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Introduction

Well informed people know that it is impossible

to transmit the human voice over wires.

– Boston Newspaper, 1867

Following Leonard Kleinrock [37], queueing theory is the study of the

phenomena of standing, waiting, and serving. As simple as this definition

might be, as manifold are the applications and real world problems that

can be described by queueing models. The queueing theory started at the

early beginning of the 20th century with the pioneer work of Frederik Ferdi-

nand Wilhelm Johannsen [33], Tore Olaus Engset [21,22] and Agner Krarup

Erlang [23] as the study of telephone networks with limited capacity. Nu-

merous refinements and new applications of queueing theory have arisen

since then. Nowadays, the rich and fertile theory is applied to the analy-

sis of communication networks and computer systems for internet and data

traffic or bandwidth management, to health care systems, traffic control,

insurance mathematics, machine plants and almost every area of everyday

life in which “standing, waiting, and serving” takes precedence. Although

the work of Johannsen, Engset and Erlang might seem old-fashioned from

todays point of view – and impossible if one believes a Boston newspaper

from 1867 –, their results are 100 years after the publication of Erlang’s first

paper still perfectly applicable and applied in modern teletraffic engineering

(see Stordahl [61] and ITU [32]).

Whenever a queueing system offers only a finite number of service and/or

waiting positions, some service demands might be declined and some not.

From an economic point of view, it might be useful to know the system’s

long-run behavior in order to balance for example the cost of lost demands

and the benefits from service. Quantities like the overall blocking or overflow

probability, the average departure rate from the waiting room and the servers

and the average occupation proportion of the waiting and service positions

are amongst others of special interest. A system designer for example has to



vi Introduction

know these characteristics in order to control and optimize a queueing system

and to reach a certain cost or utilization level. However, these characteristics

can only be calculated for a limited class of queueing systems and the more

involved the system dynamics get, the more involved the analysis of the long

run behavior usually becomes.

In this thesis, we present two fairly general classes of so called overflow

queueing networks. These networks consist of two queues, where the capac-

ity of the first queue is always finite. Customers arriving at the first queue

have an overflow capability from the first to the second queue if the first

queue operates at a certain fixed capacity, i.e., under certain conditions, de-

mands arriving at the first queue are allowed to join the second queue. In

every model, the dynamic of the first queue is or is at least similar to the

famous Erlang and Engset loss systems. The overflow stream will addition-

ally be weighted with a parameter p ∈ [0, 1]. The parameter p can be used

as a control parameter or to model the customers’ impatience.

The first chapter gives a brief overview of the general stochastic structure

underlying these networks. In principle, each of the queues is fed by a

Markovian Poisson process and the service times are exponential.

In the second chapter, we consider a generalization of a queueing model

presented by Perel and Yechiali [56] and additionally append an overflow

capability. In this generalized two-queue network, the arrival and service

rates for the finite first queue are state-dependent and the customers in the

first queue act as servers for the second queue, i.e., the service rate in the

second queue depends on the state of the first queue. This is for example the

case for file sharing or torrent systems, where customers receive data from

customers that are already in service. The state-dependent rates in the first

queue cover many prominent queueing systems. The first queue is considered

to have finite capacity, the second queue has an infinite capacity. We further

consider two variants of this model by allowing customers to jockey from the

second queue to the first queue. In queueing theory, jockeying is called the

possibility for waiting customers to move from one queue to another queue.

These jockeying customers can then act as servers for the second queue. We

reduce the number of unknown steady-state probabilities of this system in a

considerable amount by a generating functions approach due to Avi-Itzhak

and Mitrani [6]. Some steady-state quantities of interest are also derived.

In the third chapter, we cover a variety of different models of two-queue

networks in which we equip each of the two queues with a finite number of

servers and waiting positions. We consider different routines for the handling

of arriving, blocked, overflowing and jockeying customers. These models can
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be used to analyze for example call centers, telecommunication systems or

traffic flows. The main difference between the queueing models presented

in the second and third chapter is the finiteness of the capacity of the sec-

ond queue. Moreover, the customers in the first queue no longer serve the

customers in the second queue. The finiteness of the state space of these

queueing systems gives – in contrast to the models presented in the second

chapter – rise to additional boundary conditions. These boundary conditions

and the special structure of the steady-state equations make it impossible to

carry out the approach from the second chapter. Nevertheless, the number of

steady-state equations that describe the system’s behavior can be reduced

substantially by exploiting a separation method due to Morrison [46, 48].

By using this separation technique, we will reduce the problem of solving

the steady-state equations to the problem of solving a substantially smaller

number of homogeneous linear equations in two sets of unknowns. With

this approach, explicit formulas depending on these unknowns can be given

for various steady-state quantities in an elegant form. The basic technique

is to partition the state space into certain regions and boundaries and to

separate the stationary probabilities within these regions. In every model,

the separation leads to a set of eigenvalue problems for the separation con-

stants. The eigenvalues are given by the roots of polynomial equations and

are the pairwise distinct eigenvalues of real tridiagonal symmetric matrices

as well. They possess an interlacing property, called the “Sturm sequence

property”, which reduces the computational complexity considerably. The

desired probabilities are expressed as sums of eigenfunctions in terms of the

eigenvalues. The number of eigenfunctions and therefore the number of coef-

ficients to be determined in these representations is in general substantially

smaller than the number of stationary probabilities. The coefficients are de-

termined by the normalization condition and a set of linear equations that

stems from the boundary conditions. The desired probabilities and steady-

state quantities can be numerically determined once the coefficients and

eigenvalues are numerically calculated. Some of the results were published

in Sendfeld [59].

We give a detailed model and literature review and name main applica-

tions of our models at the beginning of every chapter. Due to the natural

occurrence of overflow queueing problems, the related literature is vast, see

for example Disney and König [17] for a broad overview. Two chapters de-

voted to the theory of queueing networks with restricted accessibility and

overflow are found in Syski [63]. In Kosten [38], some aspects of networks

with restricted accessibility are considered. Additionally, Koury et al. [39]
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and Krieger et al. [40] give reviews of iterative numerical methods for over-

flow queueing models. A brief discussion of numerical methods for some

two-queue overflow systems and further references are given in Ching and

Ng [10].



Introduction (german)

Wohlunterrichete Menschen wissen, dass es unmöglich ist,

die menschliche Stimme mit Kabeln zu übertragen.

Bostoner Tageszeitung, 1867

Nach Leonard Kleinrock [37] ist die Warteschlangentheorie das Studi-

um der Phänomene des Stehens, Wartens und Bedienens. So einfach diese

Definition auch sein mag, so mannigfaltig sind die Anwendungen und re-

alen Probleme, die als Warteschlangenmodelle beschrieben werden können.

Die Grundsteine der Warteschlangentheorie wurden Anfang des frühen 20.

Jahrhunderts gelegt. Die Pionierarbeiten von Frederik Ferdinand Wilhelm

Johannsen [33], Tore Olaus Engset [21, 22] und Agner Krarup Erlang [23]

befassten sich mit dem Studium der Telefonnetzwerke mit begrenzten Ka-

pazitäten. Seither entstehen unzählige Verallgemeinerungen und neue An-

wendungen der Warteschlangentheorie. Noch heute zählen die Kommunika-

tions- und Netzwerktechnik bei der Analyse von Telefon-, Internet- und Da-

tenverkehr zu den wichtigsten Anwendungsbereichen der Warteschlangen-

theorie. Auch im Bandbreitenmanagement, im Gesundheitssystem, der Ver-

kehrsregulierung, in der Versicherungsmathematik und bei der Analyse von

Kundenströmen - also in fast jedem Bereich des alltäglichen Lebens, in dem

”
Stehen, Warten und Bedienen“ eine Rolle spielen - ist die Warteschlangen-

theorie unerlässlich. Obwohl die Arbeiten von Johannsen, Engset und Erlang

aus heutiger Sicht altmodisch erscheinen mögen - sogar nutzlos, sofern man

einer Bostoner Zeitung von 1867 glaubt -, so sind deren Resultate auch 100

Jahre nach der Veröffentlichung von Erlangs erster Arbeit anwendbar und

werden nach wie vor in der modernen Telekommunikation angewendet (siehe

Stordahl [61] und ITU [32]).

Verfügt ein Warteschlangensystem nur über eine begrenzte Kapazität

an Service- oder Warteplätzen, so kann dies dazu führen, dass nur ein Teil

der Serviceanfragen erfüllt wird. Aus ökonomischer Sicht ist es dann sinnvoll,

das Langzeitverhalten des Systems zu studieren, um zum Beispiel die Kosten



x Introduction (german)

abgelehnter Anfragen und die Einnahmen angenommener Anfragen auszu-

balancieren. In dieser Hinsicht sind unter anderem die erwartete Blockier-

wahrscheinlichkeit, die durchschnittlichen Abgangsraten von Kunden aus

den Warteräumen oder Servern und die durchschnittliche Anzahl besetzter

Warteplätze und Server von besonderem Interesse. Sind diese Größen unter

gegebenen Voraussetzungen bekannt, so können Sie genutzt werden, um ein

neues System optimal zu planen oder ein bestehendes zu optimieren. Hier-

bei können Zielvorgaben, wie die Sollauslastung oder die Einhaltung einer

Kostenobergrenze, durch entsprechende Wahl der beeinflussbaren System-

parameter erfüllt werden. Die zur optimalen Kontrolle eines solchen Systems

notwendigen Größen können jedoch im Allgemeinen nur für eine begrenzte

Klasse von Warteschlangensystemen effizient berechnet werden. Je kompli-

zierter die Abhängikeiten und Kundenströme in einem System sind, desto

aufwändiger - wenn nicht unmöglich - ist dessen Analyse.

In dieser Arbeit präsentieren wir zwei allgemeine Klassen sogenannter

Warteschlangennetzwerke mit Overflow. Die Netzwerke in diesen Klassen

bestehen jeweils aus zwei Warteschlangen. Die Kapazität der ersten War-

teschlange ist stets endlich. In den betrachteten Modellen entspricht die

Dynamik der ersten Warteschlange den bekannten Erlang- oder Engset-

Verlustsystemen oder ist diesen ähnlich. Wie in der Warteschlangentheorie

üblich, werden wir im Folgenden den Begriff Kunde synonym für Anfrage

und den Begriff Server für die Bedieneinheit verwenden. Ist die erste War-

teschlange bis zu einer festgelegten Kapazitätsauslastung belegt, werden an-

kommenden Kunden bestimmte Wechselmöglichkeiten (Overflow) zur zwei-

ten Warteschlange eingeräumt. Ein Kundenwechsel findet in den betrachte-

ten Netzwerken zusätzlich mit einer Wahrscheinlichkeit p ∈ [0, 1] tatsäschlich

statt, das heißt, der Wechselstrom wird mit dem Parameter p gewichtet. Der

Parameter p kann als Steuer- oder Kontrollparameter verwendet werden oder

den Grad der Ungeduld der wechselnden Kunden beschreiben.

Das erste Kapitel gibt einen kurzen Überblick über die allgemeine sto-

chastische Struktur, die den betrachteten Netzwerken zu Grunde liegt. Prin-

zipiell verfügt jede der Warteschlangen über einen markovschen Poisson-

Ankunftsprozess und exponentialverteilte Servicezeiten.

Im zweiten Kapitel betrachten wir eine starke Verallgemeinerung eines

Warteschlangenmodells von Perel und Yechiali [56], indem wir unter an-

derem Overflow zulassen. Bei dieser Verallgemeinerung eines Netzwerks aus

zwei Warteschlangen sind die Ankunfts- und Serviceraten in der ersten War-

teschlange variabel und abhängig vom Zustand dieser Warteschlange. Ferner

werden die Kunden der zweiten Warteschlange von den Kunden der ersten
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bedient, so dass die Servicerate der zweiten Warteschlange ebenfalls vom Zu-

stand der ersten abhängt. Dies ist zum Beispiel der Fall bei Filesharing- oder

Torrent-Systemen, in denen Kunden Daten von anderen Kunden herunterla-

den, die bereits Service erhalten. Die Variabilität der Ankunfts- und Service-

raten in der ersten Warteschlange ermöglicht die Analyse vieler prominenter

Warteschlangensysteme. Die erste Warteschlange besitzt stets endliche Ka-

pazität, die zweite hingegen unendliche Kapazität. Wir betrachten ferner

zwei Varianten dieses Modells, in denen wir Kunden, die sich im Warte-

raum der zweiten Warteschlange befinden, die Möglichkeit geben, zur ersten

Warteschlange zu wechseln. Diese Kunden wiederum können dann in der

ersten Warteschlange als Server für die zweite Warteschlange fungieren. Wir

reduzieren die Anzahl der unbekannten stationären Wahrscheinlichkeiten

drastisch, indem wir die Struktur der erzeugenden Funktionen dieser Wahr-

scheinlichkeiten mit Hilfe eines Ansatzes von Avi-Itzhak und Mitrani [6]

analysieren. Ferner leiten wir Formeln für einige der wichtigsten stationären

Größen her.

Im dritten Kapitel untersuchen wir zahlreiche unterschiedliche Warte-

schlangennetzwerke aus zwei Warteschlangen, in denen jede der beiden War-

teschlangen mit einem Warteraum mit endlicher Kapazität und einer be-

grenzten Anzahl an Servern ausstattet ist. Wir betrachten unterschiedliche

Routinen für die Behandlung ankommender, blockierter und wechselnder

Kunden. Diese Modelle können verwendet werden, um zum Beispiel Call

Center, Telekommunikationssysteme oder Verkehrsflüsse zu analysieren. Der

Hauptunterschied zwischen den Modellen im zweiten und dritten Kapitel ist

daher die nun endliche Kapazität der zweiten Warteschlange. Ferner wer-

den die Kunden in der zweiten Warteschlange nicht mehr von den Kunden

in der ersten Warteschlange bedient. Im Gegensatz zu den Modellen aus

dem zweiten Kapitel gibt die endliche Kapazität der zweiten Warteschlange

hier Anlass zu zusätzlichen Randbedingungen. Diese Randbedingungen und

die spezielle Struktur der Gleichgewichtsgleichungen machen es unmöglich,

diese Systeme mit den Methoden aus dem zweiten Kapitel zu analysieren.

Jedoch reduzieren wir die Anzahl der unbekannten stationären Wahrschein-

lichkeiten wiederum drastisch, indem wir eine Separations-Technik von Mor-

rison [46, 48] verwenden und verallgemeinern. Mit Hilfe dieser Technik re-

duzieren wir das Problem der Lösung der Gleichgewichtsgleichung auf das

Problem der Lösung einer erheblich kleineren Anzahl an homogenen Glei-

chungen und eines Eigenwertproblems. Mit dieser Methode können explizite

Formeln für die verschiedensten stationären Größen in Abhängigkeit von

diesen Eigenwerten in eleganter Form angeben werden. Die grundlegende



xii Introduction (german)

Technik basiert auf einer Partition des Zustandsraums in Mengen bestimm-

ter innerer Punkte und Randpunkte. In den inneren Bereichen werden die

stationären Wahrscheinlichkeiten dann in eine Summen-Produkt-Form zer-

legt. Diese Zerlegung führt zu Eigenwertproblemen für tridiagonale symme-

trische Matrizen, zu deren Lösung die stationären Gleichungen in den Rand-

punkten verwendet werden. Die Eigenwerte werden dabei als Nullstellen po-

lynomialer Gleichungen bestimmt und sind paarweise verschieden und reell.

Sie besitzen die sogenannte Sturm-Folgen- oder Verzahnungseigenschaft, die

den numerischen Aufwand bei deren Berechnung erheblich reduziert. Die

gesuchten Wahrscheinlichkeiten werden als gewichtete Summen der Eigen-

funktionen in Abhängigkeit der Eigenwerte dargestellt. Die Koeffizienten

in dieser Darstellung werden mit Hilfe der Normierungsbedingung und der

linearen Randbedingungen bestimmt. Die gesuchten Wahrscheinlichkeiten

können mit numerischen Verfahren berechnet werden, sobald die Koeffizien-

ten und Eigenwerte berechnet worden sind. Einige der Resultate wurden in

Sendfeld [59] veröffentlicht.

Wir geben zu Beginn jedes Kapitels eine detaillierte Literaturübersicht

und Anwendungsbeispiele für die präsentierten Modelle. Aufgrund des natür-

lichen Auftretens von Warteschlangennetzwerken mit Wechselmöglichkeiten

ist die verwandte Literatur reichhaltig. Eine breite Übersicht ist zum Bei-

spiel in Disney und König [17] gegeben. Syski widmet in [63] zwei Kapitel

der Analyse von Warteschlangennetzwerken mit begrenzter Kapazität und

Wechselmöglichkeiten. Weitere Aspekte von Netzwerken mit begrenzter Ka-

pazität werden in Kosten [38] betrachtet. Koury et al. [39] und Krieger

et al. [40] geben Überblicke über iterative numerische Methoden für War-

teschlangen mit Wechselmöglichkeiten. Eine kurze Diskussion numerischer

Methoden für Zwei-Server-Warteschlangen mit Wechselmöglichkeiten und

weitere Referenzen finden sich in Ching und Ng [10].
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Chapter 1

Preliminaries

This chapter serves as a brief introduction to the theory of Markov jump pro-

cesses in continuous time in order to classify the stochastic models presented

in this thesis. The well-known classical results on general Markov chains in

continuous time in this chapter can be found in various textbooks and are

taken from Alsmeyer [3], Asmussen [5] and Bremaud [7], whereas the results

on quasi birth and death chains are due to Latouche and Ramaswami [41]

and Neuts [53].

1.1 Markov chains in continuous time

In this section, we recapitulate the definition and the basic structure of a

continuous time Markov process or Markov jump process on a countable

state space. Let S be a countable nonempty set, called the state space,

and let X = (Xt)t∈[0,∞) be a stochastic process on the probability space

(Ω,A, P ) with values in S. Let F = (Ft)t∈[0,∞) be the canonical filtration

of X, that is, Ft is the σ-algebra generated by all Xs for s ≤ t. The process

X is called Markov process if the Markov property holds:

P (Xt ∈ A | Fs) = P (Xt ∈ A | Xs) P -a.s.

for all s, t ∈ [0,∞) with s < t and every A ⊂ S. The process is called

homogeneous if the transition kernels Ps,t(Xs, A) = P (Xt ∈ A | Xs) can be

chosen so as to depend on s and t only through the difference t − s, i.e., if

P (Xt ∈ A | Xs = x) = P0,t−s(x,A) PXs-a.s.
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This will be assumed in the following. We will write P0,t = Pt, whereP0(x, ·) is the Dirac measure δx in x, and call Pt the t-step transition

kernel . The family (Pt)t∈[0,∞) of the t-step transition kernels satisfies the

Kolmogorov-Chapman equations:Ps+t = PsPt (1.1.1)

or equivalently Ps+t(x,A) =

∫

S

Pt(y,A)Ps(x, dy)

for all s, t ∈ [0,∞) and every A ⊂ S.

In our setting with denumerable state space S, we may identify the

transition kernel Pt with the matrix P (t) = (pi,j(t))i,j∈S and interpret the

Kolmogorov-Chapman equations in the sense of matrix multiplication. We

have

(i) P (t) is a stochastic matrix,

(ii) P (0) is the identity matrix and

(iii) P (t + s) = P (t)P (s) for all s, t ∈ [0,∞).

Moreover, we suppose that limt→0 P (t) = P (0). With this assumption we

can show that pi,j(t) is continuously differentiable for t > 0 and differentiable

from the right at 0, i.e., the limit

qi,j = lim
t→∞

pi,j(t) − pi,j(0)

t

exists and is finite for i 6= j but maybe infinite for i = j. We also have qi,j ≥ 0

for all i 6= j. The matrix Q = (qi,j)i,j∈S is called the infinitesimal generator ,

rate matrix or Q-matrix of the process X. Q is called conservative if

∑

j 6=i

qi,j = −qi,i < ∞

or equivalently, in matrix form, if Q1 = 0 holds, where 1 is the vector with

all entries equal to 1. It is useful to let qi = −qii for i ∈ S. We assume in

the following that Q is conservative.

The process X has a fundamental jump structure. Let S0 = 0 < S1 <

S2 < . . . be the times of successive jumps of X, let Tn = Sn+1 − Sn for

n ≥ 0 be the associated sojourn times and let the sequence of states visited

be given by Yn = XSn for n ≥ 0. There are two phenomena which desire
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further attention: absorption and explosion. The process may be absorbed

in the sense that there is a last finite Sn. In this case we may set Tk = ∞
and Yk = XSn for k ≥ n. The case of an explosion of the process, i.e., an

accumulation of infinitely many jumps in finite time is more involved. The

following condition for a conservative Q-matrix prevents the process X from

being explosive.

Proposition 1.1.1. Let Q be conservative. Then X is nonexplosive if the

condition supi∈S qi < ∞ holds. That is for example the case if S is finite.

The basic structure of X up to the time of explosion is very simple (see

Theorem II 1.2 in [5]):

Proposition 1.1.2. The joint distribution of the sequences (Yn)n≥0 and

(Tn)n≥0 before explosion is given by:

(i) The sequence (Yn)n≥0 of states visited is a Markov chain.

(ii) There exist λ(i) ≥ 0 such that T0, T1, . . . are independent and Tk is

exponentially distributed with parameter λ(Yk) for k ≥ 0 given (Yn)n≥0.

The transition matrix P̂ = (p̂i,j)i,j∈S of the embedded Markov chain

(Yn)n≥0 is linked to the generator Q by

p̂i,i = 0 and p̂i,j =
qi,j

qi
,

if 0 < qi < ∞ and p̂i,j = δij for all j ∈ S if qi = 0, where δij is the Kronecker

function, i.e., δij = 1 for i = j and 0 otherwise. Thus, absorption is excluded

if 0 < qi < ∞ for all i ∈ S.

This basic structure suggests that one can construct a Markov jump

process in continuous time by specifying a conservative Q-matrix: Start the

chain at an arbitrary state and let it reside in state i0 for an exponential

holding time with parameter λ(i) =
∑

j 6=i0
qi0,j = qi0 and jump to the state

i1 with probability p̂i0,i1 = qi0,i1/qi0 . Indeed, under the condition that the

resulting process is nonexplosive, one gets a continuous time Markov chain

with infinitesimal generator Q. The assumption that the process in nonex-

plosive can of course be avoided. Moreover, the resulting Markov process is

called the minimal construction and is, in addition to the conditions given in

Proposition 1.1.1, nonexplosive if the embedded Markov chain is recurrent.

The concepts of irreducibility, recurrence and transience can be defined

via the embedded Markov chain. In this manner, a Markov jump process has

the respective property if and only if the embedded Markov chain does. An
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ergodic process is an irreducible recurrent process with stationary measure

having finite mass. We have the following stability theorem (see Theorem

II 4.3 in [5])

Theorem 1.1.3. An irreducible nonexplosive Markov jump process is er-

godic if and only if one can find a probability vector p with pQ = 0. In that

case p is the stationary distribution, i.e., pP (t) = P (t) for every t ∈ [0,∞).

All stochastic processes considered in this thesis arise from a minimal

construction based on a conservative rate matrix Q. The resulting processes

are nonexplosive since one of the properties from Proposition 1.1.1 holds in

every case. In the second chapter, we consider queueing systems with infinite

state space. Thus, we have to guarantee the ergodicity of the stochastic

processes. The main ergodicity criterion that serves this purpose is stated

in the next section. Once ergodicity is established, we can focus on finding

the unique normalized solution of the equation pQ = 0. In the third chapter,

we consider finite queueing systems. Ergodicity is in this case given by the

irreducibility of Q and the finiteness of the state space. The main objective

is again to find the unique normalized solution of the equation pQ = 0.

1.2 Quasi birth and death processes

We consider a two-dimensional Markov jump process L = (L1,t, L2,t)t∈[0,∞)

in continuous time on the state space S = {0, . . . , N} × N0. The first

component (L1,t)t∈[0,∞) is called the phase or the phase process. The second

component (L2,t)t∈[0,∞) is called the level or the level process. Let

l(m) = {0, . . . , N} × {m}

be the collection of states in level m for m ≥ 0. We will also call l(m) the

level m

Definition 1.2.1. A Markov chain on S is called a quasi birth and death

process (QBP) if transitions are restricted to one-step transitions from states

in one level to states in the same level or to states in the neighboring levels.

By this definition, the transitions of L are restricted to one-step transi-

tions from states in one level to states in the same level or to states in the

neighboring levels, i.e., transitions from the states in l(m) to the states in

l(m′) can occur if and only if m′ = m − 1, m, or m + 1. Furthermore, we

assume that the transitions are level-independent, i.e., the transition rate
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from states in l(m) to states in l(m′) depends on m and m′ only through

the difference m − m′. The QBP is called homogeneous in this case.

The states can be ordered lexicographically with respect to the first

component in the order

(0, 0), (1, 0, ), . . . , (N, 0), (0, 1), (1, 1), . . . , (N, 1), . . . .

In this order, the transition rate matrix or infinitesimal generator Q has a

block-tridiagonal form of the following type:

Q =

















B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 · · ·
0 0 A2 A1 . . .
...

...
...

...
. . .

















,

where B,A0, A1 and A2 are quadratic matrices. The matrices A0 and

A2 are nonnegative; the matrices B and A1 have nonnegative off-diagonal

entries and negative entries on their diagonals. The sum of the elements in

each row of Q equals 0. The matrix B contains the transition rates from

states in level l(0) to states the level l(0). The matrices A0, A1 and A2 are

generated by the rates from states in level l(m) to states in level l(m + 1),

l(m) and l(m − 1), respectively, for m ≥ 0.

Quasi birth and death processes belong to the class of stochastic pro-

cesses that can be analyzed by the matrix-analytic method . The origins of

these technique go back to Marcel Neuts (see [51], [52] and [53]), whose

research originated the matrix-geometric distribution and phase-type pro-

cesses. The term “geometric” stems from the generalization of the structure

of the stationary measure of the one-dimensional birth and death process

on the nonnegative integers to the two-dimensional case. The next theorem

displays this geometric structure of the stationary probability measure of a

positive-recurrent QBP. The theorem and its proof can be found in Latouche

and Ramaswami [41] (see Theorem 6.4.1).

Theorem 1.2.2. Assume that the continuous time quasi birth and death

process is positive-recurrent. Let the stationary distribution p of the process

be partitioned by levels into subvectors pm, m ≥ 0. Then, the stationary

probability distribution is such that

pm = p0R
m for m ≥ 0,
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where the matrix R records the rate of sojourn in the states of level l(m+1)

per unit of the local time of l(m). Furthermore, we have that R = A0S,

where the matrix S records the expected sojourn time in the states of l(m),

starting from l(m), before the first visit to l(m − 1).

The following stability theorem taken from [41] (see Theorem 7.2.4) gives

a necessary and sufficient condition for stability and the existence of a unique

stationary probability measure. The proof will be omitted and can be found

in [41]; an earlier reference is [53] (see Theorem 3.1.1).

Theorem 1.2.3. Consider an irreducible, continuous time QBP with a fi-

nite number of phases and assume that the matrix A = A0 + A1 + A2 is

irreducible. The process is positive recurrent if and only if

πA01 < πA21, (1.2.1)

where 1 = (1, . . . , 1)⊤ ∈ RN+1 and π = (π0, . . . , πN ) is the existing and

unique solution of the equations πA = 0 and π1 = 1. The process is recurrent

if πA01 = πA21 and transient if πA01 > πA21.

The stability condition πA01 < πA21 states that the phase-averaged

rate for level transitions from l(m) to l(m + 1) must be smaller than the

phase-averaged rate for level transitions from l(m) to l(m − 1) for every

m ≥ 1.



Chapter 2

Overflow to an infinite queue

and customers as servers

2.1 Model overview

In this chapter, we consider a fairly general open queueing network consisting

of two queues having an overflow capability from the first to the second

queue. The arrival and service rates are state-dependent and the customers

in the first queue act as servers for the second queue, i.e., the service rate

in the second queue depends on the state of the first queue.

Consider two queues Q1 and Q2. Let the total number of customers in

queue Q1 be given by the state of a finite birth and death chain in continuous

time with state space {0, . . . , N}, reflecting barriers and state-dependent

birth and death rates. Let the birth rate be λ1,n > 0 if the chain is in state

n = 0, . . . , N − 1 and the death rate be µ1,n > 0 if the chain is in state

n = 1, . . . , N . The state of the birth and death chain corresponds to the

total number of customers in the queue Q1, i.e., the number of customers in

the waiting room plus the number of customers in service. If this number is

n, then the arrival rate of the queue is λ1,n > 0, n = 0, . . . , N−1, and service

rate is µ1,n > 0, n = 1, . . . , N . Let λ1,N > 0 be the potential birth rate in

state N , i.e., the potential arrival rate if Q1 is in state N . Let µ1,0 = 0

and let L1 be the (stationary) total number of customers in Q1, i.e., the

number of occupied waiting positions plus the number of customers being

served (under stationary conditions). If Q1 is fully occupied, i.e., if L1 = N ,

then the arrival stream of Q1 is weighted with p ∈ [0, 1] and directed to the

second queue. This procedure is called overflow. Furthermore, the fraction

1 − p of arriving customers is lost in this case. The parameter p can be
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used as a control parameter or to model the customers’ impatience. Assume

that the second queue has no other external arrivals. In other words, the

arrival rate at Q2 is pλ1,N in the case L1 = N and 0 otherwise. Q2 has one

server with exponentially distributed service times and a waiting room with

infinite capacity. The service rate is variable and depends on the number

of customers L1 in Q1 and is L1µ2, where µ2 > 0. The customers in each

queue are served in their order of arrival. This basic model is discussed in

the next section.

We further consider two variants of the basic model by allowing cus-

tomers to jockey from the second queue to the first queue. In queueing

theory, jockeying is called the possibility for waiting customers to move

from one queue to another queue. In the first variant, the first customer

or more generally the first k customers, 1 ≤ k ≤ N − 1, from Q2, if one is

present, are forced to move to Q1 as soon as Q1 empties. These customers

can then act as servers for the second queue. We call this model the model

with limited jockeying because the number of jockeying customers limited

to a fixed value smaller than the capacity of the first queue. Therefore,

some customers might have to stay in Q2 although Q1 has not reached its

capacity bound. In the second variant, as soon as Q1 empties, it is filled

with the customers of Q2 until it reaches its capacity bound or Q2 empties.

This jockeying procedure is called unlimited jockeying . The transferral of

customers does not result in service interruptions, because the service rate

in Q2 is 0 at the time points of customer transferrals. See Figure 2.1 for a

schematic overview of the three models.

As indicated in Figure 2.1 it is possible to let Q2 have a Poisson arrival

stream being independent of Q1 with intensity λ2 > 0, so that the arrival

rate to Q2 is λ2 for L1 = 0, . . . , N − 1 and pλ1 + λ2 for L1 = N . In order to

simplify the presentation of the results, we omit the derivations in this case

and discuss the solution in Section 2.2.5.

Our basic model covers for example the case of Q1 being an

M(n)/M(n)/1/N − 1-queue with one server and N − 1 waiting positions or

any M(n)/M(n)/K/N −K queueing system with K servers and N −K wait-

ing positions, where N ≥ K > 0. The index (n) indicates state-dependent

rates. Following the notation of van Doorn [19], the queueing systems with

one server and N − 1 waiting positions in Q1 for example might be labeled

with (M(n)/M(n)/1/N − 1)p−overflow/M(n)/1.
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Q2:

λ1,n

λ2

µ1,n

nµ2

Figure 2.1: Model overview: Customers acting as servers, state-dependent
service and arrival rates.

Solution approach

We are interested in the two-dimensional server and waiting room demand

process of this model, embedded at the time instants of arrivals to Q1 and

Q2 and departures from Q1 and Q2. This process is a Markov chain with

state space S = {(n,m) |n = 0, . . . , N, m ≥ 0}, where the first and second

component of (n,m) ∈ S correspond to the number of occupied servers

and/or waiting positions in Q1 and Q2, respectively.

We solve the system of steady-state equations that describe the systems’

dynamics by exploiting the probability generating functions of the number

of customers in Q2, see for example Avi-Itzhak and Mitrani [6] and Perel

and Yechiali [56]. The solution of these equations is given in terms of only N

unknowns p1,0, . . . , pN,0, where pn,m is the steady-state probability of having

n customers in Q1 and m customers in Q2. These unknowns can then be

determined by N linear equations in the unknowns given later. The model

presented in [56] is an important special case of our birth and death queueing

system for the case p = 0, λ1,n = λ1 > 0, µ1,n+1 = µ1 > 0, n = 0, . . . , N − 1

and λ2 > 0.

Applications

Our models can be used to analyze for example file sharing or torrent sys-

tems. In these systems, data files are shared, exchanged and spread over
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the internet or a private intranet by letting downloading customers act as

servers for further customers. Due to cost and bandwidth limitations it is

a common case to have a limited number of primary download channels

(i.e., the servers in Q1), a limited number of primary queueing positions

for these channels (i.e., the waiting positions in Q1) and an unlimited num-

ber of secondary download channels (i.e., the positions in Q2). A server

or host provides a data file via the servers in the primary channels. This

file is typically divided into several data portions which are downloaded by

the customers in service in the primary channels. When the primary down-

load and queueing positions are occupied, an incoming customer can decide

whether to join one of the secondary download channels in Q2 or not – the

probability of joining may equal p for all potential secondary customers.

Additionally, the parameter p can be regarded as a control parameter. The

arrival stream of the secondary channels may consist of the overflow from

the primary channels and/or an independent arrival stream. The secondary

download channels are served by the customers that are present in the pri-

mary channels, i.e., the secondary customers can download the requested file

or the data portions of this file from the customers in the primary channels.

These torrent systems make hosting of a file with a potentially unlimited

number of downloaders affordable because the costs of the secondary chan-

nels can be assigned to the primary and secondary customers. The download

speed in the primary and secondary download channels can increase with

the number of customers who are receiving service (in the primary chan-

nel). This is due to the fact that when customers download the same file at

the same time, they can upload portions of the file to each other. In addi-

tion, the data portions of the file can be downloaded in an arbitrary order.

Thus, a secondary customer can finish the service earlier than a primary

customer who arrived earlier and who participated in serving this secondary

customer. The download speed in the primary channel may also decrease

with the number of customers because of a limitation of the bandwidth.

Further applications of our model are to the SETI@home and the GIMPS

project. The SETI@home project (Search for ExtraTerrestrial Intelligence),

initiated by the Space Sciences Laboratory of the University of California,

Berkeley, is described in Perel and Yechiali [56]. This project is searching

for extraterrestrial intelligence by radio telescopes. The GIMPS project

(Great Internet Mersenne Prime Search) launched by the Mersenne Research

Incorporation is a prominent and popular project searching for Mersenne

prime numbers. In both projects, huge amounts of data have to be processed.

This is done by institutions or private persons who install special computer
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programs on their computers. Whenever a computer equipped with this

software is idle, these programs are activated and data can be processed.

Having these examples in mind, it is very natural to assume variable

service and arrival rates due to bandwidth or CPU limitations. The models

presented in this chapter achieve the purpose of having variable arrival and

service rates.

Further related literature

The models presented in this chapter can be represented as quasi birth and

death processes (QBP) presented in Section 1.2, see for example Latouche

and Ramaswami [41]. Consequently, their analysis can be carried out using

a matrix-geometric approach, see Neuts [53]. Furthermore, all models can be

formulated as Markov-modulated queues. For related literature on both the

matrix-geometric approach and Markov-modulated queues see for example

Asmussen [4]. For the latter see Mahabhashyam et al. [43], Muscariello et

al. [50] and Takine [64] and the references therein.

Overflow queueing models are widespread in literature. Van Doorn [19]

and Parthasarathy and Sudhesh [55] study the interoverflow time distribu-

tion of a finite birth and death queue model as presented for Q1. Koury et

al. [39] and Krieger et al. [40] give reviews of iterative numerical methods for

overflow queueing models. A brief discussion of numerical methods for some

two-queue overflow systems and further references are given in Ching and

Ng [10]. While most of these formulations are of primary interest when the

focus is on numerical results, the method used in the following gives deep

insight into the structure of the stability conditions and solutions. Never-

theless, we will use the stability theorem for QBP presented in Section 1.2

to derive necessary and sufficient conditions for stability in every model.

Related overflow models are studied in Chapter 3 of this thesis, in van

Doorn [19] and Guérin, Lien [27] and the referenced literature therein using

a variety of different techniques. Further related literature is mentioned in

Chapter 3, Section 3.1 of this thesis.

2.2 Customers as servers: Basic model

2.2.1 Model description and steady-state equations

Let the number of customers in Q1 be given by the state of a finite birth

and death chain with state space {0, . . . , N}, birth rate λ1,n > 0 if the chain
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is in state n = 0, . . . , N − 1 and death rate µ1,n > 0 if the chain is in state

n = 1, . . . , N . Let λ1,N > 0 be the potential birth rate if Q1 is in state N .

Let µ1,0 = 0 and let L1 be the (stationary) total number of customers in

Q1. Let Q2 have one server with exponentially distributed service times and

a waiting room with infinite capacity. The service rate in Q2 is L1µ2 if L1

customers are present in Q1, where µ2 > 0. Q2 is fed by a portion of the

rejected customers of Q1. If queue one is fully occupied, i.e., if L1 = N , then

the arrival stream of Q1 is weighted with p ∈ (0, 1] and directed to Q2 while

the fraction 1 − p of arriving customers is lost in this case. The customers

in each queue are served in their order of arrival. The underlying Markov

process is irreducible since there exists a path with positive probability from

the state (0, 0) to every other state. Furthermore, the Markov process in

non-explosive by Proposition 1.1.1. The transition rate diagram is given in

Figure 2.2, where λ2 = 0 in this section.
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Figure 2.2: Basic model: Transition rate diagram.

The first queue is a finite one-dimensional birth and death chain and the

distribution of L1 is therefore well known, see for example or Cohen [12].
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Setting ρn = λ1,n/µ1,n+1, n = 0, . . . , N − 1, we get

P (L1 = n) =

n−1
∏

i=0
ρi

1 +
N
∑

j=1

j−1
∏

i=0
ρi

and EL1 =

N
∑

n=1
n

n−1
∏

i=0
ρi

1 +
N
∑

n=1

n−1
∏

i=0
ρi

, (2.2.1)

where the empty product is set to 1. For example, with constant service

rates λ1,n = λ1, arrival rates µ1,n = µ1 and λ1 6= µ1 we arrive at the

classical M/M/1/N − 1 queue:

P (L1 = n) =
1 − λ1

µ1

1 −
(

λ1

µ1

)N+1

(

λ1

µ1

)n

and EL1 =
λ1

µ1 − λ1
− (N + 1)λN+1

1

µN+1
1 − λN+1

1

.

In the case λ1 = µ1, we have P (L1 = n) = 1/(N + 1) and EL1 = N/2. For

service rates λ1,n = λ1 and arrival rates µ1,n = nµ1, the first queue is an

Erlang loss system, i.e., the M/M/N/0 queue:

P (L1 = n) =
ρn

n!

1 +
N
∑

n=1

ρn

n!

and EL1 =

N
∑

n=1

ρn

(n−1)!

1 +
N
∑

n=1

ρn

n!

,

where ρ = λ/µ (see Erlang [24]).

It is shown in van Doorn [19] that the overflow process from the first

queue is a renewal process of hyperexponential type. An expression for the

Laplace transform of the interoverflow time, i.e., the time between successive

moments of overflow, can be given. The intensity Λ of the interoverflow

process is

Λ =

pλ1,N

N−1
∏

n=0
ρn

1 +
N
∑

n=1

n−1
∏

i=0
ρi

. (2.2.2)

Parthasarathy and Sudhesh [55] express the interoverflow time distribution

as a power series expansion and as a hyperexponential distribution in closed

form. Additionally, a closed-form expression in terms of the system param-

eters for the r-th moment of the overflow process is given.

Let L1 and L2 be the (stationary) total number of customers in Q1 and
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Q2, respectively, and

pn,m = P (L1 = n,L2 = m)

for n = 0, . . . , N and m ≥ 0. The unknown quantities P (L2 = m), m ≥ 0,

EL2 and Cov(L1, L2) are of special interest and will be derived in the next

section.

The bivariate server and waiting room demand distribution

(pn,m)n=0,...,N, m≥1 in the case λ2 = 0 is the unique nonnegative and nor-

malized solution (i.e.,
∑N

n=0

∑

m≥0 pn,m = 1) of the following steady-state

equations:

(λ1,n(1−δnN ) + pλ1,NδnN + (1 − δn0)µ1,n + (1 − δm0)nµ2)pn,m

= (1 − δn0)λ1,n−1pn−1,m + (1 − δnN )µ1,n+1pn+1,m

+ (1 − δm0)δnNpλ1,Npn,m−1 + (1 − δn0(1 − δm0))nµ2pn,m+1

(2.2.3)

for n = 0, . . . , N and m ≥ 0, where δij is the Kronecker function, i.e., δij = 1

for i = j and 0 otherwise.

2.2.2 Necessary and sufficient stability condition

In this section, we derive the necessary and sufficient condition for the ex-

istence of a normalized solution of the steady-state equations (2.2.3). First,

we give an intuitive argument for the stability condition and the possibility

of reducing the infinite number of unknowns in these equations to only N

unknowns, namely p1,0, . . . , pN,0.

The equations (2.2.3) for m = 0 and n = 0, . . . , N , i.e.,

λ1,0p0,0 = µ1,1p1,0, (2.2.4)

(λ1,n + µ1,n)pn,0 = λ1,n−1pn−1,0 + µ1,n+1pn+1,0 + nµ2pn,1,

n = 1, . . . , N − 1, (2.2.5)

(pλ1,N + µ1,N )pN,0 = λ1,N−1pN−1,0 + Nµ2pN,1, (2.2.6)

give after summation over n = 0, . . . , N

pλ1,NpN,0 = µ2

N
∑

n=1

npn,1. (2.2.7)
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The equations (2.2.3) for m ≥ 1 and n = 0, . . . , N , i.e.,

λ1,0p0,m = µ1,1p1,m, (2.2.8)

(λ1,n + µ1,n + nµ2)pn,m = λ1,n−1pn−1,m + µ1,n+1pn+1,m + nµ2pn,m+1,

n = 1, . . . , N − 1, (2.2.9)

(pλ1,N + µ1,N + Nµ2)pN,m = λ1,N−1pN−1,m + pλ1,NpN,m−1 + Nµ2pN,m+1,

(2.2.10)

yield by summing over n = 0, . . . , N

pλ1,NpN,m + µ2

N
∑

n=1

npn,m = pλ1,NpN,m−1 + µ2

N
∑

n=1

npn,m+1. (2.2.11)

From (2.2.7) and (2.2.11) we obtain

pλ1,NpN,m = µ2

N
∑

n=1

npn,m+1 (2.2.12)

for all m ≥ 0 by induction. Summation over m ≥ 0 gives

pλ1,N

∑

m≥0

pN,m = µ2





N
∑

n=1

n
∑

m≥0

pn,m −
N
∑

n=1

npn,0



 . (2.2.13)

The equations (2.2.12) and (2.2.13) can (under stationary conditions) be

written as

pλ1,NpN,m = µ2P (L2 = m + 1)E(L1|L2 = m + 1)

and

pλ1,NP (L1 = N) = µ2

(

EL1 − P (L2 = 0)E(L1|L2 = 0)
)

, (2.2.14)

where P (L2 = m)E(L1|L2 = m) =
∑N

n=1 npn,m for m ≥ 0. The only term

in (2.2.14) involving unknowns is the term

P (L2 = 0)E(L1|L2 = 0) =

N
∑

n=1

npn,0.

This suggests that the set of unknown probabilities in the system of steady-

state equations (2.2.3) can be reduced to p1,0, . . . , pN,0. From equation

(2.2.14) one might also predict from the following intuitive argument that
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the system is stable if

pλ1,N < µ2EL1 (2.2.15)

holds. Near saturation we have P (L1 = N) ∼ 1, P (L2 = 0) ∼ 0 and

E(L1|L2 = 0) is bounded since the system is stable. Hence by (2.2.14)

pλ1,N

µ2EL1
∼ 1 − P (L2 = 0)E(L1|L2 = 0)

µ2EL1P (L1 = N)
< 1.

Furthermore, the arrival and service rates in Q1 have no influence on the

stability of Q1, since it is a loss system, but on the stability of Q2. The arrival

rate in Q2 is pλ1,N while the average service rate is µ2EL1. The fraction

of both should be smaller than 1 since Q2 behaves like an M/M/1 queue in

this case. Once again we arrive at (2.2.15). The stability condition should

in general be weaker because the second queue has a non-zero arrival rate

if and only if the first queue is fully occupied. By regarding the joint queue

length process of Q1 and Q2 as a quasi birth and death process and using the

stability Theorem 1.2.3 of Section 1.2, we will show that these presumptions

are correct and that the necessary and sufficient stability condition is indeed

the one given in the next proposition, i.e., pλ1,NP (L1 = N) < µ2EL1.

Proposition 2.2.1. The system (2.2.3) has a unique nonnegative and nor-

malized solution if and only if pλ1,NP (L1 = N) < µ2EL1 or equivalently

pλ1,N

µ2
<

N
∑

n=1
n

n−1
∏

i=0
ρi

N−1
∏

n=0
ρn

(2.2.16)

holds, where ρn = λ1,n/µ1,n+1 for n = 0, . . . , N − 1.

Proof. By regarding Q1 as the phase and Q2 as the level, the joint queue

length process of Q1 and Q2 is a quasi birth and death process. The stability

condition (2.2.16) is then derived from Theorem 1.2.3 in the following way.

We assume a more general model for the moment by endowing Q2 with an

external arrival stream and service rates controlled by the state of Q1. In

this generalization of our basic model, the exponential arrival rate to Q2 is

λ2,n and the exponential service rate is µ2,n given L1 = n, n = 0, . . . , N . The

rates for arrivals and service in Q1 remain unchanged. In order to ensure

irreducibility, we assume that there exists an i ∈ {0, . . . , N} with λ2,i > 0

and a j ∈ {0, . . . , N − 1} with µ2,j > 0. With this setting, the matrices A0,
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A1 and A2 are given by

A0 = diag(λ2,0, . . . , λ2,N ), A2 = diag(µ2,0, . . . , µ2,N )

and A1 = A − A0 − A2, where A is the rate matrix of the phase process

governing Q1, i.e., the standard birth and death process on {0, . . . , N} with

reflecting barriers and birth rates λ1,n in the states n = 0, . . . , N − 1 and

death rates µ1,n in the states n = 1, . . . , N . The vector π is the stationary

probability measure of the phase process in Q1 and therefore πn = P (L1 =

n), n = 0, . . . , N , is given by (2.2.1). The stability condition (1.2.1) is

equivalent to
N
∑

n=0

(µ2,n − λ2,n)πn < 0. (2.2.17)

Setting λ2,n = 0 for n = 0, . . . , N − 1, λ2,N = pλ1,N and µ2,n = nµ2 > 0 we

get stability if and only if (2.2.16) holds.

We continue this section with a discussion of the stability condition. The

stability condition can be written as

pλ1,NP (L1 = N) < µ2EL1 (2.2.18)

as one might expect, since (2.2.1) states

N
∑

n=1

n
n−1
∏

i=0

ρi =
EL1

P (L1 = 0)
and

N−1
∏

n=0

ρn =
P (L1 = N)

P (L1 = 0)
.

The stability condition (2.2.18) can in this form be well interpreted: The

system is stable if and only if the expected service rate µ2EL1 in Q2 suffices

to handle the average arrival or overflow rate pλ1,NP (L1 = N) from Q1 to

Q2.

Remark 2.2.2. The stability condition can be formulated independently of

the arrival rate λ1,0 in Q1. This is explained by the fact that the arrival rate

in Q1 is λ1,0 only in the case that no customers are present in the first queue.

Therefore, the arrival rate λ1,0 influences the length of the idle periods of

the system (i.e., the periods in which no customers are served), but not the

busy periods. The idle periods of this queueing system can be classified

by the number of customers in Q2 which are not served due to the lack of

customers in Q1.

When the first queue is an M/M/1/N − 1 queue with one server, N − 1
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waiting positions and constant arrival and service rates, the stability condi-

tion simplifies:

Remark 2.2.3. In the case of constant service and arrival rates λ1,n = λ1

for n = 0, . . . , N and µ1,n = µ1 for n = 1, . . . , N , the first queue is an

M/M/1/N − 1 queue and we get the stability condition

pλ1 < µ2ρ
−N

N
∑

n=1

nρn, (2.2.19)

where ρ = λ1/µ1 is the traffic intensity of Q1. Observe that

EL1 =

N
∑

n=1
nρn

(1 +
N
∑

n=1
ρn)

< ρ−N
N
∑

n=1

nρn

holds in this case.

It follows from the condition (2.2.18) and (2.2.1) that a more restrictive

and sufficient but not necessary condition for stability is

pλ1,N < µ2EL1.

Observe that the state-dependent rates are involved in EL1. (2.2.18) yields

that the condition

Λ < µ2,

where Λ is given by (2.2.2), is necessary but not sufficient. Both results are

not surprising: On the one hand, the arrival rate in Q2 is only positive if

L1 = N . Therefore pλ1,N is in general greater than or equal to the actual

mean service rate. On the other hand, the service rate in Q2 is in general

greater than or equal to µ2 given that customers arrive to Q2, i.e., given

L1 = N . Observe that the condition (2.2.18) complies with Λ < µ2EL2.

2.2.3 Generating functions and steady-state distribution

In this section, we exploit the steady-state equations (2.2.3) and derive re-

currence equations for the probability generating functions

Gn(z) =

∞
∑

m=0

pn,mzm, |z| ≤ 1.
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These relations are then used to reduce the set of unknown steady-state

probabilities to the unknowns p1,0, . . . , pN,0 and to derive equivalent formu-

lations for the stability condition (2.2.16). The stability condition will be

related to the existence of a certain number of zeros of a function originat-

ing from the recurrence equations for the probability generating functions.

This relation will give a deeper insight into the existence and uniqueness of

a solution of the steady-state equations (2.2.3) and into the nature of the

unknowns p1,0, . . . , pN,0.

We can assume for the moment that the system is stable and that (2.2.16)

holds. In this case, the generating functions are well defined for |z| ≤ 1.

Exploiting the recurrence relations and using an inductive argument and

Cramer’s rule we derive N independent equations for the N unknowns and

the stability condition.

By multiplying the equations (2.2.4), (2.2.5), (2.2.6), (2.2.8), (2.2.9) and

(2.2.10) by zm and summing over m ≥ 0 we get, after simplifying,

λ1,0G0(z) = µ1,1G1(z), (2.2.20)
(

(λ1,n + µ1,n)z − nµ2(1 − z)
)

Gn(z) = λ1,n−1zGn−1(z) + µ1,n+1zGn+1(z)

− nµ2(1 − z)pn,0 (2.2.21)

for n = 1, . . . , N − 1 and

(

µ1,Nz + (pλ1,Nz − Nµ2)(1 − z)
)

GN (z)

= λ1,N−1zGN−1(z) − Nµ2(1 − z)pN,0. (2.2.22)

In order to write these equations in matrix form, we define the vectors

G(z) = (G0(z), . . . , GN (z))⊤,

p = (0, p1,0, 2p2,0, . . . , NpN,0)
⊤

and the matrix A(z) ∈ Mat(N + 1, N + 1,R) by

A(z) =

























α0(z) −µ1,1 0 . . . . . . 0

−λ1,0z α1(z) −µ1,2z
. . .

...

0
. . . α2(z)

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . −µ1,Nz

0 . . . . . . 0 −λ1,N−1z αN (z)

























, (2.2.23)
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where

α0(z) = λ1,0, (2.2.24)

αn(z) = (λ1,n + µ1,n)z − nµ2(1 − z) for n = 1, . . . , N − 1 and (2.2.25)

αN (z) = µ1,Nz + (pλ1,Nz − Nµ2)(1 − z). (2.2.26)

In this notation, the equations (2.2.20), (2.2.21) and (2.2.22) are equivalent

to

A(z)G(z) = −µ2(1 − z)p. (2.2.27)

Let An(z) be the matrix obtained from A(z) by replacing the (n + 1)-th

column by the vector −µ2(1 − z)p for n = 0, . . . , N . By Cramer’s rule we

may write

det(A(z))Gn(z) = det(An(z)) (2.2.28)

for every n = 0, . . . , N and all values z such that A(z) is invertible. Since the

functions A, An and Gn are continuous and bounded with at most finitely

many zeros in the interval [0, 1], equation (2.2.28) must hold for all z ∈
[0, 1] and every n = 0, . . . , N . Hence, the generating functions G0, . . . , GN

are uniquely determined by the equations (2.2.28) and p1,0, . . . , pN,0, since

these are the only unknowns occurring in these equations (see also (2.2.20)-

(2.2.22)).

det(A(z)) is a polynomial in z of degree N + 1. We will show in the

following that det(A(z)) has N − 1 zeros in the open interval (0, 1) and

one zero at z = 1. Additionally, we will show that det(A(z)) has another

zero in the open interval (1,∞) if and only if the stability condition (2.2.16)

holds. The N − 1 zeros of det(A(z)) in (0, 1) will provide us with N −
1 linear homogeneous equations in the unknowns p1,0, . . . , pN,0. Another

linear equation yielding a system of N equations is (2.2.14). We are able

to formulate this equation in terms of only p1,0, . . . , pN,0 and the system

parameters. The result is stated in Proposition 2.2.8.

Let qn(z) be the n-th minor of A(z) for n = 1, . . . , N +1 (the n-th minor

of a matrix is the determinant of the n-th square sub-matrix). We have

q1(z) = α0(z), q2(z) = det

(

α0(z) −µ1,1

−λ1,0z α1(z)

)

, . . . , qN+1(z) = det(A(z)).

(2.2.29)
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By Laplace expansion of the determinants we get

q1(z) = α0(z)q0(z),

q2(z) = α1(z)q1(z) − λ1,0µ1,1zq0(z) and

qn(z) = αn−1(z)qn−1(z) − λ1,n−2µ1,n−1z
2qn−2(z)

(2.2.30)

for n = 3, . . . , N + 1, where q0(z) = 1.

In order to proceed with investigating the number and the location of

the zeros of det(A) = qN+1, we have to study the system (2.2.30) in order

to find the algebraic properties and to determine the shape of the functions

q1, . . . , qN+1. The relevant properties are stated in the next proposition.

Proposition 2.2.4. The function qn is a polynomial in z of degree n−1 for

n = 1, . . . , N and of degree N +1 for n = N +1. The functions q0, . . . , qN+1

and α0, . . . , αN have the following properties:

(i) qn and qn+1 have no common root in (0, 1) for n = 0, . . . , N .

(ii) sgn(α0(0)) = 1 and sgn(αn(0)) = −1 for n = 1, . . . , N .

(iii) sgn(qn(0)) = (−1)n+1 for n = 1, . . . , N + 1.

(iv) qn(1) =
n−1
∏

i=0
λ1,i for n = 0, . . . , N and qN+1(1) = 0.

(v) For n = 1, . . . , N the following implication holds: If z̃ > 0 with qn(z̃) =

0, then

sgn(qn−1(z̃)qn+1(z̃)) = −1.

(vi) qn has n − 1 pairwise distinct zeros in (0, 1) for n = 1, . . . , N .

(vii) limz→∞ qn(z) = ∞ for n = 2, . . . , N and limz→∞ qN+1(z) = −∞.

Proof. By the recursive definition (2.2.29), qn is a polynomial in z of degree

n − 1 for n = 1, . . . , N and of degree N + 1 for n = N + 1. We will prove

the remaining properties.

(i) q0 and q1 have no zero since λ1,0 > 0. Suppose qn(z) = qn+1(z) = 0

for some z > 0 and some n = 2, . . . , N . Then qn−1(z) = 0 follows from

(2.2.30). We get q1(z) = 0 by induction which is a contradiction.

(ii) sgn(α0(0)) = sgn(λ1,0) = 1 since λ1,0 > 0, sgn(αn(0)) = sgn(−nµ2) =

−1 for n = 1, . . . , N since µ2 > 0.
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(iii) By (ii) we have sgn(q1(0)) = sgn(α0(0)) = 1 and

sgn(q2(0)) = sgn(α1(0)q1(0)) = −1.

By induction we get from (ii) that

sgn(qn(0)) = sgn(αn−1(0))sgn(qn−1(1)) = (−1)n+1

for n = 0, . . . , N . The functions αn and therefore the functions qn are

continuous in 0.

(iv) Clearly, q0(1) = 1 and q1(1) = λ1,0. For n = 2, . . . , N we get from

(2.2.30) by induction that

qn(1) = αn−1(1)qn−1(1) − λ1,n−2µ1,n−1qn−2(1)

= (λ1,n−1 + µ1,n−1)

n−2
∏

i=0

λ1,i − λ1,n−2µ1,n−1

n−3
∏

i=0

λ1,i =

n−1
∏

i=0

λ1,i.

qN+1(1) = 0 follows from inserting qN−1(1) =
∏N−2

i=0 λ1,i and qN (1) =
∏N−1

i=0 λ1,i into (2.2.30) and simplifying.

(v) Let n = 1, . . . , N and z̃ > 0 with qn(z̃) = 0. By (2.2.30) we get

sgn(qn+1(z̃)qn−1(z̃)) = sgn
(

(αn(z̃)qn(z̃)

− λ1,n−1µ1,n−1z̃
2qn−1(z̃))qn−1(z̃)

)

= sgn(−λ1,n−2µ1,n−1z̃
2q2

n−1(z̃)) = −1.

In the last line we used λ1,n−2, µ1,n−1 > 0 and the fact that qn and

qn−1 have no common zero which was shown in (i).

(vi) Once again we use an inductive argument to show this property. q1

has no root in (0, 1). q2 has exactly one root in (0, 1) since λ1,1, µ2 > 0,

namely z = µ2

λ1,1+µ2
. Let n = 3, . . . , N and

0 < z1 < . . . < zn−2 < 1

be the pairwise distinct zeros of qn−1. We show that (iii), (iv) and (v)

imply that qn has n− 1 pairwise distinct zeros zn,1, . . . , zn,n−1 in (0, 1)

and that these zeros satisfy the interlacing property

z0 = 0 < zn,1 < z1 < zn,2 < . . . < zn−2 < zn,n−1 < 1 = zn−1. (2.2.31)
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Let k = 1, . . . , n− 2. We obtain from (2.2.30) and (v) inductively that

sgn(qn(zk)) = −sgn(qn−2(zk)) = (−1)k+n+1.

By (iii) and (iv) this is also true for z0 = 0 and zn−1 = 1. Thus,

qn changes its sign n − 1 times in the interval (0, 1). Therefore, the

n− 1 zeros of qn are real, pairwise distinct and must be located in the

interval (0, 1). Furthermore, qn has alternating signs on the sequence

of zeros of qn−1 since

sgn(qn(zk)) = (−1)k+n+1

for k = 1, . . . , n−2. Together with sgn(qn(0)) = −sgn(qn−1(0)), which

follows from (iii), this finally yields (2.2.31).

(vii) Let n = 2, . . . , N . From (iv), (vi) and since qn is a polynomial in

z of degree n − 1, we obtain immediately that limz→∞ qn(z) = ∞.

For n = N + 1 we get limz→∞ qN+1(z) = −∞ from equation (2.2.30)

since limz→∞ αN (z) = −∞, limz→∞ qN (z) = limz→∞ qN−1(z) = ∞
and since the system parameters are positive.

The proof of Proposition 2.2.4 (vi) shows that the n − 2 pairwise dis-

tinct zeros zn−1,1, . . . , zn−1,n−2 of qn−1 and the n− 1 pairwise distinct zeros

zn,1, . . . , zn,n−1 of qn satisfy the interlacing property

0 < zn,1 < zn−1,1 < zn,2 < . . . < zn−1,n−2 < zn,n−1 < 1 (2.2.32)

for every n = 1, . . . , N . We can expect a similar behavior for the zeros of

qN and qN+1. In fact, it will turn out that an interlacing property holds

for these zeros and that the sign of the slope of qN+1 at the point z = 1

plays an important role for the existence of roots of qN+1 in combination

with the stability condition (2.2.16). Note that qN+1 has a zero at the point

1 according to Proposition 2.2.4 (iv). In this context, it seems natural to

determine the function hN+1 with qN+1(z) = (1 − z)hN+1(z) for all z > 0.

Choose continuous functions h1, . . . , hN+1 on [0,∞) such that

qn(z) = zn−1
n−1
∏

i=0

λ1,i + (1 − z)hn(z), n = 1, . . . , N,

qN+1(z) = (1 − z)hN+1(z).

(2.2.33)

A system of recursive equations for h1(z), . . . , hN+1(z) is given in the
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next proposition.

Proposition 2.2.5. The functions h1, . . . , hN+1 defined by (2.2.33) are

given by h1(z) = 0, h2(z) = −λ1,0µ2,

hn(z) = −(n − 1)µ2z
n−2

n−2
∏

i=0

λ1,i + αn−1(z)hn−1(z)

− λ1,n−2µ1,n−1z
2hn−2(z)

(2.2.34)

for n = 3, . . . , N and

hN+1(z) = (pλ1,Nz − Nµ2)z
N−1

N−1
∏

i=0

λ1,i + αN (z)hN (z)

− λ1,N−1µ1,Nz2hN−1(z)

(2.2.35)

for all z ∈ [0,∞).

Proof. Let z > 0 in the following and let the functions qn, n = 0, . . . , N +1,

and hn, n = 1, . . . , N + 1, be defined by (2.2.30) and (2.2.33), respectively,

i.e.,

q0(z) = 1,

q1(z) = α0(z)q0(z),

q2(z) = α1(z)q1(z) − λ1,0µ1,1zq0(z) and

qn(z) = αn−1(z)qn−1(z) − λ1,n−2µ1,n−1z
2qn−2(z)

for n = 3, . . . , N + 1 and

qn(z) = zn−1
n−1
∏

i=0

λ1,i + (1 − z)hn(z), n = 1, . . . , N,

qN+1(z) = (1 − z)hN+1(z)

for all z ∈ [0,∞). We will prove (2.2.34) by induction over n. We obtain

immediately from the definition of q1 and q2 that h1(z) = 0 and h2(z) =

−λ1,0µ2. Now let n = 3, . . . , N and hn−1 and hn−2 be given by (2.2.34). By

replacing αn−1(z) given by (2.2.25) we get

qn(z) = αn−1(z)qn−1(z) − λ1,n−2µ1,n−1z
2qn−2(z)

=
(

(λ1,n−1 + µ1,n−1)z − (n − 1)µ2(1 − z)
)

(

zn−2
n−2
∏

i=0

λ1,i

)
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+ αn−1(z)(1 − z)hn−1(z)

− λ1,n−2µ1,n−1

(

zn−1
n−3
∏

i=0

λ1,i + (1 − z)hn−3(z)
)

= zn−1
n−1
∏

i=0

λ1,i + (1 − z)
(

αn−1(z)hn−1(z)

− (n − 1)µ2z
n−2

n−2
∏

i=0

−λ1,n−2µ1,n−1z
2hn−2(z)

)

= zn−1
n−1
∏

i=0

λ1,i + (1 − z)hn(z).

The identity for hN+1(z) can be proved by inserting qN−1(z) and qN (z) into

qN+1(z) = αN (z)qN (z) − λ1,N−1µ1,Nz2qN−1(z)

and simplifying.

From Proposition 2.2.4 we obtain the main condition that relates the

number of zeros of the function det(A(z)) for z ∈ (0, 1) to hN+1(1). This

condition will be shown to be the link between the number of zeros of det(A)

and the stability condition (2.2.16).

Theorem 2.2.6. det(A(z)) is a polynomial of degree N + 1 and has N − 1

distinct zeros in the interval (0, 1) and one zero at z = 1. Additionally,

det(A(z)) has another zero in the interval (1,∞) if and only if hN+1(1) < 0,

where hN+1 is defined by det(A(z)) = (1 − z)hN+1(z) for all z > 0.

Proof. By (2.2.29) we have to prove that qN+1(z) = det(A(z)) has the

claimed properties. Clearly, qN+1 has degree N + 1. Without loss of gener-

ality, let N be odd in the following. The case of an even N can be handled

analogously. By Proposition 2.2.4 (vi) the N − 1 zeros z1, . . . , zN−1 of qN

can be labeled such that

0 < z1 < . . . < zN−1 < 1.

It follows from (2.2.30) and Proposition 2.2.4 (v) by induction that

sgn(qN+1(zk)) = −sgn(qN−1(zk)) = (−1)k+N = (−1)k+1 (2.2.36)
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for k = 1, . . . , N − 1 since N is odd. Hence, by continuity and

sgn(qN+1(0)) = −sgn(qN (0))

(see Proposition 2.2.4 (iii)), there exist N − 1 zeros zN+1,1, . . . , zN+1,N−1 of

qN+1 in (0, 1) with the interlacing property

0 < zN+1,1 < z1 < zN+1,2 < . . . < zN+1,N−1 < zN−1 < 1

regardless of the value of hN+1(1). qN+1(1) = 0 was shown in Proposition

2.2.4 (iv). Now we show that qN+1 has one zero in (1,∞) if and only if

hN+1(1) < 0. By (2.2.36) and since qN+1 has at most N + 1 zeros, the

(N + 1)-th zero has to be located in the interval (zN−1,∞). By Proposition

2.2.4 (vii) every other case would give a set of more than N + 1 zeros which

is impossible since qN+1 has degree N + 1. Let q′N+1 be the derivative of

qN+1. Since qN+1(1) = 0 by Proposition 2.2.4 (iv)) and

sgn(qN+1(zN−1)) = −sgn(qN−1(zN−1)) = (−1)N = −1,

we must have q′N+1(1) > 0. Each of the cases q′N+1(1) < 0 and q′N+1(1) = 0

would give a set of N +1 pairwise distinct zeros for q′N+1 which is impossible

since q′N+1 is a polynomial of degree N . By hN+1(1) = −q′N+1(1) we get

that the (N +1)-th zero lies in (1,∞) if and only if hN+1(1) < 0. We derive

at the same condition in the case of an even N .

By Theorem 2.2.6 we have to find hN+1(1). Evaluation of (2.2.34) and

(2.2.35) at z = 1 gives a recursive system for h1(1), . . . , hN+1(1). We get

h1(1) = 0, h2(1) = −λ1,0µ2,

hn(1) = −(n − 1)µ2

n−2
∏

i=0

λ1,i + (λ1,n−1 + µ1,n−1)hn−1(1)

− λ1,n−2µ1,n−1hn−2(1)

(2.2.37)

for n = 3, . . . , N and

hN+1(1) = (pλ1,N − Nµ2)

N−1
∏

i=0

λ1,i + µ1,NhN (1)

− λ1,N−1µ1,NhN−1(1).

(2.2.38)

This system can be solved explicitly in terms of the system parameters. The

solution is stated in the next proposition.
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Proposition 2.2.7. The functions h1, . . . , hN+1 defined by (2.2.33) satisfy

hn(1) = −µ2

(

n−1
∏

i=0

λ1,i

)





n−1
∑

k=1

1

µ1,k+1

(

k
∏

i=0

µ1,i+1

λ1,i

)





k
∑

j=1

j

j−1
∏

i=0

λ1,i

µ1,i+1









(2.2.39)

for n = 1, . . . , N and

hN+1(1) = p
N
∏

i=0

λ1,i − µ2

(

N−1
∏

i=0

µ1,i+1

)(

N
∑

n=1

n
n−1
∏

i=0

λ1,i

µ1,i+1

)

, (2.2.40)

where the empty sum and the empty product are defined to be 0 and 1,

respectively.

Proof. (2.2.40) follows from (2.2.39) by inserting hN (1) and hN−1(1) into

(2.2.38) and collecting terms. We will show (2.2.39) by induction over n

using the recursion (2.2.37). Evaluating (2.2.39) for n = 1 and n = 2 we get

h1(1) = 0 and h2(1) = −µ2λ1,0. Let n = 3, . . . , N . We set

gn =

n−1
∑

k=1

1

µ1,k+1

(

k
∏

i=0

µ1,i+1

λ1,i

)





k
∑

j=1

j

j−1
∏

i=0

λ1,i

µ1,i+1





so that hn(1) = −µ2gn

∏n−1
i=0 λ1,i. Let hn−1(1) and hn−2(1) be given by

(2.2.39). Substituting these terms in (2.2.37) yields

hn(1) = −(n − 1)µ2

n−2
∏

i=0

λ1,i − µ2(λ1,n−1 + µ1,n−1)gn−1

n−2
∏

i=0

λ1,i

+ µ2λ1,n−2µ1,n−1gn−2

n−3
∏

i=0

λ1,i

= −µ2

(

gn−1 + (n − 1)
1

λ1,n−1
+

µ1,n−1

λ1,n−1
(gn−1 − gn−2)

) n−1
∏

i=0

λ1,i.

(2.2.41)

Due to the additive structure of gn we have

µ1,n−1

λ1,n−1
(gn−1 − gn−2) =

1

λ1,n−1

(

n−2
∏

i=0

µ1,i+1

λ1,i

)





n−2
∑

j=1

j

j−1
∏

i=0

λ1,i

µ1,i+1







28 Overflow to an infinite queue and customers as servers

=
1

µ1,n

(

n−1
∏

i=0

µ1,i+1

λ1,i

)





n−2
∑

j=1

j

j−1
∏

i=0

λ1,i

µ1,i+1



 . (2.2.42)

Writing

(n − 1)
1

λ1,n−1
=

1

µ1,n

(

n−1
∏

i=0

µ1,i+1

λ1,i

)(

(n − 1)
n−2
∏

i=0

λ1,i

µ1,i+1

)

,

the equation (2.2.42) gives

(n − 1)
1

λ1,n−1
+

µ1,n−1

λn−1
(gn−1 − gn−2)

=
1

µ1,n

(

n−1
∏

i=0

µ1,i+1

λ1,i

)





n−1
∑

j=1

j

j−1
∏

i=0

λ1,i

µ1,i+1



 .

Substituting this in (2.2.41) and once again exploiting the additive structure

of gn we arrive at (2.2.39).

We can derive hN+1(1) also in closed form in terms of the system pa-

rameters and p1,0, . . . , pN,0. First we determine Gn(1) for n = 0, . . . , N in

terms of G0(1). Setting z = 1 in (2.2.20)-(2.2.22) gives

λ1,0G0(1) = µ1,1G1(1), (2.2.43)

(λ1,n + µ1,n)Gn(1) = λ1,n−1Gn−1(1) + µ1,n+1Gn+1(1) and (2.2.44)

µ1,NGN (z) = λ1,N−1GN−1(1), (2.2.45)

where n = 1, . . . , N − 1 in the second equation. The solution of these

equations in terms of G0(1) is clearly

Gn(1) = G0(1)

n−1
∏

i=0

ρi for n = 0, . . . , N, (2.2.46)

where we have written ρi = λ1,i/µ1,i+1 for i = 0, . . . , N − 1. By

N
∑

n=0

∑

m≥0

pn,m =
N
∑

n=0

Gn(1) = 1,
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summation over n = 0, . . . , N yields

G0(1) =

(

N
∑

n=0

n−1
∏

i=0

ρi

)−1

. (2.2.47)

This can also be deduced directly from (2.2.1). By (2.2.14), (2.2.46) and

since P (L1 = N) = GN (1), EL1 =
∑N

n=1 nGn(1) and

P (L2 = 0)E(L1|L2 = 0) =
N
∑

n=1

npn,0

hold, we get

pλ1,NGN (1) = µ2

(

G0(1)

N
∑

n=1

n

n−1
∏

i=0

ρi −
N
∑

n=1

npn,0

)

.

By (2.2.46) the latter equation gives

µ2

N
∑

n=1

npn,0 = G0(1)

(

µ2

N
∑

n=1

n

n−1
∏

i=0

ρi − pλ1,N

N−1
∏

i=0

ρi

)

. (2.2.48)

After rearranging terms and using (2.2.47) we get

hN+1(1) = −µ2

(

N−1
∏

n=0

µi+1

)(

N
∑

n=0

n−1
∏

i=0

ρi

)

N
∑

n=1

npn,0 (2.2.49)

from (2.2.40). By setting the right side of equation (2.2.40) and equation

(2.2.49) equal, we get again the equation (2.2.14) in terms of
∑N

n=1 npn,0

and the system parameters. This equation can also be derived from (2.2.40)

and (2.2.48). The following proposition states the result.

Proposition 2.2.8. Let a solution pn,m for n = 0, . . . , N and m ≥ 0

of the equations (2.2.3) be given. Then the condition
∑N

n=1

∑

m≥0 pn,m = 1

implies the equivalence of (2.2.14) and

N
∑

n=1

npn,0 =

µ2

N
∑

n=1
n

n−1
∏

i=0
ρi − pλ1,N

N−1
∏

i=0
ρi

µ2

N
∑

n=0

n−1
∏

i=0
ρi

> 0. (2.2.50)

Proposition 2.2.8 provides a useful numerical check for the stationary

probabilities. Now we give equivalent formulations for the stability criterion
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(2.2.16).

Proposition 2.2.9. Let ρn = λ1,n/µ1,n+1 for n = 0, . . . , N − 1. The fol-

lowing conditions are equivalent:

(i) The system of equations (2.2.3) has a unique nonnegative and normal-

ized solution.

(ii) hN+1(1) < 0 holds, where hN+1(1) is given by (2.2.40).

(iii) pλ1P (L1 = N) < µ2EL1 holds, where P (L1 = N) and EL1 are given

by (2.2.1).

(iv) The system of equations (2.2.3) has a solution with
∑N

n=1 pn,0 > 0.

Proof. The equivalence of (i) and (ii) was shown in Proposition 2.2.1. (iii) is

a reformulation of (ii). Also by Proposition 2.2.1, the system is irreducible

and positive recurrent under condition (iii). We obtain immediately that

pn,m > 0 for n = 0, . . . , N and m ≥ 0, and hence (iv) follows.

We show now that (iv) implies (ii). Let (iv) hold. Note that it cannot be

assumed that the Markov chain defined by the equations (2.2.3) is positive

recurrent and hence the stationary measure (the solution of (2.2.3)) can have

an infinite mass. Therefore, we cannot use the equations (2.2.13), (2.2.14)

or (2.2.50) under condition (iv) in order to ensure (iii). Let the functions

αn(z) and Gn(z), n = 0, . . . , N , be defined by (2.2.24)-(2.2.26) and (2.2.28),

respectively, for |z| ≤ 1. This ensures that (2.2.43)-(2.2.45) hold and that

the functions qn(z) and hn(z), n = 1, . . . , N + 1, are well defined for |z| ≤ 1.

By (2.2.28), (2.2.29) and (2.2.33) we get

det(A0(z)) = det(A(z))G0(z) = qN+1(z)G0(z)

= (1 − z)hN+1(1)G0(z)
(2.2.51)

for all |z| ≤ 1. By writing down a recursive formula for det(A0(z)) by means

of Cramer’s rule and performing an inductive argument, it can be shown

that

det(A0(z))

1 − z

∣

∣

∣

z=1
= −µ2

(

N−1
∏

n=0

µi+1

)

N
∑

n=1

npn,0.

The calculations are straightforward but tedious and hence omitted. Using

the above and (2.2.51) yields

G0(1)hN+1(1) = −µ2

(

N−1
∏

n=0

µi+1

)

N
∑

n=1

npn,0. (2.2.52)
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Together with G0(1) > 0 and
∑N

n=1 pn,0 > 0 this shows that hN+1(1) < 0

and therefore (ii) holds.

The following consequence of Proposition 2.2.9 and the irreducibility of

the system might be well known but is interesting to notice.

Corollary 2.2.10. The system of equations (2.2.3) has a unique normalized

solution if and only if it is stable. In this case pn,m > 0 holds for all n =

0, . . . , N and all m ≥ 0. The system is unstable if and only if pn,m = 0,

n = 0, . . . , N , m ≥ 0, is the only solution.

Setting hN+1(1) < 0 in (2.2.40) and simplifying gives the stability con-

dition

pλ1,N

N−1
∏

n=0

ρn < µ2

N
∑

n=1

n

n−1
∏

i=0

ρi. (2.2.53)

The following statement links the number of zeros of det(A) to the sta-

bility condition and is an immediate consequence of Theorem 2.2.6 and

Proposition 2.2.9.

Theorem 2.2.11. det(A(z)) is a polynomial of degree N +1 and has N −1

zeros in the interval (0, 1) and one zero at z = 1. Additionally, det(A(z))

has another zero in the interval (1,∞) if and only if the system (2.2.3) is

stable, i.e., if and only if

pλ1,N

µ2
<

N
∑

n=1
n

n−1
∏

i=0
ρi

N−1
∏

n=0
ρn

(2.2.54)

holds, where ρn = λ1,n/µ1,n+1, n = 0, . . . , N − 1.

Remark 2.2.12. By the condition given in Theorem 2.2.11, when the sys-

tem is stable, meaning (2.2.54) holds, we can use the N−1 zeros z1, . . . , zN−1

of det(A(z)) = qN+1(z) in (0, 1) to find the N unknown probabilities

p1,0, . . . , pN,0. This can be done by inserting these values into (2.2.28) for

n = 0. The N − 1 pairwise distinct zeros then deliver N − 1 equations for

these unknowns, namely

det(A0(z1)) = 0, . . . ,det(A0(zN−1)) = 0.

One more equation relating the unknowns is (2.2.14) which is equivalent

to (2.2.50). This provides us with N (independent) equations in the N
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unknowns p1,0, . . . , pN,0. Observe that det(A0(zi)) and det(An(zi)) for i =

0, . . . , N differ from each other by (2.2.28) only by a multiplicative constant,

i.e.,

det(A0(zi)) =
Gn(zi)

G0(zi)
det(An(zi))

for i = 0, . . . , N

A crucial point is to show that these equations are indeed linearly inde-

pendent. For N = 2, 3 it is possible to show this analytically. Numerical

calculations support this conjecture for larger values of N . It is conjec-

tured that these equations are indeed independent (see also Avi-Itzhak and

Mitrani [6], Levy and Yechiali [42], Perel and Yechiali [56], Yechiali [66]).

2.2.4 Stationary quantities and numerical aspects

Once p1,0, . . . , pN,0 are determined, G0, . . . , GN are given and we can calcu-

late EL2, the mean number of customers in Q2, by (2.2.14), i.e.,

EL2 =
N
∑

n=0

G′
n(1). (2.2.55)

Furthermore, Cov(L1, L2) is of special interest because of the dependence of

Q2 on Q1. By summing (2.2.20)-(2.2.22) over n = 0, . . . , N we get

pλ1,NzGN (1) − µ2

N
∑

n=1

Gn(z) = −µ2

N
∑

n=1

npn,0. (2.2.56)

Differentiating this equation with respect to z at z = 1 leads to

pλ1,N (GN (1) + G′
N (1)) = µ2

N
∑

n=1

nG′
n(1)

and thus

µ2E(L1L2) = pλ1,N (GN (1) + G′
N (1))

since
∑N

n=1 nG′
n(1) = E(L1L2). The latter equation is equivalent to

µ2E(L1L2) = pλ1,N (P (L1 = N) + E(L2|L1 = N)P (L1 = N)) (2.2.57)

since GN (1) = P (L1 = N) and G′
N (1) = E(L2|L1 = N)P (L1 = N). Ob-

serve that P (L1 = N) is known.
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Remark 2.2.13. Numerical analysis shows that in general the covariance

of L1 and L2 changes signs when the system parameters are varied. The

numerical analysis rather suggests that Cov(L1, L2) as a function of p on

the interval [0, 1] is convex or concave and shows that it can be monotone

decreasing, increasing or both with one or two zeros (where one zero is at

p = 0). Furthermore, there exists a threshold parameter p∗ for the overflow

weight p that separates the case of positive and nonnegative correlation from

each other as one might expect. See Figure 2.3 for the shape of the function

p 7→ Cov(L1, L2) for N = 2 with λ1,0 = λ1,1 = λ1, µ1,1 = µ1,2 = µ1 and

various parameter selections. An interesting case is N = 1, where we can

show that Cov(L1, L2) = 0 for all choices of these system parameters. Q1

and Q2 are in general not independent for N = 1. The analysis of this case

is carried out in the next section.

Further numerical analysis suggests that Cov(L1, L2) ≥ 0 for every

choice of the system parameters for which the stability condition (2.2.54)

holds and for which Q1 is stable, meaning
∏N−1

n=0 ρn < 1 (see Figure 2.3 and

Table 2.1). This can be explained intuitively. Due to the overflow mecha-

nism, the queue length in Q2 can on the one hand only increase when the

queue length in Q1 increases and Q1 reaches its capacity maximum. On the

other hand, the service rate in Q2 increases and therefore the queue length

in Q2 decreases simultaneously. Suppose that these two effects would overall

lead to a decreasing queue length in Q2. In this case it would be possible

to raise pλ1,N slightly without leaving the stable regime in Q2 and without

affecting the queue length in Q1. This would lead to a rising queue length in

Q2 and to Cov(L1, L2) > 0, which would contradict the assumption. Conse-

quently, Cov(L1, L2) must be nonnegative if the system and Q1 are stable.

Due to the mentioned “stability reserve”, this result will also hold if Q1 is

slightly unstable. This intuitive argument can be reversed in the case of a

highly unstable Q1, i.e.,
∏N−1

n=0 ρn >> 1. In this case, the first queue is on

average fully occupied and the probability of overflow is close to 1. There-

fore, the queue length in Q2 has a tendency to shorten if the queue length

in Q1 rises because otherwise Q2 would become unstable.

In the case that (2.2.54) and
∏N−1

n=0 ρn < 1 hold, equation (2.2.57) pro-

vides an upper bound for EL2 in terms of the unknowns p1,0, . . . , pN,0.

(2.2.54) and
∏N−1

n=0 ρn < 1 imply that Cov(L1, L2) ≥ 0 and therefore

E(L1L2) ≥ EL1EL2. Then (2.2.57) yields

EL2 ≤ pλ1,NP (L1 = N)

µ2EL1
(1 + E(L2|L1 = N)), (2.2.58)
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Figure 2.3: p 7→ Cov(L1, L2) for N = 2, λ1,0 = λ1,1 = λ1, µ1,1 =
µ1,2 = µ1 and (λ1, µ1, µ2) = (2.5, 4, 0.5), (3.8, 4, 2.5), (5.3, 4, 2.5), (4, 2, 1.2),
(5.4, 1, 2.5), (5.6, 4, 2.2) (line by line from left to right, the gray shaded region
is the stability region, i.e., all p that satisfy (2.2.19)).

where P (L1 = N) and EL1 are known and

E(L2|L1 = N)P (L1 = N) = G′
N (1)

has to be determined. The additional benefit of this bound compared to

formula (2.2.55) is that there is only one unknown quantity, namely G′
N (1).

In case of heavy traffic for the first queue, i.e.,
∏N−1

n=0 ρn → 1, the first queue

is always occupied implying P (L1 = N) = 1 and EL2 = E(L2|L1 = N).

Then (2.2.58) gives the bound

EL2 ≤ pλ1,N

Nµ2 − pλ1,N
, (2.2.59)
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λ1 µ1 = 0.1 µ1 = 0.2 µ1 = 0.3 µ1 = 0.4 µ1 = 0.5 µ1 = 0.6 µ1 = 0.7

0.1 0.02 0.056 0.051 0.041 0.033 0.027 0.022
0.2 −0.061 0.038 0.069 0.074 0.07 0.063 0.056
0.3 −0.152 −0.013 0.055 0.083 0.092 0.091 0.087
0.4 −0.259 −0.085 0.018 0.072 0.098 0.109 0.111
0.5 −0.385 −0.176 −0.04 0.041 0.088 0.113 0.125

0.6 −0.532 −0.287 −0.118 −0.008 0.062 0.105 0.129
0.7 −0.705 −0.421 −0.217 −0.075 0.019 0.082 0.122

0.8 −0.908 −0.58 −0.338 −0.164 −0.041 0.043 0.101
0.9 −1.148 −0.77 −0.485 −0.274 −0.122 −0.012 0.066
1 −1.436 −0.998 −0.663 −0.412 −0.224 −0.086 0.014

1.1 −1.787 −1.275 −0.882 −0.581 −0.354 −0.183 −0.055
1.2 −2.221 −1.617 −1.151 −0.792 −0.517 −0.307 −0.148
1.3 −2.774 −2.048 −1.488 −1.056 −0.722 −0.465 −0.267
1.4 −3.498 −2.606 −1.921 −1.392 −0.984 −0.668 −0.422
1.5 −4.487 −3.353 −2.493 −1.833 −1.325 −0.931 −0.625

1.6 −5.918 −4.405 −3.28 −2.431 −1.782 −1.281 −0.894
1.7 −8.171 −5.991 −4.43 −3.281 −2.42 −1.764 −1.261
1.8 −12.237 −8.655 −6.261 −4.582 −3.366 −2.464 −1.783
1.9 −21.772 −14.05 −9.622 −6.809 −4.903 −3.556 −2.574
2 −70.383 −30.757 −17.789 −11.477 −7.82 −5.485 −3.899

2.1 −66.638 −27.383 −15.431 −9.77 −6.54
2.2 −84.64 −27.299 −14.299
2.3 −426.843
2.4

Table 2.1: Cov(L1, L2) for N = 2, λ1,0 = λ1,1 = λ1, µ1,1 = µ1,2 = µ1,
p = µ2 = 1, λ1 = 0.1, 0.2 . . . , 2.4 and µ1 = 0.1, 0.2 . . . , 0.7 (bold numbers
mark the diagonal λ1 = µ1, the cells are left blank in the cases where the
system is unstable).

which is tight since there are always N customers present in Q1 serving

Q2 with rate Nµ2 and the arrival rate of Q2 is pλ1,N . In the case N = 1,

equality also holds in (2.2.59) for arbitrary choice of the system parameters.

This is shown in Section 2.2.6.

2.2.5 Model extension: External arrivals to second queue

The model can be generalized by equipping Q2 with an arrival stream hav-

ing exponentially distributed interarrival times with intensity λ2 > 0. The

arrival stream is independent of Q1 and the arrival stream of Q2 (see Figure

2.2 for the corresponding transition rate diagram). In this case, the generat-

ing functions (2.2.20)-(2.2.22) and the auxiliary α-functions (2.2.24)-(2.2.26)

are given by

(λ1,0 + λ2(1 − z))G0(z) = µ1,1G1(z),
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(

(λ1,n + µ1,n)z + (λ2z − nµ2)(1 − z)
)

Gn(z) = λ1,n−1zGn−1(z)

+µ1,n+1zGn+1(z) − nµ2(1 − z)pn,0,
(

µ1,Nz + ((pλ1,N + λ2)z − Nµ2)(1 − z)
)

GN (z) = λ1,N−1zGN−1(z)

− Nµ2(1 − z)pN,0,

where the second equation holds for n = 1, . . . , N − 1 and

α0(z) = λ1,0 + λ2(1 − z),

αn(z) = (λ1,n + µ1,n)z + (λ2z − nµ2)(1 − z) for n = 1, . . . , N − 1,

αN (z) = µ1,Nz + ((pλ1,N + λ2)z − Nµ2)(1 − z).

A procedure similar to the one for the basic model can be carried out,

showing that det (A(z)) is a polynomial of degree 2N + 1 with N − 1 zeros

in (0, 1), one zero at z = 1 and all other zeros in (1,∞) if and only if

hN+1(1) < 0, where

hN+1(1) = p

N
∏

i=0

λ1,i−
(

N−1
∏

i=0

µ1,i+1

)(

µ2

N
∑

n=1

n

n−1
∏

i=0

ρi − λ2

(

1 +

N
∑

n=1

n−1
∏

i=0

ρi

))

with ρi = λ1,i/µ1,i+1 for i = 0, . . . , N−1. The stability condition hN+1(1) <

0 (see also (1.2.1)) is equivalent to

pλ1,N

N−1
∏

n=0
ρn

µ2

N
∑

n=1
n

n−1
∏

i=0
ρi

+
λ2

µ2EL1
< 1

or pλ1,NP (L1 = N) + λ2 < µ2EL1 where P (L1 = N) and EL1 are given by

(2.2.1). Setting p = 0, the stability condition becomes λ2 < µ2EL1 which

corresponds to the result in [56]. By letting p = 0, λ1,n = λ1 and µ1,n+1 = µ2

for n = 0, . . . , N − 1 in our model, both models coincide.

Remark 2.2.14. It is possible to further generalize the model by assuming

that the service rate in Q2 is µ2,n (instead of nµ2) when Q1 is in state n

as done in Section 2.2.2 and suggested in Perel and Yechiali [56]. It has

to be assumed that µ2,n ≥ 0 for all n ≥ 0 and µ2,n > 0 for at least one

value n = 1, . . . , N . The stability condition in this case is given by (2.2.17).

This will lead to a modified construction of the generating functions, the

auxiliary functions and the stability condition in this sequel (we omit the

details). In order to proceed and investigate the existence and number of

zeros of det(A(z)), it is necessary to specify µ2,n.
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2.2.6 Closed-form solution in the case of capacity one

For the case N = 1, an analytic solution is available. While the case N = 2 is

also analytically solvable, the solutions are lengthy and we focus on the case

N = 1. Let λ0,0, λ1,0, µ2 > 0, µ1,1 = µ1 > 0 and p ∈ [0, 1]. For simplicity,

we choose λ0,0 = λ1,0 = λ1; by letting p ∈ [0,∞) the adequate choice of the

parameter p can be used to treat the case λ1,0 6= λ1,1 because p ∈ [0, 1] is no

necessary condition. The balance equations are

λ1p0,m = µ1p1,m for n = 0,m ≥ 0, (2.2.60)

(pλ1 + µ1)p1,0 = λ1p0,0 + µ2p1,1 for n = 1,m = 0 and

(pλ1 + µ1 + µ2)p1,m = λ1p0,m + µ2p1,m+1 + pλ1p1 for n = 1 and m ≥ 1.

The equation (2.2.14) yields pλ1P (L1 = 1) = µ2(EL1 − p1,0) and from

P (L1 = 1) = EL1 =
λ1

λ1 + µ1

and (2.2.60) we get

p1,0 =
µ2 − pλ1

µ2
· EL1 =

λ1

λ1 + µ1
· µ2 − pλ1

µ2
and (2.2.61)

p0,0 =
µ1

λ1
p1,0 =

µ1

λ1 + µ1
· µ2 − pλ1

µ2
. (2.2.62)

The generating functions G0 and G1 satisfy

λ1,0G0(z) = µ1G1(z) and

(zµ1 + (zpλ1 − µ2)(1 − z))G1(z) = zλ1G0(z) − µ2p1,0(1 − z)

for |z| ≤ 1. These equations give

G1(z) =
zλ1G0(z) − µ2p1,0(1 − z)

zµ1 + (zpλ1 − µ2)(1 − z)
=

zµ1G1(z) − µ2p1,0(1 − z)

zµ1 + (zpλ1 − µ2)(1 − z)

which yields

G1(z) =
µ2p1,0(1 − z)

(µ2 − zpλ1)(1 − z)
=

µ2 − pλ1

µ2 − zpλ1
· λ1

λ1 + µ1
and

G0(z) =
µ1

λ1
G1(z) =

µ2 − pλ1

µ2 − zpλ1
· µ1

λ1 + µ1
.
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Observe that the stability condition is pλ1 < µ2 by Proposition 2.2.1, where

λ1 = λ1,1 if the condition λ1,0 = λ1,1 = λ1 is dropped. Then, µ2 − zpλ1 6= 0

for all |z| ≤ 1. Differentiating and setting z = 1 leads to

G′
0(1) =

pλ1µ1

(λ1 + µ1)(µ2 − pλ1)
and

G′
1(1) =

pλ2
1

(λ1 + µ1)(µ2 − pλ1)
.

Finally, we can calculate the expected queue length of the second queue:

EL2 = G′
0(1) + G′

1(1) =
pλ1

µ2 − pλ1
.

Since E(L1L2) = G′
1(1), we get

E(L1L2) =
λ1

λ1 + µ1
· pλ1

µ2 − pλ1
= EL1EL2.

Surprisingly on first sight, we get Cov(L1, L2) = 0 although L1 and L2 are

in general not independent. The service rate in Q2 for example equals 0

for L1 = 0 and µ2 for L1 = 1. An explanation for this phenomenon is

the following. Under stationary conditions, Q1 is in state 1 for a fraction

λ1/(λ1 + µ1) of the time. In this case, Q2 is busy for a fraction pλ1/µ2

of the time. Since Q2 is stable and only fed with customers or served if

L1 = 1 and remains unchanged if L1 = 0, the queue length has to stay

essentially the same and is not influenced by the queue length of Q1. As

mentioned in Remark 2.2.13 Cov(L1, L2) = 0 does not hold in general for

N > 1 because in this case the service rate in Q2 is positive for L1 ≥ 1,

whereas the arrival rate in Q2 is positive only if L1 = N . The service rate

in Q2 increases linearly with the queue length in Q1 and the arrival rate of

Q2 is zero except in the case L1 = N . Therefore, the queue length in Q2

tends to shorten with increasing L1 up to the point L1 = N where customers

arrive to Q2. In this case, the queue length in Q2 can increase or decrease or

stay unchanged in equilibrium, depending on the system parameters and the

combination of these factors. This leads to a generally almost unpredictable

behavior of Cov(L1, L2) (see also Remark 2.2.13).

2.3 Customers as servers: Models with jockeying

In this section, we discuss two variants of the basic model from Section 2.2.

We let the assumptions be as for the basic model from Section 2.2 with the
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following exception. In the first variant, the first customer of Q2, if one

is present, is forced to move to Q1 as soon as Q1 empties. This jockeying

customer can then act as a server for the second queue. The stochastic

processes that describes the queue lengths in this model is a quasi birth and

death process (QBP). This model can be further generalized by letting a

fixed number 1 ≤ k ≤ N −1 jockey from Q2 to Q1 if Q1 becomes empty (see

Remark 2.3.9). In this case, it cannot be represented as a QBP because the

transitions from states in the level process, i.e., the number of customers

in Q2, are not restricted to transitions to the states in the two adjacent

levels. In the second variant of the basic model, as soon as Q1 empties, Q1

is filled with the customers from Q2 until it reaches its capacity bound or

Q2 empties. We called this jockeying procedure unlimited jockeying . The

stochastic processes that describes the queue lengths in this model is again

a QBP.

The approach for reducing the number of unknowns in the first model

can be carried over to these model variations. In turn, the steady-state

probabilities of the vector of the queue lengths are functions of p1,0, . . . , pN,0

and we can give a set of N (independent) equations for these unknowns.

Steady-state quantities of interest can be computed by means of the gener-

ating functions. For the model with unlimited jockeying a complete analytic

solution is available, since in this case, Q1 and Q2 can be regarded as a spe-

cial case of a single queue with infinite capacity and state-dependent service

and arrival rates. The analysis of this model is carried out in Section 2.3.4.

2.3.1 Model description and steady-state equations

Let Q1 be as in the basic model and let N ≥ 2. We consider the first

variant of the basic model. In this variant, the first customer of Q2, if one

is present, is forced to move to Q1 as soon as Q1 empties. The case N = 1

is equivalent to the second model variant. Let Q2 be fed by the p-weighted

overflow stream from Q1, where p ∈ [0, 1], and let the service rate in Q2 be

nµ2 if L1 = n where µ2 > 0. Modify Q1 in the following way: If Q1 becomes

empty, then the first customer of Q2 is instantly transferred to Q1. Let pn,m

be the steady-state probability of having n customers present in Q1 and m

customers in Q2, n = 0, . . . , N , m ≥ 0. We must have p0,m = 0 for m ≥ 1,

because in this case, one customer from Q2 will be transferred instantly to

Q1. Let δij be the Kronecker function. The balance equations for this model
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for n = 0, . . . , N and m = 0 are

λ1,0p0,0 = µ1,1p1,0, (2.3.1)

(λ1,n + µ1,n)pn,0 = λ1,n−1pn−1,0 + µ1,n+1pn+1,0 + (nµ2 + δ1nµ1,1)pn,1

for n = 1, . . . , N − 1 and (2.3.2)

(pλ1,N + µ1,N )pN,0 = λ1,N−1pN−1,0 + Nµ2pN,1. (2.3.3)

The balance equations for n = 0, . . . , N and m ≥ 1 are

p0,m = 0, (2.3.4)

(λ1,n + µ1,n + nµ2)pn,m = λ1,n−1pn−1,m(1 − δ1,n) + µ1,n+1pn+1,m

+ (nµ2 + δ1nµ1,1)pn,m+1 (2.3.5)

for n = 1, . . . , N − 1 and

(pλ1,N + µ1,N + Nµ2)pN,m = λ1,N−1pN−1,m + pλ1,NpN,m−1

+ Nµ2pN,m+1. (2.3.6)

The Markov chain defined by these balance equations is irreducible if the

state space is restricted to {(0, 0)} ∪ {(n,m) |n = 1, . . . , N, m ≥ 1}; the

states (0,m), m ≥ 1, will not be visited. The transition rate diagram for

this model is depicted in Figure 2.4, where λ2 = 0. Observe that the states

(0,m), m ≥ 1, will not be reached in this diagram if λ2 = 0.

The main ideas for deriving the stability condition and reducing the

number of unknowns can be carried over from the basic model without jock-

eying. One might predict that the possibility of jockeying influences the

queue length of the first queue and therefore could inhibit the determina-

tion of a closed-form expression for the queue length probabilities in the first

queue without using further unknown quantities. Nevertheless, this compli-

cation can be avoided. The approach is carried out in the next sections.

2.3.2 Necessary and sufficient stability condition

The balance equations for m = 0 and n = 0, . . . , N give

pλ1,NpN,0 = µ2

N
∑

n=1

npn,1 + µ1,1p1,1 (2.3.7)
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L2

6

(0, 1)
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λ1,0 λ1,1 λ1,n λ1,N−1µ1,1 µ1,n µ1,N−1 µ1,N

λ2

λ2 λ2 λ2 pλ1,N

µ2 + µ1,1 nµ2 (N − 1)µ2 Nµ2

λ1,0 λ1,1 λ1,n λ1,N−1µ1,n µ1,N−1 µ1,N

λ2 λ2 λ2 λ2 pλ1,N

µ2 + µ1,1 nµ2 (N − 1)µ2 Nµ2

λ1,0 λ1,1 λ1,n λ1,N−1µ1,n µ1,N−1 µ1,N

λ2 λ2 λ2 λ2 pλ1,N

Figure 2.4: Limited jockeying: Transition rate diagram.

after summation over n = 0, . . . , N . The balance equations for m ≥ 1 and

n = 0, . . . , N yield

pλ1,NpN,m + µ1,1p1,m + µ2

N
∑

n=1

npn,m

= pλ1,NpN,m−1 + µ1,1p1,m+1 + µ2

N
∑

n=1

npn,m+1

(2.3.8)

by summing over n = 0, . . . , N . From (2.3.7) and (2.3.8) we obtain analo-

gously to the derivations for the basic model that

pλ1,NP (L1 = N) = µ1,1

∑

m≥1

p1,m + µ2

(

EL1 −
N
∑

n=1

npn,0

)

. (2.3.9)

All terms in the above equation (except the system parameters) are unknown

for this model. Nevertheless, the set of unknown probabilities in the system

of steady-state equations can be reduced to p1,0, . . . , pN,0. This is done in

the next section.
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From Theorem 1.2.3 we get the necessary and sufficient stability condi-

tion.

Proposition 2.3.1. The system of equations (2.3.1)-(2.3.6) has a unique

nonnegative and normalized solution if and only if

pλ1,N <

µ2

N
∑

n=1
n

n−1
∏

i=1
ρi + µ1,1

N−1
∏

n=1
ρn

(2.3.10)

holds, where ρn = λ1,n/µ1,n+1 for n = 0, . . . , N − 1.

Proof. The proof is an almost verbatim repetition of the proof of Proposi-

tion 2.2.1. We regard Q1 as the phase and Q2 as the level of the underlying

quasi birth and death process with phase and level given by L1 and L2,

respectively. The stability condition (2.3.10) is then derived from Theorem

1.2.3 in the following way. The exponential arrival rate in Q2 is pλ1,N if

L1 = N and 0 if L1 < N . The exponential service rate in Q2 is nµ2 given

L1 = n, n = 0, . . . , N . The rates for arrivals in Q1 are λ1,n given L1 = n for

n = 0 and n = 2, 3, . . . , N − 1 and λ1,1 + µ1,1 for L1 = 1. Observe that the

arrival stream in Q1 consists of the original external arrival stream and the

jockeying customers from Q2. The service rate in Q1 is µ1,n given L1 = n for

n = 0, . . . , N , where µ1,0 = 0. Observe that the states (0,m) for m ≥ 1 are

not visited by the quasi birth and death process. Therefore, we can restrict

the state space of the process to {(n,m) | n = 1, . . . , N, m ≥ 1} and conse-

quently, the phase process has the state space {1, . . . , N}. This ensures the

irreducibility of the whole process. With this setting, the (N ×N)-matrices

A0, A1 and A2 from Theorem 1.2.3 are given by

A0 = diag(0, . . . , 0, pλ1,N ), A2 = diag(µ2, 2µ2, . . . , Nµ2)

and A1 = A − A0 − A2, where A is the rate matrix of the phase process

governing Q1, i.e., the standard birth and death process on {1, . . . , N} with

birth rate λ1,1 + µ2 in state 1, birth rates λ1,n in the states n = 2, . . . , N −
1 and death rates µ1,n in the states n = 2, . . . , N . The vector π is the

stationary probability measure of the phase process in Q1, i.e., πn = P (L1 =

n), n = 1, . . . , N , is given by (2.2.1) with a suitable normalization factor.

The stability condition (1.2.1) is then easily computed as (2.3.10).
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One might predict from equation 2.3.9 and

P (L1 = 1) =
∑

m≥1

p1,m =
∑

m≥0

p1,m − p1,0

that the system is stable if p1,0 > 0 or
∑N

n=1 pn,0 > 0. In this case a stability

condition could be

pλ1,NP (L1 = N) < µ1,1P (L1 = 1) + µ2EL1. (2.3.11)

In addition to this condition, the stability condition has an interesting inter-

pretation in view of the results of Section 2.2 and the proof of Proposition

2.3.1. Let L∗
1 be the stationary queue length of the first queue in the basic

model, i.e., the queue without arrivals from jockeying customers from Q2

and distribution given by (2.2.1). By multiplying the inequality (2.3.10)

with
∏N−1

n=1 ρn we can rephrase the stability condition as

pλ1,NP (L∗
1 = N) < µ1,1P (L∗

1 = 1) + µ2EL∗
1, (2.3.12)

where we have used
∑N

n=1 n
∏n−1

i=0 ρi = EL∗
1/P (L∗

1 = 0),
∏N−1

n=0 ρn = P (L∗
1 =

N)/P (L∗
1 = 0) and ρ0 = P (L∗

1 = 1)/P (L∗
1 = 0). This equation states that

the average arrival rate in Q2 should be smaller than the average departure

rate in Q2 in the case of no jockeying. The average departure rate is the sum

of the average service rate delivered by the servers in Q2 and the average

departure rate of jockeying customers. One might expect that the conditions

(2.3.11) and (2.3.12) are equivalent. We will show in the next section that

they differ only by a positive constant and are therefore indeed equivalent.

As for the basic model, one can show that a unique normalized solution of the

steady-state equations (2.3.1)-(2.3.6) exists if and only if an n ∈ {0, . . . , N}
and an m ≥ 0 exist with pn,m > 0 (see also Proposition 2.2.9 and Corollary

2.2.10).

2.3.3 Generating functions and steady-state distribution

In this section, we derive the recurrence equations for the probability gen-

erating functions

Gn(z) =
∞
∑

m=0

pn,mzm, |z| ≤ 1.

As in the basic model, these relations are used to reduce the set of unknown

steady-state probabilities to the unknowns p1,0, . . . , pN,0. The stability con-

dition will then be related to the existence of N − 1 pairwise distinct zeros
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of a function originating from the recurrence equations for the probability

generating functions.

We can assume for the moment that the system is stable and that (2.3.10)

holds. In this case, the generating functions are well defined on |z| ≤ 1. By

multiplying the equations (2.3.1)-(2.3.6) by zm and summing over m ≥ 0 we

get, after simplifying,

λ1,0G0(z) = µ1,1p1,0 = λ1,0p0,0, (2.3.13)
(

λ1,1z − (µ1,1 + µ2)(1 − z)
)

G1(z) = µ1,2zG2(z) (2.3.14)

− (µ1,1 + µ2)(1 − z)p1,0,
(

(λ1,n + µ1,n)z − nµ2(1 − z)
)

Gn(z) = λ1,n−1zGn−1(z)

+ µ1,n+1zGn+1(z) (2.3.15)

− nµ2(1 − z)pn,0,
(

µ1,Nz + (pλ1,Nz − Nµ2)(1 − z)
)

GN (z) = λ1,N−1zGN−1(z)

− Nµ2(1 − z)pN,0, (2.3.16)

where the third equation holds for n = 2, . . . , N − 1 and vanishes in the

case N = 2. In order to write these equations in matrix from, we define the

vectors

G(z) = (G1(z), . . . , GN (z))⊤,

p =
(

(µ1,1 + µ2)p1,0, 2µ2p2,0, . . . , Nµ2pN,0)
⊤

and the matrix A(z) ∈ Mat(N,N,R) by

A(z) =

























α1(z) −µ1,2z 0 . . . . . . 0

−λ1,0z α2(z) −µ1,3z
. . .

...

0
. . . α3(z)

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . −µ1,Nz

0 . . . . . . 0 −λ1,N−1z αN (z)

























, (2.3.17)

where

α1(z) = λ1,1z − (µ1,1 + µ2)(1 − z), (2.3.18)

αn(z) = (λ1,n + µ1,n)z − nµ2(1 − z) for n = 2, . . . , N − 1 and (2.3.19)

αN (z) = µ1,Nz + (pλ1,Nz − Nµ2)(1 − z). (2.3.20)
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For simplicity let α0(z) = 0. The dimension of the matrix is N whereas it

was N + 1 in (2.2.23). We dropped the first line of the matrix in (2.2.23)

because the generating function G0 does only depend on p1,0 which itself is

determined by the functions G1, . . . , GN .

The equations (2.3.14), (2.3.15) and (2.3.16) are equivalent to

A(z)G(z) = −(1 − z)p. (2.3.21)

By Cramer’s rule we have

det(A(z))Gn(z) = det(An(z)) (2.3.22)

for all values z such that A(z) is invertible, where An(z) is the matrix ob-

tained from A(z) by replacing the n-th column with the vector −(1 − z)p.

The generating functions G0, . . . , GN are uniquely determined by the equa-

tions (2.3.22) and p1,0, . . . , pN,0, since these are the only unknowns occurring

in these equations.

det(A(z)) is a polynomial in z of degree N + 1. We will show in the

following that det(A(z)) has N − 1 zeros in the open interval (0, 1) and

one zero at z = 1. Additionally, we will show that det(A(z)) has another

zero in the open interval (1,∞) if and only the stability condition (2.3.10)

holds. The N − 1 zeros of det(A(z)) in (0, 1) will provide us with N − 1

linear homogeneous equations in the unknowns p1,0, . . . , pN,0. Another linear

equation yielding a system of N linear equations can be derived from (2.3.9)

and (2.3.41) in a similar manner as for the basic model from Section 2.2.

Observe that (2.3.9) can be written as

pλ1,NGN (1) = µ1,1G1(1) + µ2

N
∑

n=1

nGn(1) − µ1,1p1,0 − µ2

N
∑

n=1

npn,0 (2.3.23)

and does not involve G0(1). The normalization condition which is

N
∑

n=0

∑

m≥0

pn,m =
N
∑

n=0

Gn(1) = 1 (2.3.24)

in terms of the generating functions is equivalent to

G1(1) =
λ1,0 − µ1,1p1,0

λ1,0

N
∑

n=1

n−1
∏

i=1
ρi

, (2.3.25)
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where µ1,1p1,0 = λ1,0p0,0 = λ1,0G0(1) and where we have written ρi =

λ1,i/µ1,i+1 for i = 0, . . . , N − 1. This can be shown by solving the equa-

tions (2.3.13)-(2.3.16) for z = 1 in terms of G0(1) and G1(1) and using the

normalization condition. These equations are

λ1,0G0(1) = µ1,1p1,0, (2.3.26)

λ1,1G1(1) = µ1,2G2(1), (2.3.27)

(λ1,n + µ1,n)Gn(1) = λ1,n−1Gn−1(1) + µ1,n+1Gn+1(1) and (2.3.28)

µ1,NGN (z) = λ1,N−1GN−1(1), (2.3.29)

where n = 2, . . . , N − 1 in the third equation. The solution of the equations

(2.3.27)-(2.3.29) in terms of G1(1) is given by

Gn(1) = G1(1)

n−1
∏

i=1

ρi for n = 1, . . . , N. (2.3.30)

By the normalization condition (2.3.24), summation of (2.3.26) and (2.3.30)

over n = 1, . . . , N yields (2.3.25). Substituting (2.3.25) and (2.3.30) in

(2.3.23) and collecting terms finally yields the additional equation

µ1,1p1,0 + µ2

N
∑

n=1
npn,0

λ1,0 − µ1,1p1,0
=

µ1,1 + µ2

N
∑

n=1
n

n−1
∏

i=1
ρi − pλ1,N

N−1
∏

i=1
ρi

λ1,0

N
∑

n=1

n−1
∏

i=1
ρi

(2.3.31)

that relates the unknowns p1,0, . . . , pN,0 to the system parameters.

Let G∗
n(1) be the generating function of the phase in the basic model at

z = 1, i.e., let G∗
0(1) be given by (2.2.47) and let G∗

n(1) be given by (2.2.46)

for n = 1, . . . , N . Equation (2.3.30) shows that Gn(1) and G∗
n(1) differ only

by a constant independent of n, namely

Gn(1) = G∗
n(1)

(

G1(1)

G∗
0(1)ρ0

)

(2.3.32)

for n = 1, . . . , N . We have shown the following result.

Remark 2.3.2. The equations (2.3.11) and (2.3.12) are equivalent given

p1,0 > 0.

The equation (2.3.32) has another consequence that yields a lower bound

for EL1. A real-valued random variable X is called stochastically larger than

the real-valued random variable Y , if P (X > t) ≥ P (Y > t) for all t ∈ R.
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Proposition 2.3.3. Under stationary conditions, i.e., if (2.3.10) is fulfilled,

the queue length L1 of the first queue with jockeying is stochastically larger

than the queue length L∗
1 of the first queue without jockeying. Thus, a lower

bound for EL1 is given by

EL1 ≥ EL∗
1 =

N
∑

n=1
n

n−1
∏

i=0
ρi

1 +
N
∑

n=1

n−1
∏

i=0
ρi

.

We will not give a formal proof but point out the idea. Under stationary

conditions, the equation (2.3.32) implies that Gn(1) ≥ G∗
n(1) for all n =

1, . . . , N if this is the case for at least one n ∈ {1, . . . , N} or if G0(1) ≤ G∗
0(1)

which implies the first condition. Therefore,

EL1 =

N
∑

n=1

nGn(1) ≥
N
∑

n=1

nG∗
n(1) = EL∗

1

holds.

Now we turn our attention to the derivation of the auxiliary functions

q1, . . . , qN and their properties. This leads to the stability theorem concern-

ing the zeros of det(A). For n = 1, . . . , N + 1 we let

q1(z) = α1(z), q2(z) = det

(

α1(z) −µ1,2z

−λ1,1z α2(z)

)

, . . . , qN (z) = det(A(z)).

(2.3.33)

By Laplace expansion we get

q1(z) = α1(z)q0(z) and

qn(z) = αn(z)qn−1(z) − λ1,n−1µ1,nz2qn−2(z)
(2.3.34)

for n = 2, . . . , N , where q0(z) = 1.

The crucial properties of the functions q1, . . . , qN and α1, . . . , αN are

derived in the same manner as in Proposition 2.2.4.

Proposition 2.3.4. The function qn is a polynomial in z of degree n for

n = 1, . . . , N − 1 and of degree N + 1 for n = N . The functions qn and αn,

n = 1, . . . , N , satisfy the following properties:

(i) qn and qn+1 have no common root in (0, 1) for n = 0, . . . , N − 1.

(ii) sgn(α0(0)) = 1 and sgn(αn(0)) = −1 for n = 1, . . . , N .
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(iii) sgn(qn(0)) = (−1)n+1 for n = 1, . . . , N .

(iv) qn(1) =
n−1
∏

i=0
λ1,i for n = 0, . . . , N − 1 and qN (1) = 0.

(v) For n = 1, . . . , N − 1 the following implication holds: If z̃ > 0 with

qn(z̃) = 0, then

sgn(qn−1(z̃)qn+1(z̃)) = −1.

(vi) qn has n − 1 pairwise distinct zeros in (0, 1) for n = 1, . . . , N − 1.

(vii) limz→∞ qn(z) = ∞ for n = 2, . . . , N − 1 and limz→∞ qN (z) = −∞.

As for the basic model, we can determine functions h1, . . . , hN on [0,∞)

satisfying

qn(z) = zn
n
∏

i=1

λ1,i + (1 − z)hn(z) for n = 1, . . . , N − 1 and

qN (z) = (1 − z)hN (z)

(2.3.35)

inductively from (2.3.34). These functions are given by

h1(z) = −(µ1,1 + µ2), (2.3.36)

h2(z) = α2(z)hn(z)(1 − z), (2.3.37)

hn(z) = −nµ2z
n−1

n−1
∏

i=1

λ1,i + αn(z)hn−1(z) − λ1,n−1µ1,nz2hn−2(z) (2.3.38)

for n = 3, . . . , N − 1 and

hN (z) = (pλ1,Nz − Nµ2)z
N−1

N−1
∏

i=0

λ1,i + αN (z)hN−1(z)

−λ1,N−1µ1,Nz2hN−2(z)

(2.3.39)

for all z ∈ [0,∞). See Proposition 2.2.5 in the previous section for a similar

derivation for the basic model. From the previous proposition we can derive

the stability condition in terms of hN (1) in the same manner as in Theorem

2.2.6.

Theorem 2.3.5. det(A(z)) is a polynomial of degree N + 1 and has N − 1

distinct zeros in the interval (0, 1) and one zero at z = 1. Additionally,

det(A(z)) has another zero in the interval (1,∞) if and only if hN (1) < 0,

where hN is defined by det(A(z)) = (1 − z)hN (z) for all z > 0.
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It remains to determine hN (1). Evaluating (2.3.36)-(2.3.38) and (2.3.39)

at z = 1 gives a recursive system of equations for h1(1), . . . , hN (1). We omit

the details and state the solution:

hn(1) = −µ2

(

n
∏

i=1

λ1,i

)





n
∑

k=1

1

µ1,k+1

(

k
∏

i=1

µ1,i+1

λ1,i

)





k
∑

j=1

j

j−1
∏

i=1

λ1,i

µ1,i+1









− µ1,1

(

n
∏

i=1

λ1,i

)(

n
∑

k=1

1

µ1,k+1

k
∏

i=1

µ1,i+1

λ1,i

)

(2.3.40)

for n = 1, . . . , N − 1, where the empty sum and empty product are defined

to be 0 and 1, respectively. Inserting hN−1(1) and hN−2(1) from (2.3.40)

into (2.3.39) and simplifying finally leads to

hN (1) = p

N
∏

i=1

λ1,i − µ2

(

N−1
∏

i=1

µ1,i+1

)(

N
∑

n=1

n

n−1
∏

i=1

λ1,i

µ1,i+1

)

−
N−1
∏

i=0

µ1,i+1.

(2.3.41)

Setting hN (1) < 0 and simplifying gives the stability condition from Propo-

sition 2.3.1. The next theorem combines Proposition 2.3.1, Remark 2.3.2

and Theorem 2.3.5 and relates the number of zeros of det(A(z)) to this

stability condition.

Theorem 2.3.6. det(A(z)) is a polynomial of degree N + 1 and has N − 1

distinct zeros in the interval (0, 1) and one zero at z = 1. Additionally,

det(A(z)) has another zero in the interval (1,∞) if and only if the system of

equations (2.3.1)-(2.3.6) has a unique nonnegative and normalized solution,

i.e., if and only if pλ1,NP (L1 = N) < µ1,1P (L1 = 1)+µ2EL2 or equivalently

pλ1,N <

µ2

N
∑

n=1
n

n−1
∏

i=1
ρi + µ1,1

N−1
∏

n=1
ρn

(2.3.42)

holds, where ρn = λ1,n/µ1,n+1, n = 0, . . . , N − 1.

Remark 2.3.7. The stability condition is independent of the arrival rate

λ1,0 in Q1. This is on the one hand due to the fact that the stability is

derived from the generating functions G1, . . . , GN which are independent

of λ1,0. On the other hand, the arrival rate in Q1 is λ1,0 only in the case

that no customers are present in both queues. Therefore, the arrival rate

λ1,0 influences the length of the idle period of the system, but not the busy
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period. Due to the jockeying discipline, Q1 is in state 0 if and only if Q2 is

empty.

Remark 2.3.8. By the condition given in Theorem 2.2.11, when the system

is stable, meaning (2.2.54) holds, we can use the N − 1 zeros of det(A(z)) =

qN (z) in (0, 1) to find the N unknown probabilities p1,0, . . . , pN,0. The N −1

pairwise distinct zeros deliver N − 1 equations for these unknowns. One

more equation relating the unknowns is (2.3.31). This provides us with

N (independent) equations in the N unknowns p1,0, . . . , pN,0. For further

comments on the procedure see Remark 2.2.12.

Once p1,0, p2,0, . . . , pN,0 are determined, G0, . . . , GN are given and we

can calculate EL1, EL2 and Cov(L1, L2):

EL1 =
N
∑

n=1

nGn(1), EL2 =
N
∑

n=0

G′
n(1) and E(L1L2) =

N
∑

n=1

nG′
n(1).

An equation similar to (2.2.57) for the basic model relating these terms is

the equation

µ2E(L1L2) + µ1,1E(L2|L1 = 1)P (L1 = 1)

= pλ1,N (P (L1 = N) + E(L2|L1 = N)(P (L1 = N))) ,

where E(L1L2) =
∑N

n=1 nG′
n(1), E(L2|L1 = n)P (L1 = n) = G′

n(1) for

n = 1, . . . , N and P (L1 = N) = GN (1). The equation is shown by summing

the equations (2.3.13)-(2.3.16) and differentiating the result at z = 1.

Remark 2.3.9. It is possible to further generalize the model by:

1. Equipping Q2 with an exponential arrival stream with rate λ2 > 0 (see

Figure 2.4).

2. Assuming that the service rate in Q2 is µ2,n (instead of nµ2) when Q1

is in state n (see also Remark 2.2.14).

3. Letting a fixed number 1 ≤ k ≤ N − 1 jockey to Q1 if Q1 becomes

empty.

In all cases, this will lead to a modified construction of the generating func-

tions, the auxiliary functions and the stability condition (we omit the de-

tails). In the second case, the stability condition involves additional terms

depending on the system parameters (compare (2.2.40) with (2.3.41) and

(2.2.54) with (2.3.42)). The steady-state equations simplify substantially

for k = N . The solution in this case is given in the next section.
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2.3.4 Closed-from solution in the case of unlimited

jockeying

For this model a complete analytic solution is available. In order to simplify

the resulting formulas we assume constant arrival and service rates in Q1.

Let N > 1 and let Q1 be an M/M/1/N − 1 queue with arrival rate λ1 > 0

and service rate µ1 > 0. Let Q2 be fed by the p-weighted overflow stream

from Q1, p ∈ [0, 1], and let the service rate in Q2 be nµ2 if L1 = n where

µ2 > 0. Modify Q1 in the following way: If Q1 becomes empty, then the

first customers waiting in Q2 are instantly transferred to Q1 until Q1 is fully

occupied or Q2 empties, whatever happens first. Let pn,m be the steady-

state probability of having n customers present in Q1 and m customers in

Q2, n = 0, . . . , N , m ≥ 0. We must have pn,m = 0 for m ≥ 1 and n < N ,

because in this case, some customers will be transferred instantly from Q2

to Q1. The balance equations for this model are

λ1p0,0 = µ1p1,0, (2.3.43)

(λ1 + µ1)pn,0 = λ1pn−1,0 + µ1pn+1,0, n = 1, . . . , N − 1, (2.3.44)

(pλ1 + µ1)pN,0 = λ1pN−1,0 + (µ1 + Nµ2)pN,1, n = N, m = 0,

(2.3.45)

(pλ1 + µ1 + Nµ2)pN,m = pλ1pN,m−1 + (µ1 + Nµ2)pN,m+1, n = N, m ≥ 1,

(2.3.46)

pn,m = 0, m ≥ 1, n = 0, . . . , N − 1. (2.3.47)

Solving (2.3.43) and (2.3.44) yields pn,0 =
(

λ1

µ1

)n

p0,0 for n = 0, . . . , N .

Inserting

pN−1,0 =

(

λ1

µ1

)N−1

p0,0 and pN,0 =

(

λ1

µ1

)N

p0,0

into (2.3.45) gives

pN,1 =
(pλ1 + µ1)

(

λ1

µ1

)N

− λ1

(

λ1

µ1

)N−1

µ1 + Nµ2
p0,0 =

(

λ1

µ1

)N ( pλ1

µ1 + Nµ2

)

p0,0.

This and (2.3.46) lead to

pN,m =

(

λ1

µ1

)N ( pλ1

µ1 + Nµ2

)m

p0,0
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for all m ≥ 0. Thus all non-zero probabilities are expressed in terms of p0,0

and we can determine p0,0 from the normalization condition

N
∑

n=0

∞
∑

m=0

pn,m = 1.

Substituting the appropriate terms in the normalization condition and sim-

plifying we get

p0,0 =







(

λ1

µ1

)N µ1 + Nµ2

µ1 + Nµ2 − pλ1
+

µ1 − λ1

(

λ1

µ1

)N−1

µ1 − λ1







−1

.

The necessary and sufficient stability condition is clearly pλ1 < µ1 + Nµ2

(see also Theorem 1.2.3).

It is obvious that we can model the two queues as an ordinary single

M(n)/M(n)/1 queue, where the subscript (n) stands for state-dependent ser-

vice and arrival rates. The state space of this queue is N0, where the states

0, . . . , N correspond to the states (0, 0), . . . , (N, 0) and the states m ≥ N +1

correspond to the states (N,m), m ≥ 1. The arrival rate is λ1 in the states

0, . . . , N − 1 and pλ1 in the states m ≥ N . The service rate is µ1 in the

states 1, . . . , N and µ1 +Nµ2 in the states m ≥ N +1. By classical formulas

for the steady-state distribution of infinite birth and death chains (see for

example Cohen [12]) we get the same result.



Chapter 3

Overflow to a finite queue

with waiting room

3.1 Model overview

As in the previous chapter, we consider an open queueing network consisting

of two queues Q1 and Q2 with an overflow capability from Q1 to Q2. The

main difference between the queueing models presented in the following and

those presented in the first part of this thesis is the finiteness of the capacity

of the second queue. Moreover, customers in the first queue no longer serve

the customers in the second queue and the service and arrival rates are not

variable. The finiteness gives rise to additional boundary conditions. These

boundary conditions and the special structure of the steady-state equations

make it impossible to carry out the approach from the second chapter. Nev-

ertheless, the number of steady-state equations that describe the system’s

behavior can be reduced substantially. The steady-state probabilities and

quantities of interest can be stated in an elegant way that reveals the un-

derlying structure of the solutions. The separation approach used in this

chapter is, due to the terms in the steady-state equations in the previous

chapter that arise from the serving customers, not applicable to the models

presented in the second chapter.

Now we give an overview over the models considered in this chapter

and the methods used for deriving the quantities of interest. Each queue

is equipped with a finite number of servers and a waiting room with fi-

nite capacity. We assume independent Poisson arrivals at each queue and

exponential service times with server-dependent parameters. Qi, i = 1, 2,

possesses ni ≥ 1 servers and qi ≥ 0 waiting positions and is fed by a Poisson
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arrival stream with intensity λi > 0. In contrast to the previous chapter,

we use lower case letters for the capacities of the queues in order to simplify

the resulting formulas. The service requirement of a customer at Qi is ex-

ponentially distributed with mean 1/µi, where µi > 0 for i = 1, 2. A server

serves exactly one customer at a time, in case one is present. Within the

queues, customers are served in their order of arrival.

Since there is a limited number of servers and the waiting rooms are

finite in each queue, arriving customers may be blocked at one of the queues

depending on whether all servers and/or waiting positions are occupied.

Moreover, blocked customers may overflow to the other queue if its capacity

is exhausted. Since blocked customers may be allowed to overflow to the

second queue, it seems appropriate to also allow waiting Q1-customers to

jockey to the second queue if there is capacity available. We will consider

a variety of different models by combining different blocking, overflow and

jockeying rules. These rules are explained in the following.

Blocking rules

We consider two blocking models for arriving Q1-customers. In the first

model, an arriving Q1-customer is blocked if all n1 servers are busy. In

the second model, blocking takes place if all n1 servers and all q1 waiting

positions are occupied.

A customer who arrives at Q2 is served in Q2 if less than n2 servers are

busy in Q2 at the time of his arrival. The customer is queued in one of

the waiting positions in Q2 if all servers are busy and at least one waiting

position is available in Q2, otherwise the customer is blocked and cleared

from the system.

Overflow rules

Blocked customers from Q1 are treated with respect to two different routines,

which will be called overflow rules. In the first routine, a blocked customer

is served by one of the servers in Q2 if at least one is available. If no server

is available in Q2, then the blocked customer is rejected and queued at Q1

if a waiting position is available. The customer leaves the system otherwise.

In the second routine, the blocked stream from Q1 is directed to the waiting

room in Q2. If no waiting position is available in Q2, then a blocked customer

is rejected at Q2 and queued in Q1 if a waiting position is available. The

blocked Q1-customers are lost if the waiting rooms are fully occupied in both

Q1 and Q2. Note that the blocked traffic and the overflow traffic from Q1
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are in general not identical, because blocked customers are allowed to join

Q1 if they are rejected at Q2.

The overflow stream is the fraction of those arriving Q1-customers who

are blocked at Q1 and who can potentially join Q2. This overflow stream

will additionally be weighted with a parameter p ∈ [0, 1], i.e., an arriving

customer who is blocked at Q1 and overflows to Q2 according to the blocking

and overflow rules, joins Q2 with probability p and leaves the system with

probability 1 − p. This overflow model with parameter p will be called p-

overflow model or weighted overflow model in the following. The model with

p = 1 will be called deterministic overflow model . Observe, that the queue

sizes at Q1 and Q2 are in general not independent for every choice of the

model configurations, not even for p = 0.

Jockeying rules

The possibility of waiting customers to move to another queue is called

jockeying . Jockeying will be restricted to the customers of the first queue

and therefore, Q2-customers are not allowed to leave the second queue in

order to receive service in the first queue. The treatment of waiting Q1-

customers can be classified according to three different cases. In the first

case, a waiting Q1-customer is placed in service in the second queue if at

least one server and all waiting positions are available in Q2. In the second

case, waiting Q1-customers must wait for a server in Q1 to become free, i.e.,

jockeying is not allowed. In the third case, waiting Q1 customers are placed

in Q2 if at least one waiting position or one server is available in Q2.

Basic model notation

In order to distinguish between the different models and rules for blocking,

overflow and jockeying, we denote an overflow system with this characteris-

tics by a string

α/β/γ

similar to Kendell’s notation. In our notation, α refers to the blocking rule,

β to the treatment of overflowing customers and γ is the indicator for the

jockeying rule. The blocking rule indicator α is either S or W, where S

indicates that arriving Q1-customers are blocked if all servers in Q1 are

busy and W indicates that the customers are blocked if all servers and all

waiting positions in Q1 are occupied. The second indicator β is S or W, if the

blocked customers overflow to the servers or the waiting rooms, respectively,
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in Q2. Finally, γ, the jockeying rule indicator, is S or W if the waiting Q1-

customers are allowed to jockey to the servers or to the waiting room in

Q2, respectively. γ is N if no jockeying is allowed. The models S/S/γ and

W/S/γ for γ = S, W, N are depicted in Figure 3.1. A schematic overview

of the models S/W/γ and W/W/γ for γ = S, W, N is shown in Figure 3.2.

q1

q2

n1

n2-

-

j

?

6

?

-

-

-

-

R

loss

loss

(1 − p)λ1

waiting room server

pλ1 jockeying S

jockeying W

jockeying N: no jockeying

λ1

λ2

µ1

µ2

Figure 3.1: One-way p-overflow, p ∈ [0, 1]: Overflow to the servers in Q2

(routine S)

Solution approach

We are interested in the two-dimensional server and waiting room demand

process of the one-way p-overflow model, embedded at the time instants

of arrivals to Q1 and Q2 and departures from Q1 and Q2. This process

is a Markov chain with state space S = {0, . . . , k1} × {0, . . . , k2}, where

ki = ni + qi for i = 1, 2 and where we have labeled the servers and waiting

rooms in Qi with 1, . . . , ni and ni + 1, . . . , ki, respectively, for i = 1, 2.

Remark 3.1.1. For every choice of λ1, λ2, µ1, µ2 > 0 in each model de-

scribed above, the state space is finite and the fact that there exists a path

from any state to (0, 0) (and vice versa) having positive probability, yields

irreducibility. Thus, the Markov chain is stationary with unique stationary

distribution.

In some models it is possible to allow q1 = ∞. In these cases we give

a necessary condition for stability. The stationary distribution is uniquely
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Figure 3.2: One-way p-overflow, p ∈ [0, 1]: Overflow to the waiting room in
Q2 (routine W)

determined by the (k1 + 1)(k2 + 1) balance equations and the normaliza-

tion condition. To the best of our knowledge, no closed-form expression for

the stationary distribution is known. By using a technique due to Morri-

son [46,48], we will reduce the problem of solving these (k1 + 1)(k2 + 1) + 1

equations to the problem of solving a substantially smaller number of ho-

mogeneous linear equations in two sets of unknowns. With this approach,

explicit formulas depending on these unknowns can be given for various

steady-state quantities. Morrison considers the deterministic models S/S/S,

S/S/N, W/S/N and W/W/N with p = 1 and service rates µ1 = µ2 and

reduces the number of equations and unknowns by a separation method.

The basic technique is to partition the state space into certain regions and

boundaries and to separate the stationary probabilities within these regions.

In every model, the separation leads to a set of eigenvalue problems for the

separation constants. The eigenvalues are given by the roots of polynomial

equations and are the pairwise distinct eigenvalues of real tridiagonal sym-

metric matrices as well. They possess an interlacing property, called the

“Sturm sequence property”, which reduces the computational complexity

considerably. The desired probabilities are expressed as sums of eigenfunc-

tions in terms of the eigenvalues. The number of eigenfunctions and there-

fore the number of coefficients to be determined in these representations is

in general substantially smaller than the number of stationary probabilities.
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The coefficients are determined by the normalization condition and a set

of linear equations that stems from the boundary conditions. The desired

probabilities and steady-state quantities can be numerically determined once

the coefficients and eigenvalues are numerically calculated.

We will extend the results of Morrison in three directions. Firstly, we

allow different service rates at the two queues, i.e., customers at Qi have

service rate µi, i = 1, 2, with arbitrary µ1, µ2 > 0. Secondly, the overflow

process is weighted with a parameter p ∈ [0, 1]. In one model it is also possi-

ble to weight the stream of jockeying customers with the same parameter p.

Thirdly, we consider several variations of the blocking and overflow routines

as described above. It should be mentioned that the resulting formulas do

not scale in the system parameters in general, i.e., for example the case of

arbitrary service rates cannot be reduced to the case µ1 = µ2 = 1 by an

adequate choice of the remaining parameters and the separation constants.

Only the case µ1 = µ2 can be reduced to µ1 = µ2 = 1 by dividing the arrival

rates and the separation constants by the service rate.

Stationary quantities

Once the stationary probabilities are specified in terms of the eigenvalues, it

is possible to derive formulas for various steady-state quantities depending

on the unknowns, like the loss probabilities, i.e., the probability that an

arriving Qi-customer is lost, i = 1, 2, the overflow and jockeying probability,

the probability that an arriving customer is queued upon arrival, the mean

departure rate from the waiting rooms to the servers, the average number of

customers waiting and in service, the average waiting times and many more.

These formulas have the advantage that the desired stationary quantities

can be calculated directly in terms of the unknowns without computing the

steady-state probabilities. We will display this possibility for the two basic

models described in Section 3.2 and Section 3.3.1. It is immediately seen

from Figure 3.1 that Q1 in isolation is an Erlang loss system in the models

without waiting room in Q1, i.e., q1 = 0. In these cases, the overflow stream

from Q1 to Q2 consists of the p-fraction of blocked customers at Q1. Let

O12 be the expected (stationary) number of demands per unit time, which

flow over from Q1 to Q2 (see Figure 3.1). With ρ1 = λ1/µ1, we must have

O12 = pλ1 ·
ρn1

1

n1!
n1
∑

i=0

ρi
1

i!

.
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This is of course the loss probability for the famous Erlang loss system with

capacity n1 (see Erlang [24] and (2.2.1)). In general, the loss probabilities

for Q1 and Q2, the blocking probabilities for customers at Q2 and therefore

the expected number of demands per unit time that flow over from Q1 to

Q2 are unknown.

It is known from Cohen [11], Hordijk and Ridder [30] and van Marion [44]

that the loss probabilities are in general sensitive with respect to the service-

time distribution. In the literature, probabilistic and numerical bounds for

the loss probabilities are known in some special cases. Van Dijk [15] derives

upper and lower bounds for the loss probabilities by approximating the

one-way overflow model by models with modified input and interconnection

characteristics. Hordijk and Ridder [30, 31] and Ridder [57, 58] derive up-

per and lower bounds for weighted stationary probabilities by constructing

approximating reversible Markov chains. These bounds are insensitive with

respect to the service time distributions and are used to derive upper and

lower bounds for the loss probabilities.

Applications

The most apparent application of this type of overflow queueing models

is of course to telecommunication systems. As an example for a feasible

application, the models presented in this chapter might be used to model

call centers. In a specific call center telecommunication system, incoming

telephone calls are answered by a limited number of operators (i.e., the

servers). An incoming call is put on hold if all operators are busy. The

number of calls on hold are in most practical situations finite and the on hold

positions correspond to the waiting rooms in our queueing systems. Consider

two incoming lines for calls. The first and second line are the queues Q1

and Q2, respectively. It may be permitted that customers from the first

line have a certain type of priority, i.e., they may be allowed to overflow

to the second line under one of the overflow rules specified earlier. The

different rules for blocking, overflow and jockeying can be used to represent

a certain constellation given in practice. Furthermore, the parameter p can

be viewed as a control parameter or can be used to model the impatience

rate of the overflowing calls. In another considerable application, one could

assign costs or a premium to the parameter p that has to be paid by the

priority customers from the first queue in order to receive service at the

second queue. An increase of p results in a higher probability of acceptance

at the second queue and a higher premium should be paid in order to receive

a higher value for p. Thus, a customer or a system designer has to find a



60 Overflow to a finite queue with waiting room

cost optimal value for p depending on his point of view.

Another application that can be slightly generalized to match our models

is described in Altman et al. [2] and Hassin [28]. Consider two gas stations

located at the same main road. Every gas station has a finite number of

gas pumps and waiting positions. The two gas stations are located one after

another, where the first and second station correspond to Q1 and Q2, respec-

tively. Consider that some customers prefer the first and some customers

prefer the second station. Additionally, if we consider one-way traffic, which

is for example the case on an highway, then we get an arrival stream for each

station that is independent from the other one. In the one-way setting, cus-

tomers that find the first station occupied, can drive by in order to be served

at the second station. Some of these overflowing customers might also reject

service at the second station and drive by to another station they prefer.

In this case, the overflow parameter p reflects this behavior. It should be

noted, that some of the blocking, overflow and jockeying rules are unnatural

in this context. Nevertheless, due to the diversity of the models presented in

the following, many applications for example to communication, computer

or traffic control systems are conceivable.

Further related literature

Some of the results developed in the following sections where published by

the author in [59]. In the literature, numerical computations for some of the

deterministic overflow models, i.e., with p = 1, are available. Kaufman [35]

(model W/W/S and W/W/N) uses block iterative techniques and successive

overrelaxation techniques for the numerical derivation of the steady-state

probabilities. Chan [8,9] (model W/W/N and W/W/S) uses block iterative

techniques and preconditioned conjugate gradient methods for the numerical

computation of the steady-state probabilities. The deterministic model with

arbitrary service rates is treated in [9] in the context of overflow queueing

networks with an arbitrary but finite number of queues. For some models

considered in Chan [8], Kaufman [35] and Morrison [46], i.e., S/S/S, S/S/N

and W/W/N, numerical results are presented in Kaufman et al. [34]. The

overflow model with deterministic overflow and without waiting rooms is

known as the one-way overflow queueing model (van Dijk [15,16], Doremalen

[18], Hordijk and Ridder [30]). In telecommunication theory, it is a special

type of an asymmetric grading (Kosten [36], van Marion [44] and Syski [63]).

Overflow queueing models are widespread in literature. We already men-

tioned Disney and König [17] for a broad overview and Koury et al. [39]
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and Krieger et al. [40] for reviews of iterative numerical methods for over-

flow queueing models. A brief discussion of numerical methods for some

two-queue overflow systems and further references are given in Ching and

Ng [10]. Related overflow models are studied in van Doorn [19], El-Taha and

Heath [20], Parthasarathy and Sudhesh [55] and the referenced literature

therein using a variety of different techniques (for some comments on [19]

and [55] see page 13). An overflow model with multiple primary queues,

finite waiting rooms and a shared secondary overflow queue is numerically

studied in Guérin and Lien [27] and related models are reviewed. Early refer-

ences are given in van Marion [44], Morrison [46] and Morisson [47]. Further

related literature is mentioned in Chapter 2, Section 2.1 of this thesis.

3.2 Overflow without waiting rooms

3.2.1 Steady-state equations and separation approach

In this section, we consider the basic p-overflow model without waiting

rooms, that is, the capacity qi of the waiting room in Qi is 0 and the total

capacity of Qi is ki = ni for i = 1, 2. In this case, all model variations

coincide. This basic model and the derivation of the steady-state probabili-

ties will be the starting point for the derivations in the more sophisticated

models. Their analysis is a generalization of this basic approach.

Let Qi, i = 1, 2, be fed by a Poisson arrival stream with intensity λi > 0

and let the service times at Qi be independently identically and exponen-

tially distributed with mean 1/µi > 0. The arrival stream from Q1 is blocked

and directed to Q2 if all servers in the first queue are busy. Overflowing Q1-

customers and arriving Q2-customers are lost if all servers in Q2 are busy.

The bivariate server and waiting room demand distribution is the unique

nonnegative and normalized solution of the following equilibrium equations:

(λ1(1−δin1
) + pλ1δin1

(1 − δjn2
) + λ2(1 − δjn2

) + iµ1 + jµ2)pi,j

= λ1(1 − δi0)pi−1,j + (1 − δin1
)(i + 1)µ1pi+1,j (3.2.1)

+ (1 − δj0)(pλ1δin1
+ λ2)pi,j−1 + (1 − δjn2

)(j + 1)µ2pi,j+1

for i = 0, . . . , n1 and j = 0, . . . , n2, where δij is the Kronecker symbol,

i.e., δij = 1 if i = j and δij = 0 otherwise. Equation (3.2.1) for i 6= n1

characterizes the flow into and out of states which is not due to an overflow

of customers. In contrast to that, equation (3.2.1) for i = n1 characterizes

the flow which is caused by the overflow mechanism.
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For i 6= n1 the equations (3.2.1) are given by

(λ1 + λ2(1 − δjn2
) + iµ1 + jµ2)pi,j = λ1(1 − δi0)pi−1,j + (i + 1)µ1pi+1,j

+ (1 − δj0)λ2pi,j−1 + (1 − δjn2
)(j + 1)µ2pi,j+1

(3.2.2)

for i = 0, . . . , n1 − 1 and j = 0, . . . , n2. From these equation one might

predict that the queue lengths of Q1 and Q2 behave independent from each

other given that Q1 is not fully occupied. In fact, it turns out that the

variables in (3.2.2) can be separated, in the sense that there are solutions of

the form pi,j = αiβj for i = 0, . . . , n1 and j = 0, . . . , n2 as we will show in

the following.

Setting pi,j = αiβj for i = 0, . . . , n1 and j = 0, . . . , n2 in (3.2.2) and

evaluating the result in j = 0 results in the equations

(λ1 + iµ1 + c)αi = λ1(1 − δi0)αi−1 + (i + 1)µ1αi+1 (3.2.3)

for i = 0, . . . , n1 − 1 with the separation constant c = λ2 − µ2
β1

β0
. On the

other hand, the evaluation of the result in i = 0 leads to

(λ2(1−δjn2
)+jµ2−c)βj = λ2(1−δj0)βj−1+(1−δjn2

)(j+1)µ2βj+1 (3.2.4)

for j = 0, . . . , n2 with the separation constant c = −λ1 + µ1
α1

α0
. Note that

c = λ2 − µ2
β1

β0
= −λ1 + µ1

α1

α0
, (3.2.5)

which follows from (3.2.2) with i = j = 0. By comparing (3.2.3) and (3.2.4)

we get the following Lemma.

Lemma 3.2.1. If αi = si(c, λ1, µ1), i = 0, . . . , n1, is a solution of (3.2.3)

for i = 0, . . . , n1 − 1, then a solution of (3.2.4) for j = 0, . . . , n2 − 1 is given

by βj = sj(−c, λ2, µ2), j = 0, . . . , n2.

By this lemma it is only necessary to find a solution of the equations

(3.2.3) for λ1, µ1 > 0 and c ∈ R. Their solution instantaneously yields a

solution of the equations (3.2.4). In fact, the solution can be given in closed

form in terms of the system parameters as a polynomial in the separation

variable c. We will prove this fact and state the solution and some useful

properties of these polynomials in the next section.
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3.2.2 Solution for the separation variables

We derive the solution and some useful properties of the solutions of the

basic recurrence equation (3.2.3) in this section. Let c ∈ R and λ, µ > 0 be

arbitrary and define αi = si(c) = si(c, λ, µ), i ≥ 0, recursively by s0(c) = 1

and (3.2.3), i.e.,

(λ + iµ + c)si(c) = λ(1 − δi0)si−1(c) + (i + 1)µsi+1(c), i ≥ 0. (3.2.6)

Multiplying this recurrence relation by zi, z ∈ R, and summing over

i ≥ 0 yields the differential equation

µ(1 − z)f ′
c(z) = (λ(1 − z) + c)fc(z), (3.2.7)

where fc is the generating function of the sequence (si(c, λ, µ))i≥0, that is,

fc(z) =
∞
∑

i=0

si(c, λ, µ)zi (3.2.8)

for z ∈ R with |z| < 1. The condition s0(c, λ, µ) = 1 yields the boundary

condition fc(0) = 1 for the differential equation (3.2.7). The solution of

(3.2.7) with fc(0) = 1 is given by

fc(z) = e
λ
µ

z(1 − z)−
c
µ . (3.2.9)

Using the power series expansions

eaz =

∞
∑

n=0

an

n!
zn and

(1 − z)b =
∞
∑

n=0

(

b

n

)

(−1)nzn,

where
(

b
n

)

= b(b−1)·...·(b−n+1)
n! for b ∈ R is the generalized binomial coefficient,

we get a closed-form expression for the coefficients si(c, λ, µ), i ≥ 0, by the

identity theorem for power series:

Proposition 3.2.2. Let c ∈ R, λ > 0 and µ > 0 be arbitrary, then the

solution of (3.2.6) with s0(c, λ, µ) = 1 is given by

si(c, λ, µ) =
1

i!

(

λ

µ

)i i
∑

k=0

(

i

k

)

λ−k
k−1
∏

j=0

(jµ + c) (3.2.10)
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=

(

λ

µ

)i i
∑

k=0

λ−k

(i − k)! k!

(

c

µ

)

k

(3.2.11)

for i ≥ 1, where (α)0 = 1 and (α)k =
∏k−1

j=0(j+α), k ≥ 1, is the Pochhammer

symbol.

Note that we have assumed that the sequence (si(c, λ, µ))i≥0 is indeed

absolutely summable. This is immediately clear if we define fc for |z| < 1 by

(3.2.9) and develop fc into the power series (3.2.8). The functions si(c, λ, µ),

i ≥ 0, are known as the Poisson-Charlier polynomials in a more general

setting (see Abramowitz and Stegun [1]) and are connected to a family

of special functions, the confluent hypergeometric functions of the second

kind . For a, b, z ∈ C with b 6= 0,−1,−2, . . . and | arg(z)| < π the confluent

hypergeometric function of the second kind U(a, b, z) is a solution of the

Kummer differential equation

zy′′ + (b − z)y′ − ay = 0

with boundary conditions y(a, b, 0) = 1 and ∂
∂z

y(a, b, z)|z=0 = a/b. For

Re(a) > 0 and Re(z) > 0, it has the integral representation

U(a, b, z) =
1

Γ(a)

∫ ∞

0
e−ztta−1(1 + t)b−a−1dt

(see Abramowitz and Stegun [1], Chapter 13 and Srivastava and Kashyap

[60], Chapter II.3). The following proposition shows the connection between

the functions si(c, λ, µ), i ≥ 0, the confluent hypergeometric function and

the signless Stirling numbers of the first kind.

Proposition 3.2.3. Let c ∈ R, λ > 0 and µ > 0 be arbitrary and si(c, λ, µ),

i ≥ 0, be defined by (3.2.10).

a) For every c /∈ {µ(n + 1 − i) | n ∈ N0} it holds

si(c, λ, µ) =
1

i!
U

(

−i, 1 − i − c

µ
,
λ

µ

)

.

b) For 0 ≤ n ≤ k let σ(k, n) equal the number of permutations of k elements

which contain exactly n permutation cycles. Then

si(c, λ, µ) =
1

i!

i
∑

n=0

(

c

µ

)n i
∑

k=n

(

i

k

)(

λ

µ

)i−k

σ(k, n) (3.2.12)
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holds. The numbers σ(k, n), 0 ≤ n ≤ k, are called the signless Stirling

number of the first kind.

Proof. For (a) see Abramowitz and Stegun [1], Chapter 13. To show (b)

we use (3.2.10) and
∏k−1

j=0(j − b) =
∑k

n=0 σ(k, n)bn, b ∈ R, (see Abramowitz

and Stegun [1], Chapter 24.1.3)

The next Proposition states some properties of the functions si(c, λ, µ)

for i ≥ 0. These properties will be useful in the sequel.

Proposition 3.2.4. Let λ, µ > 0 and c ∈ R. The solution si(c, λ, µ), i ≥ 0,

of the equations (3.2.6) satisfies the recurrence relations

µ(i + 1)si+1(c) = λsi(c) + csi(c + µ) and (3.2.13)

si(c) = si(c + µ) − si−1(c + µ)(1 − δi0) (3.2.14)

for i ≥ 0. Moreover, for every n ≥ 0, the equations

n
∑

i=0

si(c) = sn(c + µ), (3.2.15)

n
∑

i=0

(n − i)si(c) = (1 − δn0)sn−1(c + 2µ) and (3.2.16)

n
∑

i=1

isi(c) = nsn(c + µ) − (1 − δn0)sn−1(c + 2µ) (3.2.17)

hold.

Proof. Rewriting the differential equation (3.2.7) using (3.2.9) yields

f ′
c(z) =

λ

µ
fc(z) +

c

µ
fc+µ(z).

The power series expansions of fc and fc+µ imply

∞
∑

i=1

isi(c)z
i−1 =

λ

µ

∞
∑

i=0

si(c)z
i +

c

µ

∞
∑

i=0

si(c + µ)zi

for all |z| < 1. Therefore, by multiplying this equation with µ and using the

identity theorem for power series, we conclude that

µ(i + 1)si+1(c) = λsi(c) + csi(c + µ), i ≥ 0,
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i.e., that (3.2.13) holds. In the same manner, (3.2.14) follows from

fc(z) = (1 − z)fc+µ(z).

Summing (3.2.14) over i = 0, . . . , n gives immediately (3.2.15). (3.2.16)

follows easily from (3.2.13) by summing over i = 0, . . . , n and using (3.2.15).

Finally, (3.2.17) follows from (3.2.15) together with (3.2.16).

3.2.3 Boundary condition and separation constants

We have shown in the previous section in Lemma 3.2.1 and Proposition 3.2.2

that a solution of (3.2.3) for i = 0, . . . , n1 and (3.2.4) for j = 0, . . . , n2 − 1

with α0 = β0 = 1 is given by αi = si(c, λ1, µ1) for i = 0, . . . , n1 and

βj = sj(−c, λ2, µ2) for j = 0, . . . , n2. Consequently, a natural candidate

for the solution of the steady-state equations (3.2.1) is

pi,j = αiβj = si(c, λ1, µ1)sj(−c, λ2, µ2)

for i = 0, . . . , n1 and j = 0, . . . , n2.

It still remains to determine the separation constant c, which can in view

of (3.2.5) be reformulated as

c = λ2 − µ2s1(−c, λ2, µ2) = −λ1 + µ1s1(c, λ1, µ1).

This equation is a tautology as one could expect and therefore gives no

additional information about c. In the previous sections, all steady-state

equations despite the equation for j = n2 have been utilized to find αi and

βj . By taking the boundary equation for j = n2 into account, we will derive

the crucial condition in the following lemma that will be used to determine

the separation constant c – or more precisely as we will see – the feasible

separation constants c1, . . . , cn2
.

Lemma 3.2.5. Let βj = sj(−c, λ2, µ2) for j ≥ 0 and λ2, µ2 > 0 and c ∈ R
be given by (3.2.10). Then the equation (3.2.4) for j = n2 is equivalent to

csn2
(µ2 − c, λ2, µ2) = 0. (3.2.18)

Proof. Setting βj = sj(−c, λ2, µ2) for j = n2 − 1 and j = n2 in (3.2.4),

λ = λ2, µ = µ2 and substituting c with −c immediately yields

(n2µ2 − c)sn2
(−c, λ2, µ2) = λ2sn2−1(−c, λ2, µ2). (3.2.19)
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Additionally, setting i = n2 in (3.2.13) gives

n2µ2sn2
(−c, λ2, µ2) = λ2sn2−1(−c, λ2, µ2) − csn2−1(µ2 − c, λ2, µ2).

Substituting n2µ2sn2
(−c, λ2, µ2) from the latter equation on the right side

of equation (3.2.19) yields

c (sn2
(−c, λ2, µ2) + sn2−1(µ2 − c, λ2, µ2)) = 0.

Together with (3.2.14) this finally shows (3.2.18). The argument can simply

be reversed to show the other direction of the equivalence.

Equation (3.2.18) provides a condition from which the feasible candidates

for the separation constant c can be derived. In fact, it is immediately seen

from Proposition 3.2.2 that sn2
(µ2 − c, λ2, µ2) is a polynomial of degree n2

in c for every n2 ≥ 1. Furthermore, it follows from Proposition 3.2.2 that

sn2
(µ2 − c, λ2, µ2) has n2 negative and pairwise distinct roots c1, . . . , cn2

for

every n2 ≥ 1, as we will show in the following. For the moment we will

suppress the indexes of the system parameters λi, µi and ni for i = 1, 2 and

substitute µ2 − c with c.

As before let si(c, λ, µ) for i ≥ 0 be given by s0(c, λ, µ) = 1 and the

recurrence relations (3.2.6). Now we investigate the connection between the

zeros of si(c, λ, µ) and those of si+1(c, λ, µ) as functions of c for i ≥ 1. We

will show that these two sets of zeros satisfy an interlacing property similar

to the one observed in the previous chapter in (2.2.32) and the proof of

Theorem 1.2.3. Although the two sets of zeros satisfy a similar interlacing

property, the proof of this property has to be carried out in a different way.

This can be done by using the so called Sturm sequence property or roots

separation theorem. For the sake of completeness, we will state the theorem

with a short proof (see Theorem 8.4.1 in Golub and Loan [26] and Chapter

5, §37 in Wilkinson [65]).

Theorem 3.2.6 (Sturm sequence property). For every n ≥ 1 let

An = (ai,j)i,j=1,...,n

be an n×n symmetric tridiagonal matrix with real entries. Further suppose

that An is unreduced, i.e., An has nonnegative elements on the secondary

diagonals. Then An has n pairwise distinct real eigenvalues. Let the eigen-

values

λ1(An), . . . , λn(An)
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of An be ordered in increasing order, then the eigenvalues of An strictly

separate the eigenvalues of An+1:

λ1(An+1) < λ1(An) < λ2(An+1) <. . .< λn(An+1) < λn(An) < λn+1(An+1).

(3.2.20)

This relation is called the strict interlacing property.

Proof. By Chapter 2, §47 in Wilkinson [65], the eigenvalues of An separate

the eigenvalues of An+1 at least in the weak sense, meaning

λ1(An+1) ≤ λ1(An) ≤ λ2(An+1) ≤ . . .≤ λn(An+1) ≤ λn(An) ≤ λn+1(An+1).

(3.2.21)

Let χn be the characteristic polynomial of An, i.e.,

χn(t) = det(tEn − An)

for t ∈ R and set bn = an,n+1 = an+1,n for n ≥ 1. By Laplace expansion of

χn we get the recursive equations

χn(t) = (t − an,n)χn−1(t) − b2
n−1χn−2(t) (3.2.22)

for n ≥ 2, where we have set χ0(t) = 1. Suppose that χn(t0) = χn−1(t0) = 0

for some t0 ∈ R and n ≥ 2. Then it follows from (3.2.21) and the assumption

that Ak is unreduced, i.e., bk 6= 0 for all k ≥ 1, by induction that

χ0(t0) = χ1(t0) = . . . = χn(t0) = 0.

This is a contradiction to χ0(t0) = 1 and thus we must have strict inequalities

in (3.2.21).

By the roots separation theorem, the goal is to describe the recurrence

relations (3.2.6) by a symmetric tridiagonal matrix. Therefore, we start with

symmetrizing these relations.

Lemma 3.2.7. Set

ui(c) = ui(c, λ, µ) =

(

i! µi+1

λi

)
1
2

si(c, λ, µ) (3.2.23)

for i ≥ 0. Then s0(c, λ, µ) = 1 and the equations (3.2.6) are equivalent to
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u0(c) = µ
1
2 and the symmetrized equations

(1−δi0)i
1
2 ui−1(c)−

(

i +
λ + c

µ

)(

λ

µ

)− 1
2

ui(c)+(i+1)
1
2 ui+1(c) = 0 (3.2.24)

for i ≥ 0.

In order to write the symmetrized recurrence relations (3.2.24) from the

previous Lemma in matrix form, we introduce the matrices

Mn = Mn(λ, µ) = (mi,j)i,j=1,...,n

for n ≥ 1 defined by

mi,i = −(i − 1)

(

λ

µ

)− 1
2

for i = 1, . . . , n,

mi,i+1 = mi+1,i = i
1
2 for i = 1, . . . , n − 1 and (3.2.25)

mi,j = 0 for |i − j| > 1.

Mn is given in matrix form by































0 1 0 . . . . . . 0

1 −
(

λ
µ

)− 1
2

√
2

. . .
...

0
√

2 −2
(

λ
µ

)− 1
2 . . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . −(n − 2)

(

λ
µ

)− 1
2 √

n − 1

0 . . . . . . 0
√

n − 1 −(n − 1)
(

λ
µ

)− 1
2































for n ≥ 1. Mn is a real symmetric matrix. Thus Mn is diagonalizable

and possesses only real eigenvalues. Furthermore, Mn is tridiagonal, that

is mi,j = 0 for |i − j| > 1, and has nonzero elements on the secondary

diagonals, i.e., mi,i+1,mi+1,i 6= 0 for i = 1, . . . , n − 1. Then it follows from

Theorem 3.2.6 that Mn has n pairwise distinct eigenvalues.

Let u(c)⊤ = (u0(c), . . . , un−1(c))
⊤ ∈ Rn be given by (3.2.23) and con-

sider the following system of linear equations:

(

Mn − λ + c

µ

(

λ

µ

)− 1
2

En

)

u(c) = 0, (3.2.26)
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where En is the identity matrix in Mat(n, n,R). From (3.2.24) and (3.2.26)

we immediately obtain the following result.

Lemma 3.2.8. Let u(c)⊤ = (u0(c), . . . , un−1(c))
⊤ ∈ Rn and un(c) = 0.

Then the following statements are equivalent:

(i) u(c) is a nontrivial solution of (3.2.26).

(ii) u0(c), . . . , un(c) is a solution of (3.2.24) for i = 0, . . . , n− 1 with u0 6=
0.

From the roots separation theorem and Lemma 3.2.8 we get the desired

statement about the zeros of sn(c, λ, µ):

Theorem 3.2.9. For n ≥ 1, c ∈ R, λ > 0 and µ > 0 let sn(c, λ, µ) be

defined by (3.2.10). Then the equation

sn(c, λ, µ) = 0

has n negative and distinct solutions c1, . . . , cn in the variable c given by

ci = (λµ)
1
2 εi − λ (3.2.27)

for i = 1, . . . , n, where ε1, . . . , εn are the pairwise distinct eigenvalues of the

matrix Mn(λ, µ).

Proof. Let n ≥ 1. The matrix Mn satisfies the assumptions of the roots

reparation theorem and therefore has n real distinct eigenvalues ε1, . . . , εn.

Thus, the equation

(

Mn − λ + c

µ

(

λ

µ

)− 1
2

En

)

u = 0

with c ∈ R and u⊤ = (u0, . . . , un−1)
⊤ ∈ Rn has n real and linearly inde-

pendent solutions. The solutions are of the form (cj , u
j) for j = 1, . . . , n,

where

cj = (λµ)
1
2 εj − λ

and uj = (uj
0, . . . , u

j
n−1) is an eigenvector of Mn to the eigenvalue εj for

j = 1, . . . , n. We define uj
n = 0. By Remark 3.2.8 (i) uj

0 is nonzero for all j.

Thus, we can normalize the eigenvector uj such that uj
0 = µ

1
2 . We further

obtain from Lemma 3.2.8 that cj , u
j
0, . . . , u

k
n is a solution of (3.2.24) for all

j = 1, . . . , n. If we define si(cj , λ, µ) by (3.2.23) with u0, . . . , un replaced
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by uj
0, . . . , u

j
n, then s0(cj , λ, µ) = 1 and the equations (3.2.6) are fulfilled.

Then Proposition 3.2.2 yields that si(cj , λ, µ) is of the form (3.2.10) for

i = 1, . . . , n. In particular sn(cj , λ, µ) is of the form (3.2.10), a polynomial

of degree n and uj
n = 0 gives sn(cj , λ, µ) = 0 for j = 1, . . . , n. It follows from

(3.2.10) that sn(c, λ, µ) > 0 for c ≥ 0 so that the numbers c1, . . . , cn must

be negative.

Using the Sturm sequence property one can show another result that

reduces the computational requirements for the derivation of the eigenvalues

of a symmetric tridiagonal matrix with nonzero elements on the secondary

diagonals substantially: Consider the conditions of Theorem 3.2.6 and let

s(t) be the number of sign changes of the sequence χ0(t), . . . , χn(t), where

χk(t) is defined by (3.2.22) with the additional convention that the sign

of χk(t) is −sgn(χk−1(t)) if χk(t) = 0. Then s(t) equals the number of

eigenvalues of An that are less than t. Based on this observation, fast and

accurate algorithms - like bisection, multisection, polysection or Godunov-

inverse iteration - for the numerical computation of the eigenvalues have

been developed. A huge literature is available for real symmetric tridiagonal

eigenvalue problems (see Cullum [14], Chapter 3, Section 3.5, Golub and

Loan [26], §8.4, Matsekh [45] and Swarztrauber [62]).

We summarize the results for the number and location of the separa-

tion constants described by equation (3.2.18) in the following conclusion of

Theorem 3.2.9.

Corollary 3.2.10. For n2 ≥ 0, λ2 > 0 and µ2 > 0 let sn2
(µ2 − c, λ2, µ2) be

defined by (3.2.10). Then the equation

csn2
(µ2 − c, λ2, µ2) = 0

has n2 +1 and distinct solutions c0, . . . , cn2
in the variable c given by c0 = 0

and

ci = λ2 + µ2 − (λ2µ2)
1
2 εi (3.2.28)

for i = 1, . . . , n, where ε1, . . . , εn2
are the pairwise distinct eigenvalues of the

matrix Mn(λ2, µ2) defined by (3.2.25). Moreover, c1, . . . , cn2
are positive.

3.2.4 Steady-state probabilities

We have shown in Corollary 3.2.10 that sn2
(µ2 − c, λ2, µ2) is a polynomial

in c of degree n2 with n2 positive and distinct zeros which can be found by
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solving the eigenvalue problem (3.2.26), i.e.,

(

Mn(λ2, µ2) −
λ2 + c

µ2

(

λ2

µ2

)− 1
2

En

)

u = 0.

By denoting the zeros by c0, . . . , cn2
as in Corollary 3.2.10, we have

cmsn2
(µ2 − cm, λ2, µ2) = 0 (3.2.29)

for m = 0, . . . , n2. For every m = 0, . . . , n2, we get a solution of the steady-

state equations (3.2.1) by setting

pi,j = si(cm, λ1, µ1)sj(−cm, λ2, µ2) (3.2.30)

for i = 0, . . . , n1 and j = 0, . . . , n2. Therefore, we can represent the ex-

isting and unique stationary probabilities pi,j as linear combinations of the

solutions (3.2.30) of the separation approach in the form

pi,j =

n2
∑

m=0

amsi(cm, λ1, µ1)sj(−cm, λ2, µ2) (3.2.31)

for i = 0, . . . , n1 and j = 0, . . . , n2. The constants a0, . . . , an2
, have to be

chosen such that the boundary conditions in (3.2.1) corresponding to i = n1

and the normalization condition are satisfied.

The boundary conditions for i = n1, j = 0, . . . , n2 − 1 are

(pλ1 + λ2 + n1µ1 + jµ2)pn1,j

= λ1pn1−1,j + (1 − δj0)(pλ1 + λ2)pn1,j−1 + (j + 1)µ2pn1,j+1. (3.2.32)

The boundary condition for i = n1 and j = n2 is

(n1µ1 + n2µ2)pn1,n2
= λ1pn1−1,n2

+ (pλ1 + λ2)pn1,n2−1. (3.2.33)

Inserting (3.2.31) into (3.2.32) and (3.2.33) and simplifying with the help of

the recurrence relations (3.2.13) and (3.2.14) leads to

n2
∑

m=0

am (cmsn1
(cm + µ1)sj(−cm) + pλ1sn1

(cm)sj(−cm − µ2)) = 0 (3.2.34)
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for i = n1, j = 0, . . . , n2 − 1 and

n2
∑

m=0

am (cmsn1
(cm + µ1)sn2−1(−cm + µ2) + pλ1sn1

(cm)sn2−1(−cm)) = 0

(3.2.35)

with the abbreviated notation sn1
(·) = sn1

(·, λ1, µ1) and sj(·) = sj(·, λ2, µ2)

for j = 0, . . . , n2. Together with the normalization condition there are n2+2

linear equations for the unknowns a0, . . . , an2
. Summing (3.2.34) over j =

0, . . . , n2 − 1 and using (3.2.15) yields the redundancy of (3.2.35). Further-

more, inserting (3.2.31) into the normalization condition
∑n1

i=0

∑n2

j=0 pi,j = 1

and using (3.2.29) and (3.2.15) leads to an explicit expression for a0:

a0 =
(

sn1
(µ1, λ1, µ1)sn2

(µ2, λ2, µ2)
)−1

. (3.2.36)

Remark 3.2.11. It is seen from (3.2.31) and (3.2.34) that the probabil-

ities pi,j depend on the parameter p ∈ [0, 1] only through the coefficients

a0, . . . , an2
. This is due to the fact that the stationary probabilities have

been calculated from the nonoverflow balance equations, i.e., (3.2.1) for

i 6= n1, which are independent of p. Whereas the equations for the coef-

ficients a0, . . . , an2
arise from the overflow balance equations, i.e., (3.2.1) for

i = n1, which depend on p.

We summarize the results in the following theorem.

Theorem 3.2.12. The unique nonnegative and normalized solution of the

steady-state equations (3.2.1) is given by

pi,j =

n2
∑

m=0

amsi(cm, λ1, µ1)sj(−cm, λ2, µ2) (3.2.37)

for i = 0, . . . , n1 and j = 0, . . . , n2 if the coefficients a0, . . . , an2
are de-

termined by (3.2.34) and (3.2.36), where c0 = 0 and c1, . . . , cn2
are the

by Corollary 3.2.10 positive and pairwise distinct solutions of the equation

sn2
(µ2 − cm, λ2, µ2) = 0, m = 1, . . . , n2.

The problem of determining the (n1 + 1)(n2 + 1) unknowns pi,j, i =

0, . . . , n1, j = 0, . . . , n2, has now been reduced to the problem of determining

n2 eigenvalues from (3.2.29) and n2 + 1 unknowns from the homogeneous

linear equations (3.2.34) and (3.2.36).

The separation approach is displayed in Figure 3.3. The single line char-

acterizes the boundary conditions, the unfilled endpoint characterizes the

redundant boundary condition at (i, j) = (n1, n2).
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•

◦

pi,j = αiβj

0 n1

n2

i →

j
↑

Figure 3.3: Separation scheme: Overflow without waiting rooms

Remark 3.2.13. By setting n2 = 0, we can include the case that the

second queue has no servers, i.e., the Erlang loss system. In this case, we

obtain from (3.2.36) and (3.2.10) the standard formula for the stationary

probabilities of the number of busy servers in the Erlang loss system with

n1 servers and traffic intensity ρ = λ1/µ1:

P (L1 = i) =
ρi/i!

1 + ρ + . . . + ρn1/n1!
, i = 0, . . . , n1.

Remark 3.2.14. For n2 > 0 the steady-state probability that i customers

are served at Q1 is
∑n2

j=0 pi,j, i = 0, . . . , n1. Using (3.2.29), (3.2.36), (3.2.10)

and (3.2.15) we obtain again the standard Erlang loss formula

P (L1 = i) =

n2
∑

j=0

pi,j =
ρi/i!

1 + ρ + . . . + ρn1/n1!
, i = 0, . . . , n1.

3.2.5 Stationary quantities and numerical results

At the end of this section, we show how the results from the separation

approach can be used to derive steady-state quantities of interest. The main

characteristics of a queueing network with loss and overflow are, amongst

others, the average blocking and loss probabilities for arriving customers, the

overflow probability and the average number of customers in service. These

quantities can be given in closed form in terms of the system parameters

and the unknowns described in Theorem 3.2.12.

Let Bi, i = 1, 2, be the probability that an arriving Qi-customer is

blocked at Qi and let O12 be the expected stationary number of customers



3.2 Overflow without waiting rooms 75

per unit time, which flow over from Q1 to Q1, then

B1 =

n2
∑

j=0

pn1,j =

n2
∑

j=0

n2
∑

m=0

amsn1
(cm, λ1, µ1)sj(−cm, λ2, µ2),

B2 =

n1
∑

i=0

pi,n2
=

n1
∑

i=0

n2
∑

m=0

amsi(cm, λ1, µ1)sn2
(−cm, λ2, µ2),

O12 =

n2−1
∑

j=0

pn1,j =

n2−1
∑

j=0

n2
∑

m=0

amsn1
(cm, λ1, µ1)sj(−cm, λ2, µ2).

By (3.2.15) we get

B1 =

n2
∑

m=0

amsn1
(cm, λ1, µ1)sn2

(µ2 − cm, λ2, µ2),

B2 =

n2
∑

m=0

amsn1
(µ1 + cm, λ1, µ1)sn2

(−cm, λ2, µ2),

O12 =

n2
∑

m=0

amsn1
(cm, λ1, µ1)sn2−1(µ2 − cm, λ2, µ2).

The loss probability PLoss,1 for arriving Q1-customers is then given by

PLoss,1 = pn1,n2
+ (1 − p)O12 = B1 − pO12,

the loss probability PLoss,2 for arriving Q2-customers is equal to B2.

ELi is the expected average queue length of Qi for i = 1, 2. A closed-form

expression for EL1 can be deduced directly from Remark 3.2.14. Moreover,

EL2 is given by

EL2 =

n2
∑

j=1

j

n1
∑

i=0

pi,j =

n2
∑

m=0

am

n1
∑

i=0

si(cm, λ1, µ1)

n2
∑

j=1

jsj(−cm, λ2, µ2).

In order to derive EL2, we can use (3.2.15) and (3.2.17) and get

EL2 =

n2
∑

m=0

amsn1
(µ1 − cm, λ1, µ1)

(

n2sn2
(µ2 − cm, λ2, µ2)

− sn2−1(2µ2 − cm, λ2, µ2)
)

= n2 −
n2
∑

m=0

amsn1
(µ1 − cm, λ1, µ1)sn2−1(2µ2 − cm, λ2, µ2),
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where we have used Corollary 3.2.10 and equation (3.2.36) for the last equal-

ity. However, by Little’s law (see for example Asmussen [5], Theorem 4.1),

the expected number of customers in the second queue is equal to the ex-

pected arrival rate to that queue multiplied with the average time spent in

the queue. Therefore, we have

EL2 =
pλ1O12 + λ2(1 − B2)

µ2
. (3.2.38)

Note that the numerical efforts for deriving one of the quantities B1, B2,

O12, EL1 and EL2 is the same as deriving one of the stationary probabilities

(3.2.37). Furthermore, these quantities can be calculated directly without

computing the stationary probabilities.

These results can for example be used to minimize the total average

costs of lost customers subject to the overflow parameter p: The expected

number of lost Q1- and Q2-customers is given by λ1PLoss,1 = λ1(B1 − pO12)

and PLoss,1 = λ2B2, respectively. The total average costs of lost customers

C(p) is then given by

C(p) = C1λ1(B1 − pO12) + C2λ2B2,

where Ci ∈ R, i = 1, 2, are cost parameters. It is evident that an increase of

p results on the one hand in a decrease of the number of lost Q1-customers

because more of these customers will join Q2. On the other hand, these

overflowing Q1-customers increase the occupation rate of Q2 and thus, more

Q2-customers will be lost. In this view, the total costs C(p) of lost customers

should be a convex function of p and a cost-minimal overflow parameter p∗

should exist. A numerical example is displayed in Figure 3.4. The cost

minimizing values p∗ in this example are p∗ = 0.9887, 0.4838, 0.1899 and

0 (line by line from left to right) with associated minimal costs of C(p∗) =

1.3714, 1.4288, 1.4775 and 1.52. Thus, by inspecting the maxima of the cost

functions, it is seen that the optimal choice of the overflow parameter p can

reduce the costs in a considerable amount.

The mean queue length EL2 of the second queue can also be determined

numerically from (3.2.38). Some numerical examples are given in Tables

3.1-3.6. For p = 0, both queues are independent and EL2 is given by the

Erlang loss formula:

EL2 =

n1
∑

i=1

ρi
2

(i−1)!

1 +
n1
∑

i=1

ρi
2

i!

,
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0.2 0.4 0.6 0.8 1.0

1.380

1.385

1.390

1.395

1.400

0.2 0.4 0.6 0.8 1.0

1.432

1.434

1.436

1.438

1.440

0.2 0.4 0.6 0.8 1.0

1.485

1.490

1.495

0.2 0.4 0.6 0.8 1.0

1.53

1.54

1.55

1.56

Figure 3.4: p 7→ C(p) for (n1, n2, λ1, µ1, λ2, µ2, C1) = (2, 2, 3, 3, 1, 1, 1.2) and
C2 = 3.4, 3.6, 3.8 and 4 (line by line from left to right)

where ρ2 = λ2/µ2. The first row of each of the Tables 3.1-3.5 reflects this

observation. By inspecting the numerical results displayed in Tables 3.1-

3.6, one finds that EL2 is increasing in λ2, n2 and p and decreasing in µ2.

Furthermore, EL2 is increasing for p > 0 in λ1 and decreasing for p > 0 in

n1 and µ1. This is on the one hand explained by the fact that letting all

other values fixed, the mean queue length must increase if the capacity n2

or the offered workload λ2 increase and decreases if the service rate µ2 is

raised. Besides the usual influence of the arrival and service rates and the

capacity on the queue length, on the other hand, an overflow is more likely

if λ1 or p increase or n1 decreases. Thus, EL2 increases in these cases.

p n2 = 2 n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 12

0 1.71004 3.27076 4.59956 5.60233 6.22761 6.52748
0.2 1.73063 3.33039 4.72756 5.83362 6.58125 6.98453
0.4 1.74819 3.38066 4.83522 6.03102 6.89379 7.40765
0.6 1.76333 3.42349 4.92648 6.19970 7.16787 7.79408
0.8 1.77652 3.46035 5.00446 6.34428 7.40718 8.14308
1 1.78810 3.49235 5.07162 6.46874 7.61572 8.45559

Table 3.1: Table of EL2 for n1 = 2 and (λ1, µ1, λ2, µ2) = (1, 0.1, 2, 0.3)
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p n2 = 2 n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 12

0 1.71004 3.27076 4.59956 5.60233 6.22761 6.52748
0.2 1.72637 3.31814 4.70143 5.78646 6.50874 6.88981
0.4 1.74043 3.35861 4.78854 5.94651 6.76133 7.22921
0.6 1.75265 3.39350 4.86349 6.08565 6.98673 7.54366
0.8 1.76337 3.42382 4.92838 6.20682 7.18698 7.83228
1 1.77285 3.45038 4.98490 6.31267 7.36445 8.09517

Table 3.2: Table of EL2 for n1 = 4 and (λ1, µ1, λ2, µ2) = (1, 0.1, 2, 0.3)

p n2 = 2 n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 12

0 1.71004 3.27076 4.59956 5.60233 6.22761 6.52748
0.2 1.72233 3.30649 4.67649 5.74141 6.43967 6.80011
0.4 1.73301 3.33738 4.74327 5.86430 6.63303 7.05812
0.6 1.74236 3.36429 4.80151 5.97283 6.80826 7.30014
0.8 1.75063 3.38790 4.85256 6.06875 6.96642 7.52542
1 1.75798 3.40876 4.89753 6.15369 7.10878 7.73374

Table 3.3: Table of EL2 for n1 = 6 and (λ1, µ1, λ2, µ2) = (1, 0.1, 2, 0.3)

p n2 = 2 n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 12

0 1.71004 3.27076 4.59956 5.60233 6.22761 6.52748
0.2 1.71866 3.29586 4.65365 5.70014 6.37656 6.71854
0.4 1.72621 3.31779 4.70124 5.78782 6.51411 6.90094
0.6 1.73287 3.33708 4.74327 5.86635 6.64047 7.07384
0.8 1.73879 3.35416 4.78052 5.93670 6.75611 7.23671
1 1.74409 3.36936 4.81367 5.99978 6.86166 7.38927

Table 3.4: Table of EL2 for n1 = 8 and (λ1, µ1, λ2, µ2) = (1, 0.1, 2, 0.3)

p n2 = 2 n2 = 4 n2 = 6 n2 = 8 n2 = 10 n2 = 12

0 1.71004 3.27076 4.59956 5.60233 6.22761 6.52748
0.2 1.71553 3.28676 4.63408 5.66475 6.32256 6.64904
0.4 1.72037 3.30088 4.66481 5.72141 6.41119 6.76592
0.6 1.72467 3.31342 4.69226 5.77279 6.49357 6.87769
0.8 1.72852 3.32460 4.71683 5.81937 6.56988 6.98402
1 1.73198 3.33463 4.73891 5.86162 6.64037 7.08470

Table 3.5: Table of EL2 for n1 = 10 and (λ1, µ1, λ2, µ2) = (1, 0.1, 2, 0.3)
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λ2 λ1 = 0.5 λ1 = 1 λ1 = 1.5 λ1 = 2 λ1 = 2.5 λ1 = 3

0.5 4.94770 5.74973 6.94810 7.83830 8.40927 8.77512
1 7.86791 8.13140 8.51837 8.82503 9.04536 9.20428
1.5 8.84975 8.94551 9.09722 9.23094 9.33734 9.42111
2 9.24300 9.28876 9.36491 9.43657 9.49736 9.54799
2.5 9.44250 9.46869 9.51365 9.55769 9.59659 9.63022
3 9.56073 9.57756 9.60704 9.63670 9.66362 9.68750

Table 3.6: Table of EL2 for n1 = n2 = 10 and (µ1, µ2, p) = (0.1, 0.1, 0.5)

3.3 Overflow with waiting rooms: From

servers to servers

3.3.1 Jockeying to servers

3.3.1.1 Steady-state equations and separation approach

Now we consider the p-overflow model S/S/S with waiting rooms. The

waiting room at Qi has capacity qi ≥ 0 for i = 1, 2. In this model, an

arriving Q1-customer is blocked and directed to Q2 if all n1 servers are busy

in Q1. Blocked customers are served by one of the servers in Q2 if at least

one is available, are queued in Q1 if all servers in Q2 are busy and a waiting

position is available in Q1 and are lost otherwise. The jockeying discipline

ascertains that waiting Q1-customers will be served at Q1 if a Q1-server

becomes available or at Q2 if a Q2-server becomes available, all Q1-servers

are busy and no customers are waiting at Q2, whatever happens first. With

ki = qi + ni for i = 1, 2, the balance equations are

(λ1(1 − δik1
)(1 − χi−n1

(1 − χj−n2
)) + pλ1χi−n1

(1 − χj−n2
))

+ λ2(1 − δjk2
) + (i ∧ n1)µ1 + (j ∧ n2)µ2)pi,j

= (1 − χi−n1−1χn2−j−1) (3.3.1)

×
(

λ1(1 − δi0)pi−1,j + (1 − δjk2
) ((j + 1) ∧ n2) µ2pi,j+1

)

+ (1 − δj0)
(

pλ1δin1
χn2−j + λ2(1 − χi−n1−1χn2−j)

)

pi,j−1

+ (1 − δik1
)
(

(1 − χi−n1
χn2−1−j) ((i + 1) ∧ n1)µ1 + n2µ2δjn2

χi−n1

)

pi+1,j

for i = 0, . . . , k1 and j = 0, . . . , k2, where i ∧ j = min{i, j} and χi−n =

1[n,∞)(i) for i, j, n ∈ N.

For i = n1+1, . . . , k1 and j = 0, . . . , n2−1 these equations imply pi,j = 0,
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since it is impossible that customers are waiting at Q1 while there is at least

one server available at Q2.

It will turn out that a similar but more complex separation approach

than the one for the model without waiting rooms can be carried out for

this model. This separation approach is depicted in Figure 3.5. The single

lines correspond to the resulting boundary conditions and the unfilled circle

highlights a redundant boundary condition at (i, j) = (n1, n2).

•

◦

•

• •

pi,j = αiβj

pi,j = γiδjpi,j = αiφj

pi,j = 0

0 n1 k1

n2

k2

i →

j
↑

Figure 3.5: Separation scheme: Model S/S/S

For i = 0, . . . , n1 − 1 and j = 0, . . . , k2 the balance equations take the

form

(λ1 + λ2(1 − δjk2
) + iµ1 + (j ∧ n2)µ2)pi,j = λ1(1 − δi0)pi−1,j

+ (i + 1)µ1pi+1,j + (1 − δj0)λ2pi,j−1 + (1 − δjk2
)((j + 1) ∧ n2)µ2pi,j+1

(3.3.2)

for i = 0, . . . , n1 and j = 0, . . . , k2. By the results of Section 3.2, there are

solutions of the form pi,j = αiβj in the region i = 0, . . . , n1 and j = 0, . . . , k2,

where αi satisfies (3.2.3) for i = 0, . . . , n1 and is given by αi = si(c, λ1, µ1)

for i = 0, . . . , n1. For j = 0, . . . , n2, βj is given by or at least proportional

to βj = sj(−c, λ2, µ2). c is the separation constant for this region and

will be determined in the next section. Moreover, for i = 0, . . . , n1 and

j = n2, . . . , k2, the approach pi,j = αiβj gives αi = si(c, λ1, µ1) and βj

satisfies

(λ2(1 − δjk2
) + n2µ2 − c)βj = λ2βj−1 + n2µ2(1 − δjk2

)βj+1 (3.3.3)
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for j = n2, . . . , k2. We assume q1 ≥ 1 for the moment. In the region

i = n1 + 1, . . . , k1 and j = n2 + 1, . . . , k2, the steady-state probabilities pi,j

can be separated into the form pi,j = γiδj . This leads to the equations

(λ1(1 − δik1
) + n1µ1 + d)γi = λ1γi−1 + (1 − δik1

)n1µ1γi+1 and

(λ2(1 − δjk2
) + n2µ2 − d)δj = λ2δj−1 + (1 − δjk2

)n2µ2δj+1

(3.3.4)

for i = n1 + 1, . . . , k1 and j = n2 + 1, . . . , k2 with the separation constant

d = n2µ2 − λ2
δk2−1

δk2

= −n1µ1 + λ1
γk1−1

γk1

.

We will derive the solution of (3.3.3) and (3.3.4) and determine the separa-

tion constants in the next sections.

3.3.1.2 Solution of the separation approach

We have already shown that there are solutions of the form pi,j = αiβj for

i = 0, . . . , n1 and j = 0, . . . , n2. αi equals si(c, λ1, µ1) for i = 0, . . . , n1

and βj is proportional to si(−c, λ2, µ2) for j = 0, . . . , n2. c is a separation

constant. Moreover, βj has to satisfy (3.3.3) for j = n2, . . . , k2. In the region

i = n1 +1, . . . , k1 and j = n2 +1, . . . , k2, the separation approach pi,j = γiδj

led to the equations (3.3.4). We now show that the solutions of equations

(3.3.3) and (3.3.4) can be expressed in terms of the Chebyshev polynomials

of the second kind. First, we give a formal definition of these polynomials

(see for example Abramowitz and Stegun [1]).

Definition 3.3.1. The Chebyshev polynomials of the second kind are defined

by the recurrence relation

2xUl(x) = Ul+1(x) + Ul−1(x), l ≥ 0, (3.3.5)

with the boundary conditions U−1 ≡ 0 and U0 ≡ 1.

It is well known (see Abramowitz and Stegun [1]) that

Ul

(

1

2

(

z +
1

z

))

=

l
∑

k=0

z2k−l (3.3.6)

for z 6= 0. The following proposition states the solution of (3.3.3).

Proposition 3.3.2. A solution of (3.3.3) is given by βj = φj(c) for j =
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n2 − 1, . . . , k2, where the function φi(c) is defined by

φj(c) = Ψk2−j(c) − Ψk2−j−1(c), j = n2 − 1, . . . , k2, (3.3.7)

with

Ψl(c) = Ψl(c, λ2, µ2) =

(

n2µ2

λ2

)
l
2

Ul

(

λ2 + n2µ2 − c

2
√

λ2n2µ2

)

(3.3.8)

for l = −1, . . . , q2. Moreover, Ψ−1(c) = 0, Ψ0(c) = 1 and

(λ2 + n2µ2 − c)Ψl(c) = λ2Ψl+1(c) + n2µ2Ψl−1(c) (3.3.9)

holds for every l ≥ 0

Proof. Ψ−1(c) = 0, Ψ0(c) = 1 and (3.3.9) follow directly from (3.3.5). With

φj(c) defined by (3.3.7) for j = n2 − 1, . . . , k2, we obtain (3.3.3), i.e.,

(λ2(1 − δjk2
) + n2µ2 − c)φj(c) = λ2φj−1(c) + n2µ2(1 − δjk2

)φj+1(c)

for j = n2, . . . , k2 from (3.3.9).

It is immediately seen by comparing the equations (3.3.3) and (3.3.4)

that a solution of (3.3.3) yields a solution of (3.3.4). For convenience, it is

reasonable to set βj = φj(c) for j = n2, . . . , k2. The solution of the equations

(3.3.4) can be deduced directly from Proposition 3.3.2:

Corollary 3.3.3. A solution of (3.3.4) is given by γi = θi(d) for i =

n1, . . . , k1 and δj = φj(d) for j = n2, . . . , k2 and every d ∈ R, where the

function φj(d) is defined by (3.3.7) and θi(d) is similarly to φj(c) defined by

θi(d) = Ωk1−i(d) − Ωk1−i−1(d), i = 0, . . . , k1, (3.3.10)

with

Ωl(d) = Ωl(d, λ1, µ1) =

(

n1µ1

λ1

) l
2

Ul

(

λ1 + n1µ1 + d

2
√

λ1n1µ1

)

(3.3.11)

for l = −1, . . . , q1.

The solution of the steady-state equations can be deduced from Propo-

sition 3.3.2 and Corollary 3.3.2 by taking the specific values of the solutions

of the separation approach at the borders of the boundary region into ac-
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count. This is done in the next section. We conclude this section with a

note concerning φk2−1(c) and a helpful relation between θn1
and θn1+1.

Lemma 3.3.4. (i) The function φk2−1 defined by (3.3.7) satisfies

φk2−1(c) =
n2µ2 − c

λ2
(3.3.12)

for every c ∈ R.

(ii) The functions θn1
and θn1+1 defined by (3.3.10) satisfy

λ1θn1
(d) − n1µ1θn1+1(d) = dΩq1−1(d) (3.3.13)

for every d ∈ R.

Proof. U1(x) = 2x follows from (3.3.5) and that shows

φk2−1(c) = Ψ1(c) − Ψ0(c) =

(

n2µ2

λ2

)1
2

U1

(

λ2 + n2µ2 − c

2
√

λ2n2µ2

)

− 1

=
n2µ2 − c

λ2
.

Now we show (iii). It follows analogously to the proof of Proposition (3.3.2)

that θl(d), l ≥ 0, defined by (3.3.10) and (3.3.11) satisfies

(λ1(1− δik1
) + n1µ1 + d)θi(d) = λ1θi−1(d) + n1µ1(1− δik1

)θi+1(d) (3.3.14)

for i = n1, . . . , k1. Then, (3.3.13) follows from (3.3.11) and (3.3.14).

3.3.1.3 Boundary condition and separation constants

By Proposition 3.3.2, βj must by proportional to sj(−c, λ2, µ2) for j =

0, . . . , n2 and to φj(c) for j = n2 − 1, . . . , k2 so that we can choose

βj =

{

sj(−c, λ2, µ2)φn2
(c), j = 0, . . . , n2.

sn2
(−c, λ2, µ2)φj(c), j = n2 − 1, . . . , k2.

(3.3.15)

The separation constant c has to be chosen such that the definitions of βn2−1

and βn2
match, i.e.,

sn2−1(−c, λ2, µ2)φn2
(c) = sn2

(−c, λ2, µ2)φn2−1(c) (3.3.16)
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has to be fulfilled. The following lemma gives an equivalent formulation of

this condition.

Lemma 3.3.5. Let sj(µ2 − c, λ2, µ2) for j = n2 − 1, n2 be given by (3.2.11)

and let Ψj(c) for j = q2 − 1, q2 be given by (3.3.8). Then the equation

(3.3.16) is equivalent to

c
[

sn2
(µ2 − c, λ2, µ2)Ψq2

(c) − sn2−1(µ2 − c, λ2, µ2)Ψq2−1(c)
]

= 0. (3.3.17)

Proof. We write sn(c) for sn(c, λ2, µ2) in the following. From the definition

(3.3.7) of φn2−1(c) and (3.3.9) we get

φn2−1(c) = Ψq2+1(c) − Ψq2
(c)

=
λ2 + n2µ2 − c

λ2
Ψq2

(c) − n2µ2

λ2
Ψq2−1(c) − Ψq2

(c)

=
n2µ2 − c

λ2
Ψq2

(c) − n2µ2

λ2
Ψq2−1(c).

Inserting this and φn2
(c) = Ψq2

(c) − Ψq2−1(c) in (3.3.16) gives after simpli-

fying

Ψq2
(c)
(

λ2sn2−1(−c) − (n2µ2 − c)sn2
(−c)

)

= Ψq2−1(c)
(

λ2sn2−1(−c) − n2µ2sn2
(−c)

)

.
(3.3.18)

With (3.2.13) and (3.2.14) we get expressions for the terms in the brackets

in the equation above, namely

λ2sn2−1(−c) − (n2µ2 − c)sn2
(−c) = csn2

(µ2 − c) and

λ2sn2−1(−c) − n2µ2sn2
(−c) = csn2−1(µ2 − c).

Hence, (3.3.18) is equivalent to

csn2
(µ2 − c)Ψq2

(c) = csn2−1(µ2 − c)Ψq2−1(c)

and therefore equivalent to (3.3.17), too.

The function in the square brackets in equation (3.3.17) is a polyno-

mial of degree k2 in c with k2 positive and distinct zeros. These zeros are

given by an eigenvalue problem for a tridiagonal real symmetric matrix (see

Theorem 3.3.6 in the following). In order to prove this fact, it is neces-

sary to symmetrize the recurrence equations (3.2.6) that define si(c, µ2, λ2)

in a suitable way. We did this in a similar way in Section 3.2.3 for the

basic model without waiting rooms. The corresponding result was stated



3.3 Overflow with waiting rooms: From servers to servers 85

in Lemma 3.2.7. We will start by symmetrizing the equations (3.2.6) and

define the corresponding tridiagonal matrix.

We suppress the indexes of λ2, µ2, n2 and q2 for the moment. Let

λ, µ > 0, c ∈ R and n ≥ 1, q ≥ 0 and set

vi(c) =











ui(µ − c), i = 0, . . . , n,

vn+q−1(c)Un+q−j−1

(

λ + nµ − c

2
√

λnµ

)

, j = n − 1, . . . , n + q,

(3.3.19)

where ui(c), i ≥ 0, is given by (3.2.23). It follows immediately from the defi-

nition of ui(c), i ≥ 0, that vn+q−1(c) 6= 0 and furthermore vn+q(c) = 0 follows

from U−1 ≡ 0. By considering the equations for vn(c) and vn−1(c) and the

definition of Ψq and Ψq−1 it is seen that the existence of v0(c), . . . , vn+q(c)

fulfilling (3.3.19) is equivalent to

sn(µ − c, λ, µ)Ψq(c) − sn−1(µ − c, λ, µ)Ψq−1(c) = 0.

We get from (3.2.24) and (3.3.5) the symmetrized set of equations

(1−δi0)i
1
2 vi−1(c)−

(

i +
λ − c

µ

)(

λ

µ

)− 1
2

vi(c)+(i+1)
1
2 vi+1(c) = 0 (3.3.20)

for i = 0, . . . , n − 1 and

n
1
2 vi−1(c) −

(

n +
λ − c

µ

)(

λ

µ

)− 1
2

vi(c) + n
1
2 vi+1(c) = 0 (3.3.21)

for i = n, . . . , n+q−1. Define the matrix Rn,q = Rn,q(λ, µ) = (ri,j)i,j=1,...,n+q

for λ, µ > 0 by ri,j = mi,j for i, j = 1, . . . , n (see (3.2.25)) and

ri,i = −(n − 1)

(

λ

µ

)− 1
2

for i = n, . . . , n + q,

ri,i+1 = ri+1,i = n
1
2 for i = n, . . . , n + q − 1 and (3.3.22)

ri,j = 0 for |i − j| > 1.

Rn,q is a real symmetric tridiagonal matrix and has therefore n + q real and

pairwise distinct eigenvalues. We get the following result concerning the

solutions of (3.3.17) by generalizing Theorem 3.2.9, where the latter follows

itself from Theorem 3.3.6 with q = 0 and c replaced by µ − c.

Theorem 3.3.6. For n ≥ 1, q ≥ 0, c ∈ R, λ > 0 and µ > 0. Then the
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equation

sn(µ − c, λ, µ)Ψq(c) − sn−1(µ − c, λ, µ)Ψq−1(c) = 0

has n + q positive and distinct solutions c1, . . . , cn+q in the variable c given

by

ci = λ + µ − (λµ)
1
2 ηi, i = 1, . . . , n + q, (3.3.23)

where η1, . . . , ηn+q are the pairwise distinct eigenvalues of the matrix

Rn,q(λ, µ).

Proof. The first part of the proof is essentially the same as the proof of

Theorem 3.2.9. Let

pn,q(c) = pn,q(c, λ, µ) = sn(µ − c, λ, µ)Ψq(c) − sn−1(µ − c, λ, µ)Ψq−1(c).

It remains to show that the zeros of pn,q(c, λ, µ) = 0 are positive for q ≥ 0.

We show pn,q(c, λ, µ) 6= 0 for c ≤ 0. Let c ≤ 0. For q = 0, Ψ−1(c) = 0

and Ψ0(c) = 1 yield pn,0(c) = sn(µ − c, λ, µ). From (3.2.10) it follows

sn(µ − c, λ, µ) > 0 and sn(−c, λ, µ) > 0. The latter yields together with

(3.2.14) that
sn(µ − c, λ, µ)

sn−1(µ − c, λ, µ)
> 1 (3.3.24)

holds. Now let q ≥ 1. With

z0 =
λ − c + nµ

2
√

λnµ
+

(

(

λ − c + nµ

2
√

λnµ

)2

− 1

)
1
2

> 0, (3.3.25)

we get from (3.3.8) and (3.3.6) that

Ψl(c) =
(nµ

λ

) l
2
Ul

(

1

2

(

z0 +
1

z0

))

=
(nµ

λ

) l
2

l
∑

k=1

z2k−l
0 > 0

for l = q − 1, q. This yields

Ψq(c)

Ψq−1(c)
=
(nµ

λ

)
1
2

Uq

(

1
2

(

z0 + 1
z0

))

Uq−1

(

1
2

(

z0 + 1
z0

)) = z0

(nµ

λ

)
1
2

∑q
k=0 z2k−q

0
∑q

k=1 z2k−q
0

> z0

(nµ

λ

) 1
2

> 1. (3.3.26)

by (3.3.25). Now (3.3.24) and (3.3.26) give pn,q(c, λ, µ) 6= 0 for c ≤ 0 and
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n, q ≥ 1.

3.3.1.4 Steady-state probabilities

By Theorem 3.3.6, the separation equation (3.3.17) has k2 + 1 distinct so-

lutions c0 = 0, c1, . . . , ck2
, where c1, . . . , ck2

are positive. We can represent

the stationary probabilities pi,j for i = 0, . . . , n1 and j = 0, . . . , k2 as linear

combinations of all feasible solutions of the separation approach pi,j = αiβj

where αi is given by si(cm, λ1, µ1) for m = 0, . . . , k2 and βj is given by

(3.3.15). We get

pi,j =























k2
∑

m=0

b′msi(cm, λ1, µ1)sj(−cm, λ2, µ2)φn2
(cm), j = 0, . . . , n2.

k2
∑

m=0

b′msi(cm, λ1, µ1)sn2
(−cm, λ2, µ2)φj(cm), j = n2, . . . , k2.

(3.3.27)

The constants b′m, m = 0, . . . , k2, have to be chosen such that the bound-

ary conditions in (3.3.1) corresponding to i = n1, j = 0, . . . , k2 and the

normalization condition are satisfied.

For i = n1, . . . , k1 and j = n2, . . . , k2, we examined the approach pi,j =

γiδj and showed in Corollary 3.3.3 that γi must be proportional to θi(d)

defined by (3.3.10) for i = n1, . . . , k1 and that δj must be proportional to

φj(d) defined by (3.3.7) for j = n2, . . . , k2. Furthermore, pi,j = γiδj has to be

chosen such that it matches (3.3.27) on the boundary i = n1, j = n2, . . . , k2.

For this reason we must ensure θn1
(d) = 0. The equation θn1

(d) = 0 on

its part has q1 negative and distinct zeros as the following theorem shows.

Once again, we drop the indexes of λ1, µ1, n1 and q1 for the moment.

Theorem 3.3.7. For n ≥ 1, q ≥ 0, d ∈ R, λ > 0 and µ > 0 let θn(d, λ, µ)

be defined by (3.3.29). Then the equation

θn(d, λ, µ) = 0

has q negative and distinct solutions in the variable d given by the eigenvalues

of the matrix Tn,q(λ, µ) = (ti,j)i,j=1,...,q, where

ti,i = −
(

(1 − δi1)λ + nµ
)

for i = 1, . . . , q,

ti,i+1 = ri+1,i =
√

λnµ for i = 1, . . . , q − 1 and (3.3.28)

ti,j = 0 for |i − j| > 1.
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Proof. For λ, µ > 0 and n, q ≥ 1 recall the definitions (3.3.10) and (3.3.11):

θi(d) = θi(d, λ, µ) = Ωn+q−i(d) − Ωn+q−i−1(d), i = 0, . . . , n + q, (3.3.29)

and

Ωl(d) = Ωl(d, λ, µ) =
(nµ

λ

) l
2
U

(

λ + nµ + d

2
√

λnµ

)

(3.3.30)

for l = −1, . . . , q. Define

wi(d) = wi(d, λ, µ) = Ui

(

λ + nµ + d

2
√

λnµ

)

−
(

λ

nµ

) 1
2

Ui−1

(

λ + nµ + d

2
√

λnµ

)

(3.3.31)

for i ≥ 0. Obviously, θn(d) = 0 is equivalent to wq(d) = 0 by (3.3.29).

Additionally, (3.3.5) yields

(1 − δi0)
√

λnµwi−1(d) −
(

(1 − δi0)λ + nµ + d
)

wi(d) +
√

λnµwi+1(d)

for i ≥ 0. Tn,q = Tn,q(λ, µ) is defined such that the solutions of θn(d) = 0

are exactly the eigenvalues of Tn,q. Tn,q itself is a real symmetric tridiagonal

matrix of rank q and has therefore q real and pairwise distinct eigenvalues by

Theorem 3.2.6. In remains to show that the eigenvalues of Tn,q are negative.

Using the equivalence of θn(d) = 0 and wn(d) = 0, (3.3.31) and (3.3.26) it is

seen analogously to the proof of the positivity argument in Theorem 3.3.6

that θn(d) 6= 0 for d ≥ 0.

We denote the solutions of θn1
(d) = 0 by d1, . . . , dq1

. By Theorem 3.3.7

these solutions are negative and distinct. The roots of (3.3.17) are non-

negative and distinct so that c0, . . . , ck2
, d1, . . . , dq1

are distinct. Thus, the

probabilities pi,j for i = n1, . . . , k1 and j = n2, . . . , k2 are given by

pi,j =

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2

(−cm, λ2, µ2)θi(cm)φj(cm)

+

q1
∑

l=1

elθi(dl)φj(dl)

(3.3.32)

for arbitrary q1 ≥ 0. In order to match (3.3.27) and (3.3.32) it is convenient

to choose b′m = bmθn1
(cm), m = 0, . . . , k2, so that (3.3.27) can be restated
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as

pi,j =























k2
∑

m=0

bmsi(cm, λ1, µ1)sj(−cm, λ2, µ2)θn1
(cm)φn2

(cm), j = 0, . . . , n2,

k2
∑

m=0

bmsi(cm, λ1, µ1)sn2
(−cm, λ2, µ2)θn1

(cm)φj(cm), j = n2, . . . , k2,

(3.3.33)

for i = 0, . . . , n1.

The constants b0, . . . , bk2
and e1, . . . , eq1

in (3.3.32) and (3.3.33) have to

be chosen such that the boundary conditions in (3.2.1) for 1) i = n1 and

j = 0, . . . , k2 and 2) i = n1 + 1, . . . , k1 and j = n2 and the normalization

condition are satisfied. The boundary conditions are

(pλ1 + λ2 + n1µ1 + jµ2)pn1,j = λ1pn1−1,j

+ (1 − δj0)(pλ1 + λ2)pn1,j−1

+ (j + 1)µ2pn1,j+1,

i = n1, j = 0, . . . , n2 − 1, (3.3.34)

(λ1 + λ2 + n1µ1 + n2µ2)pn1,n2
= λ1pn1−1,n2

+ (pλ1 + λ2)pn1,n2−1

+ n2µ2pn1,n2+1

+ (n1µ1 + n2µ2)pn1+1,n2
,

i = n1, j = n2, (3.3.35)

(λ1 + λ2(1 − δjk2
) + n1µ1 + n2µ2)pn1,j = λ1pn1−1,j

+ (1 − δjk2
)n2µ2pn1,j+1

+ λ2pn1,j−1 + n1µ1pn1+1,j,

i = n1, j = n2 + 1, . . . , k2,

(3.3.36)

(λ1(1 − δik1
) + λ2 + n1µ1 + n2µ2)pi,n2

= λ1pi−1,n2
+ n2µ2pi,n2+1

+ (1 − δik1
)(n1µ1 + n2µ2)pi+1,n2

,

i = n1 + 1, . . . , k1, j = n2.

(3.3.37)

The equations (3.3.34) are identical to (3.2.32) so that (3.3.33), (3.3.34) and
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(3.2.34) yield

k2
∑

m=0

bm

(

cmsn1
(cm + µ1)sj(−cm)

+ pλ1sn1
(cm)sj(−cm − µ2)

)

θn1
(cm)φn2

(cm) = 0 (3.3.38)

for i = n1 and j = 0, . . . , n2 − 1. By substituting (3.3.32) and (3.3.33) into

(3.3.36) and (3.3.37) and using (3.3.13) and the recurrence relations (3.2.13)

and (3.2.14) we get

k2
∑

m=0

bmcmsn2
(−cm)

(

sn1
(cm + µ1)θn1

(cm) + sn1
(cm)Ωq1−1(cm)

)

φj(cm)

= n1

q1
∑

l=1

elθn1+1(dl)φj(dl) (3.3.39)

for i = n1, j = n2 + 1, . . . , k2 and

k2
∑

m=0

bmsn1
(cm)sn2

(−cm)
(

λ2θi(cm)φn2−1(cm)−n2(1−δik1
)θi+1(cm)φn2

(cm)
)

=

q1
∑

l=1

el

(

n2(1 − δik1
)θi+1(dl)φn2

(dl) − λ2θi(dl)φn2−1(dl)
)

(3.3.40)

for i = n1+1, . . . , k1 and j = n2. By summing (3.3.38), (3.3.39) and (3.3.40)

and once again using the recurrence relations (3.2.13) and (3.2.14) it is seen

that equation (3.3.35) is redundant.

Together with the normalization condition, we have k2 + q1 + 1 linear

equations for the unknowns b0, . . . , bk2
and e1, . . . , eq1

. Inserting (3.3.32)

and (3.3.33) into the normalization condition
∑k1

i=0

∑k2

j=0 pi,j = 1 and using

(3.2.16) results in an equation for b0:

b0sn1
(µ)θn1

(0)
(

sn2
(µ2)Ψq2

(0) − sn2−1(µ2)Ψq2−1(0)
)

+

k2
∑

m=0

bmsn1
(cm)sn2

(−cm)Ωq1−1(cm)Ψq2
(cm) (3.3.41)

+

q1
∑

l=1

elΩq1−1(dl)Ψq2
(dl) = 1.

Remark 3.3.8. It is seen that the probabilities pi,j depend on the parameter

p ∈ [0, 1] only through the coefficients b0, . . . , bk2
and e1, . . . , eq1

. This is due
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to the fact that the stationary probabilities have been calculated from the

non-overflow balance equations, i.e., (3.3.1) for i = n1, j = 0, . . . , k2 and

i = n1+1, . . . , k1, j = n2, which are independent of p, whereas the equations

for the coefficients arise from the p-dependent balance equations in (3.3.1).

We summarize the result in the following theorem.

Theorem 3.3.9. The unique nonnegative and normalized solution of the

steady-state equations (3.3.1) is given by

pi,j =























k2
∑

m=0

bmsi(cm, λ1, µ1)sj(−cm, λ2, µ2)θn1
(cm)φn2

(cm), j = 0, . . . , n2,

k2
∑

m=0

bmsi(cm, λ1, µ1)sn2
(−cm, λ2, µ2)θn1

(cm)φj(cm), j = n2, . . . , k2,

for i = 0, . . . , n1 and

pi,j =

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2

(−cm, λ2, µ2)θi(cm)φj(cm)+

q1
∑

l=1

elθi(dl)φj(dl)

for i = n1, . . . , k1, j = n2, . . . , k2 and every q1 ≥ 0 if the coefficients

b0, . . . , bk2
and e1, . . . , eq1

are determined by (3.3.38)-(3.3.40) and (3.3.41).

c1, . . . , ck2
are the by Theorem 3.3.6 positive and pairwise distinct solutions

of (3.3.17), c0 = 0 and d1, . . . , dq1
are the by Theorem 3.3.7 negative and

pairwise distinct solutions of θn1
(dl) = 0, l = 1, . . . , q1.

The problem of determining the (k1 + 1)(k2 + 1) unknowns pi,j, i =

0, . . . , k1, j = 0, . . . , k2, has now been reduced to the problem of determining

k2 + q1 eigenvalues from (3.3.17) and the equation θn1
(d) = 0 and k2 +

q1 + 1 unknowns from the linear equations (3.3.38)-(3.3.40) and (3.3.41).

Alternative separation approaches for the case µ1 = µ2 and p = 1 can be

found in Morrison [47] and Morrison and Wright [49]. The approach in [47]

is preferable, when q2 is large compared to q1, n1 and n2 or infinite. The

approach in [49] is preferable, when q1 is large compared to q2 and n2 or

infinite. Both approaches can be generalized to the case of arbitrary service

rates and weighted overflow traffic, too.

Remark 3.3.10. In the case q2 = 0, (3.3.17) reduces to (3.2.18) because

of Ψ−1 ≡ 0 and Ψ0 ≡ 1. If in addition q1 = 0, then (3.3.27) and (3.3.32)

reduce to (3.2.31). Moreover, equation (3.3.38) reduces to (3.2.34) because

of θn1
≡ φn2

≡ 1, while equations (3.3.39) and (3.3.40) vanish. Finally,

(3.3.41) reduces to (3.2.36) because of Ψ0 ≡ Ω0 ≡ 1 and Ψ−1 ≡ Ω−1 ≡ 0.
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3.3.1.5 Stationary quantities

The results of the separation approach can be used to derive steady-state

quantities of interest. The characteristics of this queueing network can be

calculated in a similar manner as for the model without waiting rooms. Most

of these characteristics can be derived conformably to the results in Morrison

[46]; therefore, we omit the details. The average blocking probabilities B1

and B2 for arriving customers, the loss probabilities PLoss,1 and PLoss,2 for

arriving customers and the overflow probability O12 are given by

B1 =

n2
∑

j=0

pn1,j, B2 =

k1
∑

i=0

pi,k2
,

Ploss,1 =

k2
∑

j=n2

pk1,j + (1 − p)O12, Ploss,2 = B2,

O12 =

n2−1
∑

j=0

pn1,j.

Additionally, let Pqueue,1 be the probability that an arriving Qi-customer is

queued in the waiting room in Qi, i = 1, 2, then

Pqueue,1 =

k1−1
∑

i=n1

k2
∑

j=0

pi,j and Pqueue,2 =

k1−1
∑

i=0

k2−1
∑

j=n2

pi,j.

The mean departure rates R11, R12 and R22 from the waiting room in Q1

to the servers in Q1 and Q2, respectively, and from the servers in Q2 to Q2

are given by

R11 = n1µ1

k1
∑

i=n1+1

k2
∑

j=n2

pi,j, R12 = n2µ2

k1
∑

i=n1+1

pi,n2
,

R22 = n2µ2

k1
∑

i=0

k2
∑

j=n2+1

pn1,j.

The mean number ELi of customers in Qi, i = 1, 2, is given by

EL1 =

n1
∑

i=0

k2
∑

j=0

ipi,j + n1

k1
∑

i=n1+1

k2
∑

j=n2

pi,j +

k1
∑

i=n1+1

k2
∑

j=n2

(i − n1)pi,j,

EL2 =

n1
∑

i=0

n2−1
∑

j=0

jpi,j + n2

k1
∑

i=0

k2
∑

j=n2

pi,j +

k1
∑

i=0

k2
∑

j=n2+1

(j − n2)pi,j.
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By (3.2.15), (3.3.7) and (3.3.10) we get

B1 =

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2

(µ2 − cm, λ2, µ2)θn1
(cm)φn2

(cm),

B2 =

k2
∑

m=0

bmsn2
(−cm, λ2, µ2)

(

sn1
(cm + µ1, λ1, µ1)θn1

(cm)

+ sn1
(cm, λ1, µ1)Ωq1−1(cm)

)

+

q1
∑

l=1

elΩq1−1(dl),

Ploss,1 =

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2

(cm, λ2, µ2)Ψq2
(cm)

+

q1
∑

l=1

elΨq2
(dl) + (1 − p)O12,

O12 =

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2−1(µ2 − cm, λ2, µ2)θn1

(cm)φn2
(cm),

R11 = n1µ1

(

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2

(−cm, λ2, µ2)Ωq1−1(cm)Ψq2
(cm)

+

q1
∑

l=1

elΩq1−1(dl)Ψq2
(dl)

)

,

R12 = n2µ2

(

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2

(−cm, λ2, µ2)Ωq1−1(cm)φn2
(cm)

+

q1
∑

l=1

elΩq1−1(dl)φn2
(dl)

)

and

R22 = n2µ2

k2
∑

j=n2+1

(

n2µ2

λ2

)k2−j

PLoss,2.

where we have used φk2
≡ θk1

≡ 1. For the last equality, we exploited the

sum of (3.3.1) over i = 0, . . . , n1. It is also possible to give an expression for

EL1 and EL2. We omit the details and refer to [46].

3.3.1.6 Alternative approach without waiting room in second

queue

In the special case that the second queue has no waiting room, i.e., in the

case q2 = 0, another approach is feasible to derive the stationary proba-
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bilities as functions of only 2n2 + 1 unknowns (see [46] for the case p = 1

and µ1 = µ2). The approach from the previous section gives the probabil-

ities as functions of 2(n2 + q1) + 1 unknowns in this case. The approach

is sketched in Figure 3.6. Compared with Figure 3.5, it is seen that the

balance equations on the boundary line at i = n1 + 1, . . . , k1 and j = n2,

are no longer required to determine the separation constants in the region

above the boundary line. Actually, these equations lead to a recursive for-

mula for the stationary probabilities on the boundary line. The redundant

boundary condition corresponds to the state (n1, n2), which is represented

by an unfilled circle in Figure 3.6.

•

◦

pi,j = αiβj pi,j = 0

0 n1 k1

n2

i →

j
↑

pi,n2
= f(i, pn1,n2

)

Figure 3.6: Separation scheme: Model S/S/S with q2 = 0

Let q2 = 0 in the following. The balance equations are given by (3.3.1)

with k2 replaced by n2, i.e.,

(λ1(1 − δik1
)(1 − χi−n1

(1 − δjn2
)) + pλ1χi−n1

(1 − δjn2
))

+ λ2(1 − δjn2
) + (i ∧ n1)µ1 + (j ∧ n2)µ2)pi,j

= (1 − χi−n1−1(1 − δjn2
)) (3.3.42)

×
(

λ1(1 − δi0)pi−1,j + (1 − δjn2
) ((j + 1) ∧ n2)µ2pi,j+1

)

+ (1 − δj0)
(

pλ1δin1
χn2−j + λ2(1 − χi−n1−1χn2−j)

)

pi,j−1

+ (1 − δik1
)
(

(1 − χi−n1
χn2−1−j) ((i + 1) ∧ n1) µ1 + n2µ2δjn2

χi−n1

)

pi+1,j

for i = 0, . . . , k1 and j = 0, . . . , n2. Observe that δjn2
= χj−n2

and 1−δjn2
=

χn2−j−1 and note that pi,j = 0 for i > n1 and j < n2 because it is impossible

for customers to wait at Q1 while there is at least one server available at

Q2.

For i = 0, . . . , n1−1 and j = 0, . . . , n2 the balance equations are identical
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to (3.3.2) with k2 replaced by n2 so that we establish from (3.2.31) that

pi,j =

n2
∑

m=0

amsi(cm, λ1, µ1)sj(−cm, λ2, µ2) (3.3.43)

for i = 0, . . . , n1 and j = 0, . . . , n2, where c0, . . . , cn2
are given by (3.2.29).

It remains to determine pi,n2
for i = n1, . . . , k1. Let q1 ≥ 1 in the following.

The balance equations

(λ1(1 − δik1
) + n1µ1 + n2µ2)pi,n2

= λ1pi−1,n2

+ (1 − δik1
)(n1µ1 + n2µ2)pi+1,n2

(3.3.44)

for i = n1 + 1, . . . , k1 and j = n2 yield

λ1pi−1,n2
= (n1µ1 + n2µ2)pi,n2

for i = n1 + 1, . . . , k1. It follows

pi,n2
=

(

λ1

n1µ1 + n2µ2

)i−n1

pn1,n2
(3.3.45)

for i = n1, . . . , k1, where pn1,n2
is given by (3.3.43).

It remains to satisfy the boundary conditions at i = n1 and j = 0, . . . , n2

and the normalization condition. For i = n1 and j = 0, . . . , n2 − 1 these

boundary conditions are given by (3.2.32). We deduce from (3.3.43), (3.2.31)

and (3.2.34) that

n2
∑

m=0

am (cmsn1
(cm + µ1)sj(−cm) + pλ1sn1

(cm)sj(−cm − µ2)) = 0 (3.3.46)

must hold for i = n1 and j = 0, . . . , n2 − 1. The boundary condition

(λ1 + n1µ1 + n2µ2)pn1,n2
= λ1pn1−1,n2

+ (n1µ1 + n2µ2)pn1+1,n2
+ (pλ1 + λ2)pn1,n2−1 (3.3.47)

for i = n1 and j = n2 reduces with the help of (3.3.45) to

(n1µ1 + n2µ2)pn1,n2
= λ1pn1−1,n2

+ (pλ1 + λ2)pn1,n2−1,

which was shown to be equivalent to (3.2.35). The latter equation was seen

to be redundant. Substituting (3.3.43) and (3.3.45) into the normalization
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condition yields after simplification

a0sn1
(µ1, λ1, µ1)sn2

(µ2, λ2, µ2)

+

(

n2
∑

m=0

amsn1
(cm, λ1, µ1)sn2

(−cm, λ2, µ2)

)

q1
∑

l=1

(

λ1

n1µ1 + n2µ2

)l

= 1.

(3.3.48)

In summary, we can record the following result.

Theorem 3.3.11. The unique nonnegative and normalized solution of the

steady-state equations (3.3.42) is given by

pi,j =

n2
∑

m=0

amsi(cm, λ1, µ1)sj(−cm, λ2, µ2)

for i = 0, . . . , n1 and j = 0, . . . , n2 and

pi,n2
=

(

λ1

n1µ1 + n2µ2

)i−n1

pn1,n2

for i = n1, . . . , k1 if the coefficients a0, . . . , an2
are determined by (3.3.46)

and (3.3.48), where c0 = 0 and c1, . . . , cn2
are the by Corollary 3.2.10 posi-

tive and pairwise distinct solutions of the equation sn2
(µ2 − cm, λ2, µ2) = 0,

m = 1, . . . , n2.

The number of unknowns has now been reduced from (n1+1)(n2+1)+q1

to 2n2 + 1.

Remark 3.3.12. For q1 = 0 the results reduce to those from Section 3.2.

Remark 3.3.13. By (3.3.45) and (3.3.48) the results even hold in the case

q1 = ∞ as long as the stability condition

λ1 < n1µ1 + n2µ2 (3.3.49)

is fulfilled.

The stability condition (3.3.49) states that the servers of Q1 and Q2

must together be able to handle the arrival stream of Q1. Moreover, the

stability condition is independent of p. This can be explained analytically

by the fact that the stationary probabilities have been calculated from the

p-independent balance equations, which led to the stationary probabilities

(3.3.43) and (3.3.45). These probabilities and therefore equation (3.3.48)
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are independent of p. Heuristically, this is due to the fact that on the one

hand in the case q1 = ∞, the capacity of Q2 is still limited by n2 so that

in the long-run average, the queue size of Q2 is negligible and the arrival

stream of Q2 has no influence on the stability of the system. On the other

hand, queued Q1-customers overflow to the servers in Q2 as soon as one is

available. But once again in the long-run average, the queue size of Q2 is

negligible so that queued Q1-customers must be handled by the servers of

both Q1 and Q2 to guarantee stability. Furthermore, near saturation, there

are always customers waiting in Q1, who move to Q2 if a server becomes

available so that near saturation, the overflow stream is negligible, too.

3.3.2 No jockeying

We investigate the structure of the steady-state equations for the model

S/S/N in this section. This model differs from the model S/S/S of Section

3.3.1 with jockeying only in the fact that waiting Q1-customers are served

exclusively by the Q1-servers, i.e., no jockeying is allowed (see Figure 3.1).

Recall that an arriving Q1-customer is blocked and directed to Q2 if all n1

servers are busy in Q1. Blocked customers are served by one of the servers

in Q2 if at least one is available, are queued in Q1 if all servers in Q2 are

busy and a waiting position is available in Q1 and are lost otherwise. We

suppose that the number of waiting positions in Q1 and Q2 is positive, i.e.

q1 ≥ 1 and q2 ≥ 1. This model is also treated in Morrison [46] for the case

p = 1 and µ1 = µ2 and numerically in Kaufman et al. [34] for arbitrary

service rates and p = 1. In our case of arbitrary µ1, µ2 > 0 and p-weighted

overflow traffic the balance equations are given by

(λ1(1 − δik1
χj−n2

)(1 − χi−n1
(1 − χj−n2

)) + pλ1χi−n1
(1 − χj−n2

))

+ λ2(1 − δjk2
) + (i ∧ n1)µ1 + (j ∧ n2)µ2)pi,j

= (1 − χi−n1−1χn2−j−1)(λ1(1 − δi0)pi−1,j) (3.3.50)

+ (1 − δik1
)((i + 1) ∧ n1)µ1pi+1,j

+ (1 − δj0)
(

pλ1χi−n1
χn2−j + λ2

)

pi,j−1 + (1 − δjk2
)((j + 1) ∧ n2)µ2pi,j+1

for i = 0, . . . , k1 and j = 0, . . . , k2. It is seen that the term pλ1χi−n1
(1 −

χj−n2
) on the left side of (3.3.50) and pλ1χi−n1

χn2−j on the right side of

(3.3.50) do not vanish in the regions i = n1, . . . , k1, j = 0, . . . , n2 − 1 and

i = n1, . . . , k1, j = 0, . . . , n2, respectively. Consequently, in contrast to the

previous models, the probabilities in these regions depend on the parameter p

not only through the coefficients determined by the boundary conditions (see
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also (3.3.53) and (3.3.54)). The separation approach for model S/S/S (see

Figure 3.5) can be extended for this model to the region i = n1 + 1, . . . , k1,

j = 0, . . . , n2 − 1. The extended approach is illustrated in Figure 3.7 and

leads to a reduction of the number of probabilities to be calculated in this

region.

•

◦

•

• •

pi,j = αiβj

pi,j = γiδjpi,j = αiφj

pi,j =
∑k1

r=i pr,0Πrj

0 n1 k1

n2

k2

i →

j
↑

pi,0

Figure 3.7: Separation scheme: Model S/S/N

Analogously to the model with jockeying of Section 3.3.1 the balance

equations lead to

pi,j =























k2
∑

m=0

bmsi(cm, λ1, µ1)sj(−cm, λ2, µ2)θn1
(cm)φn2

(cm), j = 0, . . . , n2,

k2
∑

m=0

bmsi(cm, λ1, µ1)sn2
(−cm, λ2, µ2)θn1

(cm)φj(cm), j = n2, . . . , k2,

(3.3.51)

for i = 0, . . . , n1 and

pi,j =

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2

(−cm, λ2, µ2)θi(cm)φj(cm)+

q1
∑

l=1

elθi(dl)φj(dl)

(3.3.52)

for i = n1, . . . , k1 and j = n2, . . . , k2. Again, c0, . . . , ck2
and d1, . . . , dq1

are

the roots of (3.3.17) and θn1
(dl) = 0, l = 1, . . . , q1, respectively.
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For i = n1 + 1, . . . , k1 and j = 0, . . . , n2 (3.3.50) yields

pi,j =

k1
∑

r=i

pr,0Πr−i,j, (3.3.53)

where Πr,j, r = 0, . . . , k1, j = 0, . . . , n2, are the solutions of the p-dependent

equations

(pλ1 + λ2 + n1µ1 + jµ2)Πr,j

= (pλ1 + λ2)(1 − δj0)Πr,j−1 + n1µ1(1 − δr0)Πr−1,j + (j + 1)Πr,j+1

(3.3.54)

with boundary conditions Πr0 = δr0 for r = 0, . . . , k1, where δr0 is the

Kronecker function. It is shown in Morrison [46] that further investiga-

tions of these quantities lead successively to formulas for pn1+1,0, . . . , pk1,0

depending on b0, . . . , bk2
and e1, . . . , eq1

, while these coefficients can be cal-

culated from the boundary conditions in (3.3.50). In particular b0, . . . , bk2
,

e1, . . . , eq1
and the probabilities pn1+1,0, . . . , pk1,0 are uniquely determined

up to a multiplicative constant by the equations

k2
∑

m=0

bmsn1
(cm)sn2

(−cm)θi(cm)φn2
(cm)+

q1
∑

l=1

elθi(dl)φn2
(dl) =

k1
∑

r=i

pr,0Πr−i,n2

(3.3.55)

for i = n1 + 1, . . . , k1,

k2
∑

m=0

bm

(

cmsn1
(µ1+cm)sj(−cm)+pλ1sn1

(cm)sj(−µ2−cm)
)

θn1
(cm)φn2

(cm)

= n1

k1
∑

r=n1+1

pr,0Πr−n1−1,j (3.3.56)

for j = 0, . . . , n2 − 1,

k2
∑

m=0

bmcmsn2
(−cm)

(

sn1
(µ1 + cm)θn1

(cm) + sn1
(cm)Ωq1−1(cm)

)

φj(cm)

= n1

q1
∑

l=1

elθn1+1(dl)φj(dl) (3.3.57)

for j = n2 + 1, . . . , k2 and
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λ2

k2
∑

m=0

bmsn1
(cm)sn2

(−cm)θi(cm)φn2−1(cm)

+ λ2

q1
∑

l=1

elθi(dl)φn2−1(dl) = (pλ1 + λ2)

k1
∑

r=i

pr,0Πr−i,n2−1 (3.3.58)

for i = n1+1, . . . , k1. It can be shown that the boundary equation for i = n1

and j = n2 is redundant. The normalization condition yields

b0sn1
(µ)θn1

(0)
(

sn2
(µ2)Ψq2

(0) − sn2−1(µ2)Ψq2−1(0)
)

+
λ1

n1

k2
∑

m=0

bmsn1
(cm)sn2

(−cm)(Ωq1
(cm) − 1)Ψq2

(cm) (3.3.59)

+
λ1

n1

q1
∑

l=1

el(Ωq1
(dl) − 1)Ψq2

(dl) = 1.

The result is outlined in the following theorem.

Theorem 3.3.14. The unique nonnegative and normalized solution of the

steady-state equations (3.3.50) is given by

pi,j =























k2
∑

m=0

bmsi(cm, λ1, µ1)sj(−cm, λ2, µ2)θn1
(cm)φn2

(cm), j = 0, . . . , n2,

k2
∑

m=0

bmsi(cm, λ1, µ1)sn2
(−cm, λ2, µ2)θn1

(cm)φj(cm), j = n2, . . . , k2,

for i = 0, . . . , n1,

pi,j =

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2

(−cm, λ2, µ2)θi(cm)φj(cm)+

q1
∑

l=1

elθi(dl)φj(dl)

for i = n1, . . . , k1, j = n2, . . . , k2 and

pi,j =

k1
∑

r=i

pr,0Πr−i,j

for i = n1 + 1, . . . , k1 and j = 0, . . . , n2 if the coefficients b0, . . . , bk2
and

e1, . . . , eq1
and the probabilities pn1+1,0, . . . , pk1,0 are determined by the k2 +

2q1 + 1 equations (3.3.55)-(3.3.58) and (3.3.59). Πr,j, r = 0, . . . , k1, j =

0, . . . , n2, are the solutions of (3.3.54). c1, . . . , ck2
are the by Theorem 3.3.6

positive and pairwise distinct solutions of (3.3.17), c0 = 0 and d1, . . . , dq1
are
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the by Theorem 3.3.7 negative and pairwise distinct solutions of θn1
(dl) = 0,

l = 1, . . . , q1.

The problem of determining the (k1 + 1)(k2 + 1) unknowns pi,j, i =

0, . . . , k1, j = 0, . . . , k2, has now been reduced to the problem of determining

k2+q1 eigenvalues from (3.3.17) and the equation θn1
(d) = 0 and k2+2q1+1

unknowns from the linear equations (3.3.55) to (3.3.59). An alternative

separation approach for the case µ1 = µ2 and p = 1 that is preferable when q2

is infinite or large compared to q1, n1 and n2, can be found in Morrison [47].

This approach allows for a generalization to the case of arbitrary service

rates and weighted overflow traffic.

3.3.3 Jockeying to the waiting room

Now we consider model S/S/W. In this model, waiting customers from Q1

move to Q2 as soon as there is a position in the waiting room or a server

available. An arriving Q1-customer is blocked and directed to Q2 if all n1

servers are busy in Q1. Blocked customers are served by one of the servers in

Q2 if at least one is available. They are queued in Q1 if all servers in Q2 are

busy and a waiting position is available in Q1 and are lost otherwise. Thus,

pi,j = 0 for i > n1 and j = 0, . . . , k2, because it is impossible for customers

to wait at Q1 while there is at least one waiting position or server available

at Q2. The balance equations for this model are

(λ1(1 − δik1
)(1 − χi−n1

(1 − χj−n2
)) + pλ1χi−n1

(1 − χj−n2
))

+ λ2(1 − δjk2
) + (i ∧ n1)µ1 + (j ∧ n2)µ2)pi,j

=
(

1 − χi−n1−1(1 − δjk2
)
)

×
(

λ1(1 − δi0)pi−1,j + (1 − δjk2
)((j + 1) ∧ n2)µ2pi,j+1

)

+ (1 − δj0)
(

pλ1δin1
χn2−j + λ1δin1

(1 − χn2−j) + λ2(1 − χi−n1−1)
)

pi,j−1

+ (1 − δik1
)
(

(1 − χi−n1
(1 − δjk2

))((i + 1) ∧ n1)µ1

+ n2µ2δjn2
χi−n1

)

pi+1,j (3.3.60)

for i = 0, . . . , k1 and j = 0, . . . , k2. The balance equations are constructed so

as to imply pi,j = 0 for i > n1 and j = 0, . . . , k2. The term λ1δin1
(1−χn2−j)

in the second last line indicates that arriving Q1-customers, who find all

waiting positions in Q1 unoccupied and all n1 servers busy in Q1, move

instantaneously to Q2 if there is a waiting position or server available. Hence,

λ1 is not weighted by p since the customers are jockeying immediately to

Q2 after their arrival to Q1 instead of overflowing. By definition, overflow
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takes places in model-type S/S/γ if and only if all n1 servers in Q1 are busy

and there is at least one server available in Q2.

Remark 3.3.15. It might be useful in applications to weight the traffic that

is due to jockeying with p. This is done by replacing the terms in the first

line of (3.3.60) by λ1(1− δik1
)
(

1−χi−n1
(1− δjk2

)
)

+ pλ1χi−n1
(1− δjk2

) and

the term λ1δin1
(1−χn2−j) on the right side by pλ1δin1

(1−χn2−j). However,

in this case, the model S/S/W is equivalent to model S/W/W from Section

3.4.2

Although the balance equations (3.3.60) are intricate at first glance, they

are easily solved with an analog of the procedure of the alternative approach

in Section 3.3.1.6. The separation approach for this model is shown in Figure

3.8.

◦

•

pi,j = αiβj

pi,j = αiφj

pi,j = 0

0 n1 k1

n2

k2

i →

j
↑

pi,k2
= f(i, pn1,k2

)

Figure 3.8: Separation scheme: Model S/S/W

For i = 0, . . . , n1−1 and j = 0, . . . , k2 the balance equations are identical

to (3.3.2). It then follows from (3.3.27) that

pi,j =























k2
∑

m=0

amsi(cm, λ1, µ1)sj(−cm, λ2, µ2)φn2
(cm), j = 0, . . . , n2,

k2
∑

m=0

amsi(cm, λ1, µ1)sn2
(−cm, λ2, µ2)φj(cm), j = n2, . . . , k2,

(3.3.61)

for i = 0, . . . , n1 with c0, . . . , cm such that (3.3.17) is fulfilled. It remains to

determine pi,j for j = k2 and i = n1 + 1, . . . , k1 because the other proba-
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bilities vanish. The balance equations for i = n1 + 1, . . . , k1 and j = k2 are

identical to (3.3.44) with p
·,n2

replaced by p
·,k2

. We obtain

pi,k2
=

(

λ1

n1µ1 + n2µ2

)i−n1

pn1,k2
, i = n1, . . . , k1, (3.3.62)

as in (3.3.45), where pn1,k2
is given by (3.3.61). As usual, the constants

a0, . . . , ak2
can be determined from the normalization condition and the

boundary conditions at i = n1, i.e.,

(pλ1 + λ2 + n1µ1 + jµ2)pn1,j = λ1pn1−1,j + (1 − δj0)(pλ1 + λ2)pn1,j−1

+ (j + 1)µ2pn1,j+1, j = 0, . . . , n2 − 1,

(3.3.63)

(λ1 + λ2 + n1µ1 + n2µ2)pn1,n2
= λ1pn1−1,n2

+ n2µ2pn1,n2+1

+ (pλ1 + λ2)pn1,n2−1, j = n2, (3.3.64)

(λ1 + λ2 + n1µ1 + n2µ2)pn1,j = λ1pn1−1,j + n2µ2pn1,j+1

+ (λ1 + λ2)pn1,j−1, j = n2 + 1, . . . , k2 − 1,

(3.3.65)

(λ1 + n1µ1 + n2µ2)pn1,k2
= λ1pn1−1,n2

+ (n1µ1 + n2µ2)pn1+1,k2

+ (λ1 + λ2)pn1,k2−1, j = k2. (3.3.66)

Inserting (3.3.61) and (3.3.62) into (3.3.63) to (3.3.66) and using (3.3.16)

and the recurrence relations (3.2.13), (3.2.14) and additionally φk2
≡ 1 and

(3.3.12) for the last equation gives the conditions for a0, . . . , ak2
. These

conditions are

k2
∑

m=0

am

(

cmsn1
(cm + µ1)sj(−cm) + pλ1sn1

(cm)sj(−cm − µ2)
)

φn2
(cm) = 0

(3.3.67)

for j = 0, . . . , n2 − 1 which follow from (3.3.63) and

k2
∑

m=0

am

(

cmsn1
(cm + µ1)sn2

(−cm) − pλ1sn1
(cm)sn2−1(−cm)

+ λ1sn1
(cm)sn2

(−cm)
)

φn2
(cm) = 0

(3.3.68)
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which follows from (3.3.64). The equations (3.3.65) yield

k2
∑

m=0

am

(

cmsn1
(cm + µ1)sn2

(−cm)φj(cm)

+ λ1sn1
(cm)sn2

(−cm)(φj(cm) − φj−1(cm))
)

= 0

(3.3.69)

for j = n2 + 1, . . . , k2 − 1 and finally (3.3.66) gives

k2
∑

m=0

am

(

cmsn1
(cm + µ1)sn2

(−cm) − λ1sn1
(cm)sn2

(−cm)φk2−1(cm)
)

= 0.

(3.3.70)

Summing (3.3.67) over j = 0, . . . , n2−1 and (3.3.69) over j = n2+1, . . . , k2−
1 using (3.3.7) and (3.2.15) gives

k2
∑

m=0

am

(

cmsn1
(cm + µ1)sn2−1(−cm + µ2)

+ pλ1sn1
(cm)sn2−1(−cm)

)

φn2
(cm) = 0 (3.3.71)

and

k2
∑

m=0

am

(

cmsn1
(cm + µ1)sn2

(−cm)(Ψq2−1(cm) − Ψ0(cm))

+ λ1sn1
(cm)sn2

(−cm)(φk2−1(cm) − φn2
(cm))

)

= 0. (3.3.72)

Finally, adding (3.3.68), (3.3.71) and (3.3.72) and simplifying by once again

using (3.3.17) and the recurrence relations (3.2.13) and (3.2.14) results in

(3.3.70). Consequently, condition (3.3.70) is redundant and a0, . . . , ak2
are

determined by (3.3.67), (3.3.68), (3.3.69) and the normalization condition.

The normalization condition can be expressed in terms of a0, . . . , ak2
and

gives after substituting (3.3.61) and (3.3.62) and reduction with the help of

(3.3.17) and (3.2.15)

a0sn1
(µ1, λ1, µ1)

(

sn2
(µ2, λ2, µ2)Ψq2

(0) − sn2−1(µ2, λ2, µ2)Ψq2−1(0)
)

+

k2
∑

m=0

amsn1
(cm, λ1, µ1)sn2

(−cm, λ2, µ2)

q1
∑

l=1

(

λ1

n1µ1 + n2µ2

)l

= 1.

(3.3.73)

The separation approach and the derivations of this section lead to the
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following theorem that summarizes the results of this section.

Theorem 3.3.16. The unique nonnegative and normalized solution of the

steady-state equations (3.3.60) is given by

pi,j =























k2
∑

m=0

amsi(cm, λ1, µ1)sj(−cm, λ2, µ2)φn2
(cm), j = 0, . . . , n2,

k2
∑

m=0

amsi(cm, λ1, µ1)sn2
(−cm, λ2, µ2)φj(cm), j = n2, . . . , k2,

for i = 0, . . . , n1 and

pi,k2
=

(

λ1

n1µ1 + n2µ2

)i−n1

pn1,k2

for i = n1, . . . , k1 if the coefficients a0, . . . , ak2
are determined by the k2 + 1

equations (3.3.67), (3.3.68), (3.3.69) and (3.3.73). c0 = 0 and c1, . . . , ck2
are

the by Theorem 3.3.6 positive and pairwise distinct solutions of (3.3.17).

Remark 3.3.17. As in Section 3.3.1.6 the results remain valid even if q1 =

∞ as long as the stability condition

λ1 < n1µ1 + n2µ2

is fulfilled. The stability condition is again independent of p.

The problem of determining the (n1 + 1)(k2 + 1)+ q1 nonzero unknowns

pi,j, i = 0, . . . , k1, j = 0, . . . , k2, has now been reduced to the problem of

determining k2 + 1 eigenvalues and k2 + 1 unknowns.

3.4 Overflow with waiting rooms: From

servers to waiting room

3.4.1 Jockeying to servers and no jockeying

In this section, we consider the deterministic overflow models S/W/S and

S/W/N, i.e., we choose p = 1, and show exemplarily for model S/W/N that

the technique used throughout the previous sections does not succeed for

this models. However, it is possible to treat the case S/W/W because in

this case certain stationary probabilities vanish. This is done in the next

section.
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The number of servers and the waiting room capacity of Qi is ni and

qi ≥ 1, respectively, for i = 1, 2. In these models with blocking rule S,

an arriving Q1-customer is blocked if all n1 servers are busy. Blocked Q1-

customers are treated with respect to overflow routine W. They are served

by one of the servers in Q2 if at least one is available and are queued in

Q2 if all Q2-servers are busy and at least one waiting position is available.

The blocked Q1-customers who find Q2 fully occupied are redirected to the

waiting room in Q1 and are lost if Q1 is fully occupied. Hence, the overflow

stream from Q1 follows the same route through Q2 as the Q2-customers do.

The jockeying discipline N ascertains that waiting Q1-customers are served

solely in Q1. The balance equations for model S/W/N are given by

(λ1(1 − δik1
δjk2

) + λ2(1 − δjk2
) + (i ∧ n1)µ1 + (j ∧ n2)µ2)pi,j

= (1 − δi0)(1 − χi−n1−1δjk2
)λ1pi−1,j + (1 − δik1

)((i + 1) ∧ n1)µ1pi+1,j

+ (1 − δj0)
(

λ1χi−n1
+ λ2

)

pi,j−1 + (1 − δjk2
)((j + 1) ∧ n2)µ2pi,j+1 (3.4.1)

for i = 0, . . . , k1 and j = 0, . . . , k2. For i = n1 + 1, . . . , k1 and j = n2 +

1, . . . , k2 these equation reduce to

(λ1(1 − δik1
δjk2

) + λ2(1 − δjk2
) + n1µ1 + n2µ2)pi,j

= δjk2
λ1pi−1,j + (1 − δik1

)n1µ1pi+1,j

+ (λ1 + λ2)pi,j−1 + (1 − δjk2
)n2µ2pi,j+1. (3.4.2)

Using the separation idea in this region, i.e., trying again pi,j = αiβj , gives

the equations

(λ1(1−δik1
)+n1µ1+n2µ2−

βk2−1

βk2

(λ1+λ2))αi = (1−δik1
)n1µ1αi+1 (3.4.3)

for i = n1 + 1, . . . , k1 and

(

(λ1 + λ2)(1 − δjk2
) + n1µ1 + n2µ2 − (1 − δjk2

)
αk1−1

αk1

λ1

)

βj

= (λ1 + λ2)βj−1 + (1 − δjk2
)n2µ2βj+1 (3.4.4)

for j = n2 + 1, . . . , k2. It is seen that the separation approach leads to

different separation constants in (3.4.3) and (3.4.4). Furthermore, a solution

of (3.4.3) cannot be expressed in terms of a solution of (3.4.4). Instead

of solving these equations simultaneously, equation (3.4.3) can be solved

recursively, while (3.4.4) leads to another eigenproblem and consequently

additional coefficients arise from the boundary conditions. Furthermore, it is
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necessary to piece together the solutions at the boundaries of the separation

regions. This results in additional conditions for the sets of eigenvalues.

Moreover, a sequential approach as in Section 3.3.2 is not possible in this

region and in the region i = n1 +1, . . . , k1, j = 0, . . . , n2. Similar statements

hold for the models W/W/S and W/W/W (see Section 3.6.1).

3.4.2 Jockeying to the waiting room

Now we consider the p-overflow model S/W/W. The number of servers and

the waiting room capacity of Qi is ni and qi ≥ 1, respectively, for i =

1, 2. In this model with blocking rule S an arriving Q1-customer is blocked

and directed to Q2 if all n1 servers are busy in Q1. Furthermore, blocked

Q1-customers are treated with respect to overflow routine W. Hence, the

overflow stream from Q1 follows the same route through the waiting room

and servers in Q2 as the Q2-customers do. The jockeying discipline W

ascertains that waiting Q1-customers skip to Q2 as soon as a waiting position

or server is available in Q2.

The balance equations are

(λ1(1 − δik1
)(1 − χi−n1

(1 − δjk2
)) + pλ1χi−n1

(1 − δjk2
)

+ λ2(1 − δjk2
) + (i ∧ n1)µ1 + (j ∧ n2)µ2)pi,j

=
(

1 − χi−n1−1(1 − δjk2
)
)

×
(

λ1(1 − δi0)pi−1,j + (1 − δjk2
)((j + 1) ∧ n2)µ2pi,j+1

)

+ (1 − δj0)
(

pλ1δin1
+ λ2(1 − χi−n1−1)

)

pi,j−1

+ (1 − δik1
)
(

(1 − χi−n1
(1 − δjk2

))((i + 1) ∧ n1)µ1

+ n2µ2δjk2
χi−n1

)

pi+1,j

(3.4.5)

for i = 0, . . . , k1 and j = 0, . . . , k2. Once again, these equations are con-

structed such that pi,j = 0 for i = n1 + 1, . . . , k1 and j 6= k2 since it is

impossible for customers to wait at Q1 while there is at least one waiting

position available in Q2.

The separation approach for this model is identical to the one for model

S/S/W depicted in Figure 3.8. For i = 0, . . . , n1 − 1 and j = 0, . . . , k2 the

balance equations are identical to those in (3.3.2) so that pi,j for i = 0, . . . , n1
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and j = 0, . . . , k2 can be chosen as in (3.3.27):

pi,j =























k2
∑

m=0

bmsi(cm, λ1, µ1)sj(−cm, λ2, µ2)φn2
(cm), j = 0, . . . , n2,

k2
∑

m=0

bmsi(cm, λ1, µ1)sn2
(−cm, λ2, µ2)φj(cm), j = n2, . . . , k2,

(3.4.6)

for i = 0, . . . , n1, where b0, . . . , bk2
have to be determined from the boundary

conditions in (3.4.5) and the normalization condition and c0, . . . , ck2
are the

solutions of (3.3.17). The balance equations for i = n1+1, . . . , k1 and j = k2

are

(λ1(1− δik1
)+n1µ1 +n2µ2)pi,k2

= λ1pi−1,k2
+(1− δik1

)(n1µ1 +n2µ2)pi+1,k2
.

(3.4.7)

These equations are equivalent to (3.3.44) with p
·,n2

replaced by p
·,k2

. We

get from (3.3.45) that

pi,k2
=

(

λ1

n1µ1 + n2µ2

)i−n1

pn1,k2
, i = n1, . . . , k1, (3.4.8)

where pn1,k2
is given by (3.4.6) (see also Section 3.3.3). Now we turn to

the determination of the constants b0, . . . , bk2
with the help of the boundary

conditions for i = n1, i.e.,

(pλ1 + λ2 + n1µ1 + jµ2)pn1,j = λ1pn1−1,j + (1 − δj0)(pλ1 + λ2)pn1,j−1

+ (j + 1)µ2pn1,j+1, j = 0, . . . , n2 − 1,

(3.4.9)

(pλ1 + λ2 + n1µ1 + n2µ2)pn1,n2
= λ1pn1−1,n2

+ n2µ2pn1,n2+1

+ (pλ1 + λ2)pn1,n2−1, j = n2, (3.4.10)

(pλ1 + λ2 + n1µ1 + n2µ2)pn1,j = λ1pn1−1,j + n2µ2pn1,j+1

+ (pλ1 + λ2)pn1,j−1, j = n2 + 1, . . . , k2 − 1,

(3.4.11)

(λ1 + n1µ1 + n2µ2)pn1,k2
= λ1pn1−1,n2

+ (n1µ1 + n2µ2)pn1+1,k2

+ (pλ1 + λ2)pn1,k2−1, j = k2. (3.4.12)

Using (3.4.6) and (3.4.8) and paralleling the simplifications that lead from

(3.3.63) - (3.3.66) to (3.3.67) - (3.3.70) it is seen that (3.4.9) - (3.4.12) are
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equivalent to the following set of equations:

k2
∑

m=0

bm

(

cmsn1
(cm + µ1)sj(−cm) + pλ1sn1

(cm)sj(−cm − µ2)
)

φn2
(cm) = 0

(3.4.13)

for j = 0, . . . , n2 − 1,

k2
∑

m=0

bm

(

cmsn1
(cm + µ1)sn2

(−cm)φj(cm)

+ pλ1sn1
(cm)sn2

(−cm)(φj(cm) − φj−1(cm))
)

= 0

(3.4.14)

for j = n2, . . . , k2 − 1 and

k2
∑

m=0

bm

(

cmsn1
(cm + µ1)sn2

(−cm) − pλ1sn1
(cm)sn2

(−cm)φk2−1(cm)
)

= 0.

(3.4.15)

Note that both (3.4.10) and (3.4.11) reduce to the form of (3.4.14). Summing

(3.4.13) over j = 0, . . . , n2 − 1 and (3.4.14) over j = n2, . . . , k2 − 1 and

adding the resulting equations yields the redundancy of (3.4.15). Finally,

the normalization condition, (3.4.6) and (3.4.8) lead to

b0sn1
(µ1, λ1, µ1)

(

sn2
(µ2, λ2, µ2)Ψq2

(0) − sn2−1(µ2, λ2, µ2)Ψq2−1(0)
)

+

k2
∑

m=0

bmsn1
(cm, λ1, µ1)sn2

(−cm, λ2, µ2)

q1
∑

l=1

(

λ1

n1µ1 + n2µ2

)l

= 1 (3.4.16)

as in model S/S/W. The calculations of this section are summarized in the

next theorem.

Theorem 3.4.1. The unique nonnegative and normalized solution of the

steady-state equations (3.4.5) is given by

pi,j =























k2
∑

m=0

bmsi(cm, λ1, µ1)sj(−cm, λ2, µ2)φn2
(cm), j = 0, . . . , n2,

k2
∑

m=0

bmsi(cm, λ1, µ1)sn2
(−cm, λ2, µ2)φj(cm), j = n2, . . . , k2,

for i = 0, . . . , n1 and

pi,k2
=

(

λ1

n1µ1 + n2µ2

)i−n1

pn1,k2
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for i = n1, . . . , k1 if the coefficients b0, . . . , bk2
are determined by the k2 + 1

equations (3.4.13), (3.4.14) and (3.4.16). c0 = 0 and c1, . . . , ck2
are the by

Theorem 3.3.6 positive and pairwise distinct solutions of (3.3.17).

The problem of determining the (n1 + 1)(k2 + 1)+ q1 nonzero unknowns

has now been reduced to the problem of determining k2 + 1 eigenvalues and

k2 + 1 unknowns.

Remark 3.4.2. The results remain valid even if q1 = ∞ as long as the

stability condition λ1 < n1µ1 + n2µ2 is fulfilled.

3.5 Overflow with waiting rooms: From waiting

room to server

In the following two sections, we consider p-overflow models with blocking

rule W and overflow routine S. In these models, arriving Q1-customers are

blocked if all Q1-servers are busy and the Q1-waiting room is fully occupied,

i.e., no overflow is allowed as long as the waiting room in Q1 is not fully

occupied. The blocked customers overflow to Q2 and are served by a server

in Q2 if at least one is idle. In these models the (unweighted) overflow stream

is identical to the stream of blocked customers.

3.5.1 Jockeying to servers and to waiting room

At first, it should be mentioned that the configurations W/S/S and W/S/W

make sense only if the capacity of the waiting room in Q1 is set to zero. This

can be explained exemplarily for model W/S/S by the following observa-

tions. On the one hand, in model W/S/S with q1 ≥ 1, waiting Q1-customers

swap to Q2 as soon as a Q2-server becomes available so that pi,j = 0 for

i = n1 + 1, . . . , k1 and j = 0, . . . , n2 − 1. On the other hand, arriving Q1-

customers overflow to Q2 if all Q1-servers are busy, the Q1-waiting room is

fully occupied and a server is available in Q2, i.e., i = k1 and j = 0, . . . , n2−1,

but in these cases pi,j = 0. Consequently, no overflow occurs in W/S/S for

q1 ≥ 1. The same observations can be made for jockeying discipline W, since

it is a generalization of jockeying discipline S. Therefore, no overflow takes

place in model W/S/W for the case q1 ≥ 1. However, with q1 = 0, model

W/S/S and W/S/W correspond to model S/S/S and S/S/W, respectively,

which were treated in Section 3.3.1 and Section 3.3.3.
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3.5.2 No jockeying

We examine model W/S/N by generalizing the results in Morrison [48] to

the case of p-overflow, p ∈ [0, 1], and arbitrary service rates µ1, µ2 > 0 (see

also Kaufman et al. [34] for a numerical treatment for the case of arbitrary

service rates and p = 1). In this model, overflow is allowed if and only if

Q1 is fully occupied. The blocked customers overflow to Q2 and are served

by a server in Q2 if at least one is idle. Waiting Q1-customers are served

exclusively at Q1. The balance equations are given by

(λ1(1 − δik1
)
(

1 − δik1
(1 − χj−n2

)
)

+ pλ1δik1
(1 − χj−n2

) + λ2(1 − δjk2
)

+ (i ∧ n1)µ1 + (j ∧ n2)µ2)pi,j

= λ1(1 − δi0)pi−1,j + (1 − δik1
)((i + 1) ∧ n1)µ1pi+1,j

+ (1 − δj0)(pλ1δik1
χn2−j + λ2)pi,j−1

+ (1 − δjk2
)((j + 1) ∧ n2)µ2pi,j+1 (3.5.1)

for i = 0, . . . , k1 and j = 0, . . . , k2. Figure 3.9 displays the separation

approach used for this model.

•

◦

•

pi,j = αiβj

pi,j = αiφj

pi,j = αi(c)βj

pi,j = αi(c)φj

0 n1 k1

n2

k2

i →

j
↑

Figure 3.9: Separation scheme: Model W/S/N

Separating the variables into pi,j = αiβj for i 6= k1 and j = 0, . . . , k2

leads analogously to Section 3.3.1 to

βj =

{

sj(−c, λ2, µ2)φn2
(c), j = 0, . . . , n2,

sn2
(−c, λ2, µ2)φj(c), j = n2 − 1, . . . , k2,

(3.5.2)
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where c is a solution of sn2−1(−c, λ2, µ2)φn2
(c) = sn2

(−c, λ2, µ2)φn2−1(c) or

equivalently (3.3.17). For i = 0, . . . , n1 we get

αi = si(c, λ1, µ1). (3.5.3)

For i = n1, . . . , k1, the equations

(λ1 + n1µ1 + c)αi = λ1αi−1 + n1µ1αi+1 (3.5.4)

must be satisfied with the boundary conditions αn1
= sn1

(c, λ1, µ1) and

αn1−1 = sn1−1(c, λ1, µ1). It follows from (3.3.11) and (3.3.5) that the func-

tions Ωi(c), i ≥ −1, solve

(λ1 + n1µ1 + c)Ωi = λ1Ωi+1 + n1µ1Ωi−1

for i ≥ 0. Thus, a solution of (3.5.4) is given by

αi =

(

λ1

n1µ1

)n1−i
(

sn1
(c, λ1, µ1)Ωi−n1

(c) − sn1−1(c, λ1, µ1)Ωi−n1−1(c)
)

.

(3.5.5)

Plugging (3.5.3) and (3.5.4) together by an appropriate normalization yields

the solutions for the first separation variable αi:

αi(c) =



























(

λ1

n1µ1

)q1

si(c, λ1, µ1), i = 0, . . . , n1.
(

λ1

n1µ1

)k1−i
(

sn1
(c, λ1, µ1)Ωi−n1

(c)

−sn1−1(c, λ1, µ1)Ωi−n1−1(c)
)

, i = n1, . . . , k1.

(3.5.6)

Finally, together with (3.5.2), a solution of the balance equations (3.5.1) is

given by

pi,j =























k2
∑

m=0

amαi(cm)sj(−cm, λ2, µ2)φn2
(cm), j = 0, . . . , n2,

k2
∑

m=0

amαi(cm)sn2
(−cm, λ2, µ2)φj(cm), j = n2, . . . , k2,

(3.5.7)

for i = 0, . . . , k1. The boundary conditions at i = k1 in (3.5.1) are

(pλ1 + λ2 + n1µ1 + jµ2)pk1,j = λ1pk1−1,j

+ (1 − δj0)(pλ1 + λ2)pk1,j−1



3.5 Overflow with waiting rooms: From waiting room to server 113

+ (j + 1)µ2pk1,j+1, j = 0, . . . , n2 − 1,

(3.5.8)

(λ2(1 − δq20) + n1µ1 + n2µ2)pk1,n2
= λ1pk1−1,n2

+ (1 − δq20)n2µ2pk1,n2+1

+ (pλ1 + λ2)pk1,n2−1, j = n2, (3.5.9)

(λ2(1 − δjk2
) + n1µ1 + n2µ2)pk1,j = λ1pk1−1,j + (1 − δjk1

)n2µ2pk1,j+1

+ λ2pk1,j−1, j = n2 + 1, . . . , k2.

(3.5.10)

Substituting (3.5.7) into (3.5.8) and (3.5.10) gives

k2
∑

m=0

am

[

cmsj(−cm)
(

sn1
(cm + µ1)Ωq1

(cm) − sn1−1(cm + µ1)Ωq1−1(cm)
)

+ pλ1sj(−cm − µ2)
(

sn1
(cm)Ωq1

(cm) − sn1−1(cm)Ωq1−1(cm)
)

]

φn2
(cm) = 0

(3.5.11)

for j = 0, . . . , n2 − 1 and

k2
∑

m=0

amcmsn2
(−cm)

(

sn1
(cm +µ1)Ωq1

(cm)−sn1−1(cm +µ1)Ωq1−1(cm)
)

φj(cm)

(3.5.12)

for j = n2 + 1, . . . , k2. By summing (3.5.11) and (3.5.12) it is seen that

(3.5.9) is redundant. The coefficients a0, . . . , ak2
are uniquely determined

by (3.5.11), (3.5.12) and the normalization condition. This condition yields

– after substituting (3.5.7) and simplifying – an explicit formula for a0 in

terms of the auxiliary functions. We arrive at the closed-form expression

a0 =
(

(

sn1
(µ1, λ1, µ1)Ωq1

(0) − sn1−1(µ1, λ1, µ1)Ωq1−1(0)
)

×
(

sn2
(µ2, λ2, µ2)Ψq2

(0) − sn2−1(µ2, λ2, µ2)Ψq2−1(0)
)

)−1
. (3.5.13)

Theorem 3.5.1. The unique nonnegative and normalized solution of the

steady-state equations (3.5.1) is given by

pi,j =























k2
∑

m=0

amαi(cm)sj(−cm, λ2, µ2)φn2
(cm), j = 0, . . . , n2,

k2
∑

m=0

amαi(cm)sn2
(−cm, λ2, µ2)φj(cm), j = n2, . . . , k2,

for i = 0, . . . , k1 if the coefficients a0, . . . , ak2
are determined by (3.5.11),
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(3.5.12) and (3.5.13). c0 = 0 and c1, . . . , ck2
are the by Theorem 3.3.6

positive and pairwise distinct solutions of (3.3.17).

The number of unknowns has now been reduced from (k1 +1)(k2 +1) to

2k2 + 1.

3.6 Overflow with waiting rooms: From and to

waiting room

3.6.1 Jockeying to servers and to waiting room

In this section, we consider the deterministic overflow models W/W/S and

W/W/W, i.e., we choose p = 1, and show exemplarily for model W/W/S

that the technique used throughout the previous sections does not succeed

for these models. Similar observations were made in Section 3.4.1 for models

S/W/S and S/W/N. However, it is possible to treat the case W/W/N,

because in this case certain stationary probabilities and inconsistencies at

the boundaries of the balance equations vanish. This is done in the next

section. Numerical methods can be found in Chan [9] and Kaufman [35] for

model W/W/S and in Chan [8] and Kaufman [35] for model W/W/N

The number of servers and the waiting room capacity of Qi is ni and

qi ≥ 1, respectively, for i = 1, 2. In these models with blocking rule W,

an arriving Q1-customer is blocked and directed to Q2 if all n1 servers are

busy and all waiting positions in Q1 are occupied. Blocked Q1-customers

are treated with respect to overflow routine W, i.e., they are served by one

of the servers in Q2 if at least one is available, are queued in Q2 if all Q2-

servers are busy and at least one waiting position is available and are lost

otherwise. According to jockeying discipline S, waiting Q1-customers are

forced to move to Q2 as soon as a server becomes available in Q2. The

balance equations for model W/W/S are given by

(λ1(1 − δik1
δjk2

) + λ2(1 − δjk2
) + (i ∧ n1)µ1 + (j ∧ n2)µ2)pi,j

= (1 − χi−n1−1χn2−1−j)(λ1(1 − δi0)pi−1,j)

+ (1 − δjk2
)((j + 1) ∧ n2)µ2pi,j+1 (3.6.1)

+ (1 − δj0)
(

λ1(δin1
χn2−j + δik1

χj−n2−1)

+ λ2(1 − χi−n1−1χn2−j)
)

pi,j−1

+ (1 − δik1
)
(

(1 − χi−n1
χn2−j−1)((i + 1) ∧ n1)µ1

+ n2µ2δjn2
χi−n1

)

pi+1,j
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for i = 0, . . . , k1 and j = 0, . . . , k2. Note that pi,j = 0 for i = n1 + 1, . . . , k1

and j = 0, . . . , n2 − 1. For i = n1 + 1, . . . , k1 and j = n2 + 1, . . . , k2 these

equation reduce to

(λ1(1 − δik1
δjk2

) + λ2(1 − δjk2
) + n1µ1 + n2µ2)pi,j

= λ1pi−1,j + (1 − δjk2
)n2µ2pi,j+1

+ (λ1δik1
+ λ2)pi,j−1 + (1 − δik1

)n1µ1pi+1,j. (3.6.2)

Separating the probabilities in this region into pi,j = αiβj gives the equations

(λ1(1 − δik1
) + n1µ1 + n2µ2 −

βk2−1

βk2

(λ1δik1
+ λ2))αi

= λ1αi−1 + (1 − δik1
)n1µ1αi+1 (3.6.3)

for i = n1 + 1, . . . , k1 and

(

(λ1 + λ2)(1 − δjk2
) + n1µ1 + n2µ2 −

αk1−1

αk1

λ1

)

βj

= (λ1 + λ2)βj−1 + (1 − δjk2
)n2µ2βj+1 (3.6.4)

for j = n2 + 1, . . . , k2. As in Section 3.4.1 it is seen that the separation ap-

proach leads to different separation constants in (3.6.3) and (3.6.4) so that a

solution of (3.6.3) cannot be expressed in terms of a solution of (3.6.4). In-

stead of solving these equations simultaneously, different eigenproblems have

to be solved and consequently additional coefficients arise from the bound-

ary conditions. Furthermore, it is necessary to match the solutions at the

boundaries of the separation regions. This results in additional conditions

for the sets of eigenvalues.

3.6.2 No jockeying

We apply a separation approach to determine the equations for the reduced

system of balance equations for model W/W/N with p-overflow, p ∈ [0, 1],

and arbitrary service rates µ1, µ2 > 0 in this section. In this model, overflow

is allowed if and only if all servers and waiting positions in Q1 are occupied.

The blocked customers overflow to Q2 and are queued in the waiting room

or served by a server in Q2 if at least one is available. Waiting Q1-customers

have to wait for service at Q1. The deterministic model, i.e., the case p = 1,

with arbitrary service rates is also treated in Chan [8] and Kaufman [35]
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with numerical methods. The balance equations for model W/W/N are

(λ1(1−δik1
) + pλ1δik1

(1 − δjk2
) + λ2(1 − δjk2

)

+ (i ∧ n1)µ1 + (j ∧ n2)µ2)pi,j

= λ1(1 − δi0)pi−1,j + (1 − δik1
)((i + 1) ∧ n1)µ1pi+1,j (3.6.5)

+ (1 − δj0)(pλ1δik1
+ λ2)pi,j−1 + (1 − δjk2

)((j + 1) ∧ n2)µ2pi,j+1

or i = 0, . . . , k1 and j = 0, . . . , k2. The separation approach for model

W/S/N can be used for this model. A schematic overview of this approach

is given in Figure 3.9. For model W/W/N the redundant boundary equation

is located at the state (k1, k2).

Separating the variables into pi,j = αiβj for i 6= k1 and j = 0, . . . , k2

leads analogously to the derivations in Section 3.5.2 to

pi,j =























k2
∑

m=0

amαi(cm)sj(−cm, λ2, µ2)φn2
(cm), j = 0, . . . , n2,

k2
∑

m=0

amαi(cm)sn2
(−cm, λ2, µ2)φj(cm), j = n2, . . . , k2,

(3.6.6)

for i = 0, . . . , k1 with

αi(c) =



























(

λ1

n1µ1

)q1

si(c, λ1, µ1), i = 0, . . . , n1,
(

λ1

n1µ1

)k1−i
(

sn1
(c, λ1, µ1)Ωi−n1

(c)

−sn1−1(c, λ1, µ1)Ωi−n1−1(c)
)

, i = n1, . . . , k1,

(3.6.7)

for c ∈ R. The boundary conditions at i = k1 are

(pλ1 + λ2 + n1µ1 + jµ2)pk1,j = λ1pk1−1,j + (j + 1)µ2pk1,j+1

+ (1 − δj0)(pλ1 + λ2)pk1,j−1,

j = 0, . . . , n2 − 1, (3.6.8)
(

(pλ1 + λ2)(1 − δq20) + n1µ1 + n2µ2

)

pk1,n2
= λ1pk1−1,n2

+ (1 − δq20)n2µ2pk1,n2+1

+ (pλ1 + λ2)pk1,n2−1,

j = n2, (3.6.9)
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(pλ1 + λ2 + n1µ1 + n2µ2)pk1,j = λ1pk1−1,j + n2µ2pk1,j+1

+ (pλ1 + λ2)pk1,j−1, (3.6.10)

j = n2 + 1, . . . , k2 − 1,

(n1µ1 + n2µ2)pk1,k2
= λ1pk1−1,k2

+ (pλ1 + λ2)pk1,k2−1,

j = k2. (3.6.11)

Substituting (3.6.6) into (3.6.8), (3.6.9) and (3.6.10) yield

k2
∑

m=0

am

[

cmsj(−cm)
(

sn1
(cm + µ1)Ωq1

(cm) − sn1−1(cm + µ1)Ωq1−1(cm)
)

+ pλ1sj(−cm − µ2)
(

sn1
(cm)Ωq1

(cm) − sn1−1(cm)Ωq1−1(cm)
)

]

φn2
(cm) = 0

(3.6.12)

for j = 0, . . . , n2 − 1 (see also (3.5.11)) and

k2
∑

m=0

am

[

cmsn2
(−cm)

(

sn1
(cm + µ1)Ωq1

(cm)

− sn1−1(cm + µ1)Ωq1−1(cm)
)

φj(cm) + pλ1sn2
(−cm)

(

sn1
(cm)Ωq1

(cm)

− sn1−1(cm)Ωq1−1(cm)
)(

φj(cm) − φj−1(cm)
)

]

= 0 (3.6.13)

for j = n2, . . . , k2 − 1. By summing (3.6.12) and (3.6.13) it is seen that

(3.6.11) is redundant. (3.6.12), (3.6.13) and the normalization condition

determine the coefficients a0, . . . , ak2
. Substituting (3.6.6) into the normal-

ization condition and simplifying gives an explicit formula for a0 in terms of

the auxiliary functions. We arrive at the closed-form expression

a0 =
(

(

sn1
(µ1, λ1, µ1)Ωq1

(0) − sn1−1(µ1, λ1, µ1)Ωq1−1(0)
)

×
(

sn2
(µ2, λ2, µ2)Ψq2

(0) − sn2−1(µ2, λ2, µ2)Ψq2−1(0)
)

)−1
(3.6.14)

as in (3.5.13).

By the approach above, the number of unknowns reduces from (k1 +

1)(k2 + 1) to 2k2 + 1. The results in the case of blocking if all waiting

positions are occupied, no jockeying and overflow to the waiting rooms of

the second queue is summarized in the following theorem.

Theorem 3.6.1. The unique nonnegative and normalized solution of the



118 Overflow to a finite queue with waiting room

steady-state equations (3.6.5) is given by

pi,j =























k2
∑

m=0

amαi(cm)sj(−cm, λ2, µ2)φn2
(cm), j = 0, . . . , n2,

k2
∑

m=0

amαi(cm)sn2
(−cm, λ2, µ2)φj(cm), j = n2, . . . , k2,

for i = 0, . . . , k1 if the coefficients a0, . . . , ak2
are determined by (3.6.12),

(3.6.13) and (3.6.14). c0 = 0 and c1, . . . , ck2
are the by Theorem 3.3.6

positive and pairwise distinct solutions of (3.3.17).
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