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Abstract

Action planning has been used in the field of robotics for solving long-running tasks. In the
robot architectures field, it is also known as the deliberative layer. However, there is still a
gap between the symbolic representation on the one hand and the low-level control and sensor
representation on the other. In addition, the definition of a planning problem for a complex,
real-world robot is not trivial. The planning process could become intractable as its search
spaces become large. As the defined planning problem determines the complexity and the
computationability for solving the problem, it should contain only relevant states. In this work,
a novel approach which amalgamates Description Logic (DL) reasoning with Hierarchical Task
Network (HTN) planning is introduced.

The planning domain description as well as fundamental HTN planning concepts are rep-
resented in DL and can therefore be subject to DL reasoning; from these representations, con-
cise planning problems are generated for HTN planning. The method is presented through an
example in the robot navigation domain. In addition, a case study of the RoboCup@Home
domain is given. As proof of concept, a well-known planning problem that often serves as a
benchmark, namely that of the blocks-world, is modeled and solved using this approach.

An analysis of the performance of the approach has been conducted and the results show
that this approach yields significantly smaller planning problem descriptions than those gener-
ated by current representations in HTN planning.
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1. Introduction

In recent years, the robotics field has seen rapid advancements in both software and hardware

areas. Good algorithms for perception, learning, planning, navigation and inferencing have been

researched and used in autonomous robots. They enable the robot to be more useful in daily life,

for example as a courier, or a museum guide, such as RHINO [BCF+99, BAB+01], MINERVA

[TBB+00], and ROBOX [ATS03, SAB+03]. Several new robot platforms have been developed

which support major research in robotics, from advanced mobile robots, such as legged robots,

to lightweight manipulators.

A mobile robot with a manipulator is called a mobile manipulator. It has the capabilities

of a mobile robot in addition to the functionality associated with its manipulator. Tasks which

could not be accomplished with a mobile robot can be achieved with such a mobile manipulator.

Examples of such tasks are fetching an object.

A mobile manipulator is not simply the combination of a mobile robot and a manipulator,

rather, additional sensors and actuators, such as cameras, laser scanners, and pan-tilt units, are

also added to these platforms. Each component has a different interface and different properties.

Thus, system integration is another important aspect of mobile manipulator development. This

integration is very closely related to the architecture of the robot. Defining interfaces for each

component such that they can communicate with each other is an example of what such an

integration task includes. A hybrid control architecture is one of the widely used architecture

types for controlling a robot. In this architecture type, the components are grouped into several

different layers based on the time scale or representation hierarchy. The low level controller,

that controls the robot locomotion, runs in a higher frequency than the deliberative layer, that

plans the robot actions.

A robot would normally receive commands from a human user either through a terminal

through which the commands are entered or through speech. The latter is preferable since it

is more natural for the user. Regardless of the approach being used, the robot will receive the

command, for example “bring me the green tea from the side board to the dinner table”. Such a

command consists of several different sub-tasks, some of which may be relevant to the mobile

component while others may be relevant to the manipulator. A symbolic planner is required

to execute such a command. It would generate sequences of sub-tasks consisting of several

actions needed to successfully achieve the given goal. In terms of hybrid control architecture,

the symbolic planner is implemented as the topmost component which is called the deliberative

layer.

In this work, the deliberative layer of a hybrid control architecture is enhanced and named
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“Hybrid Deliberative Layer” (HDL). This dissertation focuses on the planning task for a mobile

manipulator. The planner presented here is enhanced with a knowledge-based system. It min-

imises the gap between the deliberative layer, the perception system and the control layer. It

also enables more natural human robot interaction (HRI). The HDL system is used for solving

the planning problem in the RoboCup domain for our robot, Johnny Jackanapes.

1.1. Motivation

Mobile robotics has been among the motivations for developing planning in AI. Often the main

objective in mobile robotics is to move from location A to location B. The planner is used to plan

a sequence of way points between the original location and the destination. In the mobile ma-

nipulator case, the robot will also have manipulation capability, thus, additional objectives are

usually specified. For solving different objectives, the planner needs different models. There-

fore, a robot will have several models to enable it to work in its environment.

Most planning applications are intended to be used by a specific robot. In the worst case,

the model of the robot, which is used for planning purposes is difficult to use on other robot

platforms even though the objective may be the same. This is due to the different commands

used by each robot. Having a planning system which is portable enough and can work within

several different environments is a major goal of the field.

One can model the environment in such detail that it contains almost every aspect of the

different objects. Although this might sound trivial, modelling of the environment, or the do-

main as it is referred to, is far from a trivial task. The more complex the domain is, the more

difficult it is to model. Additionally, it is also difficult to test whether the model is correct or not.

Besides that, providing a complex domain to the planner might cause the planner to break. The

planner extracts the actions from the domain, the larger the domain, the more time is needed to

search within it. A planner that takes hours to plan is not acceptable, especially if the robot is to

interact with humans.

Recall the task, “bring me the green tea from the side board to the dinner table”. This

task is stated very specifically. If this task were asked of another human being, it would most

likely not include the location of the green tea. Given the large memory that a robot has, it

should suffice to state the task as “bring me the green tea to the dinner table”. For human beings

such incomplete knowledge is no problem at all. However for the robot, it means that only

partial information is available. The question is then how the robot can bridge this gap in its

information in order to successfully generate a viable plan to achieve its goals.

The commands given by the user are presented in terms of symbolic objects, for example,

green tea, side board, or dinner table. This symbolic information can be processed by the

symbolic planner. As a consequence, the output of the planner is also given as a sequence of

symbolic actions. However, such a symbolic action might not be useful for the control system.

The control system needs a numerical value, in this case the poses of the objects. Additionally,
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the perception system needs a reference, for example, a Scale-Invariant Feature Transform

(SIFT) feature [Low04] of the object’s texture. It is also possible to implement a local database

which stores additional information about these objects. However, this solution might not be

elegant and may prove difficult to maintain in a complex system like a mobile manipulator.

Adding a knowledge base (KB) to the system could minimise the gap between each com-

ponent and provide a more elegant solution. The KB contains the domain model of the planning

problem in addition to the information used to map symbolic objects and their numerical coun-

terparts. The KB provides the other components with information, thus facilitating the updating

of the information and ensuring its consistency for the whole system.

1.2. Problem Statement

Computation time and memory remain the main technical problems that a planning system deals

with. The size of the planning problem is related to the required time to extract the solution plan

and the required space (memory) for the planner. Although the development of microprocessor

speed and memory in the computer has been staggering, these problems have remained. The

HTN planning system is semi-intractable depending on the problem’s description [NSE98]. The

size of the problem is one of the reasons for this. The first problem that is tackled in this work

is that of keeping the planning problem as small as possible while preserving its validity.

A KB system and a planning system can be categorised as a knowledge representation

system and an inference system. The difference between these systems is found at several

levels. Firstly, the planning system is used for searching the domain for a plan to achieve the

goal. The KB system is a more general system which is intended to represent any knowledge

and to reason about its stored knowledge. The reasoning process in the KB is not bound solely

to any specific application. The planning system, is thus more specific than the KB system.

Secondly, they use different languages or syntaxes to represent their knowledge. As such the

second problem which is addressed in this work is how to efficiently combine the planning

system and the KB into a coherent system.

The third problem addressed here is how to model the planning problem in the DL syntax.

DL can be used to represent the knowledge of an application domain in a formal well-understood

and structured way. Thus, it is possible to model the planning domain in DL. However, there is

no fixed guideline on how to model an ontology or even on modelling a planning domain in the

DL KB. The DL ontology should also serve as the main representation used by the robot.

Navigation is one of the capabilities of a mobile robot. Hence, the navigation domain is one

of its planning domains. Adding a manipulator to the robot provides the robot with additional

capabilities, such as pick-and-place task. Thus, the robot also needs the pick-and-place domain

representation. A complex goal to manipulate an object may also require the robot to navigate.

Therefore, the fourth problem addressed here is how to model the planning domains, such that

they can be stored in the same DL model and also increase their re-usability.
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1.3. Challenges

Gil [Gil05] surveyed work on combining expressive knowledge representation and planning

techniques. She stated that real-world planning applications are naturally rich in knowledge.

She summarises the challenges for a planning algorithm:

“Typical planning systems use very small amounts of knowledge, and the repres-

entations of the domain or the planning tasks are typically not very expressive. A

challenging area of future research is the integration of existing planning algorithms

with rich representations of domain-specific knowledge about planning tasks and

objectives, actions and events as part of a plan, and the complex relations among

them.” Gil [Gil05]

Although the surveyed works have used DL, they have not been incorporated within state-of-

the-art planning algorithms.

Combining DL reasoning with HTN planning to form a deliberative layer in mobile robotics

poses several challenges and difficulties such as:

• Defining the planning domain in the DL system.

• Reasoning about the objects described in DL in order to generate an HTN planning prob-

lem.

• Capturing real world information in the DL model and using it as input to the planning

problem.

• Limiting the number of states in the planning problem while preserving its soundness.

Defining the HTN planning domain in the DL system is a crucial part of the solution presen-

ted here. However, planning domains consist of several terminologies and structures. In partic-

ular, the HTN planning domain consists of heuristics in the form of task networks that provide

the planner with a solution to the problem. A process is needed that transfers this information

to the DL representation. It is important that the relationships between tasks in the DL model are

maintained such that the task networks can be reproduced.

Once the planning domains are stored in the DL model, the next challenge is how to retrieve

the information from the model. Retrieving information as it is stored is one problem but a more

interesting one is how this information can be used to gather additional information or even new

knowledge from the model. Hence, the modelling of the planning domain has a direct effect on

how the other information would be stored in the DL model.

The stored information must also be used to generate the planning problem. Hence, captur-

ing the world model, where the robot is operating, is another challenge. Which states and how

they are stored for enabling the reasoning system to infer the states for the planning problem is

yet another challenge.
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Last but not least, it is challenging to determine which information is relevant for a planning

problem. For the planning system alone, it is not possible to determine which information can

be omitted without affecting its results. A naive solution is to omit the states that do not appear

in the goal states. This might work in some specific domains such as the simple blocks world

problem. However, in the robotics domain, specifically in the navigation domain, the planner

would not be able to determine which path is relevant for moving from one place to another. This

information is available to the system after the planning process is completed. The challenge is

how to model the DL terminologies in a way such that the irrelevant states can be filtered out

from the generated planning problem.

1.4. Scope

This work focuses on the deliberative layer of a robot architecture. It deals with a novel approach

by amalgamating a DL reasoner and an HTN planner. However, this work is neither developing

nor improving any DL reasoner or HTN planner. It uses an existing DL reasoning system, namely

Pellet, and the HTN planner JSHOP2. The work focuses on developing algorithms and concepts

in DL for automatically generating the planning problem.

Scheduler and Executer

Low Level Controller 
(Behaviours, Path Planning)

Hybrid Deliberative Layer

Sensors
Processing

Figure 1.1.: Hybrid Deliberative Layer (HDL) in a robot control architecture.

Figure 1.1 depicts the HDL in a robot control architecture. This work covers neither the

executive layers (“scheduler and executer” and “low level controller”) nor the perception layer

(“sensor processing”) of the robot architecture. However, a case study is shown in Chapter 4 on

how the HDL system could be integrated into existing systems, namely in our RoboCup robot. In

other words, this work does not deal with robot control but rather with planning, representation

and their extensions.
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1.5. Previous Work

The HDL system is a novel approach that combines knowledge representation techniques and

planning systems for application in the robotics field. A number of researchers have worked

with planning for mobile robotics or representation in robotics. In this section, some of these

approaches are briefly surveyed.

Beetz (2002) developed a plan representation for robotic agents [Bee02b]. It was triggered

by the development of robotic agents, such as XAVIER [SGH+97], MINERVA [TBB+00], and

RHINO [BCF+99, BAB+01]. These robotic agents use plans to improve their competence.

His work emphasises a plan representation that not only provides guidelines for the robot but

also handles the control structure of the robot. Thus, his proposed plan representation has four

characteristics. Firstly, Representational Adequacy, the plans must have the expressiveness of

Reactive Plan Language (RPL) [McD91, Fir87] and they should mirror the control pattern of

the robot’s behaviour. Secondly, Inferential Adequacy where the plan management mechanism

must have inference techniques for performing various kinds of operations such as plan genera-

tion, plan elaboration, environment monitoring, and so on. Thirdly, Inferential Efficiency where

plans must maintain economic inference and plan management. In case of failure, the planner

should not re-plan the entire course of action. Fourthly, Acquisitional Efficiency where repres-

entations should support learning of sub-symbolic control processes and routine activities. This

plan representation was implemented on the RHINO robot whose main role is that of the courier

robot. Details of plan-based control of robotic agents are presented in [Bee02a].

Fox & Long (1998) developed a GraphPlan-based planner, named STAN [LF99]. Its name

is due to the uses of the STate ANalysis technique to enhance its performance. The state ana-

lysis is accomplished using the Type Inference Module (TIM) [FL98]. TIM analyses a planning

domain in order to reveal a domain’s implicit type structure and various kinds of state invariants.

This information is then used by the STAN planner to filter inconsistent states from the domain,

thus speeding up the planning algorithms. Besides that, domain designers can use this inform-

ation to check the consistency of the domain. TIM can be used by any planner regardless of its

underlying architecture. However, originally TIM accepted only planning domains expressed in

the basic language of STRIPS. An extension of TIM to support a subset of the ADL language is

presented in [CFL02].

Asada (1989) developed dynamic semantic constraints for building a mobile robot’s world

model [AS89]. The system models the environment in a hierarchical form from sensor-based

maps to global maps with both numerical and symbolic descriptions. Domain specific know-

ledge is used to organise semantic-constraints of objects and the relations between them as

production rules. The domain-specific knowledge is described within the frame structures of

object models.

Beeson et. al. (2007) developed the Hybrid Spatial Semantic Hierarchy (HSSH) for map-

ping, navigation and communication in robotics [BMM+07]. Kuipers introduced Spatial Se-

mantic Hierarchy (SSH) in 2000 [KBG+00], but it provides only the abstractions for reasoning
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about large-scale spaces. Hence, SSH is too large for the robot sensory horizon. The HSSH is

optimised for a small-scale space by factorising the spatial reasoning about the environment.

This representation is used at four different levels: local metrical, local symbolic, global sym-

bolic, and global metrical. The local metrical level is used to reason about the geometry of the

robot’s immediate perceptual surroundings. The local symbolic models the local surround sym-

bolically by giving navigational affordances of a place, i.e. the entrances and exits. The global

symbolic level stores global environment symbolically, such as topological maps of a building.

The global metrical adds metric information to the topological map such that the robot can

estimate the travel distance from one place to another.

In 2007, Galindo et al. developed Semantic Hierarchical Planning through World Ab-

straction (SHPWA) [GFMGS07]. SHPWA is based on their previous work on hierarchical plan-

ning called HPWA. It runs with an embedded planner, such as Metric-FF. SHPWA uses a multi-

hierarchical symbolic representation of its workspace. It entails two hierarchies that represent

the environment from two different perspectives, namely spatial perspective and semantic per-

spective [GSC+05]. The spatial hierarchy symbolises particular elements of the environment.

This process is accomplished by anchoring physical elements in the real world model which are

recognised by the perception unit. The semantic hierarchy maps information from the spatial

hierarchy into semantic concepts. The semantic reasoner is based on description logic DL. The

multi-hierarchical structure is constructed using a mathematical model based on graphs called

Multi-AH graph (MAH-graph) [GGFM04]. It has been proved that MAH-graph could reduce

computational effort of robot operations, for example in the path-search task.

The CoSy project (2007), an EU-funded project, has looked into the integration of robotic

systems for spatial understanding and situated interaction in indoor environments [ZJOMM+07].

The motivation behind this project is service robots for home and offices where the robot should

understand and work together with humans. Thus, multidisciplinary approaches are necessary

to fulfil the tasks. One of the aspects that are similar to this work is how they model the ro-

bot’s environment in the conceptual spatial representations [ZOMMJ+08, OMMJZ+07]. This

information is stored in four layers. The first layer is the Metric Map which contains a metric

representation of the environment from the Simultaneous Localisation And Mapping (SLAM)

component. The second layer is the Navigation Map which contains navigation graphs that

model the free space and its connectivity. The third layer is the Topological Map, which groups

some navigation graphs into areas. The areas are interconnected with others, i.e. through a

doorway. The fourth layer is the Conceptual Map, which is the highest level of abstraction that

provides the semantic meaning of the topological map (areas). This layer is implemented in

OWL-DL.

The surveyed work, presented in [Gil05] is the most closely related to our approach. It dis-

cusses four main uses of DL for representing planning knowledge, namely: object taxonomies

to reason about the planning state, action taxonomies to reason about action types at different

levels of abstraction, plan taxonomies to reason about plan subsumption of partially ordered
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plans, and goal taxonomies to reason with expressive representation of goals and their paramet-

ers [Gil05]. CLASP [DL96] is a system developed to reason about action taxonomies and action

networks in a telephony domain. It was integrated into a software information system called

LaSSIE [DBSB91]. CLASP represents the objects in their respective domains in DL, thus it was

able to represent actions, plans, and goals that can be supported by DL reasoners. To reason

about its action taxonomies, CLASP used CLASSIC’s [BMPS+91] classifier. The plan taxonom-

ies are used to organise, validate, and retrieve plans in a library. These plans are defined in

CLASP’s language. EXPECT is an interactive knowledge acquisition system for problem solving

and reasoning [Gil94, SG95, GM96, BKRG01]. It uses LOOM [MB87, Mac91] as its reason-

ing system to exploit structured representation of goals and capabilities to support sophisticated

matching during problem solving. Thus, it facilitates the generation of natural language para-

phrases of problem-solving knowledge. EXPECT represents the objects in its respective domain

in DL. It uses goal taxonomies for matching, which is represented as verb clauses using a case-

grammar formalism. SUDO-PLANNER is a system developed for medical applications, which

was designed to reason trade-offs in decision making under uncertainty. It uses plan subsump-

tion to control the search during plan generation. The reasoning system was implemented using

NIKL [KBR86]. Like CLASP and EXPECT, it represents the objects in DL for reasoning about its

object taxonomies. The actions were represented as concepts, with action parameters as concept

roles, and action constraints as role restrictions. Therefore, it can exploit the actions taxonomies

by checking the inheritance and classification of their action types. It uses plan taxonomies to

guide its plan generation using plan space search [Wel99]. PHOSPHORUS is a multiagent sys-

tem for an office environment that is used as agent matchmaker and was implemented within

the Electric Elves architecture [GR01, CGK+02]. It has the same goal and capabilities repres-

entations as EXPECT system. An application on a mobile robot, TINO, is shown in [DGINR96].

The robot uses DL to generate high-level plans, in which the representation domain (includes

static axioms) is used to represent background knowledge that does not change as actions are

executed. The dynamic axioms represent the changes caused by the actions. It uses CLASSIC as

its knowledge representations system.

In order to improve the current approaches, some researchers incorporated semantic in-

formation in their work. [NWL+05] uses the semantic knowledge to improve the 3D-scan

matching algorithms. Each 3D point is labelled with semantic information, such as floor, ceil-

ing or object. This method has improved the scan algorithms and added valuable information

to their results. [PHK04] uses a semantic symbol language to enhance human-robot interaction

(HRI). The robot’s environment and actions are expressed semantically as objects, places, and

actions. Thus, the user’s commands can be interpreted more accurately by the robot.
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1.6. Contributions

The integration of existing planning algorithms with rich representations of domain-specific

knowledge is a challenging future research area in AI planning [Gil05]. In her survey [Gil05],

she presented previous work on combining planning techniques with Description Logics (DL) to

reason about tasks, plans, and goals. Although the surveyed approaches and systems have used

DL, it has not been incorporated in state-of-the-art planning algorithms or systems. This work

presents a novel approach, that combines a DL reasoner and an HTN planner into a coherent

system, to be used in the robotics domain. The system is called the Hybrid Deliberative Layer

(HDL), as it extends the deliberative layer in a robot control architecture (see Figure 1.1). The

reasoning capability of DL reasoners provides valuable advantages to the HTN planner. The user

now has additional leverage to customise the planning problem such that an intractable planning

problem is avoided. The HDL system increases the re-usability of any existing planning domain

in its model and facilitates the use of the planning system for non-planning expert users.

The major contributions of this work are:

1. Modelling HTN planning domains in DL terminology. HTN planning uses a different

kind of representation than the DL reasoner. Hence, modelling the HTN planning domain as DL

concepts is essential for the HDL system. In this work, the planning domain is defined in DL

such that the DL reasoner can use it for generating the planning problems.

This modelling gives us some advantages, three of them are explained in the following sen-

tences; Firstly, the planning domains are now represented in a structured and well-understood

manner in DL instead of the usual planning domain descriptions, which are in the form of a

planning system’s dependent formatting (e.g. PDDL, ADL, or LISP). Thus, non expert users can

benefit from using the HDL system without having advanced knowledge in planning. Secondly,

planning domains can be stored in the same DL model in the HDL system. Thus, the system

can be used as the planning domains’ repository, where the user can browse and choose which

domain he or she wishes to work with. Thirdly, The HTN planning domains are represented as

instances of the respective DL planning concepts, which means that each method and operator

in a planning domain is also represented as an instance in DL planning concepts. Thus, domain

designers can benefit from re-using available planning domains, or even some of their methods

or operators only. They can compose new planning domains using available instances. This is

shown as an example in Section 3.4.

2. Designing algorithms for generating HTN planning problems. The HDL system

may have several planning domains in its model. The system must be able to generate HTN

planning problems from its model based on the user’s selection. Therefore, two algorithms are

developed for this purpose. These algorithms are required to reason about the planning concepts

in the HDL system. In the usual scenario, the user chooses any available planning domain from

the set of instances of domain concepts in the DL model. The user can also choose instances of
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planning objectives instead and the planning domain will be generated based on this selection.

The first algorithm is used for generating the planning domain. Once the planning domain

is ready, the second algorithm is then applied to generate the states to complete the planning

problem. It analyses the selected planning domain and filters the relevant states from the DL

model.

The idea of pre-processing the planning domain before the planning extraction has been

previously applied in the STAN system [LF99]. It uses the Type Inference Module (TIM) to

analyse the planning domain to reveal the domain’s type structure and state invariants [FL98].

It is then able to filter inconsistent states from the domain using this information. However, TIM

requires the planning domain to be expressed in STRIPS or ADL [CFL02]. Hence, this approach

cannot be applied directly in the HDL system, because the planning domains are represented in

DL concepts instead.

Some benefits can be gained from having these algorithms in the HDL system. First, users

can select the planning problem based on the goals or tasks. Thus, the users do not have to

know which domain needs to be selected in order to perform those tasks or goals. Second,

valid planning problems are generated based on the user’s selection, in spite of the number of

stored planning domain instances in the system. Third, users can limit the size of the planning

problem by selecting which DL concepts are involved in the given tasks. Thus, intractability

can be avoided. For example, users can choose to use an instance of Driveable-Room concept

instead of Room concept. Or even, only Driveable-Room in building A instead, because the

robot is located in that building. The performance of the HDL system and HTN planning with

respect to the planning problem size is evaluated in Chapter 6.

3. Designing and implementing the HDL system. In this work, the HDL system is

implemented using an off-the-shelf HTN planner, namely JSHOP2, as its planning system and

Pellet as its DL reasoner. It shows that such readily available planning systems and DL reasoners

can be fused into a coherent system where benefits from both systems are gained. Any other

HTN planning system or DL reasoning system can also be used with our proposed approach.

The presented methods might also be used for integrating any other planning system besides

HTN with similar approaches and some effort.

In this work, the HDL system’s implementation is presented through a number of use

cases. Two robotics domains, namely the navigation domain and the pick-and-place domain

are presented and explained in detail. In addition, the well known AI planning domain, blocks

world, is also solved using the HDL system. One might also implement other planning domains

in the HDL system by using the same approach as shown in these use cases.

A real robot implementation is shown as a use case in the RoboCup@Home domain. The

HDL system is applied to our robot, Johnny Jackanapes, and the RoboCup@Home domain is

modelled in the system as DL concepts. It is demonstrated how the HDL system is applied to an

existing robot system, namely Johnny, to solve its planning problems. Beside that, the benefits

10
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of using the HDL system as a common KB system in Johnny are described. Therefore, the HDL

system can also be implemented in other robots, which need a deliberative layer to plan their

actions.

1.7. Outline

Chapter 2 presents the concept and basic principle of the Hybrid Deliberative Layer HDL. The

chapter also defines the ontology of the Hierarchical Task Network HTN planner in the HDL

system. The algorithms’ use for generating the HTN planning problem are detailed.

Chapter 3 explains the manner in which the HDL system is used through a number of ex-

amples. Two planning problems in robotics, one from the navigation domain and the other from

the pick-and-place domain, are used. For this purpose, the modelling of the actors and objects

concepts in the HDL system are also presented. These are necessary for capturing the environ-

ment and generating the planning problem automatically. The examples show the advantages

of the HDL system, in particular the re-usability of the existing domains and hierarchical repres-

entation of them in the model.

Chapter 4 shows an integration example of the HDL system and an existing robotic system.

This robotic system is a mobile manipulator that is used for the RoboCup@Home competition.

The robot is called "Johnny Jackanapes". In this chapter, two integration benefits are presented.

Firstly, HDL as a common knowledge representation system for all components in Johnny is

shown. Secondly, HDL as a deliberative layer that plans Johnny’s actions.

Chapter 5 gives an example of the well known AI planning problem, blocks world, which

is implemented using the HDL system. The domain is an existing one, which is included as one

of the examples in the JSHOP2 source. Therefore, the HDL system is not restricted to be used in

the robotics domains but also in available planning domains.

Chapter 6 presents the complexity analysis of the HDL system. It is supported by empirical

results obtained by using two domains, which are presented as examples. The results compare

the HDL system and the HTN planning system. Hence, the benefit of using the HDL system is

shown quantitatively.

Chapter 7 discusses related issues of the HDL system. These issues are benefits of the

HDL system, anomalies in the HTN blocks world, dealing with inconsistency, and qualitative

comparisons with related systems.

Chapter 8 concludes this dissertation. It gives an overview of possible future work aimed

at expanding the HDL system.
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2. The Hybrid Deliberative Layer

In this chapter, a brief introduction to robot control architectures is presented. It highlights the

need for a deliberative layer in robotics and its role as a planning system of sorts. In large

domains, computation time is in danger of exploding, as the size of the domain grows. A novel

approach that amalgamates Hierarchical Task Network (HTN) planning with Description Logic

(DL) reasoning is presented to keep the planning domain size within limits. With this approach

the planning domain is modelled using the DL representation instead of being modelled directly

in the planning representation. Finally, algorithms to automatically generate planning problems

from the DL system are shown.

2.1. System Architecture

An agent is anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through actuators [RN03, Chapter 2]. Thus, a robot is also an

agent. It has some sensors, e.g. camera, laser scanner, and odometry. It also has actuators,

usually motors which are used to move the wheels or the manipulator. These components need

to interact with each other. This makes robot systems quite complex. Therefore, the architecture

needs to structure the system in a way that helps managing this complexity. It can be considered

as a product of software engineering. Currently, there exists no single architecture that fulfils

the requirements of all applications [KS08].

2.1.1. A Brief Overview of Robot Control Architectures

The oldest approach which has been used to compose robot systems is the Hierarchical Para-

digm, often referred to as the SENSE, PLAN, ACT (SPA) approach. The Hierarchical Paradigm

is sequential and orderly. The sensors first sense the environment then this data is processed

and used to plan the next action. Finally, the action is performed using the actuators [Mur00,

Chapter 2].

Two architectures were based on the Hierarchical Paradigm: the Nested Hierarchical Con-

troller (NHC) and the NIST Realtime Control System (RCS) [Mur00, Chapter 2]. The need for

a world model or a knowledge base is already present in the Hierarchical Paradigm approach.

In the NHC system, the knowledge base is located in the SENSE block. The information in the

knowledge base is shared with the planning component. It is clear that the knowledge base

contains the state of the robot, objects, and environment, which are needed by the planner to
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2. The Hybrid Deliberative Layer

generate the plan. The major disadvantage with this paradigm is a result of the sequence and

ordering of the signal flow. The plan usually needs more time to compute the actions. As a

consequence, the output signal to the actuator is delayed, resulting in a ’shakey’ or ’jittery’ be-

haviour. This is not acceptable in dynamical environments such as that of a kitchen or office, or

one which includes other agents.

The problems with the SPA paradigm led scientists to search for other approaches. One

of the resulting approaches was the Reactive Paradigm. One notable work that was based on

this paradigm was developed by Brooks [Bro86]. The main idea behind his Subsumption Ar-

chitecture (SA) was to decompose tasks vertically instead of horizontally as in the Hierarchical

Paradigm. This vertical decomposition is built on layers of interacting finite-state machines.

Each layer connected sensors to actuators directly with some data processing. Thus, the ro-

bots can react to a dynamic environment quickly. Some scientists had been looking to ethology

(the study of animal behaviour) and relating their observations to robotics. To them, the layer

which connects sensors and actuators, is known as the behaviour. Hence, the architecture is

called Behaviour-based Architecture or Behavioural Robotics [Ark98]. Another reactive ap-

proach is based on the potential fields methodology [Mur00, Chapter 4]. This methodology was

introduced by Khatib and was intended to control a PUMA 560 manipulator [Kha86]. Other

reference architectures based on the Reactive Paradigm are Motor Schemas [Ark87] and Dual-

Dynamics [JC97].

In Behaviour-based Architecture, each behaviour can be active at certain time points. Es-

pecially, several behaviours, can be active in parallel. However, some behaviours might give

complementary commands to the actuators, which could cause local minima problems. To

overcome these problems, additional behaviours are programmed to control the behaviours. In

Subsumption Architecture, these behaviours can inhibit or suppress other behaviours. In Dual-

Dynamics, these behaviours are implemented as high-level behaviours, which have a similar

function to those in subsumption architecture. The effect of having several behaviours which

are active at the same time is known as emergent behaviour. Nevertheless, Behaviour-based

Architecture remains reactive and the lack of a planning system makes it difficult to achieve

complex tasks. In order to enable complex tasks, one Motor Schema architecture, namely the

Autonomous Robot Architecture (AURA), added a navigation planner and a plan sequencer

[KS08]. [HSMH04] shows an example of a behaviour-based system with a target-oriented ap-

proach for performing office tasks, thus overcoming this limitation. In order to enable complex

tasks, scientists were driven to work on new paradigms that incorporate a planning system but

remain reactive. Such a paradigm is referred to as the Hybrid Deliberative/Reactive Paradigm

or Hybrid Control Architecture.

The Hybrid Control Architecture can also be described as PLAN, then SENSE-ACT [Mur00,

Chapter 7]. It adds a deliberative layer (PLAN) on top of the reactive layer (SENSE-ACT). Thus,

it is able to perform complex tasks with the help of the planner while still preserving the react-

ive property from the behaviour-based layer. Figure 2.1 compares the reactive and deliberative

14
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approaches. Due to the layered implementation, this paradigm is also known as the layered

robot control architecture [KS08]. The first AI robot, Shakey, at Stanford University used this

paradigm [Nil84]. Some recently implemented robot architectures have also been based on this

architecture. These include Autonomous Robot Architecture (AURA) [Ark87], Reactive Ac-

tion Package (RAP) [Fir94], Task Control Architecture (TCA) [Sim94], Saphira [KMRS97], and

DD&P [SH02]. Details of the 3T architectures can be found in [KS08].

Representation-dependent
Slower response
High-level intelligence (cognitive)
Variable latency

Representation-free
Real-time response
Low-level intelligence
Simple computation

SPEED OF RESPONSE

PREDICTIVE CAPABILITIES

DEPENDENCE ON ACCURATE, COMPLETE WORLD MODELS

Purely Symbolic Reflexive

DELIBERATIVE REACTIVE

Figure 2.1.: Robot control system spectrum [Ark87, Chapter 1].

As shown in Figure 2.1, the deliberative layer uses a purely symbolic representation and the

reactive layer is free to choose its representation model. The reactive layer is usually represented

in a way that facilitates the translation into actuators’ commands. Thus, there is a need for a

common world model or knowledge system which shares information between these layers.

In the Saphira architecture, a Local Perceptual Space (LPS) is used as a cartographer and to

improve the quality of the robot’s overall behaviours [Mur00, Chapter 7]. TCA uses Global

World Models to share common knowledge between several components; such as path planning,

navigation, and obstacle avoidance [Sim94]. Nevertheless, the world model is mainly intended

to share information between different layers for consistency.

2.1.2. The Hybrid Deliberative Layer Architecture

The term “hybrid” has been used often in robotics to represent the combination of two ap-

proaches to improve the current one. In this work, a novel approach is introduced which amal-

gamates the knowledge base system and the planning system in the deliberative layer. Hence, it

is called the Hybrid Deliberative Layer (HDL).

Figure 2.2 depicts the HDL within a layered robot control architecture. Let us first view

the HDL block as a normal deliberative layer so as to analyse how the HDL interacts with other
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Scheduler and Executer

Sensor 
readings

Sensor to 
Ontology 
Anchoring

Manual/Goal Input

Object 
Recognition, 
Localization

Mobile Manipulator

Manipulator Mobile Robot

Hybrid Deliberative Layer

OWL-DL 
Ontology model

Inference 
Module (Pellet)

Planner
(JSHOP2)

Ontology to 
Planning 
Domain / 
Problem 

Generator

Figure 2.2.: HDL in a layered robot control architecture.

components. The HDL generates sequences of actions to achieve the objectives. These actions

are represented in symbolic form, hence, an intermediate block which includes the scheduler

and executor is needed to translate the actions into commands that the reactive layer can use.

Additionally, it should allocate the necessary resources for command execution and then mon-

itor this execution. The bottom layer, mobile manipulator, is the reactive part of the overall

system. This bottom layer could be a manipulator, a mobile robot or even a mobile manipulator

as shown in the figure. For the sake of clarity, the sensor reading is drawn separately from the

mobile robot. The object recognition and localisation module processes numerical information

from sensors into quasi-symbolic information, e.g. robot pose, object pose, and object type. The

output is fed back to the scheduler and executor in order to maintain the reactivity of the overall

system and to the sensor to ontology anchoring to be processed further. The sensor to ontology

anchoring block translates its input information into a symbolic one, which is understandable to

the HDL. The user can interact with the system by adding or manipulating information directly

or by giving a goal to the system.

The architectural approach, as shown in Figure 2.2, is an example of how HDL could be

16



2.2. HDL Components

used in the robotic scheme. In general, any robotic system can use HDL for the deliberative

layer in their system. This work focuses on the HDL. Two robotics domains, namely navigation

and pick-and-place, are implemented using the HDL and discussed in Chapter 3. A case study

showing a possible implementation of the HDL for a real robot is presented in Chapter 4.

2.2. HDL Components

As shown in Figure 2.2, there are four subcomponents in the HDL block. These are OWL-

DL ontology model, Inference Engine, Ontology to Planning Domain/Problem Generator, and

Planner. Each of these subcomponents is detailed in the following section. The main concept

of the HDL is explained in more detail in Section 2.3.

2.2.1. Knowledge Bases

What is a knowledge base and why should it be implemented in the deliberative layer? Accord-

ing to the Knowledge Representation Hypothesis of philosopher Brian Smith, [BL04, Chapter

1] systems for which the intentional stance is grounded by design in symbolic representations

are called knowledge-based systems and the symbolic representations involves their knowledge

bases (KBs). Thus, the deliberative layer is the right place to implement KBs. This is also seen

in Figure 2.1. An intentional stance is the most abstract layer of three abstraction layers which

are proposed by Daniel C. Dennett [Den87]. This layer is normally found in the software or

minds level that concern things like belief, thinking, goals, hopes and intent. Therefore, having

knowledge-based systems in our agent is necessary in order to provide it with these features. It

enables the agent to have an intention, for example “move to charging station” because it believes

that its battery is almost empty.

2.2.1.1. A Brief Overview of Knowledge Representation and Description Logic

The knowledge that the agent has is abstract. How do we represent this knowledge in a machine-

understandable manner? Figure 2.3 shows an example of how a figure can be represented in

several different forms. The picture represents a cartoon character, namely “Bart Simpson”. In

the LATEX form, it is represented as “\Bart”. The “0x5C42617274” is a hexadecimal represent-

ation and “010111000100...0” is the machine representation on the disk or in memory. Using

this example, it can be seen that knowledge can be represented at different levels. These levels

are categorised by Ron Brachman (1979) as follows [Sow00, Chapter 3]:

� �� → ’\Bart’→ 0x5C42617274→ 010111000100...0

Figure 2.3.: A figure with some different representations.
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1. Implementational: The level of data structures such as atoms, pointers, lists and other

programming notions.

2. Logical: Symbolic logic with its propositions, predicates, variables, quantifiers and Bool-

ean operators.

3. Epistemological: A level for defining concept types with subtypes, inheritance, and struc-

turing relations.

4. Conceptual: The level of semantic relations, linguistic roles, objects, and actions.

5. Linguistic: The level of arbitrary concepts, words, and expressions of natural languages.

A robot has an explicit representation of parts or aspects of its environment [HC08]. How

should this knowledge be represented? [HC08] explains the answer by looking into two aspects,

epistemological adequacy and computational adequacy. The first aspect decides whether the

formalism can express the knowledge precisely and compactly. The second aspect decides

whether it can be inferred effectively and efficiently. These aspects are like two sides of one

coin, having a formalism which is very rich and expressive typically leads to an intractable or

undecidable inference problem, and vice versa [HC08].

Logical representation is the level above the implementational, hence, AI logicists believe

that knowledge is best represented using formal logic. They postulate that First-Order Pre-

dicate Logic (FOPL), along with its modifications, is a language that is particularly well-suited

to capturing reasoning, due to its expressivity, its model-theoretic semantic and its inferential

power [LMP08]. A more detailed analysis of FOPL’s adequacies in the robotics domain is found

in [HC08]. Other limitations of FOPL, such as its inability to represent transitive closure or nu-

merical existentialism, are explained in detail in [LMP08].

Though logical representation is able to represent knowledge that can be effectively in-

ferred, it is still not expressive enough to represent knowledge from the linguistic level, such

as in words or natural language. Another drawback of FOPL representation is that its repres-

entation is flat. It can not represent structured knowledge (epistemological level) or semantic

relations (semantical level). Some scientists searched for other kinds of representations to over-

come these problems. The Frame formalism is one approach that is used to represent knowledge

with their structure in frames. The knowledge is captured by grouping objects into more gen-

eric ones (generic frames) and the object itself as an individual frame [BL04, Chapter 8]. The

frame formalism is capable of representing knowledge in a hierarchy and has some inheritance

which is slightly similar to that of Object-Oriented Programming (OOP). The scientists worked

on both the formalism and the reasoning issues. They mapped these representations into logic,

such that they could benefit from the inferential power of logic. Originally, Marvin Minsky

(1975) described a frame as “a network of nodes and relations”. Knowledge Language One

(KL-ONE), which describes a network notation in its representation, was designed by Ronald

Brachman (1979). KL-ONE uses definitional logic or terminological logics as its inference en-

gine [Sow00]. Although there are still more knowledge representation formalisms that have

been introduced, their description is beyond the topic of this work. Further reading on these
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topics can be found in [Sow00, AGPC04, BL04].

Description Logics (DL) is currently state-of-the art in knowledge representation form. It

is based on semantic networks and frame systems. [BHS08] explains DL as follows:

The name description logics is motivated by the fact that, on the one hand, the

important notions of the domain are described by concept descriptions, i.e., expres-

sions that are built from atomic concepts (unary predicates) and atomic roles (bin-

ary predicates) using the concept and role constructors provided by the particular

DL; on the other hand, DLs differ from their predecessors, such as semantic net-

works and frames, in that they are equipped with a formal, logic-based semantics.

DL can be categorised a mature knowledge representation. [BHS08] describes the devel-

opment of DL through four distinct phases:

• Phase 0 (1965-1980) is the pre-DL phase. In this phase semantic networks and frames

were introduced for representing knowledge. Ronald Brachman’s KL-ONE, which struc-

tures the knowledge in inheritance networks, is the first DL system.

• Phase 1 (1980-1990) was concerned with the implementation of DL systems, such as

KL-ONE [BS85], CLASSIC [BMPS+91], K-REP [MDW91], KRYPTON [BFL83], BACK

[PSKQ89], NIKL [KBR86], and LOOM [MB87, Mac91]. A structural subsumption al-

gorithms for inferring the knowledge was used by these systems.

• Phase 2 (1990-1995), during which a new algorithmic paradigm was introduced into DLs,

namely tableau-based algorithms. The first systems with these algorithms were KRIS

[BH91] and CRACK [BFT95]. They showed a performance gain resulting from the use of

these new algorithms.

• Phase 3 (1995-2000) saw the development of inference procedures for very expressive

DLs. Some DL reasoners were introduced such as FACT [Hor98], RACE [HM99] and

DLP [VHH+05]. Section 2.2.2 describes DL reasoners in more detail.

• Phase 4 (2000-present) sees industrial-strength DL systems with very expressive DLs are

under research. DLs are used in applications such as Semantic Web, Medical or Bio-

Informatics. This work is one such application that uses DL for robotics.

A DLs’ knowledge base consists of two main components, namely the terminological

knowledge (TBox) and the assertional knowledge (ABox) as shown in Figure 2.4. The TBox con-

tains the general concepts of the domain and their relationships, which together are also known

as the upper ontology. In the frame formalism, the TBox can be seen as a container for general

frames. The concepts denote sets of individuals, such as Robot, Door, Location, Container

and their unary predicate. In the frame formalism, concepts represent classes of objects. They

can build a hierarchy of sub-concepts, for example Room v Location which means Room

is a sub-concept of Location. Roles correspond to a binary relationship, such as adjacentTo

one Location to another one. By using concepts and roles, one captures the knowledge and

19



2. The Hybrid Deliberative Layer
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Figure 2.4.: Architecture of a knowledge representation system based on Description Logics
[BN03].

represents it in the DL formalism. The other box, ABox, contains the individuals or instances

of the defined concepts and roles. In a frame formalism, the ABox can be seen as a container

for individual frames. Some examples of ABox are Room(C102), adjacentTo(C102, C101)

or isOpen(DoorC102). Basically, DL systems represent the ontology with three components:

concepts, roles and individuals [AGPC04].

Concepts and roles are described with terminological descriptions that are built from a set

of constructors, such as conjunctions, disjunctions, value restriction and negation. The combin-

ation of these constructors defines different DL languages, as shown in Table 2.1. A basic DL is

defined as DL ALC and it is the most widely used DL reasoning service [BHS08]. The Union

and Existential restrictions can be represented with Complement (negation). Hence, DL ALC
is basically equivalent to DL ALCUE . DL ALC extended with transitive roles or DL ALCR+

is often represented as DL S. The DL can be very expressive and are closely related to Modal

Logic. [BHS08] describes how the ALC-concepts are described in modal K formula.

Semantic Web is one of the application domains that try to represent knowledge in such a

way that enables it to be shared among users over the Internet. It began with the introduction

of the eXtensible Markup Language (XML) which enabled more flexible and platform inde-

pendent data structures. One of the first frameworks to model a semantic web is the Resource

Description Framework (RDF) (Lassila and Swick, 1999). It captures the semantics by using

the relation of subject, predicate and object, known as the RDF triple [Pow03]. Although it

seems very simple, it is a very powerful one. Several triples, described in the RDF/XML format,

can describe a complex property of an object. The RDF data model consists of three compon-

ents: resources, properties, and statements. However, this data model can not describe the

relation between properties and resources. Therefore, the RDF Vocabulary Description Lan-

guage (Brickley and Guha, 2003) was introduced. It is also known as the RDF Schema (RDFS).

The Ontology Inference Layer (OIL) is an extension language based on RDF(S) (Horrocks et.

al. 2000). It is derived from frame-based knowledge representation techniques and uses DLs to

gain clear semantics over RDF(S). Figure 2.5 depicts the levels of OIL. OIL can also express
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Table 2.1.: Common DL constructors and their correspondence with language name [AGPC04].

Construct Syntax1 Language2
Concept A

FL0

FL−
AL

S

Role name R
Intersection C uD
Value restriction ∀ R.C
Limited existential quantification ∃R
Top or Universal >
Bottom ⊥
Atomic Negation ¬A
Negation3 ¬C C
Union C tD U
Existential restriction ∃ R.C E
Number restrictions (≤ n R) (≥ n R) N
Nominals {a1 . . . an} O
Role hierarchy R v S H
Inverse Role R− I
Qualified number restriction (≤ n R.C) (≥ n R.C) Q
1 A refers to atomic concepts, C and D refers to any concept definition, R refers to atomic roles and S
refers to role definitions
2 FL is used for structural DL languages andAL for attributive languages [BCM+03]. S is the name
used for the languageALCR+, which is composed ofALC plus transitive roles.
3 ALC andALCUE are equivalent languages, since union (U ) and existential restriction (E) can be
represented using negation (C).

enumeration, hence it can be categorised as DL SHIQ language. A combination of DArpa

Markup Language (DAML) and OIL, which is known as DAML+OIL, was developed as an ex-

tension of RDF(S). This language extends RDF(S) directly instead of building a layer over it.

DAML+OIL is an extended DL SHIQ. It can also represent datatypes and nominals. The most

recent semantic web language is the Ontology Web Language (OWL), which has been developed

by W3C Web-Ontology Working Group. OWL is a derivative of DAML+OIL which is built upon

RDF(S) [AGPC04].

Heavy OIL
(possible future extensions)

Instance OIL
(Standard OIL + instances)

Standard OIL

Core OIL
(Standard OIL ∩ RDFS)

reification

RDFS

Figure 2.5.: Layers of OIL [AGPC04].
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Table 2.2.: OWL constructors [BHS08].

Constructor DL syntax Example
intersectionOf C1 u ... u Cn Human uMale
unionOf C1 t ... t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {x1...xn} {john,mary}
allValuesFrom ∀ P.C ∀ hasChild .Doctor
someValuesFrom ∃ R.C ∃ hasChild .Lawyer
hasValue ∃ R.{x} ∃ citizenOf .{USA}
minCardinality (≥ n R) (≥ 2 hasChild )
maxCardinality (≤ n R) (≤ 1 hasChild )
inverseOf R− hasChild−

OWL has three expressive sublanguages, namely OWL-Lite, OWL-DL, and OWL-Full. OWL-

Lite is the least expressive of these. It supports primarily classification hierarchies and simple

constraints. It supports only cardinality constraints with a value of 0 or 1. Hence it is cat-

egorised as DL SHIN . OWL-DL has the maximum expressiveness and still retains computa-

tional completeness. Thus, it is named after the Description Logics DL. It is equivalent to DL

SHOIN . OWL-Full is not really a sublanguage. It permits users to use maximum expressive-

ness and syntactic freedom of RDF, however it cannot guarantee the tractability of the reasoner.

Every valid OWL-Lite is also a valid OWL-DL and every valid OWL-DL is a valid OWL-Full

[MvH04, DSB+04, BHS08].

Just like RDF, OWL describes the concepts and roles from DL syntax in XML format. Table

2.2 summarises the OWL constructors with their relations to DL syntax. A snapshot of XML

serialisation for expressing Human uMale would be written as follows [BHS08]:

< o w l : C l a s s >

< o w l : i n t e r s e c t i o n O f r d f : p a r s e T y p e =" C o l l e c t i o n ">

< o w l : C l a s s r d f : a b o u t =" #Human">

< o w l : C l a s s r d f : a b o u t =" #Male ">

< / o w l : i n t e r s e c t i o n O f >

< / o w l : C l a s s >

In the same way (≥ 2 hasChild ) would be written as:

< o w l : R e s t r i c t i o n >

< o w l : o n P r o p e r t y r d f : r e s o u r c e =" # h a s C h i l d ">

< o w l : m i n C a r d i n a l i t y

r d f : d a t a t y p e ="&xsd ; N o n N e g a t i v e I n t e g e r ">2

< / o w l : m i n C a r d i n a l i t y >

< / o w l : o n P r o p e r t y >
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< / o w l : R e s t r i c t i o n >

The two examples above have shown how the OWL constructor represents DL syntaxes in the

XML format. They have also shown how some parts are represented using the RDF schema.

2.2.1.2. KB in HDL Implementation

In this work, OWL-DL is used for representing knowledge that the robot has. For editing and

viewing the ontology which is written in OWL, PROTEGE is used [HKR+04]. PROTEGE is a

free, open source ontology editor that is based on Java. However, PROTEGE is only used for

defining the ontology. The system runs independent of it. The DL reasoners are detailed in the

following section.

2.2.2. Description Logic Reasoner

One of the differences between the approach presented here and others is the reasoner. HDL

is equipped with a DL-reasoner, such that it can retrieve the stored information from the DL-

model and also reason about the knowledge therein. Including a reasoner in the robot enables

it to perform advanced deliberative actions rather than simply reactive actions that are based on

sensor readings.

Most of the DL-reasoners are actually decidable fragments of FOPL. However, some of

them provide operators such as transitive closure of roles or fixpoints that require second-order

logic. DL-reasoners are closely related to Modal Logics, but they have been developed inde-

pendently [BHS08]. The DL reasoner works on both conceptual knowledge (TBox) and asser-

tional knowledge (ABox). The basic reasoning on concept expressions is subsumption, which

is written as C v D. In the previous subsumption example, concept D (the subsumer) is con-

sidered more general than concept C (the subsumee). In OOP programming, C can be seen as

being a subclass of D. Besides subsumption, there are still some reasoning services that can be

applied to a TBox, such as “consistency”, “satisfiability”, “equivalence”, and “disjointness”. In

ABox reasoning, the main tasks are to determine whether an individual is an instance of a given

concept or whether the role assertion is valid. The reasoner can also identify inconsistency

within the ABox. For example, the TBox defines Male u Female v ⊥ but the ABox contains

the assertions: Male(Johnny) and Female(Johnny) which are inconsistent.

One major challenge for the reasoner is tractability. There are several reasoning tech-

niques which have been researched to reason about more expressive DL representations. A few

other reasoning techniques are tableau-based reasoning, automata-based reasoning, and struc-

tural reasoning [BHS08]. In this work, a new technique is not introduced, neither is an existing

one improved. Instead, an available DL-reasoner is used. Examples of such reasoners are Pellet

(an open source OWL-DL reasoner written in java) [SPG+07], FACT++ (a new generation of

FACT - Fast Classification of Terminologies) [TH06], and RacerPro (RACER - Renamed ABox

and Concept Expression Reasoner) [HM01, HM03]. In this work, Pellet is used.
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2. The Hybrid Deliberative Layer

2.2.3. Planner

Planning is an ambiguous word in robot control architecture. On the low level controller, one

might use the term planning to mean path planning. However, in this work, planning is used for

the deliberative layer, which works on the symbolic level. Hence, the planning or planner terms

used in this work refer to the symbolic planner unless otherwise noted.

The planner is also a reasoning system. It has a specific purpose, namely to extract se-

quences of actions required to achieve the given objectives. The first robot planning system that

was used for “Shakey” the robot was called STRIPS. It worked under specific constraints: only

one action can occur at a time, actions are instantaneous, and nothing changes except as the res-

ult of planned actions [BL04]. In STRIPS, actions are represented as operators. The operators

are specified by pre- and post-conditions. The environment is defined in the world model. These

operators act upon the world model and trigger events which change the state from one into an-

other. The planning process is completed when a state which is implies the goal conditions is

found.

Figure 2.6 depicts how the planner can influence the system Σ by executing the plans on

the controller block. In general, the planner needs three inputs, the description of Σ, the initial

state, and the objectives. Σ is also known as a state transition system. Formally, it is a 4-tuple:

Σ = (S,A,E, γ) [GNT04, chapter 1] where:

• S = {s1, s2, ...} is a finite or recursively enumerable set of states;

• A = {a1, a2, ...} is a finite or recursively enumerable set of actions;

• E = {e1, e2, ...} is a finite or recursively enumerable set of events;

• γ = S ×A× E → 2s is a state transition function.

Modelling an exact or dynamic environment in Σ is difficult to achieve in the current

planning system. Hence, some restrictions or assumptions are needed for the planning model,

such as [HC08]:

• Finiteness (the domain has only finitely many objects, actions, events and states)

• Information completeness (the planner has all relevant information at planning time)

• Determinism (all actions have deterministic effects)

• Instantaneousness (actions take effect immediately and have no relevant duration)

• Idleness (the environment does not change during planning)

These assumptions help the planning algorithms to work more efficiently. However, a

restrictive model would not be able to capture a real world dynamic environment. The generated

plan might be invalid at execution time. For example: state of a door, sdoor1 might be detected
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Planner

System ∑

Controller

Initial state
Objectives

Description of ∑ 

Plans

ActionsObservations

Events

Figure 2.6.: A simple conceptual model for planning [GNT04, chapter 1].

and modelled as an open door. However, during the planning time it might change such that

during execution time the door is not open and the plan might fail. Most robot actions are not

instantaneous, but rather need some time to execute. This might be in seconds or minutes.

Modelling the real world to create the planning domain is not a trivial problem. The first

step is to take a snapshot of the current state or freeze it and write as the planning domain.

Then the planner extracts possible actions to achieve the objectives. This process might be time

consuming depending on the size of the domain. Real world problems might have lots of states

in the domain. Thus, the sequence of actions could become inconsistent with the environment.

One possible way out of this problem is to model the domain with a focus on keeping it small.

However, this might lead to another problem, namely the “qualification problem”. This is the

problem of not knowing which states are relevant for the particular problem. Hence, it might

not properly model the real world. One approach to cope with this problem is to divide the goal

into subgoals. The overall goal might be seen as a hierarchy. The extension approach to the

hierarchical approach was implemented with “ABSTRIPS”. This approach minimises the size of

the problem.

Another approach, used to make the search faster, is the use of heuristics. A Hierarchical

Task Network (HTN) is a planning scheme which uses heuristics and a hierarchical approach to

solve planning problems. The heuristic in this case is defined by the human who designs the

planning problem. In this work, the planning system is implemented using an HTN planner.

2.2.4. Planning Problem Extractor

DL and HTN use different representation formalisms. Thus, it is not possible to have a unified
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2. The Hybrid Deliberative Layer

representation for both. In addition, DL might have additional knowledge which is not relevant

for the planning system. For example, it might have the robot specific commands, descriptions

of some objects, and so on. The planning problem extractor’s task is to translate the DL repres-

entation into planner-specific syntax. Hence, it filters and processes the information which is

relevant for the HTN planner. The rest of this chapter presents the algorithms that are used for

extracting planning problems from the DL representation.

2.3. Concept

The basic idea of this approach is to split tasks between DL reasoning and HTN planning. DL

representation is more expressive than HTN planning representation. The planning domain as

well as basic HTN planning concepts are modelled in DL. In fact, so are the sensor readings,

detected objects, actuators, and the robots. The DL reasoner is then used for automatically

extracting a tailored representation for each and every concrete planning problem, and handing

this problem to the planning system. Note that the DL model can be much larger than the

planning domain. It may include any information that the system should have; in particular, it

may span information that otherwise would have been modelled in separate planning domain

descriptions for planning efficiency reasons. HTN planning is dedicated to finding a solution

within the representation extracted by DL, which is reduced by facts, operators, and events found

irrelevant by the filtering process accomplished by the DL reasoner. Figure 2.7 illustrates what

is represented in the DL formalism and how this information is processed by the DL reasoner to

produce a filtered planning domain for the HTN planner.

DL

Domain 
A

Domain 
B Robot1

Room1

Domain 
B

Room1 Domain 
A

DL 
Reasoner

filtered Planning Problem

Domain 
A

Room1

Robot1

HTN 
Planner

Figure 2.7.: A schematic diagram on how the planning problem is passed from the DL repres-
entation to the HTN planner.

2.4. Ontologies

The first step in designing a KB is choosing the ontological categories. [Sow00, Chapter 2]

describes some ontological categories, two of which are microworlds and Cyc categories. The

microworlds category contains a small number of concepts that are designed for a single applic-

ation. The Cyc categories’ ultimate goal is to accommodate all human knowledge. Its name
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is taken from the syllable of the world encyclopedia. microworlds is related to the bottom up

approach, that is usually practised by programmers, while the Cyc categories are related to the

top down approach, that is usually followed by philosophers.

DL defines knowledge in two fractions, namely TBox and ABox. Hence, the planning

domain needs to be modelled in these fractions as well. Figure 2.8 depicts two ABoxes and

two TBoxes for representing planning knowledge in DL representation. The first pair of TBox

and ABox represent the HTN planning ontologies while the other pair represent the states of the

planning problem that are needed by the HTN planner. In the actual implementation, there is

in fact only one pair of TBox and ABox. This distinction is made here in order to more clearly

understand the concept of how the ontologies are described in HDL.

DL

TBox
HTN

ABox
HTN

TBox
States

ABox
States

DL

Domain 
A

Domain 
B Robot1

Room1

Domain 
B

Room1 Domain 
A

Figure 2.8.: Planning knowledge representation in DL TBoxes and ABoxes.

In the HDL system, the ontologies are implemented using the bottom up approach or the

microworlds approach. The HTN planning concepts are currently implemented for the HTN

planning system. Therefore, additional implementations of other planning systems might re-

quire changes in the planning concepts. The HDL system is applied to three different domains,

namely the robotics domain in Chapter 3, the RoboCup domain in Chapter 4, and Blocks World

domain in Chapter 5. If one wishes to use the Cyc categories instead, this can be accomplished

by customising the useState (see Section 2.5.2) in the method and operator instances of the

respective planning domain.

2.4.1. HTN Planning Definition

In order to qualify the DL reasoner to generate an HTN planning problem, the DL ontologies

must include knowledge about the HTN planning itself, i.e., how actions, methods, and tasks

are defined in HTN. In this section, we recapitulate some HTN planning definitions, which are

required to build a complete planning problem.

In HTN planning, a planning problem is defined in a slightly different way than in classical

planning. In classical planning, the goal is modelled as condition of states. In HTN, instead of

describing the planning problem in terms of states, it uses methods and operators. The goal is

defined as method(s) that the system should perform.
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2. The Hybrid Deliberative Layer

The way a planning problem is decomposed in HTN planning is similar to how humans

think. It decomposes the problem or task recursively into smaller tasks until atomic actions are

reached. Consider a simple example, a task such as “bring a coke to the guest on the armchair”. This

task is decomposed into smaller subtasks such as “navigate to sideboard”, “grasp coke”, “navigate to

armchair”, and “release coke”. Figure 2.9 shows how the task is decomposed into task networks.

Every subtask may consist of several operators (e.g. move forward, move absolute, etc). The dashed

arrows in the figure show the ordering of each subtask. The goal can be achieved by executing

all operators with their ordering in the depth first manner.

bring a coke to the guest on the armchair

navigate to sideboard navigate to armchairgrasp coke release coke

move forward move absolute
move to dexterous 

workspace move arm absolute

Figure 2.9.: Illustration on how HTN expands the planning problem into subtasks.

The HTN planner requires two inputs, one for describing the environment and the other for

the objectives. The environment is represented in the planning domain D and the objectives are

represented as a task network in the planning problem P . Formally, HTN planning is defined as

follows [GNT04, Ch. 11]:

Definition 2.1. An HTN planning domain is a pair

D = (O,M),

where O is a set of operators and M is a set of methods. [GNT04, Def. 11.11]

Definition 2.2. An HTN planning problem is a four-tuple

P = (s0, w,O,M),

where s0 is the initial state, w is the initial task network and D = (O,M) is an HTN planning

domain. [GNT04, Def. 11.11]

Definition 2.3. An HTN method is a four-tuple

m = (name(m), task(m), subtasks(m), constr(m)),

where name(m) is a unique method name and its variable symbols, task(m) is a nonprimitive

task, and (subtasks(m), constr(m)) is a task network. [GNT04, Def. 11.10]

Definition 2.4. A task network is a pair

w = (U,C),
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where U is a set of task nodes and C is a set of constraints. [GNT04, Def. 11.9]

A task network, stated simply, is a pre-defined sub-plan, consisting of a partial-ordered

sub-tasks. See [GNT04, Ch. 11.5] for details.

An HTN planning algorithm is supposed to deliver a sequence of actions π = 〈a1, ..., an〉
for a given planning problem P = (s0, w,O,M) such that a1 is applicable in s0, and π accom-

plishes w in the sense that it is a properly instantiated version of w. The solution of an HTN

planning problem is defined in [GNT04, Def. 11.12].

2.4.2. HTN Planning TBox

There is no one “correct” way or methodology to develop ontologies [NM01]. There are always

alternatives. A model that is good for one application might not be suitable for other applica-

tions. Developing an ontology is an iterative process, where each iteration might improve the

ontology itself. Concepts in ontologies should be close to physical or logical objects of the

domain of interest. It should also define the relationship between them. The ontologies that are

modelled in this work are a result of this iterative process, however they may not be applicable

to other similar domains. Nevertheless, the ontologies presented here are sufficient to capture

the planning domain and states of an HTN planning problem into the HDL system.

Figure 2.10.: HTN planning ontology.

According to the formal HTN planning definitions in the previous section, four concepts

are used in the DL representation. These concepts are sufficient for representing HTN planning

problems in DL. These four concepts are Planning-Domain, Planning-Problem, Method,

and Operator. Figure 2.10 depicts them in relation to the Thing concept.

Every concept in the DL ontology must be a sub-concept of “Thing”, as in OOP where each

class inherits directly or indirectly from the “object” class. The “Planning” concept is defined

for organisational purposes. It distinguishes planning concepts from the other concepts which

might coexists in the HDL system. It has four sub-concepts namely “Planning-Domain”,

“Planning-Problem”, “Method” and “Operator”. These concepts are pairwise disjoint or

mutually disjoint.
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Planning Domain

Planning-Domain corresponds to Def. 2.1. D = (O,M) and is modelled in DL as follows:

Planning−Domain v Planning u

∃ hasMethod.Method u

∃ hasOperator.Operator

Definition 2.5. An instance of an HDL planning domain is a triple

d = (name(d),hasOperator(O),hasMethod(M))

where name(d) is a unique domain name, O is a set of operator instances in HDL, and M is a

set of method instances in HDL.

Let us use an example where a planning domain ddomain1 = (O,M) in HTN, where

O = {o1, o2, ..., oi} andM = {m1,m2, ...,mj} , is defined in HDL as follows:

ddomain1 = (domain1,hasOperator({o1,o2,...,oi}),hasMethod({m1,m2,...,mj}))

The {o1,o2,...,oi} and {m1,m2,...,mj} are HDL instances of operators O and methodsM. The

ddomain1 is asserted (or inserted into the ABox of the HDL system) either as depicted in Figure

2.11 or as follows:� �
Plann ing−Domain ( domain1 ) ,

hasMethod ( domain1 , m1) ,
hasMethod ( domain1 , m2) ,
. . . ,
hasMethod ( domain1 , mj ) ,
h a s O p e r a t o r ( domain1 , o1 ) ,
h a s O p e r a t o r ( domain1 , o2 ) ,
. . . ,
h a s O p e r a t o r ( domain1 , o i )� �

Planning-
Domain(domain1)

hasMethod(m1) 
hasMethod(m2)

...
hasMethod(mj)

hasOperator(o1)
hasOperator(o2)

...
hasOperator(oi)

Figure 2.11.: An example of HDL planning domain instance for domain1.
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Planning Problem

According to Def. 2.2, Planning-Problem consists of four tuples P = (s0, w,O,M). The

Planning-Problem is represented in DL as follows:

Planning−Problem v Planning u

∃ hasDomain.P lanning−Domain

The domain D consists of operators O and methods M , hence, two of four elements in P are

implicitly represented through the Planning-Domain. However, there are still two missing

components, namely initial states s0 and initial task network w. The trick here lies in the defin-

itions of the Method and Operator concepts. Together, they make up the task network. Both

concepts have an additional property, namely “useState”, that has the purpose of generating the

initial state s0. The task network w, which is the goal of the planning problem is provided by

the user, thereby completing the planning problem P . Two algorithms for extracting a complete

planning problem are presented in Section 2.5.1.

Methods

The HTN method is defined in Def. 2.3. In HDL, Method is defined as follows:

Method v Planning u

∃ hasMethod.Method u

∃ hasOperator.Operator u

> 1 useState u

6 1 shop2code

As one might already notice, there is one additional property besides useState , namely shop2 -

code. Each method can have at most one shop2code property which contains the planning

specific syntax (in this case SHOP2) for the given method. The useState properties contain the

states that are needed by the corresponding method.

Definition 2.6. Let m be a method in HTN and w = (U,E) be a graph that represents a task

network of m. The HDL system’s immediate successors of m are

Succ1(m) = {u′|u′ ∈ U ∧ u′ 6= m ∧ (m,u′) ∈ E}

where u′ can either be a method or an operator in the HTN.

succ(m) is the set of all immediate successors of m. Let us take an example method m1,

whose task network is depicted in Figure 2.12. The immediate successor of m1 is succ(m1) =

{m1,m2,m3, o1, o2}. Although succ(m1) contains method m1, the HDL system’s immediate
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m1

m1m3 o1m2

m1

o1

o2

o5 o6

Immediate
Successor of m1

o3 o4

Figure 2.12.: Task network of method m1.

successor, Succ1(m1), does not. To better understand Definition 2.6, let us redraw the task net-

work, but without its ordering, as shown in Figure 2.13. This figure shows the interconnections

between method and operator in the task network. The graph is defined as G = (U,E) where:

U = {m1,m2,m3, o1, o2, o3, o4, o5, o6}
E = {{m1,m1}, {m1,m2}, {m1,m3}, {m1, o1}, {m1, o2}, {m2, o3}, {m3, o4}, {o2, o5},
{o2, o6}}

Applying Definition 2.6 to G produces Succ1(m1) = {m2,m3, o1, o2}.

m1

m2 m3 o1 02

03 o4 05 o6

Figure 2.13.: Graph representing the task network of method m1.

Definition 2.7. An instance of an HDL method is a five-tuple

m = (name(m),hasOperator(O),hasMethod(M),useState(S),shop2code(shop2))

where name(m) is a unique method name,M is a set of method instances in Succ1(m) (M ⊂
Succ1(m)), O is a set of operator instances in Succ1(m) (O ⊂ Succ1(m)), S is a set of

preconditions states in m, and shop2 is a JSHOP2 representation of method m.

Definition 2.8. Let m be a method in an HTN and precond(m) = {p1, p2, ..., pi} is the set of

all preconditions in m. The set of preconditions in the HDL system is

S = HDLize(precond(m))
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HDLize is a process for translating the preconditions from the HTN representation into the one

used by the HDL system. The details of this process are presented in section 2.5.2.

Using the example shown in Figure 2.12, assume thatSm = {s1, s2, s3} and shop2 = sc2,

method m1 is then asserted either as depicted in Figure 2.14 or as follows:� �
Method (m1) ,

hasMethod (m1 , m2) ,
hasMethod (m1 , m3) ,
h a s O p e r a t o r (m1 , o1 ) ,
h a s O p e r a t o r (m1 , o2 ) ,
u s e S t a t e (m1 , s1 ) ,
u s e S t a t e (m1 , s2 ) ,
u s e S t a t e (m1 , s3 ) ,
shop2code (m1 , sc2 )� �

Method(m1)
hasMethod(m2)
hasMethod(m3)
hasOperator(o1)
hasOperator(o2)
useState(s1)
useState(s2)
useState(s3)

shop2code(sc2)

Figure 2.14.: An example of the HDL method instance for m1.

Operators

Just like methods, operators are also defined with two additional properties. In SHOP2, operators

can be non-primitive or primitive. A non-primitive operator might consist of other operators

whereas primitive operators are distinguished by the exclamation mark before the first letter of

the operator’s name, e.g. (!visit). In order to make the Operator generic, it is described as

follows:

Operator v Planning u

∃ hasOperator.Operator u

> 1 useState u

6 1 shop2code

Definition 2.9. Let o be a non-primitive operator in an HTN and w = (U,E) be a graph that

represents a task network of o. The HDL system’s immediate successors of o are

Succ1(o) = {u′|u′ ∈ U ∧ u′ 6= o ∧ (o, u′) ∈ E}
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where u′ is an operator in the HTN.

Definition 2.10. An instance of the HDL operator is a four-tuple

o = (name(o),hasOperator(O),useState(S),shop2code(shop2))

where name(o) is a unique operator name, O is a set of operator instances in Succ1(o) (O ⊂
Succ1(o)), S is a set of preconditions states in o, and shop2 is a JSHOP2 representation of

method o.

Definition 2.11. Let o be a non-primitive operator in an HTN and precond(o) = {p1, p2, ..., pi}
be the set of all preconditions in o. The set of preconditions in the HDL system is

S = HDLize(precond(o))

Using the operator o2 in Figure 2.12 as example, the Succ1(o2) = {o5, o6}. Assuming

the So = {s1, s2, s3} and shop2 = sc2, the operator o2 is asserted either as depicted in Figure

2.15 or as follows:� �
O p e r a t o r ( o2 ) ,

h a s O p e r a t o r ( o2 , o5 ) ,
h a s O p e r a t o r ( o2 , o6 ) ,
u s e S t a t e ( o2 , s1 ) ,
u s e S t a t e ( o2 , s2 ) ,
u s e S t a t e ( o2 , s3 ) ,
shop2code ( o2 , sc2 )� �

Operator(o2)

hasOperator(o5)
hasOperator(o6)
useState(s1)
useState(s2)
useState(s3)

shop2code(sc2)

Figure 2.15.: An example of the HDL operator instance for o2.

2.5. Reasoning

In the previous section, HTN planning has been defined as DL terminology concepts. Now,

assume that these concepts are instantiated in the DL’s ABox. How would this knowledge then

be extracted from the DL system back into a valid HTN planning representation? A reasoner is

needed to perform this action. Figure 2.16 illustrates how the reasoning process is applied to

the DL system in order to extract an HTN planning problem and an HTN planning domain.
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HDL uses two reasoning phases. The first phase is the DL reasoner, which is implemented

using Pellet. However, any other DL reasoner would also be suitable. The output of this phase

is fed to algorithms responsible for generating a planner specific syntax (phase 2). In this

implementation, the planner that is used is SHOP2. The DL reasoner infers instances in the

ABox according to the defined concepts in the TBox. This information is then processed by the

algorithms which are presented below.

DL

TBox
HTN

ABox
HTN

TBox
States

ABox
States

HTN

Planning Problem 

Planning Domain

Reasoner

Ontology to 
Planning 
Domain / 
Problem 

Generator

DL 
Reasoner 

(Pellet)

Figure 2.16.: A reasoning process over DL representation to extract a concrete HTN planning
problem.

2.5.1. Algorithm for HTN Planning Domain/Problem Generator

The planning concepts that are described in Section 2.4.1, are contained in the TBox in the DL

formalism. Instances of these concepts must be asserted in the ABox before a usable planning

problem can be deduced from the DL system.

Let D denote Planning-Domain, O Operator, and M Method. Let di represent do-

main instances, so D = {d1, ..., dn} denotes all domain instances in the knowledge base. The

di are independent domains, but a domain could be a subset of another one.

A domain d consists of operators O and methods M, such that d = {O,M}. A non-

primitive operator is an operator that is defined in terms of other operator(s). This is visible

in the Operator concept, which uses the hasOperator property. Therefore, an operator is

formalised as ox = {o1, ..., on|ox 6= o1, ...ox 6= on}. Analogously, a method is formalised as

mx = {m1, ...,mn, o1, ...op|mx 6= m1, ...,mx 6= mn}.
One could define the planning goal or initial task network in two ways: first, by choosing

a domain d ∈ D and then selecting the goal from d; second, by choosing from M. Goals are

represented as methods in the knowledge base.

Using the first technique, three of the four planning problem elements in Def. 2.2 (page

28) are given, namely, dx = {m1, ...,mn, o1, ...op} and w. Algorithm 2.1, extractInitialState,

takes domain d as parameter and assembles the required state s0 from the knowledge base. Its

complexity is linear in the size of the sets of methods/operators and the ontology. Specifically,

let m = (|M|+ |O|) and n = (|Thing| − |Planning|), then the run time is O(mn).

Using the second technique, only the goal or initial task network w is defined. It may
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Algorithm 2.1: extractInitialState(input)
Require: input = d
Ensure: output = s0 (hashtable)
foreach m in input do

forall state in m.useState do
output⇐ +state

end
end
foreach o in input do

forall state in o.useState do
output⇐ +state

end
end

consist of several methods, hence w = {m1, ..,mn}. Algorithm 2.2, generateDomain, recurs-

ively derives the planning domain from w, starting from the methods in w and unfolding them

recursively. However, the complexity of this algorithm is linear in n = (|M| + |O|), since it

is called only once for each method and operator. Calling Algorithm 2.1 with the generated

planning domain will return the initial state s0.

Either way, a complete planning problem for the HTN planner can be assembled from

the knowledge base. Our system ensures that the generated planning problem is a valid HTN

planning problem. Note that, in addition to running the two algorithms, the ABox needs to be

filled with the recent domain facts.

Algorithm 2.2: generateDomain(input)
Require: input = m or o
Ensure: output = d
output⇐ +input
if input is a method then

foreach m from input.hasMethod do
if output does not contain m then

output⇐ +generateDomain(m)
end

end
end
foreach o from input.hasOperator do

if output does not contain o then
output⇐ +generateDomain(o)

end
end

Let us use a simple example shown in Figure 2.17 which depicts instances of a planning

domain for a simple navigation domain. Details of this domain are presented in Chapter 3. The

user can either choose an instance of the Planning-Domain or Method. If the user chooses
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the first option, the planning domain contains all the needed methods and operators. However,

if the user chooses an instance of Method, e.g. navigate2. Then applying Algorithm 2.2 pro-

duces a planning domain dnavigate2 = {mnavigate2,mnavigate,odrive-robot,ovisit,ounvisit}.
Once the domain is defined, Algorithm 2.1 is applied and produces Snavigate2 = { Robot,
Room }. The HDL system uses the DL reasoners to infer the model and automatically produce

the planning problem from them.

Planning-
Domain(navigation-domain)

hasMethod(navigate) 
hasMethod(navigate2)

hasOperator(drive-robot)
hasOperator(visit)

hasOperator(unvisit)

Method(navigate2)

hasMethod(navigate)
hasOperator(visit)

hasOperator(unvisit)
useState(..Robot..)

shop2code(...)

Operator(drive-robot)
useState(..Robot..)

shop2code(...)

Operator(visit)

shop2code(...)

Operator(unvisit)

shop2code(...)

Method(navigate)

hasOperator(drive-robot)
hasOperator(visit)

hasOperator(unvisit)
useState(..Room..)
useState(..Robot..)

shop2code(...)

Figure 2.17.: Simple navigation domain example.

2.5.2. Algorithm for Generating SHOP2 Code

The algorithms shown in the previous section generate lists of tuples of the HTN planning prob-

lem. For the HTN planning, JSHOP2 [Ilg06] is used. JSHOP2 is a JAVA implementation of

SHOP2. SHOP2 requires two inputs in order to decompose a plan, namely the planning-domain

description and the planning-problem description. In SHOP2, the planning domain descriptions

are presented as follows [Ilg06]:

(defdomain domain-name (d1 d2 . . . dn))

where dj is either a method, an operator or an axiom. However, we do not use axioms in our

DL terminology. Nevertheless, an axiom can be represented as an instance of a ground operator.

Listing 2.1 shows an example of the basic domain which is included in the JSHOP2 distribution.

The domain has two operators (pickup and drop) and a method (swap).

Listing 2.1: SHOP2 basic domain description.� �
; Th i s e x t r e m e l y s i m p l e example shows some of t h e most e s s e n t i a l
; f e a t u r e s o f SHOP2 .

( defdomain b a s i c (
( : o perat or ( ! p i c ku p ? a ) ( ) ( ) ( ( have ? a ) ) )
( : o perat or ( ! d rop ? a ) ( ( have ? a ) ) ( ( have ? a ) ) ( ) )

( :metho d ( swap ? x ? y )
( ( have ? x ) ( n o t ( have ? y ) ) )

37



2. The Hybrid Deliberative Layer

( ( ! d rop ? x ) ( ! p i c kup ? y ) )
( ( have ? y ) ( n o t ( have ? x ) ) )
( ( ! d rop ? y ) ( ! p i c kup ? x ) ) )

)
)� �

The basic domain is represented as the following tuple dbasic−domain = {mswap,opickup,

odrop}. Each method and operator has a property shop2code as defined in the TBox concept.

The SHOP2 planning domain description is generated by concatenating the shop2code prop-

erty that is stored with each instance of Method or Operator in a valid planning domain

dx = {m1, ...,mn, o1, ...op}. This domain is either generated from Algorithm 2.2, or from an

instance in the Planning-Domain. According to the defined TBox concept, each instance of

a method or operator has at most one SHOP2 syntax. Consider an example from the basic do-

main above, opickup. shop2code is then described as “(:operator (!pickup ?a) () ()

((have ?a)))”. The proper header and footer are added to the concatenated results, hence

the generated planning domain description is a valid planning domain in SHOP2 syntax.

The planning problem description is defined as the following [Ilg06]:

(defproblem problem-name domain-name

([a1,1 a1,2 ... a1,n])T1 ...

([am,1 am,2 ... am,n])Tm)

where each ai,j is a ground logical atom and each Ti is a task list. Listing 2.2 shows an example

of a problem description for the basic domain description that is defined in the Listing 2.1. The

planning problem is pretty simple in this example. It has only one ground logical atom and only

one objective in the task network. However, generating the problem description from the DL

representation is more complex than generating the domain description.

A planning problem is defined as the four tupleP = (s0, w,O,M);O andM are represen-

ted implicitly in “domain-name” of the problem description. The ground logical atom represents

a state in planning. In the HDL system, it is generated automatically from the useState property

of a method or an operator in the DL representation. Methods or operators can have more than

one useState .

Listing 2.2: SHOP2 basic problem description.� �
( defproblem problem b a s i c

( ( have k iw i ) )
( ( swap b a n j o k iw i ) )

)� �
The fundamental question is how the states are generated automatically from s0. s0 is the

result of Algorithm 2.1. The useState consists of a template in SHOP2 syntax. The HDLize

process captures the preconditions of a given method or operator and writes them in HDL using

a template. The template is defined as triples and described as follows:
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(predicate <?val1> <?val2>);?val1=I:Concept<,?val2=P:property>

The template contains two parts which are separated by a semicolon. The first part is the

SHOP2 syntax of the template. The ?val1 and ?val2 are replaced by the value of s0. The

second part defines which concept and which property are used for replacing the SHOP2 tem-

plate. Let us look into the basic problem description, which has only one ground logical atom

namely (have kiwi). The shop2code for this ground logical atom is written as follow (have

?val2);?val1=Actor,?val2=have. The term ?val1 is used for retrieving the instance of

the concept Actor. However ?val1 does not appear in the SHOP2 syntax. ?val2 evaluates the

property “have” from the instance that appears in ?val1. This value is then substituted with

the SHOP2 syntax in the template.

The fourth tuple of the planning problem, namely the task network, is defined by the user

as the planning objectives. Having all components from the algorithms and user input, a valid

planning problem description for the SHOP2 planner can be built. As in the planning domain,

it needs a suitable header and footer in addition to a list of ground logical atoms and a task

network. Chapter 3 gives some examples on how these are assembled.
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In the previous chapter, the terminological concept of HTN planning was defined. In order to

generate a valid HTN planning problem for SHOP2, a terminological concept that models the en-

vironment needs to be defined. In addition, the HTN planning operators, actors and objects must

be instantiated and inserted into the corresponding ABox. In this chapter, a generic method for

modelling the environment in HDL and filling the HDL system is introduced. Two implementa-

tions from the robotics domain are also presented, namely the robot navigation domain and the

pick-and-place domain.

3.1. Modelling the HTN Planning Problem in the HDL System

There is no fixed method for describing terminological concepts in the knowledge base. How-

ever, a rule of thumb is that such a method should be refined through several iterations. In the

previous chapter, the terminologies for representing HTN planning in the DL representation were

defined. However, the instances of the planning itself are not yet modelled.

Describing a planning problem for the planning system is not trivial. It requires a process

involving use cases and testing similar to that followed in the software engineering discipline.

Therefore, a method for modelling HTN planning problems in the HDL system has been defined

and successfully tested over several use cases.

This method has 7 steps and is described below:

1. Define the actions and objectives:

This first step reduces the size of the problem by clearly defining the objectives. They are

modelled by simple actions which will achieve them. This step thus requires us to define

the test domain where the actions should take place.

2. Define the task networks:

As previously described in Section 2.2.3, HTN planning is a heuristic approach. The

heuristic comes from human knowledge. The result is a plan that is very intuitive in that

it solves the problem in a manner that a human being would. In the previous step, some

actions and the objectives were defined. In this step the task networks for achieving the

objectives is built.

3. Program the planning domain description:

This step instantiates the network, defined in the previous step, into a particular planning-
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understandable syntax, in this case SHOP2. The relations between methods and operators

are connected through pre- and post-conditions. The post-conditions might change some

particular states by removing or adding some facts.

4. Test the planning domain:

It is necessary to test the planning domain description to validate its results. If it does not

successfully extract a plan for a simple problem or if some error occurs, it is necessary

to repeat the previous step(s). Only if a working planning domain description, that runs

under the test cases, is found, it is possible to proceed to the next step.

5. Define the HTN ABox in the DL system:

Once a valid planning domain is fixed, its description in DL representation can be inserted

into the ABox. This can be done by describing parts of methods or operators. However,

it is necessary to capture and model the relationship of each of them such that it can be

derived later automatically using Algorithms 2.1 and 2.2. It is also possible to define a

complete planning-domain that involves the particular methods and operators.

6. Modelling and instantiating the states in the HDL system:

The states of the planning problem need to be conceptualised in the TBox of the DL

system. The real problem can then be instantiated in the HDL system.

7. Testing the HDL system:

The final step tests the HDL system on its ability to generate a correct planning domain

and planning problem.

Steps 1 to 4 above quickly describe the process used in designing and writing planning

problems for existing planning systems. Three additional steps are needed to translate the prob-

lem into DL representation such that it can be used by the HDL system. These steps provide a

rough guide to successfully modelling a planning problem in the HDL system. One might be

tempted to model the planning problem directly in DL and then try it. If a problem appears

though, it might be more difficult to find the root of the error.

3.2. Navigation Domain

A mobile robot’s basic operation is to move from its current position to the desired one. In order

to perform this operation, planning is needed. However, the level of planning might be different

from what has so far been discussed. One such level refers to path planning in which the task

is to plan trajectories within a space which the robot should then follow in order to achieve

the goal [Lat91, LaV06]. From the deliberative point of view, planning refers to the symbolic

planning problem where the robot needs to move to the goal position by using a topological

map. In this work, it is the deliberative layer and not path planning that is addressed. As proof
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of concept from the method defined in the previous section, the navigation domain is explained

chronologically by following the steps in that method.

3.2.1. Step 1: Define the Actions and Objectives

In order to define the actions and objectives, a test domain has to be defined first. One simple

test domain for navigation is shown in Figure 3.1. It depicts a map of two buildings which

are connected to each other by a corridor. Each building has six rooms and one corridor. A

topological map can be built corresponding to this figure which contains the information on

how one room is connected to the other. The map also shows the location of the robot, room-1,

and the goal position in room-6.

room-1 room-2

room-3 room-4

room-5

co
rri
do
r-1

room-11

room-10
room-9

room-8

room-7

corridor-3

building-1 building-2

room-6

corridor-2

room-12
robot1

Goal

Figure 3.1.: HTN planning ontology.

The actions that a robot can perform limit the number of operators in the HTN planning

domain. For a mobile robot, the basic operator would be move. In order to distinguish between

the move command in the path-planning task, we define it as drive-robot. The objectives

of the planning process are written as methods that can be decomposed into an HTN. In the

navigation domain, the objective is to navigate the robot from initial-location

to goal-location. Hence, the method would be navigate.

Each method and operator can have variables, for example to let the planner know which

robot, or the destination of the goal. Hence, the operator drive-robot is written as (!drive-

robot ?robot ?loc-from ?loc-to). The syntax of SHOP2 is derived from the LISP syn-

tax. This is due to the first implementation of the SHOP system which was implemented in

LISP. The exclamation mark tells the system that the operator is an atomic operator [Ilg06]. It

has three variables, namely robot, loc-from, and loc-to. Every variable is marked with a

question mark in the front of its name [Ilg06]. This operator will perform the drive-robot

action for robot from loc-from to loc-to.
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A similar approach is applied for the navigate method. In the navigation domain, the

navigate method will have similar variables to the drive-robot operator. It is defined as

(navigate ?robot ?from ?to). It has the same semantic meaning as the drive-robot

operator. However, the difference is in their influence over states. An operator can have add

and delete lists where it can add new states into the system and delete some of them. However,

a method consists of a network of some other methods or operators. It does not influence the

states directly.

The signature of the drive-robot operator is defined, however the implementation is not

yet fixed. Below is the definition of the drive-robot operator:

(!drive-robot ?robot ?loc-from ?loc-to) ;; operator drive-robot

preconds: L1 = at(robot,loc-from)

delete-list: D1 = at(robot,loc-from)

add-list: A1 = at(robot,loc-to)

The first list (L1) contains the preconditions of the operator. In order to use an operator, the

preconditions must first be fulfilled. The second list (D1) is the delete-list which contains the

states that will be deleted. The third list (A1) is the add-list containing states that will be added

to the search space. The drive-robot operator first checks whether the robot is located at

the initial location as defined in the variable loc-from. Once this is confirmed, it will remove

the state that tells the system that the robot is at loc-from and then add a new one, namely

loc-to. Thus, using the drive-robot operator changes the state of the robot from the initial

position (loc-from) to the destination position (loc-to).

One might ask the question, why do we need the method navigate? Can we just use the

drive-robot operator instead? The answer is no. It is necessary to use the navigate method

rather than the operator because the operator will only work under the specific circumstances

where the loc-from location and the loc-to location are adjacent to or coincidental with

each other. If this is not the case, the operator will only have the effect that the robot should be

at the loc-to location without considering the path it takes. Hence, the method in HTN is the

heuristic that tells the system how to solve a particular problem.

3.2.2. Step 2: Define the Task Networks

Defining a task networks in the HTN is done by defining the methods which were determined in

the previous step. The navigate method is defined as follows:

(navigate ?robot ?from ?to) ;; the robot is already at destination

task: navigate(robot, from, to)

subtasks: ∅
constr: at(robot, to)
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(navigate ?robot ?from ?to) ;; from and to are adjacent to each other

task: navigate(robot, from, to)

subtasks: u1 = !drive-robot(robot, from, to)

constr: adjacentto(from, to)

(navigate ?robot ?from ?to) ;; method to extract the path

task: navigate(robot, from, to)

subtasks: u1 = !drive-robot(robot, from, room)

u2 = !visit(room)

u3 = navigate(robot, room, to)

u4 = !unvisit(room)

constr: u1 ≺ u2, u2 ≺ u3, u3 ≺ u4, room(room), adjacentto(from,room),

not(visited(room))

Methods in SHOP2 can be exemplified by cases. The navigate method, given here, has

three cases. Each case has constraints that check whether the following task list is applicable or

not. These constraints may also have information about the sub-tasks, ordering, e.g. as shown

in third case of navigate method. The first case of the navigate method checks whether the

current robot location is coincidental with the destination location. If this is the case, the plan

will successfully return and do nothing. The second case checks whether the initial position and

the destination are adjacent to each other. If so, then it will execute the drive-robot operator.

This case can be handled directly by the drive-robot operator. However, the third case has

the real heuristic of how the search should be performed. It checks a new state, room, to see if

it is adjacent with the initial location. It also checks whether it has been visited or not. Figure

3.2 depicts the task network of the navigation domain where the start location and destination

location are neither coincidental nor adjacent. The navigate method is a recursive one, it calls

itself with the new initial location (?room). That is also the reason why this method has cases

to check for the break condition for the recursion.

(navigate ?robot ?from ?to)

(navigate ?robot ?room ?to)(!visit ?room) (!unvisit ?room)(!drive-robot ?robot ?from ?room)

(navigate ?robot ?from ?to)

(!drive-robot ?robot ?from ?to)

Figure 3.2.: Navigation task network.

Note that the navigate method has two additional operators, namely visit and unvi-

45



3. HDL Systems in the Robotics Domain

sit. These operators are needed for the search heuristic. The function of these operators is

to mark the places which have been visited by the robot in the search space to prevent it from

embarking on a cyclic search. These operators use a marker, which is represented as a state,

namely (visited ?room).

The method navigate shows how a simple problem is decomposed into smaller subtasks

in the task network in order to solve a particular problem. It shows a hierarchy of the operators

and methods. However, HTN can do abstraction over some methods too. This is shown here

through an analysis of the navigate method once again. It has three variables, one of which

could be removed. The goal is to let the robot navigate into a certain room. As the initial state of

the robot is already modelled in the planning-domain, it is not necessary to explicitly mention it

in the planning problem. This is also expected by the users as the robot should know where it is

through the use of a map within its memory. Hence, a new method can be built over navigate

as shown below:

(navigate ?robot ?to)

task: navigate(robot, to)

subtasks: u1 = !visit(from)

u2 = navigate(robot, from, to)

u3 = !unvisit(from)

constr: u1 ≺ u2, u2 ≺ u3, at(robot, from)

The result is two methods with the name, navigate. The difference between them is the

number of parameters. One has three variables and the other has two. SHOP2 can automatically

distinguish which method to use based on the number of variables of the method or operator.

The abstract navigate method checks the current location of the robot and uses this informa-

tion within its task network after marking the location and calling the navigate method with

three parameters.

3.2.3. Step 3: Program the Planning Domain

The methods and operators have been defined in the previous steps. However, the previous

definitions are not in any specific HTN language. Therefore, in this step the methods and oper-

ators have to be implemented in one of HTN language, in this case SHOP2.

Listing 3.1: Navigation domain.� �
( defdomain n a v i g a t i o n _ d o m a i n (

( : o perat or ( ! d r i v e−r o b o t ? r o b o t ? loc−from ? loc−t o )
( ( a t ? r o b o t ? loc−from ) )
( ( a t ? r o b o t ? loc−from ) )
( ( a t ? r o b o t ? loc−t o ) )

)
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( : o perat or ( ! u n v i s i t ? waypo in t )
( )
( ( v i s i t e d ? waypo in t ) )
( )

)

( : o perat or ( ! v i s i t ? waypo in t )
( )
( )
( ( v i s i t e d ? waypo in t ) )

)

( :metho d ( n a v i g a t e ? r o b o t ? from ? t o )
Case1 ( ( a t ? r o b o t ? t o ) )

( )
Case2 ( ( a d j a c e n t t o ? from ? t o ) )

( ( ! d r i v e−r o b o t ? r o b o t ? from ? t o ) )
Case3 ( ( room ? room ) ( a d j a c e n t t o ? from ? room ) ( n o t ( v i s i t e d ?...

room ) ) )
( ( ! d r i v e−r o b o t ? r o b o t ? from ? room )

( ! v i s i t ? room )
( n a v i g a t e ? r o b o t ? room ? t o )
( ! u n v i s i t ? room ) )

)

( :metho d ( n a v i g a t e ? r o b o t ? t o )
( ( a t ? r o b o t ? from ) )
( ( ! v i s i t ? from ) ( n a v i g a t e ? r o b o t ? from ? t o ) ( ! u n v i s i t ? from ) )

)
)

)� �
Listing 3.1 shows the navigation domain written in SHOP2 syntax. There are three operators and

two methods. The main operator drive-robot is defined previously in the first step. Writing

this operator in SHOP2 syntax is a straight forward. The first line is the method signature with its

parameters. Its contents are the preconditions, delete lists, and add lists [Ilg06]. The interesting

part is the navigatewith three parameters which is defined in the second step. In the definition,

it is represented by three definitions with their sub-tasks. However, in the SHOP2 syntax, it is

represented as one method with three cases. The first list in each case is the constraints and the

second list is the sub-tasks. The “Case1”, “Case2”, and “Case3” are merely labels for each case.

3.2.4. Step 4: Test the Planning Domain

Once the planning domain is defined, we need to model the environment in the form of states

which conform to the preconditions of all methods and operators. Hence, in this case, four kinds

of states are needed:
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� �
( a t ? r o b o t ? l o c a t i o n )
( room ? room )
( a d j a c e n t t o ? room1 ? room2 )
( v i s i t e d ? waypo in t )� �

The state (at ?robot ?location) represents the location of any robot in the envir-

onment. In the current example, this would be {(at robot1 room-1)}. The state (room

?room) represents any room in the environment, namely {(room room-1),(room room-2),

...(room room-12),(room corridor-1),(room corridor-2),(room corridor-3)}.

The corridors are modelled as rooms as they have the same functionality. The state (adjacent-

to ?room1 ?room2) represents the connectivity between rooms. In this case, {(adjacentto

room-1 corridor-1), (adjacentto corridor-1 room-1), (adjacentto room-2

corridor-1), (adjacentto corridor-1 room-2), ... (adjacentto corridor-3

room-12)}. The adjacentto state must be represented symmetrically in order to allow the

search to proceed in both directions. The last state (visited ?waypoint) does not appear

in the environment. It only appears internally in the search space of the planning system.

In the problem shown in Figure 3.1, the objective of the planning problem is written

as either (navigate robot1 room-1 room-6) or (navigate robot1 room-6). The

planning problem of the (navigate robot1 room-6) is shown in Listing 3.2.

Listing 3.2: Planning problem description for “navigation-domain”.� �
( defproblem p r o b l e m _ n a v i g a t i o n _ d o m a i n n a v i g a t i o n _ d o m a i n

(
( a t r o b o t 1 room−1)
( room room−1)
( room room−2)
. . . o m i t t e d . . .
( room room−12)
( room c o r r i d o r −1)
( room c o r r i d o r −2)
( room c o r r i d o r −3)
( a d j a c e n t t o room−1 c o r r i d o r −1)
( a d j a c e n t t o c o r r i d o r −1 room−1)
( a d j a c e n t t o room−2 c o r r i d o r −1)
( a d j a c e n t t o c o r r i d o r −1 room−2)
. . . o m i t t e d . . .
( a d j a c e n t t o c o r r i d o r −3 room−12)

)
(

( n a v i g a t e r o b o t 1 room−6)
)

)� �
The result of this problem description is shown below:
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� �
( ! v i s i t room−1)
( ! d r i v e−r o b o t r o b o t 1 room−1 c o r r i d o r −1)
( ! v i s i t c o r r i d o r −1)
( ! d r i v e−r o b o t r o b o t 2 c o r r i d o r −1 room−6)
( ! u n v i s i t c o r r i d o r −1)
( ! u n v i s i t room−1)� �

If one uses the (navigate robot1 room-1 room-6) instead, the result will differ slightly

from the one presented above. The difference lies in the operators (!visit room-1) and

(!unvisit room-1). However, this is not a problem, since these two operators have no real

impact on the motion of the robot itself. This solution plan confirms that the navigation domain

works.

3.2.5. Step 5: Define the HTN ABox in the HDL System

As the planning domain descriptions are successfully modelled, one needs to model them in

the DL representation. In the navigation domain, there are three operators {drive-robot,

visit, unvisit} and two forms of the navigate method. In DL each instance must have a

unique name, thus two forms of the method navigate must be written with indices. Hence,

we define a planning domain navigation_domain with three operators and two methods:

dnavigation_domain = {mnavigate,mnavigate2, odrive-robot, ovisit, ounvisit}. Figure 3.3 shows the

asserted instances in the HDL. The operators are shown in orange-coloured boxes (see Listing

B.1 for detail), the methods in green (see Listing B.2 for detail), and the planning domain in

purple (see Listing B.3 for detail).

Planning-
Domain(navigation-domain)

hasMethod(navigate) 
hasMethod(navigate2)

hasOperator(drive-robot)
hasOperator(visit)

hasOperator(unvisit)

Method(navigate2)

hasMethod(navigate)
hasOperator(visit)

hasOperator(unvisit)
useState(..Robot..)

shop2code(...)

Operator(drive-robot)
useState(..Robot..)

shop2code(...)

Operator(visit)

shop2code(...)

Operator(unvisit)

shop2code(...)

Method(navigate)
hasOperator(drive-robot)

hasOperator(visit)
hasOperator(unvisit)
useState(..Room..)
useState(..Room..)
useState(..Robot..)

shop2code(...)

Figure 3.3.: Navigation domain’s assertions in the HDL.

The Algorithms 2.1 and 2.2 can then be applied to the DL system to generate the plan-

ning problem. The users can choose an instance from either the Planning-Domain or the

Method. In the navigation example, the same domain is generated whether the user chooses

dnavigation_domain or mnavigate2. If mnavigate is chosen, the generated planning domain will

have one method less than the other two mentioned before; it will be generated without the

method mnavigate2.
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3.2.6. Step 6: Modelling and Instantiating the States in the HDL System

Once the assertions in the HTN’s ABox are defined, the states must be inserted into the ABox too.

To enable the DL reasoner to reason about the knowledge and generate the states automatically,

the states need to be modelled in DL representation in the form of TBox and ABox. The TBox

for the navigation domain is shown in Figure 3.4. The robot is represented as a sub-concept

of “Actor”. The corridors are modelled as part of or as a sub-concept of “Room”, because

they are treated as ordinary rooms. The buildings are defined in the DL too. The concept

“Fixed-Object” is needed for organisational purposes.

Figure 3.4.: Navigation domain’s states concepts.

The concepts are sufficient to capture the domain that is shown in Figure 3.1. Three con-

cepts have direct influence on the planning states, namely Robot, Room, and Corridor. The

Corridor is treated as a Room. The Robot is defined as follows:

Robot v Actor u

∃ at.Room u

= 1 at

The DL syntax describes the Robot as a sub-concept of Actor and shows that it has a property,

at , whose range is some member of Room. In addition, this property has exactly one member.

Similarly, Room is defined as follows:

Room v Building u

∃ adjacentto.Room

The Corridor inherits the conditions of Room, because it is a sub-concept of Room.

The terminological concepts of the planning states are now defined in the DL system.

Hence, the instances of the planning domain can be inserted into the ABox of the DL system. As

shown in Figure 3.1, it has three corridors {Corridor(corridor-1), Corridor(corridor-2),

Corridor(corridor-3)}; 12 rooms {Room(room-1), Room(room-2), ... Room(room-12)}

and a robot {Robot(robot1)}. In addition, the properties need to be inserted into the DL sys-

tem too: {at(robot1, room-1), adjacentto(room-1, corridor-1), adjacentto(corridor-1,

room-1), ... adjacentto(corridor-3, room-12)}.
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3.2.7. Step 7: Testing the HDL System

By asserting the instances of the planning domain, the HDL system has a complete definition of

the navigation domain. The user can now define the destination that the robot should navigate

to. The HDL system will then extract the planning domain and planning problem from the DL

representation. The generated planning domain for navigation is shown in Listing A.1. The

HDL system produces a correct planning domain which is similar to the one defined in the third

step (Section 3.2.3). It produces a viable solution plan for the problem shown in Figure 3.1 that

is similar to the result of the fourth step (Section 3.2.4). Appendix A.1 shows some generated

planning problems and their solutions.

3.3. Exploiting the HDL system

In this section, we discuss the benefit of modelling HTN in DL. Modelling HTN planning prob-

lems in the HDL system requires some effort and time. What is the benefit of an HDL system?

There are advantages to having the HTN planning domain modelled in the HDL system. In the

previous sections, a proof of concept for the HDL system being capable of capturing and mod-

elling the HTN planning problem was shown. In this section, one advantage of the HDL system

is elaborated.

The navigation domain, presented in the previous section, is quite simple. It discards in-

formation that does not have direct influence on the planning process. Nevertheless, the actions

generated by the planning system are enough to navigate the robot from the initial position to

the destination in this particular domain. What happens if the robot should work in the other

building where the topological information is different from the current one? In this case, new

states are needed to model the new environment. The current planning domain is still usable

for this problem. Is it possible to model all the possible topological information (states) of the

environment in the planning problem? Theoretically, yes, but in practise, this is not done. As

the planning description gets larger, it may cause the planning problem to become intractable.

This is because the search space grows too large.

Imagine that the robot should work in a six-storey building with a large number of rooms.

It is clear that a mobile robot can only be on one of the six available floors at any given time.

Hence, some of the floors and rooms are not accessible to the robot. Thus, the topological

information of the other floors is irrelevant for the planning problem. Even on a given floor,

some rooms might not be accessible to the robot. For example, the door may be closed or some

rooms might have a smaller footprint than the robot. In this case, there are some irrelevant states

which should be removed from the planning problem. Here, the realisation of this particular case

is presented.

Assume that the robot can acquire the states of the doors (whether they are open or closed).

This adds new information to our domain. This is depicted in Figure 3.5. The domain contains

the same topological map as shown in Figure 3.1, but with the added information of the doors.
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In Figure 3.5, the robot can only access several rooms, specifically, those which have an open

door, such as room-1, room-3, corridor-1 and so on.

room-1 room-2

room-3 room-4

room-5

co
rri
do
r-1

room-11

room-10
room-9

room-8

room-7

corridor-3

building-1 building-2

room-6

corridor-2

room-12
robot1

Goal

Figure 3.5.: Simple navigation domain with door(s) connecting between rooms, which can be
either open or closed.

The question now is how to successfully navigate around the new environment with an

ordinary planning model, i.e. using the HTN approach. In this case, the door information

also needs to be modelled in the planning domain. Hence, the planning domain, introduced

in Section 3.2, cannot be used directly. A new planning domain which considers the state of the

doors needs to be modelled. In addition, the door states also have to be written into the planning

problem description. As a result, the size of the the planning problem will increase linearly in

the number of rooms, assuming that each room has only one door. Hence, the planning process

would eventually become intractable. The planner might be able to evaluate whether a room is

accessible or not, but only after it has finished the extraction of the plan. By then, it may be

too late if the problem is big enough to make the plan intractable. A human taking the role of

the planning designer might help with this problem as he or she will only model the accessible

rooms. However, this process would not be performed automatically. The proposed system,

HDL, is able to automated this action.

In the HDL system, the planning problem is extracted automatically from the DL repres-

entation. The environment or domain is modelled in DL instead. DL reasoning is tractable and

can handle a much larger amount of information than HTN planning. There are two advant-

ages of using the HDL system here. Firstly, the previous planning domain can be used without

any modification. Secondly, the planning problem description can be reduced to a smaller one,

depending on the number of open doors and this is done automatically. The filter criteria are

defined as DL concepts in the TBox.

One more benefit of using the HDL system is the model that has just been defined for the

simple navigation domain can still be used and extended to support doors. Figure 3.6 shows
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the navigation domain with the extended concepts. Six additional concepts are defined in order

to model the domain. Additionally, there are the three concepts in orange, which instances are

inferred by the DL reasoner from the asserted instances (ABox).

Figure 3.6.: Extended navigation domain’s states concepts.

The concepts Door, V aluePartition, and DoorStatus represent doors and their status.

Door is defined as:

Door v Building u

∃ hasState.DoorStatus u

= 1 hasState

Each instance of Door has exactly one state either “open” or “closed”. This property is defined

by the instances of theDoorStatus, namely {DoorStatus(isOpen),DoorStatus(isClose)}.

The doors are inserted into the ABox as follows: {Door(door_1), Door(door_2), Door(door

_2_4), ... Door(door_12)}. In addition, the state of every door is defined as {hasState(door_1,

isOpen), hasState(door_2, isClose), hasState(door_2_4, isClose), ... hasState(door_12,

isClose)}.

The doors are modelled and asserted in the HDL system. However, the Room concept is

not yet included. In order to accommodate additional information like Door and Building,

Room is redefined as follows:

Room v Building u

∃ adjacentto.Room u

∃ hasDoor.Door u

∃ inBuilding.Building

Two instances ofBuilding are asserted in the model, namely {Building(building-1),Build-

ing (building-2)}. The properties hasDoor and inBuilding are filled with this knowledge:

{inBuilding(room-1, building-1), inBuilding(room-2, building-1), ... hasDoor (room- 1,

door_1), hasDoor (building-1, door_1), ... hasDoor (room-12, door_12)}.

The navigation domain, as shown in Figure 3.5, is now modelled in the HDL system. This

knowledge is just inserted into the ABox. Retrieving an instance of a concept is done merely by

reading the asserted knowledge from the ABox. The DL reasoner can do more than just return
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asserted information. It can infer new knowledge from current knowledge. This is precisely

what is needed of the system. It should filter out irrelevant knowledge such as rooms with a

closed door.

Additional concepts can be defined over the current ones. These concepts are shown in

Figure 3.6 as orange coloured ellipses. The first one is the OpenDoor concept that is defined

as follows:

OpenDoor ≡ Door u

3 hasState(isOpen)

The DL reasoner infers the knowledge and fills the OpenDoor with instances of Door which

have hasState value “isOpen”. The second concept is DriveableRoom, which is defined as:

DriveableRoom ≡ Room u

∃ hasDoor.OpenDoor

The DriveableRoom concept uses the OpenDoor concept as a condition for being part of the

concept. Hence, any instance of Room with an open door will automatically become part of

this concept. The third concept DriveableRoomInBuilding shows how the concept can be

refined into a more specific one, namely for retrieving a room with any open door in a particular

building. This is defined as follows:

DriveableRoomInBuilding ≡ DriveableRoom u

3 inBuilding(building-1)

The defined concept will return all DriveableRoom in building-1. These are some examples

of how the concepts are defined to filter the states for the planning problem description. In the

following section the results of using the DL model, as shown in Figure 3.6, on the navigation

domain with doors, as shown in Figure 3.5, are presented.

3.3.1. Results

The extended navigation domain is defined in the HDL system. The rooms and their doors are

modelled in such a way that the DL reasoner is able to reason about them. However, the question

remains of how the HDL system would know which states should be generated for the planning

problem description. As mentioned previously in Section 2.4.2, the operators and methods

contain the information which states are needed. Thus, the useState property of the methods

and operators needs to be customised. In the navigation domain, the useState properties of the

method navigate must be customised. Especially for the instance query of the conceptRoom.

It can be replaced with any other sub-concept of Room.

Table 3.1 shows the number of generated states for different specifications of the Fixed-
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Table 3.1.: Generated states for different specialisations of the Fixed-Object concept.

Condition Number of states
sroom 16

sroom-in-building 8
sdriveable-room 8

sdriveable-room-in-building1 5
sdriveable-room-in-building2 3

Object concept [HH08]. It gives an impression of how specialisation alters the number of gen-

erated states s0, based on the number of rooms to consider in some concrete planning problem.

As expected, using a more specific concept reduces the number of generated states s0, which

can improve planning efficiency by reducing the size of the search space.

3.4. Pick-and-Place Domain

In Section 3.2, a planning domain for mobile robotics is presented. The HDL system is able

to reduce the number of states by refining the ontologies of the domain (see Section 3.3). In

that domain, the robot’s capability determines the possible operators in the planning domain.

Nowadays, the field of robotics research and engineering is growing rapidly. Robotic manip-

ulators, traditionally used by manufacturers for producing products requiring high precision,

such as cars, are currently being produced in lightweight forms, for example the KuKA light

weight arm (LBR) and the Katana arm. KuKA, Motoman, Neuronics and Schunk are some such

robot manipulator manufacturers. The development of lightweight arms enables roboticists to

integrate them with mobile robots. Hence, such robots are also called mobile manipulator ro-

bots. In addition to the actions related to their mobility, the mobile manipulator is capable of

performing other actions relating to the manipulation of an object. The manipulation depends

on the kind of mounted arm; it can be grasping, lifting, pushing, etc. In this example, we use a

manipulator with grasping capability.

In the navigation domain example, the planning domain can be reduced by adding ad-

ditional information used for the filtering process. The HDL system can work with the same

planning domain and generate a filtered planning problem. In the pick-and-place domain, some

additional advantages of the HDL systems can be seen. Hence, the pick-and-place domain will

extend the previous environment by adding several objects. It also shows how the planning do-

main can be extended and used for the pick-and-place domain. Hence, the HDL system solves

the re-usability requirement as mentioned in Section 1.2.
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3.4.1. Problem Specification

The pick-and-place domain extends the navigation domain map with some objects. Figure 3.7

depicts this domain. An additional robot, namely robot2, can be seen in this extended domain.

robot1 is located in room-1 and robot2 is located in room-4. Some objects are also added

into the domain, namely five containers and six fruits. The containers are introduced here to

provide the operators with more specific parameters. Instead of telling the planner that apple1

is in room-1, it gives a more precise location of the apple within that room, e.g. in basket-1

and the basket is in room-1.

room-1 room-2

room-3 room-4

room-5

co
rri
do
r-1

room-11

room-10
room-9

room-8

room-7

corridor-3

building-1 building-2

room-6

corridor-2

room-12

robot2

robot1

basket-1

basket-3

basket-11

basket-9

apple1
apple2
apple3

orange1
orange2
orange3

trash-6

Figure 3.7.: Pick-and-place domain with two robots and six manipulable objects.

A typical problem for a mobile manipulator is to manipulate an object. A complex task

would be to bring an object from an initial location to a destination location. It involves several

sequential actions, for example navigating to the initial position, grasping the object, navigating

the robot to the destination location, and releasing the object.

3.4.2. Modelling Actors and Objects

The pick-and-place domain is an extension of the navigation domain. Hence, for the sake of

clarity, we will start by modelling additional actors and objects in the HDL system. Most of

the concepts and instances from the navigation domain can be used directly in the new domain.

However, some additional concepts that are necessary in order to model the manipulable objects

are defined. These can be seen in Figure 3.8.

The concept for containers is defined as a sub-concept of Fixed-Object. The Container

is described in DL as follows:

Container v Fixed-Object u

∃ at.Room
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Figure 3.8.: Extended pick-and-place domain’s states concepts.

The instances of the containers are asserted in the HDL system, {Container(container-1),

at(container-1, room-1), ... Container(trash-6), at(trash-6, room-6)}. The Fruit is

modelled as part of Manipulable-Object which is defined as:

Manipulable-Object v Thing u

∃ at.Container

Apple and Orange are sub-concepts of Fruit. Hence, Apple and Orange inherit the prop-

erty of Manipulable-Object. Thus, the assertions of the fruits are described as follows:

{Apple(apple1), at(apple1, basket-1), ... Orange(orange3), at(orange3, basket-11)}.

Having the actors and objects modelled and asserted in the HDL system, the environment

states are automatically captured in the system. Hence, the next step would be to define the

planning domain with new operators and methods for a mobile manipulator.

3.4.3. Defining the HTN Planning Domain for Pick-and-Place Tasks

The mobile manipulator has more functionality than a simple mobile robot. Thus, it also has

additional planning operators. Operators can either be compared with low level control skills or

in a more abstract manner. In the abstract operator, the executor needs to translate an operator

into more specific commands which match the low level controller.

The HTN planner provides hierarchies in its network which have been presented in the

navigation domain through the use of two navigate methods with different signatures. The HDL

system provides another abstraction at the ontology level. This abstraction is presented in this

section through the pick-and-place domain.

Two possible basic manipulation actions which the mobile manipulator can perform are

“pick-up an object” and “put an object”. However, in order to perform these actions, the robot needs

to be as close as possible to the object. A manipulator has physical limitations which impact the

positions that it can reach. These limitations are defined formally as the manipulator’s work-

space. There are two kinds of workspaces, namely reachable workspaces and dexterous work-

spaces. A reachable workspace is the area in which the tool tip of the manipulator can reach.

The dexterous workspace is the area in which the manipulator can reach a point in the work-
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space in all possible poses [Cra05]. Two additional operators are introduced according to the

workspace, namely “move the robot to dexterous workspace” and “move away from dexterous workspace”.

Why do we need these two new operators in addition to the pick-up and put operators?

The mobile manipulator might have collision avoidance integrated in its low level control-

ler. Hence, telling the robot to move around in the environment would cause no problem due to

the collision avoidance skill. However, when the robot should grasp an object, it needs to move

as close to the object as possible. In the environment, the object might be located on top of a

table. Having collision avoidance active might prevent the robot from approaching the object.

The move to dexterous workspace has the purpose of allowing the robot to reduce the boundary

of its collision avoidance such that it can move as close to the object as possible to grasp it.

3.4.3.1. Partial Pick-and-Place Domain

In the partial pick-and-place domain, the navigate method from the navigation domain is

considered as an operator for the pick-and-place domain. Having the navigate method as an

operator makes the planning problem much simpler than the complete one. This is explained

in more detail in the following section. Once the operators are fixed, the methods need to be

defined. Methods represent the plan objectives. A complex method for a mobile manipulation

task might be “move object from one container to a destination container”. This task might be decomposed

into smaller subtasks, such as “get-object” and “put-object”.

The HTN for the partial pick-and-place domain for the task “move an object to destination con-

tainer” is shown in Figure 3.9. The process is similar to how humans think to solve the problem.

The first action would be to first go to the location where the object is located and then to try to

grasp it. In order to grasp the object, the robot needs to get near to the object’s container and

then perform the grasping action. Before the robot navigates to the destination room, it might

first need to move away from the container. A similar approach is used when the robot is in the

destination room. It will approach the container and put the object into the container.

(move-object ?robot ?object 
?from-container ?to-container)

(!navigate ?robot ?loc-to)

(!drive-away-from-dex-workspace ?robot ?from-container)

(!navigate ?robot ?loc-to)

(!drive-to-dexterous-workspace 
?robot ?to-container ?in-room)

(!put-object ?robot ?object 
?to-container)

(!pickup-object ?robot ?object ?from-container)

(!drive-to-dexterous-workspace 
?robot ?to-container ?in-room)

(move-object ?robot ?object ?to-container)

(get-object ?robot ?object 
?from-container)

(get-object ?robot ?object 
?from-container)

(get-object ?robot ?object
?from-container)

(get-object ?robot ?object 
?from-container)

(move-object ?robot ?object 
?from-container ?to-container)

(put-object ?robot ?object 
?to-container)

(put-object ?robot ?object 
?to-container)

(put-object ?robot ?object 
?to-container)

Figure 3.9.: Partial pick-and-place domain task network.
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As shown in the Figure 3.9, the move-object task is divided into two subtasks namely

get- object and put-object. The main objectives are represented using two methods which

represent a hierarchy in the planning domain. As in the navigation domain, they have different

parameters. The first method of move-object requires three parameters, shown in the first

level of the task network (see Figure 3.9). These parameters are the robot itself, the object, and

the destination. However, the location of the object is not a parameter, but will be automatically

filled in from the robot’s world model. This method is defined as follows:

(move-object ?robot ?object ?to-container)

task: move-object(robot, object, to-container)

subtasks: u1 = move-object(robot, object, from-container,

to-container)

constr: at(object, from-container)

The second method of move-object has one more parameter, namely the object location

(from-container). This method consists of two cases. The first case decomposes into the

get-object task and the second one decomposes into the put-object task. Below is the

definition of this method:

(move-object ?robot ?object ?from-container ?to-container)

task: move-object(robot, object, from-container, to-container)

subtasks: u1 = get-object(robot, object, from-container)

u2 = move-object(robot, object, from-container,

to-container)

constr: u1 ≺ u2, not(at(object, robot)), at(object, from-container)

(move-object ?robot ?object ?from-container ?to-container)

task: move-object(robot, object, from-container, to-container)

subtasks: u1 = put-object(robot, object, to-container)

constr: at(object, robot)

The cases are represented as recursion in the network. Figure 3.10 shows the assertions for

method moveobject_p and moveobject2_p. Detail of these assertions is shown in Listing

B.4.

Method(moveobject2_p)

hasMethod(moveobject_p)

useState(..Fruit..)

shop2code(...)

Method(moveobject_p)

hasMethod(getobject_p)
hasMethod(putobject_p)

useState(..Fruit..)
shop2code(...)

Figure 3.10.: Method “moveobject_p” and “moveobject2_p” assertions in the HDL.
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The method get-object is also represented in two forms. The first one has two para-

meters, namely robot and object. As in the move-object task with three parameters, the

location of the object is retrieved automatically from the robot’s world model. This method is

defined as follows:

(get-object ?robot ?object)

task: get-object(robot, object)

subtasks: u1 = get-object(robot, object, from-container)

constr: at(object, from-container)

The second form consists of four cases. The first case tests whether the object is at the

robot. It moves the robot away from the grasping position. Thus, the robot can safely navigate

to the next location without collision with any object, e.g. furniture. This case terminates

the recursion too. The second case calls the pick-up operator if the object is located in the

dexterous workspace of the robot. The third case moves the robot to approach the object if the

object is not in the dexterous space and the robot is in the same room as the object. The fourth

case calls the navigate operator if the robot is located in another room. This method is defined

as follows:

(get-object ?robot ?object ?from-container) ;; case 1

task: get-object(robot, object, from-container)

subtasks: u1 = !drive-away-from-dex-workspace(robot, from-container)

constr: at(object, robot)

(get-object ?robot ?object ?from-container) ;; case 2

task: get-object(robot, object, from-container)

subtasks: u1 = !pickup-object(robot, object, from-container)

u2 = get-object(robot, object, from-container)

constr: u1 ≺ u2, at-dexterous-workspace(robot, from-container)

(get-object ?robot ?object ?from-container) ;; case 3

task: get-object(robot, object, from-container)

subtasks: u1 = !drive-to-dexterous-workspace(robot, from-container,

room)

u2 = get-object(robot, object, from-container)

constr: u1 ≺ u2, not(at-dexterous-workspace(robot, from-container)),

at(from-container, room), at(robot, room)

(get-object ?robot ?object ?from-container) ;; case 4

task: get-object(robot, object, from-container)

subtasks: u1 = !navigate(robot, room)

u2 = get-object(robot, object, from-container)
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constr: u1 ≺ u2, not(at-dexterous-workspace(robot, from-container)),

at(from-container, room), not(at(robot, room))

Figure 3.11 shows the assertions for the methods getobject_p and getobject2_p. The

details of these assertions are shown in Listing B.5.

Method(getobject2_p)

hasMethod(getobject_p)

useState(..Fruit..)

shop2code(...)

Method(getobject_p)
hasOperator(drive-away-f-dex-workspace)
hasOperator(drive-to-dexterous-workspace)

hasOperator(pickup-object)
hasOperator(navigate-op)

useState(..Robot..)
useState(..Container..)
useState(..Fruit..)
shop2code(...)

Figure 3.11.: Method “getobject_p” and “getobject2_p” assertions in the HDL.

Unlike the move-object or get-object methods, it has no redundant information in

its parameters. Hence, the put-object method has only one implementation with four cases.

The first case terminates the recursion if the robot does not have the object anymore, which

assumes that the object was successfully placed on the desired location. The second case calls

the put-object operator if the destination location is within the robot’s dexterous workspace.

If the robot is not there yet, the third case performs the action to move the robot to its dexterous

workspace for placing the object. The previous action can only be performed if the robot is

located in the same room as the destination location. The fourth case calls the navigate

operator if the robot is not there yet. The move-object method is defined as follows:

(put-object ?robot ?object ?to-container) ;; case 1

task: put-object(robot, object, to-container)

subtasks: ∅
constr: not(at(object, robot))

(put-object ?robot ?object ?to-container) ;; case 2

task: put-object(robot, object, to-container)

subtasks: u1 = !put-object(robot, object, to-container)

constr: at(object, robot), at-dexterous-workspace(robot, to-container)

(put-object ?robot ?object ?to-container) ;; case 3

task: put-object(robot, object, to-container)

subtasks: u1 = !drive-to-dexterous-workspace(robot, from-container,

room)

u2 = put-object(robot, object, to-container)

constr: u1 ≺ u2, at(object, robot), not(at-dexterous-workspace(robot,
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to-container)), at(to-container, room), at(robot, room)

(put-object ?robot ?object ?to-container) ;; case 4

task: put-object(robot, object, to-container)

subtasks: u1 = !navigate(robot, room)

u2 = put-object(robot, object, to-container)

constr: u1 ≺ u2, at(object, robot), not(at-dexterous-workspace(robot,

to-container)), at(to-container, room), not(at(robot, room))

The method putobject_p assertion is shown in Figure 3.12. Detail of this assertion is in

Listing B.6.

Method(putobject_p)

hasOperator(put-object)
hasOperator(drive-to-dexterous-workspace)

hasOperator(navigate-op)
useState(..Robot..)

useState(..Container..)
shop2code(...)

Figure 3.12.: Method “putobject_p” assertion in the HDL.

These methods use some operators, namely navigate-op, drive-to-dexterous-

workspace, drive-away-f-dex-workspace, pickup-object, and put-object. These

operators are defined as follows:

(!navigate ?robot ?loc-to)

preconds: L1 = at(robot,loc-from)

delete-list: D1 = at(robot,loc-from)

add-list: A1 = at(robot,loc-to)

(!drive-to-dexterous-workspace ?robot ?to-container ?in-room)

preconds: L1 = at(robot,in-room) ∧ at(to-container, in-room)

delete-list: -

add-list: A1 = at-dexterous-workspace(robot, to-container)

(!drive-away-from-dex-workspace ?robot ?from-container)

preconds: -

delete-list: D1 = at-dexterous-workspace(robot, from-container)

add-list: -

(!pickup-object ?robot ?object ?from-container)

preconds: L1 = at-dexterous-workspace(robot,from-container) ∧
not(has-object(robot))
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delete-list: D1 = at(object,from-container)

D2 = protection(at-dexterous-workspace(robot, container))

add-list: A1 = has-object(robot)

A2 = at(object, robot)

(!put-object ?robot ?object ?to-container)

preconds: L1 = at-dexterous-workspace(robot, to-container) ∧
has-object(robot) ∧ at(object, robot)

delete-list: D1 = has-object(robot)

D2 = at(object, robot)

add-list: A1 = at(object,to-container)

These operator assertions are shown in Figure 3.13, where the detail is listed in B.7.

Operator(drive-to-dexterous-workspace)
useState(..Container..)
useState(..Robot..)
shop2code(...)

Operator(navigate-op)

shop2code(...)

Operator(drive-away-f-dex-workspace)
useState(..Container..)
useState(..Robot..)
shop2code(...)

Operator(pickup-object)
useState(..Fruit..)

shop2code(...)

Operator(put-object)
useState(..Fruit..)

shop2code(...)

Figure 3.13.: Operators assertion in the HDL for pick-and-place domain.

In addition, an insertion into the ABox of the Planning-Domain concept is done for the

pick-and-place_domain_partial. The domain is defined as dpick−and−place_domain_partial =

{mmoveobject_p,mmoveobject2_p,mgetobject_p, mgetobject2_p,mputobject_p, onavigate-op, opickup-ob-

ject, odrive-to-dexterous-workspace, odrive-away-f -dex-workspace, oput-object}. The domain is asserted

in the HDL system as shown in Figure 3.14 and detailed in Listing B.8.

Planning-Domain(pick-and-
place_domain_partial)

hasMethod(moveobject_p) 
hasMethod(moveobject2_p)

hasMethod(getobject_p)
hasMethod(getobject2_p)
hasMethod(pubobject_p)

hasOperator(navigate-op)
hasOperator(drive-to-dexterous-workspace)
hasOperator(drive-away-f-dex-workspace)

hasOperator(pickup-object)
hasOperator(put-object)

Figure 3.14.: Planning domain assertion in the HDL for pick-and-place domain.
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An analysis of how the domain is generated from the HDL system for solving certain prob-

lems is shown later in Section 3.4.4. The difference between the partial domain and the complete

one is described in the following section.

3.4.3.2. Complete Pick-and-Place Domain

The complete pick-and-place domain combines the navigation domain and the partial pick-and-

place domain. It uses a complete network of the navigation domain. Therefore, a benefit of the

HDL system is the enhanced re-usability of the planning domain. No new definition is needed

for the navigation part. However, for the manipulation part, only the operators are applied

exactly for both domains, partial and complete. The methods in the complete pick-and-place

domain are very similar to the partial one, except for the method that involves the navigate

task.

Figure 3.15 shows the task network for the complete pick-and-place domain. The navig-

ation operator is replaced by the navigation method from the navigation domain. Hence, the

generated plan is more granular than the partial one. The properties which have been defined

in the navigation domain are also applied to the complete pick-and-place domain. For example,

instance of Room is being used.

(move-object ?robot ?object 
?from-container ?to-container)

(!drive-away-from-dex-workspace ?robot ?from-container)

(navigate ?robot ?loc-to)

(!put-object ?robot 
?object ?to-container)

(!pickup-object ?robot 
?object ?from-container)

(move-object ?robot ?object ?to-container)

(get-object ?robot 
?object ?from-container)

(move-object ?robot ?object 
?from-container ?to-container)

(put-object ?robot 
?object ?to-container)

(put-object ?robot 
?object ?to-container)

(put-object ?robot 
?object ?to-container)

(navigate ?robot ?to)

(navigate ?robot ?from ?to)

(!drive-robot ?robot ?from ?to) (navigate ?robot ?from ?to)

(!drive-robot ?robot ?from ?to)

Figure 3.15.: Complete pick-and-place domain task network.

The complete pick-and-place domain has seven methods, of which five are from the partial

pick-and-place domain and two from the navigation domain. The get-object method with

three variables has four cases as in the partial pick-and-place domain (see Section 3.4.3.1). The

first three cases are identical to those in the partial one, but the fourth one is not. Below is

the definition of the fourth case of the get-object method in the complete pick-and-place

domain:
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(get-object ?robot ?object ?from-container) ;; case 4

task: get-object(robot, object, from-container)

subtasks: u1 = navigate(robot, room) ;; ** method calls **

u2 = get-object(robot, object, from-container)

constr: u1 ≺ u2, not(at-dexterous-workspace(robot, from-container)),

at(from-container, room), not(at(robot, room))

Similarly, the put-object’s fourth case is redefined as follows:

(put-object ?robot ?object ?to-container) ;; case 4

task: put-object(robot, object, to-container)

subtasks: u1 = navigate(robot, room) ;; ** method calls **

u2 = put-object(robot, object, to-container)

constr: u1 ≺ u2, at(object, robot), not(at-dexterous-workspace(robot,

to-container)), at(to-container, room), not(at(robot, room))

These methods are almost identical to the ones in the partial pick-and-place domain. In-

stead of calling the navigate operator, it is now calling the navigate method. Hence, these

methods can be copied from the partial pick-and-place domain. However, they should be rep-

resented as instances in the HDL system. Due to the uniqueness requirement in the instance of

the ABox in DL, the introduction of new instance names for these methods is necessary. The

complete pick-and-place domain has the suffix ’c’ at the end of the method names instead of

’p’, which are used by the partial pick-and-place domain.

The method assertions are depicted in Figure 3.16 and the detail is in Listing B.9. In

addition to these methods, a planning domain instance for the complete pick-and-place one is

inserted into the ABox as shown in Figure 3.17 and detailed in Listing B.10.

3.4.4. Results

In the HDL system, the domains can coexist with each other. A domain does not conflict with

another but instead contributes to the increase in re-usability. In this section, two issues of the

HDL system will be considered. The first issue is the number of stored planning domains and

their effect on the generated ones. The second issue is the difference between the two pick-and-

place domains, namely the partial pick-and-place domain and the complete one.

In the experiment, the HDL system has three instances of Planning-Domain, 12 instances

of Method, and eight instances of Operator. As previously explained in Section 2.5.1, from

an instance of Method a valid planning domain can be generated. Hence, in this experiment,

15 possible planning domains can be generated by the system. Table 3.2 shows the number of

involved methods and operators for different objectives. Regardless of which method the user

chooses, the HDL system generates a valid HTN planning problem for the planner to extract.

Let us now look into more concrete objectives of the pick-and-place task by referring
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Method(moveobject2_c)

hasMethod(moveobject_c)

useState(..Fruit..)

shop2code(...)

Method(moveobject_c)

hasMethod(getobject_c)
hasMethod(putobject_c)

useState(..Fruit..)
shop2code(...)

Method(getobject2_c)

hasMethod(getobject_c)

useState(..Fruit..)

shop2code(...)

Method(getobject_c)

hasMethod(navigate2)

hasOperator(drive-away-f-dex-workspace)
hasOperator(drive-to-dexterous-workspace)

hasOperator(pickup-object)
useState(..Robot..)

useState(..Container..)
useState(..Fruit..)
shop2code(...)

Method(putobject_c)

hasMethod(navigate2)

hasOperator(put-object)
hasOperator(drive-to-dexterous-workspace)

useState(..Robot..)
useState(..Container..)

shop2code(...)

Figure 3.16.: Method assertions in the HDL for complete pick-and-place domain.

to the problem shown in Figure 3.7. Two robots are in the environment, namely robot1 in

room-1 and robot2 in room-4. Three different tasks will be proposed within the environment

to differentiate between the partial pick-and-place domain and the complete one.

The first task is to let the robots move orange1 from room-11 into trash-6 in room-6. In

the first approach, two objectives will be provided separately to the HDL system. The first ob-

jective is (move robot1 orange1 trash-6) and the second is (move robot2 orange1 trash-6). These objectives

will be run on both the partial and complete domains.

The first run for robot1 in the partial domain gives the following output:� �
Plan c o s t : 7 . 0
−−−−−−−−−−−−−−−−−−−−
( ! n a v i g a t e r o b o t 1 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range1 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! n a v i g a t e r o b o t 1 room−6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 t r a s h −6 room−6)
( ! put−o b j e c t r o b o t 1 o range1 t r a s h −6)� �

The HDL system extracts 13 states in the planning problem description which is enough for

producing the output shown above. In the output, the first action is to navigate the robot into

room-11 where basket-11 is located. The user never defined or told the system where orange1

is located in the environment. However, the system could extract this necessary information, for

example in which container orange1 is located, and provided this information in the planning

problem. Hence, the sequence of actions which is produced is a valid one. The following output

is produced by the complete planning domain (the dummy operators are omitted):
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Planning-Domain(pick-and-
place_domain_complete)
hasMethod(moveobject_c) 

hasMethod(moveobject2_c)
hasMethod(getobject_c)

hasMethod(getobject2_c)
hasMethod(pubobject_c)

hasMethod(navigate)
hasMethod(navigate2)

hasOperator(drive-robot)
hasOperator(visit)

hasOperator(unvisit)
hasOperator(drive-to-dexterous-workspace)
hasOperator(drive-away-f-dex-workspace)

hasOperator(pickup-object)
hasOperator(put-object)

Figure 3.17.: Planning domain assertions in the HDL for complete pick-and-place domain.

� �
Plan c o s t : 3 2 . 0
−−−−−−−−−−−−−−−−−−−−
( ! d r i v e−r o b o t r o b o t 1 room−1 c o r r i d o r −1)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −1 c o r r i d o r −2)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −2 c o r r i d o r −3)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −3 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range1 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! d r i v e−r o b o t r o b o t 1 room−11 room−9)
( ! d r i v e−r o b o t r o b o t 1 room−9 c o r r i d o r −3)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −3 c o r r i d o r −2)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −2 c o r r i d o r −1)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −1 room−6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 t r a s h −6 room−6)
( ! put−o b j e c t r o b o t 1 o range1 t r a s h −6)� �

The complete planning problem has 46 states which are generated and deduced automatically

by the HDL system. These states are produced by applying the DriveableRoom filter on the

navigation domain. The number of actions increases from seven to 32 and includes the real

navigation of the robot from one location to another in order to achieve the goal. Figure 3.18

shows the sequence of actions excluding the dummy operators from the navigation domain.

From this figure, it is clear that the complete pick-and-place domain is a combination of the

partial pick-and-place domain and the navigation domain. The HDL system provides the user

with the freedom to choose to which level of the solution the system should extract. This may

be reasonable in a very dynamic environment or in a very large one. In these cases, it may

be useful to extract only partial solutions. Due to the dynamic nature of the environment, the

generated plans might be obsolete during plan execution anyway. Hence, solving some of the

problem up to certain level and another part during the execution might save time and provide
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Table 3.2.: Generated planning domain description from different instances of Method or
Planning-Domain.

Instance Name # of Generated Methods # of Generated Operators
dnavigation_domain 2 3

mnavigate 1 3
mnavigate2 2 3

dpick-and-place_domain_partial 5 5
mmoveobject_p 3 5
mmoveobject2_p 4 5
mgetobject_p 1 4
mgetobject2_p 2 4
mputobject_p 1 3

dpick-and-place_domain_complete 7 7
mmoveobject_c 5 7
mmoveobject2_c 6 7
mgetobject_c 3 6
mgetobject2_c 4 6
mputobject_c 3 5

the robot with the most recent information regarding the environment.

The problem becomes more interesting when one of the involved planning domains is not

solvable. An example of this is the task of robot2 which is trapped in room-4. The generated

plan for this task with the partial pick-and-place domain is shown below:� �
Plan c o s t : 7 . 0
−−−−−−−−−−−−−−−−−−−−
( ! n a v i g a t e r o b o t 2 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 2 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 2 o range1 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 2 b a s k e t −11)
( ! n a v i g a t e r o b o t 2 room−6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 2 t r a s h −6 room−6)
( ! put−o b j e c t r o b o t 2 o range1 t r a s h −6)� �

The planner has basically produced the same amount of states in the planning problem

description. Even the generated plans are identical for robot2 by replacing the actor with itself.

Up to now, the plans are still valid. However, the complete pick-and-place domain produces no

solution. Figure 3.19 illustrates the sequence of actions for robot2. When the system tries to

extract (navigate robot2 room-11), it produces no solution because the robot is trapped in the room.

The partial problem is still able to generate an output as if the robot is not trapped. However,

the complete one is a combination of both where the “and” operand is applied to both domains.

Hence, the final result is “no-solution”. This is of course true for the current state. The robot

would not be able the execute the rest of the plan anyway.
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Complete pick-and-place domain
Partial pick-and-place domain Navigation domain

(!drive-away-from-dex-workspace 
robot1 basket-11)

(!pickup-object robot1 orange1 
basket-11)

(!drive-to-dexterous-workspace 
robot1 

basket-11 room-11)

(move-object 
robot1

orange1 trash-6)

(!drive-to-dexterous-workspace 
robot1 

trash-6 room-6)

(!put-object robot1 orange1 trash-6)

(!navigate robot1 room-11)

(!drive-robot robot1 room-1 corridor-1)

(!drive-robot robot1 corridor-1 corridor-2)

(!drive-robot robot1 corridor-2 corridor-3)

(!drive-robot robot1 corridor-3 room-11)

(!navigate robot1 room-6)

(!drive-robot robot1 room-11 room-9)

(!drive-robot robot1 corridor-3 corridor-2)

(!drive-robot robot1 corridor-2 corridor-1)

(!drive-robot robot1 corridor-1 room-6)

(!drive-robot robot1 room-9 corridor-3)

Figure 3.18.: The complete pick-and-place plan and its relation to the partial pick-and-place plan
and the navigation domain.

The second task has been chosen to show the effect of combining both objectives into one

planning problem. The planner can have multiple objectives, all of which are connected to

each other conjunctively. In other words, all the objectives must be fulfilled. In this task two

objectives, namely (move robot1 orange1 trash-6) and (move robot2 orange1 trash-6), are given to the HDL

system. The following is the output of the partial pick-and-place domain:� �
Plan c o s t : 1 3 . 0
−−−−−−−−−−−−−−−−−−−−
( ! n a v i g a t e r o b o t 1 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range1 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! n a v i g a t e r o b o t 1 room−6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 t r a s h −6 room−6)
( ! put−o b j e c t r o b o t 1 o range1 t r a s h −6)
( ! n a v i g a t e r o b o t 2 room−6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 2 t r a s h −6 room−6)
( ! p ickup−o b j e c t r o b o t 2 o range1 t r a s h −6)
( ! d r i v e−away−from−dex−workspace r o b o t 2 t r a s h −6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 2 t r a s h −6 room−6)
( ! put−o b j e c t r o b o t 2 o range1 t r a s h −6)� �
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Complete pick-and-place domain
Partial pick-and-place domain Navigation domain

(!drive-away-from-dex-workspace 
robot2 basket-11)

(!pickup-object robot2 orange1 
basket-11)

(!drive-to-dexterous-workspace 
robot2

basket-11 room-11)

(move-object 
robot2

orange1 trash-6)

(!drive-to-dexterous-workspace 
robot2

trash-6 room-6)

(!put-object robot2 orange1 trash-6)

(!navigate robot2 room-11)

(!navigate robot2 room-6)

No Solution

Figure 3.19.: Illustration the solution plan for robot2.

The output shows which actions need to be performed by which robot in order to fulfil the

tasks. The generated planning problem description for the partial domain has the same number

of states as the previous example, namely 13. In the complete planning domain, the number of

states remain the same as in the previous one, 46 states. However, the planner returns no result,

because one of the objectives can not be achieved.

The third task is to enter multiple objectives into the HDL system where these objectives are

achievable. The new task would be to let the robot move every orange into the trash. Therefore,

three objectives are given to the system: (move robot1 orange1 trash-6), (move robot1 orange2 trash-6),

and (move robot1 orange3 trash-6). The following is the output of the planner:� �
Plan c o s t : 1 6 . 0
−−−−−−−−−−−−−−−−−−−−
( ! n a v i g a t e r o b o t 1 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range1 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! n a v i g a t e r o b o t 1 room−6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 t r a s h −6 room−6)
( ! put−o b j e c t r o b o t 1 o range1 t r a s h −6)
( ! n a v i g a t e r o b o t 1 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range2 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! put−o b j e c t r o b o t 1 o range2 t r a s h −6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range3 b a s k e t −11)
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( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! put−o b j e c t r o b o t 1 o range3 t r a s h −6)� �

The output of the complete pick-and-place domain is shown below (without the dummy

operators):� �
Plan c o s t : 5 2 . 0
−−−−−−−−−−−−−−−−−−−−
( ! d r i v e−r o b o t r o b o t 1 room−1 c o r r i d o r −1)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −1 c o r r i d o r −2)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −2 c o r r i d o r −3)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −3 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range1 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! d r i v e−r o b o t r o b o t 1 room−11 room−9)
( ! d r i v e−r o b o t r o b o t 1 room−9 c o r r i d o r −3)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −3 c o r r i d o r −2)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −2 c o r r i d o r −1)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −1 room−6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 t r a s h −6 room−6)
( ! put−o b j e c t r o b o t 1 o range1 t r a s h −6)
( ! d r i v e−r o b o t r o b o t 1 room−6 c o r r i d o r −1)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −1 c o r r i d o r −2)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −2 c o r r i d o r −3)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −3 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range2 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! put−o b j e c t r o b o t 1 o range2 t r a s h −6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range3 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! put−o b j e c t r o b o t 1 o range3 t r a s h −6)
−−−−−−−−−−−−−−−−−−−−
Plan c o s t : 4 9 . 0
−−−−−−−−−−−−−−−−−−−−
( ! d r i v e−r o b o t r o b o t 1 room−1 c o r r i d o r −1)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −1 c o r r i d o r −2)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −2 c o r r i d o r −3)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −3 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range1 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! d r i v e−r o b o t r o b o t 1 room−11 c o r r i d o r −3)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −3 c o r r i d o r −2)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −2 c o r r i d o r −1)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −1 room−6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 t r a s h −6 room−6)
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( ! put−o b j e c t r o b o t 1 o range1 t r a s h −6)
( ! d r i v e−r o b o t r o b o t 1 room−6 c o r r i d o r −1)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −1 c o r r i d o r −2)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −2 c o r r i d o r −3)
( ! d r i v e−r o b o t r o b o t 1 c o r r i d o r −3 room−11)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range2 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! put−o b j e c t r o b o t 1 o range2 t r a s h −6)
( ! d r i v e−to−d e x t e r o u s−workspace r o b o t 1 b a s k e t −11 room−11)
( ! p ickup−o b j e c t r o b o t 1 o range3 b a s k e t −11)
( ! d r i v e−away−from−dex−workspace r o b o t 1 b a s k e t −11)
( ! put−o b j e c t r o b o t 1 o range3 t r a s h −6)� �

In this case, the planner returns two sequences which both fulfill the planning objectives.

The difference is in the number of actions that is needed by each one. One can see the number

of actions in the planning cost. In this case, no specific planning cost is defined in the planning

domain. Hence, every single operation costs one unit. However, one can also use the cost

function in order to optimise the plan in such a way. This extension will be discussed in Chapter

7. In addition, some extension to the current example is presented in the discussion.
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In the previous chapter, two robotics domains were implemented using the HDL system. This

chapter presents a case study that uses the HDL system in a mobile robot. This example demon-

strates how the HDL system may be integrated within an existing robotic system.

In this case study, the robot “Johnny Jackanapes” has participated thrice in the RoboCup@-

Home competition as part of the b-it-bots team [HPB+08, HPB+09]. We did quite well in

the competition coming in second place at the RoboCup@Home world championship 2008 in

SuZhou, China, and in first place at the RoboCup@Home German Open 2009 in Hannover,

Germany, and in first place at the RoboCup@Home world championship 2009 in Graz, Austria.

The system presented in this chapter is based on the state of the system at the RoboCup@Home

world championship 2008. We were one of few teams that could perform mobile manipulation

during this competition.

First, a brief introduction to the RoboCup@Home competition is given. The tasks and

challenges of this competition are presented. A description of the robot and its components is

then provided. One of the tests is detailed in this section to provide an example of the integration

of the HDL system. Finally, the HDL system implementation within this robot is explained.

4.1. RoboCup@Home

RoboCup, initially called “The Robot World Cup Initiative”, is an endeavour for promoting a

wide problem in AI into the AI and intelligent robotics research community that lead to integ-

ration of a wide range of technologies [KAK+95]. Originally, the standard test was the robot

soccer competition. The first competition was held at the International Joint Conference on Ar-

tificial Intelligent (IJCAI) 1997 in Nagoya, Japan [KAK+97]. The research interest within the

community grew and, as a result, more leagues were established. These leagues are Humanoid

League, RoboCup Junior, RoboCup Rescue and RoboCup@Home.

RoboCup@Home is one of the youngest leagues in the RoboCup competition. The first

competition was held in 2006. The main purpose of the RoboCup@Home competition is to test

the robot’s capability in the mobile robotics domain. It needs methodical approaches to integrate

several different technologies and functionalities into a robust service robot. The teams must

test their robots in dynamic environments outside of their labs.
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4.1.1. Test Scenarios

According to the 2008 rule book, the competition consists of three stages. The first stage con-

sists of five tests and one open challenge. Each team must participate in three tests within this

stage. The second stage consists of four tests and one demo challenge. In this stage, each team

has three test slots. The team can perform three tests from the four possibilities. If the team is

not satisfied with the results from the first or second slots, it can decide to redo the same test as

previously performed in the next slot. If a team decided to do the same test twice or even thrice

in the second stage, the score is taken from the best score for this test. If the tests consist of two

or three different tests, the score of the second stage is the sum of the distinctive tests. The third

stage is the final that allows the teams to showcase the robot’s capabilities to the jury. Figure

(a) (b)

(c) (d)

(e) (f)

Figure 4.1.: (a) Introduce (RoboCup 2008), (b) Fetch & Carry (RoboCup 2009), (c) Fast Follow
(German Open 2009), (d) Supermarket (German Open 2009), (e) Party Bot (Rob-
oCup 2009), (f) Final (RoboCup 2008).
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4.1 shows snapshots of Johnny in some tests.

The tests in the first stage are introduce, fast follow, fetch & carry, who’s who, and com-

petitive lost and found. Every team must perform the introduce test, in which the robot should

introduce itself to the audience. Fast follow tests the robot’s mobility as the robot should follow

a person leading it. Fetch & carry tests the robot capability to understand commands, detecting

objects and manipulating them. Who’s who is a test of the person-identification capabilities of

the robot. Competitive lost and found is the test of the robot’s abilities to navigate and detect

objects in the environment.

The second stage’s tests are more difficult than those of the first one as they either combine

some tests into one or add more tasks to some tests. These tests are partybot, supermarket,

walk & talk, and cleaning up. Partybot, or who’s who reloaded, is a more advanced test of the

person identification, navigation and mapping capabilities. The difference between it and stage

one’s who’s who is that the robot must search for a person, identify her/him, remember her/him

and offer a drink to the person. Hence, the robot must not only remember the person but also

the location where it encountered this person before. Supermarket, or lost & found reloaded, is

a test where the robot receives a request from a person and delivers the requested objects. In

this test, the robot has to identify the correct object among other objects before grasping it and

handing it over to the person. Walk & talk is a more advanced fast follow test where the robot not

only follows a person but also remembers some locations that are shown by the followed person

in the first phase. The second phase of the test is the navigation phase, where the robot should

receive a sequence of “learnt” places that it should navigate to. Cleaning up is a test where the

robot should collect objects lying around in the environment and bring them to a defined place.

4.1.2. Challenges

In RoboCup@Home, the robot must perform all the tests autonomously. The team is only

allowed to touch the robot at the beginning of each test. The purpose of having autonomous

systems in each test is to test the robot’s performance out of the box. As service robots, they

are designed to serve human beings and in the future can be purchased just as any household

appliance. The robot and human should interact in a natural manner, for example using a speech

recognition system or gesture commands. Thus, another challenge in this competition is to have

a robust HRI (Human Robot Interaction) system [GS07]. As such, HRI is not limited to speech

only, but also includes vision for recognising face or gestures.

The basic feature of service robots is their mobility. Hence, each robot must have a good

navigation system. Some tests require the capability of the robot to create a map and localise

itself within the environment. This is the motivation for one research area in mobile robotics that

deals with maps such as SLAM (Simultaneous Localisation And Mapping). In order to be able to

perform all tests, the robot should be equipped with a manipulator. Hence, mobile manipulation

is another challenge in RoboCup@Home. Another important challenge is integration. The

robots are composed of various software and hardware which must function as a single, efficient,
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robust working system.

4.2. Johnny Jackanapes, The Robot

Our robot “Johnny Jackanapes” is built as a mobile manipulator such that it can perform most

of the tests in the RoboCup@Home scheme. Its built on the VolksBot [SBC+08, WNB06]

under-carriage and is equipped with a Katana manipulator. Figure 4.2 shows the robot, “Johnny

Jackanapes”. Details of its hardware and software systems are presented in the following sec-

tions.

Figure 4.2.: Hardware specification of Johnny Jackanapes.

4.2.1. Hardware Components

Johnny Jackanapes’s components are mounted on the Volksbot platform. The overall platform

dimensions are 51 cm wide, 51 cm long and 120 cm high. Its weight is around 50 kg. Its max-

imum velocity is 2m/s. The following are the detailed specifications of the robot’s components

as shown in Figure 4.2:

• Volksbot Motor Controller (VMC)

VMC is the drive unit used for locomotion. It controls the two actively driven wheels of
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the differential drive. These motors have 150Watts of power. Besides these two wheels,

two castor wheels are attached to the robot to enhance the robot’s rotation and stability

under load.

• Neuronics Katana 6M180 robot arm

The Katana 6M180 is a light weight manipulator which is mounted on the robot in such a

way as to provide good manoeuvrability and reachability for object grasping. It can lift an

object weighting up to 500 grams. It has six motors giving five degrees of freedom and

gripping capability. Its workspace radius is 60 cm. The gripper is equipped with infrared

and force sensors. Thus, it can detect whether an object is present within the gripper and

also whether it has an object grasped.

• SICK LMS 200 laser range finder

The laser range finder is the primary sensor of the navigation and localisation module. It is

used for perceiving environmental structures. It can accurately measure the surrounding

environment within an angle of 180 ◦ within a 2D scan plane.

• Pan-Tilt system

In order to track an object in the front of the robot, a pan tilt system is mounted underneath

the cameras. It is used to control the camera view, especially during the object detection or

person identification processes. During object grasping, the camera can be pointed toward

the object using the pan-tilt system such that a more accurate distance approximation can

be obtained from the camera images.

• Bumble Bee camera

This is a stereo camera that is used mainly by the manipulation module. It is used for

detecting objects and measuring their distance from the robot. The disparity images can

then be calculated to obtain the pose of the object relative to the camera pose. Its pose is

then transposed into the robot pose and used to control the robot and its manipulator to

grasp the object.

• Logitech web camera

This camera is not shown in Figure 4.2. It is usually mounted on top of the Bumble Bee

camera. It is an ordinary web camera that delivers high resolution images for the person

identification process.

4.2.2. Software Components

The robot consists of several software components. These components are organised based on

their functionality. These are described here.

• Navigation and Localisation module

This module provides the navigation and locomotion functionality of the robot. It receives
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the sensor readings from the laser range finder and odometry for its localisation and map-

ping tasks. It uses SLAM based on Iterative Closest Point (ICP) techniques [HKR09].

The VMC controller is connected and controlled by this module too. It provides basic

navigation commands to the sequencer.

• Object Detection and Manipulation module

Object detection and manipulation are organised as one module due to their need to

closely cooperate with each other. In order to grasp an object, the robot needs to re-

cognise the object. It then needs to compute the relative pose of the object to the robot.

The pose is then obtained through inverse kinematics which and is used to move the robot

arm.

• Speech Recognition module

The speech recognition module is used for recognising user commands. It parses the

speech commands into robot-understandable commands. It should be speaker independ-

ent. In order to avoid false recognition, each command must start with the robot’s name,

“Johnny”.

• Face Recognition module

The face recognition module is used for recognising a person. It can distinguish whether

a person is in front of the camera or not. It uses facial landmarks from eyes, mouth and

nose. Each person has a special constellation of these properties, from distance between

eyes to the locations of the mouth and nose. It distinguishes eye colour and also facial

colour. Thus, this module not only distinguishes person from object, but also identifies

her/him.

• Speech Synthesis module

The robot communicates with the human in a natural way. Therefore, it not only listens to

the speech commands but it also responds audibly to the human. This module is used as

text to speech by synthesising it. It is implemented using Mac OS X speech API, which

is currently known to be the best natural speech synthesis program that freely available

within its operating system. It uses the predefined profile, “Alex”.

• Sequencer module

The sequencer module is responsible for executing pre-programmed sequences of actions.

These sequences of actions represent certain tasks for the robot. It reads states from other

component modules and sends the given commands to these modules.

As mentioned in Section 2.1 the robot system is usually built with a given architecture. Johnny

Jackanapes’s architecture is implemented using component based approaches [Ore04]. Thus,

each component or module has its own structural architecture and provides a certain function-

ality to the overall system.
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Johnny’s components are implemented using the best of approaches regardless of which

operating system the components run on. Therefore, Johnny is equipped with three notebooks

with three operating systems, namely Windows, Mac OS X, and Linux. These components need

to communicate with each other. They need to exchange information or send commands to each

other.

Sequencer

Speech
Synthesis Navigation and 

Localisation

Face 
Recognition

Object Detection 
and Manipulation

Speech 
Recognition

Internet Communication Engine (ICE)

Figure 4.3.: Components and operating systems platforms.

These modules are connected to each other through a communication middleware. Ex-

ample of available middleware are the Common Object Resource Broker Architecture (CORBA)

[Gro04], Internet Communication Engine (ICE) [Hen04, HS07], and Distributed Component

Object Model (DCOM) [GG97]. Johnny uses ICE as its middleware due to its wide support

in term of operating systems and programming languages. In addition, the ICE installation

procedure is more transparent than CORBA’s.

The components are connected with each other through a client-server or point-to-point

communication protocol. Each component defines its own interface in an Interface Definition

Language (IDL). In ICE, the IDL is SLICE. A component implements the skeleton of any

other component with which it should communicate. Each function call is sent using a Remote

Procedure Call (RPC).
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Figure 4.3 shows how the hardware components are connected with the software compon-

ents. Three components are implemented in the Windows operating system, namely “speech

recognition”, “face recognition”, and “object detection and manipulation”. Two components

are implemented using Mac OS X, namely “speech synthesis” and “sequencer”. Finally, the

“navigation and localisation” is implemented in the Debian Linux platform. These compon-

ents are implemented in such way as to guarantee the real time requirement for controlling the

robot. For example, the laser scanner is used directly by the navigation and localisation com-

ponent and also has direct access to the motor controller. High level communication is used

for exchanging the pose of the robot or sending move commands to it. In a similar manner,

the manipulator, pan-tilt mechanism, and bumble bee camera are directly connected to the ob-

ject detection and manipulation component. Hence, the component can get raw images from

the camera and process them for retrieving the object’s pose with the required speed. In some

cases, one component might need access to other hardware components. For example, the face

recognition component has to control the pan tilt unit in order to change the camera’s viewing

angle. The “object detection and manipulation” component provides some ICE interfaces for

controlling the pan tilt unit. The face recognition module uses these ICE interfaces in order to

change the angle.

4.2.3. Applications

As previously mentioned, the work presented here is based on the state of the robot system

during the 2008 RoboCup World Championship in China. Johnny was not equipped with any

deliberative layer, hence, it had no planner for performing the tasks. The sequencer is pro-

grammed in such a way as to solve particular scenarios. In most of the test cases, a planner is

not really necessary. Particularly, tasks that have a fixed ordering of their actions. For example,

introduce, fast follow, who’s who. Although, the other tasks can be solved without any planner,

the sequencer does not allow flexibility. Any changes of the sequence ordering will require

reprogramming.

The fetch & carry task is more complicated than the other tasks. It is similar to the pick-

and-place domain that is presented in the previous chapter. Unfortunately, Johnny was only able

to complete half the task. It did not go any further due to its collision avoidance mechanism that

prevented Johnny from moving close enough to grasp the object. In the open challenge, Johnny

was performing a task similar to the fetch & carry one. He successfully completed this task.

Hence, the open challenge scenario is used here as an example of how the HDL system could be

integrated into an existing system.

In the open challenge, Johnny’s task was to bring a coke to a guest in the armchair. Below

is the dialogue between the user and Johnny, in which the user tells Johnny to bring a coke to the

guest in the armchair. In this situation, Johnny knows where all the drinks are placed. However,

he did not know where the guest was sitting. In this dialogue, Johnny’s ability to understand

commands and request missing information from the user is displayed. Due to the noise in the
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arena, it is necessary to add confirmation questions for each successfully recognised command

in order to minimise false positives.

start

Receiving 
Commands

end

Navigate to 
Sideboard

Get The Coke From Sideboard

Find 
Coke

Grasp
Coke

Move Away 
from 

Sideboard

Navigate to 
Armchair

Missing information

bring a coke to 
the guest in 
the armchair

Move the 
Arm to 

the Guest

Release the 
Object on 

User 
Interaction

Navigate 
To Exit

Figure 4.4.: State machine diagram of the open challenge scenario.

User: “Johnny, bring our guest a drink please!”

Johnny: “I understood, you want me to bring a drink to the guest.
Is this correct?”

User: “Johnny yes.”

Johnny: “What kind of drink should I bring to the guest?”

User: “Johnny, a coke.”

Johnny: “I understood, you want me to bring a coke to the guest.
Is this correct?”

User: “Johnny yes.”

Johnny: “You said yes.
Okay I will bring the coke to the guest.
Please tell me where the guest is?”

User: “Johnny, in the armchair.”

Johnny: “I understood you, the guest is sitting on the armchair.
Is this correct?”

User: “Johnny yes.”
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Johnny: “You said yes.
Okay I will bring the coke to the armchair now. ”

The dialogue above was completed, because the command matched the pattern that Johnny

has, namely “bring <an object> from <location> to <location>”. In this case, Johnny had three

objects in his memory, namely “green tea”, “yellow tea”, and “coke”. All of these objects are

located on the sideboard, thus it was enough to tell Johnny what object to grasp. The destination

is where the guest is sitting, namely “armchair”. This dialogue was the first state in the open

challenge state machine, as depicted in Figure 4.4. After all necessary information was gathered

the command was executed.

Dinning Table

SideBoardClockRefrigeratorTV
BookShelf Projection Screen

Kitchen Table
Table

Shelf

Projector Table

CouchTable ArmChair

SofaSofaPlant

SideTable

13

6

2
4

5

Figure 4.5.: RoboCup@Home arena points of cloud from mapping module with Johnny traject-
ories during open challenge scenario.

Figure 4.5 depicts the map of the RoboCup@Home arena that was captured through the

SICK laser range finder. Some boxes are drawn manually to show what objects are represented

by which points. In this figure, Johnny is depicted as a small box with an arrow showing his

direction. In addition, the paths that Johnny travelled is also depicted in the map.

By referring to both Figures, 4.4 and 4.5, the actions and trajectories can be assigned. The

first action, corresponding to trajectory 1, is the “navigate to sideboard” action. The second

action is the “get the coke from sideboard” action which consists of “find coke” and “grasp

coke”. After successfully grasping the coke, Johnny performed the third action which is “move

away from sideboard”. Next the “navigate to armchair” action, shown by trajectory 4 was
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performed. Action 5 consists of the two actions “move the arm to the guest” and “release the

object on user interaction”. Finally, action 6, “navigate to exit” was performed. The last action

is actually not part of the command, however, Johnny sensed his battery power was depleted

and he needed to recharge. Thus, he decided to leave the arena after successfully completing

the given task. In the RoboCup@Home scenarios, the robot gets additional points if it can leave

the arena autonomously.

(a) (b)

(c) (d)

Figure 4.6.: (a) Johnny receiving a command, (b) grasping the coke, (c) bringing the coke to the
guest, (d) handing the coke to the guest.

Figure 4.6 shows a snapshot of the open challenge scenario. The first snippet (a) shows

the user giving the command to Johnny. Snippet (b) shows Johnny grasping the coke on the

sideboard. Snippet (c) shows Johnny holding the coke while moving to the armchair and snip-

pet (d) shows Johnny passing the coke to the guest, who received the coke from him. Video

footage of Johnny’s performance at the RoboCup@Home competition in SuZhou, China can

be watched at the following location: “http://www.b-it-bots.de/Media/Media.html” under the

section “RoboCup@Home WM 2008”.

4.3. The HDL system in Johnny Jackanapes

In the previous section, the details of Johnny’s components and one of the tasks in RoboCup@

Home are presented. This task was performed without any deliberative layer, but with simple

pre-programmed state machines. In this section, the HDL system is implemented in Johnny

to solve the flexibility problem mentioned above. The HDL system enhances Johnny’s system
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in two ways. Firstly, it is used as a knowledge base component. Secondly, it is used as a

deliberative layer for planning Johnny’s actions. Before the details of these two implementations

are presented, a description of how Johnny’s hardware and software components, as presented

in Section 4.2, fit into the HDL architecture, which is shown in Figure 2.2 is given.

Sensor readings

Sensor to 
Ontology 
Anchoring

Hybrid Deliberative Layer

OWL-DL 
Ontology model

Inference Module 
(Pellet)

Planner
(JSHOP2)

Ontology to 
Planning 
Domain / 
Problem 

Generator

Speech 
Recognition

Sequencer

Object Detection 
and Manipulation

Face 
Recognition

Object 
Detection 

and 
Manipulation

Speech
Synthesis

Navigation and 
Localisation

Navigation 
and 

Localisation

Figure 4.7.: HDL system architecture in Johnny Jackanapes.

Figure 4.7 shows the HDL architecture in Johnny. Johnny’s components are drawn inside

the HDL architecture to show which components are responsible for which block in this archi-

tecture. Two components, namely “object detection and manipulation” and “navigation and

localisation”, appear in two different blocks because these components serve as both actuators

as well as sensor processing. Speech recognition component provides the input to the HDL sys-

tem. It communicates with the HDL system in order to check the completeness of the input, see

Section 4.3.1.3 for details. It has access to the speech synthesis module to provide the speech

output to the user, in case additional information is required.

The output of the speech recognition is the goal input for the HDL system. The HDL

system produces some possible solution plans for the sequencer modules. The plan extraction
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is detailed in Section 4.3.2. The sequencer component sorts the solution plans by their costs and

then selects the solution plan with the smallest cost. It executes and monitors the sequence of

actions by calling the appropriate ICE interfaces of the other software components.

Three software components are placed in the bottom layer as the actuators. These com-

ponents are “navigation and localisation”, “speech synthesis”, and “object detection and manip-

ulation”. The functions of these components are described previously in Section 4.2.2.

The perception layer has three components, namely “face recognition”, “object detection

and manipulation”, and “navigation and localisation”. These components process the sensor

reading from the hardware components that connect to them. The sensor readings layer in this

architecture represents processes that happen inside those software components. The processed

information is fed into the sequencer and to the sensor-to-ontology anchoring layer. The se-

quencer needs this information as feedback from the current action, such that it can monitor

the execution process by deciding whether the current action was successfully performed or

not. The sensor-to-ontology anchoring is the interface that translates the information from these

components to update the HDL model. Section 4.3.1 shows how the ontology is modelled and

which components are using or updating it.

4.3.1. Using the HDL System as Knowledge Base Component

The HDL system can be used in several different ways as a KB component in Johnny. In this

section some examples on how it is implemented are explained for each of the software modules

in Johnny. While there may certainly be other ways of implementing the system, the following

sections serve as a proof of concept that the HDL system can be used as a common KB for a

robotics system.

4.3.1.1. Navigation and Localisation

The navigation and localisation module shares some knowledge with the planning system. It

works in the low level controller where it commands the robot directly and computes trajectories

for moving the robot to given poses. At a higher level, the planning level, the topological

information of the robot’s environment is needed for planning the robot’s movement in terms

of actions. However, the information on both levels is semantically the same but with different

representations. Some approaches where this information is stored in some layers, are described

in [ZOMMJ+08, OMMJZ+07, GSC+05, BMM+07].

In the HDL system, the topological information is stored in the DL model as this information

is needed for extracting the planning actions in both the navigation and pick-and-place domains.

Therefore, integration of the information would only make sense if the information is merged

with the existing model. Thus, it is still usable for the available model and also improves the

model’s usability.

In Figure 3.8, the ontology of the pick-and-place domain is shown. The RoboCup ontology
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Figure 4.8.: Ontology for a RoboCup@Home environment that is relevant for the navigation and
localisation module.

for navigation and localisation is based on this model. Figure 4.8 shows the enhanced ontology

of the pick-and-place domain. In this figure, the class Door and sub-classes of Room are

omitted. However, these classes are still in the HDL model.

The properties of the class Container are enhanced with three properties. Container is

described in DL as follows:

Container v Fixed−Object u

∃ at.Room u

6 1 locationPointClouds u

6 1 locationPolygons u

6 1 objectPose

The first property, locationPointClouds , stores either the points of the container instance or

links to this information. Thus, the localisation module can use this information to match

the laser scan reading with the corresponding object. The second property, locationPolygons ,

stores the points that build the object. This is useful for drawing the map for the user view, such

as the one shown in Figure 4.5. The third property, objectPose, stores the pose of the object’s

instance relative to its parent’s instance. This information is important for dynamically changing

the map. As mentioned previously, one of the challenges of the RoboCup@Home tests is the

dynamic environment. Thus, the furniture might be placed in different positions for each test.

Hence, having the property objectPose enables the updating of the object’s pose dynamically.

These three properties are also added to the class Room.

The class Furniture is added into the model as sub-class of Container, which is defined

as follows:

Furniture v Container u

∃ hasProperty.ObjectProperty

This class is used for describing the furniture in the RoboCup environment. A piece of furniture

can be categorised as a container because some manipulable objects can be placed on a piece

furniture. The property hasProperty is described in more detail in the Section 4.3.2.

Lets us take an example where the “dining-table” is rotated 90◦ from the position shown

in Figure 4.5. The “dining-table” is inserted into the ABox as an instance of class Furniture
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as follows:� �
F u r n i t u r e ( d i n i n g−t a b l e ) ,
a t ( d i n i n g−t a b l e , k i t c h e n ) ,
l o c a t i o n P o l y g o n s ( d i n i n g−t a b l e , ’ [ 0 , 0 ] , [ 0 , 2 1 3 6 . 3 0 ] , [ 1 0 0 5 . 8 3 ,

2 1 3 6 . 3 0 ] , [ 1 0 0 5 . 8 3 , 0 ] ’ ) ,
l o c a t i o n P o i n t C l o u d s ( d i n i n g−t a b l e , ’ . . . [ 5 2 8 . 0 5 , 4 9 . 0 9 ] , [ 8 4 9 . 2 6 ,

9 3 . 5 3 ] , [ 2 5 4 . 2 7 , 6 5 9 . 0 3 ] , . . . ’ ) ,
o b j e c t P o s e ( d i n i n g−t a b l e , ’ [ 0 , 1 , 1 7 7 6 . 1 4 ; −1 , 0 , 3 4 2 8 . 0 0 ; 0 , 0 , 1 ] ’ )� �

The assertion above tells us that the “dining-table” is located in the “kitchen”. It also

represents the polygons that make up the table in the property locationPolygons and the point

clouds of the laser scan that are defined in the property locationPointClouds . The polygons

and point clouds represent the “dining-table” itself, in which (0,0) is the bottom left corner

of the table (see Figure 4.5). The property objectPose contains the homogeneous transform

matrix for representing the “dining-table” relative to the “kitchen”. In this case, it uses for 2D

transformation, which can be written as:

objectPose =

 0 1 1776.14

−1 0 3428.00

0 0 0


This pose describes the 90◦ rotation and the translation (1776.14mm, 3428.00mm) from the

object’s origin. The final polygons are calculated as objectPose ∗ locationPolygons and the

final point clouds are calculated as objectPose ∗ locationPointClouds. The final map is

shown in Figure 4.9.

The map is represented in the HDL system and helps the localisation system to draw its

initial map. However, these points might not exactly be the same as the actual sensor readings.

The differences are minimised by the navigation and localisation component as the robot moves

within the environment. The polygons are helpful for drawing the boundary over the points so

that the user can identify what object is being represented by these points. Any change of the

environment can be actualised by the user by updating the property objectPose.

4.3.1.2. Object Detection and Manipulation

In a mobile manipulator, the manipulation component depends on the navigation and on the

object detection components. The navigation component should control the approach to the

place where the object is located. Once the robot arrives at that location, it needs to detect

the object itself. The HDL system needs this kind of information such as where the object is

located. From this information it should be able to derive the container of the object and where

the container is placed. Thus, the object is the information that is being shared with the object

detection component.

In order to enable the manipulator to grasp the object, it should be able to recognise the ob-
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Figure 4.9.: The RoboCup@Home environment with the dining table rotated 90◦.

ject and extract its pose relative to the robot. The object detection component stores the known

objects as a collection of features such as SIFT and the object’s colour. Therefore, this informa-

tion needs to be linked with the information stored in the HDL system. A classRoboCup-Object

is added into the HDL model to define the objects that are used in the competition. This class is

defined as follows:

RoboCup-Object vManipulable-Object u

∃ hasProperty.ObjectProperty u

6 1 objectFeature u

6 1 objectPose

The class RoboCup-Object extends the class Manipulable-Object with three additional

properties, which are relevant for the RoboCup domain. The first property is hasProperty that

is described in detail in Section 4.3.2. The second property is objectFeature that is used for

storing the required features for detecting the object. The value of this property is a link to the

directory or file that holds the features. The third property is objectPose that stores the pose of

the object. This property is not always available, but in some cases the value can be determined

by the robot itself. For example, after putting the object in a certain position, the robot will

know the pose of the object. It inherits the property of its super-class property at that stores the

location information of the object.
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The HDL system stores the objects in its model which contains the needed information to

recognise the object. Thus, an object can be distinguished from the others through its unique

features. It also has the symbolic information that enables the planner to extract necessary

actions that involve object manipulation.

4.3.1.3. Human Robot Interaction

The HRI in Johnny consists of the speech recognition and the face recognition components. The

HDL system can enhance both components in the HRI. It enhances the speech recognition com-

ponent indirectly by enabling the overall system to communicate with the users more naturally.

For example, in response to the “Bring a drink to the guest” command, Johnny asked “What

kind of drink should I bring to the guest?”. In this situation, a user might answer Johnny with

another question such as “What drinks do we have?”. Thus, Johnny would be able to query

the HDL system for any instances of the class RoboCup-Object with property hasProperty

drinkable and answer the user with a list of available drinks. This also works in the other

direction. For example, Johnny might ask the user to fill the missing information which he does

not have. In the previous dialogue, he asked the user “Where is the guest sitting?”, because

he needs this information in order to perform the requested task. The answer is then used to

complete the missing information in the HDL system.

In the face recognition component, the HDL system stores the biometric information of

the people. It also enables Johnny to distinguish the owner from the guest by defining these as

DL concepts as shown in Figure 4.10. Thus, a person that belongs to class Admin can give

advanced commands to Johnny as an ordinary user. This can also restrict guests from giving

commands to Johnny.

Figure 4.10.: The concept Person and its subclasses.

The class Person is defined as follows:

Person v Thing u

∃ at.Furniture u

6 1 locationName u

6 1 robotPose u

6 1 faceFeature
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The property at stores the location when the person is sitting on a piece of furniture. In case

the person is standing at a location, two additional properties, locationName and robotPose,

are used to store the location information. The robotPose property is needed by the robot

to navigate to this location later. The navigation and localisation component stores pairs of

this location information (locationName,robotPose) internally. Thus, the sequencer can tell

the robot to move to a given pose by providing the name of the stored location instead of the

desired pose. Besides that, the robotPose helps the robot to navigate to the defined pose if the

piece of furniture where the person is sitting is large. For example, if the person is sitting at a

dining table with four chairs, the robotPose gives information where the robot should arrive in

order to deliver or interact with the person. This information is necessary in some of the tests,

such as partybot, where the robot needs to recognise a human and remember his/her name and

offer him/her a drink. Thus, the robot needs to go back to the position where this person was

sitting or standing in order to give the drink to him/her.

The HDL system provides “nice to have” features for the HRI in the RoboCup domain.

The planning system is not directly affected by improving the HRI component as long as the

information in the HDL system is sufficient for the current problem. However, it helps users to

interact with Johnny in a more natural way by improving the way in which they communicate

with each other.

4.3.2. Solving RoboCup@Home Tasks with the HDL System

In this section, the open challenge scenario described previously, is solved using the HDL sys-

tem. Two approaches are presented in this section. This scenario has a similar task to the one in

the pick-and-place domain which was presented in the previous chapter. Thus, the first approach

for solving the task uses the pick-and-place domain. The second approach extends the pick-and-

place domain for the RoboCup domain. The modelling of the environment is presented first, as

it is required by both approaches.

4.3.2.1. Modelling the ABox of RoboCup@Home Environment

The RoboCup@Home environment consists of two rooms, several pieces of furniture and some

objects. These have been previously described in Section 4.3.1. However, some of the instances

might contain irrelevant facts for the planning system. For example, among the furniture only

some with objects in or on them are relevant for the planning problem. Even the objects them-

selves may only be relevant if they can be manipulated by Johnny. Thus, having all of the

objects in the planning problem is not necessary.

Figure 4.11 shows the ontology of the RoboCup@Home environment. The new concepts

are depicted with orange-coloured ellipses. Initially the HDL system contains the concepts and

instances from the previous experiments. Thus, theRoboCup-Room concept is the first one to
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Figure 4.11.: RoboCup@Home ontology.

filter out instances of the non-RoboCup environment. This concept is defined as follows:

RoboCup-Room ≡ Room u

3 inBuilding(robocup-arena)

A property hasProperty is used by some of the concepts to add semantic function of the

instances. For example, someone can sit on a chair, thus it will contain the property “hasSeat”.

This can be used to define the affordances of some objects. For example, objects that contain

liquid for drinking are labelled with “drinkable”. Let us start with the first concept, namely

SeatableFurniture, which is defined as follows:

SeatableFurniture ≡ Furniture u

3 hasProperty(hasSeat)

Any instance of Furniture that has property hasSeat is deduced to be a member of this

concept. This is quite useful in the RoboCup@Home scenario, in particular in the context where

a guest might sit on some pieces of furniture. Thus, instead of having all instances of furniture

in the planning problem only those that are members of SeatableFurniture are included.

In order to filter out containers which contain objects from those which do not, a concept

ContainerWithObject is defined as follows:

ContainerWithObject ≡ Container u

∃ hasObject.Manipulable-Object

The property hasObject is a symmetrical property to the property at . Thus, the DL reasoner

will be able to deduce the container that has some object within it. However, these are not

restricted to the RoboCup containers only. In order to limit them more strictly, a sub-concept of
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ContainerWithObject is defined as follows:

ContainerWithObjectRoboCup ≡ ContainerWithObject u

(3 at(kitchen) t 3 at(living-room))

This concept checks where the containers are placed. If they are located either in the kitchen

or the living-room, they are part of this concept. The kitchen and living-room are two

rooms in the RoboCup@Home environment.

The previous concepts deal with the location, furniture and containers. However, the object

itself is not yet filtered. In the scenario, there are at least 15 objects used for the competition.

Some of these objects are too big or too heavy for Johnny’s manipulator. Therefore, two addi-

tional concepts are shown here as examples of how to filter those objects. The first concept is

Drinkable-Object, which is defined as follows:

Drinkable-Object ≡ RoboCup-Object u

3 hasProperty(drinkable)

It uses the property hasProperty with the value drinkable. In this scenario, the instances of

the Drinkable-Object class are yellow-tea, green-tea, and coke. Similarly, the concept

Graspable- Object is defined as follows:

Graspable-Object ≡ RoboCup-Object u

3 hasProperty(small) u

3 hasProperty(lessThan500g)

It checks whether an object is small and lessThan500g.

In RoboCup@Home, there are two rooms, an exit room, 17 pieces of furniture, and 15

objects. Table 4.1 shows instances of the concepts defined in Figure 4.11. It shows that the

newly defined concepts can reduce the number of instances, thus the planning problem will also

be smaller.

4.3.2.2. Solving the Scenario with Pick-and-Place Domain

In the open challenge scenario, the main task is to bring a cola to the guest. This task is quite

similar to the one in the pick-and-place domain. In the pick-and-place domain, the robot moves

the object from one location to another, whereas in the open challenge scenario the robot moves

the cola from one location and gives it to the guest. Therefore, it is possible to solve the task

using the pick-and-place domain.

The open challenge consists of two objectives; the first objective is (move-object johnny coke

armchair) and the second objective is (navigate johnny exit). The property useState is adjusted to

accommodate the RoboCup@Home environment. The involved concepts for this problem are
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Table 4.1.: RoboCup@Home concepts and their instances.

Concept # of Asserted Instances # of Inferred Instances
Fixed-Object 0 62
Building 3 40
Room 16 19

RoboCup-Room 0 3
Container 5 22

ContainerWithObject 0 6
ContainerWithObjectRoboCup 0 4

Furniture 17 17
SeatableFurniture 0 4
Manipulable-Object 0 22
RoboCup-Object 15 15
Drinkable-Object 0 3
Graspable-Object 0 7

ContainerWitObjectRoboCup, SeatableFurniture, and Drinkable-Object.

The HDL system generates as planning problem shown in Listing A.13. The planning

domain is the same one as for the pick-and-place domain. The complete solution plan is shown

in Listing A.14. Below is the solution plan without dummy operators:� �
( ! d r i v e−to−d e x t e r o u s−workspace johnny s i d e b o a r d k i t c h e n )
( ! p ickup−o b j e c t johnny coke s i d e b o a r d )
( ! d r i v e−away−from−dex−workspace johnny s i d e b o a r d )
( ! d r i v e−r o b o t johnny k i t c h e n l i v i n g −room )
( ! d r i v e−to−d e x t e r o u s−workspace johnny a r m c h a i r l i v i n g −room )
( ! put−o b j e c t johnny coke a r m c h a i r )
( ! d r i v e−r o b o t johnny l i v i n g −room e x i t )� �

The solution plan generates the necessary states for performing the open challenge task.

The correctness of this solution can be validated against the state machine depicted in Figure

4.4 (see also Figure 4.5). However, in this solution Johnny puts the cola in the armchair instead

of giving it to the guest in the armchair. The re-usability of the stored planning domain is again

shown. This is another instance of the pick-and-place domain.

4.3.2.3. Adding New Methods in the ABox

In this section, some new methods and operators are defined over the pick-and-place domain

in order to solve the open challenge scenario. One of the advantages of the HDL system is that

new methods can be modelled in such a way that enables them to use available methods in the

model.

In the previous section, the open challenge task was solved using the pick-and-place do-

main, however, the second objective, where the robot should give the object to the user, is not
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really tackled by the pick-and-place domain. It is performed by the put-object operator.

Therefore, a new operator give-object is defined as follows:

(!give-object ?robot ?object ?to-person)

preconds: L1 = on(to-person, to-container) ∧
at-dexterous-workspace(robot, to-container) ∧
has-object(robot) ∧ at(object, robot)

delete-list: D1 = has-object(robot)

D2 = at(object, robot)

add-list: A1 = has-object(to-person)

A2 = at(object, to-person)

In addition to this new operator, a method give-object with the heuristic on when to

execute the operator is defined as follows:

(give-object ?robot ?object ?to-person) ;; case 1

task: give-object(robot, object, to-person)

subtasks: ∅
constr: not(at(object, robot))

(give-object ?robot ?object ?to-person) ;; case 2

task: give-object(robot, object, to-person)

subtasks: u1 = !give-object(robot, object, to-person)

constr: at(object, robot), on(to-person,to-container),

at-dexterous-workspace(robot, to-container)

(give-object ?robot ?object ?to-person) ;; case 3

task: give-object(robot, object, to-person)

subtasks: u1 = !drive-to-dexterous-workspace(robot, to-container,

room)

u2 = give-object(robot, object, to-person)

constr: u1 ≺ u2, at(object, robot), on(to-person,to-container),

not(at-dexterous-workspace(robot,to-container)) ,

at(to-container, room), at(robot, room)

(give-object ?robot ?object ?to-person) ;; case 4

task: give-object(robot, object, to-person)

subtasks: u1 = navigate(robot, room) ;; ** method calls **

u2 = give-object(robot, object, to-person)

constr: u1 ≺ u2, at(object, robot), on(to-person,to-container),

not(at-dexterous-workspace(robot,to-container)),

at(to-container, room), not(at(robot, room))
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Finally, a method for bringing an object to a person is defined as follows:

(bring-object ?robot ?object ?to-person)

task: bring-object(robot, object, to-person)

subtasks: u1 = bring-object(robot, object, from-container,

to-person)

constr: at(object, from-container)

(bring-object ?robot ?object ?from-container ?to-person) ;; case 1

task: bring-object(robot, object, from-container, to-container)

subtasks: u1 = get-object(robot, object, from-container)

u2 = bring-object(robot, object, from-container,

to-person)

constr: u1 ≺ u2, not(at(object, robot)), at(object, from-container)

(bring-object ?robot ?object ?from-container ?to-person) ;; case 2

task: bring-object(robot, object, from-container, to-person)

subtasks: u1 = give-object(robot, object, to-person)

constr: at(object, robot)

The method bring-object is the main objective in the open challenge task. Besides the

newly defined method, it also uses the methods in the pick-and-place and navigation domains,

such as get-object and navigate. The goal of the open challenge task is then defined as

(bring-object johnny coke guest) and (navigate johnny exit). The generated planning domain and planning

problem is shown in Listings A.15 and A.16. The solution plan without dummy operators is

shown below (complete solution plan is shown in Listing A.17):� �
Plan c o s t : 1 1 . 0
( ! d r i v e−to−d e x t e r o u s−workspace johnny s i d e b o a r d k i t c h e n )
( ! p ickup−o b j e c t johnny coke s i d e b o a r d )
( ! d r i v e−away−from−dex−workspace johnny s i d e b o a r d )
( ! d r i v e−r o b o t johnny k i t c h e n l i v i n g −room )
( ! d r i v e−to−d e x t e r o u s−workspace johnny a r m c h a i r l i v i n g −room )
( ! g ive−o b j e c t johnny coke g u e s t )
( ! d r i v e−r o b o t johnny l i v i n g −room e x i t )� �

The final sequence is now giving the object, the coke, to the guest. The previous step was

to move to the dexterous workspace, i.e. armchair, where the guest is sitting. Thus, the solution

plan represents similar sequences as the state machine that was created using fixed programmed.

Therefore, the state machine can easily be replaced by the sequence of actions generated by the

HDL system.
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The HDL system has been developed for solving planning problems in robotics. Chapter 3

presented its application in solving problems in two robotics domains, namely those of navig-

ation and pick-and-place. As the HDL extends the HTN planner, it can be used for solving any

planning problem that can be solved by an HTN planner. In this chapter, HDL is used for solving

the well-known Blocks-world problem in the AI domain.

5.1. Blocks-World

The blocks world was originally developed by Terry Winograd as a test bed for his program

[Win72]. It has become increasingly popular and widely used as a test bed for planning al-

gorithms. It is the well-known planning problem that causes difficulty for the STRIPS planner

with the Sussman anomaly. The container-stacking problem that is used as an example domain

in the Automated Planning book is a Dock Worker Robot (DWR) adaptation of the blocks world

domain [GNT04, Chapter 4]. An example of [GS05] presented a multi-robot planning approach

that uses the blocks world domain.

In the planning community, a common domain is required in order to compare perform-

ance of one planning algorithm with another. The International Planning Competition (IPC)

has influenced the way planning is compared and evaluated. The blocks world domain has been

included in the evaluation because it is well-known. It can easily be modified into increasingly

more complex problems. The blocks world is one of benchmark problems for planning evalu-

ation. Other benchmark problems are simplified versions of realistic planning problems, such

as the logistics or refrigerator repair domains [HD02]. While the blocks world problem appears

to be a simple “toy problem” at first, finding an optimal plan is NP-Hard. The NP-Hardness is

caused by a deadlock situation [GN92].

5.1.1. Problem Statement

The blocks world is basically a stacking problem. In this example, a simplified variation of the

blocks world problem is used. Originally, the blocks world problem has blocks of different sizes

and included complications such as the use of pyramids [Win72, GN92]. Figure 5.1 depicts a

blocks world domain that involves four blocks. The planning objective is to arrange the blocks

as in the given goal state.
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b1 b3

b2 b4

b1 b3

b4 b2

Initial Goal

Figure 5.1.: Blocks world domain with four blocks.

The blocks world domain has four operators, namely pickup, putdown, stack, and

unstack. The pickup and unstack operators have the same purpose, namely to take a block

from the domain. If the block is on the table then the pickup operator is used, otherwise

unstack is used. In a similar manner, returning the object back to the domain is achieved

through the use of the two operators putdown and stack. When the intention is to put the

block directly on the table the putdown operator is executed, otherwise, the stack operator is

used.

The information on the blocks in the domain are defined in the initial state I and goal state

G. These facts are defined as follows:

I = {(on−table b1), (on b2 b1), (clear b2), (on−table b3), (on b4 b3), (clear b4)}

G = {(on−table b1), (on b4 b1), (clear b2), (on−table b3), (on b2 b3), (clear b2)}

In addition to the facts above, the blocks are defined explicitly in the state I , (block b1),

(block b2), (block b3), (block b4).

5.1.2. The HTN Planning Domain

One reason for using the blocks world domain as an example here is due to the availability of

the domain as an example of the source distribution in JSHOP2. In the example, two problem

sets are provided, a small problem with four blocks, as shown in Figure 5.1, and a large problem

with 300 blocks. In this case, the small problem is sufficient to show the planning problem in

the HDL system.

Though the blocks world domain has four operators as previously mentioned, the HTN

needs several additional methods to solve the problem. These methods are the heuristic that the

programmers put into the planning domain. They provide the HTN planner with information

on how to decompose the planning problem. In the HTN, the blocks world domain has six

operators, eleven methods, and two axioms. The two additional operators are assert and

remove. These operators are needed to keep track of what needs to be done. The assert

operator adds the planning objective to the facts. The remove operator deletes the objective

from the list of facts. In HTN, the planning domain may have axioms. The axioms are used as

theorem provers, as subroutines of the planning procedure [GNT04, Chapter 11]. In the HDL,

the axioms are not explicitly defined in the TBox. Rather, they are modelled as methods without
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immediate successors. The blocks world planning domain is presented in A.18.

In SHOP2, the axioms are defined syntactically as follows:

(:- a [name1] L1 [name2] L2 . . . [namen] Ln)

where a is the axiom’s head and can be treated as a logical atom and its tail is the list of logical

preconditions L. Each logical precondition may have a name, but this is not mandatory. A logical

precondition is either a logical expression or one of two special precondition forms in SHOP2,

namely first satisfier precondition or sorted precondition. Details about these preconditions are

given in [Ilg06]. The value of a is expressed in the following definition.

Definition 5.1. Let a be an axiom in HTN planning and Li be a logical precondition that is

defined through HORN clauses, such that a = {L1, L2, ..., Ln}. a will return true iff any logical

expression in a holds true: a ≡ L1 ∨ L2 ∨ ... ∨ Ln

The main method in the blocks world domain is achieve-goals. It receives the final

state from the user and decomposes it into subtasks. It is defined as follows:

(achieve-goals ?goals) ;; method to set the planning goals

task: achieve-goals(goals)

subtasks: u1 = assert-goals(goals)

u2 = find-nomove()

u3 = add-new-goals()

u4 = find-moveable()

u5 = move-block()

constr.: u1 ≺ u2, u2 ≺ u3, u3 ≺ u4, u4 ≺ u5

The task assert-goals extracts the facts in the goals and inserts them into the HTN to track

the facts that need to be achieved. It is implemented in two methods. The first one is a recursive

method and the second one is the method for terminating the recursion if the given parameter

is nil. The first method receives goals as its parameter. The goals are separated into two

parameters, namely goal and goals. The second parameter, goals, is different than the first

one. goals (g) contains a set of facts or terms ti, such that g = {t1, t2, ..., ti}. The SHOP2

syntax (?goal . ?goals) extracts g and decomposes it into g1 and g′ where g1 = {t1}
and g′ = {g − {g1}}. If g contains only one term (g = {t1}) then g′ will contain nil. The

assert-goals methods are defined as follows:

(assert-goals (?goal . ?goals)) ;; method to insert goal facts into the system

task: assert-goals(goals)

subtasks: u1 = !assert((goal ?goal))

u2 = assert-goals(goals)

constr.: u1 ≺ u2

(assert-goals nil) ;; method to terminate the recursion
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task: assert-goals(’nil’)

subtasks: ∅
constr.: ∅

The second subtask of achieve-goals is find-nomove. Its task is to mark all the

blocks which do not need to be moved. It uses the axiom need-to-move to check whether a

block is involved in the goal or in the decomposition process, e.g. it is on top of another block

that needs to be moved. It is a recursive method that terminates when there are no blocks left to

be marked. The method is defined as follows:

(find-nomove) ;; method to mark blocks that do not move

task: find-nomove()

subtasks: u1 = !assert((dont-move ?x))

u2 = find-nomove()

constr.: u1 ≺ u2, block(x), not(dont-move(x)), not(need-to-move(x))

The axiom need-to-move is defined as follows:

(need-to-move ?x) ;; axiom to test block that need to be moved

preconds: L1 = on(x,y) ∧ goal(on(x,z)) ∧ not(same(x,z))
L2 = on-table(x) ∧ goal(on(y,z))
L3 = on(x,y) ∧ goal(on-table(x))
L4 = on(x,y) ∧ goal(clear(y))
L5 = on(x,z) ∧ goal(on(y,z)) ∧ not(same(x,y))
L6 = on(x,w) ∧ need-to-move(w)

This axiom calls axiom same in L1, where same returns true iff the given parameters are

identical. In L6, it calls itself to test whether another block w also needs to be moved.

The add-new-goals method has the function of asserting new goals to the facts in HTN.

The assertion is done if the blocks have to be moved and are not associated with goals already.

This method is defined as follows:

(add-new-goals) ;; method to implicit goals

task: add-new-goals()

subtasks: u1 = !assert((goal (on ?x ?y)))

u2 = add-new-goals()

constr.: u1 ≺ u2, block(x), not(dont-move(x)),

not(goal(on-table(x)), not(goal(on(x,y)))

The find-movable method asserts new facts in the system when a block can be moved

immediately to its final position under the current state of the world. These blocks are marked

with either a put-on-table fact or stack-on-block fact, depending on their associated
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goal. This method has two cases such that it splits into two possible branches depending on its

constraints. This method is defined as follows:

(find-moveable) ;; method to find blocks to put on table

task: find-moveable()

subtasks: u1 = !assert((put-on-table ?x))

u2 = find-moveable()

constr.: u1 ≺ u2, clear(x), not(dont-move(x)), goal(on-table(x),

not(put-on-table(x))

(find-moveable) ;; method to find blocks to stack on another block

task: find-moveable()

subtasks: u1 = !assert((stack-on-block ?x ?y))

u2 = find-moveable()

constr.: u1 ≺ u2, clear(x), not(dont-move(x)), goal(on(x,y),

not(stack-on-block(x,y))), dont-move(y), clear(y)

Although the find-moveable methods are described above as two different methods, they are

implemented as a single method in HTN. In addition, this method has a third case, in which its

constraints are nil and the subtasks are nil. The third case is for terminating the recursion.

The last subtask of method achieve-goals is move-block. It is the main method in this

domain. It moves the blocks that were previously marked by find-moveable. It then moves

the rest of the blocks. It has four cases of which the fourth is the terminator for the recursion.

This method is defined as follows:

(move-block) ;; method to stack block x on y

task: move-block()

subtasks: u1 = move-block1(x,y)

u2 = move-block()

constr.: u1 ≺ u2, stack-on-block(x,y)

(move-block) ;; method for moving x from on-top of y to table

task: move-block()

subtasks: u1 = !unstack(x,y)

u2 = !putdown(x)

u3 = !assert((dont-move ?x))

u4 = !remove((put-on-table ?x))

u5 = check(x)

u6 = check2(y)

u7 = check3(y)

u8 = move-block()

101



5. HDL Systems in the AI Domain

constr.: u1 ≺ u2, u2 ≺ u3,u3 ≺ u4, u4 ≺ u5, u5 ≺ u6, u6 ≺ u7, u7 ≺ u8,

put-on-table(x), on(x,y)

(move-block) ;; method for moving x out of the way

task: move-block()

subtasks: u1 = !unstack(x,y)

u2 = !putdown(x)

u3 = check2(y)

u4 = check3(y)

u5 = move-block()

constr.: u1 ≺ u2, u2 ≺ u3,u3 ≺ u4, u4 ≺ u5, clear(x), not(dont-move(x)),

on(x,y)

The move-block method uses four helper methods, namely move-block1, check, check2,

and check3. These helper methods are described in detail in Appendix B.3.

The blocks world domain is a simple planning problem with four operators. The HTN

implementation involves several methods to solve this domain. It uses heuristics to avoid known

problems and to optimise some of the internal methods. Nevertheless, these methods cannot

guarantee that the domain is fit for any problem in the blocks world. We will see in section

6.3.2 what the effect is of adding irrelevant blocks to the HTN planner.

To summarise, the blocks world domain is defined as Dbw = (Obw,Mbw), where Obw =

{pickup, unstack, putdown, stack, assert, remove} and Mbw = { achieve-goals, assert-
goals1, assert-goals2, find-nomove, add-new-goals, check, check2, check3, find-move-

able, move-block1, move-block }. In addition, two axioms are also defined in theDbw, namely

same and need-to-move.

The blocks world problem for the problem shown in Figure 5.1 is defined as Pbw =

(s0bw, wbw, Obw,Mbw}, where Obw and Mbw are the same as the ones defined for Dbw. The

initial state s0bw contains the facts as defined in I in Section 5.1.1 (page 97). The initial task

network is defined as wbw = ({u}, ∅), where u is a node such that tu = achieve−goals(G)

and G is the goal state as defined in Section 5.1.1.

The HTN planner decomposes the problem by expanding the initial task network into its

subtasks. Initially, w1 = wbw = ({u}, ∅). Applying method achieve-goals to u produces

a task network w2 = ({u1, u2, u3, u4, u5}, C2), where the C2 = u1 ≺ u2, u2 ≺ u3, u3 ≺
u4, u4 ≺ u5. u1 to u5 are the subtasks of the previously described achieve-goals method,

such that tu1 = assert−goals(G), tu2 = find−nomove(), tu3 = add−new−goals(), tu4 =

find−moveable(), and tu5 = move−block(). The third task network is built by applying

assert-goal method to u1. Hence, w3 = ({u6, u7, u2, u3, u4, u5}, C3), where C3 = u6 ≺
u7, u7 ≺ u2, u2 ≺ u3, u3 ≺ u4, u4 ≺ u5, tu6 = assert((goal (on−table b1))) and tu7 =

assert − goals(G′), G′ = {G − {(on − table b1)}}. The rest of the decomposition task

network can be done in a similar manner. Figure 5.2 illustrates the decomposition tree for the
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blocks world domain.

u: (achieve-goals(G))w1:

w2:

w3:

wn:

u1: (assert-goals(G)) u2: (find-nomove()) u3: (add-new-goals()) u4: (find-moveable()) u5: (move-block())

C2

u6: (assert(on-table b1)) u7: (assert-goals(G'))

C3'

un-3: (.....) un-2: (.....) un-1: (.....) un: (.....)

Figure 5.2.: Blocks world task network decomposition tree.

5.2. HDL Implementation of Blocks World

In the HDL implementation, the blocks world domain is implemented as it is described in the

previous section. Hence, it shows how to transfer an existing HTN planning domain into an HDL

domain. The transformation is done in two steps. First the domain transformation is performed

and then the modelling of the preconditions or facts in the HDL system is carried out.

5.2.1. HDL’s Blocks World Domain

As the blocks world domain already exists in the HTN, one can apply Definitions 2.5 to 2.11 to

instantiate the ABox of the Planning−Domain, Method, and Operator in the HDL system.

The blocks world domain is defined in the Planning−Domain as blocks_domain and its

assertion is shown in Figure 5.3 (see Listing B.11 for detail of this assertion).

Planning-Domain(blocks_domain)
hasMethod(achieve-goal) 
hasMethod(assert-goals)

hasMethod(assert-goals-nil)
hasMethod(add-new-goals)
hasMethod(find-nomove)
hasMethod(find-movable)
hasMethod(move-block)

hasMethod(move-block1)
hasMethod(check)

hasMethod(check2)
hasMethod(check3)

hasMethod(axiom-need-to-move)
hasMethod(axiom-same)

hasOperator(pickup)
hasOperator(putdown)

hasOperator(stack)
hasOperator(unstack)
hasOperator(assert)

hasOperator(remove)

Figure 5.3.: An instance of Planning-Domain represents the blocks world domain.
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The blocks_domain methods have two additional methods to represent the axioms that

are used in the blocks world domain. The method achieve-goals with its subgoals is asserted

as follows:� �
Method ( a c h i e v e−g o a l ) ,

hasMethod ( a c h i e v e−goa l , a s s e r t −g o a l s ) ,
hasMethod ( a c h i e v e−goa l , a s s e r t −g o a l s−n i l ) ,
hasMethod ( a c h i e v e−goa l , add−new−g o a l s ) ,
hasMethod ( a c h i e v e−goa l , f i n d−nomove ) ,
hasMethod ( a c h i e v e−goa l , f i n d−moveable ) ,
hasMethod ( a c h i e v e−goa l , move−b l o c k )� �

These assertions follow the Definition 2.7 and map the subtasks of achieve-goals into has-

Method or hasOperator . The method assert-goals gives an example of how both properties

are assigned some values, as shown below:� �
Method ( a s s e r t −g o a l s ) ,

hasMethod ( a s s e r t −g o a l s , a s s e r t −g o a l s−n i l ) ,
h a s O p e r a t o r ( a s s e r t −g o a l s , a s s e r t )� �

The rest of the methods and operators are asserted analogously.

The blocks world domain is now modelled in the HDL system. This model is enough for

generating Dbw by the system. However, these assertions are not sufficient for generating the

planning problem Pbw. The useState has not yet been defined for the methods and operators

above. This property is discussed in detail in the following section.

5.2.2. Modelling Blocks World in HDL

The initial state s0 is generated automatically by HDL. However, one needs to model this state

in HDL as a concept in the TBox and instantiate the ABox afterwards. Definition 2.8 and 2.11

define some of the constraints on the methods and operators that might be defined as useState

in HDL. This is exactly the case in the blocks world domain where some facts, required by some

methods or operators, are generated during the decomposition process. Hence, those facts do

not need any model or representation in the HDL system.

In the blocks world domain, the initial state represents the blocks and their arrangement on

the table. For example, the state shown in Figure 5.1 is defined as I in Section 5.1.1. The facts

can be categorised into four patterns, namely: (block bn), (on-table bn), (on bn bm),

and (clear bn). Figure 5.6 shows the ontology of the blocks world domain in HDL.

The blocks world is grouped as the BlocksWorld concept. Hence, it can be easily dis-

tinguished from concepts of other domains. However, the V aluePartition concept is used to

represent the status of some blocks in BlockStatus. This status is discussed later with other

concepts depending on it. The main concept for representing the blocks world domain is the
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Figure 5.4.: Blocks world domain ontology.

Block concept. It is defined as follows:

Block v BlocksWorld u

6 1 blockOn u

∃ hasState.BlockStatus u

6 1 hasState

This concept conveys the information that a block can have at most one blockOn property and

at most one hasState property that is instance of BlockStatus. These properties are sufficient

to represent four kinds of facts in the blocks world domain. The (block bn) is represented

by an instance of Block. The property blockOn represents either (on-table bn) or (on bn

bm). The last property (clear bn) is represented by the hasState property.

Block represents all four possible facts for the blocks world domain. However, the use-

State property is defined as a triple (see Section 2.5.2). As a triple, it needs one concept and

optionally one property. For this purpose, Block is too general. An instance of Block can have

only one property blockOn , denoting that that it is on top of another block or on top of the table.

Hence, additional concepts are introduced. These new concepts are OnTable, BlockOn, and

ClearBlock. The instances of these concepts are deduced automatically by the DL reasoner.

The concept OnTable infers blocks that are put directly on the table. For this concept,

a Table is defined as an instance of the BlocksWorld concept. Thus, the table is part of the

blocks world domain but it is not an instance of Block. The OnTable concept is defined as

follows:

OnTable ≡ BlocksWorld u

3 blockOn(Table)

The concept BlockOn is used to deduce all blocks that are placed on top of other blocks. It is
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defined as follows:

BlockOn ≡ BlocksWorld u

∃ blockOn.Block

The last concept, ClearBlock, is used for inferring all blocks which are located at the top. A

helper instance, namely isClear, is defined as a member ofBlockStatus. All top-most blocks

are asserted with the property hasState set with isClear. Hence, the ClearBlock concept is

defined as follows:

ClearBlock ≡ BlocksWorld u

3 hasState(isClear)

Each of the concepts defined above provides mappings between HDL instances and HTN

facts. These mappings are defined below:

T1 : (block ?val1); ?val1 = I:Block

T2 : (on−table ?val1); ?val1 = I:OnTable

T3 : (on ?val1 ?val2); ?val1 = I:BlockOn, ?val2 = P :blockOn

T4 : (clear ?val1); ?val1 = I:ClearBlock

(5.1)

The template T1 maps each instance of a class Block, bn, to the HTN representation in SHOP2

syntax, (block bn). Template T2 maps a block bn that is located on the table to (on-table

bn). Template T3 maps a block bn that is placed on top of block bm to (on bn bm). Finally,

template T4 maps the topmost block bn to (clear bn). Details of this procedure are found in

Section 2.5.2.

To complete the blocks world domain assertion in HDL, the following assertions need to

be added:� �
u s e S t a t e ( f i n d−nomove , T1 ) ,
u s e S t a t e ( add−new−g o a l s , T1 ) ,
u s e S t a t e ( f i n d−moveable , T4 ) ,
u s e S t a t e ( check , T4 ) ,
u s e S t a t e ( check2 , T4 ) ,
u s e S t a t e ( check3 , T4 ) ,
u s e S t a t e ( move−block1 , T3 ) ,
u s e S t a t e ( move−block , T3 ) ,
u s e S t a t e ( axiom−need−to−move , T2 ) ,
u s e S t a t e ( axiom−need−to−move , T1 )� �

In the assertion above, T1...T4 are used to minimise the text. However, in the HDL implement-

ation the full representation as shown above (5.1) is asserted instead. The task network for

“achieving goals” in the blocks world domain is composed of all the methods and operators

defined above. Hence, the use state will be automatically deduced from its useState node prop-
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erty. This deduction is a complete one which includes T1 to T4. Thus, the HDL system can

generate a valid planning problem for the blocks world domain. The result of the HDL system

on the simple blocks world domain is presented in Section 5.3.1.

5.2.3. Enhanced Model of Blocks World Domain in HDL

One of the main idea of modelling planning domain in HDL is to enable the co-existence of

domains and even several problems for those domains simultaneously within the system. The

blocks world concept that is depicted in Figure 5.4 lacks this capability. A problem might arise

if more than one blocks world domain is stored in the system. For example, in addition to the

previously defined blocks world problem, shown in Figure 5.1, another domain is also stored

in the system. Figure 5.5 shows eight blocks stored in the HDL system and two blocks world

domain each with four blocks in HTN problem.

HTN Problem #1

HDL System HTN Problem #2

b1 b3

b2 b4

Initial

b1 b3

b4 b2

Goal

a1 a4

a3 a2

Initial

a3 a2

a1 a4

Goal

a1 a4

a3 a2

b1 b3

b2 b4

Figure 5.5.: Two blocks world domains with four blocks each.

The simple blocks world domain concept as shown in Figure 5.4 cannot distinguish which

blocks are relevant for a particular problem. The result of the current problem by applying this

concept is presented in Section 5.3.2. The HDL system generates all stored blocks in the system

as part of the planning problem. This might overwhelm the planner.

Additional concepts are required in order to distinguish blocks that are involved in one

particular problem from the others which are not. These concepts provide the system with filter

parameters that refine the specification of the blocks. An enhanced blocks world ontology is

shown in Figure 5.6.

Once again, this feature shows that the HDL system is flexible and reusable. The con-

cepts that are modelled in the simple blocks world domain are supplemented with finer con-

cepts. These are UsedBlock, UsedBlockOnTable, UsedBlockClear, InvolvedBlock, and

UsedBlockOn. Among these concepts, only one is directly influenced by the user, namely
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Figure 5.6.: Enhanced blocks world domain ontology.

UsedBlock. The others are automatically deduced by the DL reasoner.

The blocks that appear in the goal state G are asserted as instances of UsedBlock instead

of Block. The UsedBlock concept is defined as follows:

UsedBlock v Block

Hence, it inherits all the properties that are defined for Block. The blocks world domain needs

four mappings as explained in the previous section. These mappings are defined as templates,

T1 to T4. UsedBlock is the replacement concept for Block. Hence, three more concepts are

needed to represent used blocks with their specific properties as needed by each template. For

representing used blocks on the table, the concept UsedBlockOnTable is used. It is defined as

follows:

UsedBlockOnTable ≡ UsedBlock u

3 blockOn(Table)

Thus, only blocks, that are instances of UsedBlock, are inferred as instances of this concept. In

a similar manner, the concepts UsedBlockClear and UsedBlockOn are defined as follows:

UsedBlockClear ≡ UsedBlock u

3 hasState(isClear)

UsedBlockOn ≡ UsedBlock u

∃ blockOn.Block

The templates T1 to T4 need to be updated with these new concepts. These templates are
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redefined as follows:

T1 : (block ?val1); ?val1 = I:UsedBlock

T2 : (on−table ?val1); ?val1 = I:UsedBlockOnTable

T3 : (on ?val1 ?val2); ?val1 = I:UsedBlockOn, ?val2 = P :blockOn

T4 : (clear ?val1); ?val1 = I:UsedBlockClear

The assertion for the blocks world in the HDL system uses these new templates instead. The

resulting planning problem, shown in Figure 5.5, which has been defined using the new concepts

is shown in Section 5.3.2.

One might notice that there is still one new concept in the enhanced blocks world ontology

as shown in Figure 5.6, namely InvolvedBlock. What is the purpose of this concept when

others defined before are sufficient to model the domain? In both of the previous examples,

those four new concepts have been sufficient to model them. However, the HDL system can

do more than just filter the blocks that appear in the goal state G. It can also reason about its

knowledge base in order to infer blocks that are implicitly relevant for the particular problem

although they do not appear explicitly in the goal state.

Figure 5.7 shows the combined blocks world problem in which three blocks are added to

the HDL system and the goal state is a combination of these blocks. The blocks in the goal state

are defined as instances of UsedBlock. These blocks are a1, b2, and c3. However, in order to

pickup block a1, it is necessary to first unstack block a3. The same holds for block c3. By only

applying the four new concepts in the enhanced blocks world ontology, these implicit blocks

cannot be detected. Thus, the planning problem is not a valid one because it does not model the

world properly.

HTN Problem

HDL System

a1 a4

a3 a2

b1 b3

b2 b4

c3

c1

c2

a1 b1

a3 b2

Initial

a1

b2

Goal

c3

c3

c1

c2

Figure 5.7.: Complex blocks world domains.

In this particular problem, the InvolvedBlock concept plays its role. It has the purpose

of deducing implicit blocks that are relevant for the current problem although they are not

mentioned explicitly in the goal state. It is defined as follows:

InvolvedBlock ≡ ∃ blockOn.UsedBlock
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Hence, a block that is located on any block in UsedBlock, will be deduced as a member of

InvolvedBlock. As a member of this concept, it is also a member of UsedBlock. Thus, any

block on top of it will be inferred as a member of InvolvedBlock too. Section 5.3.3 presents

the resulting blocks world problem shown in Figure 5.7.

To summarise, the simple blocks world domain ontology (see Figure 5.4) is sufficient to

model the blocks world model that is given as an example (see Figure 5.1). However, this

concept cannot model the complicated blocks world domains, such as the ones presented in

this section. Two simple blocks worlds and one complex blocks world has been introduced.

Thus, an enhanced blocks world domain ontology (see Figure 5.6) is needed for solving these

problems.

5.3. Experimental Results

In this section, the results of the examples presented in the previous sections are detailed. These

examples are the simple blocks world (Figure 5.1 on page 98), two simple blocks worlds (Figure

5.5 on page 107), and complex blocks world (Figure 5.7 on page 109). The first example is

exactly the same problem as in the distribution of the JSHOP HTN planner. However, all the

results shown below are solved using the HDL system.

5.3.1. Simple Blocks World

The results presented in this section are based on the blocks world domain shown in Figure 5.1

using the concept definition shown in Figure 5.4. Although the blocks world domain is already

modelled in the HDL system, the initial state itself is not yet. Hence, the first step is to model

the initial state as shown in Figure 5.1 in the HDL system by asserting the blocks as follows:� �
Block ( b1 ) , blockOn ( b1 , Tab le ) ,
Block ( b2 ) , blockOn ( b2 , b1 ) , h a s S t a t e ( b2 , i s C l e a r ) ,
Block ( b3 ) , blockOn ( b3 , Tab le ) ,
Block ( b4 ) , blockOn ( b4 , b3 ) , h a s S t a t e ( b2 , i s C l e a r )� �

The output of the DL reasoner over this model is shown in Table 5.2.

Table 5.2.: Results generated by the DL reasoner for the simple blocks world domain.

Concept Asserted Instances Inferred Instances
Block b1,b2,b3,b4 b1,b2,b3,b4
OnTable - b1,b3
BlockOn - b2,b4
ClearBlock - b2,b4
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The HDL system generates the blocks world planning domain that is shown in Appendix

A.4. The planning problem with w = (achieve-goals ((on-table b1) (on b4 b1)

(clear b4) (on-table b3) (on b2 b3) (clear b2))) is shown in Appendix A.4.1.

The result of the HTN planner for the blocks world domain with this problem consists of four

plans. Figure 5.8 shows the solution plans without dummy operators, namely assert and

remove; a complete solution plans are shown in Appendix A.4.1:

Plan #1
(!unstack b4 b3)
(!putdown b4)
(!unstack b2 b1)
(!stack b2 b3)
(!pickup b4)
(!stack b4 b1)

Plan #2
(!unstack b2 b1)
(!putdown b2)
(!unstack b4 b3)
(!stack b4 b1)
(!pickup b2)
(!stack b2 b3)

Plan #3
(!unstack b4 b3)
(!putdown b4)
(!unstack b2 b1)
(!stack b2 b3)
(!pickup b4)
(!stack b4 b1)

Plan #4
(!unstack b2 b1)
(!putdown b2)
(!unstack b4 b3)
(!stack b4 b1)
(!pickup b2)
(!stack b2 b3)

Figure 5.8.: Solution plans for the simple blocks world problem (without dummy operators).

The simple blocks world problem, shown in Figure 5.1, can be solved in two ways. The

first approach unstacks block b4, puts it on the table and then continues with block b2. This

is shown in solution plans 1 and 3. The second approach is to unstack the block b2 and then

continue with block b4 as given in solution plans 2 and 4. So why does the HTN planner generate

four solution plans instead of two? The answer is due to the assert operator that adds the fact

dont-move to the blocks which are already in the right place. Please refer to Listing A.20 in

Appendix A.4.1 to see these differences. A detailed analysis of this phenomenon is referred to

Section 6.3.2.

5.3.2. Two Simple Blocks World Problems

In this section, a similar blocks world problem with four blocks, as in the previous example,

is added to the HDL system. Hence, two possible problems are stored in the system as shown

in Figure 5.5. Two approaches are discussed; the first approach uses the simple blocks world

concept shown in Figure 5.4 and the second one uses the enhanced blocks world concept depic-

ted in Figure 5.6. The new blocks are stored in the system with the following assertions:� �
Block ( a1 ) , blockOn ( a1 , Tab le ) ,
Block ( a2 ) , blockOn ( a2 , a4 ) , h a s S t a t e ( a2 , i s C l e a r ) ,
Block ( a3 ) , blockOn ( a3 , a1 ) , h a s S t a t e ( a3 , i s C l e a r ) ,
Block ( a4 ) , blockOn ( a4 , Tab le )� �

As mentioned in Section 5.2.3, the simple blocks world model cannot distinguish which

blocks are involved in which problem. Hence, all stored blocks appear in the HTN planning

problem though they are not part of the current one. The output of the DL reasoner for the first

approach is shown in Table 5.3.
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Table 5.3.: Result of DL reasoner over two blocks world domains.

Concept Asserted Instances Inferred Instances
Block a1,a2,a3,a4,b1,b2,b3,b4 a1,a2,a3,a4,b1,b2,b3,b4
OnTable - a1,a4,b1,b3
BlockOn - a2,a3,b2,b4
ClearBlock - a2,a3,b2,b4

Problem number 2 is in fact trying to achieve the same goal as in the previous section.

Hence, the initial task network w is (achieve- goals ((on-table b1) (on b4 b1)

(clear b4) (on-table b3) (clear b2) (on b2 b3))). The HDL system generates

the same planning domain as shown in appendix A.4. However, the planning problem consists

of eight blocks instead of four. This problem description is shown in Listing A.21. Thus, the

planner returns more than the four plans. In fact, it returns exactly 1440 plans. Section 6.3.2

presents a detailed comparison and explanation of why additional blocks increase the number

of plans in the blocks world domain.

Problem number 1 generates the same amount of facts in the problem description. Thus, it

faces the same problem as solving problem number 2. Hence, the simple blocks world concepts

could not solve this problem elegantly.

Let us now use the enhanced blocks world ontology to solve the problems. The assertions

shown in the previous sections are still valid for use with this ontology. For problem number

1, some blocks need to be instances of UsedBlock instead of Block. These blocks are a1, a2,

a3, and a4.

Table 5.4.: Results from the DL reasoner for the two blocks world domains for first problem.

Concept Asserted Instances Inferred Instances
Block b1,b2,b3,b4 a1,a2,a3,a4,b1,b2,b3,b4

UsedBlock a1,a2,a3,a4 a1,a2,a3,a4
OnTable - a1,a4,b1,b3

UsedBlockOnTable - a1,a4
BlockOn - a2,a3,b2,b4

UsedBlockOn - a2,a3
ClearBlock - a2,a3,b2,b4

UsedBlockClear - a2,a3
InvolvedBlock - a2,a3

Table 5.4 shows the output of the DL reasoner for the asserted blocks. It proves that through

the use of the enhanced model, the relevant blocks can be distinguished from the rest. These

relevant blocks are instances of the concept UsedBlock. The initial network for problem num-
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ber 1 is defined as w = (achieve-goals ((on-table a3) (on a1 a3) (clear a1)

(on-table a2) (on a4 a2) (clear a4))). The HDL system produces a smaller subset

of planning problems as listed in A.22. The HTN planner returns four plans as shown in Figure

5.9. The complete planning result is shown in A.23.

Plan #1
(!unstack a2 a4)
(!putdown a2)
(!pickup a4)
(!stack a4 a2)
(!unstack a3 a1)
(!putdown a3)
(!pickup a1)
(!stack a1 a3)

Plan #2
(!unstack a3 a1)
(!putdown a3)
(!pickup a1)
(!stack a1 a3)
(!unstack a2 a4)
(!putdown a2)
(!pickup a4)
(!stack a4 a2)

Plan #3
(!unstack a3 a1)
(!putdown a3)
(!pickup a1)
(!stack a1 a3)
(!unstack a2 a4)
(!putdown a2)
(!pickup a4)
(!stack a4 a2)

Plan #4
(!unstack a2 a4)
(!putdown a2)
(!pickup a4)
(!stack a4 a2)
(!unstack a3 a1)
(!putdown a3)
(!pickup a1)
(!stack a1 a3)

Figure 5.9.: Solution plans for the two blocks world problem (without dummy operators).

With a similar approach for problem number 2, the blocks are adjusted to be either a

member of the Block concept or the UsedBlock concept. Table 5.5 shows the asserted and

inferred blocks for problem number 2. The number of facts in the problem descriptions is the

same as the one produced in Section 5.3.1. Hence, requesting the same objective of the HTN

planner produces similar (see Section 5.3.1).

Table 5.5.: Result of DL reasoner over two blocks world domains for problem number 2.

Concept Asserted Instances Inferred Instances
Block a1,a2,a3,a4 a1,a2,a3,a4,b1,b2,b3,b4

UsedBlock b1,b2,b3,b4 b1,b2,b3,b4
OnTable - a1,a4,b1,b3

UsedBlockOnTable - b1,b3
BlockOn - a2,a3,b2,b4

UsedBlockOn - b2,b4
ClearBlock - a2,a3,b2,b4

UsedBlockClear - b2,b4
InvolvedBlock - b2,b4

5.3.3. Complex Blocks World Problems

The complex blocks world problem is shown in Figure 5.7 (page 109). It adds three more

blocks to the system as it is described in the previous example, namely c1, c2, and c3. They

are asserted to the system as follows:
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� �
Block ( c1 ) , blockOn ( c1 , c3 ) ,
Block ( c2 ) , blockOn ( c2 , c1 ) , h a s S t a t e ( c2 , i s C l e a r ) ,
Block ( c3 ) , blockOn ( c3 , Tab le )� �

The goal state is defined as w = (achieve-goals ((on-table a1) (on b2 a1)

(on c3 b2) (clear c3))). Thus, only three blocks (a1, b2, and c3) are explicitly defined

in the goal state. These blocks need to be instances of UsedBlock. In the previous examples,

the number of blocks defined in the goal state is equal to the number of blocks described in the

initial state. In this example, once again the use of the HDL approach proves beneficial in terms

of the flexibility and automatic deduction of the environment that has been modelled directly in

the HDL system.

Some planners may use a heuristic filter for the goal state, such that only those blocks that

are explicitly defined in the goal state are relevant blocks. This, however, would invalidate the

results because of the implicit blocks that prevent a block from being picked up, e.g. block a1

or c3. If all the blocks are included in the initial state, the number of blocks increases to seven

blocks for the given example. Hence, it will bog the planner down with irrelevant blocks. This

is shown in the following chapter.

Table 5.6.: Result of the DL reasoner for the complex blocks world domain.

Concept Asserted Instances Inferred Instances
Block a2,a3,a4,b1,b3,b4,c1,c2 a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3

UsedBlock a1,b2,c3 a1,a3,b2,c1,c2,c3
OnTable - a1,a4,b1,b3,c3

UsedBlockOnTable - a1,c3
BlockOn - a2,a3,b2,b4,c1,c2

UsedBlockOn - a3,c1,c2
ClearBlock - a2,a3,b2,b4,c2

UsedBlockClear - a3,b2,c2
InvolvedBlock - a3,c1,c2

The InvolvedBlock concept, which deduces the blocks put on top of UsedBlock, is used

to define the relevant blocks for the given problem. The InvolvedBlock concept is a subclass of

the UsedBlock concept. Thus, instances of InvolvedBlock are also relevant blocks. Table 5.6

shows the deduced output from the DL reasoner for this blocks world problem. Although only

three blocks are asserted as UsedBlock, the DL reasoner deduces that six blocks are needed for

this problem. Hence, the HDL system can correctly produce the initial state for this problem.

Considering the example in Figure 5.7, the system has to unstack block a3 before it can pickup

block a1. The same must be done with block c3 where two more blocks are hindering its direct

manipulation, namely block c1 and c2.
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The HDL system generates a planning problem description with 14 facts as shown in A.24.

The HTN planner generates 72 possible plans, four of these plans are shown in A.25. Two of

these plans are shown in Figure 5.10 without their dummy operators.

Plan #1
(!unstack c2 c1)
(!putdown c2)
(!unstack a3 a1)
(!putdown a3)
(!pickup b2)
(!stack b2 a1)
(!unstack c1 c3)
(!putdown c1)
(!pickup c3)
(!stack c3 b2)

Plan #2
(!unstack a3 a1)
(!putdown a3)
(!pickup b2)
(!stack b2 a1)
(!unstack c2 c1)
(!putdown c2)
(!unstack c1 c3)
(!putdown c1)
(!pickup c3)
(!stack c3 b2)

Figure 5.10.: Solution plans for the complex blocks world problem (without dummy operators).

The resulting plans are valid because their actions include implicit blocks. For example,

in order to stack block b2 on block a1, one of the preceding actions should remove block a3

from a1. This action will only be possible if those implicit blocks are modelled in the planning

problem description. Anomalies and problems with the blocks world domain are discussed later

in Chapter 7.
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In the previous chapters, a number of planning problems in robotics and AI are solved using

the HDL system. They show the benefits of using the system. In this chapter, the system is

benchmarked in comparison to the HTN planner. This is done for both the robotics domain and

the AI domain. The main question is that of the HDL system’s complexity. Firstly, a look into

how the HDL system processes the user requests and what the activities are that produce the

output. Secondly, the experiment setup is introduced. Finally, the empirical experiments are

discussed.

6.1. Complexity of the HDL System

HDL is composed of a number of components. The main ones are the DL reasoner and the

HTN planner. Analysing the complexity of such system is not trivial. It could be that a given

planning problem is intractable. Hence, what is the complexity of the DL system combined with

an HTN planner? The complexity of the system depends on two aspects. The first aspect is the

DL reasoning part and the second is the definition of the planning problem. In order to analyse

the complexity of the system, one needs to understand how these components interact with each

other.

HDL System

 HTN Planning 
Generator

HTN domain 
description

HTN problem 
description

DL Reasoner
(Pellet)

Inferred Model

 JSHOP2 
Planning 
Compiler Domain specific 

planner

Extract
Plan

Solution 
Plan

Solution Plan

OWL-DL Model

User Inputs
(Domain & Goal)

JSHOP2 Planner

Figure 6.1.: The HDL system’s internal component structure.

Figure 6.1 shows HDL’s internal component structure. The HDL system needs two in-
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puts: OWL-DL model and the user’s inputs that consist of a goal and a domain. The output is

the sequence of actions in the solution plan. The OWL-DL model is first processed by the DL

reasoner and produces an inferred model. This product and the user’s inputs are the sources for

the HTN planning generator. The generator produces the HTN planning problem and the HTN

planning domain for the planner. In this work, the planner is implemented in JSHOP2, which

uses planning compilation to optimise the planner. This is discussed later in this section.

The complexity of the DL reasoner depends on the supported DL language and the reas-

oning algorithms. As mentioned previously in Chapter 2, there are reasoners available that can

be used with the HDL system presented here. However, we will concentrate on one particular

reasoner that is used in our implementation, namely “Pellet” [SPG+07]. HDL uses the Jena

API [McB01] and the OWL API [HM03, HBN07] for communicating with Pellet. Figure 6.2

shows Pellet’s main components. Besides the two interfaces mentioned before, Pellet also sup-

ports DIG (DL Implementation Group) interface, a standardised XML interface for DL systems

[BMC03, Dic04, TBK+06], and the SPARQL Parser [PS07]. The details of the Pellet reasoner

are beyond the scope of this work. More information is found in [SPG+07].
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Figure 6.2.: Main components of the Pellet reasoner [SPG+07].

Pellet is a complete OWL-DL and a very incomplete OWL-FULL consistency checker. Hence,

it can prove whether an OWL model is consistent, inconsistent or unknown. Pellet uses state of

the art optimisation techniques provided in DL literature which have also been implemented

in other reasoners such as FACT++ and RACER. Expressive DLs, for example SHOIN (D),

have a very high worst-case complexity [SPG+07].

DL ALC is the basic language of DL and mostly used by DL reasoning services. [BHS08]

proves the complexity of DL ALC. Two of the complexity theorems found there are repeated

below:

Theorem 6.1. Satisfiability and subsumption ofALC concepts and consistency ofALC ABoxes

118



6.1. Complexity of the HDL System

are PSpace-complete problems [BHS08, Theorem 3.4].

Theorem 6.2. Satisfiability in ALC with respect to general TBoxes is EXPTIME-complete

[BHS08, Theorem 3.6].

This high worst case complexity (EXPTIME-complete) of ALC with respect to an arbitrary

KB is artificial and rarely occurs in practise [HKNjP94, Hor98, Neb90, BHS08]. Modern DL

reasoning systems, such as Pellet, FACT++ and RACER, use a wide range of optimisation

techniques to improve the typical case performance by several orders of magnitude [HPS99,

BHS08].

The next component in Figure 6.1 is the HTN planning generator. Figure 6.3 depicts the

components involved in the planning generation process. This process consists of four steps.

The first step is carried out by the “domain generator” which processes the domain selected

by the user. The user can choose either an instance of a Planning-Domain or an instance

of a Method. The worst case complexity of this step is O(n) as described in Section 2.5.1

for Algorithm 2.2. The second step is that carried out by the problem generator that composes

the planning problem from user defined goals and extracts the initial state s0 from the domain

d. The worst case complexity of this second step is O(mn), where m = (|M| + |O|) and

n = (|Thing| − |Planning|), as described in Section 2.5.1 for Algorithm 2.1. The third

and fourth steps are accomplished by “java object to planner syntax”. Its algorithm is straight

forward through the input list. Hence, its complexity is O(n).
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problem 
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Figure 6.3.: HTN planning generator components.

The complexity of the HTN planning generator is composed of these four steps. In most

119



6. Results and Evaluation

cases, the planning domain is invariant or constant. On the other hand, the planning problem

might grow according to the amount of stored knowledge. Hence, the first and third steps’

complexity can be replaced by a constant. The complexity of the problem generator’s step is

O(mn). By assuming the planning domain to be constant, (m = c), the complexity is O(n).

The fourth step also depends on the problem generator. Hence, the complexity will also be

O(n). The overall complexity of the HTN planning generator is O(n).

The last component in Figure 6.1 is the HTN planner, in this case JSHOP2. Although in

the figure it is shown as two components, these components are in fact part of JSHOP2 and are

described later in this section. The complexity of totally-ordered HTN planning is EXPSPACE-

hard and in DOUBLE-EXPSPACE. The computability of HTN planning without this restriction

is semi-decidable [NSE98]. Table 6.1 shows a comparison of the complexity of HTN planning

with different settings.

Table 6.1.: Complexity and computability of HTN planning [EHN94a].

Restrictions on
non-primitive tasks

Must every HTN be
totally ordered?

Are variables allowed?
no yes

none
no Undecidable Undecidable 2

yes in EXPTIME;
PSPACE-hard

in DEXPTIME;
EXPSPACE-hard

“regularity” 1 doesn’t matter PSPACE-complete EXPSPACE-complete
no non-primitive
tasks

no NP-complete NP-complete
yes Polynomial time NP-complete

1 At most one non-primitive task, which must follow all primitive tasks.
2 Even if the planning domain is fixed in advance.

The SHOP system is a domain-independent HTN planning system, which uses a sound and

complete HTN planning algorithm [NCLMA99]. SHOP2 extends the SHOP planning algorithm

enabling the decomposition of each method into a partially ordered set of subtasks and allowing

the creation of plans that interleave subtasks from different tasks [NMAC+01]. The planning

procedure is Turing-complete as well as sound and complete over a large class of planning

problems [NMAC+01, NIK+03]. SHOP and SHOP2 are written in LISP. However, JSHOP and

JSHOP2 are written in Java. JSHOP2 compiles its domain description into a domain-specific

planner and then runs that planner to solve the planning problem in that domain. Hence, some

optimisation of that domain can be performed by considering the information in advance. An-

other reason for the compilations is to enable external code calls [Ilg06]. Figure 6.4 shows

this compilation process. Thus, it explains why in Figure 6.1 JSHOP2 is represented as two

components.

The complexity of the HDL system’s components has been presented. The most complex

component in the system is the HTN planning system. Its complexity depends on the planning

domain and the planning problem for that domain. The HDL system neither improves the plan-

ning algorithm nor the DL reasoning algorithm. However, the HDL system enables the filtering
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Figure 6.4.: JSHOP2 compilation process [Ilg06].

of the planning problem which increases the performance of the overall system. Empirical ex-

periments which support this claim are presented in Section 6.3. The factor by which the HDL

system improves the overall performance up to the planning problem generation is presented

next.

Definition 6.3. Let π = {a1, a2, ..., an} be the optimal solution of a planning problem P =

{s0, w,M,O}, where s0 = {s1, s2, ..., sn} is the set of the initial states. The planning problem

P contains only relevant states (s0) iff:

• The optimal solution plan will remain π = {a1, a2, ..., an} although additional states

sirri are added into s0, such that s0 = {s1, s2, ..., sn, sirr0 , ..., sirri}.

• The solution plan will be invalid or missing if any of the states in s0 is omitted.

The complexity of the planning system depends on the domain and the planning problem.

In one domain, the complexity is defined by the number of involved states, which is s0 in

HTN. Hence, having only relevant states in the planning problem will reduce the planning

complexity. Figure 6.5 illustrates the amount of states or information which are stored in the DL

KB on the left side and possible generated planning domains on the right side. It shows that the

generated planning problem might vary, depending on how the UseState property is defined.

In the following section, an experiment design for empirical experiments is presented.

6.2. Experiment Design

The purpose of the experiment is to compare or benchmark the effect of having irrelevant states

in the planning domain on the HDL planning system and the pure HTN planning system. The

benchmark is measured by the four values, namely number of states in the model, number of

states in the planning problem, number of solution plans, and time to plan. The benchmark

is performed fairly in that the irrelevant states are still part of the domain, although the HDL
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Figure 6.5.: Stored states in DL and possible generated HTN planning domain.

system can contain states from different domains. Although the benchmark is intended to com-

pare pure HTN planning and the HDL system, the pure HTN problem is generated by the HDL

system too. As shown in Figure 6.5, the planning problem generation depends on the user who

decides which instances of a concept should be involved in the problem description. Thus, the

HDL system might generate a relevant planning problem and also some planning problem with

additional facts, which could be irrelevant for this particular problem.

Figure 6.6 shows the benchmark scenario. The preparation step generates two sets of

OWL-DL models, one for the pure HTN approach and the other for the HDL approach. In both

approaches, the same procedures are performed. The upper part is for the pure HTN approach

and the lower part is for the HDL approach. These procedures can be seen as a sequence of two

steps; the first step is the DL reasoning and the second one is the planning step. In the first step,

the OWL-DL model is processed and its results are the HTN planning domain description and

problem description. The planning step is the decomposition of the planning problem to find

the solution plan. The inputs of this step are the planning problem description and the planning

domain description. This step is the usual process in the planning system. Hence, it represents

exactly how the pure HTN approach is executed.

In the experiment, the number of states increases until one of the systems can not handle

this anymore. The other system still runs for some additional states. As mentioned before, four

criteria are considered for this benchmark. The notions for the measurements are defined as

122



6.2. Experiment Design

DL Reasoning Step

Planning StepPlanning StepPlanning Step

Planning StepPlanning StepPlanning Step
Preparation Step

OWL Model 
Generator

OWL Model
Set 1

OWL Model
Set 2

DL Reasoner
(Pellet)

DL Reasoner
(Pellet)

HTN 
Planning

Generator

HTN 
Planning

Generator

HTN Problem
Set 1

HTN Problem
Set 2

HTN Domain

HTN Domain

JSHOP2 
Planning 

Compilation

JSHOP2 
Planning 

Compilation

java Domain
Specific Planner Set 1

java Domain
Specific Planner Set 2

Solution Plan
Set 1

Solution Plan
Set 2

Run
JSHOP2 

Plan

Run
JSHOP2 

Plan

t0 t1
t2

t0
t1

Figure 6.6.: Experiment scenario in navigation domain.

follows:

• ΣnHTN , ΣnHDL represent the number of states in the model.

• Σs0HTN , Σs0HDL represent the number of states in the planning problem.

• ΣπHTN , ΣπHDL represent the number of solution plans.

• tHTN , tHDL represent the required time to extract the plan.

The first three parameters are measured immediately for each run. The fourth parameter, how-

ever, is computed as follows (see Figure 6.6):

tHTN = tPlanningStep = t1 − t0
tHDL = tReasoningStep + tPlanningStep = (t1 − t0) + (t2 − t1)

As shown in the equations above, the HDL approach consists of time to reason and time to plan.

Hence, mathematically for the same problem it will follow this equation tHDL > tHTN .

Figure 6.6 also shows the internal processes of the experiments. Each step is executed

in a separate process, however the planning step is executed in a new process for each single

problem. Why does the planning step need special treatment in this case? As explained in the

previous section, JSHOP2 uses a special compilation process to optimise the plan. Thus, every

problem has its own java classes. Due to the problem generation scheme in the previous two

steps, the generated java classes where the main function is placed have the same name for every

problem in the same domain. The nature of the java class loader is such that it will not load

classes that have been loaded into its memory [Chr]. Hence, running the experiment with one

process for all the generated problems will produce the result for the first problem only. The

following problem will not be loaded and executed properly. Therefore, every problem has to

run in a new process.
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6.3. Experiments

Two experiments are performed to benchmark the effect of additional facts in the planning

problem between pure HTN planning and HDL planning. These experiments are “navigation

domain” and “blocks world domain”. The benchmark procedure is performed as described

in the previous section. A detailed analysis of the results are presented and discussed in the

following sections.

6.3.1. Navigation Domain

The navigation domain has been explained in detail in Section 3.2. The TBox is defined as

depicted in Figure 3.6 on page 53. Two actors are defined in the domain, namely robot1 and

robot2. The goal is to navigate them from room-start to room-goal. Figure 6.7 shows the test

scenario map for this navigation domain.

corridor-1

room-start room-goalroom-1 room-2robot
1

robot
2

Figure 6.7.: Test scenario in navigation domain.

The planning domain D is the same for both approaches. It does not change during the

test. It is detailed in Section 3.2.3 and the HDL model for this domain is covered in Section

3.2.5. The planning domain description is shown in Listing A.1.

The task network w is also the same for the whole test, namely w = { (navigate
robot1 room-goal),(navigate robot2 room-goal)}. The initial states s0 varies in

each test; it is one of the measurement parameters in the benchmarking process, namely Σs0HTN

and Σs0HDL . However, s0 is a dependent variable and is generated automatically in the reason-

ing step. The parameter that is changed incrementally in each test is the number of states in the

model (ΣnHTN and ΣnHDL).

In the test scenario shown in Figure 6.7, the optimal solution plan is to drive the robots

to room-goal through corridor-1. Hence, these three states (room-start, corridor-1 and

room-goal) are the relevant ones. However, the first room (room-1) has two open doors, one

of which is connected with room-start and the other is connected with corridor-1. The

intention of having the first room with two open doors is to test that the given JSHOP2 parameters

are set to return all solution plans. In every test, an additional room with three “closed” doors is

added between room-start and room-goal as shown in Figure 6.7. This additional room with

three closed doors is intended to maximise the difference between the two approaches. Thus,
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the number of states (rooms) in the model is formalised as follows:

Σp
i=1nHTN = Σp

i=1nHDL = 3 + i

p is determined either by the first approach that fails to generate the plan or when it reaches the

upper limit which is 1000 in these experiments.

The nth and mth room (where m = n− 1) are defined in OWL-DL as follows:� �
Room( room−n ) ,
a d j a c e n t t o ( room−n , c o r r i d o r −1) , a d j a c e n t t o ( c o r r i d o r −1, room−n ) ,
a d j a c e n t t o ( room−n , room−m) , a d j a c e n t t o ( room−m, room−n ) ,
Door ( door−n ) , h a s S t a t e ( door−n , i s C l o s e ) ,
Door ( door−n−m) , h a s S t a t e ( door−n−m, i s C l o s e )� �

In each incremental process, three instances and six properties are added to the model. However,

the planning problems contain some of this information due to the restriction on the expressivity

of the planning system (see Chapter 3). Nevertheless, the HDL system generates valid planning

problems automatically. The difference is in the useState property. The pure HTN approach

uses instances of Room and the HDL approach uses instances of DriveableRoom. Hence,

each added room into the model will also appear in the planning problem for the pure-HTN

approach. However, it is not the case for the HDL approach because the room is not accessible

for the robot. Each additional room will add five more facts into the planning problem. For nth

and mth room (where m = n− 1) will add the following facts:� �
( room room−n )
( a d j a c e n t t o room−n c o r r i d o r −1)
( a d j a c e n t t o c o r r i d o r −1 room−n )
( a d j a c e n t t o room−n room−m)
( a d j a c e n t t o room−m room−n )� �

6.3.1.1. Analysing the Result

The benchmarking was done on a 2 GHz Intel Core Duo MacBook 13” (version 1,1) with 2 GB

RAM and Java version 1.5. All tests were done with default Java settings, no tweaking on the

heaps or memory allocation for the Java VM was carried out.

Number of Facts in the Planning Problem This is the result of the DL reasoning step in

which the planning problem is generated from the DL model. Figure 6.8 shows the plots of the

number of facts for both approaches. Let mHTN and mHDL represent the number for states in

the planning problem (Σs0HTN and Σs0HDL) and n represents the number of rooms in the DL
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model. Thus, the number of facts are expressed by the following functions:

mHTN (n) = 5n+ 9

mHDL(n) =

14 if n = 1,

n+ 14 if n > 1
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Figure 6.8.: Number of facts in the planning problem for navigation domain.

The number of facts in both approaches increases linearly with the number of added rooms.

However, the pure-HTN approach grows five times faster than the HDL approach. It is clear for

the pure-HTN approach that each additional room will add five facts to the planning problem.

However, why does the HDL approach also increase with the number of rooms? The DL reasoner

reasons about the DL model and should return only instances of DriveableRoom. Hence, the

number of facts for the HDL approach should be constant. The answer to this question is found

in the modelling process as described in Section 3.3. Each Room has a property adjacentto,

that defines the topological connection between rooms. The property adjacentto is a symmetric

relation. Thus:

∀ n,m ∈ Room, n adjacentto m⇒ m adjacentto n

Each added room has a topological connection with corridor-1. While room-n is not in-

cluded in the planning problem, corridor-1 is always included. Thus, the fact (adjacentto

corridor-1 room-n) is added incrementally to the planning problem. For the same reason,

the second test (n = 2) added two additional facts from the first test. One of the facts is due to

the connection between corridor-1 and room-2 and the second one is due to the connection
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between room-1 and room-2.

Number of solution plans This is one outputs of the planning system that depends on the

planning problem. Figure 6.9 depicts the number of generated plans with relation to the number

of added rooms for both approaches. It shows that the number of generated plans is constant in

the HDL approach, which is four. In contrast, in the pure HTN approach the number of generated

plans increases quadratically with the number of rooms. The following equations represent the

relation between number of rooms n and number of solution plans π:

πHTN (n) = n2 + 2n+ 1 = (n+ 1)2

πHDL(n) = 4
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Figure 6.9.: Number of generated plans (logarithmic scale) in the navigation domain.

The upper bound of n in the pure-HTN approach is 83, because the planner failed to return any

plan for n > 83.

The reason why the number of solution plans increases quadratically is due to the number

of robots in the model. The planning goals are to navigate those robots into room−goal. Hence,

each added room provides a new path to reach the goal (see Figure 6.7). The planning system

found (n + 1) possible paths to reach the goal for one robot. For each path, the planning

system will try to fulfil the second objective, which has the same number of possible paths.

Therefore, the number of plans is (n + 1)(n + 1). Additional robots will increase the number

of solution plans with the factor of possible paths. In this navigation benchmark domain, the

relation between number of rooms n and number of robots r is described in the following
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equation:

πHTN = (n+ 1)r

Time to plan This is the total amount of time needed to generate a solution plan. The formula

to measure the time to plan is described in Section 6.2. Figure 6.10 shows the time for extracting

the plans with relation to the number of rooms. In the pure HTN approach the planning time

increases commensurately with the number of rooms in the problem description. The planning

time is less than two seconds for rooms less than 25. It is 193 seconds for n = 83. For n ≥ 84,

the planner returned no plans. The elapsed time before the planner gave up is shown as a dashed

line in green.
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Figure 6.10.: Computation time (logarithmic scale) in the navigation domain.

In the HDL approach, the overall planning time consists of DL-reasoning time and HTN-

planning time. Therefore, for n < 25 it requires more time than the pure HTN approach.

However, the average overall time for up to 200 rooms is 3.5 seconds. The overall time increases

in average around 17ms for each added room into the DL model. This is less than 0.5% of the

overall time.

In the Figure 6.10, the tHTN increases slightly quadratically before it rises erratically. Ap-

plying regression on both curves with n as number of rooms produces the following equations:

tHTN (n) = 0.012n2 − 0.33n+ 2.3, σε = 9.94, (0 < n < 80)

tHDL(n) = 0.023n+ 1.2, σε = 4.05, (0 < n < 250)

In contrast, the HDL approach increases linearly with a very gentle slope. Hence, it does not

suffer much with the increasing number of rooms.

Figure 6.11 shows the computation time for extracting one solution plan only in relation

to the number of rooms. As previously mentioned, the HDL approach increases slightly for
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each added room which is clearly shown in the figure. However, the computation time for the

planning only in the HDL approach is steady. This is shown as the dotted line in the figure. It

is obvious that the number of added rooms does not influence the computation time of the plan-

ning part. This is because the planning problems contain relevant states only. In the pure HTN

approach, the computation time for planning one solution is smaller than that in the HDL ap-

proach where the reasoning time remains the same although it should compute one solution plan

only. However, the computation time in the pure HTN approach increases slightly as the number

of rooms increases. This is shown in the figure by comparing the pure HTN approach with the

planning part of the HDL approach. The pure HTN approach can still extract a solution plan for

n ≥ 84. However, it has another limitation due to the JSHOP2 compilation process (see Figure

6.4). The java compiler produced the error “code too large” in the “createState0(State

s)” method while it processed the planning problem with 331 additional rooms. Hence, the

pure HTN approach can only process a planning problem where n < 331.
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Figure 6.11.: Computation time (logarithmic scale) in the navigation domain for planning one
solution.

6.3.2. The Blocks World Domain

The blocks world domain is described in-depth in Chapter 5. In this experiment, the four blocks

problem as shown in Figure 5.1 on page 98 is used. The planning domain D is the same for

both approaches and can be seen in Listing A.18. The HDL system uses the enhanced blocks

world domain ontology as shown in Figure 5.6 (page 108) in its TBox. An additional block bn
is added into the model incrementally as shown in Figure 6.12.

The planning goal defined in the initial task network w is same for both approaches,

namely w = {(achieve-goals ((on-table b1) (on b4 b1) (clear b4) (on-ta

ble b3) (on b2 b3) (clear b2)))}. The initial state s0 is generated automatically dur-
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b1 b3 bn

b2 b4

b1 b3

b4 b2

Initial Goal

Figure 6.12.: Experiment scenario for the blocks world domain.

ing the reasoning step. The added blocks increase the number of states in the model (ΣnHTN
and ΣnHDL). In Figure 6.12, the relevant blocks are b1, b2, b3, and b4. These blocks are

asserted in the ABox of the HDL system as follows:� �
UsedBlock ( b1 ) , blockOn ( b1 , Tab le ) ,
UsedBlock ( b2 ) , blockOn ( b2 , b1 ) , h a s S t a t e ( b2 , i s C l e a r ) ,
UsedBlock ( b3 ) , blockOn ( b3 , Tab le ) ,
UsedBlock ( b4 ) , blockOn ( b4 , b3 ) , h a s S t a t e ( b2 , i s C l e a r )� �

The number of states (blocks) in the model is formalised as follows:

Σp
i=1nHTN = Σp

i=1nHDL = 4 + i

As in the navigation domain experiment, the value p is determined by the first approach that

fails to generate a plan or when it reaches the upper limit which is 250 for this experiments.

The nth block is defined in the OWL-DL as follows:� �
Block ( bn ) , blockOn ( bn , Tab le ) , h a s S t a t e ( bn , i s C l e a r )� �

This information maps directly into the planning problem, because these are the facts that de-

scribe the block bn in the environment. The involved blocks in the HTN approach’s useState

are defined as instances of Block. However, the HDL approach uses instances of UsedBlock

instead. Thus, any newly-added block will immediately appear in the HTN approach, as though

those blocks had been directly inserted into the planning problem. The differs from the navig-

ation domain in that the model of block bn and its properties will be translated one to one into

the planning problem. The planning problem’s facts for block bn are shown below:� �
( b l o c k bn )
( on−t a b l e bn )
( c l e a r bn )� �

6.3.2.1. Analysing the Results

The benchmarking was carried out using the same machine and specifications as mentioned in

Section 6.3.1.1.
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Figure 6.13.: Number of facts in the planning problem for the blocks world domain.

Number of facts in the planning problem These are shown in Figure 6.13. Let mHTN

and mHDL represent the number of states in the planning problems (Σs0HTN and Σs0HDL) and

n represent the number of blocks in the DL model. Hence, the number of facts are expressed as

follows:

mHTN (n) = 3n− 2

mHDL(n) = 10

In these equations, n is the number of all blocks in the DL model, not only the additional blocks.

Therefore, n starts from four upwards. In the HDL approach, the facts in the planning problem

stay constant at 10 facts regardless of the number of the blocks in the DL model. The complete

planning problem is shown in Listing A.19 in Appendix A.4.1. In the HTN approach, the number

of facts increases to three times the number of added blocks. However, the initial state s0 in the

HTN approach is also generated automatically by the HDL system. Although the relevant blocks

are defined as instances of UsedBlock and the HTN uses instances of Block for generating the

planning problem. Those relevant blocks are also included in the planning problem because

Block subsumes UsedBlock (Block v UsedBlock).

Number of solution plans These are shown in relation to the number of blocks in DL

model in Figure 6.14. The number of solution plans for the HDL approach remains constant at

four in this experiment. However, in the HTN approach, it increases along a power series. The
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Figure 6.14.: The number of generated plans (logarithmic scale) in the blocks world domain.

following equations show the relation between the number of blocks n and number of solution

plans π:

πHTN (n) = 2(n− 2)!

πHDL(n) = 4

The HTN approach can decompose the plan to nine blocks in the DL model or five extra

blocks in addition to the relevant blocks. Why does this happen in the HTN approach? Is the

planning domain not properly modelled? The blocks world domain was carefully defined as

described in Section 5.1.2, it detects unused blocks and marks them with (dont-move(x)).

However, this is where the flaw of this domain lies. Let us analyse the problem as shown in

Figure 6.12 carefully. Two of the relevant blocks (b1 and b3) are already in the right place.

Hence, the solution plans should either start by picking block b2 or b4 as its first move. Before

these actions are performed, the domain tells the planning system to mark all blocks that do

not need to be moved, i.e. block b1 and b3. However, the ordering of this labelling is not

determined. As a result, the system will label them in any possible ordering (x!). This explains

the equation πHTN above. The factor two, in the equation above, is the number of possible

solution plans and the factor (n − 2) is the total number of blocks that need to be labelled as

dont-move.

Time to plan For the blocks world problem, the time to plan is shown in Figure 6.15. As

mentioned previously in Section 6.2, the HDL approach needs extra computation time for reas-
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Figure 6.15.: Computation time (logarithmic scale) in blocks world domain.

oning about the DL model. This can be clearly seen in this figure; for n < 8, or four additional

blocks, the computation time in the HDL approach is larger than that in the pure HTN approach.

Adding new blocks slightly increases the overall computation time. However, this time is rel-

atively small: given up to 50 blocks, the overall time is still two seconds. The average overall

time is 2.1 seconds. The average added time for each additional block in the model is 1 ms.

This is on average less than 0.2% of the overall computation time. Below are the equations that

relate the time to plan to the number of blocks in the model by applying regression:

tHTN (n) = 0.32n4 − 7.6n3 + 66n2 − 250n+ 350, σε = 1.08, (3 < n < 10)

tHDL(n) = 0.0043n+ 2, σε = 1.08, (3 < n < 151)

The pure HTN approach needs 19 s to extract the plan when five additional blocks are added

to the problem. It needs 104 s to plan with six additional blocks, however, it returns no plan due

to memory failure. The dotted line shows the pure HTN approach for 10 ≤ n ≤ 22, where the

planner did not return any solution plan. For n > 22, the JSHOP2 planner gave up completely.

Figure 6.16 shows the computation time for extracting one solution plan only in relation

to the number of blocks. The HDL computation time increases linearly with the number of

blocks. However, the computation time for the planning part in the HDL approach is steady,

which is shown by the dotted line in the figure. Thus, the additional blocks affect only the HDL

reasoning part. In the pure HTN approach, the computation time for n < 218 is steady similar

to the computation time for the planning part in the HDL approach. However, for n ≥ 218 the

computation time jumps from 0.75 s to 1.25 s. This is due to memory allocation in Java, which

allocates memory in blocks as needed by the program. This explains why the increase is not
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Figure 6.16.: Computation time (logarithmic scale) in the blocks world domain for planning one
solution.

linear but jumps from one value to another.

6.4. Concluding Remarks

Both experiments, that of the navigation and of the blocks world domains, have shown that

that HDL approach outperforms the HTN approach. The planning complexity depends on the

planning domain that includes the number of operators and heuristics of that domain. In the

blocks world domain the addition of a few additional blocks causes the blocks world problem to

become intractable. However, in the navigation domain the planner continued to perform when

several rooms were added. There is a trade off for using the HDL system, namely additional time

to reason about the model. This is shown clearly in the blocks world domain. Nevertheless, the

additional time is relatively small in comparison to the benefit of using the HDL system.

One should consider that in the experiments above, both approaches were generated by the

HDL system. It shows that the features and properties of the HTN planning system are inherited

by the HDL system. Thus, the problems that were faced by the HTN planning approach could

also appear in the HDL approach’s generated planning problem when the features are not chosen

carefully. However, the HDL system is more expressive than the HTN planning system. It can

capture the environment and model it comprehensively in DL and still produces a relatively

small planning problem, with the same planning-domain.
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In this chapter, the HDL system is discussed. A number of open questions and possible improve-

ments of some methods that have been presented in the previous chapters will be addressed.

7.1. HTN Blocks World Anomaly

HTN planning is a heuristic planning approach, where the knowledge for solving the problem is

modelled in the planning domain. The blocks world domain, as described in Chapter 5, shows

that, in the HTN planning’s implementation for this domain, six operators, eleven methods,

and two axioms are used. In contrast, the original STRIPS planning domain needs only four

operators. These additional methods and operators provide the HTN planner with a way to

decompose the planning problem.

One of the new methods, find-nomove, is defined for marking the blocks that are already

located in the desired position. Therefore, these blocks do not change during the rest of the

planning process. In a programmer’s mind, this method is necessary. However, in this section

it is shown that some other problem might arise due to this method. One might expect to get

an empty solution plan π = {} if w0 = s0, or in words the goal states are equal to the initial

states. Unfortunately, this is not the case in HTN planning, where the solution plan is not empty.

Therefore, we call this the HTN blocks world anomaly.

In Section 6.3.2.1, the results showed that one factor which impacts the number of solution

plans in the blocks world domain is the number of “non-moveable” blocks. If the initial state

is the same as the goal state, the number of solution plans in not empty but x! where x is the

number of non-moveable blocks. Therefore, the planner can easily get overwhelmed by the

increasing number of blocks in the planning problem.

This case shows that even though the HTN planning domain uses heuristics to decompose

the plan, it might not be free from flaws in the domain description. The method find-nomove

has the purpose to mark the blocks such that the planning algorithm does not use or move these

blocks. However, this method causes the problem resulting from the marking process.

The question now is how to solve this anomaly. At least three possible solutions are de-

scribed here. Firstly, change the heuristic used for the blocks world domain. However, this

means that either the methods, operators or axioms will have to change in order to avoid this

anomaly. Nevertheless, another problem might also arise with the new changes. Secondly, limit

the number of solution plans generated by HTN planner. JSHOP2 has an option to decompose

only one or n number of plans. In this way, the planning domain remains the same. However,
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an optimal plan may not be produced. Thirdly, using the HDL system. This approach is shown

in Section 6.3.2.1, where the risk of this anomaly can be reduced by filtering irrelevant blocks.

However, this anomaly may remain if the initial state and the goal state are the same. Some

new concepts to overcome this problem can be defined in the HDL system. For example, a

concept that checks whether some objects are already in the desired positions so that they may

be excluded from the planning problem. In this way, the planning domain can still remain the

same. Of course, another problem-specific approach can always be defined. Especially for this

anomaly, a naive solution would be to simply check the initial state and the goal state. If both

are identical, then the plan would immediately return without any further decomposition.

7.2. Inconsistencies in the Model

The consistency of the HDL model is necessary in order to produce a better solution plan for

the given problem. In the robotics domain, the environment may change from time to time. For

example, at one point in time a door is closed and at another point it may open. In a home or

office environment as well as in environments where other agents operate, the environment can

be changed by humans or by other agents. Thus, the inconsistency problem may appear more

often.

The main question is how to deal with inconsistency in the model. In HDL, there are two

kinds of inconsistencies. The first one is an inconsistency in the HDL model and the second one

is an inconsistency within the environment states as describes in the previous paragraph. The

first inconsistency should be handled by the DL reasoner as it provides the capability to perform

consistency checks on the model. If the model is inconsistent, the HDL system might not be

able to produce any planning problem for the planners.

The second inconsistency depends on the time. For a given moment in time, all the states

in the HDL model are valid. However, as the plan is generated and the robot starts to execute

the actions of the plan some states might become invalid. This problem is a difficult one where

it remains an open problem in our daily life. For example, we want to travel from one city to

another using several connecting trains. Although the connections are generated according to

the actual time tables, some events may transpire that could not be predicted in advance. As we

are already at the train station waiting for one train, the train could be delayed for some reason,

e.g. machine breakdown or doors jam. This event could make the travel plan invalid as we

could not achieve the goal of boarding the connecting train.

This problem could be minimised if the environment where the robot works is equipped

with an advanced sensory system that are connected to the HDL system. Any changes on the

environment would be reflected in the update of the HDL model. Thus, it minimises the incon-

sistencies in our model. Of course, the generated plan might still become invalid because it was

generated at time t where some states might change during plan execution. This situation is

unavoidable. However, due to the filtering capability of the HDL system, a new planning prob-
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lem could be generated with the more current states. Thus, an update of the solution plan could

replace the previous invalid plan. As the filtering process could limit the number of the states,

the planner will be able to compute the new plan in reasonable time.

The robot can also collect information from its own sensors. However, this sensory in-

formation usually contains noise, that can result in misinterpretation of the readings. One well-

developed approach, used to model the uncertainty of sensory input in the robotics domain, is

the probabilistic approach. Each reading in the model is accompanied by a probabilistic value.

Thus providing a level of certainty for each piece of information. The challenge is how to

combine this model of uncertainty with the DL model as DL reasoning is based on logic. A

work on extending Markov Logic to model a probabilistic distribution in relational domains is

presented in [JKB07]. This shows ongoing research towards combining logic reasoning and the

probabilistic approach.

Another approach to avoid this situation is by limiting the size of the planning problem.

As discussed in Section 3.4, two pick-and-place domains with different granularity at the level

of the plan actions could produce different plans for the same objectives. The partial pick-and-

place domain plans the actions at a higher level of abstraction than the complete pick-and-place

one. It neglects the real navigation of the robot and assumes that the robot can go to the place

where the object is located. Therefore, the generated plan gives a hint of the next step. As

the robot starts executing a navigate operator, it will ask the HDL system to generate plans for

navigating itself to the destination location. With this approach, the inconsistency is minimised

by expanding the plan as needed. Section 7.4 describes another possibility of handling this

problem in a plan-based-control approach for robotics.

7.3. Defining Usable Objects

Let us recall the pick-and-place domain in Section 3.4. The manipulable object could be an

edible object. Thus, the object could be used and subsequently disappear from the environment.

This could lead to the inconsistency problem, mentioned above. However, the question arises

of how this kind of objects should be modelled in the HDL. One possible way to avoid incon-

sistencies stemming from usable objects, is by not modelling these objects in the HDL system

but rather by instantiating them during the plan’s execution.

JSHOP2 can have a method or operator that calls outside functions through “call term”

[Ilg06]. Thus, a new operator “find-object(object)” could be defined in the HDL. This

method contains a call to the real search function on the robot. In the planning extraction

process it will instantiate the searched object in the planning states. In the execution process,

it will return true if the object is found and false otherwise. Therefore, the robot will know

whether the object is there or not.

However, this function does not explicitly mention where the object should be searched

for. In the pick-and-place domain, the concept of Container is defined as the place holder of
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some objects. This concept can be used for improving the search heuristic of the find-object

operator by adding the container as its parameter. The operator call is defined as find-object

(object, container). Thus, the search space is limited heuristically by searching only

certain places where the given objects are usually placed. E.g. apples or oranges are usually

placed in a fruit-basket.

Having object and container as parameters of find-object provides us with the possib-

ility to model the ontology in such a way that can benefit from these definitions. In addition, a

more advanced search that involves more than one container can also be defined, either as an

HTN planning method or operator, or as HDL concepts.

7.4. HDL and Plan-Based-Control Approaches for Robotics

Another planning approach for robotics is shown in [Bee02b], which is also called plan-based-

control for robotics. In this approach, the planner, executor and robot control mechanism are

tightly coupled into one coherent system. Thus, they share the same information between all

components. One major advantage with this system is how the executer communicates with the

planning part during the plan execution process. Any failure during this process can be handled

with the same system or in other words the plan recovery heuristic can be built into the system.

The HDL system extends the deliberative layer on the multi-layered control architecture.

Thus, it does not explicitly defined the executive component. Some efforts have to be taken

in order to map the method and operators to the executive components. These mappings can

also be done in the HDL models, where each of the methods and operators contain information

for the executive layer. It tells the executive layer, which robot’s command or function has to

be called in order to execute the corresponding operators or methods. One might also add a

robot’s specific information in these mapping. For example, the drive command on robot A

is performed by the function move and on robot B by the function move-robot. Hence, the

generated plans are not bound to one specific robot but may be used for other robot types. The

same efforts are also needed in order to recover from a plan execution failure, This is discussed

in more detail in Section 7.5.

There is a trade-off between the HDL and plan-based-control approach. In the plan-based-

control approach, the system is a coherent one that knows in advanced what are the methods

or operators performing and how to recover from a plan execution failure. In the HDL system,

these are not given by default but can be implemented for a specific executor or robot. Thus,

additional efforts have to be invested for this functionality. However, one major advantage is

that the HDL system is more generic. It can be used by any system where the generated plans can

be mapped to that specific system. Besides that, the HDL system can also be integrated into the

plan-based-control system as the highest deliberative layer. Hence, the system can benefit from

both systems by having a robust robot control system from the plan-based-control architecture

and an advanced deliberative layer from the HDL system.
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7.5. Plan Recovery from Failures

The execution of a plan by a mobile robot is not an easy task. Sometimes failures can arise

during execution. For example, while grasping an object, the robot might accidentally miss the

object, or the object may accidentally be dropped. The question is how to handle this failure.

Can this failure be modelled in the HDL system?

One might add information in some methods or operators where the probability of execu-

tion failure is quite high. For example, the method grasp-object has a high likelihood to fail.

Therefore, one might put this information as one of the method’s properties in addition to in-

formation on how many tries the robot should attempt before it should give up in case of failure.

The recovery procedure might also be programmed in the method’s property. This can be done

in a similar way to programming techniques by having “try” and “catch” clauses. With these

clauses, the programmer adds some code to be executed in the case that some known exception

occurs. Similarly, one might provide exception handling for the grasp-object method. E.g.

if the object slips, then the robot should move the arm to its home pose and then retry the object

detection procedure to test whether the object still graspable. This may be done in advance to

handle other such failure events.

An executive language like PLEXIL [BDE+07, DMP07] can have exception-handling code

for its method or operator descriptions. Thus, one might combine the information from the solu-

tion plan and the exception-handling procedures in the HDL system into the PLEXIL language.

This shows that although plan recovery is not originally supported by HTN planning, one might

use an executive language like PLEXIL and add the exception handling in some methods or

operators in the HDL system.

7.6. Operator Cost and Plan Optimisation

The JSHOP2 planner can return a number of possible solution plans. For each plan the cost of

the actions are shown. This cost function can be used to find the shortest plan. In the examples

shown in this work, the cost of each operator is not defined. Hence, the JSHOP2 planner assigns

the default value “1” for each operator. JSHOP2 does give the possibility to define the cost of

each operator explicitly.

In the HDL system, one can also use the cost value for the operators. This value can help

to optimise the generated plans. For example, in the partial pick-and-place domain the operator

navigate-op can benefit from the cost value. As the generated plans for the partial pick-and-

place domain currently assume that the navigate-op action costs only one, although it can

in-fact take several steps on the complete pick-and-place domain. So, changing the cost value

with a fixed number can provide a better result on the plan cost. Additional efforts to compute

the cost value dynamically might also increase the precision of the plan cost result. For this

problem, the cost value depends on the distance of the current robot position and the destination

position.
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Another benefit of having cost functions is shown in the following example. Assume the

robot has a basket that can have two or more objects in it. Thus, the different cost values for each

operator produce different optimisation of the solution plans. If the goal is to bring some objects

(a,b,c) that are located in an initial place to a destination place, the planner can determine that a

result that grasped two objects and put them in a robot’s basket before moving to the destination

place has less cost than separately grasping one object and moving to the destination.

7.7. HDL Versus Other DL-Planning Approaches

In other approaches presented in [Gil05], the planning system is integrated with the DL system.

What are the trade-offs between those approaches and the HDL system? Why does the HDL

approach separate the planner and the DL reasoner? There are several reasons for the design of

the HDL system and trade-offs between the HDL approach and other DL-planning approaches.

The first reason is performance. Moving or defining the whole planning system into the DL

reasoning system could increase the time needed for inferring the model. As shown in Section

6.1, the complexity of the DL reasoning system is better than the HTN planner’s which is semi-

intractable (see Table 6.1). Thus, integrating the planning system with the DL reasoning system

will increase the reasoning complexity of the overall systems. As the main purpose of DL is to

deduce facts based on its model, and the planning system’s purpose is to search for the actions

which lead to the goal state. Having both approaches in one system means that the reasoning

system has to deduce the current facts and also expand those facts for plan search purposes.

As a result, the overall system will no longer be tractable. In the HDL system, there are two

reasoning parts that work independently and separately. The DL reasoning system is responsible

for generating the current states for the planning problem. The HTN planner then decomposes

the planning problem into solution plans. Thus, the overall worst case complexity is not worse

than the HTN planning system’s. It has already been shown in the example that choosing the

right concept in the DL model for the planning problem can reduce planning complexity.

The performance reason is also a reason why the planning domain is modelled down to the

methods and operators only. The DL reasoners would also be able to deduce the atomic literals

of the planning operators and then reason the planning taxonomies. However, this approach will

increase the reasoning complexity for the DL reasoner while gaining fewer advantages. With our

approach, the generated planning domains are valid and the initial states can also be reasoned

based on these domains. Besides that, modelling the atomic literals of a planning operator will

bind the planning domain to a specific kind of planning system. With the current approach of

the HDL system, one might use another planning system by changing the actual planning code

in the model.

The second reason is compatibility and extensibility. Although the surveyed works in

[Gil05] have used DL, they have not been incorporated in state-of-the-art planning algorithms.

This shows that integrating the most recent planning algorithms in the DL reasoning system
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is not a trivial one. As previously mentioned, it might cause the complexity of the system to

become intractable. In the HDL approach, the separation between DL reasoning and HTN plan-

ning gives the flexibility to incorporate any other planning systems (in this case HTN planning).

The HDL system produces a planning problem in planner specific syntax, which is defined in

the methods or operators property. If another planning system which uses different syntax than

SHOP2 is used, one can add properties for supporting the new system. Therefore, regardless

the planning system the DL model is still the same and will produce a valid planning problem

for the new planners. Similar to the DL reasoners, HDL can use several reasoning systems as

mentioned in Section 2.2.2.

141





8. Conclusions

This chapter concludes this work and provides a view into possible future works.

8.1. Summary

In this work, a novel approach for integrating DL reasoning and HTN planning is presented. The

Hybrid Deliberative Layer (HDL) solves the problem that an intelligent agent faces in dealing

with a large amount of information which may or may not be useful in generating a plan to

achieve a goal. The information, that an agent may need, is acquired and stored in the DL

model. Thus, the HDL is used as the main knowledge base system for the agent.

HTN planning is modelled as concepts in DL terminologies (details in Section 2.4.2). The

HDL system uses the knowledge to generate the planning domain automatically for the given

problem. The DL reasoner reasons about the consistency of the planning domain. Thus, the

generated planning problem is valid and filled with the actual information from the DL model.

Algorithms, developed by the author and presented in Section 2.5.1, for generating the HTN

planning problems are applied to the inferred instances of the ABox. Thus, only the relevant

instances for the given planning problem are included as planning facts. Advanced concepts of

the environment can also be modelled for filtering the planning problem further. These concepts

reduce the size of the planning problem because these exclude irrelevant instances.

In this work, the HDL system is designed and implemented using an off-the-shelf HTN

planner, namely JSHOP2, as its planning system and Pellet as its DL reasoner. Other reasoning

systems and planning systems can also be incorporated within the HDL system. The HTN plan-

ner and DL reasoner are fused into a coherent system, such that the overall system gains from

the benefits of both systems.

Some robotics domains are modelled and implemented using the HDL system (see Chapter

3). These domains are “navigation domain” and “pick-and-place domain”. Two possible im-

plementations for the pick-and-place domain are presented, namely the partial and complete

pick-and-place domains. These domains show that the HDL system can have additional hier-

archy on its model thus providing additional abstraction levels than the HTN planning system.

A case study of “Johnny Jackanapes”, a mobile manipulator, for solving one task in the Rob-

oCup@Home competition is also discussed in Chapter 4. As the HDL system is useable not

only in the robotics domain, but also in the AI domain, a blocks world domain is modelled and

solved using the HDL system (Chapter 5). Several different blocks world problems are discussed

to highlight the advantages of the HDL system.

143



8. Conclusions

Two case studies are presented to benchmark the complexity of the HDL system and the

HTN planning system in Section 6.3. These studies are the navigation domain with an increasing

number of rooms and the blocks world domain with an increasing number of blocks. The HDL

system generates a smaller planning problem than the pure HTN approach, due to the limitation

on its expressivity. In the HDL approach the additional rooms or blocks are modelled in DL but

these are excluded from the planning problem. The complexity of the HDL system is analysed

and discussed in Chapter 6. The overall complexity will not be worse than that of the HTN

planning system as it is the most computationally complex component in the HDL system.

8.2. Strengths and Limitations

The strengths of the HDL system are its expressiveness, compatibility and expandability. It

enables the robotic system to have a deliberative layer that can model knowledge of a rich en-

vironment. In addition, it can still have state-of-the-art planning systems as its planner. Thus,

it can improve its overall performance. The HDL system is compatible with the other DL reas-

oning systems and HTN planning systems. One can change these components with the others if

necessary. This also improves the expandability of the HDL system, where multiple reasoners

or planners can be used for solving the same problems.

The limitations of the HDL system is the worst case complexity it inherits from the most

computationally complex component, in this implementation, the HTN planner. However, it

can limit the complexity by defining advanced concepts in DL such that fewer instances are

involved in the planning problem. Besides that, the HDL system generates sequences of actions

symbolically. Thus, it serves only as a hint for the robots. In order to execute these actions, an

executive layer has to translate the actions into robot commands and monitor their execution.

8.3. Future Work

The HDL system can be further enhanced. In this section, some methods to do just that are

presented.

8.3.1. Affordance-Based Planning

In the case study “Johnny Jackanapes”, the concepts using affordance are shown as examples.

For example, an object with a small fingerprint and less than 500 g is a graspable and lift-able

object, thus it can be manipulated by the robot. Affordance depends on the actor or robot, so

an object might be graspable for one manipulator but not for another, e.g. a robot which can

lift metallic objects, because it uses magnet to lift up the object would not be able to grasp an

object made only from plastic.

Although in the case study, affordance-based planning is shown, it still needs further re-

search. How the affordance is modelled in DL is an example of questions to be answered by
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such research. In an EU funded project, MACS [RPS+08], affordance was the main research

topic. They tried to figure out how the robot can learn the affordances and use them to plan fur-

ther actions. Another aspect is how the affordance is usable by the other robots. For example,

in the case study some objects are defined as “drinkable”, although the robot cannot drink but

it can use the “drinkable” (affordance for human being) to filter out irrelevant objects. The task

was to bring some drink to the guest, thus, it should deduce that “some drink” means instances

of ManipulableObject which has the “drinkable” as its affordance property.

8.3.2. Using Other HTN Planning Implementations

In the implementation presented here, the HTN planner is JSHOP2. There are some other HTN

planners available. Thus, implementations which use other HTN planners could be explored as

future work. In order to support other HTN planners, an additional property can be added to

the methods or operators’ instances. This property contains the code for the given methods or

operators in the new planner syntax.

Similarly, a planning system other than HTN planning can be implemented, either by de-

fining a new planning concept in the DL model or translating the current HTN planning into

another planning syntax. For example, an approach to translate STRIPS planning to HTN is

presented in [EHN94b].

8.3.3. Collocate the Planner Using Web-Service

OWL-DL was developed for semantic web applications. Thus, it supports the standard syntax

that is used by the world wide web protocol. The model written in this form can be transferred

through the HTTP protocol without any problem. Thus, the HDL system can be implemented

on a dedicated machine that has more than enough resources for serving more than one client.

Thus, multiple robots can work with the same model and share information with the others using

a centralised HDL system as some robots might have limited resources for high computational

load.

In [HH05], the author presented a planner web-services. The system runs several planning

systems on its machine and receives requests from the clients. The clients’ requests are not only

for one particular planning system but can be for multiple planning systems that are offered by

the service. This service can also be integrated with the HDL system to improve the scalability

of the system.

8.3.4. Application in Plan-Based Robot Control

The main motivation for this work is the mobile manipulation domain. In Chapters 3 and 4, the

robotics domains are presented. The HDL system can use the information from the environment

and generate solution plans for these domains. However, there is still some work to be done

in integrating the results with the real robots. Recall Figure 2.2, the HDL system it the light
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green box on the top right corner. There are two main connections to the robot in order to have

the system integrated. These are the sensor to ontology anchoring and the scheduler/executor

module.

Automatic insertion of the perception data of a robot into the KB has to be addressed.

This ensures that the knowledge within the KB remains current and up to date. The sensory

information has to be processed and asserted into the HDL model. This is not a trivial task,

because assertion means to insert instances of objects in the real world into the model. Two main

problems are faced here; firstly, how to capture the model of the environment to the conceptual

model in DL TBox, and secondly, how to group or recognise an object and ground it to the model

in the DL ABox.

The sequencing layer which controls plan execution has to be implemented. The sequen-

cing layer must not only coordinate the execution of actions within a plan, but it must handle

exceptions and failures encountered during the plan’s execution. In the event that a failure oc-

curs, a heuristic such as trying to execute the next best plan or re-planning may be used. In

addition, the scheduler might also be needed for controlling mobile manipulator because it has

several resources that can run in parallel. For example, the robot can move its arm while it

moves with its locomotion drive. Therefore, a scheduler has to make sure that simply moving

the arm will not hit any obstacle. This can be seen as coordination problem.

8.3.5. Using DL Inference Engine for Plan Repair

The HDL system uses the DL inference engine to reason about the plan taxonomies in order to

generate smaller planning problems. However, the DL inference engine can be used for other

purposes in order to improve the HDL system. One of the important aspects is plan repair in

case of any failure during execution. In Section 7.5, another approach for handling plan failure

is proposed by implementing the exception handling during plan execution. However, this

approach might not be successfully handled by the system if the current action is not repairable.

For example, the robot is supposed to grasp a cola can, but it accidentally misses the object

and makes the object fall down. In the case a simple gripper, like that of our robot Johnny

Jackanapes, the grasp action cannot be performed due to the displacement of the can. After

several tries, the execution layer will give up and ask for a new plan. However, in such a

technical failure, the planner might come up with other plans which might still contain the

action to grasp the same cola can.

We can use the DL inference engine for reasoning about the model in order to repair plan

failure. In some cases, the methods and operators can be modelled redundantly. Thus, it is

possible to achieve the same task using different methods or operators. Having this informa-

tion modelled in the DL, the HDL system can then use its reasoner to generate new plans with

alternative methods or operators.
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A. Generated Planning Domain

In this appendix the generated planning domain and problem descriptions in SHOP2 syntax are

listed for the discussed problems. These outputs are generated automatically by the HDL system.

In addition, the solution plans for selected problems are also shown.

A.1. Navigation Domain

The details of the navigation domain are presented in Section 3.2 on page 42. Two examples are

presented in this section; the first example is from an instance of a Planning-Domain concept

and the second example is from an instance of a Method concept.

A.1.1. An Example from the Planning-Domain Instance

Listing A.1 shows the generated planning domain description by choosing “navigation-domain”

from the DL model. The navigation-domain is an instance of Planning-Domain concept.

Listing A.1: Planning domain description for “navigation-domain”.

1 ; JSHOP2 Planning Domain Description

; created on: Tue Dec 09 11:20:15 CET 2008

3 ; generated from: http://mas.b-it-center.de/ontologies/planner....

owl#

5 (defdomain navigation_domain (

; http://mas.b-it-center.de/ontologies/planner.owl#drive-...

robot

7 (:operator (!drive-robot ?robot ?loc-from ?loc-to)

((at ?robot ?loc-from))

9 ((at ?robot ?loc-from))

((at ?robot ?loc-to))

11 )

; http://mas.b-it-center.de/ontologies/planner.owl#unvisit

13 (:operator (!unvisit ?waypoint)

()

15 ((visited ?waypoint))

()

17 )

; http://mas.b-it-center.de/ontologies/planner.owl#visit

19 (:operator (!visit ?waypoint)
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()

21 ()

((visited ?waypoint))

23 )

25 ; http://mas.b-it-center.de/ontologies/planner.owl#navigate

(:method (navigate ?robot ?from ?to)

27 Case1 ((at ?robot ?to))

()

29 Case2 ((adjacentto ?from ?to))

((!drive-robot ?robot ?from ?to))

31 Case3 ((room ?room)(adjacentto ?from ?room)(not (visited...

?room)))

((!drive-robot ?robot ?from ?room)

33 (!visit ?room)

(navigate ?robot ?room ?to)

35 (!unvisit ?room))

)

37 ; http://mas.b-it-center.de/ontologies/planner.owl#navigate2

(:method (navigate ?robot ?to)

39 ((at ?robot ?from))

((!visit ?from)(navigate ?robot ?from ?to)(!unvisit ?from...

))

41 )

)

43 )

Listing A.2 shows the generated planning problem description for the planning domain “navigation-

domain” shown in Listing A.1. The planning objective is “(navigate robot1 room-6)”.

Listing A.2: Planning problem description for “navigation-domain”.

1 ; JSHOP2 Planning Problem Description

; created on: Tue Dec 09 11:20:36 CET 2008

3 ; generated for: navigation_domain

5 (defproblem problem_navigation_domain_1228818036430 ...

navigation_domain

(

7 (adjacentto corridor-1 corridor-2)

(at robot1 room-1)

9 (adjacentto room-11 corridor-3)

(room room-6)

11 (adjacentto corridor-1 room-2)

(adjacentto corridor-3 corridor-2)

13 (adjacentto room-1 corridor-1)

(room room-9)

15 (room room-11)

(room room-1)
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17 (adjacentto corridor-1 room-5)

(adjacentto corridor-2 corridor-3)

19 (adjacentto room-6 corridor-1)

(adjacentto corridor-1 room-3)

21 (at robot2 room-4)

(adjacentto corridor-3 room-10)

23 (adjacentto room-11 room-9)

(adjacentto corridor-1 room-6)

25 (adjacentto corridor-1 room-4)

(adjacentto room-6 room-4)

27 (room corridor-1)

(adjacentto room-9 room-11)

29 (adjacentto corridor-2 corridor-1)

(adjacentto corridor-3 room-7)

31 (room corridor-2)

(adjacentto corridor-3 room-11)

33 (adjacentto corridor-3 room-8)

(adjacentto corridor-1 room-1)

35 (adjacentto corridor-3 room-12)

(room room-3)

37 (room corridor-3)

(adjacentto room-9 room-7)

39 (adjacentto corridor-3 room-9)

(adjacentto room-9 corridor-3)

41 (adjacentto room-3 corridor-1)

)

43 (

(navigate robot1 room-6)

45 )

)

Listing A.3 shows the planning solution for the planning domain in Listing A.1 and problem in

Listing A.2.

Listing A.3: Solution plan for “navigation-domain”.

Plan cost: 6.0

2

(!visit room-1)

4 (!drive-robot robot1 room-1 corridor-1)

(!visit corridor-1)

6 (!drive-robot robot1 corridor-1 room-6)

(!unvisit corridor-1)

8 (!unvisit room-1)

--------------------

10

Time Used = 0.0090

163



A. Generated Planning Domain

A.1.2. An Example from the Method Instance

Listing A.4 shows the generated planning domain description by choosing “navigate”, an

instance of the Method concept, from the DL model.

Listing A.4: Planning domain description for “navigate”.

1 ; JSHOP2 Planning Domain Description

; created on: Tue Dec 09 11:24:09 CET 2008

3 ; generated from: http://mas.b-it-center.de/ontologies/planner....

owl#

5 (defdomain navigate_domain (

; http://mas.b-it-center.de/ontologies/planner.owl#drive-...

robot

7 (:operator (!drive-robot ?robot ?loc-from ?loc-to)

((at ?robot ?loc-from))

9 ((at ?robot ?loc-from))

((at ?robot ?loc-to))

11 )

; http://mas.b-it-center.de/ontologies/planner.owl#visit

13 (:operator (!visit ?waypoint)

()

15 ()

((visited ?waypoint))

17 )

; http://mas.b-it-center.de/ontologies/planner.owl#unvisit

19 (:operator (!unvisit ?waypoint)

()

21 ((visited ?waypoint))

()

23 )

25 ; http://mas.b-it-center.de/ontologies/planner.owl#navigate

(:method (navigate ?robot ?from ?to)

27 Case1 ((at ?robot ?to))

()

29 Case2 ((adjacentto ?from ?to))

((!drive-robot ?robot ?from ?to))

31 Case3 ((room ?room)(adjacentto ?from ?room)(not (visited...

?room)))

((!drive-robot ?robot ?from ?room)

33 (!visit ?room)

(navigate ?robot ?room ?to)

35 (!unvisit ?room))

)

37 )

)
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Listing A.5 shows the generated planning problem for the planning domain “navigate” shown

in Listing A.4. The planning objective is “(navigate robot1 room-1 room-6)”.

Listing A.5: Planning problem description for “navigate”.

; JSHOP2 Planning Problem Description

2 ; created on: Tue Dec 09 11:24:28 CET 2008

; generated for: navigate_domain

4

(defproblem problem_navigate_domain_1228818268952 ...

navigate_domain

6 (

(adjacentto corridor-3 room-10)

8 (adjacentto corridor-1 room-6)

(at robot1 room-1)

10 (room room-6)

(adjacentto room-3 corridor-1)

12 (room room-3)

(room room-11)

14 (room room-1)

(at robot2 room-4)

16 (adjacentto corridor-3 corridor-2)

(adjacentto corridor-3 room-9)

18 (adjacentto room-1 corridor-1)

(room corridor-2)

20 (adjacentto corridor-1 corridor-2)

(room corridor-3)

22 (adjacentto corridor-3 room-11)

(adjacentto corridor-1 room-2)

24 (adjacentto room-11 room-9)

(adjacentto room-9 corridor-3)

26 (adjacentto corridor-1 room-1)

(adjacentto room-11 corridor-3)

28 (adjacentto room-6 corridor-1)

(adjacentto corridor-3 room-8)

30 (adjacentto room-9 room-11)

(adjacentto corridor-2 corridor-3)

32 (adjacentto room-6 room-4)

(room corridor-1)

34 (adjacentto corridor-1 room-3)

(adjacentto corridor-3 room-12)

36 (adjacentto corridor-2 corridor-1)

(adjacentto corridor-1 room-4)

38 (room room-9)

(adjacentto corridor-1 room-5)

40 (adjacentto corridor-3 room-7)

(adjacentto room-9 room-7)

42 )
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(

44 (navigate robot1 room-1 room-6)

)

46 )

Listing A.6 shows the planning solution for the planning domain in Listing A.4 and problem in

Listing A.5.

Listing A.6: Solution plan for “navigate”.

Plan cost: 4.0

2

(!drive-robot robot1 room-1 corridor-1)

4 (!visit corridor-1)

(!drive-robot robot1 corridor-1 room-6)

6 (!unvisit corridor-1)

--------------------

8

Time Used = 0.0090

A.2. Pick-and-Place Domain

The details of the pick-and-place domain are presented in Section 3.4 on page 55. Two domains

are presented in this section; the first domain shows the partial pick-and-place domain and the

second one shows the complete pick-and-place domain.

A.2.1. Partial Pick-and-Place Domain

Listing A.7 shows the planning domain description generated by choosing “moveobject2_p”

from the DL model. The moveobject2_p is an instance of the Method concept.

Listing A.7: Planning domain description for “moveobject2_p”.

1 ; JSHOP2 Planning Domain Description

; created on: Tue Dec 09 17:30:46 CET 2008

3 ; generated from: http://mas.b-it-center.de/ontologies/planner....

owl#

5 (defdomain moveobject2_p_domain (

; http://mas.b-it-center.de/ontologies/planner.owl#navigate-...

op

7 (:operator (!navigate ?robot ?loc-to)

((at ?robot ?loc-from))

9 ((at ?robot ?loc-from))

((at ?robot ?loc-to))

11 )
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; http://mas.b-it-center.de/ontologies/planner.owl#put-object

13 (:operator (!put-object ?robot ?object ?to-container)

((at-dexterous-workspace ?robot ?to-container)

15 (has-object ?robot)(at ?object ?robot))

((has-object ?robot)(at ?object ?robot))

17 ((at ?object ?to-container))

)

19 ; http://mas.b-it-center.de/ontologies/planner.owl#drive-to-...

dexterous-workspace

(:operator (!drive-to-dexterous-workspace ?robot ?to-...

container ?in-room)

21 ((at ?robot ?in-room)(at ?to-container ?in-room))

()

23 ((at-dexterous-workspace ?robot ?to-container))

)

25 ; http://mas.b-it-center.de/ontologies/planner.owl#drive-away...

-f-dex-workspace

(:operator (!drive-away-from-dex-workspace ?robot ?from-...

container)

27 ()

((at-dexterous-workspace ?robot ?from-container))

29 ()

)

31 ; http://mas.b-it-center.de/ontologies/planner.owl#pickup-...

object

(:operator (!pickup-object ?robot ?object ?from-container)

33 ((at-dexterous-workspace ?robot ?from-container)

(not (has-object ?robot)))

35 ((at ?object ?from-container)(:protection (at-dexterous...

-workspace ?robot ?from-container)))

((has-object ?robot)(at ?object ?robot))

37 )

39 ; http://mas.b-it-center.de/ontologies/planner.owl#...

moveobject2_p

(:method (move-object ?robot ?object ?to-container)

41 ((at ?object ?from-container))

((move-object ?robot ?object ?from-container ?to-...

container))

43 )

; http://mas.b-it-center.de/ontologies/planner.owl#...

getobject_p

45 (:method (get-object ?robot ?object ?from-container)

Case1 ((at ?object ?robot))

47 ((!drive-away-from-dex-workspace ?robot ?from-container...

))

Case2 ((at-dexterous-workspace ?robot ?from-container))
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49 ((!pickup-object ?robot ?object ?from-container)(get-...

object ?robot ?object ?from-container))

Case3 ((not (at-dexterous-workspace ?robot ?from-...

container))(at ?from-container ?room)(at ?robot ?...

room))

51 ((!drive-to-dexterous-workspace ?robot ?from-container ...

?room)(get-object ?robot ?object ?from-container))

Case4 ((not (at-dexterous-workspace ?robot ?from-...

container))(at ?from-container ?room)(not (at ?...

robot ?room)))

53 ((!navigate ?robot ?room)(get-object ?robot ?object ?...

from-container))

)

55 ; http://mas.b-it-center.de/ontologies/planner.owl#...

moveobject_p

(:method (move-object ?robot ?object ?from-container ?to-...

container)

57 Case1 ((not (at ?object ?robot))(at ?object ?from-...

container))

((get-object ?robot ?object ?from-container)(move-...

object ?robot ?object ?from-container ?to-container...

))

59 Case2 ((at ?object ?robot))

((put-object ?robot ?object ?to-container))

61 )

; http://mas.b-it-center.de/ontologies/planner.owl#...

putobject_p

63 (:method (put-object ?robot ?object ?to-container)

Case1 ((not (at ?object ?robot))

65 ) ()

Case2 ((at ?object ?robot)(at-dexterous-...

workspace ?robot ?to-container))

67 ((!put-object ?robot ?object ?to-container))

Case3 ((at ?object ?robot)(not (at-dexterous-...

workspace ?robot ?to-container))(at ?to-...

container ?room)(at ?robot ?room))

69 ((!drive-to-dexterous-workspace ?robot ?to-...

container ?room)(put-object ?robot ?object...

?to-container))

Case4 ((at ?object ?robot)(not (at-dexterous-...

workspace ?robot ?to-container))(at ?to-...

container ?room)(not (at ?robot ?room)))

71 ((!navigate ?robot ?room)(put-object ?robot ?...

object ?to-container))

)

73 )

)
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Listing A.8 shows the generated planning problem for the planning domain “moveobject2_p”

shown in Listing A.7. The planning objective is

“(move-object robot1 orange1 basket-9)”.

Listing A.8: Planning problem description for “moveobject2_p”.

; JSHOP2 Planning Problem Description

2 ; created on: Tue Dec 09 17:31:05 CET 2008

; generated for: moveobject2_p_domain

4

(defproblem problem_moveobject2_p_domain_1228840265868 ...

moveobject2_p_domain

6 (

(at basket-1 room-1)

8 (at basket-9 room-9)

(at apple1 basket-1)

10 (at orange2 basket-11)

(at orange3 basket-11)

12 (at basket-3 room-3)

(at trash-6 room-6)

14 (at robot1 room-1)

(at apple3 basket-1)

16 (at apple2 basket-1)

(at basket-11 room-11)

18 (at orange1 basket-11)

(at robot2 room-4)

20 )

(

22 (move-object robot1 orange1 basket-9)

)

24 )

Listing A.9 shows the planning solution for the planning domain in Listing A.7 and problem in

Listing A.8.

Listing A.9: Solution plan for “moveobject2_p”.

Plan cost: 7.0

2

(!navigate robot1 room-11)

4 (!drive-to-dexterous-workspace robot1 basket-11 room-11)

(!pickup-object robot1 orange1 basket-11)

6 (!drive-away-from-dex-workspace robot1 basket-11)

(!navigate robot1 room-9)

8 (!drive-to-dexterous-workspace robot1 basket-9 room-9)

(!put-object robot1 orange1 basket-9)

10 --------------------
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12 Time Used = 0.019

A.2.2. Complete Pick-and-Place Domain

Listing A.10 shows the planning domain description generated by choosing “moveobject2_c”

from the DL model. The moveobject2_c is an instance of the Method concept.

Listing A.10: Planning domain description for “moveobject2_c”.

; JSHOP2 Planning Domain Description

2 ; created on: Tue Dec 09 21:02:45 CET 2008

; generated from: http://mas.b-it-center.de/ontologies/planner....

owl#

4

(defdomain moveobject2_c_domain (

6 ; http://mas.b-it-center.de/ontologies/planner.owl#drive-...

robot

(:operator (!drive-robot ?robot ?loc-from ?loc-to)

8 ((at ?robot ?loc-from))

((at ?robot ?loc-from))

10 ((at ?robot ?loc-to))

)

12 ; http://mas.b-it-center.de/ontologies/planner.owl#visit

(:operator (!visit ?waypoint)

14 ()

()

16 ((visited ?waypoint))

)

18 ; http://mas.b-it-center.de/ontologies/planner.owl#put-object

(:operator (!put-object ?robot ?object ?to-container)

20 ((at-dexterous-workspace ?robot ?to-container)

(has-object ?robot)(at ?object ?robot))

22 ((has-object ?robot)(at ?object ?robot))

((at ?object ?to-container))

24 )

; http://mas.b-it-center.de/ontologies/planner.owl#drive-to-...

dexterous-workspace

26 (:operator (!drive-to-dexterous-workspace ?robot ?to-...

container ?in-room)

((at ?robot ?in-room)(at ?to-container ?in-room))

28 ()

((at-dexterous-workspace ?robot ?to-container))

30 )

; http://mas.b-it-center.de/ontologies/planner.owl#unvisit

32 (:operator (!unvisit ?waypoint)

()

34 ((visited ?waypoint))

()
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36 )

; http://mas.b-it-center.de/ontologies/planner.owl#drive-away...

-f-dex-workspace

38 (:operator (!drive-away-from-dex-workspace ?robot ?from-...

container)

()

40 ((at-dexterous-workspace ?robot ?from-container))

()

42 )

; http://mas.b-it-center.de/ontologies/planner.owl#pickup-...

object

44 (:operator (!pickup-object ?robot ?object ?from-container)

((at-dexterous-workspace ?robot ?from-container)

46 (not (has-object ?robot)))

((at ?object ?from-container)(:protection (at-dexterous...

-workspace ?robot ?from-container)))

48 ((has-object ?robot)(at ?object ?robot))

)

50

; http://mas.b-it-center.de/ontologies/planner.owl#...

getobject_c

52 (:method (get-object ?robot ?object ?from-container)

Case1 ((at ?object ?robot))

54 ((!drive-away-from-dex-workspace ?robot ?from-container...

))

Case2 ((at-dexterous-workspace ?robot ?from-container))

56 ((!pickup-object ?robot ?object ?from-container)(get-...

object ?robot ?object ?from-container))

Case3 ((not (at-dexterous-workspace ?robot ?from-...

container))(at ?from-container ?room)(at ?robot ?...

room))

58 ((!drive-to-dexterous-workspace ?robot ?from-container ...

?room)(get-object ?robot ?object ?from-container))

Case4 ((not (at-dexterous-workspace ?robot ?from-...

container))(at ?from-container ?room)(not (at ?...

robot ?room)))

60 ((navigate ?robot ?room)(get-object ?robot ?object ?...

from-container))

)

62 ; http://mas.b-it-center.de/ontologies/planner.owl#navigate

(:method (navigate ?robot ?from ?to)

64 Case1 ((at ?robot ?to))

()

66 Case2 ((adjacentto ?from ?to))

((!drive-robot ?robot ?from ?to))

68 Case3 ((room ?room)(adjacentto ?from ?room)(not (visited...

?room)))

((!drive-robot ?robot ?from ?room)
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70 (!visit ?room)

(navigate ?robot ?room ?to)

72 (!unvisit ?room))

)

74 ; http://mas.b-it-center.de/ontologies/planner.owl#...

moveobject_c

(:method (move-object ?robot ?object ?from-container ?to-...

container)

76 Case1 ((not (at ?object ?robot))(at ?object ?from-...

container))

((get-object ?robot ?object ?from-container)(move-...

object ?robot ?object ?from-container ?to-container...

))

78 Case2 ((at ?object ?robot))

((put-object ?robot ?object ?to-container))

80 )

; http://mas.b-it-center.de/ontologies/planner.owl#...

moveobject2_c

82 (:method (move-object ?robot ?object ?to-container)

((at ?object ?from-container))

84 ((move-object ?robot ?object ?from-container ?to-...

container))

)

86 ; http://mas.b-it-center.de/ontologies/planner.owl#navigate2

(:method (navigate ?robot ?to)

88 ((at ?robot ?from))

((!visit ?from)(navigate ?robot ?from ?to)(!unvisit ?from...

))

90 )

; http://mas.b-it-center.de/ontologies/planner.owl#...

putobject_c

92 (:method (put-object ?robot ?object ?to-container)

Case1 ((not (at ?object ?robot))

94 ) ()

Case2 ((at ?object ?robot)(at-dexterous-...

workspace ?robot ?to-container))

96 ((!put-object ?robot ?object ?to-container))

Case3 ((at ?object ?robot)(not (at-dexterous-...

workspace ?robot ?to-container))(at ?to-...

container ?room)(at ?robot ?room))

98 ((!drive-to-dexterous-workspace ?robot ?to-...

container ?room)(put-object ?robot ?object...

?to-container))

Case4 ((at ?object ?robot)(not (at-dexterous-...

workspace ?robot ?to-container))(at ?to-...

container ?room)(not (at ?robot ?room)))

100 ((navigate ?robot ?room)(put-object ?robot ?...

object ?to-container))
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)

102 )

)

Listing A.11 shows the planning problem generated for the planning domain “moveobject2_c”

shown in Listing A.10. The planning objective is

“(move-object robot1 orange1 basket-9)”.

Listing A.11: Planning problem description for “moveobject2_c”.

1 ; JSHOP2 Planning Problem Description

; created on: Tue Dec 09 21:03:16 CET 2008

3 ; generated for: moveobject2_c_domain

5 (defproblem problem_moveobject2_c_domain_1228852996332 ...

moveobject2_c_domain

(

7 (adjacentto corridor-3 room-7)

(at trash-6 room-6)

9 (adjacentto room-3 corridor-1)

(adjacentto corridor-1 room-3)

11 (adjacentto room-9 room-11)

(room room-9)

13 (at apple3 basket-1)

(room corridor-3)

15 (room room-1)

(adjacentto room-11 room-9)

17 (room corridor-1)

(adjacentto room-6 corridor-1)

19 (adjacentto corridor-2 corridor-3)

(adjacentto room-9 corridor-3)

21 (at basket-1 room-1)

(adjacentto room-9 room-7)

23 (adjacentto corridor-2 corridor-1)

(adjacentto corridor-1 corridor-2)

25 (at orange1 basket-11)

(adjacentto corridor-3 room-9)

27 (adjacentto room-11 corridor-3)

(at orange3 basket-11)

29 (adjacentto corridor-3 corridor-2)

(adjacentto corridor-1 room-4)

31 (at apple1 basket-1)

(at robot2 room-4)

33 (adjacentto room-6 room-4)

(adjacentto corridor-1 room-5)

35 (room corridor-2)

(at robot1 room-1)

37 (adjacentto room-1 corridor-1)
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(at basket-9 room-9)

39 (adjacentto corridor-1 room-2)

(at apple2 basket-1)

41 (at orange2 basket-11)

(adjacentto corridor-3 room-11)

43 (adjacentto corridor-3 room-10)

(room room-6)

45 (at basket-11 room-11)

(adjacentto corridor-1 room-6)

47 (adjacentto corridor-1 room-1)

(adjacentto corridor-3 room-8)

49 (at basket-3 room-3)

(adjacentto corridor-3 room-12)

51 (room room-11)

(room room-3)

53 )

(

55 (move-object robot1 orange1 basket-9)

)

57 )

Listing A.12 shows the planning solution for the planning domain in Listing A.10 and problem

in Listing A.11.

Listing A.12: Solution plan for “moveobject2_c”.

1 Plan cost: 20.0

3 (!visit room-1)

(!drive-robot robot1 room-1 corridor-1)

5 (!visit corridor-1)

(!drive-robot robot1 corridor-1 corridor-2)

7 (!visit corridor-2)

(!drive-robot robot1 corridor-2 corridor-3)

9 (!visit corridor-3)

(!drive-robot robot1 corridor-3 room-11)

11 (!unvisit corridor-3)

(!unvisit corridor-2)

13 (!unvisit corridor-1)

(!unvisit room-1)

15 (!drive-to-dexterous-workspace robot1 basket-11 room-11)

(!pickup-object robot1 orange1 basket-11)

17 (!drive-away-from-dex-workspace robot1 basket-11)

(!visit room-11)

19 (!drive-robot robot1 room-11 room-9)

(!unvisit room-11)

21 (!drive-to-dexterous-workspace robot1 basket-9 room-9)

(!put-object robot1 orange1 basket-9)

23 --------------------
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25 Time Used = 0.051

A.3. Johnny Jackanapes Domain

The details of the Johnny Jackanapes domain are presented in Section 4.3.2 on page 90. Two

possible solutions are presented in this work; the first solution is extracted using the complete

pick-and-place domain and the second one comes about by customising the pick-and-place

domain for Johnny’s tasks.

A.3.1. Solution Using Pick-and-Place Domain

Listing A.13 shows the planning problem generated for Johnny’s task using the planning do-

main “moveobject2_c” shown in Listing A.10. The planning objectives are “(move-object

johnny coke armchair)” and “(navigate johnny exit)”.

Listing A.13: Planning problem description for “moveobject2_c” in Johnny’s example.

1 ; JSHOP2 Planning Problem Description

; created on: Mon Apr 13 19:13:54 CEST 2009

3 ; generated for: moveobject2_c_domain

5 (defproblem problem_moveobject2_c_domain_1239642834168 ...

moveobject2_c_domain

(

7 (at sofa-1 living-room)

(room living-room)

9 (room exit)

(adjacentto living-room kitchen)

11 (at green-tea sideboard)

(at sofa-1 living-room)

13 (at sofa-2 living-room)

(at bookshelf living-room)

15 (at dining-table kitchen)

(adjacentto exit living-room)

17 (at johnny kitchen)

(at robot1 room-1)

19 (room kitchen)

(at armchair living-room)

21 (adjacentto kitchen living-room)

(adjacentto living-room exit)

23 (at robot2 room-4)

(at coke sideboard)

25 (at shelf living-room)

(at yellow-tea sideboard)

27 (at sideboard kitchen)

175



A. Generated Planning Domain

)

29 (

(move-object johnny coke armchair)

31 (navigate johnny exit)

)

33 )

Listing A.14 shows the planning solution for the planning domain in Listing A.10 and problem

in Listing A.13.

Listing A.14: Solution plan for “moveobject2_c” in Johnny’s move object planning task.

1 Plan cost: 11.0

3 (!drive-to-dexterous-workspace johnny sideboard kitchen)

(!pickup-object johnny coke sideboard)

5 (!drive-away-from-dex-workspace johnny sideboard)

(!visit kitchen)

7 (!drive-robot johnny kitchen living-room)

(!unvisit kitchen)

9 (!drive-to-dexterous-workspace johnny armchair living-room)

(!put-object johnny coke armchair)

11 (!visit living-room)

(!drive-robot johnny living-room exit)

13 (!unvisit living-room)

--------------------

15

Time Used = 0.014

A.3.2. Bring an Object Planning Domain

Listing A.15 shows the planning domain description generated by choosing “bringobject2”,

an instance of the Method concept which was modified from the complete pick-and-place

domain, from the DL model.

Listing A.15: Planning domain description for “bringobject2”.

; JSHOP2 Planning Domain Description

2 ; created on: Mon Apr 13 20:37:20 CEST 2009

; generated from: http://mas.b-it-center.de/ontologies/planner....

owl#

4

(defdomain bringobject2_domain (

6 ; http://mas.b-it-center.de/ontologies/planner.owl#drive-...

robot

(:operator (!drive-robot ?robot ?loc-from ?loc-to)

8 ((at ?robot ?loc-from))
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((at ?robot ?loc-from))

10 ((at ?robot ?loc-to))

)

12 ; http://mas.b-it-center.de/ontologies/planner.owl#visit

(:operator (!visit ?waypoint)

14 ()

()

16 ((visited ?waypoint))

)

18 ; http://mas.b-it-center.de/ontologies/planner.owl#give-...

object

(:operator (!give-object ?robot ?object ?to-person)

20 ((on ?to-person ?to-container)

(at-dexterous-workspace ?robot ?to-container)

22 (has-object ?robot)(at ?object ?robot))

((has-object ?robot)(at ?object ?robot))

24 ((has-object ?to-person)(at ?object ?to-person))

)

26 ; http://mas.b-it-center.de/ontologies/planner.owl#drive-to-...

dexterous-workspace

(:operator (!drive-to-dexterous-workspace ?robot ?to-...

container ?in-room)

28 ((at ?robot ?in-room)(at ?to-container ?in-room))

()

30 ((at-dexterous-workspace ?robot ?to-container))

)

32 ; http://mas.b-it-center.de/ontologies/planner.owl#unvisit

(:operator (!unvisit ?waypoint)

34 ()

((visited ?waypoint))

36 ()

)

38 ; http://mas.b-it-center.de/ontologies/planner.owl#drive-away...

-f-dex-workspace

(:operator (!drive-away-from-dex-workspace ?robot ?from-...

container)

40 ()

((at-dexterous-workspace ?robot ?from-container))

42 ()

)

44 ; http://mas.b-it-center.de/ontologies/planner.owl#pickup-...

object

(:operator (!pickup-object ?robot ?object ?from-container)

46 ((at-dexterous-workspace ?robot ?from-container)

(not (has-object ?robot)))

48 ((at ?object ?from-container)(:protection (at-dexterous...

-workspace ?robot ?from-container)))

((has-object ?robot)(at ?object ?robot))

177



A. Generated Planning Domain

50 )

52 ; http://mas.b-it-center.de/ontologies/planner.owl#...

getobject_c

(:method (get-object ?robot ?object ?from-container)

54 Case1 ((at ?object ?robot))

((!drive-away-from-dex-workspace ?robot ?from-container...

))

56 Case2 ((at-dexterous-workspace ?robot ?from-container))

((!pickup-object ?robot ?object ?from-container)(get-...

object ?robot ?object ?from-container))

58 Case3 ((not (at-dexterous-workspace ?robot ?from-...

container))(at ?from-container ?room)(at ?robot ?...

room))

((!drive-to-dexterous-workspace ?robot ?from-container ...

?room)(get-object ?robot ?object ?from-container))

60 Case4 ((not (at-dexterous-workspace ?robot ?from-...

container))(at ?from-container ?room)(not (at ?...

robot ?room)))

((navigate ?robot ?room)(get-object ?robot ?object ?...

from-container))

62 )

; http://mas.b-it-center.de/ontologies/planner.owl#...

bringobject2

64 (:method (bring-object ?robot ?object ?to-person)

((at ?object ?from-container))

66 ((bring-object ?robot ?object ?from-...

container ?to-person))

)

68 ; http://mas.b-it-center.de/ontologies/planner.owl#navigate

(:method (navigate ?robot ?from ?to)

70 Case1 ((at ?robot ?to))

()

72 Case2 ((adjacentto ?from ?to))

((!drive-robot ?robot ?from ?to))

74 Case3 ((room ?room)(adjacentto ?from ?room)(not (visited...

?room)))

((!drive-robot ?robot ?from ?room)

76 (!visit ?room)

(navigate ?robot ?room ?to)

78 (!unvisit ?room))

)

80 ; http://mas.b-it-center.de/ontologies/planner.owl#...

bringobject

(:method (bring-object ?robot ?object ?from-container ?to-...

person)

82 Case1 ((not (at ?object ?robot))(at ?object ?from-...

container))
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((get-object ?robot ?object ?from-container)(...

bring-object ?robot ?object ?from-container ?...

to-person))

84 Case2 ((at ?object ?robot))

((give-object ?robot ?object ?to-person))

86 )

; http://mas.b-it-center.de/ontologies/planner.owl#navigate2

88 (:method (navigate ?robot ?to)

((at ?robot ?from))

90 ((!visit ?from)(navigate ?robot ?from ?to)(!unvisit ?from...

))

)

92 ; http://mas.b-it-center.de/ontologies/planner.owl#giveobject

(:method (give-object ?robot ?object ?to-person)

94 Case1 ((not (at ?object ?robot))) ()

Case2 ((at ?object ?robot)(on ?to-person ?to-...

container)(at-dexterous-workspace ?robot ?to-...

container))

96 ((!give-object ?robot ?object ?to-person))

Case3 ((at ?object ?robot)(on ?to-person ?to-...

container)(not (at-dexterous-workspace ?robot ?...

to-container))(at ?to-container ?room)(at ?...

robot ?room))

98 ((!drive-to-dexterous-workspace ?robot ?to-...

container ?room)(give-object ?robot ?object ?...

to-person))

Case4 ((at ?object ?robot)(on ?to-person ?to-...

container)(not (at-dexterous-workspace ?robot ?...

to-container))(at ?to-container ?room)(not (at ...

?robot ?room)))

100 ((navigate ?robot ?room)(give-object ?robot ?...

object ?to-person))

)

102 )

)

Listing A.16 shows the planning problem generated for the planning domain “bringobject2”

shown in Listing A.15. The planning objectives are “(bring-object johnny coke guest)”

and “(navigate johnny exit)”.

Listing A.16: Planning problem description for “bringobject2”.

; JSHOP2 Planning Problem Description

2 ; created on: Mon Apr 13 20:37:57 CEST 2009

; generated for: bringobject2_domain

4

(defproblem problem_bringobject2_domain_1239647877985 ...

bringobject2_domain
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6 (

(at shelf living-room)

8 (at sofa-1 living-room)

(room living-room)

10 (at yellow-tea sideboard)

(at sofa-2 living-room)

12 (at robot2 room-4)

(on guest armchair)

14 (room exit)

(at green-tea sideboard)

16 (adjacentto exit living-room)

(at coke sideboard)

18 (adjacentto living-room kitchen)

(at bookshelf living-room)

20 (at johnny kitchen)

(at dining-table kitchen)

22 (at armchair living-room)

(adjacentto kitchen living-room)

24 (at robot1 room-1)

(at sideboard kitchen)

26 (adjacentto living-room exit)

(room kitchen)

28 (at sofa-1 living-room)

)

30 (

(bring-object johnny coke guest)

32 (navigate johnny exit)

)

34 )

Listing A.17 shows the planning solution for the planning domain in Listing A.15 and problem

in Listing A.16.

Listing A.17: Solution plan for “bringobject2” in Johnny’s bring object planning task.

Plan cost: 11.0

2

(!drive-to-dexterous-workspace johnny sideboard kitchen)

4 (!pickup-object johnny coke sideboard)

(!drive-away-from-dex-workspace johnny sideboard)

6 (!visit kitchen)

(!drive-robot johnny kitchen living-room)

8 (!unvisit kitchen)

(!drive-to-dexterous-workspace johnny armchair living-room)

10 (!give-object johnny coke guest)

(!visit living-room)

12 (!drive-robot johnny living-room exit)

(!unvisit living-room)

14 --------------------
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16 Time Used = 0.014

A.4. Blocks World Domain

The details of the Blocks World domain are presented in Chapter 5 on page 97. Three Blocks

World problems are presented in this section; the first problem is the simple blocks world

domain, the second one is the two blocks worlds domain, and the third one is the complex

blocks world domain. All these problems use the same planning domain, included in the

JSHOP2 source distribution. Listing A.18 shows this domain, which was generated by choosing

“block_domain” from the DL model. The block_domain is an instance ofPlanning-Domain

concept.

Listing A.18: Planning domain description for “blocks_domain”.

1 ; JSHOP2 Planning Domain Description

; created on: Tue Dec 30 17:51:48 CET 2008

3 ; generated from: http://mas.b-it-center.de/ontologies/planner....

owl#

5 (defdomain blocks_domain (

; http://mas.b-it-center.de/ontologies/planner.owl#assert

7 (:operator (!!assert ?g)

()

9 ()

(?g)

11 ;; Since !!ASSERT isn’t a real blocks-world operator, ...

make its cost

0

13 0

)

15 ; http://mas.b-it-center.de/ontologies/planner.owl#unstack

(:operator (!unstack ?e ?f)

17 ()

((clear ?e)

19 (on ?e ?f))

((holding ?e)

21 (clear ?f))

)

23 ; http://mas.b-it-center.de/ontologies/planner.owl#putdown

(:operator (!putdown ?b)

25 ()

((holding ?b))

27 ((on-table ?b)

(clear ?b))

29 )
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; http://mas.b-it-center.de/ontologies/planner.owl#pickup

31 (:operator (!pickup ?a)

()

33 ((clear ?a)

(on-table ?a))

35 ((holding ?a))

)

37 ; http://mas.b-it-center.de/ontologies/planner.owl#stack

(:operator (!stack ?c ?d)

39 ()

((holding ?c)

41 (clear ?d))

((on ?c ?d)

43 (clear ?c))

)

45 ; http://mas.b-it-center.de/ontologies/planner.owl#remove

(:operator (!!remove ?g)

47 ()

(?g)

49 ()

0

51 )

53 ; http://mas.b-it-center.de/ontologies/planner.owl#check2

(:method (check2 ?x)

55 ((dont-move ?x)

(goal (on ?y ?x))

57 (clear ?y))

((!!assert (stack-on-block ?y ?x)))

59 nil

nil

61 )

; http://mas.b-it-center.de/ontologies/planner.owl#find-...

movable

63 (:method (find-movable)

((clear ?x)

65 (not (dont-move ?x))

(goal (on-table ?x))

67 (not (put-on-table ?x)))

((!!assert (put-on-table ?x))

69 (find-movable))

((clear ?x)

71 (not (dont-move ?x))

(goal (on ?x ?y))

73 (not (stack-on-block ?x ?y))

(dont-move ?y)

75 (clear ?y))

((!!assert (stack-on-block ?x ?y))
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77 (find-movable))

nil

79 nil

)

81 ; http://mas.b-it-center.de/ontologies/planner.owl#add-new-...

goals

(:method (add-new-goals)

83 ((block ?x)

(not (dont-move ?x))

85 (not (goal (on-table ?x)))

(not (goal (on ?x ?y))))

87 ((!!assert (goal (on-table ?x)))

(add-new-goals))

89 nil

nil

91 )

; http://mas.b-it-center.de/ontologies/planner.owl#achieve-...

goal

93 (:method (achieve-goals ?goals)

()

95 ((assert-goals ?goals)

(find-nomove)

97 (add-new-goals)

(find-movable)

99 (move-block))

)

101 ; http://mas.b-it-center.de/ontologies/planner.owl#axiom-same

(:- (same ?x ?x)

103 nil

)

105 ; http://mas.b-it-center.de/ontologies/planner.owl#axiom-need...

-to-move

(:- (need-to-move ?x)

107 ((on ?x ?y)

(goal (on ?x ?z))

109 (not (same ?y ?z)))

((on-table ?x)

111 (goal (on ?x ?z)))

((on ?x ?y)

113 (goal (on-table ?x)))

((on ?x ?y)

115 (goal (clear ?y)))

((on ?x ?z)

117 (goal (on ?y ?z))

(not (same ?x ?y)))

119 ((on ?x ?w)

(need-to-move ?w))

121 )
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; http://mas.b-it-center.de/ontologies/planner.owl#check3

123 (:method (check3 ?x)

(dont-move ?x)

125 nil

((goal (on ?x ?y))

127 (clear ?y)

(dont-move ?y))

129 ((!!assert (stack-on-block ?x ?y)))

((goal (on-table ?x)))

131 ((!!assert (put-on-table ?x)))

nil

133 nil

)

135 ; http://mas.b-it-center.de/ontologies/planner.owl#move-block

(:method (move-block)

137 ((stack-on-block ?x ?y))

((move-block1 ?x ?y)

139 (move-block))

method-for-moving-x-from-y-to-table

141 ((put-on-table ?x)

(on ?x ?y))

143 ((!unstack ?x ?y)

(!putdown ?x)

145 (!!assert (dont-move ?x))

(!!remove (put-on-table ?x))

147 (check ?x)

(check2 ?y)

149 (check3 ?y)

(move-block))

151 method-for-moving-x-out-of-the-way

((clear ?x)

153 (not (dont-move ?x))

(on ?x ?y))

155 ((!unstack ?x ?y)

(!putdown ?x)

157 (check2 ?y)

(check3 ?y)

159 (move-block))

termination-method-branch

161 nil

nil

163 )

; http://mas.b-it-center.de/ontologies/planner.owl#check

165 (:method (check ?x)

((goal (on ?y ?x))

167 (clear ?y))

((!!assert (stack-on-block ?y ?x)))

169 nil
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nil

171 )

; http://mas.b-it-center.de/ontologies/planner.owl#move-...

block1

173 (:method (move-block1 ?x ?z)

method-for-moving-x-from-y-to-z ((on ?x ?y))

175 ((!unstack ?x ?y)

(!stack ?x ?z)

177 (!!assert (dont-move ?x))

(!!remove (stack-on-block ?x ?z))

179 (check ?x)

(check2 ?y)

181 (check3 ?y))

method-for-moving-x-from-table-to-z

183 nil

((!pickup ?x)

185 (!stack ?x ?z)

(!!assert (dont-move ?x))

187 (!!remove (stack-on-block ?x ?z))

(check ?x))

189 )

; http://mas.b-it-center.de/ontologies/planner.owl#assert-...

goals-nil

191 (:method (assert-goals nil)

()

193 ()

)

195 ; http://mas.b-it-center.de/ontologies/planner.owl#find-...

nomove

(:method (find-nomove)

197 ((block ?x)

(not (dont-move ?x))

199 (not (need-to-move ?x)))

((!!assert (dont-move ?x))

201 (find-nomove))

nil

203 nil

)

205 ; http://mas.b-it-center.de/ontologies/planner.owl#assert-...

goals

(:method (assert-goals (?goal . ?goals)

207 )

()

209 ((!!assert (goal ?goal))

(assert-goals ?goals))

211 )

)

213 )
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A.4.1. Simple Blocks World Planning Example

Listing A.19 shows the planning problem generated for the planning domain “blocks_domain”

shown in Listing A.18. The planning objective is “(achieve-goals ((on-table b1) (on

b4 b1) (clear b4) (on-table b3) (on b2 b3) (clear b2)))” as shown in Fig-

ure 5.1 on page 98.

Listing A.19: Planning problem description for “block_domain” for solving simple blocks

world problem.

; JSHOP2 Planning Problem Description

2 ; created on: Tue Dec 30 17:51:58 CET 2008

; generated for: blocks_domain

4

(defproblem problem_blocks_domain_1230655918008 blocks_domain

6 (

(block b3)

8 (clear b4)

(on b2 b1)

10 (on b4 b3)

(on-table b3)

12 (block b4)

(on-table b1)

14 (clear b2)

(block b2)

16 (block b1)

)

18 (

(achieve-goals ((on-table b1) (on b4 b1) (clear b4) (on-...

table b3) (on b2 b3) (clear b2)))

20 )

)

Listing A.20 shows the planning solution for the planning domain in Listing A.18 and problem

in Listing A.19.

Listing A.20: Solution plan for “blocks_domain” in simple blocks world example.

1 Plan cost: 18.0

3 (!!assert (goal (on-table b1)))

(!!assert (goal (on b4 b1)))

5 (!!assert (goal (clear b4)))

(!!assert (goal (on-table b3)))

7 (!!assert (goal (on b2 b3)))

(!!assert (goal (clear b2)))

9 (!!assert (dont-move b3))

(!!assert (dont-move b1))
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11 (!unstack b4 b3)

(!putdown b4)

13 (!!assert (stack-on-block b2 b3))

(!unstack b2 b1)

15 (!stack b2 b3)

(!!assert (dont-move b2))

17 (!!remove (stack-on-block b2 b3))

(!!assert (stack-on-block b4 b1))

19 (!pickup b4)

(!stack b4 b1)

21 (!!assert (dont-move b4))

(!!remove (stack-on-block b4 b1))

23 --------------------

25 Plan cost: 18.0

27 (!!assert (goal (on-table b1)))

(!!assert (goal (on b4 b1)))

29 (!!assert (goal (clear b4)))

(!!assert (goal (on-table b3)))

31 (!!assert (goal (on b2 b3)))

(!!assert (goal (clear b2)))

33 (!!assert (dont-move b3))

(!!assert (dont-move b1))

35 (!unstack b2 b1)

(!putdown b2)

37 (!!assert (stack-on-block b4 b1))

(!unstack b4 b3)

39 (!stack b4 b1)

(!!assert (dont-move b4))

41 (!!remove (stack-on-block b4 b1))

(!!assert (stack-on-block b2 b3))

43 (!pickup b2)

(!stack b2 b3)

45 (!!assert (dont-move b2))

(!!remove (stack-on-block b2 b3))

47 --------------------

49 Plan cost: 18.0

51 (!!assert (goal (on-table b1)))

(!!assert (goal (on b4 b1)))

53 (!!assert (goal (clear b4)))

(!!assert (goal (on-table b3)))

55 (!!assert (goal (on b2 b3)))

(!!assert (goal (clear b2)))

57 (!!assert (dont-move b1))

(!!assert (dont-move b3))
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59 (!unstack b4 b3)

(!putdown b4)

61 (!!assert (stack-on-block b2 b3))

(!unstack b2 b1)

63 (!stack b2 b3)

(!!assert (dont-move b2))

65 (!!remove (stack-on-block b2 b3))

(!!assert (stack-on-block b4 b1))

67 (!pickup b4)

(!stack b4 b1)

69 (!!assert (dont-move b4))

(!!remove (stack-on-block b4 b1))

71 --------------------

73 Plan cost: 18.0

75 (!!assert (goal (on-table b1)))

(!!assert (goal (on b4 b1)))

77 (!!assert (goal (clear b4)))

(!!assert (goal (on-table b3)))

79 (!!assert (goal (on b2 b3)))

(!!assert (goal (clear b2)))

81 (!!assert (dont-move b1))

(!!assert (dont-move b3))

83 (!unstack b2 b1)

(!putdown b2)

85 (!!assert (stack-on-block b4 b1))

(!unstack b4 b3)

87 (!stack b4 b1)

(!!assert (dont-move b4))

89 (!!remove (stack-on-block b4 b1))

(!!assert (stack-on-block b2 b3))

91 (!pickup b2)

(!stack b2 b3)

93 (!!assert (dont-move b2))

(!!remove (stack-on-block b2 b3))

95 --------------------

97 Time Used = 0.04

A.4.2. Two Blocks World Planning Example

Listing A.21 shows the generated planning problem for the planning domain “blocks_domain”

shown in Listing A.18 for task two using the simple blocks world ontology. The planning ob-

jective is “(achieve-goals ((on-table b1) (on b4 b1) (clear b4) (on-table

b3) (on b2 b3) (clear b2)))” as shown in Figure 5.5 on page 107.
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Listing A.21: Planning problem description for “block_domain” for solving the two blocks

worlds task two using the simple blocks world ontology.

1 ; JSHOP2 Planning Problem Description

; created on: Fri Jan 02 16:17:41 CET 2009

3 ; generated for: blocks_domain

5 (defproblem problem_blocks_domain_1230909461784 blocks_domain

(

7 (clear b2)

(on-table b3)

9 (block b1)

(on b4 b3)

11 (clear b4)

(clear a2)

13 (block b3)

(block b4)

15 (on-table b1)

(block a4)

17 (block b2)

(block a3)

19 (on a3 a1)

(on b2 b1)

21 (on a2 a4)

(block a1)

23 (on-table a4)

(block a2)

25 (on-table a1)

(clear a3)

27 )

(

29 (achieve-goals ((on-table b1) (on b4 b1) (clear b4) (on-...

table b3) (on b2 b3) (clear b2)))

)

31 )

Listing A.22 shows the generated planning problem for the planning domain “blocks_domain”

shown in Listing A.18 for task one using the enhanced blocks world ontology. The planning ob-

jective is “(achieve-goals ((on-table a3)(on a1 a3)(clear a1)(on-table a2)

(on a4 a2)(clear a4)))” as shown in Figure 5.5 on page 107.

Listing A.22: Planning problem description for “block_domain” for solving two blocks worlds

task number one using the enhanced blocks world ontology.

1 ; JSHOP2 Planning Problem Description

; created on: Tue Jan 06 17:26:18 CET 2009

3 ; generated for: blocks_domain
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5 (defproblem problem_blocks_domain_1231259178659 blocks_domain

(

7 (clear a2)

(on a3 a1)

9 (on-table a4)

(block a3)

11 (on-table a1)

(on a2 a4)

13 (block a4)

(block a1)

15 (block a2)

(clear a3)

17 )

(

19 (achieve-goals ((on-table a3)(on a1 a3)(clear a1)(on-table ...

a2)(on a4 a2)(clear a4)))

)

21 )

Listing A.23 shows the planning solution for the planning domain in Listing A.18 and problem

in Listing A.22.

Listing A.23: Solution plan for “blocks_domain” in the two blocks worlds example task num-

ber one using the enhanced blocks world ontology.

1 Plan cost: 24.0

3 (!!assert (goal (on-table a3)))

(!!assert (goal (on a1 a3)))

5 (!!assert (goal (clear a1)))

(!!assert (goal (on-table a2)))

7 (!!assert (goal (on a4 a2)))

(!!assert (goal (clear a4)))

9 (!!assert (put-on-table a2))

(!!assert (put-on-table a3))

11 (!unstack a2 a4)

(!putdown a2)

13 (!!assert (dont-move a2))

(!!remove (put-on-table a2))

15 (!!assert (stack-on-block a4 a2))

(!!assert (stack-on-block a4 a2))

17 (!pickup a4)

(!stack a4 a2)

19 (!!assert (dont-move a4))

(!!remove (stack-on-block a4 a2))

21 (!unstack a3 a1)

(!putdown a3)

23 (!!assert (dont-move a3))

(!!remove (put-on-table a3))

190



A.4. Blocks World Domain

25 (!!assert (stack-on-block a1 a3))

(!!assert (stack-on-block a1 a3))

27 (!pickup a1)

(!stack a1 a3)

29 (!!assert (dont-move a1))

(!!remove (stack-on-block a1 a3))

31 --------------------

33 Plan cost: 24.0

35 (!!assert (goal (on-table a3)))

(!!assert (goal (on a1 a3)))

37 (!!assert (goal (clear a1)))

(!!assert (goal (on-table a2)))

39 (!!assert (goal (on a4 a2)))

(!!assert (goal (clear a4)))

41 (!!assert (put-on-table a2))

(!!assert (put-on-table a3))

43 (!unstack a3 a1)

(!putdown a3)

45 (!!assert (dont-move a3))

(!!remove (put-on-table a3))

47 (!!assert (stack-on-block a1 a3))

(!!assert (stack-on-block a1 a3))

49 (!pickup a1)

(!stack a1 a3)

51 (!!assert (dont-move a1))

(!!remove (stack-on-block a1 a3))

53 (!unstack a2 a4)

(!putdown a2)

55 (!!assert (dont-move a2))

(!!remove (put-on-table a2))

57 (!!assert (stack-on-block a4 a2))

(!!assert (stack-on-block a4 a2))

59 (!pickup a4)

(!stack a4 a2)

61 (!!assert (dont-move a4))

(!!remove (stack-on-block a4 a2))

63 --------------------

65 Plan cost: 24.0

67 (!!assert (goal (on-table a3)))

(!!assert (goal (on a1 a3)))

69 (!!assert (goal (clear a1)))

(!!assert (goal (on-table a2)))

71 (!!assert (goal (on a4 a2)))

(!!assert (goal (clear a4)))
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73 (!!assert (put-on-table a3))

(!!assert (put-on-table a2))

75 (!unstack a3 a1)

(!putdown a3)

77 (!!assert (dont-move a3))

(!!remove (put-on-table a3))

79 (!!assert (stack-on-block a1 a3))

(!!assert (stack-on-block a1 a3))

81 (!pickup a1)

(!stack a1 a3)

83 (!!assert (dont-move a1))

(!!remove (stack-on-block a1 a3))

85 (!unstack a2 a4)

(!putdown a2)

87 (!!assert (dont-move a2))

(!!remove (put-on-table a2))

89 (!!assert (stack-on-block a4 a2))

(!!assert (stack-on-block a4 a2))

91 (!pickup a4)

(!stack a4 a2)

93 (!!assert (dont-move a4))

(!!remove (stack-on-block a4 a2))

95 --------------------

97 Plan cost: 24.0

99 (!!assert (goal (on-table a3)))

(!!assert (goal (on a1 a3)))

101 (!!assert (goal (clear a1)))

(!!assert (goal (on-table a2)))

103 (!!assert (goal (on a4 a2)))

(!!assert (goal (clear a4)))

105 (!!assert (put-on-table a3))

(!!assert (put-on-table a2))

107 (!unstack a2 a4)

(!putdown a2)

109 (!!assert (dont-move a2))

(!!remove (put-on-table a2))

111 (!!assert (stack-on-block a4 a2))

(!!assert (stack-on-block a4 a2))

113 (!pickup a4)

(!stack a4 a2)

115 (!!assert (dont-move a4))

(!!remove (stack-on-block a4 a2))

117 (!unstack a3 a1)

(!putdown a3)

119 (!!assert (dont-move a3))

(!!remove (put-on-table a3))
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121 (!!assert (stack-on-block a1 a3))

(!!assert (stack-on-block a1 a3))

123 (!pickup a1)

(!stack a1 a3)

125 (!!assert (dont-move a1))

(!!remove (stack-on-block a1 a3))

127 --------------------

129 Time Used = 0.032

A.4.3. Complex Blocks World Example

Listing A.24 shows the generated planning problem for the planning domain “blocks_domain”

shown in Listing A.18 for the complex blocks world problem. The planning objective is

“(achieve-goals ((on-table a1) (on b2 a1) (on c3 b2) (clear c3)))” as shown

in Figure 5.7 on page 109.

Listing A.24: Planning problem description for “block_domain” for solving the complex

blocks world problem.

1 ; JSHOP2 Planning Problem Description

; created on: Wed Jan 07 22:46:19 CET 2009

3 ; generated for: blocks_domain

5 (defproblem problem_blocks_domain_1231364779743 blocks_domain

(

7 (block a1)

(block c2)

9 (clear b2)

(block c1)

11 (on-table c3)

(block a3)

13 (on c2 c1)

(clear a3)

15 (block c3)

(block b2)

17 (on-table a1)

(clear c2)

19 (on a3 a1)

(on c1 c3)

21 )

(

23 (achieve-goals ((on-table a1) (on b2 a1) (on c3 b2) (clear ...

c3)))

)

25 )
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Listing A.25 shows the planning solution for the planning domain in Listing A.18 and problem

in Listing A.24.

Listing A.25: Solution plan for “blocks_domain” in complex blocks world example.

1

Plan cost: 29.0

3

(!!assert (goal (on-table a1)))

5 (!!assert (goal (on b2 a1)))

(!!assert (goal (on c3 b2)))

7 (!!assert (goal (clear c3)))

(!!assert (dont-move a1))

9 (!!assert (dont-move b2))

(!!assert (goal (on-table c2)))

11 (!!assert (goal (on-table c1)))

(!!assert (goal (on-table a3)))

13 (!!assert (put-on-table a3))

(!!assert (put-on-table c2))

15 (!unstack a3 a1)

(!putdown a3)

17 (!!assert (dont-move a3))

(!!remove (put-on-table a3))

19 (!!assert (stack-on-block b2 a1))

(!pickup b2)

21 (!stack b2 a1)

(!!assert (dont-move b2))

23 (!!remove (stack-on-block b2 a1))

(!unstack c2 c1)

25 (!putdown c2)

(!!assert (dont-move c2))

27 (!!remove (put-on-table c2))

(!!assert (put-on-table c1))

29 (!unstack c1 c3)

(!putdown c1)

31 (!!assert (dont-move c1))

(!!remove (put-on-table c1))

33 (!!assert (stack-on-block c3 b2))

(!pickup c3)

35 (!stack c3 b2)

(!!assert (dont-move c3))

37 (!!remove (stack-on-block c3 b2))

--------------------

39

Plan cost: 29.0

41

(!!assert (goal (on-table a1)))

43 (!!assert (goal (on b2 a1)))
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(!!assert (goal (on c3 b2)))

45 (!!assert (goal (clear c3)))

(!!assert (dont-move a1))

47 (!!assert (dont-move b2))

(!!assert (goal (on-table c2)))

49 (!!assert (goal (on-table c1)))

(!!assert (goal (on-table a3)))

51 (!!assert (put-on-table a3))

(!!assert (put-on-table c2))

53 (!unstack c2 c1)

(!putdown c2)

55 (!!assert (dont-move c2))

(!!remove (put-on-table c2))

57 (!!assert (put-on-table c1))

(!unstack a3 a1)

59 (!putdown a3)

(!!assert (dont-move a3))

61 (!!remove (put-on-table a3))

(!!assert (stack-on-block b2 a1))

63 (!pickup b2)

(!stack b2 a1)

65 (!!assert (dont-move b2))

(!!remove (stack-on-block b2 a1))

67 (!unstack c1 c3)

(!putdown c1)

69 (!!assert (dont-move c1))

(!!remove (put-on-table c1))

71 (!!assert (stack-on-block c3 b2))

(!pickup c3)

73 (!stack c3 b2)

(!!assert (dont-move c3))

75 (!!remove (stack-on-block c3 b2))

--------------------

77

Plan cost: 25.0

79

(!!assert (goal (on-table a1)))

81 (!!assert (goal (on b2 a1)))

(!!assert (goal (on c3 b2)))

83 (!!assert (goal (clear c3)))

(!!assert (dont-move a1))

85 (!!assert (dont-move b2))

(!!assert (goal (on-table c2)))

87 (!!assert (goal (on-table c1)))

(!!assert (goal (on-table a3)))

89 (!!assert (put-on-table a3))

(!!assert (put-on-table c2))

91 (!unstack c2 c1)
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(!putdown c2)

93 (!!assert (dont-move c2))

(!!remove (put-on-table c2))

95 (!!assert (put-on-table c1))

(!unstack c1 c3)

97 (!putdown c1)

(!!assert (dont-move c1))

99 (!!remove (put-on-table c1))

(!!assert (stack-on-block c3 b2))

101 (!pickup c3)

(!stack c3 b2)

103 (!!assert (dont-move c3))

(!!remove (stack-on-block c3 b2))

105 (!unstack a3 a1)

(!putdown a3)

107 (!!assert (dont-move a3))

(!!remove (put-on-table a3))

109 --------------------

111 Plan cost: 29.0

113 (!!assert (goal (on-table a1)))

(!!assert (goal (on b2 a1)))

115 (!!assert (goal (on c3 b2)))

(!!assert (goal (clear c3)))

117 (!!assert (dont-move a1))

(!!assert (dont-move b2))

119 (!!assert (goal (on-table c2)))

(!!assert (goal (on-table c1)))

121 (!!assert (goal (on-table a3)))

(!!assert (put-on-table c2))

123 (!!assert (put-on-table a3))

(!unstack c2 c1)

125 (!putdown c2)

(!!assert (dont-move c2))

127 (!!remove (put-on-table c2))

(!!assert (put-on-table c1))

129 (!unstack a3 a1)

(!putdown a3)

131 (!!assert (dont-move a3))

(!!remove (put-on-table a3))

133 (!!assert (stack-on-block b2 a1))

(!pickup b2)

135 (!stack b2 a1)

(!!assert (dont-move b2))

137 (!!remove (stack-on-block b2 a1))

(!unstack c1 c3)

139 (!putdown c1)
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(!!assert (dont-move c1))

141 (!!remove (put-on-table c1))

(!!assert (stack-on-block c3 b2))

143 (!pickup c3)

(!stack c3 b2)

145 (!!assert (dont-move c3))

(!!remove (stack-on-block c3 b2))

147 --------------------

149 .... until 72 plans

151 Time Used = 0.117
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In this appendix, some of the HDL ABox assertions are presented. These assertions have to

be made in order to put the knowledge in the HDL system. Corresponding representations are

shown as figures within the chapters. The shop2code property is omitted, as this can be seen in

the generated code in Appendix A.

B.1. Navigation Domain

The following lists show the assertions of the navigation domain. The navigation domain is

detailed in Section 3.2 on page 42. Listing B.1 shows the operators’ assertion. Listing B.2

shows the methods’ assertion. Listing B.3 shows the planning-domain’s assertion.

Listing B.1: Operators’ assertion for “navigation_domain”.

1 Operator(visit),

Operator(unvisit),

3 Operator(drive-robot),

useState(drive-robot,

5 ’(at ?val1 ?val2);?val1=I:Robot,?val2=P:at’)

Listing B.2: Methods’ assertion for “navigation_domain”.

1 Method(navigate),

hasOperator(navigate, drive-robot),

3 hasOperator(navigate, visit),

hasOperator(navigate, unvisit),

5 useState(navigate,

’(room ?val1);?val1=I:Room’)

7 useState(navigate,

’(adjacentto ?val1 ?val2);?val1=I:Room,?val2=P:adjacentto’)

9 useState(navigate,

’(at ?val1 ?val2);?val1=I:Robot,?val2=P:at’)

11 Method(navigate2),

hasMethod(navigate2, navigate),

13 hasOperator(navigate2, visit),

hasOperator(navigate2, unvisit),

15 useState(navigate2,

’(at ?val1 ?val2);?val1=I:Robot,?val2=P:at’)
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Listing B.3: Planning domain’s assertion for “navigation_domain”.

Planning-Domain(navigation-domain),

2 hasMethod(navigation-domain, navigate),

hasMethod(navigation-domain, navigate2),

4 hasOperator(navigation-domain, drive-robot),

hasOperator(navigation-domain, visit),

6 hasOperator(navigation-domain, unvisit)

B.2. Pick-and-Place Domain

The following lists show the assertions of the pick-and-place domain. The pick-and-place do-

main is detailed in Section 3.4 on page 55. This domain consists of two implementations, the

partial pick-and-place domain and the complete pick-and-place domain.

B.2.1. Partial Pick-and-Place Domain

The partial pick-and-place domain assertions are listed in five listings. Listing B.4 to B.6 show

the methods’ assertions, Listing B.7 shows the operators’ assertion, and Listing B.8 shows the

planning domains’ assertion.

Listing B.4: Assertion of the methods “moveobject_p” and “moveobject2_p” for the “partial

pick-and-place domain”.

Method(moveobject_p),

2 hasMethod(moveobject_p, getobject_p),

hasMethod(moveobject_p, putobject_p),

4 useState(moveobject_p,

’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’)

6 Method(moveobject2_p),

hasMethod(moveobject2_p, moveobject_p),

8 useState(moveobject2_p,

’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’)

Listing B.5: Assertion of methods “getobject_p” and “getobject2_p” for the “partial pick-

and-place domain”.

1 Method(getobject_p),

hasOperator(getobject_p, drive-away-f-dex-workspace),

3 hasOperator(getobject_p, drive-to-dexterous-workspace),

hasOperator(getobject_p, pickup-object),

5 hasOperator(getobject_p, navigate-op),

useState(getobject_p,

7 ’(at ?val1 ?val2);?val1=I:Robot,?val2=P:at’),

useState(getobject_p,
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9 ’(at ?val1 ?val2);?val1=I:Container,?val2=P:at’),

useState(getobject_p,

11 ’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’)

Method(getobject2_p),

13 hasMethod(getobject2_p, getobject_p),

useState(getobject2_p,

15 ’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’)

Listing B.6: Assertion of the method “putobject_p” for the “partial pick-and-place domain”.

1 Method(putobject_p),

hasOperator(putobject_p, put-object),

3 hasOperator(putobject_p, drive-to-dexterous-workspace),

hasOperator(putobject_p, navigate-op),

5 useState(putobject_p,

’(at ?val1 ?val2);?val1=I:Container,?val2=P:at’),

7 useState(putobject_p,

’(at ?val1 ?val2);?val1=I:Robot,?val2=P:at’)

Listing B.7: Operator assertions for the “partial pick-and-place domain”.

Operator(navigate-op),

2 Operator(drive-to-dexterous-workspace),

useState(drive-to-dexterous-workspace,

4 ’(at ?val1 ?val2);?val1=I:Container,?val2=P:at’),

useState(drive-to-dexterous-workspace,

6 ’(at ?val1 ?val2);?val1=I:Robot,?val2=P:at’),

Operator(drive-away-f-dex-workspace),

8 useState(drive-away-f-dex-workspace,

’(at ?val1 ?val2);?val1=I:Container,?val2=P:at’),

10 useState(drive-away-f-dex-workspace,

’(at ?val1 ?val2);?val1=I:Robot,?val2=P:at’),

12 Operator(pickup-object),

useState(pickup-object,

14 ’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’),

Operator(put-object),

16 useState(put-object,

’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’)

Listing B.8: Planning domain assertions for “partial pick-and-place domain”.

1 Planning-Domain(pick-and-place_domain_partial),

hasMethod(pick-and-place_domain_partial, moveobject_p),

3 hasMethod(pick-and-place_domain_partial, moveobject2_p),

hasMethod(pick-and-place_domain_partial, getobject_p),

5 hasMethod(pick-and-place_domain_partial, getobject2_p),

hasMethod(pick-and-place_domain_partial, putobject_p),
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7 hasOperator(pick-and-place_domain_partial, navigate-op),

hasOperator(pick-and-place_domain_partial,

9 drive-to-dexterous-workspace),

hasOperator(pick-and-place_domain_partial,

11 drive-away-f-dex-workspace),

hasOperator(pick-and-place_domain_partial, pickup-object),

13 hasOperator(pick-and-place_domain_partial, put-object)

B.2.2. Complete Pick-and-Place Domain

Two listings for the complete pick-and-place domain are shown in this section. Listing B.9

shows the methods’ assertions and Listing B.10 shows the planning domain’s assertion.

Listing B.9: Methods assertions for “complete-pick-and-place-domain”.

1 Method(moveobject_c),

hasMethod(moveobject_c,getobject_c),

3 hasMethod(moveobject_c, putobject_c),

useState(moveobject_c,

5 ’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’)

Method(moveobject2_c),

7 hasMethod(moveobject2_c, moveobject_c),

useState(moveobject2_c,

9 ’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’)

Method(getobject_c),

11 hasMethod(getobject_c, navigate2),

hasOperator(getobject_c, drive-away-f-dex-workspace),

13 hasOperator(getobject_c, drive-to-dexterous-workspace),

hasOperator(getobject_c, pickup-object),

15 useState(getobject_c,

’(at ?val1 ?val2);?val1=I:Robot,?val2=P:at’),

17 useState(getobject_c,

’(at ?val1 ?val2);?val1=I:Container,?val2=P:at’),

19 useState(getobject_c,

’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’)

21 Method(getobject2_c),

hasMethod(getobject2_c, getobject_c),

23 useState(getobject2_c,

’(at ?val1 ?val2);?val1=I:Fruit,?val2=P:at’)

25 Method(putobject_c),

hasOperator(putobject_c, navigate2),

27 hasOperator(putobject_c, put-object),

hasOperator(putobject_c, drive-to-dexterous-workspace),

29 useState(putobject_c,

’(at ?val1 ?val2);?val1=I:Container,?val2=P:at’),

31 useState(putobject_c,

’(at ?val1 ?val2);?val1=I:Robot,?val2=P:at’)
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Listing B.10: Planning domain assertion for “complete-pick-and-place-domain”.

Planning-Domain(pick-and-place_domain_complete),

2 hasMethod(pick-and-place_domain_complete, moveobject_c),

hasMethod(pick-and-place_domain_complete, moveobject2_c),

4 hasMethod(pick-and-place_domain_complete, getobject_c),

hasMethod(pick-and-place_domain_complete, getobject2_c),

6 hasMethod(pick-and-place_domain_complete, putobject_c),

hasMethod(pick-and-place_domain_complete, navigate),

8 hasMethod(pick-and-place_domain_complete, navigate2),

hasOperator(pick-and-place_domain_complete, drive-robot),

10 hasOperator(pick-and-place_domain_complete, visit),

hasOperator(pick-and-place_domain_complete, unvisit),

12 hasOperator(pick-and-place_domain_complete,

drive-to-dexterous-workspace),

14 hasOperator(pick-and-place_domain_complete,

drive-away-f-dex-workspace),

16 hasOperator(pick-and-place_domain_complete, pickup-object),

hasOperator(pick-and-place_domain_complete, put-object)

B.3. Blocks World Domain

Below is a description of the helper methods. The move-block1 method is for improving

efficiency by avoiding multiple calculations. This is an example of a general technique in SHOP.

In the case of several possible decompositions for a task with common preconditions, one might

add another hierarchy in the task level to factorise these preconditions. This method has two

cases defined as follows:

(move-block1 ?x ?z) ;; method for moving x from on top of y to on top of z

task: move-block1(x,z)

subtasks: u1 = !unstack(x,y)

u2 = !stack(x,z)

u3 = !assert((dont-move ?x))

u4 = !remove((stack-on-block ?x ?z))

u5 = check(x)

u6 = check2(y)

u7 = check3(y)

constr.: u1 ≺ u2, u2 ≺ u3,u3 ≺ u4, u4 ≺ u5, u5 ≺ u6, u6 ≺ u7, on(x,y)

(move-block1 ?x ?z) ;; method for moving x from table to on top of z

task: move-block1(x,z)

subtasks: u1 = !pickup(x)

u2 = !stack(x,z)
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u3 = !assert((dont-move ?x))

u4 = !remove((stack-on-block ?x ?z))

u5 = check(x)

constr.: u1 ≺ u2, u2 ≺ u3, u3 ≺ u4, u4 ≺ u5

Three helper methods are used to test the facts after performing the move methods. The

first one is check. It tests if another block y is ready to be put on block x. It is called whenever

block x is moved to its final position. This method is defined as follows:

(check ?x) ;; method to check if any block can be put on x

task: check(x)

subtasks: u1 = !assert((stack-on-block ?y ?x))

constr.: goal(on(y,x)), clear(y)

The second test method is check2. It performs a similar test as the check method. However,

it is called after a block is removed from on top of block x. It is defined as follows:

(check2 ?x) ;; method to check if any block to put on x

task: check2(x)

subtasks: u1 = !assert((stack-on-block ?y ?x))

constr.: dont-move(x), goal(on(y,x)), clear(y)

The third test method is check3. It tests whether block x can go to its final position. It is called

whenever something had been removed from on top of block x. This method is implemented

through three cases, which are defined as follows:

(check3 ?x) ;; method to test whether x is movable

task: check3(x)

subtasks: ∅
constr.: dont-move(x)

(check3 ?x) ;; method to test whether x can be stacked on y

task: check3(x)

subtasks: u1 = !assert((stack-on-block ?x ?y))

constr.: goal(on(x,y)), clear(y), dont-move(y)

(check3 ?x) ;; method to test whether x can be put on table

task: check3(x)

subtasks: u1 = !assert((put-on-table ?x))

constr.: goal(on-table(x))
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Listing B.11 shows the planning domain’s assertion for the blocks world domain. Details

of this assertion are presented in Section 5.2 on page 103.

Listing B.11: Planning domain assertion for the “blocks-world” domain.

1 Planning-Domain(blocks_domain),

hasMethod(blocks_domain, achieve-goal),

3 hasMethod(blocks_domain, assert-goals),

hasMethod(blocks_domain, assert-goals-nil),

5 hasMethod(blocks_domain, add-new-goals),

hasMethod(blocks_domain, find-nomove),

7 hasMethod(blocks_domain, find-moveable),

hasMethod(blocks_domain, move-block),

9 hasMethod(blocks_domain, move-block1),

hasMethod(blocks_domain, check),

11 hasMethod(blocks_domain, check2),

hasMethod(blocks_domain, check3),

13 hasMethod(blocks_domain, axiom-need-to-move),

hasMethod(blocks_domain, axiom-same),

15 hasOperator(blocks_domain, pickup),

hasOperator(blocks_domain, putdown)

17 hasOperator(blocks_domain, stack),

hasOperator(blocks_domain, unstack),

19 hasOperator(blocks_domain, assert)

hasOperator(blocks_domain, remove)
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The HDL system was implemented in Java using the Netbean IDE [Mya08]. It is implemented

as a Netbean’s rich client application. The system is called the HDL Suite. This gives a brief

overview of the Suite through snapshots and a series of UML diagrams. The HDL Suite contains

several modules, the two most important of which are the OWL Module and the Planner Module.

However, there are also several supporting modules that make the suite a user friendly system.

These modules are detailed in Appendix C.2. This Suite is implemented completely in Java™.

Thus, it can run on any system with a Java™ 5 or above installation.

C.1. HDL Plan Suite

2

3

4

5 6

7

8

9

1

Figure C.1.: Snapshot of the OWLPlannerGUI.

Figure C.1 shows the snapshot of the OWLPlannerGUI of the HDL-Suite. This window

consists of two frames; the left side is taken up by the domain chooser and the right side, for the
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goal editor. An explanation of the numbered markers seen in Figure C.1 follows.

1. Domain chooser:

Using this combo bar, the user can choose from the available domains in the DL model.

The domains are either instances of a class Method or Planning-Domain.

2. Domain select button:

This button is used to commit the selection, after which the relevant methods and operat-

ors for the selected domain are queried from the DL model.

3. Domain viewer:

This viewer shows the methods and operators for the selected domain. The content is

filled after the select button is pressed.

4. Goal chooser:

After the domain is selected, not only is the domain viewer filled out with the data, but

the goal chooser also. The content of the goal chooser depends on the selected domain

and will be refreshed when a new domain has been selected.

Figure C.2.: Snapshot of the JSHOP2Editor for editing the domain.

5. Goal editor:

After choosing one of the goals, the goal editor will be filled up with the selected goal.
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The user has to edit the variable with the real value, e.g. (navigate johnny exit).

6. Goal add button:

Once the desired goal is filled in the goal editor, the user can press the goal add button.

Once this button is pressed, the goal will be added into the goal lists.

7. Goal list viewer:

The goal list viewer shows all the objectives for the given planning domain.

8. Goal remove button:

This button is used for deleting entries from the goal list. Thus, the user can make cor-

rections.

9. Extract plan button:

Once the domain is selected and the plan objectives have been defined, this button can be

pressed to let the HDL system extract the plans.

Figure C.3.: Snapshot of the JSHOP2Editor for editing the domain.

Figure C.2 depicts the JSHOP2 editor window. This window is used for viewing and edit-

ing the generated domain. Once the extract plan button is pressed, the HDL system generates

the planning domain and planning problem. This editor supports the standard editor for pro-

gramming, such as syntax highlighting, bracket counting, syntax colouring, etc. The user can
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also edit the planning domain, to test a different behaviour or new methods for example. If this

window is visible, then the planning process has been completed. However, one might trigger

the planning process manually after editing the planning domain by pressing the “execute Plan”

button.

Figure C.3 depicts the JSHOP2 editor for the planning problem. The content is filled by

the HDL system after reasoning about its model for the given planning domain. As with the

planning domain editor, it supports standard programming editing styles. One might also edit

the planning problem. Thus, it is very useful for developing and testing new planning problems

or domains. The JSHOP2Editor can also be used for HTN planning programming. One can write

the planning domain in the domain editor and the problem in its editor. The planning process is

then triggered by pressing the execute plan button.

Figure C.4.: Snapshot of the JSHOP2Editor for displaying the planning results.

Figure C.4 shows the result window of the JSHOP2Editor. This window displays the result

of the HTN planning for the given planning problem in the problem editor window. The same

behaviours as the domain and problem editors are applied here. However, the content is not

editable.

Figure C.5 depicts the DL model viewer. The DL model is shown as a tree. Where the

classes are shown with a circle icon with a ’C’ inside. An individual is shown as a diamond

icon with an ’I’ inside. Using the viewer, the user can browse the content and structure of the
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Figure C.5.: Snapshot of the ActorNavigator window.

model. In this version, the user can also edit the properties of the Actor class.

C.2. UML Diagrams

The HDL Suite has 18 modules in all. These modules consist of 12 external libraries and 6 HDL

implementation modules. The HDL modules are explained in detail in the following sections.

The external libraries are required in order to work with the DL reasoning or JSHOP2 planning

systems. These libraries are enumerated as follows:

1. ATerm Library

2. Apache Common-IO

3. JAF

4. Java Mail API

5. Jena Toolkit

6. Jetty Library

7. JMS API

8. JSHOP2 API

9. OWL-API Library
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10. Pellet Library

11. Sun-IO

12. Sun Multi Schema Validator

C.2.1. HDL Plan Option Module

The HDL plan option module is a module that is responsible for showing the options windows.

There are two options windows in the HDL suite; the OWL options window and the JSHOP2

options window. The OWL options window is shown in Figure C.6. With this window, the user

can choose the OWL source file either by typing it into the text editor pane or choosing from

the browser window. In addition, the OWL URI can also be edited in this window. For the HTN

planning domain, the user can edit the namespace of this domain. The JSHOP2 option window is

shown in Figure C.7. The option window offers only one property to edit, namely the planner’s

working directory. The JSHOP2 planner generates some java files for its planning purpose. This

directory is where the generated files should be placed.

Figure C.6.: Snapshot of the OWL options window.

Figure C.8 shows the UML diagram of the HDLPlan-Option. It shows that the main window

is inherited from the JPanel class. There are two panels, that implements the ActionListener

from the java.awt.event. The GenericFileFilter inherits from the FileFilter. Its func-

tion in the options panel is to browse the file system. There are two more classes, namely
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Figure C.7.: Snapshot of the JSHOP2 options window.

OptionCategory and OptionPanelController which support the functionality of these

panels.

C.2.2. OWL Actor Editor Module

Figure C.9 shows the OWL-Actor-Editor UML. The editor window is shown in Figure C.5.

The main window in the Netbean rich client platform is implemented as a sub-class from

TopComponent class. In this window, it is ActorNavigatorTopComponent. This editor

is implemented using the model-view-controller (MVC) paradigm. The model is represented

by the classes Actor, Instance, and Concept. The view is represented with the classes

InstanceNode and ConceptNode. The controller is implemented by the class ActorNavi-

gatorAction and with the help of ConceptChildren class.

C.2.3. OWL Module

OWL module is the interface to the DL reasoning system. Its purposes are to read the model,

reason about it and apply HDL’s algorithms to the inferred model. The outputs of this module

are the planning domain and planning problem.

Figure C.10 shows the UML diagram for this module. The DL model is defined in the

class OWLModel that inherits the OWLModelI interface. The OWLModelI interface defines
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Figure C.8.: HDLPlan-Option UML.

the necessary methods to describe the OWL model, such as getNS_Prefix, getOntModel,

setNS_Prefix, and setOntModel. The class OWLPlanningReasoner provides the connec-

tion to the Pellet engine. The queried results are represented within the class OWLQueryResults.

The OWLListener provides the methods for manipulating the model.

In addition to the OWL classes that have been mentioned previously, some classes for

JSHOP2 planning are also defined. The JSHOP2OWLPlanning class contains the algorithms

for reasoning about the model. The JSHOP2Goal is the class that is responsible for querying

and storing the planning objectives. The JSHOP2States queries the model and stores the relev-

ant states for the defined planning problem in the JSHOP2ProblemDescription. Two classes

are defined for the planning domain and planning problem, namely JSHOP2DomainDesc and

JSHOP2ProblemDesc. The JSHOP2DomainDesc class receives its contents from JSHOP2OW-

LPlanning by applying the reasoners’ and the HTN’s algorithms. The JSHOP2ProblemDesc

class uses the information in the JSHOP2DomainDesc, JSHOP2Goal, and JSHOP2States for

its planning problem. Both classes, JSHOP2DomainDesc and JSHOP2ProblemDesc, can gen-

erates the planning domain and planning problem in SHOP syntax. The JSHOP2StringFor-

matter is the helper class for this code generation process.

C.2.4. OWLPlanner GUI Module

Figure C.11 shows the main graphical user interface (GUI) of the HDL suite. The main window

is represented by the OWLPlannerGUITopComponent. The main window is the placeholders

for the other windows, that have previously been shown as snapshots (Figure C.1 to Figure C.5).

These are represented by the OWLPlannerGUITopComponent.x (x is 1 to 6). In addition, two

helper classes are used by these GUIs, namely GoalListModel and OWLPlannerGUIAction.
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Figure C.9.: OWL-Actor-Editor UML.

C.2.5. Planner Module

The planner module is the interface component to the JSHOP2 planner. It encapsulates JSHOP2

in such a way that the HTN planner can get direct access to its API. Usually, one should execute

the planner from the console with the planning domain and planning problem as its parameters.

However, in HTN, the planner has to be integrated such that the overall system is coherent.

Figure C.12 shows the UML diagram of the planner module. In this diagram, there are two

different parts. The first part is the connection to the JSHOP2 editor window. Although in the

main GUI window its already defined, the real contents are fetched directly through this mod-

ule. The classes that are responsible for the JSHOP2Editor are JSHOP2EditorTopComponent,

JSHOP2EditorAction, and their key listener and action listener.

The interface that connects to the planner is the JSHOP2Planner. It implements the in-

terface PlannerI. This interface is the generic implementation of a planner, where the neces-

sary methods for executing the planner are defined. These methods are executePlanner,

setDomain, and setProblem. These three methods are needed by any planner. Thus, the

system is expandable, in case a new planner should be integrated within the HDL system. One

has to write an interface to the new planner by implementing the PlannerI interface.

As explained previously in Section 6.2 on page 121, the java class loader will not load any

class which has previously been loaded. Therefore, in our implementation, the ClassLoader

class has to be customised. This customisation is done with the following classes: Planner-

ClassLoader, CompilingClassLoader, CustomClassLoader, and ByteClassLoader.

These classes are responsible for compiling java codes and loading it, even if the classes have

previously been loaded.
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Figure C.10.: OWL module’s UML diagram.

C.2.6. SHOP Support Module

The “SHOP support” module serves as the SHOP lexer and language parser. It enables the user

to use syntax colouring or highlighting and code completion for writing SHOP files. Basically, it

uses the “.nbs” SchliemannNBSLanguageDescription. It is based on the Extended Backus-Naur

Form (BNF). The SHOP syntax is extracted from the JSHOP2 documentation [Ilg06]. Therefore,

the JSHOP2 editors use this definition to parse and display the SHOP code.
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Figure C.11.: OWL Planner GUI UML diagram.
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Figure C.12.: Planner module UML diagram.
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