C F (~q)G(~q) (2.74)

with structure factor F (~q), lattice factor G(~q) as well as the constant prefactors A0 (amplitude
of incident light) and C containing di�erent natural constants.

The structure factor F (~q) describes the contribution of a unit cell. It is the Fourier transformed
atomic distribution of the unit cell and is expressed as

F (~q) =

N∑
j=1

fj(q) ei ~q ·~rj . (2.75)

The atomic form factor fj(q) corresponds to the Fourier transformed electron distribution of
the j-th atom in the unit cell with N atoms. The position vector ~rj de�nes the place of the
j-th atom in the unit cell.

The lattice factor G(~q) depends on the primitive lattice vectors ~a, ~b and ~c and is de�ned as

G(~q) =

N1−1∑
n1=0

ei n1 ~q ·~a
N2−1∑
n2=0

ei n2 ~q ·~b
N3−1∑
n3=0

ei n3 ~q ·~c . (2.76)

Here, the numbers of the unit cells in the spatial directions are N1, N2 and N3. An exemplary
detailed derivation of all relevant physical values can be found in Ref. [71].

One dimensional grating

In order to present an exemplary intensity distribution, a one dimensional periodicity is as-
sumed. For the periodicity length a of N periodic structure elements we obtain the expression

S0,N (q) =

N−1∑
n=0

ei n q a =
1− eiN q a

1− ei q a
. (2.77)

By calculating the intensity |S0,N (q)|2 we determine

|S0,N (q)|2 =
sin2(N q a/2)

sin2(q a/2)
, (2.78)

which is called N-slit function describing the di�racted intensity distribution of a one dimen-
sional grating of N slits.

In Fig. 2.29 the di�racted intensity distribution for N = 10 is presented. The major Bragg
peaks have a distance of ∆q = 2π

a with minor maxima beside the major peaks. These oscilla-
tions (so-called fringes) have a distance of ∆q0 = 2π

N a .
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Figure 2.29: Di�racted intensity of a one dimensional grating with N = 10 slits. The
Bragg peak distance ∆q = 2π

a and the distance of oscillations ∆q0 = 2π
N a deliver the

distance of the periodic elements in real space and the size of the grating, respectively.

From the distance of the Bragg peaks ∆q one can obtain the distance of the periodic elements

a =
2π

∆q
. (2.79)

The distance of the fringes ∆q0 yield the size of the grating S = N a by the Scherrer formula

S =
2π

∆q0
. (2.80)

Therefore, from the di�raction pattern of a thin �lm the atomic layer distance can be obtained
from the Bragg peak distance. The distance of the fringes gives the crystallite size. However, in
some di�raction patterns the fringes can not be detected due to inhomogeneity of the �lm. In
that case the Bragg peak distance can still be determined, but ∆q0 is not estimable. Therefore,
the crystallite size is calculated by the full with of half maximum (FWHM) ∆qFWHM of the
Bragg peak. The Scherrer formula has to be modi�ed to

S = KS
2π

∆qFWHM
(2.81)

with the Scherrer factor KS = ∆qFWHM

∆q0
= 0.89. This factor is valid for all N-slit functions and

can be numerically determined as exemplarily done in Ref. [72].

For a three dimensional lattice of a thin �lm the di�raction is more complicated because of
the �lm morphology. Mosaics, facettes and vicinal surfaces can in�uence the position and the
shape of the Bragg peaks.

Furthermore, the intensity of the Bragg peaks is a�ected by di�erent correction factors (e.g.
Debye-Waller factor, polarization factor, Lorentz factor, geometry factor) which are summa-
rized in Ref. [73]. Since these correction factors have no e�ect on the position and on the
FWHM of the Bragg peaks, they are not considered in the processing of the present work.
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2.3.2.2 Specular di�raction

The most common x-ray di�raction technique is specular di�raction, which is presented in
Fig. 2.30. Here, the incidence angle ϑ with respect to the lattice plane de�nes the scattering
angle Θ = 2ϑ and therefore, the magnitude of the scattering vector ~q. Fig. 2.30(a) shows
how the wave vectors ~ki and ~kf of incident and di�racted light are aligned for the specular
di�raction. The scattering vector ~q has to hit a Bragg peak to ful�ll the Laue condition and
to determine constructive interference.

(a)

Θ=2ϑ

lattice plane

ϑ
k i

k f

q

lattice plane

(b)

Figure 2.30: Sketch of the reciprocal space for specular di�raction. (a) The incidence
angle ϑ de�nes the scattering angle Θ = 2ϑ and the scattering vector ~q. (b) Variation of
the incidence angle leads to a change of the magnitude of the scattering vector.

Since Θ = 2ϑ is always valid for specular di�raction, the scattering vector ~q is always normal to
the lattice plane. The magnitude of ~q can be varied by change of ϑ as sketched in Fig. 2.30(b).
This di�raction geometry is also called ϑ/2ϑ geometry.

By specular di�raction one observes the intensity distribution of the (00) rod of the investigated
�lm. Therefore, one can determine the vertical atomic lattice distance d of the �lm from the
Bragg peak position and the vertical crystallite size S from the distance of the fringes (or
alternatively from the FWHM of the Bragg peaks).

If the reciprocal space is scaled to the lattice of the substrate and expressed by H, K and L
coordinates, the structural parameters can be calculated by

d =
dsub
Lpeak

. (2.82)

with the vertical atomic lattice distance dsub of the substrate and the Bragg peak position
Lpeak of the �lm.

The FWHM ∆LFWHM gives the vertical crystallite size

S = KS
dsub

∆LFWHM
. (2.83)

2.3.2.3 Grazing incidence x-ray di�raction

In order to observe the di�raction pattern of other rods than the (00) rod, grazing incidence
x-ray di�raction (GIXRD) is performed. Here, the scattering angle Θ is independent from
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the incidence angle ϑ, since ϑ is kept constant. A small incidence angle is chosen, since
the penetration path into the �lm for the x-rays is enhanced. Thus, the measured signal is
relatively more a�ected by the contributions of the �lm compared to the substrate. However,
the incidence angle should be larger than the critical angle to have no total re�ection.

Fig. 2.31(a) shows the reciprocal space for the observation of the (02) rod. Since the incidence
angle is �xed, one has to rotate the sample azimuthally while Θ is varied to hit di�erent
positions on the (02) rod. These Bragg peaks on higher di�raction rods yield vertical as well
as lateral information of the �lm.

ϑ k i

(a)

q

(00)
(02) (10)

(20)

H

K

L

Θ

k f

lattice plane

(01)

ϑ
k i

(b)

q

(00)
(02) (10)

(20)

H

K

L

Θk f

lattice plane

Figure 2.31: Sketch of the reciprocal space for GIXRD with small constant incidence
angle ϑ and independent scattering angle Θ. (a) Observation of the (02) rod. (b) Lateral
observation of the (01) rod near L = 0.

For the determination of lateral atomic lattice distances and lateral crystallite sizes the di�rac-
tion patterns for low L values have to be observed. Therefore, the wave vectors of incidence
and di�racted light (~ki and ~kf , respectively) are nearly parallel in-plane aligned. The recipro-
cal space for this geometry is shown in Fig. 2.31(b). Since ϑ 6= 0, the Bragg peaks with L = 0
values can not be completely reached. Thus, in-plane measurements show only the di�raction
patterns of the in-plane Bragg peak �anks.

2.3.2.4 Grazing incidence wide angle x-ray scattering

For amorphous and polycrystalline �lms we use grazing incidence wide angle x-ray scatter-
ing (GIWAXS). As for GIXRD a small constant incidence angle ϑ is used to have a larger
di�raction contribution of the �lm compared to the substrate.

Amorphous and polycrystalline �lms show no Bragg peaks, but broadened di�raction areas
and large di�raction rings, respectively. Therefore, it is advantageous to observe a huge part
of the reciprocal space at once using wide scattering angles Θ.

In Fig. 2.32 the reciprocal space for GIWAXS is pictured for a polycrystalline �lm. The ob-
served part of the Ewald sphere (indicated by a straight line) shows polycrystalline di�raction
rings due to the constructive interference for the intersections of Bragg sphere and Ewald
sphere.
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Figure 2.32: Sketch of the reciprocal space for GIWAXS with small constant incidence
angle ϑ and wide scattering angle Θ. The observed area is the part of the Ewald sphere
indicated by a straight line. Here, constructive interference can be observed for the inter-
sections of Bragg sphere and Ewald sphere.

Since we observe polycrystalline rings and no Bragg peaks, the reciprocal lattice units H, K
and L are not implemented here. Therefore, the conclusions to the distance of atomic lattice
planes and to the crystallite sizes have to be drawn directly from the scattering angle Θ of
the polycrystalline rings and from the magnitude of the scattering vector (cf. Eq. (2.59))

q =
4π

λ
sin

(
Θ

2

)
. (2.84)

Since the distance of the atomic lattice planes is d = 2π
q , one can write

d =
λ

2 sin
(

Θ
2

) . (2.85)

This equation is again the Bragg condition for n = 1 already presented in Eq. (2.70). Since for
grazing incidence generally Θ 6= 2ϑ, Eq. (2.85) can not be expressed by using the incidence
angle ϑ as in Eq. (2.70).

For determination of the crystallite sizes we use the derivation of Eq. (2.84)

dq

dΘ
=

2π

λ
cos

(
Θ

2

)
=⇒ ∆qFWHM =

2π

λ
cos

(
Θ

2

)
∆ΘFWHM . (2.86)

Insertion of Eq. (2.86) into the Scherrer formula (Eq. (2.81)) yield

S = KS
λ

cos
(

Θ
2

)
∆ΘFWHM

. (2.87)
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3 Investigated materials

In the present work di�erent ferromagnetic material systems are analyzed. The investigations
start with structures of single elements like amorphous and polycrystalline Co on glass and
crystalline Fe on MgO. Furthermore, intermetallic structures like Co50Fe50 on MgO were
examined. In the following all systems are described in detail.

3.1 Co on glass

The transition metal cobalt (Co) is ferromagnetic and has a Curie temperature of 1120◦C.
The common crystalline structures of Co up to a temperature of 400◦C is hexagonal close-
packed (hcp), which equates to a hexagonal lattice structure with a biatomic base (Fig. 3.1(a)).
The lattice parameters of this so-called α-Co are ahcp-Co = 2.51Åand chcp-Co = 4.07Å.

hcp

chcp-Co

ahcp-Co

(a)

afcc-Co

(b)

fcc
Co

Figure 3.1: Crystalline structures of Co. (a) hcp structure with the lattice parameters
ahcp-Co = 2.51Åand chcp-Co = 4.07Å. (b) fcc structure with the lattice parameter afcc-Co =
3.55Å.

For temperatures above 400◦C Co forms a fcc structure (cubic close-packed) with the lattice
parameter afcc-Co = 3.55Å(Fig. 3.1(b)). This Co structure is named β-Co.

Glass consists mainly of SiO2 and has an amorphous structure. If Co is deposited on glass,
amorphous as well as polycrystalline Co �lms were assembled [74, 75]. The growth mode
depends on the �lm thickness as shown in Ref. [76, 77]. Thinner �lms prefer to have amorphous
structure while thicker ones are polycrystalline.

The Co �lms are capped by amorphous Si to avoid the oxidation of Co under ambient con-
ditions. The Si capping layer has no in�uence on the MOKE measurements [78], since it is
diamagnetic. Furthermore, part of the Si capping layer is oxidized due to the large reactivity
of Si. Thus, the band gap of 1.1 eV for Si is increased to 9 eV for SiO2 [79]. Hence, the used
laser energy (He-Ne laser) of 2 eV has no in�uence on the Si capping layer. Therefore, the
MOKE investigations are focussed on the magnetic Co �lm.

3.2 Fe on MgO(001)

Iron (Fe) is also a ferromagnetic transition metal and has a Curie temperature of 770◦C.
The favored crystalline structure of Fe at room temperature is bcc with the lattice parameter
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aFe = 2.87Å(Fig. 3.2(a)). Further Fe structures like γ-Fe (fcc) and δ-Fe (bcc) can be grown
above 900◦C and 1400◦C, respectively.

Fe[010]
Fe[100]

Fe[001]

(b)

rock salt structure

(c)

Fe on MgO(001)

MgO[100]

MgO[010]

MgO[001]

MgO[110]

Fe[100]

[001]

aMgO Mg
O

(a)

Fe

bcc

aFe

aS

Figure 3.2: Crystalline growth of Fe on MgO. (a) bcc structure of Fe with lattice parame-
ter aFe = 2.87Å. (b) Rock salt structure of MgO with the lattice parameter aMgO = 4.21Å.
The lattice parameter of the surface unit cell amounts to aS = 2.98Å. (c) Sideview of the
growth with Fe(001)[100]||MgO(001)[110].

Magnesiumoxide (MgO), which is diamagnetic and insulating, is used as substrate. The
crystalline structure of MgO is composed by Mg2+ and O2− ions arranged in a rock salt
structure (also known as NaCl lattice). This structure is equivalent to an fcc lattice with
a biatomic base as presented in Fig. 3.2(b). The lattice parameter of the bulk lattice is
aMgO = 4.21Å.

The surface unit cell on the MgO(001) surface is rotated by 45◦ with respect to the bulk
surface unit cell. The surface lattice parameter is aS = 2.98Å and �ts well to the Fe lattice
constant. The mismatch amounts to about 4%. Therefore, Fe grows on MgO(001) with
Fe(001)[100]||MgO(001)[110] as shown in a sideview in Fig. 3.2(c) [80].

The Fe �lms grow in the Vollmer-Weber growth mode, since the surface tension of the Fe �lm
is larger than the surface tension of MgO [80]. The Fe/MgO(001) samples are also capped by
amorphous Si to avoid the oxidation of Fe under ambient conditions.

The cubic magnetocrystalline anisotropy of thin Fe �lms yields magnetic easy axes in Fe[100]
and Fe[010] directions as well as magnetic hard axes in Fe[110] and Fe[11̄0] directions [81].

3.3 Co50Fe50 on MgO(001)

Co50Fe50 �lms have a Curie temperature of about 1000◦C and exhibit two di�erent growth
types. If the �lms are deposited at room temperature, they have bcc-like structure with
randomly occupied sites of Co and Fe, the so-called A2-type. The position of both elements
is statistically distributed as sketched in Fig. 3.3(a).

For annealing temperatures of 400◦C after deposition the Co an Fe atoms form a ordered CsCl
lattice named B2-type [82]. Here, the Co and Fe atoms alternately occupy the sites of the bcc
lattice (Fig. 3.3(b)).

Co50Fe50 grows in the same way on MgO(001) as Fe. Thus, the Co50Fe50 unit cell is rotated
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(a)

Fe

A2
Co

(b)

B2

Figure 3.3: Crystalline structure of Co50Fe50. (a) bcc-like structure (A2-type) with
randomly occupied sites by Co and Fe. (b) CsCl structure (B2-type) with ordered occupied
sites by Co and Fe.

by 45◦ with respect to the MgO unit cell with Co50Fe50(001)[100]||MgO(001)[110] (cf. Ref [83]).

The investigated samples have a Cr/Au/Cr bu�er layer between substrate and �lm to reduce
stress. In order to avoid oxidation under ambient conditions, the �lms have a Au capping
layer. The complete stacking is explained in more detail in Chap. 7 (Ref. [21]).

Thin Co50Fe50 �lms also have a cubic magnetocrystalline anisotropy, but in contrast to thin
Fe �lms the magnetic easy axes are rotated in-plane by 45◦. Therefore, the magnetic easy axes
for thin Co50Fe50 �lms point in Co50Fe50[110] and Co50Fe50[11̄0] directions and the magnetic
hard axes are aligned in Co50Fe50[100] and Co50Fe50[010] directions [83].
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4 Experimental details

In this chapter the experimental details of the sample preparation are presented. Further-
more, the experimental setup for the magnetooptic Kerr e�ect technique is introduced. At
last, the synchrotron beamlines and the di�ractometer setups for the structural measurement
techniques are described.

4.1 Sample preparation techniques

The investigated �lms in the present work are prepared by physical vapor deposition (PVD)
under ultra high vacuum (UHV) conditions to avoid contamination of the prepared �lms. The
Co on glass samples as well as the Fe �lms on MgO(001) are deposited by molecular beam
epitaxy in Osnabrück. Furthermore, some Co on glass samples are prepared at the Freie
Universität Berlin. The Co50Fe50 �lms on MgO(001) are fabricated by sputter deposition at
the Tohoku University of Sendai, Japan. Both preparation techniques are described in the
following.

4.1.1 Molecular beam epitaxy for Co on glass and Fe on MgO(001)

In order to prepare the investigated samples the according material is evaporated by direct
or indirect heating. In the �rst case the evaporated material forms a massive rod (as e.g. for
Fe or Co) and in the second case the material is put into a conduction crucible (as e.g. for
Si). Both rod and crucible are set to positive high voltage (>1000V) compared to a heat
�lament nearby as sketched in Fig. 4.1, so that they are heated up by electron bombardment.
This bombardment is increased by the raise of the electron current until the material forms a

UHV ambient
conditions

1)

1) substrate
2) deposited film
3) molecular beam
4) rotatable shutter
5) aperture plate
6) quartz crystal monitor
7) copper cylinder
8) evaporated material

(rod/crucible)
9) filament

10) water cooling
11) vacuum flange
12) rotary feedthrough
13) electrical feedthrough

2)

3)

6)

4)

5)

7)

8)

9)

10)

13)

11)
12)

Figure 4.1: Principal drawing of a molecular beam evaporator. The rod/crucible is
heated by electron bombardment and the material is evaporated towards the substrate.
The coverage of the quartz monitor is an indication for the amount of deposited material
on the substrate.
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molecular beam which is directed onto the substrate.

Additionally, an oscillating quartz crystal monitor is mounted on the aperture plate in order to
determine the amount of deposited material. Here, the variation of the oscillation frequency
is proportional to the amount of material deposited on the quartz crystal. If the distance
between rod/crucible, quartz crystal and substrate is constant, the variation of the oscillation
frequency can be calibrated to the �lm thickness of the prepared samples (e.g. by XRR
measurements).

Since the quartz crystal changes its oscillation frequency with a variation of the temperature,
the thermal equilibrium should be reached before the deposition starts. Therefore, the copper
cylinder and the aperture plate are cooled by water to avoid excessive heat. Furthermore, a
rotatable shutter is used to avoid the deposition before the thermal equilibrium is reached.
Furthermore, the shutter system allows to deposit for a de�ned time by quickly blocking the
beam. The evaporation system is mounted on a vacuum �ange with an electric feedthrough
for the �lament, the quartz and the rod/crucible as well as an rotary feedthrough for the
shutter.

Co and Fe are deposited by a power between 25W and 30W (800◦C-900◦C), while Si needs
a power between 90W and 120W (1200◦C-1400◦C) to be evaporated. Both substrates (glass
and MgO) are heated up prior to the deposition in order to clean the surface and to anneal
the crystal structure. The deposition is performed at room temperature. While the Co �lm
preparation is done at a pressure of p = 10−6 mbar (base pressure at p = 10−7 mbar) using a
deposition rate of 0.3 nm/min, the Fe �lms are prepared at p = 10−7 mbar (base pressure at
p = 10−8 mbar) using a deposition rate of 1 nm/min.

Thicker Co �lms (>50 nm thickness) are assembled in the group of Prof. Fumagalli at the
Freie Universität Berlin using a commercial electron beam evaporator. Here, the Co is heated
up by an electron beam which is directed onto the evaporated material by a magnetic �eld.
The base pressure during deposition is p = 10−9 mbar using a deposition rate of 12 nm/min.

More details to the preparation procedure are summarized for the Co on glass samples in
Chap. 5 (Ref. [19]) and for the Fe �lms on MgO in Chap. 6 (Ref. [20]).

4.1.2 Sputter deposition for Co50Fe50 �lms on MgO(001)

Sputter deposition is performed by ion bombardment of a target which consists of the evapo-
rated material. Here, a plasma is produced in the UHV chamber and the ions are accelerated
by negative high voltage towards the target (Fig. 4.2).

When the plasma ions hit the target, atoms are sputtered out by a cascade of collisions in the
target material. Beside the atoms, also some ions of the target material are sputtered out.
The plasma should consist of inert ions to avoid reactions with the target atoms. Therefore,
the amount of ions which are sputtered out is negligible. Hence, often a noble gas like Ar is
used for the plasma. The target atoms reach the substrate and condensate on the substrate
surface.

The Co50Fe50 �lms are prepared by sputter deposition in the group of Prof. Takanashi at
the Tohoku University of Sendai, Japan. The �lms are deposited at a base pressure less than
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+
Ar

targetsubstrate

Figure 4.2: Principal drawing of sputter deposition. The target is penetrated by ions.
Atoms are sputtered out and reach the substrate.

10−9 mbar on MgO(001) with a Cr/Au/Cr bu�er stack in between and a Au capping layer
as already mentioned in Chap. 3.3. After deposition of Co50Fe50 the �lms are annealed at
di�erent temperatures from RT up to 400◦ as explained in detail in Chap. 7 (Ref. [21]).

4.2 Determination of magnetic properties

The MOKE setup in the group of Prof. Wollschläger was built up in 2007 as the diploma thesis
of the present author. In Ref. [18] the initial setup is introduced. During the present work
the MOKE was improved to perform vectorial magnetometry by the use of di�erent incidence
polarizations and variation of the external magnetic �eld among other improvements. The cur-
rent setup and the actual measurement procedure are described in this chapter. Furthermore,
the proportionality between the measured signal and the Kerr rotation is proved.

4.2.1 Principle MOKE setup

The current MOKE setup consists of four elements: the optical branch of the incident light,
the optical branch of the re�ected light, the sample holder and adjustment unit as well as the
external magnet. The complete setup is shown in Fig. 4.3 and explained in the following.

Optical branch of the incident light

The used light source is a He-Ne laser with a wavelength of λ = 632.8 nm and an output
power of 5mW. The diameter of the laser beam is about 1mm, which guarantees that a huge
amount of magnetic domains in the sample are probed. The linear polarization of the light is
generated by a polarizer at 0◦ for p-polarized light and at 90◦ for s-polarized light.

Since the laser light is already slightly polarized when leaving the light source, the intensity of
light can be controlled by insertion of a λ/2 plate between light source and polarizer. The λ/2
plate rotates the polarization. Therefore, the projection of polarization to the direction of the
polarizer varies. Thus, the intensity of light behind the polarizer changes, but the polarization
direction is kept constant.

The incidence angle of light is 45◦. Hence, the re�ectivity of s- and p-polarized light di�ers. As
introduced in Chap. 2.2.2.5 and detailed explained in Chap. 6 (Ref. [20]) we developed a scaling
of the magnetization curves in order to obtain all magnetization components independent
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Figure 4.3: MOKE setup for s- and p-polarized incident light and external magnetic �eld
parallel and perpendicular to the incidence plane.

from the incidence angle and therefore, independent from the di�erent re�ectivity of s- and
p-polarized light.

Optical branch of the re�ected light

The re�ected light is modulated by a photoelastic modulator (PEM) which consists of a quartz
with the modulation axis parallel to the incidence plane of light. AC voltage is applied to
obtain an oscillating refractive index in the quartz due to the photoelastic e�ect. The quartz
is stretched and shrunk by the piezoelectric e�ect because of the AC voltage. Therefore, the
electron density is also oscillating which leads to a variation of the refractive index.

Since this oscillating refractive index only a�ect the p-polarized part of the re�ected light while
the s-polarized part has constant refractive index, the quartz becomes birefringent. Thus, the
polarization generated by the PEM is oscillating as well. This periodic variation includes the
direction of the polarization as well as the ellipticity.

The analyzer behind the PEM (polarizer at 45◦) converts the polarization signal into an in-
tensity signal due to the polarization projection to the direction of the analyzer. The intensity
signal is detected by a Si photo diode. In order to reduce noise and to avoid the detection
of other light sources, an interference �lter is placed on the diode. Hence, only light with a
wavelength of λ ≈ 632.8 nm can pass by and hit the diode.

The detected oscillating signal is composed of signal contributions corresponding to di�erent
frequencies which are integer multiples of the modulation frequency Ω of the AC voltage
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applied on the PEM. The contributions corresponding to once and twice the modulation
frequency are proportional to the Kerr ellipticity and Kerr rotation, respectively, as proved
in Chap. 4.2.3. These contributions are called Ω signal and 2 Ω signal. In most cases, the
modulation frequency amounts to Ω = 50 kHz for the present setup. Some measurements are
done with a di�erent PEM having a modulation frequency of Ω = 42 kHz.

Both modulation frequency and measured signal are given to a lock-in ampli�er which sep-
arates the contributions of di�erent frequencies. Thus, all unwanted signal contributions
(including noise) are �ltered out. The retardation of the PEM which is the amplitude of
the oscillating e�ect can be varied. Since the retardation contributes with a Bessel function
(Chap. 4.2.3), the retardation concerning the maximum of the Bessel function is chosen to
obtain the maximum signal [55, 84].

The alignment of the PEM with respect to the polarization direction of the re�ected light
a�ects the signal to noise ratio. As shown in Ref. [72] the signal-to-noise ratio is maximized
for zero modulation. Thus, the change of intensity signal is maximal for small changes of the
re�ected polarization, which then induce a modulation. The point of vanishing modulation
can be reached by a small tilt of the PEM around the direction of the re�ected beam until the
polarization direction of the re�ected light is either parallel or perpendicular to the modulation
axis of the PEM depending on the incidence polarization.

In the present thesis, the Kerr rotation is observed, not the Kerr ellipticity. Therefore, the
lock-in ampli�er is adjust to separate the 2 Ω signal. Observation of the Kerr rotation has
the advantage to calibrate the measured signal as described in Chap. 4.2.2 using a step motor
which rotates the PEM an the analyzer simultaneously. The calibration of the Kerr ellipticity
would need more optical alignment (e.g. λ/4 plate), because it can not be directly calibrated.

Sample holder and adjustment unit

The sample is mounted on a sample holder which can be automatically rotated by a step
motor. The sample holder can be tilted in order to adjust the sample surface perpendicular to
the rotation axis of the holder and to the incidence plane of light. The complete holder system
is mounted on a three dimensional xyz-translation table. Thus, the position of the sample
between the magnetic poles can be varied. This also changes the position of the illuminated
area on the sample.

Additionally, the sample holder is connected to an angle meter which gives the exact angle
of the holder with an accuracy of at least ±0.01◦. It has to be noticed, that the step width
of the step motor is 0.005◦, which is due to the fact that 72000 steps are needed for a full
rotation of 360◦. However, the absolute accuracy of the step motor varies sinusoidal ±0.2◦

depending on the absolute position [72]. A feedback loop between step motor and angle meter
is implemented to reach the accuracy of the angle meter. Thus, the sample can be aligned
very precisely concerning the position in the setup and also concerning the azimuthal sample
angle.

The external magnet

The external magnet consists of two water cooled coils. The magnetic poles can be shifted
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to vary the pole distance. For most measurements a pole distance of 5-8 cm is used. The
maximum current of 10A (at maximal 50V) gives a maximum magnetic �eld of µ0H ≈
100− 150mT. A detailed characterization of the used magnet including induction curves for
di�erent pole distances and the examination of the homogeneity of the magnetic �eld between
the poles can be found in Ref. [18].

For measurements with perpendicular external magnetic �eld the magnet is rotated by 90◦.
Thus, the second in-plane magnetization component can be determined. In both magnet
geometries the magnet �eld is detected by a Hall probe.

All measurement signals which are magnetic �eld, intensity at the diode and angle of the
sample observed by the angle meter are collected by a computer. The current of the magnet
and all step motors are also controlled by the computer during the experiment.

4.2.2 Measurement procedure including calibration of Kerr rotation

After the sample is mounted on the holder, the sample surface is adjusted perpendicular to the
rotation axis of the sample holder and therefore, perpendicular to the incidence plane of light.
This is performed by insertion of a mirror in front of the diode. The position of the re�ected
light at the wall is more sensitive to a tilt of the sample surface due to the long path of light.
Now, the sample surface is tilted until the laser spot on the wall does not move anymore, if
the sample is azimuthally rotated.

After adjustment of the incidence intensity and polarization, the PEM is tilted to optimize the
signal-to-noise ratio as described above. Therefore, the light reaching the diode is observed
by a oscilloscope to �nd the point of vanishing modulation. Subsequently, the measured
lock-in signal is calibrated to the Kerr rotation under maximum external �eld to keep the
magnetization constant during the calibration.

For the calibration the PEM and the analyzer are rotated simultaneously by a step motor
keeping the polarization direction of the re�ected light constant. The rotation angle is 0.2◦.
This rotation changes the angle between PEM and polarization direction of re�ected light
as well. The variation is the same as if the alignment of PEM is kept constant and the
polarization of re�ected light would be rotated by the Kerr rotation of 0.2◦. In both cases,
the 2 Ω signal from the lock-in ampli�er varies relatively in the same way. Thus, the intensity
di�erence of the 2 Ω signal before and after rotation corresponds to 0.2◦ Kerr rotation. The
calibration factor for each sample is calculated equivalently. A more detailed description of
the calibration can be found in Ref. [84].

After calibration a typical measurement is performed in four parts. The sample is either
illuminated by s- or p-polarized light and magnetized by an external �eld either parallel
or perpendicular aligned with respect to the incidence plane of light. During each part of
the measurement the magnetization curves are obtained for di�erent azimuthal angles of the
sample. The complete procedure of the measurement is controlled by an in-house developed
program [85].

Afterwards, the four data sets are processed as described in Chap. 2.2.2.5 and Chap. 6
(Ref. [20]) including separation of linear and quadratic MOKE, adequate scaling of the curves
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and determination of all three magnetization components. The processing is also performed
by an in-house developed analysis tool [86].

4.2.3 Proportionality between measured signal and MOKE

In the theoretic part of this thesis the relation between Kerr rotation and magnetization is
discussed, which is in some special cases proportional (cf. Chap. 2.2.2.4). In order to prove,
that the measured 2 Ω intensity signal is proportional to the Kerr rotation, the Jones matrix
calculus [43] is used to describe the in�uence of the optical elements on the polarization of
light.

The Jones vector ~Es and ~Ep of incident s- and p-polarized light, respectively, are de�ned as

~Es = E0

(
1

0

)
and ~Ep = E0

(
0

1

)
. (4.1)

The Jones matrix of the sample can be described by the complex re�ection matrix R̂ which
is already de�ned in Eq. (2.32). The Jones matrix of the modulator M̂(µ) with the angle µ
between the modulation axis and the incidence plane of light is given by

M̂(µ) =

(
ei∆ sin2 µ+ cos2 µ 1

2 (ei∆ − 1) sin(2µ)
1
2 (ei∆ − 1) sin(2µ) ei∆ cos2 µ+ sin2 µ

)
(4.2)

with the oscillating phase shift ∆ between the modulated polarization part and the unmodu-
lated polarization part of the light passing the modulator. Although µ is varied to obtain an
optimum signal-to-noise ratio, this variation is so small, that µ ≈ 0 can be assumed. Therefore,
Eq. (4.2) can be simpli�ed to

M̂(0◦) =

(
1 0

0 ei∆

)
. (4.3)

The analyzer Jones matrix Â is generally de�ned as

Â(ν) =

(
cos2 ν cos ν sin ν

cos ν sin ν sin2 ν

)
(4.4)

with the angle ν between polarization axis and the incidence plane of light. For an analyzer
at ν = 45◦ we obtain

Â(45◦) =
1

2

(
1 1

1 1

)
. (4.5)

The intensity of the light reaching the diode Is and Ip for s- and p-polarized incident light can
be calculated via

Is/p =
∣∣∣Â M̂ R̂ ~Es/p

∣∣∣2 . (4.6)
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We obtain the proportionalities

Is ∝ sin ∆=
(
−rps
rss

)
− cos ∆<

(
−rps
rss

)
and

Ip ∝− sin ∆=
(
rsp
rpp

)
+ cos ∆<

(
rsp
rpp

)
. (4.7)

After insertion of the oscillating phase shift ∆ = ∆0 sin(Ω t) with retardation ∆0, modula-
tion frequency Ω and time t into Eq. (4.7), the intensities can be expressed by the Bessel
functions Jn of the n-th order. We use

sin (∆0 sin (Ω t)) =
∞∑
n=0

2 J2n+1 (∆0) sin ((2n+ 1) Ω t) and

cos (∆0 sin (Ω t)) =J0 (∆0) +

∞∑
n=1

2 J2n (∆0) cos (2nΩ t) . (4.8)

to conclude for the intensities

Is ∝J1(∆0)<
(
−rps
rss

)
sin(Ω t)− J2(∆0)<

(
−rps
rss

)
cos(2 Ω t) and

Ip ∝− J1(∆0)<
(
rsp
rpp

)
sin(Ω t) + J2(∆0)<

(
rsp
rpp

)
cos(2 Ω t) . (4.9)

For small Kerr e�ects the real part and the imaginary part can be exchanged by the Kerr
rotation and the Kerr ellipticity using Eq. (2.41). The lock-in ampli�er separates the Ω and
the 2 Ω contributions from the residual signal. The results prove the proportionality between
the measured signal, either Ω or 2 Ω, and the Kerr ellipticity or Kerr rotation, respectively.
We obtain

IΩ
s ∝J1(∆0) εs , I2 Ω

s ∝ −J2(∆0) Θs ,

IΩ
p ∝− J1(∆0) εp , I2 Ω

p ∝ J2(∆0) Θp . (4.10)

4.3 Determination of structural properties

The XRR and XRD experiments for the determination of structural properties are performed
at synchrotron beamlines. The synchrotron radiation has a high brilliance compared to labo-
ratory x-ray tubes. Therefore, the measurements are less time-consuming and have improved
statistically accuracy. The setups of the beamlines W1 and BW2 at HASYLAB (DESY,
Hamburg) and of the beamline BL9 at DELTA (Dortmund) are introduced in the following.

4.3.1 Beamline W1 and BW2 at HASYLAB (DESY)

X-rays at the beamlines W1 and BW2 are provided by the storage ring DORIS III at HASY-
LAB. Here, synchrotron radiation is generated by the acceleration of positrons to a velocity
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near the speed of light and a maximum kinetic energy of 4.45GeV. The positrons are guided
through a linear array of alternating oriented dipole magnets (so-called wiggler). Thus, the
tangential emitted radiation is channeled and divergent, broadband synchrotron radiation is
emitted with high intensity.

The wiggler at BW2 consists of 56 dipole magnets compared to the W1 wiggler which has
32 dipole magnets. Since the intensity of the light is proportional to the number of dipole
magnets, the intensity of the x-rays obtained at beamline BW2 is higher than at beamline
W1. This is the main di�erence between both beamlines. The further experimental setup is
almost identical.

In order to obtain monochromatic radiation double crystal Si(111) monochromators are imple-
mented to extract x-rays with a speci�c wavelength. In this work, x-ray light with a wavelength
of λ = 1.18Å and λ = 1.24Å is used according to the photon energies of E = 10.5 keV and
E = 10 keV, respectively.

The beam can be focussed onto the sample by a system of Au-coated mirrors, while the
form of the beam can be varied by a slit system. A motor controlled Al-absorber system is
implemented to prevent the detector from damage through higher radiation intensities. The
Al-absorber plates have di�erent thicknesses and can be moved into the beam depending on
the intensity signal obtained by the monitor counter which is placed before the absorber unit.
The scattered x-ray photons are detected by a MYTHEN line detector [87].

1) primary beam
2) monitor
3) absorber
4) slits

1)2)3)

5) sample / pivot point
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Figure 4.4: Experimental di�ractometer setup at beamlines W1 and BW2 (adopted from
Ref. [71] and edited).

The six-circle di�ractometer at the beamlines W1 and BW2 is sketched in Fig. 4.4. The most
important angles which can be varied during the measurements are om, tt, ftr and alf. The
sample can be mounted in the pivot point of the di�ractometer in two di�erent ways.

In the horizontal alignment, alf and ftr are constant at 0◦. Then, the rotation axis of om
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which rotates the sample is perpendicular to the incidence plane of the x-rays. The detector
is rotated by tt within the incidence plane. Therefore, its rotation axis is also perpendicular
to the incidence plane. Thus, the sample surface is parallel to the rotation axis of the om and
tt circle. Here, om de�nes the incidence angle and tt the scattering angle. In this geometry,
the XRR and XRD measurements are performed by variation of om and tt.

In the vertical alignment the sample surface is perpendicular to the rotation axis of om and tt.
In this geometry, the detector can be rotated out of the incidence plane by ftr which has its
rotation axis parallel to the incidence plane and perpendicular to the rotation axes of om and
tt. The complete di�ractometer can be tilted by alf. The rotation axis of alf is also parallel to
the incidence plane and perpendicular to the rotation axes of om and tt, but in general, it is
not parallel to the rotation axis of ftr. Now, alf is the incidence angle and tt in combination
to ftr de�nes the scattering angle. Furthermore, om rotates the sample azimuthally around
the sample normal. Using small constant alf angles in this geometry (above the critical angle
of total re�ection), GIXRD measurements are performed.

4.3.2 Beamline BL9 at DELTA

The storage ring of the synchrotron radiation source DELTA is operated with electrons at
a maximum energy of 1.5GeV [88]. Since this energy (and also the intensity of the beam)
is smaller than the energy (and the intensity) at DORIS III, the statistically accuracy is
lower than at HASYLAB. Thus, the measurement time has to be increased to observe reliable
experimental data.

In principle, the beamline and the di�ractometer at BL9 are identical to the W1/BW2 setup
for XRR. However, a NaI point detector is used instead of the MYTHEN line detector as
implemented at W1/BW2. Furthermore, the wavelength of the used x-ray photons is λ =
0.80Å according to a photon energy of E = 15.5 keV.

For the GIWAXS setup a 2D MAR345 image plate detector is used and an additional sample

2D-detector

phi

Figure 4.5: Experimental di�ractometer setup at beamlines BL9 using a 2D-detector
(adopted from Ref. [71] and edited).
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station is built in (cf. Fig 4.5). This station includes a phi motor to rotate the sample
azimuthally in horizontal alignment. Thus, 2D GIWAXS pattern of e.g. polycrystalline rings
can be detected for di�erent azimuthal sample angles.

The scattering geometry for the GIWAXS setup is additionally sketched in Fig. 4.6. Here, the
constant incidence angle ϑ and the wide scattering angle Θ are marked. This sketch corre-
sponds to Fig. 2.32 which shows the reciprocal space in GIWAXS geometry. The intersection
area of Bragg sphere and Ewald sphere is observed on the 2D detector.
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Figure 4.6: Sketch of scattering geometry for GIWAXS with small constant incidence
angle ϑ and wide scattering angle Θ. The 2D-detector observes the intersection area of
Bragg sphere and Ewald sphere of Fig. 2.32.
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Uniaxial magnetic anisotropy for thin Co �lms on glass studied
by magnetooptic Kerr e�ect
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Abstract

Thin Co �lms of di�erent thickness deposited on glass are investigated by magnetooptic
Kerr e�ect to study the uniaxial magnetic anisotropy of these �lms. The direction of
the uniaxial magnetic anisotropy is determined from the azimuthal dependence of the
magnetic remanence and di�ers with increasing thickness of the Co �lm investigated by
x-ray re�ectivity. Our experiments reveal that preparation conditions like temperature,
deposition rate, or obliqueness of deposition cannot be the reason for this rotation e�ect
of the uniaxial magnetic anisotropy. Also, strain in the substrate and possible textures in
the �lm structure can be excluded as the origin of the magnetic behavior as studied by
grazing incidence wide angle x-ray scattering. Thus, probably only the substrate shape in
connection with the amorphous or polycrystalline �lm structure can explain the rotation
of the uniaxial magnetic anisotropy.
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Abstract

A new combination of di�erent vectorial magnetometry techniques using magnetooptic
Kerr e�ect is described. The processing of the experimental data contains the separation
of linear and quadratic parts of the magnetization curves and determination of all three
components of the magnetization vector in units of Kerr rotation without any normaliza-
tion to the saturation values. The experimental procedure includes measurements with
parallel and perpendicular polarized incident light and an external magnetic �eld parallel
and perpendicular to the plane of incidence of light. The determination of the complex
Kerr amplitude and the theoretic description of the data processing in assumption of small
angles of incidence and also for larger angles of incidence using adequate scaling to the
mean saturation value validate this vectorial magnetometry method. In case of an absent
out-of-plane component of the magnetization vector, the complete reversal process can
easily be reconstructed and interpreted by monodomain states and domain splitting. The
measurement procedure and the processing of the data is demonstrated for an ultra-thin
epitaxial Fe �lm on MgO(001).
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Abstract

Magnetic properties of thin Co50Fe50 �lms on MgO(001) prepared with di�erent an-
nealing temperatures between room temperature and 300◦C are studied by vectorial
magnetometry based on magnetooptic Kerr e�ect. Independent from the annealing the
Co50Fe50 �lms reveal some similar magnetic properties as no quadratic magnetooptic Kerr
e�ect and a magnetic reversal process which is completely in-plane with magnetic easy
axes in Co50Fe50 〈110〉 directions. If the alignment of the external magnetic �eld is close to
the magnetic hard axes, incoherent rotation of magnetic moments between saturation and
remanence occurs instead of coherent rotation as for the other directions. If the magnitude
of the magnetization is polar plotted with respect to the azimuthal magnetization angle,
sequential switching of magnetic moments from one magnetic easy axis to another can be
proved by the course of the magnetization. Here, a two-domain switching process can be
distinguished from a four-domain switching process generated by the incoherent rotation
between saturation and remanence. Furthermore, both the uniaxial magnetic anisotropy
constants and the domain wall pinning energies are determined from the magnetic switch-
ing �elds using the Stoner-Wohlfarth model while the cubic magnetic anisotropy constants
are obtained from �tting the magnetization curves. The domain wall pinning energies ob-
tained from these analyses decrease with increasing annealing temperature due to fewer
defects in the �lm. The cubic magnetic anisotropy also decreases slightly which can be
attributed to relaxation of the crystal lattice for increasing annealing temperature due
to a small change of spin-orbit coupling. Compared to the cubic magnetic anisotropy
the uniaxial magnetic anisotropy is very small. This may be attributed to the reduction
of strain in the �lm caused by a bu�er stack Cr/Au/Cr between the Co50Fe50 �lm and
MgO(001).

3Electronic mail: joachim.wollschlaeger@uos.de
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Abstract

The magnetic structure of a thin B2 ordered Co50Fe50 �lm is determined by vectorial
magnetometry using magnetooptic Kerr e�ect including di�erent polarizations of the inci-
dent light and varied directions of the external magnetic �eld. Both the magnetic reversal
process and the magnetic remanence reveal two in-plane magnetic easy axes of di�erent
strengths which are not orthogonal. Atypical magnetization curves including multidomain
states in magnetic remanence with some magnetic moments providing antiparallel align-
ment to the direction of the previously applied external �eld (if projected to the direction
of the external �eld) con�rm the appearance of di�erent strong magnetic easy axes. This
magnetic structure can be explained by a cubic magnetic anisotropy (CMA) induced by
the crystalline �lm structure superimposed by an additional uniaxial magnetic anisotropy
(UMA) which is not parallel to one of the magnetic easy axes of the CMA. The results
are compared with the regular magnetic behavior of a thin A2 ordered Co50Fe50 �lm with
UMA parallel to one of the magnetic easy axes of the CMA.

4Electronic mail: joachim.wollschlaeger@uos.de
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9 Structural and magnetic properties of Fe �lms on MgO(001)

In Chap. 6 (Ref. [20]) the basic MOKE analysis of an exemplary Fe �lm on MgO(001) is
shown. In order to extend the magnetic characterization, the magnetic anisotropy properties
are obtained from the Stoner-Wohlfarth model in the present chapter and compared with the
structural properties determined by XRR and XRD.

9.1 Structural properties

XRR measurements for Fe �lms of di�erent thicknesses are performed. Two exemplary re�ec-
tometry curves are shown in Fig. 9.1 for a 7 nm Fe �lm and a 22 nm Fe �lm.

2 nm Si cap

MgO(001)

7 nm Fe

11 nm Si cap

22 nm Fe

(b)

MgO(001)

Figure 9.1: XRR measurements of exemplary Fe �lms (dots, lower curves) and simulation
of the data (solid line, upper curves) by means of the respective structure models (insets).
(a) The 2 nm Si capping layer and the 7 nm Fe �lm exhibit a surface roughness of 0.6 nm
and 0.2 nm, respectively. The roughness of the MgO substrate amounts to 0.2 nm. (b) The
11 nm Si capping layer and the 22 nm Fe �lm exhibit a surface roughness of 0.5 nm and
0.2 nm, respectively. The roughness of the MgO substrate amounts to 0.4 nm. The curves
are shifted for clarity.

The model shown in the inset of Fig. 9.1(a) describes the re�ectometry curve of the 7 nm
Fe �lm accurately. The thickness of the Si capping layer amounts to 2 nm. The surface
roughness of each interface is about 0.2 nm up to 0.6 nm. The re�ectometry curve of the
22 nm �lm reveals a Si capping layer thickness of 11 nm and interface roughnesses of 0.2 nm
up to 0.5 nm, respectively. Additional Fe �lms of 4 nm and 6 nm are investigated.

Exemplary specular di�raction measurements in Fig. 9.2 present the (00) di�raction rod with
substrate Bragg peaks at the reciprocal lattice values L = 1 and L = 2. The Bragg peaks of Fe
�lm and MgO substrate are separated, since the atomic lattice distances d of both structures
di�er. The bulk values are dbulk = 2.11 nm for MgO and dbulk = 1.43 nm for Fe, respectively.



76 9 STRUCTURAL AND MAGNETIC PROPERTIES OF Fe FILMS ON MgO(001)

(a) (b)

Figure 9.2: XRD measurement of exemplary Fe �lms (dots) and �t of the Bragg peaks
(solid lines). (a) The Fe(001) Bragg peak of the 4 nm Fe �lm is located at L = 1.498 with a
FWHM of ∆LFWHM = 0.052. (b) The Fe(001) Bragg peak of the 22 nm Fe �lm is located
at L = 1.480 with a FWHM of ∆LFWHM = 0.012. Some small peaks beside the MgO(001)
Bragg peak can be attributed to higher harmonics.

For the 4 nm �lm (Fig. 9.2(a)) the Fe(001) Bragg peak position is L = 1.498 which corresponds
to an atomic layer distance of 1.41Å and a vertical lattice constant of c = 2.81Å. This value
is 2% decreased compared with the bulk value of cbulk = 2.87Å.

Since the Fe(001) Bragg peak shows no oscillations, the �lm is not completely homogeneous.
Therefore, the vertical crystallite size has to be determined by the FWHM of ∆LFWHM of the
Fe(001) peak instead of the oscillation distances. We obtain ∆LFWHM = 0.052 which leads to
a vertical crystallite size of Svert = 4 nm. This value is in accordance with the �lm thickness.
Thus, we have no disordered interfaces.

The 22 nm �lm (Fig. 9.2(b)) reveals a Fe(001) Bragg peak at L = 1.480 according to an atomic
layer distance of 1.42Å and a vertical lattice constant of c = 2.85Å, which is 0.8% decreased
compared with the bulk value.

The Fe(001) peak exhibits a FWHM of ∆LFWHM = 0.012 corresponding to a vertical crystallite
size of Svert = 15nm. This value is quite smaller than the �lm thickness. Probably, there are
interfaces which are not crystalline. The vertical lattice constants c and the vertical crystallite
sizes Svert of all four samples are summarized in Tab. 9.1.

Furthermore, GIXRD measurements are performed on the Fe �lms. Exemplary di�raction
patterns in H = K direction are presented in Fig. 9.3 projected to the H direction. The
Fe(110) Bragg peak is next to the MgO(110) Bragg peak, since the surface lattice constant of
MgO(001) (aS = 2.98Å) di�ers only 3.7% from the lattice constant of Fe.

Here, the substrate peak shape is not as sharp as the substrate peak shape of the specular
rod Bragg peaks. This is reasonable, since the origin of the in-plane peaks can not be reached
with the given technique as already explained in Chap. 2.3.2.3. Thus, the di�raction pattern
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(a) (b)

Figure 9.3: GIXRD measurement of exemplary Fe �lms (dots) and �t of the Bragg peaks
(solid lines). (a) The Fe(110) Bragg peak of the 4 nm Fe �lm is located at H = 1.023
with a FWHM of ∆HFWHM = 0.024. (b) The Fe(110) Bragg peak of the 22 nm Fe �lm is
located at H = 1.026 with a FWHM of ∆HFWHM = 0.013.

shows the �ank of the peaks. Nevertheless, it is assumed that the center of an in-plane peak
di�ers in its L value from the obtained pattern, but has similar H and K values.

The Fe(110) peak position of the 4 nm �lm (Fig. 9.3(a)) amounts toH = 1.023 and corresponds
to a lateral lattice constant of a = 2.91Å. This value is 1.5% increased compared to the bulk
value because the �lm lattice adapts the given substrate structure. Due to volume conservation
the vertical lattice constant is therefore decreased. Thus, the Fe �lm is tetragonal distorted.
The 22 nm �lm shows the similar tetragonal distortion in the GIXRD pattern (Fig. 9.3(b)),
since the Fe(001) peak is located at H = 1.026 according to a = 2.90Å.

Assuming no mosaics or other e�ects which could in�uence the peak shape, we also use the
FWHM to calculate the lateral crystallite size. The FWHM of the Fe(110) peaks reveal
∆HFWHM = 0.024 and ∆HFWHM = 0.013 for the 4 nm and the 22 nm �lm, respectively.
The resulting lateral crystallite sizes are Slat = 8 nm and Slat = 15 nm. All lateral lattice
constants a and lateral crystallite sizes Slat of all four samples are summarized in Tab. 9.1.

thickness D vert. lattice vert. cryst. lat. lattice lat. cryst.

(nm) constant a (Å) size Svert (nm) constant c (Å) size Slat (nm)

4 2.81 4 2.91 8

6 2.81 5 2.96 7

7 2.84 5 2.91 11

22 2.85 15 2.90 15

Table 9.1: Determination of the �lm thickness D by XRR, the vertical and lateral lattice
constants a and c, respectively, as well as the vertical and lateral crystallite sizes Slat
and Svert, respectively.
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9.2 Magnetic properties

All Fe �lms have a cubic magnetocrystalline anisotropy as exemplarily shown in Chap. 6
(Ref. [20]) for the magnetic remanence. Nevertheless, all samples reveal an additional UMA
superimposed to the CMA. The UMA is supposed to be parallel to one of the easy axes of
the CMA for all four samples. Thus, the processing of the switching �eld analysis introduced
in Chap. 7 (Ref. [21]) is performed to obtain the domain wall pinning energy ε90◦ and the
uniaxial magnetic anisotropy constant KU .

In Fig. 9.4 the reciprocal switching �elds HA and HB are plotted against the azimuthal sample
angle α and �tted to a phase shifted sine curve by the use of Eq. (2.17). The amplitudes AA/B
of the sine curves yield the magnetic constants by Eq. (2.19). The exemplary processing is
done for the 4 nm Fe �lm.

(a) (b)

Figure 9.4: Fitting of the reciprocal switching �eld depending on the sample angle α for
the 4 nm Fe �lm. (a) Reciprocal switching �eld 1/HA with amplitude AA = −1.94mT−1.
(b) Reciprocal switching �eld 1/HB with amplitude AB = −1.48mT−1.

The resulting magnetic constants are ε90◦
MS

= 0.84mT and KU
MS

= 0.11mT for the 4 nm Fe �lm.
After determination of the magnetic constants for all four samples we obtain UMA constants
KU with di�erent sign. This is due to the de�nition of the α = 0◦ direction in relation to the
direction of the UMA and has no in�uence on the further results. Therefore, we just table
the absolute values. The domain wall pinning energy ε90◦ and the UMA constant KU for all
samples are summarized in Tab. 9.2.

We now examine the CMA constant K1 and the maximum Kerr rotation representing the
saturation magnetization MS in units of Kerr rotation by �tting the coherent reversal part of
the hystereses. As similarly done for the Co50Fe50 samples in Chap. 7 (Ref. [21]) we use the
Stoner-Wohlfarth model from Eq. 2.20 to �t simultaneously all magnetization curves of one
Fe �lm.

In Fig. 9.5 the �tting result for some exemplary sample angles α is shown. The curve �tting
of the 7 nm Fe �lm yield a CMA constant K1

Ms = 29.3mT and a saturation magnetization
Ms = 74.3mdeg according to the maximum Kerr rotation of that sample.
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Figure 9.5: Coherent reversal part of the magnetization curves m(H) (dots) for some
exemplary azimuthal angles and simultaneous �t (solid line) of all curves for the 7 nm Fe
�lm using the Stoner-Wohlfarth model. The curves are shifted for clarity.

thickness D ε90◦/MS KU/MS K1/MS MS

(nm) (mT) (mT) (mT) (mdeg)

4 0.84 0.11 19.1 63.5

6 1.41 0.09 44.0 17.4

7 0.40 0.24 29.3 74.3

22 0.20 0.03 41.9 93.3

Table 9.2: Determination of the domain wall pinning energy ε90◦/MS , the UMA con-
stant KU/MS , the CMA constant K1/MS and the saturation magnetization MS in units
of Kerr rotation (i.e. maximum Kerr rotation in magnetic saturation) for all Fe samples.

9.3 Discussion

Some of the structural and magnetic parameters obtained from the Fe �lms relate to each other
as discussed in the following. The tetragonal distortion of the cubic Fe lattice is decreasing
with increasing �lm thickness, since the Fe �lm lattice constants and Fe bulk value converge
with larger thicknesses. This can be explained by relaxation of the Fe lattice to its bulk size
for thicker �lms.

The CMA constant K1 increases for thicker �lms (except for the 7 nm �lm). This tendency



80 9 STRUCTURAL AND MAGNETIC PROPERTIES OF Fe FILMS ON MgO(001)

is due to an in�uence of the interface anisotropy for thinner �lms. Thus, the e�ective CMA
constant is reduced for thin �lms and reaches the bulk value for thicker �lms.

The UMA constant is independent from the �lm thickness. Its origin is growth-induced and
can be caused by preparation conditions like substrate in�uence (stress, shape) or deposition
parameters (angle of incidence, magnetic �elds). The anisotropy constant ratio KU

K1
is for all

samples below 1%, which is relatively low compared to literature values of about 10% [34] or
even 40-90% [89].

The proportionality factor between Kerr rotation and magnetization can di�er from sample
to sample. Therefore, a strict interpretation of the devolution of the magnetization in SI units
between di�erent samples can not be done. Nevertheless, neglecting again the 7 nm �lm, the
maximum Kerr rotationMS increases with larger �lm thickness. This could be a hint to larger
magnetization values (in SI units), but it is no prove.

The domain wall pinning energy ε90◦ is related to the defects in the �lm. In a magnetic �lm
with a large defect density the magnetic domains need higher opposed �elds to switch the
magnetic moment into another direction. We assumed in Chap. 7 that di�erent annealing
temperatures of Co50Fe50 yield di�erent defect densities. Furthermore, we obtained for in-
creasing annealing temperatures that the domain wall pinning energy (and therefore, also the
defect density) is reduced.

In order to con�rm this statement, we want to plot ε90◦ of the Fe �lms against the lateral
crystallite size Slat, which is an indicator for the defect density. Films with larger lateral
crystallite sizes have a lower defect density and vice versa. Fig. 9.6(a) shows that the expected
relation between Slat and ε90◦ is approved. The decrease of Slat leads to an larger domain wall
pinning energy. For reciprocal ε90◦ the relation is even linear (Fig. 9.6(b)).

(a) (b)

Figure 9.6: Domain wall pinning energy ε90◦ plotted against the lateral crystallite
size Slat. (a) Direct comparison. (b) Reciprocal plotting.
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10 Summary and Outlook

The most important results of the present thesis are summarized in the following. Additionally,
a short outlook to future investigations is given.

The studied amorphous and polycrystalline Co �lms on glass with thicknesses of 9 nm up
to 90 nm are investigated by magnetooptic Kerr e�ect (MOKE) which is sensitive to the
magnetization in the probed �lm. The thicknesses are determined by x-ray re�ectivity (XRR).
The MOKE results show mostly a uniaxial magnetic anisotropy (UMA) observable by the
magnetic remanence depending on the azimuthal sample angle. Thus, the magnetization is
aligned along the magnetic easy axis induced by the UMA for vanishing external magnetic
�eld. This favored magnetic axis is aligned in di�erent directions varying from sample to
sample. The experiments reveal that preparation conditions like temperature, deposition rate
and obliqueness of deposition can be excluded as an origin of the UMA.

Grazing incidence wide angle x-ray scattering (GIWAXS) measurements present amorphous
and polycrystalline di�raction patterns. The hexagonal lattice constants and the sizes of the
Co crystallites obtained from the di�raction rings are analyzed with respect to the azimuthal
sample angle in order to search for structural preferred directions which induce the UMA.
However, we did not observe a correlation between structural properties and direction of the
UMA.

The anisotropy measurements show that the direction of the UMA depends on the thickness
of the Co �lms. Amorphous ultrathin �lms and polycrystalline �lms of a thickness larger
than 50 nm have a UMA directed parallel to the substrate edge. Only �lms of intermediate
thickness show UMAs aligned in di�erent directions. A probable explanation could be that
for homogeneous amorphous and homogeneous polycrystalline �lms the shape anisotropy in-
duces a favored magnetic axis. The anisotropy contribution of the shape anisotropy has no
appreciable in�uence to the magnetic direction in the intermediate thickness range, since the
inhomogeneous �lm structure already induces a randomly distributed magnetically favored
direction.

For the investigations on crystalline �lms with cubic lattice structures, a new combination of
di�erent vectorial magnetometry techniques is developed in the present work on the base of
the MOKE setup. Incident light with di�erent linear polarizations (s and p) is used to separate
the in-plane and the out-of-plane component of the magnetization vector by calculating the
sum and the di�erence of the detected signals. Furthermore, a magnetic �eld parallel and
perpendicular to the incidence plane of light is applied to obtain both in-plane components of
the magnetization vector.

The measured magnetization curves are scaled to the mean saturation value of s- and p-
polarized signal. Thus, the processing of the experimental data is valid for all incidence
angles as theoretically derived by the analytical expressions of the permittivity tensor for
cubic and tetragonal magnetic structures. One of the advantages of the introduced technique
is the quantitative comparability of the magnetic behavior of di�erent samples in units of
Kerr rotation. The standard normalization of the magnetization curves which allows only
qualitative estimations is not necessary due to the described adequate scaling.
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The separation of the magnetization components is done after the linear and the quadratic
part of the magnetization curves are determined by symmetrization and antisymmetrization of
the hysteresis curves. These parts are due to the linear and the quadratic MOKE, respectively.
The latter e�ect is huge in Fe �lms as well as in Co based intermetallic compounds and is
assumed to be generated by a spin orbit interaction of the second order. The separation of
linear and quadratic MOKE is valid for thin �lms without exchange bias e�ects.

The vectorial magnetometry analysis is performed on the crystalline cubic structured system
Fe on MgO(001) with varied �lm thickness from 4nm up to 22 nm. Furthermore, cubic struc-
tured Co50Fe50 �lms on MgO(001) with di�erent annealing temperature from room tempera-
ture up to 400◦C are investigated. All structures reveal a cubic magnetic anisotropy (CMA)
due to the cubic crystal structure superimposed by a weak UMA, which is directly observable
from the coercive �eld of the magnetization curves in di�erent azimuthal sample directions.
However, the magnetic remanence reveals in most cases only the fourfold CMA structure.
Thus, the coercive �eld is more sensitive to the contributions of the UMA. In most cases the
UMA is parallel aligned to one of the magnetic easy axes of the CMA resulting in orthogonal
overall easy axes which have di�erent strengths.

The determination of the magnetization components shows a negligible out-of-plane compo-
nent for both investigated systems. Thus, the complete reversal process of the magnetization
vector is performed in-plane. Furthermore, QMOKE is obtained for nearly all Fe �lms, but
the e�ect is negligible in all Co50Fe50 �lms. The magnetic easy axes of the Fe �lms are par-
allel aligned to the edges of the cubic unit cell Fe<100>, while the magnetic easy axes of the
Co50Fe50 �lms are parallel to the Co50Fe50<110> directions.

Since the magnitude of the magnetization can be determined by the magnetization com-
ponents, the reversal process can be sectioned into coherent rotation parts with maximum
magnetization and incoherent rotation parts regarding to the splitting of domains. This mul-
tidomain state is characterized by magnetic moments aligned in di�erent directions. Thus,
the total magnetization is reduced. For both investigated systems magnetization curves with
incoherent rotation are observed, if the external magnetic �eld is aligned parallel to the mag-
netic hard direction which is energetically unfavorable for the magnetization. This incoherent
rotation parts between the magnetization saturation and the magnetic remanence (when the
external �eld is decreased) can be explained by the di�erent rotation sense of di�erent magnetic
domains.

The magnetization switching for opposed applied external magnetic �eld can be advanta-
geously visualized by polar plotting the magnitude of the magnetization vector against the
rotation angle of the magnetization. If this switching is performed by sequential jumping of
the magnetic moments from one magnetic easy axis to the next magnetic easy axis, the polar
curve shows a straight line which is the vectorial summation of the magnetic moments aligned
in two di�erent magnetic easy directions.

This straight line characteristic occurs also for the reversal process, if the external �eld is
aligned parallel to the magnetic hard direction. However, during the switching of the magne-
tization the straight line in the polar plot is composed of magnetic moments directing in all
four di�erent magnetic easy axes due to the di�erent rotation sense of the magnetic moments.
These four 90◦ multidomain states lead to a reduced switching magnetization compared to
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the reversal process where only two magnetic easy axes are involved in the switching.

The di�erent anisotropy contributions can be described by the Stoner-Wohlfarth model which
is valid for the coherent parts of the magnetization curves. Therefore, the reversal process
for an external magnetic �eld parallel to di�erent azimuthal sample directions is determined
for both investigated systems. The external magnetic �eld for the switching process can be
used to calculate the UMA constant KU and the domain wall pinning energy ε90◦ , if this
�eld is reciprocally plotted against the azimuthal sample angle. Furthermore, these magnetic
constants can be used to �t the coherent rotation part of the magnetization curves resulting in
the CMA constant K1 and the maximum Kerr rotation which corresponds to the saturation
magnetization MS in units of Kerr rotation.

The di�erent annealed Co50Fe50 �lms which reveal a UMA parallel to one of the CMA easy axes
have similar CMA constants K1 and similar saturation magnetizations MS . This is an indica-
tion for comparable atomic and electronic structures in the �lm. The UMA constantKU seems
to be independent from the annealing temperature. Thus, this growth-induced anisotropy is
generated by deposition parameters which are independent from the annealing temperature.

The ratio KU
K1

is relatively low compared to the literature. The reason could be the stress
reduction due to the Cr bu�er layer which was implemented between MgO substrate and
Co50Fe50 �lm during sample preparation. The domain wall pinning energy ε90◦ decreases
with increasing annealing temperature. An interpretation could be that the amount of defects
in the �lm which in�uence the domain wall creation and propagation is reduced for higher
annealing temperatures and therefore, the magnetization can switch more easily than in a �lm
with a larger amount of defects.

The Co50Fe50 �lm with the annealing temperature of 400◦C reveals di�erent magnetic behav-
ior. Here, the vectorial magnetometry data shows two overall magnetic easy axes which are not
orthogonal and which have not the same strength. This resulting magnetic anisotropy could
be caused by a CMA in combination to a UMA which is not parallel to one of the magnetic
easy CMA axes. Since the anisotropy constant determination using the Stoner-Wohlfarth
model can not be applied in this case due to symmetry reasons, further processing can not be
done.

For the Fe �lms on MgO with di�erent thicknesses obtained by XRR several specular di�rac-
tion patterns are observed using x-ray di�raction (XRD). From the Fe peak positions and
the FWHM of the peaks the vertical lattice constants and the vertical crystallite sizes are
determined. Furthermore, grazing incidence x-ray di�raction (GIXRD) was performed to ob-
tain the lateral lattice constants and the lateral crystallite sizes. All samples show tetragonal
distortion of the crystal unit cell due to the �tment of lateral lattice constant to the surface
lattice constant of the substrate. The vertical crystallite sizes matches to the �lm thicknesses
for thinner �lms. The vertical crystallite sizes of the thicker �lms are smaller than the �lm
thicknesses which is related to some disordered interfaces.

The determination of the magnetic constants by �tting the switching �elds of the magneti-
zation curves yield increasing CMA constants K1 with larger �lm thicknesses. This can be
explained by a decreasing in�uence of the interface anisotropy for thicker �lms. For thinner
�lms this interface anisotropy reduces the e�ective CMA constants. Similar to the Co50Fe50
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�lms the obtained UMA constant KU seems to be independent from the varied parameters
and the ratio KU

K1
is again relatively low compared to the literature.

Comparison of the domain wall pinning energy ε90◦ and the lateral crystallite sizes of the Fe
�lms reveals a reciprocal dependence. For larger lateral crystallite sizes we obtain smaller ε90◦

values due to a smaller amount of defects in the �lms. This interpretation of the ε90◦ devel-
opment is consistent to the Co50Fe50 �lms.

For future investigations, the magnetic constant determination using the Stoner-Wohlfarth
model has to be extended to obtain these constants also for magnetic anisotropies with a
UMA not parallel to one of the CMA easy axes. The origin of the varying direction between
UMA and CMA should be investigated.

Furthermore, the vectorial magnetometry technique should also be applied on magnetic thin
�lms with an reversal process including all three magnetization components (not only in-plane)
in order to absolutely verify the experimental approach and the theoretical derivation of the
technique. Thin �lms with di�erent crystal structures (not only cubic and tetragonal) should
be observed by the MOKE technique attendant to theoretical calculations of the processing
steps for separation of the magnetization components. Here, the processing of the obtained
data for all general crystal structures is not clear up to now.

The magnetic easy directions of the Co50Fe50 �lms are 45◦ rotated to the magnetic easy axes
of the Fe �lms concerning the cubic unit cell of the crystal. The transition of this rotation
from pure cubic Fe �lms to �lms with Co contributions should be analyzed also concerning
the magnetic anisotropy constants.

In order to verify the dependence between the domain wall pinning energy and the lateral
crystallite size more samples with varying parameters have to be investigated. Additionally,
more in-plane Bragg peaks have to be studied for each sample by GIXRD to consider possible
mosaic e�ects or variations of the lateral lattice constants.
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For reading parts of the manuscript and giving me very good correction suggestions I would like
to thank Florian Bertram, Daniel Bruns, Sebastian Gevers, Jaroslav Hamrle, Tobias Schemme
and Henrik Wilkens. I also want to thank the musicians of Billy Talent, Cara, die Toten Hosen,
Knochenfabrik and Roxette for their fantastic music, which attended me the entire time in
the last weeks during writing.



Now I come to the most important people I can acknowledge for their support, not only in the
last years. This is what I call my 'family', which consists not only of my parents, grandparents
and my sister's family. It also includes the best friends I have. Some of them I know for my
entire life.

I want to say thank you to this complete family for so many years of friendship and support,
for each crazy venture we were doing, for the balance from workaday life by making music,
for the fact that you are here.

'to all my friends, present, past and beyond

even though they weren't with us too long

life is the most precious thing you can lose

while you were here the fun was never ending

laugh a minute was only the beginning

brothers and sisters, this one's for you!'

Jason Matthew Thirsk & Pennywise


