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Summary

Self-replication is a fundamental property of all living organisms, yet has only been
accomplished to limited extend in manmade systems. This thesis is part of the ongo-
ing research endeavor to bridge the two sides of this gap. In particular, we present
simulation results of a minimal life-like, artificial, molecular aggregate (i.e. protocell)
that has been proposed by Steen Rasussen and coworkers and iscurrently pursued both
experimentally and computationally in interdisciplinaryinternational research projects.

We develop a space-time continuous physically motivated simulation framework
based on the method of dissipative particle dynamics (DPD) which we incrementally
extend (most notably by chemical reactions) to cope with theneeds of our model.
The applicability of the method over the entire length scaleof interest is reintroduced,
by rejecting a concern that DPD introduces a freezing artifact for any model above
the atomistic scale. This is achieved by deriving an alternative scaling procedure for
interaction parameters in the model.

We perform system-level simulations of the design which attempt to account for
theoretical, and experimental knowledge, as well as results from other computational
models. This allows us to address key issues of the replicating subsystems – container,
genome, and metabolism – both individually and in mutual coupling. We analyze each
step in the life-cycle of the molecular aggregate, and a finalintegrated simulation of
the entire life-cycle is prepared.

Our simulations confirm most assumptions of the theoreticaldesigns, but also ex-
hibit unanticipated system-level dynamics. These findingsare used to revise the origi-
nal design of the Los Alamos minimal protocell over the course of the analysis.

The results support the hypothesis that self-replication and probably other life-like
features can be achieved in systems of formerly unanticipated simplicity – if these
systems exploit physicochemical principles that are immanent to their physical scale.
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Chapter 1

Introduction

“Anyone who looks at living organisms knows perfectly well that they
can produce other organisms like themselves. . . Furthermore, its equally
evident that what goes on is actually one degree better than self-reproduct-
ion, for organisms appear to have gotten more elaborate in the course of
time.” – von Neumann [1]

1.1 Theoretical models of self-replication

1.1.1 Replication versus self-replication

On first thought, replication seems to be easily graspable conceptually. We say that
something has replicated if it has produced a sufficiently similar copy of itself. To
be more than a mere model, the replica has to resemble the original at least in both
structure and function. Concerning physical objects, the required degree of similarity
can also extend to their material properties.

We have to distinguish self-replication from other forms ofreplication. For exam-
ple, we would not speak of a sheet of paper as being self-replicating, merely because
we can make a copy of it. In general, a structure is not able to self-replicate when the
replicating act is only due to its environment. A first indicator that a system is indeed
self-replicating is found in its environment: if everything that is embedded in the envi-
ronment will be replicated, the act of replication has to be attributed to the environment
rather than the system. For this reason, mathematical and formal structures that are
generated by iterated function systems or recursive grammars (such as Lindenmayer
systems [2]) cannot be considered to be self-replicating objects, because these envi-
ronments replicate any given input. As a minimal condition,the set of self-replicating
systems has to be a proper subset of the set of all systems.

This first requirement is necessary but not sufficient, as we could easily equip a
copying device that was hitherto able to copy all objects with a sensor that recognizes
and excludes an arbitrary subset of objects (such as modern photo copiers that recog-
nize and prevent the replication of banknotes). Anything the enhanced copier does still
replicate would conform to a definition of self-replicationthat is solely based on the
proper subset condition.

This motivates the demand that a self-replicating system somehow actively partic-
ipates in the process of replication, rather than being passively copied [3]. As it turns

1



2 CHAPTER 1. INTRODUCTION

out, however, the distinction between active and passive replication is not easily ex-
pressed in a rigorous concept, since one can always argue that any action is caused by
natural laws (or by the external application of rules in a formal calculus) which puts all
objects in the passive position of being mere recipients of an action. As a brief histor-
ical overview of self-replicating objects will elucidate,there is no clear distinction but
a smooth transition between replication and self-replication.

We briefly highlight some of the accomplishments in the history of artificial self-
replicating systems. The presentation is not meant as a review but only supports back-
ground for the argument we will make in section 1.1.5. Comprehensive reviews of the
subject can be found in Refs. [4, 5, 6].

1.1.2 Von Neumann’s universal constructor

The mathematical study of self-replicating systems originated in the late 1940s, when
Hungarian-American mathematician John von Neumann becameinterested in the be-
havior of complex automata and machines [see e.g. 6]. Interested in the evolution of
complexity in living systems, von Neumann tackled the problem whether an automa-
ton would be able to produce an at least equally complex automaton. In particular, von
Neumann searched for automata that are able to replicate their own structure. Until his
death in 1957, von Neumann had outlined five concepts for self-replicating machines
that all derive from a common sufficiency proof.

Von Neumann concluded that the following properties sufficefor a machineX to
allow it to self-replicate:

1. X must be able to construct, i.e. it must be able to manipulate the material,
information, and energy it consists of.

2. X must be constructionally universal, i.e. it must be possible to program it by
a sequence of instructions to construct any machine within asystemS of ma-
chines.

3. X must be a member of the systemS.

As Barry McMullin points out [7], the notion of universal construction is context
dependent with respect to the systemS which is implicitly defined by the constructive
operations ofX, similar to how set operations define an algebra. This implies consid-
erable freedom in the design of a universal constructor which is only partly constrained
by condition 3.

Starting from these prerequisites, von Neumann designed a machine that consists
of four components: First, a universal constructorA which can build any machineY
in S when given an appropriate instruction tape; second, a copying device B that can
replicate an arbitrary instruction tape; third, a controller C to control the operations
of both the constructor and copier; and forth, an instruction tapeΦ(Y ) that tells the
universal constructor how to build machineY . If Φ encodes instructions on how to
build the machine(A+B+C), the setup allows for self-replication: first, the controller
initiates the constructorA to build a replica(A′ + B′ + C ′); second, the controller
commands the copierB to replicate the instruction tapeΦ(A + B + C). Finally, the
controller activates the newly formed copy so that it startsits own replication cycle.

Note that in this setup, the instruction tape appears both asa program (to control
the universal constructor) and as data (when copied to another tape). This ambiguity
resolves an infinite regress that would otherwise appear if the instructions where not
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copied but would instead directly instruct the constructorto build the instruction tape
de novo (”build a tape with instructions to build a tape with instructions to ...”). In
parenthesis, we mention that this ambiguity parallels the double role of DNA in natural
organisms, which serves both as code for the production of proteins and as data when
these very proteins copy the genome during DNA replication.Also, the resolution of
this infinite regress has become standard in modern general purpose computer archi-
tectures which employ a unique memory space for both data andprogram instructions.

The original framework von Neumann had in mind for the above proof was what he
later referred to as the kinematic machine [6]: a hypothetical physical device located
in an environment of building blocks (such as a stockroom of spare parts) in which the
machine could move to access and assemble parts. As a mathematician however, von
Neumann abandoned the physical scenario in favor of the morerigorous framework of
lattice models following a suggestion of his colleague Stanislav Ulam. The class of
lattice models that von Neumann designed as the environmentfor the self-replicating
machine has now become widely popular and known as cellular automata [8].

Cellular automata (CA) consist of a grid of locally linked finite state machines
(cells) where each machine is in one of a finite set of states and changes its state ac-
cording to its current state and the current input from connected cells. This update is
assumed to happen synchronous in all cells and in discreet time steps. A CA is uniquely
defined by its state set, topology (i.e. linking of cells and boundary conditions), and set
of transition rules. In the CA model, a machine corresponds to a pattern (i.e. configu-
ration of cell states). The performance of the machine is given by the time evolution of
the state space which is completely determined by the definition of the CA.

In von Neumann’s CA (a two-dimensional square lattice with afour-cell orthogonal
neighborhood), condition 1 is trivially met by observing that CA transition rules change
cell states in response to the current pattern. In other words, the pattern that constitutes
a machine in a CA is able to manipulate its constituting elements. In order to show that
conditions 2 and 3 can be met by a CA, von Neumann laid out an existence proof by
explicitly designing a particular CA that can replicate a pattern.

Von Neumann’s cellular automaton consists of 29 states, with one of them repre-
senting a ‘ground’ state or substrate that only changes intoanother state upon actions
from neighboring non-ground states [8]. The other states enable the machine to direc-
tionally transmit and process information thereby modifying substrate cells. Equipped
with this framework, von Neumann designed basic elements such as logic gates, delay
stations, and their wiring. The universe of machines that can be built out of these ele-
ments (the systemS in the above outline) holds a memory tape, read/write elements, a
“construction arm” which are finally combined to form the entire self-replicating ma-
chine(A + B + C) [9]. Due to its complexity, the automaton was first implemented
on a digital computer by 1995 by Nobili and Pesavento [10] butrequired a memory
tape that was too long to allow for self-replication within reasonable time. In 2008,
Nobili [11] incorporated run-length compression into the reading device to shorten the
memory tape which allowed for the first actual in silico replication of von Neumann’s
machine (see Fig. 1.1).

The CA model is certainly the furthest developed framework of self-reproducing
automata that von Neumann envisioned. But it was only one of five general concepts.
The idea of a mechanical automaton in the form of the kinematic machine has already
been mentioned. Other than these two, von Neumann also envisioned a variant of his
CA that employs the McCulloch-Pitts model of artificial neurons [12] (referred to as the
neuron-type machine by A. Burks [8]); a differential equation based continuous variant
of the neuron-type machine, and finally a stochastic versionthereof. For details, the
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Figure 1.1: Implementation of von Neumann’s self-replicating machine by No-
bili [11]. The pictues shows the replicating machine in the middle of its sec-
ond replication cycle. Each machine consists of a universalconstructor (upper
part), a tape reader (lower right part), a control unit (lower left part), a mem-
ory tape (extending from each automaton to the right), and (while in operation)
a construction arm (red link connecting second and third automaton). To sim-
plify the layout, the cellular automaton employs 32 rather than von Neumann’s
original 29 states and employs run-length compression to reduce the length of
the instruction tape. (Public domain:http://en.wikipedia.org/wiki/
Image:Nobili Pesavento 2reps.png, version of August 1., 2008.)
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reader is referred to Refs. [6, 13].
At the same time, the CA based automaton has given raise to numerous variations

that link the capabilities of von Neumann’s and alike machines to self-inspection [14]
(thereby removing the need for explicit instructions on a tape), self-repair [15], and
evolution [16] while the original design has been greatly simplified by Codd [17], re-
ducing it to 8 states instead of 29.

1.1.3 Artificial Life models of self-replication

While von Neumann presented a mathematical proof, that self-replication is achievable
in a mechanical universe, the work does not seek for a particularly simple solution.
Clearly, enabling a machine to construct any machine, instead of only its own unique
structure, adds to the complexity of von Neumann’s approach: while a universal con-
structor is sufficient for self-replication, it is certainly not a necessity. This observation
lead to a search for minimal structures in CAs, that would be able to accomplish self-
replication (and nothing else). Since “minimality” is ambiguous and can refer to the
number of states, cells, or iterations needed for replication, there is no single minimal
solution, but a set of candidates to be considered.

In 1984, Langton [18] published his work on a “self-replicating loop”: an eight
state cellular automaton (instead of von Neumann’s 29) thatconsists of mere 86 non-
quiescent cells (rather than about 150,000 cells in von Neumann’s design implemented
in Ref. [9]) and can self-replicate in 151 time steps (as opposed to 63 billion in Ref. [9]).

Basically, Langton’s CA consists of a looped rectangular tape that is sheathed in
“walls” with a construction arm extending it at one corner (see Fig. 1.2). Cell states that
code for instructions are constantly transmitted among thecells in the circular memory
tape. They are duplicated at the junction of the storage loopand the construction arm.
Instructions are transmitted without affecting the geometry of the device, as long as
there is a free tape cell other than the one they have been transmitted from in the last
time step. This enables the device to store and transmit information without actually
being altered. When instructions do reach a tape cell, however, from which no other
tape cell is reachable– i.e. at the end of the construction arm – these instructions cause
the device to extend its instruction tape by one cell, eitherorthogonal or perpendicular,
depending on the respective instruction. By this mechanism, the construction arm can
be programmed to construct a second loop adjacent to it. As instructions are automati-
cally duplicated at the junction, nothing is needed to equipthe newly constructed loop
with its own set of instructions. The replication cycle endswhen the first instruction
of the copied code reaches the end of the parent’s construction arm and initiates it to
separate. A total of 207 CA transition rules are needed to define this behavior.

Langton’s contribution started a race toward ever more simple self-replicating loop-
like CA structures of which Byl’s loop [19] with 6 states and 12 cells and Reggia et al.’s
loop [20] with 8 states but only 5 cells are the current recordholders. Still, these imple-
mentations require a set of about one hundred transition rules. Furthermore, looplike
self-replicating devices have been modified to allow for robustness [21] and evolu-
tion [22, 23]. Also, Mange et al. [24] linked self-replicating loops back to universal
construction: in their approach, the instruction tape can be programmed to perform
arbitrary modifications of the cell space after replicationof the loop.

In general, the Artificial Life movement of which Langton wasthe premier spokes-
man [4] demonstrates the relative ease with which life-likeproperties can be obtained
from simple mathematical models. It does so by adopting the computational paradigm
of von Neumann’s distributed, locally interacting, and decentralized CAs in order to
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Figure 1.2: Langton’s loop after replication. Two replicating loops are
shown, each consisting of a circular instruction tape and a construction arm
(dark blue cells) sheathed by walls (red cells) with instructions to extend the
arm orthogonal (cyan cells) or perpendicular (two yellow cells). Courtesy
of Thomas Schoch taken fromhttp://commons.wikimedia.org/wiki/
Image:Langton Loops after replication.gif, version of April 16, 2007.

emphasize the emergence of global behavior and properties from simple, distributed,
locally interacting components. However, where von Neumann populates his cellu-
lar world with devices that are nowadays recognized as conventional engineered com-
pounds (such as logic gates, random access memory, etc.), Artificial Life research seeks
for behavior that is an immediate consequence of the underlying computational model.
As a result, Langton notes that “the essential machinery of living organisms is quite a
bit different from the machinery of our own invention, and wewould be quite mistaken
to attempt to force our preconceived notion of abstract machines onto the machinery of
life.” [4, page 21].

At the same time, the Artificial Life movement set its focus onthe logic of emergent
behavior rather than its physical foundation. In the words of Langton: “Since we know
that it is possible to abstract the logical form of a machine from its physical hardware, it
is natural to ask whether it is possible to abstract the logical form of an organism from
its biochemical behavior. The field of Artificial Life is devoted to the investigation of
this question.” [4, page 21].

1.1.4 Mechanical self-replicating devices

Mechanical implementations of self-replicating systems stem from the original con-
ception of von Neumann’s physically embedded kinematic machine. Notable early
solutions are the work of Penrose and Penrose in 1957 [25], who manufactured me-
chanically connectable building blocks that could replicate a specific local connection
configuration (the “seed”) when the container in which they reside is shaken. Similarly,
Jacobson in 1958 [26] designed a railroad system, in which a specific sequence of self-
propelled toy train coaches replicates by detecting passing coaches and directing their
coupling. Freitas and Merkle [6] note “that a great deal of functionality essential for
replication [in Jacobson’s system] resides in the environment”. This concern corrobo-
rates the hypothesis of a the smooth transition from replicators to self-replicators that
has been postulated in section 1.1.1.

The pioneering work of Penrose and Jacobson lead to the engineering of self-
replicating robots which has succeeded in recent years [27,28, 29, 30]. These de-
signs basically imitate the conceptions of Penrose and Jacobson, by allowing a modular
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robot to detect and assemble spare modules to eventually combine them into a copy of
its own structure. While being remarkable in achieving actual mechanical replicators,
these solutions share the engineer’s approach of von Neumann, in that they employ
conventional building blocks in order to mimic life-like behavior.

Contemporary approaches in robotics that directly apply tothe self-replicating sys-
tems presented in this thesis are the research areas of physical embodiment and mor-
phological computation, i.e. the ability of passive mechanical elements to perform
complicated computational tasks [31, 32, 33, 34]. A paradigmatic example of mor-
phological computation is the passive dynamic walker by McGeer [35], a bi-ped robot
that is able to stably walk down a slope without employing anyactive element such
as motors or sensors. The “robot” gains this ability from a carefully balanced mass-
spring system that transforms gravitational force into directed motion. Pfeiffer notes:
“We showed that by exploiting morphology, materials, and system-environment inter-
action, hard tasks such as rapid locomotion or grasping can be achieved in a ‘cheap’
manner.” [33]. Paul goes beyond that statement by noting that “the fact that such com-
putation can be so simply achieved suggests that it is not simply a rare phenomena, but
possibly a pervasive characteristic of physical structures” [31].

1.1.5 Physically embedded self-replication

The present work is an attempt to apply the capabilities of morphological computation
to the area of self-replicating structures. The central hypothesis of our work is that
natural self-replicating systems are not only embedded in aphysical environment, but
that their material, structure, and function is intimatelyshaped by the natural laws
that govern their physical environment. We argue that self-replicating structures could
grow to abundance in our world, because they employ mechanisms and components
that are favored by the underlying laws of nature. In other words: existing natural
self-replicators have been selected for being simple. Therefore, we argue that self-
replication, and likely other features hitherto unique to life are deeply immersed in the
physical laws of our universe.

We support this hypothesis by a computational model which isbased on a sim-
plified representation of the physical laws relevant to natural self-replicating systems.
Basically, our framework relies on two physically motivated processes for motion and
reactive turn-over of building blocks. We then design structures that directly exploit
the modeled physicochemical laws of the framework in order to self-replicate. The
simplest of such structures consists of only three types of components with few pa-
rameterized interaction laws (see chapter 4). Due to the conceptual difference of our
model compared to CA models, it is unclear how the presented self-replicator com-
pares in terms of complexity and minimality to the systems described in section 1.1.3.
However, we can demonstrate that self-replicating structures in our framework do not
require a pre-designed seed, but spontaneously self-assemble from constituting parts,
and that our mechanism of self-replication is dynamically stable against random fluc-
tuations and robust (i.e. structurally stable) over a wide range of system parameters –
all features that are difficult to achieve in CA based systems.

Choosing a conceptual framework grounded in physical laws has further advan-
tages: (i) the relative closeness to physical theories allows to connect to the vast amount
of knowledge from the areas of statistical physics, physical chemistry, and biophysics,
which allows e.g. for calibration of the method. (ii) As a consequence, concepts behind
the presented replicating structures become testable bothby computation and experi-
ments. (iii) The framework can not only be employed to study self-replicating objects
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as abstract mathematical structures, but rather allows formodeling real self-replicating
systems or conceptions thereof. A major part of this work is therefore dedicated to the
modeling capabilities of the employed framework (chapters2 and 3) as well as the ac-
tual model of a proposed molecular system that is envisionedto exhibit self-replication
and other life-like properties (chapters 5 and 6).

1.2 Self-replicating chemical structures

1.2.1 Emergence of self-replicating structures - the originof life

The emergence of self-replicating systems in our world is directly connected to the
origin of life on Earth or in the universe. As it is our hypothesis that natural self-
replicating systems are simple because they directly exploit physical laws for their
functioning, it seems mandatory to briefly review what is known about simple self-
replicating physico-chemical systems and their possible interplay in the origin of life.

Throwing light on the origin of life is particularly difficult due to the lack of know-
ledge about the early Earth’s atmosphere, the multitude of possible physico-chemical
environments and the absence of any fossil records of life’svery origin. Even the most
simple living organisms abundant today as well as the oldestavailable fossils display
a complexity that renders their spontaneous appearance unconceivable. Nevertheless,
the organizational structure of living systems elucidatesits origins by rendering some
scenarios more likely than others.

At the simplest level of description, living organisms consist of a container, or
body, that separates the organism from its environment, a metabolism, and a carrier of
inheritable information. In simple procaryotic cells, thebody is a bilayer lipid mem-
brane composed of phospholipids, glycolipids, steroids (such as cholesterol) and em-
bedded membrane proteins [36] (Lipid membranes are presentin all organisms known
today, but higher developed organisms possess additional container components such
as cell walls or a multicellular body plan [37]). Furthermore, living organisms pos-
sess a metabolism that harvests energy from the environmentin order to produce their
constituent components. Needless to say, the very first organisms must have been
autotrophic and able to drive their metabolism with either chemical (redox) or light
energy. Finally, all present living organisms possess inheritable information, i.e. a
genome, in the form of DNA. Upon replication, an organism must duplicate its con-
tainer, its genetic information, as well as the constituents of its metabolism.

As has been stated in section 1.1.2, DNA plays a double role innowadays organisms
as it encodes information for protein synthesis on the one hand, while being operand
of a working protein machinery on the other hand. This poses an apparent “chicken
and egg paradox” for both DNA and proteins must exist in orderfor the other to func-
tion: DNA directed protein synthesis is only possible in a world with DNA, whereas
DNA requires a working proteome to function. To resolve thisparadox, Woese [38]
and Gilbert [39] have formulated the hypothesis of an RNA world, in which RNA as
a single constituent would act both as information carrier and as enzyme (sometimes
called ribozyme) that catalyzes its own or the replication of other RNA molecules or its
constituents [40]. The widely accepted RNA world hypothesis is supported by experi-
mental findings of ribozymes [41, 42, 43], as well as the non-encoding but catalyzing
role of rRNA in nowadays organisms’ protein synthesis – indeed, the catalytic centers
of ribosomes, the pivotal point of protein synthesis, have been identified as being made
of rRNA rather than proteins [44, 45, 37]. Finally, scenarios have been conceived by
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which an RNA world might have given birth to the familiar DNA/protein world [39].
With respect to the discussion in sections 1.1.2 and 1.1.3, self-replicating bio-

polymers in the RNA world constitute a simple scenario in which self-replication and
construction are tied together in that constructionis replication. Only with the advent
of a DNA/protein world, evolution discovered universal construction in the sense of
von Neumann, in which a multipurpose constructor (the ribosome and its associated
biomolecular machinery) can be programmed (via encoding DNA/mRNA strings) to
construct arbitrary machines (proteins). As the biopolymer in the RNA world does not
encode building instructions, the term “genome” is sometimes rejected. Nevertheless,
RNA is capable to store inheritable information also in the absence of an encoding, as
will be shown in section 1.2.3.

We will now discuss the replicative abilities of prebiotic lipid aggregates and bio-
polymers, as they might have contributed to the container and inheritable information
of the very first organisms.

1.2.2 Self-replicating lipid aggregates

Whereas the membranes of contemporary cells exhibit a complex composition of lipids
and proteins which is adapted to the environment and function of the cell [37], origin
of life scenarios commonly envision the first lipid aggregates to be of a much simpler
composition [46]. For a review on the availability and abiotic synthesis of lipids in
prebiotic scenarios, see Ref. [47]. In general, it is believed that single-chain surfactants
such as the fatty acids and alcohols that contribute the amphiphilic property of con-
temporary lipids are likely candidates of prebiotic and early biotic membranes [47]. In
particular, fatty acid lipids and amphiphilic alcohols have been shown to form vesicles
and micelles by spontaneous self-assembly in aqueous solution [48].

The phase diagram of these aggregates is subject to a varietyof molecular and
systemic parameters: whether an amphiphile solution formsmicelles, vesicles, or other
(less prominent or less defined) structures, is influenced bythe length and possible
branching of the hydrocarbon chain, the characteristics ofits head group, its pK value,
pH, temperature, and other systemic parameters. Ternary mixtures of oil, surfactant and
water exhibit an even richer phase behavior. Notably, fattyacid surfactants can stabilize
otherwise unstable oil water emulsions, giving raise to surfactant coated oil droplets
known as micro-emulsion compartments. Unfortunately, thesubject of soft condensed
matter systems is too broad to allow for a concise overview. The reader is referred to
Ref. [49]. The following overview will be restricted to unilamellar vesicles, micelles
and micro-emulsion compartments as conceivable containers of prebiotic organisms,
although other lipid phases might have also played a role in prebiotic evolution [50].

Induced budding and fission of vesicles

Spontaneous division of vesicles has not been reported in the literature. Division of
vesicles requires bending of the bilayer membrane to form a bud small enough for
lipids of the adjacent bilayer sheets to rearrange. For phospholipid (and likely also
fatty acid) membranes, the bending energy of the membrane imposes an energy barrier
that is unlikely to be overcome by thermal motion [37]. For this reason, the division
of contemporary cells is orchestrated by the complex machinery of the cytoskeleton
which itself is subject to the proteomics of the cell cycle [37]. Needless to say, if proto-
organisms were based on a vesicular embodiment, they lackedthis advanced machinery
and must have relied on other (possibly external) means of division.
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Division of vesicles can be induced externally. Experimentally, this is most easily
achieved by extrusion, a standard procedure of pressing amphiphile solutions through
a porous filter [51]. As Hanczyc and Szostak demonstrated [52], extrusion can force
giant unilamellar vesicles to devide without significant rapture of the membrane that
would lead to leakage of encapsulated material (in their case a dye). In a separate step,
vesicles of the next generation are grown by supplying additional lipids to the solution,
until they reach the original size.

Apart form extrusion, externally induced budding off of small vesicles from a giant
“mother” vesicle has been employed as a mechanism for vesicular division. Budding
can be enforced for example by (i) osmotically changing the surface to volume ratio
of the vesicle, (ii) by selectively increasing the area of the outer bilayer leaflet through
a temperature difference between the internal and externalsolution, or (iii) through
an asymmetry in the density of inner and outer membrane leaflets [52, and references
therein]. Budding can further be supported by the boundaries of domain forming lipid
compositions [53]. Theoretical studies have suggested additional means of induced
vesicle division based on adhesive nano-particles [54] or osmotic pressure [55, 56].

Replication of micelles, reverse micelles, and oil droplets

Whereas spontaneous replication scenarios of vesicles are not known, autonomous di-
vision processes have been reported for micelles, and reverse micelles [57, 58, 59].
Bachmann et al. [57] first reported self-replication of reverse micelles which are water
droplets stabilized in organic solvent by an amphiphile layer. If the reverse micelle
hosts a catalyst for a metabolic reaction, an autonomous growth and division cycle can
be achieved by the following means: A hydrophobic ester (in their case octanoic acid
octyl ester) is provided to the organic solvent of the systemand serves as nutrient for
the single metabolic reaction of cleaving the ester bond by hydrolysis. Reaction prod-
ucts are fatty acids (octanoic acids) and alcohols (octanol) – which are essentially the
surfactants of the ternary system. Ester cleavage is enhanced by a hydrophilic cata-
lyst (here LiOH) that will reside in the aqueous interior of the reverse micelle. The
setup guarantees that the metabolic turnover of nutrients occurs at the micellar inter-
face. Ref. [59] reports that ester cleavage is also found in the absence of a catalyst as
the metabolic reaction can instead be mediated by milieu effects in the micellar struc-
tures themselves. Ref. [58] presents a similar recipe for aqueous micelles in which the
geometry of the aqueous and lipid phase are reversed.

The supposed replication process in these system is best described for the original
setup of Ref. [57]: surfactants that are newly produced by ester hydrolysis arrange at
the lipid water interface of the reverse micelles as a resultof their amphiphilic proper-
ties. Under the course of the reaction, this leads to a changein the surface-to-volume
ratio of these aggregates, as the water is entrapped in the interior of the reverse micelles.
It is supposed that this induces an elongation of the structure up to a point where ther-
mal fluctuation suffices to divide the aggregate in two. A different interpretation of the
results, however, suggests that the surface-to-volume change of the aggregates may be
prevented by the rapid exchange of surfactants with the bulkphase [60] where excess
amphiphiles would form micellar structures de novo. The exact pathway of micellar
self-replication has not been identified in their publications [57, 58, 59] and is likely
subject to system parameters. Self-replication of surfactant coated oil-droplets is com-
putationally studied in chapter 4 of the this work.
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1.2.3 Self-replication of biopolymers

Biopolymers, such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are
the premier self-replicating molecules in living organisms. Their chemical structure
– linear heterogeneous polymers of pairwise complementarynucleotides that are able
to align to each other by specific and energetically weak Watson-Crick binding [36]
– immediately suggests the replication mechanism that is found in all contemporary
cells [37]. Nevertheless, even in the most simple procaryotes, biological DNA replica-
tion is controlled by enzymes in almost every single step [37]. A significantly less com-
plex, non-ezymatic replication mechanism must have preceded contemporary replica-
tion, which might have partially employed external factors[50].

Basically, the replication of biopolymers requires the processes of hybridization,
ligation, and melting. Hybridization is the alignment of complementary nucleotides or
oligomers along a template strand. Ligation is the forming of covalent bonds between
the aligned nucleotides. Finally, melting separates the double strand into the original
and its complementary copy.

As the ligation reaction is energetically uphill, monomersor oligomers need to be
activated in order to perform ligation. Nonenzymatic template-directed RNA polymer-
ization of elementary activated nucleotides (monomers) shows little yield in aqueous
solution but can be enhanced at surfaces (e.g. clay) or through up-concentration in
water-ice [50]. Template-directed replication from shorter activated oligomers, on the
other hand, has be shown to produce high yields for both RNA and DNA [61, 62, and
references therein]. The shortest DNA strand that has been experimentally replicated
in the absence of enzymes is a hexamer with complementary trimers [63].

1.3 Approaches toward artificial cells

The last section has discussed the replication of prebioticmolecular systems as they
are thought to have predated contemporary life, namely replicating lipid aggregates
and biopolymers. Trying to tie these subsystems to each other and to a metabolism
has lead to the field of protocell research [64, 65]. Protocells, or artificial cells, are
molecular aggregates that are able to grow, replicate, and possibly provide means to
grow in complexity, such that they might eventually undergoDarwinian evolution. In
contrast to the top-down approach of minimal genome research [66], protocell research
takes a bottom-up approach by combining inanimate matter tosystems that can be
identified as being alive. They are not confined to employ onlybiological components,
and they are not primarily intended to be plausible in early life scenarios. Two proposed
protocellular designs will now be presented. For a recent comprehensive overview of
the field, see Ref. [65, 67].

1.3.1 The chemoton

The chemoton (short for chemical automaton) is the design proposal of a minimal
artificial life-like system that was introduced by Gánti in the 1970s and has been con-
tinuously redefined since then [68, and references therein].

In its current conception [69], the chemoton consists of thethree subsystems con-
tainer, metabolism, and genome. The genetic information carrier (a biopolymer sys-
tem) is conceived to reside in a lipid container (vesicle) where it replicates by con-
suming monomer material produced via an autocatalytic metabolism [68]. The subsys-
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tems are stoichiometrically coupled: in particular, the metabolic production of genetic,
metabolic, and container building blocks is controlled by adifferential feedback mech-
anism that maintains an orchestrated growth of the entire system [70].

In total, the chemoton model employs 5 metabolic reagents that constitute the
autocatalytic cycle, one metabolic precursors for membrane molecules and one for
monomers of the genetic systems. With additional nutrientsand waste components, the
chemoton adds up to 12 components which interact through 10 chemical reactions [70].

It has to be emphasized, however, that the biopolymer in the chemoton does not
carry any information that would affect the behavior of the system apart from its need
of being reproduced in order for full replication to occur. Therefore, the chemoton does
not feature a true information component.

1.3.2 The Los Alamos minimal protocell

The protocellular design conceived by Rasmussen et al. [71]is currently subject to
combined experimental and computational studies. The model presented in chapters 5
and 6 of this work contributes to the computational portfolio of the Los Alamos pro-
tocell assembly project. A recent report of the overall project status can be found in
Refs. [72, 67].

In adherence with the simplicity paradigm of the Artificial Life movement, the
underlying design principle of this protocell is to minimize the number and complexity
of the physicochemical structures that a molecular aggregate requires in order to self-
assemble, grow, self-replicate, and exhibit limited evolutionary potential [71, 72]. To
achieve this, the Los Alamos minimal protocell features several major simplifications
(a detailed presentation of the system will be given in chapter 5):

1. The metabolic and genetic complexes operate at the external interface of a lipid
aggregate, rather than in the interior volume of a vesicle. Both fatty acid vesicles
and oil droplets are considered as proto-container.

2. The metabolism is reduced to a single reaction mechanism,namely a light driven
ester hydrolysis similar to the reaction described in section 1.2.2.

3. The information carrier (biopolymer) directly influences the rate of the metabolic
turnover reaction rather than encoding for the production of catalysts (such as
enzymes).

4. Catalytic coupling between container, metabolism, and information carrier at-
tempts to harvest robustness from self-balancing system dynamics, rather than
relying on a tight and more fault-prone stoichiometric coupling.

As this design tries to exploit ordering mechanisms which emerge from fundamental
physicochemical processes and properties, we argue that the Los Alamos minimal pro-
tocell is a paradigmatic example of the physically embeddedself-replication outlined
in section 1.1.5.

As has been shown in section 1.2.1, a non-encoding biopolymer does not provide
programmability of the system. This allows for self-replication as in section 1.1.3,
but not for universal construction as in section 1.1.2. As a consequence, selection is
expected to generate adaptation of the system toward betterperforming configurations
(i.e. inherited nucleotide sequences), but the evolutionary potential of the system might
turn out to be limited [73].
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The reader is invited to understand this thesis as two-sided: on the one hand, the
work presents an abstract self-replicating structure thatresides in a mathematical uni-
verse along the lines of von Neumann’s and Langton’s cellular automata. Its most no-
table difference of being space-time continuous arguably allows both for the mathemat-
ical framework as well as the replicating structure itself to be of unpreceded simplicity.
On the other hand, the work presents a computational model ofan envisioned physico-
chemical system. It has to be emphasized, however, that the inherent simplifications of
the employed modeling framework do not allow one to blindly draw quantitative pre-
dictions from simulation outcomes. Rather than prediction, the model has been used
within the protocell assembly project to support or reject design decisions, illuminate
system-level dynamics, and similar quantitative considerations. Only the comparison
with laboratory results and simulation results of other computation methods (such as
mass reaction kinetics and Molecular Dynamics simulations) will allow for reliable in-
terpretation of the presented results. Where available, these results are included in the
discussion.

Outline of the remainder of this work

The remainder of this work is organized as follows: chapter 2introduces to the mod-
eling techniques of Brownian dynamics and dissipative particle dynamics (DPD), its
physical foundations along with recent extensions to cope with chemical reactions, the
latter being used in the upcoming simulations. The chapter presents implementation
details, gives a comprehensive overview of recent applications in the field of Artificial
Life, and presents available software tools to perform saidsimulations.

Chapter 3 is dedicated to method development and rejects a claim that DPD is in-
applicable in the mesoscopic range, i.e. on the length scaleof micro- to millimeters,
on which most lipid dynamics of our interest take place. To achieve this, scaling rela-
tions are derived for all simulation parameters which respect physical and geometrical
constraints of the coarse-graining procedure, while simultaneously exploiting gauge
freedoms in the choice of units. The derived scaling relations render simulation param-
eters scale free and it is shown that a single DPD simulation represents an entire family
of physical systems that cover the entire mesoscopic regime. We note that the applica-
bility of DPD to the entire scale is helpful but not crucial for the validity of the later
simulations, as those take place on a length scale on which the modelling technique has
not been questioned.

Chapter 4 presents a simple model of physically embodied, self-replicating proto-
cells that couples a minimal autocatalytic metabolism to a simple container. The setup
is shown to be able to self-replicate, and the effect of critical model parameters on the
ability and performance of replication is analyzed.

In chapter 5 the minimal self-replicating system of chapter4 is extended by an
inheritable information molecule and the metabolic reaction is modified in order for
the system to closely model the Los Alamos approach towards artificial protocells.
The model is used to identify and analyze systemic issues over the entire life cycle
of the protocell as well as the coupling of its subsystems in an integrated simulation
framework. Results are compared to experimental data and findings of more detailed
computational studies.

Chapter 6 collects presently unpublished simulation results on specific issues of
the protocellular toy model that are not addressed in the previous chapters. Specifi-
cally, the chapter presents means to vary temperature in DPD, and analyses the effect
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of temperature cycles on the melting behavior of the container and genome. The origi-
nal conceptual design of the protocell is revised to preventthe occurrence of otherwise
infertile offspring. Namely, this is done by choosing double stranded information car-
riers over single stranded one. Preliminary results indicate that this design change may
cause product inhibition which may ultimately prevent successful self-replication of
the system.

Parts of this thesis have been published individually as peer reviewed contributions:

• Chapter 2: H. Fellermann, Spatially resolved artificial chemistry, In: A. Adam-
atzky and M. Komosinski (eds.),Artificial Life Models in Software2nd edition,
Springer, 2009

• Chapter 3: R. F̈uchslin, H. Fellermann, A. Eriksson, and H.-J. Ziock, Coarse-
graining and scaling in dissipative particle dynamics,J. Phys. Chem.130(21),
2009

• Chapter 4: H. Fellermann, and R. Solé, Minimal model of self-replicating nanocells:
A physically embodied, information-free scenario,Philos. Trans. R. Soc.Ser. B
362(1486):1803-1811, 2007

• Chapter 5: H. Fellermann, S. Rasmussen, H.-J. Ziock, and R. Solé, Life-cycle
of a minimal protocell - a dissipative particle dynamics (DPD) study,Artif. Life
13(4):319-345, 2007
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Chapter 2

Spatially Resolved Artificial
Chemistry

Reprinted with kind permission of Springer Science and Business Media from H. Fellermann, Spatially

resolved artificial chemistry, In: A. Adamatzky and M. Komosinski (eds.), Artificial Life Models in Software

2nd Edition, Springer, 2009.

2.1 Introduction

Although spatial structures can play a crucial role in chemical systems and can dras-
tically alter the outcome of reactions, the traditional framework of artificial chemistry
is a well-stirred tank reactor with no spatial representation in mind. Advanced method
development in physical chemistry has made a class of modelsaccessible to the realms
of artificial chemistry, that represent reacting moleculesin a coarse-grained fashion
in continuous space. This chapter introduces the mathematical models of Brownian
dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and re-
action. It reviews calibration procedures, outlines the computational algorithms and
summarizes examplary applications. Four different platforms for BD and DPD simu-
lations are presented which differ in their focus, features, and complexity.

The traditional mindset of artificial chemistry (AC) is a well-stirred tank reactor
with possible inflow and outflow of substrates (see Dittrich et al. [74] for a review of
AC). In this framework, spatial heterogeneities within a chemical solution are usually
not taken into account: the focus lies on the mere presence, absence or concentration
of chemicals rather than their spatial organization in the reaction vessel.

It is well known, however, that spatial structures can play acrucial role in chemical
systems and can drastically alter the outcome of reactions.Such structures can be ei-
ther imposed from the outside or they can be the result of the chemical reactions them-
selves. An example for imposed heterogeneities are upheld concentration gradients
along a reaction vessel. An example for self-organized structures are self-assembled
lipid aggregates which play a prominent role in molecular biology and its primordial
origins and are thus of primary interest for the field of artificial life (AL) and AC.

The surplus of complexity that results from the presence of lipid structures is mani-
fold: closed impermeable or semipermeable membranes (liposomes) compartmentalize
the reaction space thereby allowing for a variety of chemical regimes at once; proteins
embedded in such membranes allow for specific transport of substances (under the use
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of energy even against a concentration gradient); lipid structures can increase the ef-
fective concentration of hydrophobic chemicals and alter rate constants of reactions
therein (milieu effect).

Notable AL and AC models that explicitly incorporate space are the pioneering
works by Varela and Maturana [75], the lattice molecular automaton (LMA) by Mayer
and Rasmussen [76, 77], and a model of self-reproducing abstract cells by Ono and
Ikegami [78]. The common ground of all these models is that space is treated by means
of cellular automata: molecules or parts of molecules are modeled as point particles
that occupy sites on a 2D or 3D lattice. Motion of these particles and reactions between
them are defined by transition rules and a (possibly stochastic) updating algorithm is
used to follow a system state through time.

Advanced method development in computational physical chemistry paired with
the dramatic increase in computational power made a new class of models accessible to
the realm of AC. While being similar to the above mentioned cellular automata in that
space is modeled explicitly, these models operate off-lattice, i.e. particle positions are
not confined to sites on a grid. Instead of a fixed set of transition rules, particle motion is
determined by means of differential equations. Among thesenew methods, Brownian
dynamics (BD) and dissipative particle dynamics (DPD) are the most prominent ones.

Off-lattice simulation techniques have several advantages compared to cellular au-
tomata: i) not being constrained to fixed lattice sites and having translational invariant
interactions results in a significantly smaller set of required transition rules, ii) contin-
uous particle coordinates allow to closely connect to mechanistic physical theories, iii)
unconstrained motion of the particles avoids some of the artifacts found in lattice mod-
els (see e.g. [79]). However, the price one has to pay for these advantages is generally
a higher computational effort both in implementation and runtime.

The remainder of the chapter is organized as follows: Sect. 2.2 presents the the-
oretical concepts of BD and DPD. First, the general principle behind coarse-grained
off-lattice simulation methods are outlined in Sect. 2.2.1. This overview is followed by
detailed discussions of individual aspects of the physics (Sect. 2.2.2 through 2.2.4) and
implementation (Sect. 2.2.5). The theoretical section is concluded by a summary of
recent applications in Sect. 2.2.6. Sect. 2.3 is dedicated to the presentation of software
to perform off-lattice simulations with the possible capacity for chemical reactions.
The software packages – ESPresSo (Sect. 2.3.1), Spartacus (Sect. 2.3.2), Smoldyn
(Sect. 2.3.3) and LAMMPS (Sect. 2.3.4) – are summarized in one section each that list
respective features and shows examplary simulation setupswhere appropriate.

2.2 Concepts

2.2.1 Basic principles of coarse-grained, off-lattice simulation
techniques

BD and DPD are instances of coarse-grained modeling techniques in which the spa-
tial structure of molecules is represented explicitly, though not in full atomistic detail.
Instead, groups of atoms within a molecule are lumped together into point particles,
usually calledbeads. These beads are then connected by elastic springs to form the
whole molecule. Small molecules such as water, are even considered to be lumped
together into a single bead by groups of 3 to 5 molecules. The number of solvent
molecules per bead is referred to as thecoarse-grainingparameter. While it is possible
to relate coarse-grained representations to physical molecules [80], qualitative studies
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Figure 2.1: Example coarse-grained representation of decanoic acid (a fatty acid sur-
factant) and water. The molecules are modeled by three typesof beads: one represent-
ing the hydrophobic tail of the surfactant (3 hydrocarbon groups), one representing the
hydrophilic carboxyle group, and one representing water molecules of approximately
the same molecular volume.

often content themselves with simply specifying functional groups like hydrophobic or
charged parts of a molecule without a particular reactant inmind.

Concerning the treatment of solvent molecules, one can either explicitly represent
them by beads or implicitly account for their effect on the interactions of other beads.
If one is not interested in the dynamics of the solvent (e.g. hydrodynamic modes of the
system), its implicit treatment can save significant computational effort, since most of
the calculations are typically spent on solvent-solvent interactions.

An off-lattice simulation consists of a set ofN beads in a two- or three-dimensional
box. In explicit simulations, the space is considered to be densely filled, whereas
in implicit simulations, the bead density will depend on theconcentration of solved
molecules. Since only a finite volume is simulated, boundaryconditions need to be de-
fined to determine the outcome of collisions with the wall. Most common are periodic
boundary conditions, but closed, reflecting boundaries or acombination of the two can
also be found in the literature. Each bead has a position, velocity, and a type (for an
example configuration, see Fig. 2.2). The type of the bead determines its mass and its
interactions with other beads. The motion of the beads follows Newton’s Second Law
of Motionaccording to which a particle accelerates proportional to the force that acts
on it and inversely proportional to its mass. Written as an ordinary differential equation
(ODE) in bead position and velocity, the law reads:

.
ri(t) = vi(t)

.
vi(t) =

1

mi
Fi(t),

(2.1)

whereri is the position,vi the velocity, andmi the mass of beadi, dots denote time
derivatives (instantaneous changes in time).Fi, the force that acts on beadi, collects
all bead interactions.

If all atoms were simulated individually (as is done in fullyatomistic Molecular Dy-
namics (MD)), the force could be expressed as the negative gradient of some potential
φi such that Eq. 2.1 constantly transforms kinetic into potential energy and vice versa.
But when individual atoms are lumped together into coarse-grained beads, energy is
also exchanged with the internal energy of these beads. Instead of explicitly account-
ing for the internal energy of each bead, coarse-grained methods employ aLangevin
formalism to express the energy exchange with internal degrees of freedom: the force
Fi is expressed by three additive components, a conservative one (FC

i ), a dissipative
one (FD

i ), and a random one (FR
i ):

Fi = FC
i + FD

i + FR
i . (2.2)
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Figure 2.2: Example configuration of a coarse-grained simulation: the image shows a
bilayer membrane composed ofHTT trimers (green-yellow surfactants) in water (not
shown).

The dissipative force models friction by which kinetic energy is dissipated into succes-
sively less coherent motion, thereby removing energy from the explicitly represented
mesoscale into the assumed underlying microscale (internal energy of the beads). This
energy flow is counteracted by a random force, that models theeffect of microscopic
thermal noise on the mesoscale (Brownian motion). As the name suggests,FR

i in-
volves random variables, turning Eq. 2.1 into a stochastic differential equation, such
that the change in system energy can be captured by an Uhlenbeck-Ornstein process.
Combined, the dissipative and random forces act as a thermostat to regulate the tem-
perature, i.e. the kinetic energy of the explicitly modeledmesoscale.

Several proposals have been made to combine off-lattice simulations with chemi-
cal reaction kinetics. To enable this, a set of chemical reaction rules is added to the
system description that defines allowed transitions between bead types. To account for
these reactions, the numerical integrator is intertwined with a stochastic process that
applies bead transformations to the reaction vessel: within each time step, first the po-
sitions and velocities of all beads are updated, and second,reaction rules are applied
subsequently to all beads in the system.

To summarize, the coarse-grained models described in this chapter draw on a set of
(possibly interconnected) beads whose motion is governed by bead-bead interactions
expressed by potential functions and by the action of a thermostat. Additionally, transi-
tion rules between beads can be defined to describe chemical reactions. The following
sections will detail on each of these aspects.

A simple example of the overall setup is given in Fellermann and Soĺe [81, chapter
4 of this work] where the system consists of beads of three molecules: water, fatty acid
surfactants, and oily fatty acid esters. Water is represented explicitly by beads of type
W, esters are represented as dimers of two interconnectedT beads, and surfactants
are modeled as aT bead with a surfactant headH bead attached to it. The potential
interactions are chosen such that the model qualitatively reproduces the phases of these
binary and ternary systems. A catalytic reaction is defined by which ester molecules
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are transformed into surfactant molecules in the vicinity of other surfactant molecules:

TT + HT −→ 2TT (2.3)

This reaction models the hydrolysis of the ester bond under the assumption that the
produced alcohol is small enough to be neglected.

In this setup, the ester forms oil droplets in water which arecoated by surfactants.
The size distribution of these droplets is determined by thewater/oil/surfactant ratio.
The relatively slow reaction constantly transforms ester into new surfactants, thereby
changing the oil/surfactant ratio of the system. The changein concentrations is ac-
companied by a shift in surface to volume ratio of the droplets which respond by a
shape change from spherical to elongated, rod-like aggregates. Once a critical thresh-
old ratio is reached, the oil core is not sufficiently big to stabilize the aggregate which
divides into two spherical aggregates. When ester is supplied constantly, the growth
and division process continues and leads to exponential growth of the aggregates.

2.2.2 Interaction potentials

In the picture of Newtonian mechanics, each bead has a potential energy that results
from its interactions with other beads. This energy corresponds, for example, to pres-
sure in thermally fluctuating fluids, but could also have other (e.g. electrostatic origins).
Alternatively, one might say that the bead “feels” the potential energy of its neigh-
borhood and responds to it by moving away from high energy states – known as the
principle of least constraints.

As commonly done in particle based simulations, BD and DPD assume that the po-
tential of a beadi can be expressed as the sum of pairwise interactions with neighboring
beads:

Vi =
∑

j 6=i

Vij(ri, rj).

Since the space is assumed to be isotropic, the potential between particlesi andj can
only depend on their distance rather than their absolute position. Using

Vij(ri, rj) = φij(rij),

whererij = |ri − rj |, the conservative force in Eq. 2.2 becomes

FC
i = −∇

N
∑

i6=j

φij(rij). (2.4)

For further computational convenience,φij is usually truncated after a certain distance
rc, such thatφij(r) = 0 for r ≥ rc.

It has to be pointed out that the potential functions used in coarse-grained simula-
tion techniques must not be taken for mere mechanical energies as in atomistic (MD)
simulations. Instead, the potential functions used in coarse-grained simulations are
rather to be understood as a free energy that captures systemic properties of the system
such as heat, pressure, pH, or the concentration of cosolvents [82]. This is particularly
important for the study of entropy-driven processes underlying lipid systems, since en-
tropy is included in the free energy. Although there is no closed theory to derive the
functional form of the potential energy employed in coarse-grained simulations from
first principles, it is still possible to relate the potential functions to structure proper-
ties of the system under consideration. For example, there is a one to one mapping
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between the potential function and the radial distributionfunction which expresses the
average probability for two beads to be separated by a certain distance. Measuring the
radial distribution function of detailed atomistic MD simulations allows to construct
energy functions of a coarse-grained representation thereof (see Lyubartsev et al. [83]
and references therein). A further difficulty arises from the fact, that the dynamics
in coarse-grained simulations should represent a time-average of the assumed under-
lying atomistic motion, since the fast degrees of motion like most vibrational modes
of covalent bonds are meant to be removed in the coarse-graining process and instead
comprised in the noise term of the thermostat.

In general, the spatial and temporal averaging of the coarse-graining process moti-
vates the use of much smoother interaction potentials than the ones commonly applied
in atomistic MD simulations. In particular, they typicallydo not possess a singularity
atr = 0, meaning that two beads are allowed to sit right on top of eachother (although
under an energy “penalty” that may render this event practically impossible). This can
be justified by the observation that (i) the bead position merely identifies the center of
mass of a collection of molecules, and (ii) even if the bead represents a single molecule
or part thereof, it denotes the average position of the molecule during some short time
interval; for both of these mean positions it is perfectly legal for two positions to co-
incide. Whichever justification one might assent to, the resulting soft corepotential
allows to run the numerical integrator of Eq. 2.1 with a significantly wider time step
compared to functional forms that include a singularity.

Given these difficulties, many studies (that treat the solvent explicitly) content
themselves with simple potentials of the form

φij(r) =

{

1
2aij

(

1 − r
rc

)2

if r < rc

0 otherwise.
(2.5)

whereaij > 0 denotes the mutual repulsion strength between two beads of typei and
j. Note that there is no theoretical foundation for this function other than being the
most simple confined function with continuous derivative. It has to be pointed out,
however, that Eq. 2.5 relies on the explicit treatment of solvent, since the absence of an
energy minimum would not allow for the formation of structures.

Having fixed the functional form of the potential, the matrix(aij) is the premier
place for model calibration. A standard calibration procedure to mesoscopic observ-
ables has been suggested by Groot and Rabone [80, 84, 85] (seehowever F̈uchslin et
al. for issues on its scaling behavior [86, chapter 3 of this work]). Generally, the proce-
dure starts by matching the diagonal interaction parameters aii to the compressibility
of the physical fluid. The off-diagonal elementsaij(i 6= j) express the mutual solubil-
ity of substances. and are calibrated in a later step to parameters obtained from mixing
theories, in particular the Flory-Huggins theory of polymer mixing where mutual in-
teraction parameters are derived from free energy considerations in a lattice model of
polymers. For specific systems, other mesoscopic observables have been suggested for
calibration (e.g. [87, 88, 89, 85]).

Additional terms can be added to the “ground” potential if needed. Most promi-
nently, mechanical potentials between bonded beads have been use to model extended
molecules. Venturoli and Smit [90] were the first to introduce harmonic spring poten-
tials into DPD simulations, where bonded beads feel the additional potential

φS
ij = kS (rij − rS)

2
,
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with rS being the optimal bond distance andkS the spring constant. Shillcock and
Lipowsky [91] have added a three-body angular potential to model stiffness in ex-
tended polymer chains. Higher order potentials used in MD simulations (e.g. torsion
potentials) are barely needed in coarse-grained simulations due to the simplistic rep-
resentation of molecules. Other notable add-ons are Coulomb forces for electrostatic
interactions [92], gravity [93], and shear forces [94, 95].

2.2.3 Thermostats

As pointed out in Sect. 2.2.1, thermostats in coarse-grained simulations are an integral
part of the system description: whereas MD simulations utilize thermostats merely to
keep the system at constant temperature, and generally try to minimize their impact
on simulation results, coarse-grained simulations interpret the energy exchange with a
heat bath as physically meaningful. As a consequence, coarse-grained models employ
entirely different thermostats than the ones found in MD simulations.

The theoretical foundation of thermostats for coarse-grained simulations is the
Langevin formalism for diffusive motion [96]: a spherical particle in a steady medium
will experience a viscous drag proportional to its velocityand stochastic kicks from
other particles randomly hitting it. In the presence of a possible external forceF, the
equation of motion reads

.
v(t) =

1

m
(F(t) − γv(t) + ξ(t)) , (2.6)

whereγ > 0 is a friction coefficient andξ an uncorrelated random vector with zero
mean and finite variance:

〈

ξi(t), ξj(t
′)

〉

= 2σδijδ(t − t′). In the context of Eq. 2.2,
the first term of the sum representsFC, the second oneFD, and the last oneFR. The
equilibrium temperature is given byγ andσ and resolves toσ/γ. Off-lattice models
that employ this thermostat are commonly referred to as Brownian dynamics (BD).
They are particularly suited for implicit simulations, since the effect of the solvent
is already accounted for in the thermostat. It has to be emphasized, however, that
Eq. 2.6 models motion in a steady medium, as the friction is proportional to the absolute
velocity of the bead, rather than the velocity relative to the surrounding medium. Thus,
the dynamics of the system is purely diffusive and neglects hydrodynamic modes.

To incorporate hydrodynamics into coarse-grained simulations, Hoogerbrugge and
Koelman introduced the method of dissipative particle dynamics (DPD) [97] whose
thermostat has become increasingly popular. The DPD thermostat decomposes all
forces into pairwise contributions:

Fi =
∑

j 6=i

Fij =
∑

j 6=i

FC
ij + FD

ij + FR
ij , (2.7)

which are required to be central

Fij = −Fji and Fij ∝ r̂ij , (2.8)

wherer̂ij is the unit vector pointing from beadj to i. The centrality asserts that the
linear and angular momentum of the system is preserved, therefore allowing to analyze
hydrodynamic flows. In fact, it can be shown that the DPD thermostat implements a
numerical solver for the Navier-Stokes equations [98]. With these requirements, the
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Figure 2.3: Schematic of the dissipative force (friction) in DPD. The force acts central
on the line given by the bead positionsri andrj (parallel torij). Its magnitude de-
pends on the relative velocityvij : friction is maximal when beads approach each other
directly and zero when they move parallel.

only (local and memory-free) way to achieve an Uhlenbeck-Ornstein process whose
equilibrium distribution is a Gibbs ensemble is to set [99]

FD
ij = −

σ2

2kbT
ω2(rij) (vij · r̂ij) r̂ij ,

FR
ij = σω(rij)ζij r̂ij ,

whererij is the Euclidean distance between beadsi andj, andvij is the relative ve-
locity between beadj andi. ζij is an uncorrelated random variable with zero mean,
Gaussian statistics and a variance of∆t1/2 for the numerical time step∆t. In order to
preserve linear momentum, it has to hold thatζij = ζji. σ is the friction coefficient
of the medium (related to its Reynolds number),kbT defines the energy unit whereT
denotes the temperature in Kelvin andkb is the Boltzmann constant.ω is a dimension-
less weighing function which is not specified by the general formalism. Most studies
employ a weight function similar to the soft core interaction potential:

ω =

{

(

1 − r
rc

)2

if r < rc

0 otherwise.

While it is known thatω has impact on the overall system dynamics, like viscosity [100]
and temperature conservation [101], no proposal has yet been made on how to derive
the weight function from first principles.

The scalar product in Eq. 2.9 ensures thatFD is maximal when two beads approach
each other and zero, when the particles move parallel (see Fig. 2.3). This leads to
the alignment and collaborative motion of nearby beads. As aresult, the pairwise
coupling of the dissipative and random forces in DPD resultsin faster dynamics than
the ones observed in BD simulations. However, the accelerated dynamics of the DPD
thermostat are actually an artifact of the method: in DPD mass diffusion is too high
when compared to travel of momentum. The Schmidt number (theratio of kinematic
viscosity vs. self-diffusion coefficient) is about three orders of magnitude lower in the
DPD simulation of water than in the real system [84, 100].

2.2.4 Chemical Reactions

Probably the first approach to extend spatially resolved reactor vessels with chemical
reactions was the work by Ono [78] who incorporated a stochastic process for reactions
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into a BD simulation. This approach has later been put on a more rigorous theoreti-
cal foundation (the Smoluchowski model for diffusion-limited reactions) by Andrews
and Bray [102] and Monine and Haugh [103]. Similar approaches are the work of
Buchanan et al. [104, 105], Fellermann et al. [88, 81, chapters 4 and 5 of this work]
and Liu et al. [106], who extended DPD by similar means to incorporate reactions.

Most chemical reactions can be classified as uni- or bimolecular reactions – de-
pending on the number of molecules that participate as reactants. Higher order reac-
tions barely occur in nature due to the unlikelihood of threemolecules hitting each
other concurrently. Following this formalism, inflow of chemicals can be regarded
as a zeroth-order reaction that has no educt, whereas outflowof chemicals can be re-
garded as a first-order reaction that has no product. Reactions can be further classified
as syntheses or analyses, depending on whether covalent bonds are formed or broken
by the reaction. The formation and braking of covalent bondscan result in a change
of physico-chemical properties of the molecular species. In the coarse-grained repre-
sentation of BD and DPD, this is expressed as a type change of the reacting beads.
Depending on the coarse-graining level and representationof molecules, bond braking
and formation might even happen completely below the resolution of the model such
that chemical reactions are mere type transformations thatdo not affect explicitly mod-
eled covalent bonds. In the formalism presented here, chemical reactions only occur
between beads that represent a single molecule or part of a molecule – no attempt has
been made yet to define chemical reactions between beads thatgroup together several
molecules. Examples of possibles reactions are

k
−→ X inflow (zeroth-order)

A
k

−→ outflow (first-order)

A
k

−→ X molecular reconfiguration (first-order)

AB
k

−→ X + Y unimolecular analysis (first-order)

A + B
k

−→ XY bimolecular synthesis (second-order)

Here,A, B, X, andY denote beads that may be part of an extended molecule. Con-
catenated symbols refer to bonded beads. For simplicity, all reactions are written as
irreversible reactions. Reversible reactions can be represented as pairs of irreversible
reactions, where each member represents one of the two directions.

Evidently, bimolecular reactions occur only when the two reagents are in close
vicinity. For diffusion limited reactions, i.e. in the absence of an activation energy
barrier, this distance is given by the sum of the molecular radii of the two reagents.
If there is an activation barrier, one possibility is to define an effective binding radius
smaller than the sum of molecular radii. The size of this binding radius can be related
to the effective reaction rate by the Smoluchowski equation

rb =
k

4π(DA + DB)
, (2.9)

whereDA andDB are the diffusion coefficients of the two reagents andk is the ef-
fective (measured) reaction rate [102]. Following Collinsand Kimball [107], one can
alternatively define a probability for reactions to occur within the unaltered reaction
radius. Likewise, unimolecular reactions either occur with a certain probability

1 − e−k∆t,
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or – if explicit bond breaking is involved in the reaction – once the reacting beads
separate by more than a certain unbinding radiusru > rb. ru can be related torb by the
equation:

ru =
rb

1 − k/kr
, (2.10)

wherekr is the rate of geminate recombination [102]. When a pair of bond forming and
breaking reactions is used to model a reversible reaction, care must be taken that the
reactants are separated by more thanrb after bond breaking. Note that (2.9) and (2.10)
are only valid for numerical time steps∆t smaller than the root mean square displace-
ment of the reacting particles. Andrews and Bray [102] give corrected equations for
larger simulation time steps, as well as a comparison of the deterministic and stochastic
method. Zeroth-order reaction do not depend on any educt concentration, and their oc-
currence is simply determined by comparing the reaction rate to a Poisson distributed
random number with averagek∆t for the simulation time step∆t.

Ono [108] and Fellermann et al. [88, 81, chapters 4 and 5 of this work] use an
extended variant of the Collins and Kimball scheme that accounts for the presence of
nearby catalysts. Other than modeling the exact reaction mechanism by which the
catalyst participates in the reaction scheme, it is assumedthat the mere presence of
catalytic molecules enhances the effective reaction rate.The equation to calculate this
effective rate is

k = ki +
∑

C

kC

(

1 −
r

rcut

)

(2.11)

wherer is the distance between the catalyst and any of the reactantsand the sum runs
over all catalystsC with r < rcut.

All of the stochastic approaches assume that reactions occur independently, which
is violated when a single bead might react with one of severalnearby other reagents.
A proper mathematical framework to deal with this stochastic independence would
be provided by the Master equation [96]. However, its computation is too expensive
to be redone in each updating step, which is why current studies commonly ignore
the problem of interdependence and merely try to avoid it by using small reaction
and catalyst rates and constantly reshuffling the list of reactions and reagents to avoid
biases.

Having defined the set of possible reaction rules, the integrator for the equations
of motion is intertwined with a stochastic process such thatin each time step particle
motion and chemical reactions are taken care of sequentially.

Further method development needs to be done in connecting the potential, kinetic,
and chemical energy reservoirs: the change in internal (chemical) energy associated
with bond formation and breaking and change of potential energy due to bead type
transformation would need to be accounted for in a velocity change of the reacting
beads leading to local heating (A first step in this directionhas been taken by Yingling
and coworkers [109]). This would e.g. allow to capture effects that rely on activation
energy barriers.

2.2.5 Updating schemes and spatial organization

At the heart of all BD and DPD simulators lies an integrator for the stochastic differen-
tial equation 2.1. Owing to the special form of the Newtoniandynamics, an inexpensive
high-order integrator can be derived from two Taylor expansions:
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ri(t + ∆t) = ri(t) +
.
ri(t)∆t +

1

2

..
ri(t)∆t2 +

1

6

...
r i(t)∆t3 + O(∆t4)

ri(t − ∆t) = ri(t) −
.
ri(t)∆t +

1

2

..
ri(t)∆t2 −

1

6

...
r i(t)∆t3 + O(∆t4).

Adding these two equations and substituting
..
ri(t) = ai(t) leads to a very simple forth-

order integrator known asVerlet integrator [110]:

ri(t + ∆t) = 2ri(t) − ri(t − ∆t) + ai(t)∆t2 + O(∆t4).

Verlet-based integrators outperform standard procedureslike Runge-Kutta not only be-
cause of their computational inexpensiveness but also because they preserve phase
space volume in conservative systems, which reduces artifacts such as gradual tem-
perature increase.

If velocities are to be known explicitly, e.g. to compute thekinetic energy of the
system, the substitutionvi(t) = (ri(t) − ri(t − ∆t)) /∆t+ 1

2ai(t)∆t+O(∆t2) leads
to a variant calledVelocity Verletalgorithm

ri(t + ∆t) = ri(t) + vi(t)∆t +
1

2
ai(t)∆t2 (2.12)

vi(t + ∆t) = vi(t) +
1

2
(ai(t) + ai(t + ∆t)) ∆t (2.13)

which is forth order in positionsri and second order in velocitiesvi. This is a com-
monly used integrator for BD simulations. There is a subtlety, however, when acceler-
ationsai do not only depend on positions but also on velocities, as is the case forFD

in the DPD equations. Eq. 2.13 then becomes

vi(t + ∆t) = vi(t) +
1

2mi
(Fi(r(t),v(t)) + Fi(r(t + ∆t),v(t + ∆t))) , (2.14)

where the termvi(t + ∆t) appears in both sides of the equation. To overcome this
problem, Groot and Warren [84] have suggested a predictor-corrector like integrator
which has become the de facto standard in DPD simulations. Intheir integrator, the
positional update is unchanged (Eq. 2.12). To compute the velocities, the algorithm
first makes a prediction (Eq. 2.15) followed by a correction based on the force field of
the predicted state (Eq. 2.16):

ṽi(t + ∆t) = vi(t) +
λ

mi
Fi(r(t),v(t)) λ ∈ [0, 1] (2.15)

vi(t + ∆t) =

vi(t) +
1

2mi
(Fi(r(t),v(t)) + Fi(r(t + ∆t), ṽ(t + ∆t))) .

(2.16)

If Fi does not depend onv, the original Velocity Verlet integrator is recovered for
λ = 0.5. Due to the stochastic nature of the force field, the order of the integrator is
unclear. There is no imperative on howλ should optimally be chosen. Reported values
differ betweenλ = 0.5 [111] andλ = 0.65 [84]. Thus,λ clearly depends on other
systems parameters and needs to be fine-tuned to the system under consideration.

Subsequent studies [112, 111, 113] have identified artifacts of the Verlet based al-
gorithms, predominantly in the radial distribution function of the system [113]. Build-
ing upon work by Pagonabarraga et al. [114], Vattulainen et al. [113] have proposed a
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Figure 2.4: Internal partitioning of a two dimensional space (dashed grid) filled with
beads (black dots). The size of the cells is at least the cut-off radius of all involved
interactions (radius of the solid circle). To find all interaction partners for a given bead
(white dot) it is sufficient to consider only beads within a3×3 -Moore neighborhood
around the cell that contains the bead (solid square). Note that the grid representation
is only internal and does not restrict the actual position ofbeads within each cell.

more elaborate so-calledself-consistentintegrator in which the system temperature is
constantly measured and compared to its target value. The deviance is used to fine-tune
the dissipation rate of the system. In general, the performance of DPD integrators is
still an active area of research due to the stochastic natureof the interactions.

Beside well-suited integrators, simulators for coarse-grained simulations need to
provide efficient means to access neighbors of beads. Fast neighbor look-up is essential
for the computation ofFC in the case of BD (Eq. 2.4) andFC, FD, andFR in the case
of DPD (Eq. 2.7). If all particles where naively held in a simple list or array, look-up
time would scale quadratic with the number of particles. By taking advantage of the
limited cutoff rangerc for all forces, careful bead management can reduce the number
of look-ups to scale linear with the number of beads. To achieve this, an algorithm
calleddomain decompositionor linked listsis commonly used: the space is partitioned
in cells with a side length of at least the cutoff radiusrc. Each cell holds a list of
particles it contains, as well as information about neighboring cells (dashed grid in
Fig. 2.4). For each bead, neighbor look-up can now be restricted to the3×3 -Moore
neighborhood of the cell that holds the current bead (solid square in Fig. 2.4). If bead
interactions are symmetric (e.g. due to Eqs. 2.4 and 2.8) thenumber of cells to check
can even be reduced by one half. With this management, an estimated62.8% of all
tested pairs will be within the cutoff radius (solid circle in Fig. 2.4) and29.9% in three
dimensions. It should be emphasized that the grid representation of the space is only
an algorithmic organization principle and does not confine the actual position of beads
within each cell. Implementation can either use one linked list for all beads or separate
lists for each bead type, which can improve the performance when bead interactions
are highly type specific (as in case of chemical reactions).

2.2.6 Applications

Pure BD and DPD models that do not incorporate chemical reactions have been used
extensively in areas as diverse as rheology, material sciences, soft matter studies, and
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molecular biology. Concerning the latter, the study of lipid strctures such as mem-
branes and vesicles, their self-assembly, fission, fusion,rapture, and dissolution has
arrested particular attention [80, 115, 54, 90, 116, 117]. The recent incorporation of
chemical reactions into these models has initiated severalsimulations in the area of
artificial chemistry and artificial life.

Gazzola et al. [105] have used reactive DPD to study the catalytic effect of self-
assembled lipid structures due to effective upconcentration of hydrophobic reagents.
Simulating abstract chemistries, they observed that the affinity of reagents to reside
either in the solvent or in the interior of self-assembled lipid structures (micelles), alters
the effective reaction networks that emerge in the reactionvessel.

Ono [108] and Fellermann and Solé [81, chapter 4 of this work] have studied the
self-assembly, growth, and replication of minimal life-like entities: lipid aggregates
equipped with a minimal artificial metabolism. Ono presentstwo-dimensional BD sim-
ulations of vesicular structures driven by a catalytic turnover of precursor molecules,
Fellermann and Solé performed three-dimensional DPD simulations of surfactant-coat-
ed oil droplets that replicate by means of an auto-catalyticnutrient turnover (described
in Sect. 2.2.1).

Complementary to the above work are qualitative simulations on non-enzymatic
replication of short genetic polymer sequences. Bedau et al. [118] have analyzed
the ability of complementary polymer strands to spontaneously replicate in solution,
whereas Fellermann et al. [88, chapter 5 of this work] have studied a similar process
at the oil-water interface of the aforementioned lipid aggregates. Taken together, these
works present integrated simulations of the spontaneous emergence of artificial life-like
aggregates, or “protocells” [65].

2.3 Available Software and Tools

Several BD and DPD simulators exist both in commercial as well as open source ap-
plications. The following list is not meant to be complete, but tries to identify those
programs that stand out for maturity, extensibility, or interoperability. The programs
are similar in that they use configuration files to set up a simulation. The configuration
file is sent to a non-interactive simulator that calculates the system trajectory and writes
out the result of various analyzers.

2.3.1 ESPresSo

ESPResSo is a fairly developed and feature-rich open sourcesimulation package for
soft matter research (BD and DPD among others) developed by H. Limbach et al. [119]
and licensed under the GNU General Publishing License (GPL). The software is avail-
able for Windows, Unix/Linux, and Mac OS. ESPresSo is written in C and can operate
in parallel mode via MPI, and can be controlled via Tcl scripts [120]. Online visu-
alization is delegated to VMD, an independent open source software for molecular
visualization [121]. Out of the box, ESPresSo does not include chemical reactions.

In ESPresSo, simulations are set up via configuration scripts that define system size,
boundary conditions, bead types, interactions, an initialcondition, analyzers, a.s.o.
These configuration files are actual Tcl scripts that offer powerful means for arbitrarily
complex simulation setups. An example script to set up and run a simulation is shown
in Fig. 2.5. The system consists of 1780W beads (water), 600TT dimers (oil), and
10 HT dimers (surfactants) in a box of size103. Bead interaction parameters are:
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aW,W = 25, aW,H = 15, aW,T = 80, aH,H = 35, aH,T = 80, aT,T = 15. The DPD
thermostat is chosen with a temperature of 1 and friction parameter 4.5. Integration
step size and number of steps is set to 0.01 and 1000, respectively, and the system is
finally integrated. Various analyzers could further be incorporated.

The package offers support for various boundary conditions, a variety of potentials
for bonded and non-bonded short range interactions, electrostatics (Coulomb forces),
rigid bonds, as well as bond-angle and dihedral interactions. ESPresSo also provides
tabulated interactions to incorporate interaction potentials measured e.g. from more
detailed interactions (see Sect. 2.2.2).

ESPresSo comes with a variety of predefined analyzers for common observables.
Among the most common ones are

• statistical physics

– energies (total, kinetic, Coulomb, non-bonded, bonded)

– pressure (total, ideal, Coulomb, non-bonded, bonded)

– stress tensor (total, ideal, Coulomb, non-bonded, bonded)

– mean square displacement

• distribution and correlation functions

– radial distribution function

– structure factor

– van-Hove autocorrelation function

– aggregate size distribution

– free volume distribution

• analyzers for polymer chains

– end to end distance

– radius of gyration

In addition, custom analyzers can be defined with ease. Analyzers are ordinary func-
tions that can be used anywhere in the configuration script. ESPresSo provides a few
built-in commands for statistics (averaging, errors, etc.) and plotting, the latter by del-
egation to gnuplot [122].

Owing to the flexibility of the Tcl based design, it is easy to incorporate chemical
reactions into ESPreSso. Fig. 2.6 shows an exemplary algorithm that implements the
reaction (2.3) based on a simplified version of Eq. 2.11. The implementation is only
meant for the purpose of illustration: for a productive setup, the algorithm should be
written in a compilable computer language and wrapped into Tcl.

2.3.2 Spartacus

Spartacus is an experimental open source framework for BD and DPD simulations
developed by the author and licensed under the GNU General Publishing License
(GPL) The software is available for Mac Os, Linux. Spartacusis similar in function to
EsPresSo, but focuses on chemistry rather than physics. It incorporates all algorithms
for chemical reactions that have been described in Sect. 2.2.4. The framework consists
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# System parameters
set box_l 10. ;# box size
set n_W 1780 ;# number of W beads
set n_TT 600 ;# number of TT dimers
set n_HT 10 ;# number of HT dimers
set n_total 3000 ;# total number of particles

# Integration parameters
set cut 1.0 ;# cut off range r_c
set int_steps 100 ;# micro-integration steps (between analysis)
set int_n_times 1000 ;# macro-integration steps

setmd time_step 0.01
setmd skin 0.4
setmd box_l $box_l $box_l $box_l
thermostat dpd 1.0 4.5 $cut

# Interaction setup
inter 0 harmonic 100 0.75

inter 0 0 soft-sphere 25 2 $cut 0
inter 0 1 soft-sphere 80 2 $cut 0
inter 0 2 soft-sphere 15 2 $cut 0
inter 1 1 soft-sphere 15 2 $cut 0
inter 1 2 soft-sphere 80 2 $cut 0
inter 2 2 soft-sphere 35 2 $cut 0

# Particle setup

# water beads
for {set i 0} { $i < $n_W } {incr i} {

set posx [expr $box_l*[t_random]]
set posy [expr $box_l*[t_random]]
set posz [expr $box_l*[t_random]]
part $i pos $posx $posy $posz type 0

}

# TT dimers
for {} { $i < [expr $n_W+$n_TT] } {incr i 2} {

set posx [expr $box_l*[t_random]]
set posy [expr $box_l*[t_random]]
set posz [expr $box_l*[t_random]]
part $i pos $posx $posy $posz type 1
part [expr $i+1] pos $posx $posy [expr $posz+0.8] type 1 bond 0 $i
part $i bond 0 [expr $i+1]

}

# HT dimers
for {} { $i < [expr $n_W+$n_TT+$n_HT] } {incr i 2} {

set posx [expr $box_l*[t_random]]
set posy [expr $box_l*[t_random]]
set posz [expr $box_l*[t_random]]

part $i pos $posx $posy $posz type 1
part [expr $i+1] pos $posx $posy [expr $posz+0.8] type 2 bond 0 $i
part $i bond 0 [expr $i+1]

}

# Integration
set j 0
for {set i 0} { $i < $int_n_times } { incr i} {

integrate $int_steps
# [...] do some analysis here

}

Figure 2.5: Example Tcl script to control ESPresSo for the example system of
Sect. 2.2.1. See text for explanation.
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proc react {reaction}
{

# reaction is { educt product rate catalyst cat_rate cat_range}
# educt and product are list of 2 elements, specifying bead types

set educt [lindex $reaction 0]
set product [lindex $reaction 1]
set rate [lindex $reaction 2]
set catalyst [lindex $reaction 3]
set cat_rate [lindex $reaction 4]
set cat_range [lindex $reaction 5]

foreach {part_a} [part]
{

# iterate over all possible educts
set a_id [lindex $part_a 0]
set a_type [lindex $part_a 6]
set a_bonds [lindex $part_a 33]
if { $a_type != [lindex $educt 0] } { continue }
set b_id [lindex [lindex $a_bonds 0] 1]
set b_type [part $b_id print type]
if { "$a_type $b_type" != $educt } { continue }

# compute effective reaction rate
set k $rate
foreach {cat} [analyze nbhood $a_id $cat_range]
{

set c_type [part $cat print type]
if { $c_type != $catalyst } { continue }
set k [expr $k+$cat_rate]

}

# exchange bead types if a reaction occurs
if { [expr $k*[setmd time_step]] > [t_random] }
{

part $a_id type [lindex $product 0]
part $b_id type [lindex $product 1]
continue

}
}

}

# [...]
# This part replaces ‘integrate $int_steps’ from the example in Fig. 4

for {set t 0} { $t < $int_steps } { incr t}
{

integrate 1
react "{1 1} {1 2} 0 2 0.5 $cut"

}
# [...]

Figure 2.6: Algorithm for reconfiguration reactions in ESPresSo that implements a
simplified version of Eq. 2.11 (not implementing the linear decrease with catalyst dis-
tance). The functionreact is called with 6 arguments – the reactant, product, spon-
taneous reaction rate, catalyst bead type, the catalyst’s rate enhancement, and range.
Reactant and product are assumed to be Tcl lists of 2 elements. Together with the
system setup in Fig. 2.5, this implements the example given in Sect. 2.2.1.
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# set system size, bead number, and density
from simulation.grid import Space3D
size = 10
space = Space3D

# define bead types
from simulation.chemistry import Particle
class W(Particle) :

pass

class H(Particle) :
color = "green"

class T(Particle) :
color = "yellow"

H.binds = [T]
T.binds = [T,H]
particles = [W,H,T]

# reactions
from simulation.chemistry import Reaction
reactions = [

Reaction(
[T,T], [H,T], # educt, product
1.0, 0.0, # range (unused), spontaneous rate
H, 1.0, 0.5 # catalyst, range, and rate

)
]

# random initial condition
initial_condition = RandomInit(n_W=1780, n_T=600, n_H=10)

# define interactions
import simulation.physics.dpd as dpd

cut = 1
class Physics(dpd.Physics) :

matrix = {
(W,W) : (25,cut),
(W,H) : (15,cut),
(W,T) : (80,cut),
(H,H) : (35,cut),
(H,T) : (80,cut),
(T,T) : (15,cut),

}

# thermostat variables and integration time step
gamma = 4.5
sigma = 3.0
time_step = 0.01
physics = Physics(cut, gamma, sigma, time_step)

Figure 2.7: The same system setup as in Fig. 2.5 implemented for Spartacus in the
python programming language. Unlike ESPresSo, Spartacus uses configuration files
only for the system setup but not for the actual integration.
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of a core simulation engine written in C and python [123], andcan be controlled and
extended via python scripts, and inspected at runtime by a graphical interface. Fig. 2.7
shows the example configuration of Fig. 2.5 implemented for Spartacus.

Spartacus offers predefined analyzers comparable to ESPresSo but with emphasis
on chemistry instead of physics:

• statistical physics

– energies (kinetic, potential)

– pressure (virial and excess pressure)

– mean square displacement

• distribution and correlation functions

– velocity correlation and autocorrelation

– radial distribution function

– aggregate size distribution

• system chemistry

– bead numbers

– reactivity

– compositional entropy (of aggregates)

Additional analyzers can be defined in the configuration file.Spartacus prints out the
result of analyzers for further processing. Alternatively, the system state or screen shots
can be saved along a trajectory. Scripts are provided to assemble movies from this data.

2.3.3 Smoldyn

Smoldyn is a spatially resolved simulator for chemical reaction networks with focus
on molecular biology. It has been implemented by S. Andrews and licensed under the
GNU Lesser Publishing License (LGPL). Smoldyn does not consider bead interactions
but merely diffusive motion (implemented as momentumless random walk). Conse-
quently, molecules can only be represented by single beads and their internal structure
cannot be modeled – the framework is therefore most appropriate for higher coarse-
graining parameters.

The main focus of Smoldyn is its accurate incorporation of chemical reactions [102].
Reactions can be zeroth-, first-, and second-order (type change) reactions. Smoldyn im-
plements reactions based on the Smoluchowski formalism (see Sect. 2.2.4). Smoldyn
further allows to define surfaces and compartments for membranes and vesicles by ge-
ometrical shapes. These structures can reflect, absorb, or bind beads, and may have an
influence on their reactivity and diffusion.

Simulations in Smoldyn are set up by plain text configurationfiles, implying that
the software is not extensible by scripting. The time evolution of a system can be
inspected at runtime via a graphical interface and can be captured as movie. Addition-
ally, analyzer results can be printed out for further analysis. Analyzers focus on bead
numbers, either in total, or located at specific surfaces or compartments.
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2.3.4 LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively ParallelSimulator) is a fast and
feature-rich molecular (MD) dynamics software that includes code for coarse-grained
DPD simulations. The software has been developed by S. J. Plimpton, P. Crozier, and
A. Thompson [124] and licensed under the GNU General Publishing License (GPL).
LAMMPS is implemented in C++ and runs on single processor desktop machines but
is designed with massively parallel architectures in mind (employing MPI). LAMMPS
does not support chemical reactions and is not extensible byscripting but defines a
clear interface for C++ extensions.

LAMMPS consists of a core-engine that is controlled by a textual configuration
file. It can print out the system’s time evolution. Alternatively, LAMMPS allows to
print out the results of custom analyzers that can be defined in the configuration file.
Since the configuration file does not define a full-featured programming language, the
range of possible analyzers is limited (e.g. to time and ensemble averages of per-atom
quantities). More complex observables need to be calculated from the system’s trajec-
tory files. The package includes scripts to generate movies and can produce output for
VMD [121] and other visualization softwares.

2.4 Conclusion

This chapter has introduced modeling techniques and software for spatially resolved,
coarse-grained Artificial Chemistry – primarily Brownian dynamics (BD) and dissipa-
tive particle dynamics (DPD) with incorporated chemical reactions. The chapter has
derived the underlying mathematical models, and has reviewed implementation princi-
ples, means of calibration. The presented methods allow to simulate molecular motion,
reaction, and spatial organization in an integrated framework, which makes them valu-
able tools in the study of emergent physico-chemical structures (e.g. lipid aggregates)
and processes that influence or are influenced by those structures, as the existing exam-
ples from the areas of artificial chemistry, artificial life,and systems chemistry indicate.

Four existing software packages (ESPresSo, Spartacus, Smoldyn, and LAMMPS)
have been presented. These applications differ in focus andfeatures, and vary in
their requirements on hardware and user-knowledge from pedagogical tools to high-
performance computing applications. Most of the presentedprograms are scriptable/
extensible, so that flexible simulation setup and incorporation into existing simulation
environments can be achieved easily.
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Chapter 3

Coarse-Graining and scaling in
dissipative particle dynamics
(DPD)

Reprinted with permission from R. Füchslin, H. Fellermann, A. Eriksson, and H.-J. Ziock, Coarse-graining

and scaling in dissipative particle dynamics, J. Chem. Phys. 130(21), 214102 (2009), Copyright 2009,

American Institute of Physics.

Abstract

Dissipative particle dynamics (DPD) is now a well-established method for simulating
soft matter systems. However, its applicability was recently questioned because some
investigations showed an upper coarse-graining limit thatwould prevent the applicabil-
ity of the method to the whole mesoscopic range. This articleaims to reestablish DPD
as a truly mesoscopic method by analyzing the problems reported by other authors and
by presenting a scaling scheme that allows one to apply DPD-simulations directly to
any desired length scale.

3.1 Introduction

Dissipative particle dynamics (DPD) was introduced in 1992by Hoogerbrugge and
Koelman [97] as a novel method for performing mesoscopic simulations of complex
fluids. Since then, the method has gained significant theoretical support and refine-
ment [84, 99, 125, 126], and has been applied to fluid dynamicsin numerous re-
search areas such as rheology [95, 97, 127, 128], material sciences [129, 130], and
molecular biology, where membranes [80, 90], vesicles [116, 117], and micellar sys-
tems [81, 89, 92] have been modeled.

Initially, DPD was understood to be a truly mesoscopic method able to bridge
the whole gap between the underlying atomistic scale (in therange of nanometers
and nanoseconds) that is accessible by molecular dynamics (MD) simulations and the
macroscopic scale (in the range of micrometers and milliseconds) considered by con-
tinuum descriptions. To fulfill this promise, it is crucial that the method is scalable,

35
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meaning that its coarse-graining level can be adjusted without introducing serious arti-
facts that would render the method worthless.

In fact, it was originally stated that the DPD method is scale-free, meaning that the
parameters used in the simulation do not depend on the level of coarse-graining [84]. In
a later publication this earlier finding was declared erroneous [80], and it was proposed
that interaction parameters determining the conservativeforces between DPD particles
scale linearly with the coarse-graining level.

Based on this linear scaling relation, the performance of DPD was analyzed for
various coarse-graining levels [87, 131]. It was found thatthere exists an upper coarse-
graining level above which the simulated fluid freezes. Trovimof reported that this
coarse-graining limit is disappointingly low and only allows up to about 10 water
molecules to be grouped together into one DPD particle [131]. This limit would pre-
vent DPD from covering the whole mesoscopic range and confines its applicability
essentially to the order of magnitude of MD simulations. Dzwinel and Yuen even con-
cluded that the DPD method would be best suited for the simulation of vapors and gases
(where the freezing artifact would happen only for much higher coarsening levels) [87].

The usual method of expressing dynamics in DPD represents the according equa-
tions in reduced units, as it is done in several other branches of physics. Using reduced
units has considerable advantages: one and the same equation(s) represent a whole
family of physical systems which means that qualitative andquantitative statements
about the behavior of one system can be translated into the behavior of another one.
Nonetheless, different members of this family, e.g. parameterized by some typical
length scale, may exhibit different physical properties. An important example for the
usage of reduced units is given by the continuous field description of hydrodynamic
flow, the reduced Navier-Stokes equations. These reduced equations have the same
form for all systems with identical Reynolds and Euler number, though these systems
differ with respect to physical parameters, such as the viscosity.

In contrast to the Navier-Stokes equations, which are basically determined by con-
servative laws, dynamic equations describing a particle-based approach are subject to
additional, method related features. For DPD, the relationbetween different physical
systems represented by the same reduced dynamic equation critically depends on the
coarse-granining procedure that one uses. Changing the coarse-graining level affects
various properties of the “particles” of a particle-based method. Whereas the scaling
of some of these features is motivated by physical considerations (for example, the
number of DPD particles times the particle mass should be constant), the choice of the
scaling of others (e.g. the cut-off radius, see below) is subject to some freedom.

In this article, we study the consequences of different coarse-graining procedures
with respect to the reduced dynamical equations the according system defines. The
purpose of this work is threefold:

1. As our main result, we argue that the original statement that DPD is scale free
can be upheld for equilibrium systems by the usage of an appropriate scaling
scheme for the usual conservative DPD interactions (c.f. Eqns. (3.4)). Our
coarse-graining procedure renders all interaction parameters, including the elas-
tic conservative one, to scale in such a manner that expressing in reduced units
the dynamics of physically equivalent but differently sized systems leads to com-
pletely scale free equations.

2. For non-conventional interactions, e.g. surface terms,independence of length
cannot be achieved. This is physically plausible: such systems tend to exhibit
a typical length scale (e.g. in domain formation) and consequently, systems on
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different length scale will look different even when expressed in reduced units.
However, we will demonstrate that our coarse-graining procedure does not result
in an unfavourable scaling of the interaction parameters. This means: if a system
can be simulated with DPD on small scales, at least the scaling of the interactions
does not prevent a simulation on a larger scale (though theremay be other, system
specific issues to be dealt with).

3. DPD is also used for the simulation of transport processesand certain non-
equilibrium situations. Whereas, e.g. for the formation of phase diagrams, the
time scale plays a somewhat minor role and is closely relatedto the choice of the
energy scale, the simulation of transport phenomena requires a proper calibration
of time. We will discuss some of the consequences of this calibration.

In order to present our argument, we need to define the nomenclature used and
introduce some notation. By “coarse-graining” we understand the operation of coa-
lescingν physical particles into one DPD particle [80]. ByN , we denote the total
number of DPD particles in a simulation and it holds thatνN = Nphys, with Nphys be-
ing the number of physical molecules the simulation represents. The main objective of
this article is the comparison of DPD simulations with different coarse-graining levels
ν andν′, which motivates the introduction of the scaling ratioφ = N/N ′ = ν′/ν. In
what follows, functions ofφ will be used to describe the scaling of various quantities
at different coarse-graining levels.

By “scaling” we refer to the functional relation between therespective parameters
of two systems with different coarse-graining resolutionsν, ν′. In general, simulation
quantities and parametersX will be functions of their respective coarse-graining levels;
we writeX = X(ν) andX ′ = X(ν′).

Conventionally, DPD operates in reduced units, such that energy is measured in
units ofǫ, length in units of a cut-off radiusrc, and mass in units ofm, the mass of a
single DPD particle; in these units, length, mass, time and energy are dimensionless.
We adhere to this practice with the sole difference that we use a timeτ instead of an
energy as basic unit. That a quantity is expressed in reducedunits (with respect to its
coarse-graining level) is denoted by a tilde; we useX̃, X̃ ′.

In DPD, one usually sets the time unit to

τ = rc

√

m/ǫ (3.1)

with rc andm defined as above andǫ determining the unit of energy, most often set
to ǫ = kBT . Choosingτ = rc

√

m/kBT is especially convenient for investigations
of equilibrium states (e.g., amphiphilic phases), but other choices are possible as well,
such as comparing simulated with experimental transport coefficients is a way to deter-
mine time scales in non-equilibrium settings. In principle, one has complete freedom
to choose the time scale; however, if the unit of time, length, and mass are fixed and
the system is governed by a dynamics according to the equations of motion (Eqn. 3.4
below), the energy unit is also given (Eqn. 3.1).

Restating the objective of this work in more technical terms, we will construct a
family of DPD-calculations such that its members share physical properties, namely
temperature and compressibility, but represent physical systems on different length
and time scales. Further, we will show that using this procedure, which is based on an
appropriate scaling of length and time together with a specific coarse-graining proce-
dure, the velocity increments calculated from integratingthe equations of motion of the
DPD particles expressed in reduced units (c.f. Eqns. (3.4) below) do not depend on the
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coarse-graining value, i.e. are the same for all members of the constructed family. This
is in contrast to earlier publications [80, 132]. Our resultimplies that, in reduced units,
a DPD-calculation performed for a system with small extensions and over a small time
interval is numerically identical to one for a much larger system and covering a longer
time range.

Using the above notational conventions, one may summarize the combined relative
coarse-graining (i.e. scaling by a factorφ) and change of units with the following
diagram:

X

Change of coarse
-grainingφ

//

Reduction of
units forν

��

X ′

Reduction of
units forν′

��

X̃ X̃ ′

(3.2)

The non-trivial fact that two physically equivalent systems, e.g. only differing in their
size, exhibit the same reduced equations then alters the above scheme to:

X

Scaling
and zooming

//

Unit reduction
for ν

''OOOOOOOOOOOOOOOOOO X ′

Unit reduction
for ν′

wwoooooooooooooooooo

X̃ = X̃ ′

(3.3)

The article is structured as follows: in Sec. 3.2.1, we discuss the results of Groot
and Rabone [80] and specify where we deviate from their analysis. We show that their
approach of decreasing the number of DPD particles (namely the particle density) while
keeping relevant properties (in particular the particles’radius of interaction) constant,
is not appropriate. The alternative scaling process we employ is schematically shown
in Fig. 3.1A and 3.1B. When we change the level of coarse-graining for the DPD-
particles, we accordingly scale their number and adjust their size (radius of interaction).

Fig. 3.1C depicts the main result to be shown in this article,namely that by employ-
ing the correct scaling relations and unit reduction one hasa complete equivalence of
a simulation performed at the scale of Fig. 3.1A with the zoomed version in Fig. 3.1C.
This demonstration is split into two parts. In Sec. 3.2.2 and3.2.3, we change the inter-
action parameters according to the necessities of the adopted scaling procedure (upper
arrow of diagram 3.2). The interaction parameters have to bechanged such that when a
system with many DPD-particles is mapped onto one with fewer, but larger and heavier
particles, the overall system properties are maintained. Sec. 3.2.4 presents simulation
results that corroborate the derived scaling relations.

In Sec. 3.3, we analyze the behavior of the DPD algorithm whenthe rescaled sys-
tem is expressed in its own set of reduced units and the systemsize effectively is in-
creased to recover the original number of particles. The change of units affects the
natural energy scale (given byǫ = mr2

c/τ2 and we will show that as a result of our
chosen scaling the numerical values that appear in the reduced unit system (Fig. 3.1C)
are identical to those of the original one and, as a consequence, their dynamics are
equivalent, thereby establishing diagram 3.3, in particular X̃ = X̃ ′.

Also in Sec. 3.3, the question about the time scales are takenup again; we show
that the presented scaling behaves consistently under different methods of time calibra-
tion, using different transport processes as measure. In the concluding discussion, we
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Figure 3.1: Starting from Frame A, a coarse-graining is performed that in this 2D
picture coalesces four of the original DPD-particles into one coarse-grained particle,
leading to Frame B. Associated with this coarse-graining, arenormalization or scaling
is performed that changes the interaction parameters, but leaves the units unchanged.
This step also involves scaling some of the interaction parameters in order to maintain
relevant physical properties of the system. In transitioning to Frame C, the overall
system is expressed in terms of reduced units. The dynamics in the reduced unit system
(Frame C) is numerically exactly the same as in Frame A. In fact, Frame C is effectively
a zoomed version of Frame A.

comment on conservative interactions with a more complex physical scaling behavior
than the repulsion given in Eqns. (3.4) and the resulting consequences for upscaling
DPD.

3.2 Scaling DPD

Excellent descriptions of the DPD-method are given in various articles; we will not
recapitulate the method itself, but instead refer to Groot and Warren [84]. Here, we
only give the definitions of the conservative, dissipative,and random forces in order to
define the notation of the parameters:

FC
ij = aijχij(1 −

rij

rc
)r̂ij ,

FD
ij = −γωD(rij) [(vi − vj) · r̂ij ] r̂ij ,

FR
ij = σωR(rij)ζij r̂ij , (3.4)

whererij is the Euclidean distance between particlesi and j, r̂ij is the unit vector
pointing from particlej to particlei, andχij equals one for pairs of particles separated
by distances less than the force cut-off radiusrc and equals zero otherwise. The param-
eteraij determines the magnitude of the conservative interaction and will be regarded
in this work as being the same for all pairs of particles:aij = a (for other types of
interaction, see the discussion),ζij is a random variable with Gaussian statistics, a van-
ishing mean and a variance of1/∆t for the numerical time step∆t (see e.g. Ref. [96]).
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As a consequence, the unit ofζij is time−1/2. Furthermore, the values ofζij in two dif-
ferent time intervals are uncorrelated. In general, if(i, j) and(k, l) are different pairs
of particles,ζij andζkl are independent; however, in order to guarantee the centrality
of all forces, one must require thatζij = ζji.

The following dissipation-fluctuation relation [99] leadsto a thermal equilibrium
at a given temperatureT :

2kBTγωD(r) = σ2[ωR(r)]2. (3.5)

Without loss of generality, we may takeωD(r) = [ωR(r)]2 for the dimensionless
weighing functionsωD(r) andωR(r). The dissipation-fluctuation relation (3.5) then
reduces to

σ2 = 2kBTγ. (3.6)

One is free to choose eitherωD(r) or ωR(r) without changing the thermodynamic
equilibrium, but it is customary in the literature to takeωR(r) = 1 − r/rc mimicking
the conservative forceFC . One also notes that through Eqns. (3.5) and (3.6), the
relations between the parameters therein are dependent on the temperature.

In this paper, the physical molecules will refer to bulk fluidparticles (such as water),
which is in accordance with the cited literature. Other systems including surfaces, such
as binary fluids, will be commented on in the discussion.

3.2.1 Compressibility and equation of state

Following Groot and Warren [84], we analyze the scaling behavior of the conserva-
tive interaction parametera by relating the thermodynamic definition of the isothermal
compressibilityκT to the equation of state (involvinga) of a system of DPD-particles.
The isothermal compressibility is defined as the fractionalchange in the volumeV that
results from a change in the pressureP of the system, in a process where the tempera-
tureT is constant:

κT = −
1

V

∂V

∂P

∣

∣

∣

∣

T

=
1

ρ

∂ρ

∂P

∣

∣

∣

∣

T

. (3.7)

Hereρ denotes the number density of particles, i.e.N/V . It is convenient to define the
dimensionless parameterκ−1 by

κ−1 =
1

kBTρκT
=

1

kBT

∂P

∂ρ
. (3.8)

which we require to be invariant under scaling.

1

kBTρκT

∣

∣

∣

∣

simulation

=
1

kBT

∂P

∂ρ

∣

∣

∣

∣

simulation

=
1

kBT

∂P

∂n

∣

∣

∣

∣

experiment

= const. (3.9)

Here,n = νρ denotes the molecular number density of the physical system.
The equation of state relates the pressure with the particlenumber densityρ. From

simulation results, Groot and Warren [84] evaluated the virial expression

P = ρkBT +
1

3V

〈

∑

j>i

rijF
C
ij

〉

(3.10)

= ρkBT +
2π

3
ρ2

∫ rc

0

ra

(

1 −
r

rc

)

g(r)r2dr.
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Here,g(r) denotes the radial distribution function. For densitiesρ > 2 in reduced units
(i.e. more than 2 particles in a cubic box with linear dimensions ofrc), the following
equation of state is a good approximation to the numerical simulations [84]:

P = ρkBT + aαρ2, (α = 0.101 ± 0.001). (3.11)

(Note thatα has the dimension oflengthto the power of 4.) From this, one concludes
that the part of the pressure caused by the conservative interaction scales linearly ina.
Further, from Eqn. (3.9), we obtain that at constant temperature

1

kBT

∂

∂ρ

(

kBTρ + aαρ2
)

= const. (3.12)

Using ρ = n/ν wheren is the molecular number density andν the chosen coarse-
graining parameter, it follows that

1 +
2αan

νkBT
= const. (3.13)

Sincen andT are constant, Groot and Rabone concluded thata must scale linearly
with φ = ν′/ν in order to maintain isothermal compressibility under a change of the
coarse-graining level [80].

Several authors regard this scaling as an inherent drawbackof the DPD method,
since on the micrometer scale the method would appear to be effectively thwarted.
We claim that this scaling – and hence its implications – is wrong. The problem is
rooted in the construction of the equation of state (Eqn. 3.11). In their computer simu-
lations, Groot and Rabone [80] decreased the density of DPD particles while keeping
the interaction cutoff radiusrc constant. This approach allows one to keep the system
behavior invariant by scaling the interaction parameters while changing the DPD par-
ticle density, without altering their properties. However, we claim that proper scaling
means lowering the number of employed DPD particles while simultaneously enlarg-
ing their interaction radius. The difference is illustrated in Fig. 3.2. Frame 3.2A is
taken to be a system with fine coarse-graining. Frame 3.2B represents a scaled system
with a lower DPD particle density but unchanged particle diameters. The result is that
the mutual overlap of the soft particles is smaller (as seen in Frame 3.2B). Hence it
is intuitively clear that the interaction parameter has to be increased in order to keep
the system properties constant; formally, this argument isreflected in Eqn. (3.13). In
contrast, Frame 3.2C shows the system with the same scaling ratio as for Frame 3.2B,
but with therelativeoverlap of the interacting particles kept constant, which is accom-
plished by scalingrc. A closer examination of Frame 3.2C shows that it is part of a
magnified version of Frame 3.2A, namely a system where all thelengths associated
with a single DPD particle have been uniformly scaled by a factor φ while keeping the
system size constant (L′ = L). This results in the following scaling relations for the
coarse-graining level, number, mass, and size of DPD particles:

ν′ = φν

N ′ = φ−1N

m′ = φ m

r′c = φ1/d rc, (3.14)

whered is the number of dimensions of the system (see Fig. 3.2C).
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Figure 3.2: Schematic of the scaling process: Frame A shows aDPD simulation with a
cutoff radius ofrc. Frame B depicts the coarse-graining procedure performed in Groot
and Rabone [80]. With changing particle density, the particle diameter is kept constant
while the interparticle force is increased to maintain the system pressure. However, in
order to properly conserve systemic parameters like compressibility, both the interac-
tion parameter and the interaction cut-off radius need to beincreased as measured in
physical units. Frame C depicts the proper scaling in coarse-graining. Along with a
decrease of the particle density (in physical units), the interaction range is increased.
In this case, the interaction parametera scales differently than in Frame B in order to
preserve systemic properties.
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3.2.2 Scaling of the potential energy

We start by calculating the change of potential energyU of a system of DPD particles
enclosed in a box that undergoes compression. This change isrelated to the com-
pressibility of the system and is required to be invariant under scaling. In practice, we
require the dependence ofa on φ, such that the chosen coarse-graining level does not
affect the compressibility. For the uncompressed system, we have

U0 =
∑

i>j

χija

2rc
(rij − rc)

2. (3.15)

This equation holds for soft core repulsions which are used throughout the literature.
In general, the potential may be viewed as a harmonic approximation of any potential
close to an energy minimum. For an isotropically compressedsystem with box length
(1 − δ)L, whereδ ≪ 1 is the relative compression parameter, the change in the in-
terparticle distance∆rij(δ) is not assumed to be the same for all pairs of particles.
However, we require that

∆rij(δ) = δrij + O(δ2), (3.16)

which means that we rule out (first order) phase transitions under compression. The
total potential energy of the compressed system is then given by

Uδ =
∑

i>j

χija

2rc
(rij − ∆rij(δ) − rc)

2. (3.17)

To first order inδ, we obtain for the change of internal energy

∆U = Uδ − U0 =
∑

i>j

χij a (1 −
rij

rc
) δ rij . (3.18)

Because the change in potential energy of the system as a whole has to be invariant
under scaling, we have

N
∑

i>j

χija

(

1 −
rij

rc

)

δrij =

N ′

∑

i>j

χija
′

(

1 −
r′ij
r′c

)

δr′ij (3.19)

Due to the scaling ofN , the number of terms in the sum of the left hand side of
Eqn. (3.19) is proportional toφ−1. Since we require∆U to be invariant under scaling,
the force constanta has to scale as

a′ = φ1−1/da, (3.20)

the φ1 coming from the change in the number of terms in the sum and theφ−1/d

from the change in length scale. This scaling is the result ofour requirement of main-
taining the fractional particle overlap during the change of the coarse-graining level.
Everything else being equal, this scaling would seemingly still imply an upper coarse-
graining limit.

3.2.3 Scaling of time and energy, dissipation and fluctuations

Beside compressibility, the temperature in the simulationshould also be unaffected by
the coarse-graining. Hence, we require

T ′ = T. (3.21)
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As detailed in the introduction, there is a gauge freedom forthe choice of the time
unit:

τ ′ = Γtime(φ)τ. (3.22)

We employ this freedom by scaling the time unit equal to the length unit, i.e.

Γtime(φ) = φ1/d (3.23)

and thusτ ′ = φ1/dτ for which the motivation will become clear in the following.
As also described in the introduction, the freedom to set thetime unit also affects the
energy unit for which we get

ǫ′ = m′ r
′2
c

τ ′2
= φǫ. (3.24)

The behavior ofγ and σ under scaling remains to be determined. Examining
Eqn. (3.10), we note that the pressure is independent ofγ andσ. This means that,
with respect to static compressibility, we have significantfreedom in the choice of the
scaling functionΓtherm:

γ′ = Γtherm(φ)γ

σ′ = (Γtherm(φ)φ)1/2σ (3.25)

the latter equation is a consequence ofσ′ =
√

2γ′(kBT )′ and, due to the scaling of
the unit of energy,(kBT )′ = φ(kBT ).

Dimensional analysis motivates the choice

Γtherm(φ) = φ1−1/d, (3.26)

which in turn implies that

γ′ = φ1−1/dγ

σ′ = φ1−2/dσ. (3.27)

This specific choice will later be shown to be crucial for establishing the scalability of
the method, but investigations with other goals (such that deciding on a coarse-graining
levelν with least artifacts) may require alternative gauges.

To summarize what has been established throughout the last two sections, changing
the level of coarse-graining in DPD requires the following scaling relations:

N ′ = φ−1N a′ = φ1−1/da
m′ = φ m γ′ = φ1−1/dγ
r′c = φ1/d rc σ′ = φ1−2/dσ
ǫ′ = φǫ

(3.28)

3.2.4 Validation by simulations

In order to illustrate the correctness of the above scaling arguments, we have measured
the pressure in simulations for different coarse-graininglevels (i.e. a box of constant
sizeL = 50 with DPD-particles of different radii). Simulation parameters forφ = 1
arerc = 1,m = 1, ρ = 3.0, γ = 4.5, σ = 3.0, anda ranging from0 to 50. These
parameters have been scaled according to Eqn. (3.28) for other coarse-graining values.
We want to show that the pressure of this system is invariant under scaling, for all
values ofa andT , if we follow the described scaling relations.
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First, we measure the pressure of a DPD fluid in a closed box with reflective walls
(see Fig. 3.3). When a particle collides with a wall, it is reflected elastically and the
instantaneous impulse normal to the wall is measured. The pressure is once measured
as the time-average of the normal forces on the walls per unittime divided by the
surface area of the cube:P = 〈m∆v⊥/(A∆t)〉 whereA is the area of the box and
∆v⊥ is the component of the particle velocity orthogonal to the wall. Second, the
pressure is measured from the conservative force via the viral theorem (Eqn. 3.10).

Fig. 3.3 show the pressure measured as a function ofa/φ2/3 for φ = 1 (circles),
φ = 8 (squares), andφ = 125 (diamonds). Hollow symbols give the pressure cal-
culated by wall collisions, whereas solid symbols give the pressure calculated via the
virial theorem. The two coincide within standard deviation(smaller than the size of
the symbols). For each coarse-graining parameter the equation of state (Eqn. 3.11) is
reproduced accurately for small values ofa. On the one hand, fora = 0, the case of an
ideal gas, the pressure should be given by

P |a=0 = φ−1NφkBT/V = ρkBT, (3.29)

which it indeed is seen to be for all values ofφ. On the other hand, kinetic gas theory
establishes

P = ρ〈mv2〉/3. (3.30)

This constitutes a relationship between the thermostat andthe conservative mechanical
interactions with the walls, which is non-trivial for the DPD equations of motion. The
way we measure the pressure gives a direct relation to〈v2〉. The pressure calculated
from kinetic quantities (Eqn. 3.30) coincides with the value required from the ther-
modynamic relation Eqn. (3.29). This shows that Eqn. (3.11)holds for our simulation.
The slopes of the three curves differ, which indicates thatα in Eqn. 3.11 depends on the
relative box sizeL/rc in hardwall simulations. This is most likely due to a crowding
of DPD particles at the boundary of the box which walls lack any repulsion potential.

This problem can be avoided by the use of periodic boundary conditions (again in
a box of sizeL = 50) and then measuring the pressure via the virial theorem (which
has been shown to coincide with the pressure obtained by wallcollisions in the previ-
ous simulation). Results are shown in Fig. 3.4 for differentrepulsion parametersa in
[0, 100φ−2/3] and various coarse-graining ratiosφ in [1, 125]. In the case of periodic
boundary conditions, the pressure is found to be independent of the coarse-graining.
The result confirms the correctness of the scaling scheme summarized in Eqn. (3.28).

3.3 Reduction of units

Our goal is now to show that the velocity increments∆v obtained from integrating the
forces are unchanged when the scaling is combined with the according reduction of
units: ∆ṽ = ∆ṽ′, which implies that the relative particle motions are unaffected by
scaling in the reduced unit systems.

The random variableζij has the unitτ−1/2, as noted in the discussion following
Eqn. 3.4. Given the scaling ofτ , it follows that

ζ ′ij = φ−1/(2d)ζij , (3.31)

and therefore
σ′ζ ′ij = φ1−1/dσζij . (3.32)
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Figure 3.3: Pressure in a DPD simulation with reflective walls for different coarse-
graining ratiosφ = 1 (circles),φ = 8 (squares), andφ = 125 (diamonds) and various
repulsion parametersa in [0, 50/φ2/3].Hollow symbols give the pressure calculated by
wall collisions, whereas solid symbols give the pressure calculated via the virial theo-
rem. The two coincide within standard deviation (smaller than the size of the symbols).
For each coarse-graining parameter the equation of state (Eqn. 3.11) is reproduced ac-
curately for small values ofa. For the ideal gas scenario (a = 0), the theoretical
prediction ofP = ρkBT is recovered independent ofφ. The slopes of the curves
differ, which indicates thatα in Eqn. 3.11 depends on the relative box sizeL/rc in
hardwall simulations.
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Figure 3.4: Pressure in a DPD simulation with periodic boundary conditions for dif-
ferent repulsion parametersa in [0, 100φ−2/3] for various coarse-graining ratiosφ in
[1, 125]. The pressure (obtained from the virial theorem) is independent of the coarse-
graining.
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This is the same scaling as seen fora (Eqn. 3.20) and forγ (Eqn. 3.27). As a con-
sequence, all three force components in Eqn. (3.4) scale by afactor φ1−1/d. When
velocity increments are calculated during one time step, one finds that the force scaling
is canceled by the scaling of mass and time:

[∆vi]
′ =

∑

j 6=i

[Fij ]
′

m′
∆t′

=
φ1−1/dφ1/d

φ

∑

j 6=i

Fij

m
∆t = ∆vi (3.33)

Since∆r̃ = ∆r′/r′c and∆t̃ = ∆t′/τ ′, we get for the velocity increment by con-
sidering

∆ṽi = ∆r̃i/∆t̃ = ∆vi τ/rc. (3.34)

Because time and length scale in the same way we getτ ′/r′c = τ/rc. Combining this
with Eqn. (3.33) one finally obtains

∆ṽi = ∆ṽ′
i, (3.35)

which implies that trajectories are numerically equal:

r̃(t̃) = r̃′(t). (3.36)

What remains to be shown is the scaling of the reduced parameters ã, γ̃, and σ̃.
Sincea scales like energy over length, when going to the reduced units of the primed
system, we have

ã′ = a′ r
′
c

ǫ′
=

φ1−1/dφ1/d

φ
a
rc

ǫ
= ã, (3.37)

and similarly, sinceγ scales like energy over length and velocity, fromγ̃′ = γ′ r′2c /(ǫ′τ ′)
we get

γ̃′ = γ′ r′2c
ǫ′τ ′

=
φ1−1/dφ2/d

φφ1/d
γ

r2
c

ǫτ
= γ̃. (3.38)

From the fluctuation-dissipation relation it follows againthat

σ̃′ = σ̃. (3.39)

Hence, scaling and unit reduction precisely cancel each other. As a result, the DPD
formalism is scale-free for interactions as given in Eqns. (3.4), if space and time are
scaled appropriately. This means that the calculation witha single set of parameter
values represents systems at arbitrary lengths scales, which establishes the numerical
equivalence of zoomed systems as described in Fig. 3.1C.

3.4 Summary and discussion

We have shown that the coarse-graining procedure in DPD can be chosen in such a
manner that the different physical systems represented by the reduced DPD dynamics
share some physical properties, such as compressibility. This was achieved by the
combined effect of a specific scaling of the cut-off radius ofDPD particles, a proper
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choice of the time scaling, the reduction of units, and finally by requiring a specific but
obvious scaling ofγ andσ.

The independence of scale shown for bulk fluids cannot necessarily be upheld for
other types of interactions; e.g. for binary mixtures of liquidsA andB where several
conservative interaction parameters occur, sayaAA, aAB , aBB . Whereas bulk inter-
actions given byaAA, aBB scale as discussed in this article,aAB is a surface term
that determines interfacial energy and therefore scales differently. For bulk interac-
tions, in the presented scheme the parameters determining forces and energies scale in
physical units linearly withφ, i.e. they are proportional to the number of molecules a
DPD particle represents. While this proves to be adequate forsimulating elastic prop-
erties, non-elastic, surface dependent interaction parameters scale (again in physical
units) withφC , C ≤ 1. Repeating the calculation presented in this work, it then turns
out that those interaction parameters effectively shrink with an increase of the coarse-
graining. This is physically plausible: assume a system that exhibits domain formation.
On a (sufficiently) small scale, the domain boundaries will occur as planar (indicating
a, with relation to the bulk energies, large surface energy)whereas on a scale above
the typical domain size, minimization of surface does not anymore play a dominant
role. This means that if a DPD-calculation can be performed at a small scale, then, at
least with respect to the scaling of parameters, also calculations at larger scales will be
feasible.

Our calculations reestablish DPD as a method to analyze static properties of equi-
librium systems (most notably phase diagrams) over the entire mesoscopic length scale.
In particular, our scaling procedure overcomes the reported freezing artifact of DPD.
However, the validity of our scaling relation does not necessarily hold for the study of
dynamic properties (such as transport processes). To clarify this point, we briefly dis-
cuss the scaling of diffusion constantsD̃ = D̃′ (being a consequence of the equality of
the measured trajectories, see Eqn. 3.36) and the fact that the diffusion constant scales
like length squared over time causes an apparent problem: itseemingly implies that
relative fluctuationsD̃/L̃ stay constant instead of vanishing. This is not unexpected
but a consequence of the coarse-graining. For a general discussion of the renormaliza-
tion of diffusion, see e.g. Ref. [133]. To what extent the trajectories of the particles
in DPD can be understood as representing actual transport processes is discussed by
Groot [132] and shown in the approach used by Groot and Warren[84] and Jakob-
son [134]. These authors resolve the calibration problem bytreating the natural time
unit τ as undetermined and instead obtain the physical time scalet from calibrating
diffusion constants measured in simulation to physical values [84].

Note that there are applications in which the time scales areof minor interest; for
example, for the investigation of static properties such aslipid phase diagrams only en-
ergy scales are relevant, and a direct physical interpretation is well possible. The study
of dynamic phenomena, on the other hand, may either be only possible by changing
the interpretation of a DPD particle (and understand it as a mere discretization point
in a dynamic lattice and its interaction energies as model parameters without direct
physical interpretation), or by using different scaling schemes based on other choices
for the gauge functionΓtherm.
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Note that in order to understand the according physical timescales we have to
comment on transport properties of the method and the scaling of fluctuations. We
base our argument on diffusion, but could equally consider viscosity since the two are
related by the Schmidt-number, which is dimensionless. Thenumerical equivalence
of the measured diffusion constants̃D = D̃′ (being a consequence of the equality of
the measured displacement) and the fact that diffusion scales like length squared over
time causes an apparent problem: it seemingly implies that relative fluctuations̃D/L̃
stay constant instead of vanishing. This problem disappears when one calibrates the
simulation to an actual physical system. Assume that the cutoff radius is related to a
physical length byrc = l[cm]. We then have

D
r2
c

τ
= Dphys

cm2

sec
, (3.40)

with Dphys = <r(t)2>
t referring to the diffusion constant in physical units. We get

τ =
D

Dphys
l2[sec]. (3.41)

Consequently, expressed in physical units, it holds for thefluctuations

lim
l→∞

Dphys

Lphys
∼

1

l
= 0. (3.42)
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Chapter 4
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self-replicating nanocells: a
physically embodied
information-free scenario
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Copyright 2009, The Royal Society.

Abstract

The building of minimal self-reproducing systems with a physical embodiment (gener-
ically called protocells) is a great challenge, with implications for both theory and
applied sciences. Although the classical view of a living protocell assumes that it in-
cludes information-carrying molecules as an essential ingredient, a dividing cell-like
structure can be built from a metabolism-container coupledsystem, only. An exam-
ple of such a system, modeled with dissipative particle dynamics, is presented here.
This article demonstrates how a simple coupling between a precursor molecule and
surfactant molecules forming micelles can experience a growth-division cycle in a pre-
dictable manner, and analyzes the influence of crucial parameters on this replication
cycle. Implications of these results for origins of cellular life and living technology are
outlined.

4.1 Introduction

The transition from non-living to living systems covers a broad spectrum of increas-
ingly complex organization [135]. One of such first steps in this transition leads from
ordinary chemical auto-catalysis to self-replication. The latter can be distinguished
from the former by the existence of self-bounded entities which produce copies of
themselves, rather than a mere increase in chemical concentration. Therefore, self-
replication relies on organization principles unlikely tobe found in homogeneous so-

51
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Figure 4.1: The basic model of nanocell replication explored in this paper. Here small-
sized micelles are formed by amphiphiles (here indicated asH − T connected pairs of
balls). These amphiphiles have a hydrophilic head (H) and a hydrophobic tail (T ). Pre-
cursor molecules are also shown as two connected, smaller open balls, both of them of
hydrophobic character. Under the presence of catalyicallyactive amphiphiles, precur-
sors are transformed into additional amphiphiles. Incorporation of many such building
blocks allows the nanocell to grow in size. When a critical size has been reached, the
nanocell looses its stability and divides into two smaller aggregates thereby closing the
replication cycle.

lutions. Within the last years increasing attention has been payed to the possibil-
ity of building small-scale protocells, in particular using a bottom-up approach [136]
where the building blocks (not necessarily from biotic origin) would assemble spon-
taneously and, under appropriate conditions, develop a growth-fission cycle. While
extensive research has been performed on the self-reproducing capabilities of bio-
polymers [137, 63], even much simpler systems can be driven into dynamics that we
identify as self-replication. In this context, micelles have been proposed to serve as
life-like structures able to undergo self-reproduction [59].

These micellar systems can be considered to be simpler in organization than bio-
polymers because they lack any genetic information that could be passed from one
generation to the next. In this context, protocellular entities lacking information would
be under the umbrella of Oparin’s views of life origins [138], who suggested that prim-
itive self-replicating vesicles would have predated information-based cells. Similarly,
other authors have advocated for this scenario under a computational perspective. Un-
der this view, Dyson [139] indicated that current cells involved both software (DNA
and RNA) and hardware (protein machinery). Although hardware can exist under the
absence of software, the opposite is not allowed to occur. Wecan add to this picture
of cells that the presence of a container is a very important piece for the hardware to
properly work: only when the pieces are close together we canexpect the machinery
to operate.

The nanocellular system discussed here is based on a micellethat is coupled to a
minimal metabolism (figure 4.1). The system is constantly driven away from equilib-
rium by the supply of precursors, which are supposed to have higher internal energy
than the surfactants that build up the micelles. The metabolism transforms precursor
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molecules into new building blocks of the nanocell. The metabolic turnover is thereby
enhanced by its own outcome or—in other words—the metabolism is an auto-catalytic
turnover of precursors into new surfactants. This system resembles one studied exper-
imentally by Bachmann et al. [59]. However, in their work thecatalytic effect is a
feature of the micelles (probably due to milieu effects), while, in our system, it is a
feature of the molecules themselves.

Either way, the replication mechanism of micelles envisioned both in Bachmann’s
as well as our system is the following: micelles incorporatehydrophobic precursor
molecules where they are afterwards transformed into new surfactants. Due to this
process, the number of surfactants increases, while at the same time, the volume of
the hydrophobic core becomes smaller. It is assumed, that when a critical ratio of
surfactants versus core volume is passed, the aggregates become unstable and will
divide into two daughter cells. Whether or not the experimental system follows this
pathway has, to our knowledge, never be clarified. However, once such a replication
mechanism is considered the basis for a more complicated protocell design, knowledge
of the exact replication kinetics becomes crucial.

Together with experimental approaches aimed to finding the conditions for pro-
tocell replication to occur, there is an increasing need of appropriate, well-grounded
theoretical and computational models. Such models can helpunderstanding the con-
straints that might operate in the self-assembly of micelles and other molecules and
how they can properly trigger growth and splitting. Our workis a first step in this
direction.

4.2 DPD nanocell model

In this paper we consider adissipative particle dynamics(DPD) approach to model-
ing embodied protocells employing a physically and chemically simplified formalism.
This is one possible approach that can be used in order to tackle the complexities of
molecular aggregates. Other approaches include MolecularDynamics (MD), Brown-
ian Dynamics (BD) and Monte Carlo algorithms. Each of these methods has its own
advantages and drawbacks [140, 141] and a compared analysishas been presented
elsewhere [142].

Previous work done by Ono and Ikegami involved a lattice-based, protocell dy-
namics [143]. These structures display a special type of cell-like replication. While
they are remarkable in their self-organizing behavior, theunderlying rules of interac-
tion and the special properties of the membrane-like structures restrict their relevance
to the arena of artificial life. By using more appropriate molecular interactions within a
three-dimensional, water-filled environment (see for example Rasmussen and Nilsson’s
cellular automata approach to self-assembly [71]) we seek to provide the (as far as we
know) first computational evidence that such a simple protocellular cycle is feasible.

4.2.1 Dissipative particle dynamics

DPD is a coarse grained, particle based simulation technique comparable to Brownian
Dynamics. It was proposed by Hoogerbrugge and Koelmann [97]and gained signif-
icant theoretical support in the late 1990s [99, 84, 144]. Inthe context of biological
systems, DPD models have been successfully used to capture the dynamics of mem-
branes [90], vesicles [117, 116] and micelles [89, 145].
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A DPD simulation consists of a set ofN particles which are described by their
type, massmi, positionri, and momentumqi = mivi. These particles—usually
calledbeadsthroughout the literature—are not meant to represent individual atoms.
Instead, they represent groups of atoms within a molecule (like severalCH2 groups
within a hydrocarbon chain) or even a group of small molecules such as water.

Newton’s Law of motion is used to determine the trajectory ofeach individual bead:

d2ri

dt2
=

1

m
Fi (4.1)

The forceFi that acts on particlei is expressed as the superposition of pairwise inter-
actions

Fi =
N

∑

j=1

Fij (4.2)

In Newtonian dynamics, the (central) forceFC
ij can be expressed as the negative gradi-

ent of a potentialφij , namely
FC

ij = −∇φij (4.3)

The resulting dynamics are conservative and obey the Hamiltonian

H =
1

2

N
∑

i=1

mivi +
1

2

N
∑

i,j=1

φij (4.4)

While this approach is undertaken in molecular dynamics simulations, coarse grained
simulation techniques try to aggregate some of the molecular degrees of freedom by the
use of the so called Langevin formalism: additional forcesFD

ij andFR
ij are added to the

conservative force to express friction and thermal motion.They introduce energy flows
between the explicitly modeled mesoscale and an the underlying microscale. Together,
they act as a thermostat to regulate the effective temperature, i. e. mean velocity, of the
system.

The thermostat used in the DPD formalism is given by the equation

FD
ij + FR

ij =
(

ηω(rij)(nij · vij) + σω2(rij)ξij

)

nij (4.5)

whererij = |ri − rj | is the distance,nij = (ri − rj)/rij the (unit) direction, and
vij = vi − vj the relative velocity between beadsi andj. η is the friction coefficient
of the fluid andσ the amplitude of thermal motion.ξij is a random variable with
ξij = ξji, and otherwise Gaussian statistics.ω is a distance weighing function usually
defined as

ω(r) = 2

(

1 −
r

rc

)

(4.6)

whererc is a cutoff range used to limit the maximal range of all interactions for perfor-
mance reasons. It can be shown that the equilibrium temperature of the system tends
towardskbT = σ2/2η [99].

While there is a variety of other thermostats used in coarse grained particle sim-
ulations, the above mechanism is unique in that it both conserves linear and angular
momenta and fulfills the fluctuation-dissipation theorem. As a consequence of the for-
mer, the resulting dynamics are consistent with the Navier-Stokes equations and hence
preserve laminar flow properties of the system. The latter property ensures an energy
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distribution in the system following Maxwell-Boltzmann statistics. The overall dynam-
ics, therefore, capture both hydrodynamic and thermodynamic traits of the systems.

In almost all DPD studies, the conservative force is derivedfrom asoft-core poten-
tial of the shape

φij(r) =

{

1
2aijrc

(

1 − r
rc

)2

if r ≤ rc

0 if r > rc

(4.7)

The potential energy expressed byφij should not be understood as the mechanical
energy, i. e. enthalpy, of the system, but rather as its free energy contribution [82].
Following this rationale, the interaction parametersaij are used to express dissimilar-
ities of substances due to high enthalpy as well as entropy contributions, respectively.
Therefore, they can be related to Flory-Huggins coefficients known from polymer the-
ory.

For the study of lipids and surfactants, covalent bonds between beads are commonly
introduced as harmonic spring forces: on top of the above interactions, bonded beads
interact according to the potential

φB
ij(r) =

brb

2

(

1 −
r

rb

)2

(4.8)

whereb is the strength andrb the optimal distance of covalent bonds. As usual, we use
rc, m, andkbT as units of space, mass, and energy, respectively. The time unit follows
from equation 4.1 asτ =

√

m/kbTrc.
To model the system under consideration, we define beads of type W (water),

H (hydrophilic “heads”) andT (hydrophobic “tails” of amphiphiles) with interaction
parameters taken from [89], unless otherwise specified:

W H T

W 25kbT 15kbT 80kbT
H 15kbT 35kbT 80kbT
T 80kbT 80kbT 15kbT

All beads have mass1m. Precursor molecules are modeled as dimers of bondedT

beads, surfactants as dimers of oneT and oneH bead. Here we have:b = 125kbT ,
rb = 0.5rc for all covalent bonds.

The objective behind this parameter set is to model surfactants that form spher-
ical micelles. To achieve this, the effective head area mustbe large compared to
the volume of the hydrophobic core (packing parameter1/3). This is expressed by
aTT < aWW < aHH. Furthermore, surfactant heads have a high affinity to water
(aHW < aWW), which is usually due to charges in the hydrophilic groups of the
molecules. This assumption ensures that aggregates with high surface area (spherical
micelles) are prefered over aggregates with less surface area (rod-like micelles) in the
process of total energy minimization.

4.2.2 Incorporation of chemistry

The metabolic reaction under consideration takes the following form

T − T −→ H − T (4.9)
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This reaction is modeled by a stochastic process that has formerly been used in Brown-
ian Dynamics simulations [108]. Inbetween every two steps of the numerical integrator
for the DPD equation of motion, each precursor dimer can be transformed into a sur-
factant molecule with a spontaneous reaction ratekb. The spontaneous reaction can be
catalytically enhanced by nearby surfactants whose catalytic influence decreases linear
with the distance to the reactant up to a certain thresholdrcat. For simplicity, the effect
of several catalysts is modelled as a superposition:

k = kb +
∑

i∈C

ks

{ (

1 − rC
rcat

)

if r < rcat

0 otherwise
(4.10)

whererC is the distance of the catalyst andks the maximal catalytic rate per catalyst.
For clarity of the results, we set the spontaneous reaction rate in our simulations to
0τ−1. In the upcoming simulations,kcat is set to1.0τ−1, rcat to 1rc. If a reaction
occurs, the type of one randomT bead is changed toH, but positions and momenta
are preserved.

We also introduce particle exchange into the model to mimic the support of new
precursors into the system: During the simulation, two water beads can be exchanged
by precursor dimers with the probability2.5 · 10−5τ−1 per water bead within a region
of radius2rc. Again, bead positions and momenta are preserved.

4.3 Results

We implemented the DPD method using a velocity-Verlet integrator (λ = 0.5) with a
step width of0.04τ . The spatial domain is three dimensional, with periodic boundary
conditions and size(10rc)

3. In all the following simulations, the system is initialized
with one surfactant dimer and 2998 water molecules adding upto a mean particle
density of3r−3

c . Unless otherwise specified, simulations have been run for0τ ≤ t ≤
1000τ (25000 iterations).

For simulation runs with the parameter set given in the last section, we typically get
the following behavior: water beads are successively exchanged by precursors in the
exchange region of the system. While diffusing through the system, precursors form
droplets due to their hydrophobic trait. Once such a dropletreaches the initial surfac-
tant, the precursors are turned into surfactants. The turnover happens fast compared to
supply and diffusion of the precursor. New surfactants quickly arrange into a micellar
shape with hydrophobic beads in the interior and hydrophilic beads towards the sur-
face of the assembly. With the parameters introduced before, this rearrangement takes
only few time steps and is thus fast compared to the metabolicturnover. Such spon-
taneously formed nanocells diffuse through the system space as aggregates and even-
tually incorporate additional precursor droplets in theirinterior, where the metabolic
process is repeated. The evolution of the overall system composition (number of beads
per type) traces the different processes on their respective time scales (see figure 4.2
for aHT = aWT = 80kbT (upper panel) andaHT = aWT = 120kbT (lower panel).
As one can see, the overall production of surfactants is limited by a linear growth that
results from the constant supply of precursors. Locally, however, when a single droplet
is consumed by a nanocell, the metabolic turnover exhibits alogistic growth which is
suspected from resource limited auto-catalysis. The logistic growth can be best seen in
the lower panel of figure 4.2 aroundt = 700τ .

On the level of individual micelles, the metabolic process increases the aggregate
number, i. e. the number of surfactants per micelle. In a purewater-surfactant system,
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Figure 4.2: Evolution of bead numbers with time for two different hydrophobicity
values (aHT andaWT). The constant supply of precursors is counteracted by their
transformation into surfactants. This transformation happens in spurts rather than con-
tinuously, as the precursor forms droplets in the aqueous solution. Size and frequency
of these spurts depend on the hydrophobicity of the tail beads.

micelles would reject the surplus of surfactants into the bulk phase. In an oil-surfactant-
water system, as the one under consideration, the hydrophobic core formed by the
precursors, stabilizes the assembly far beyond its original aggregate number. As a
consequence, we could observe that nanocells increase in aggregate number when new
surfactants are synthesized. While the precursor surfactant ratio shifts, the nanocell
changes its shape from a spherical to a rod-like micelle. Whenall or nearly all of the
precursor is turned into surfactant, the nanocell finally becomes unstable and divides
into two smaller aggregates (see figures 4.3 and 4.4). The nanocell division occurs
in the cylindrical middle-part of the rod-like aggregate byindentation of surfactant
heads. It induces vibrating modes into the daughter aggregates as they rearrange back
to a spherical shape. Although this vibration is successively dissipated into undirected
motion, it sometimes leads back to short series of temporaryfusion and fission of the
daughter cells.

Elongated micellar structures are well-known from worm-like micelles which usu-
ally consist of two surfactants with different curvature. Such worm-like micelles are
stable equilibrium aggregates and exhibit an exponential size distribution [146]. In the
system studied in this work, however, the elongated aggregate is not stabilized by dif-
ferent curvature values of the components, but by the hydrophobic core. Accordingly,
once the precursor is turned over into new surfactant molecules, the elongated structure
looses its stability.

There is a second pathway, however, that might jeopardize the above scenario: once
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Figure 4.3: Here, the size evolution of figure 4.2 (lower panel) is tracked for individual
nanocells: each line designates the size evolution of a single aggregate. Horizontal lines
result from fission (or dissociation) events, after which two lines indicate the fate of the
daughter cells. Isolated dots denote short term vibrationsduring which nanocells divide
and fuse within less than1τ . For clarity, such horizontal lines have been suppressed
for such vibrations. As one can see, only two daughter cells result from a true fission
event (att = 722τ ). The other two result from dissociation of single surfactants that
start to turn over precursor droplets found in bulk phase. These surfactant dissociations
happen att = 324τ andt = 684τ . Furthermore, two nanocells fuse att = 655τ .

in a while throughout our simulations, nanocells loose individual surfactants into the
bulk phase. If this relaxation process happens fast compared to the metabolic turnover,
the nanocells might not be able to reach the division size. Surfactants in the bulk phase
may however metabolize precursor droplets and spontaneously form nanocells on their
own.

Formally, fission events can be written in the form of a chemical reaction:

Sn+m

k−

m,n

−→ Sn + Sm (4.11)

whereSn, Sm andSn+m are aggregates of sizen, m, andn+m, respectively, andk−
m,n

is the fission rate. Form = 1, one obtains dissociations as a special case. Analogously,
association and fusion events take the form

Sn + Sm

k+
m,n

−→ Sn+m (4.12)

In order to quantify micellar fission and surfactant dissociations, nanocells have been
identified by a variant of the flood fill algorithm: every twoT beads within a distance
of 1rc or less have been considered to belong to the same aggregate.The aggregate
number is defined as the number of participating surfactants. This allows for tracking
individual aggregate sizes and their transitions through time. Each of the above reaction
schemes results in two transitions, given by

Sn → Sn+m ; Sm → Sn+m (4.13)

and
Sn+m → Sn ; Sn+m → Sm (4.14)



4.3. RESULTS 59

Figure 4.4: Metabolism and fission of a nanocell (T beads are shown in light,H beads
in dark gray—water not shown): The initial surfactant metabolizes a precursor droplet
and turns it into a functioning nanocell (panels 1-3). While the precursor is consumed,
the nanocell elongates to account for the changing precursor surfactant ratio (panel
4-5). Such elongated structures can be stable for several time units, until—when all
precursors are turned into surfactants—the nanocell divides into two daughter cells
(last panel).

Furthermore, the turnover of precursors results in the transition

Sn → Sn+1 (4.15)

Not all transitions can be expressed by the chemical reaction scheme given by 4.11
and 4.12. Those transitions are of the type

Sn+m + Sl −→ Sn + Sm+l

as well as fissions into and fusions from more than two aggregates. For all the simula-
tions performed, such outliers amount to less than 0.3% of the total transitions. They
have been neglected for further analysis.

In the remainder of this work, we will analyze two key parameters of the model
and their influence on the dynamics of the system. Thereby, wewill put our atten-
tion on the fission pathways discussed above. The first parameter we analyze is the
hydrophobicity, i. e. the valuesaTW andaTH. This parameter is related to the dissim-
ilarity between surfactant tails and water. For most surfactants the hydrophobicity is
solely a function of the length of the hydrocarbon chains [49]. The value is thus easily
adjustable in experimental setups.

Second, we analyze the influence of the catalytic ratekc— hence, the speed of
metabolic turnover—on the division pathway of the nanocell.As we did not specify
the molecular implementation of precursor and surfactant,it is conceivable that in an
experimental setup, one can choose from a wide range of catalytic efficiencies.



60 CHAPTER 4. MINIMAL MODEL OF SELF-REPLICATING NANOCELLS

 0 0.5 1 1.5 2 2.5 3 3.5

120 kbT

 0  5  10 15 20 25 30

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5

90 kbT

 0  5  10 15 20 25 30

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9

40 kbT

 0  5  10 15 20 25 30

 0

 5

 10

 15

 20

 25

 30

1230402.5060004100

Figure 4.5: Histograms of nanocell size transitions for different hydrophobicities (see
text on how transitions are defined). For a transitionSn → Sm, n is ordered along the
vertical,m along the horizontal axis. Colors indicate the number of occurences. Note
that colors have been scaled by root functions to emphasize seldom events.

4.3.1 Influence of hydrophobicity on nanocell dynamics

For three hydrophobicities,40, 90 and 120kbT , histograms of such transitions are
shown in figure 4.5. The figures reveal a clear trend both in aggregate numbers as well
as transition types. For hydrophobicity40kbT , the system is almost entirely composed
of single surfactants and small aggregates in bulk phase. 33.4 % of the transitions are
dissociations and associations of two single surfactants.For the few bigger aggregates,
transitions are distributed more or less homogeneously, i.e. surfactant dissociation
is as likely as proper aggregate fission. Thus, for weak hydrophobicities, the system
resembles a homogeneous solution without significant formation of structures. For
120kbT , on the other hand, the transition histogram looks completely different. Asso-
ciations or dissociations of two isolated surfactants makeonly 3.7% of the transitions,
for this parameter. The most prominent transition type is the turnover of a precursors
within nanocells that range in size from 1 to 25 surfactants (20.6% of all transitions),
represented by high values in the lower secondary diagonal.The absence of an upper
secondary diagonal reveals that there are no surfactant dissociations except some be-
tween aggregate numbers 8 and 16. Due to the higher stabilityof aggregates, there are
far less overall transitions than in the previous case (321 compared to 24743), which
poses a problem when trying to obtain smooth histograms. Although there are distinct
cases of proper fission events (e. g.S25 → S14 + S11, S20 → S11 + S9) it is hard
to tell from the histograms whether such fission is more likely than single surfactant
dissociation. Varying the hydrophobicity between these two extrema yields traits of
both other histograms. One example is given in figure 4.5 for90kbT .

As new precursors are constantly supplied and nanocells grow and divide over time,
it is somewhat difficult to capture mean aggregate numbers ofthe assemblies. Never-
theless, these values are prominent characteristics in thestudy of micellar systems and
their knowledge can help to get insight into the system underconsideration. To gain
aggregate numbers we compute the average valuem + n for all transitions of the form
Sm+n → Sn + Sm, i. e. we average aggregate numbers only in moments of fissionor
dissociation. The results can be regarded as the mean maximal aggregation number of
nanocells. Figure 4.6 shows results for hydrophobicity values from40kbT to 120kbT
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Figure 4.6: Mean aggregate and mean maximal aggregate numbers for hydrophobicity
values between40 and120kbT . The latter averages only the size of nanocells which
are actually going to divide, while the former averages all aggregates. System states
have been averaged for500τ ≤ t ≤ 1000τ . Earlier states have been considered as
transient. Below, parts of the final simulation states are shown for selected parameters.

together with a simple average of all aggregate sizes in the system. Both maximal
and average values increase constantly from 1.68 (3.59) for40kbT to 18.04 (17.51)
for 120kbT . It becomes apparent, that for very weak hydrophobicities most of the
surfactants are either isolated in bulk phase or in very small assemblies. For strong hy-
drophobicities, aggregates are very distinct and single surfactants in bulk phase are rare.
There is, however, no sharp boundary or phase transition between small sub-micellar
assemblies and proper micelles, but rather a continuous transition.

Going back to the issue of nanocell division, we want to distinguish proper fission
into nanocells of approximately equal size from dissociation of sub-micellar aggre-
gates. The previous analysis revealed that one cannot use absolute aggregate numbers,
as they exhibit a trend for stronger hydrophobicity. Therefore, we characterized each
event of the form of equation 4.11 by the function

Q(m,n) = 1 −
|m − n|

m + n
(4.16)

which denotes the relative fission quality.Q(m,n) = 1 for m = n, i. e. when the
resulting nanocells are equal in size.Q becomes smaller as daughter cells become less
alike. We have averagedQ as a function of the hydrophobicity over all fission events in
the simulation runs discussed before. Mean and standard deviation are shown in figure
4.7. 〈Q〉 varies between0.41 and0.65 with no significant trend for weak or strong
hydrophobicities. Moreover, standard deviation is very high. This reveals that fission
into any two daughter cells is equally probable, no matter the ratio of their sizes. In
terms of fission rates this finding can be written as

k−
m,n =: k−(m + n) (4.17)
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Figure 4.7: Mean quality of nanocell divisions. A value of 1 signifies division into
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dissociation. Error bars denote standard deviations.
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Figure 4.8: Number of surfactants as a function of time for different catalytic rates
kc. For slow metabolic turnover, the exponential shape of the auto-catalysis becomes
apparent.

for the system under consideration.

4.3.2 Influence of the catalytic rate on nanocell dynamics

The catalytic rate has been varied from2−6τ−1 to 4.0τ−1 in exponential steps. Hy-
drophobicity has been set to80kbT . Global surfactant dynamics are shown in figure
4.8. For slow metabolic turnover (< 0.125τ−1), the exponential shape of surfactant
production becomes apparent, i. e. the constant precursor supply of precursors does
not limit surfactant production over the simulated time span. This is tantamount to say-
ing that unmetabolized precursor droplets are present throughout the whole simulation.
Deceleration of the global dynamics is reflected in slower fission rates of individual
nanocells. For example, we observed that the first fission event is retarded by180τ on
the average when catalytic rates are halved. Forkc < 0.03125τ−1, no fission occurs
during the simulated time span.

Figure 4.9 shows mean aggregation numbers as a function of the catalytic rate.
As one can see, slow metabolic turnover increases both maximal and average aggre-
gation numbers (from 9.45 (5.27) for0.5τ−1 to 18.55 (9.66) for0.03125τ−1). The
trend becomes less apparent for faster metabolic turnover (1.0τ−1 to 4.0τ .1). For
kc = 0.125τ−1, the maximal aggregation number is slightly higher than a monotonic
trend would imply—a fact that we relate to statistical deviations, as fission events are
considerably rare for small catalytic rates. The increase in both aggregation numbers
is a natural consequence of the decelerated metabolism: when the precursor is me-
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Figure 4.9: Mean aggregate and mean maximal aggregate numbers for catalytic rates
between0.03125 and4.0τ−1. Consult the caption of figure 4.6 on how aggregation
numbers have been obtained.
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Figure 4.10: Number of overall fission and fusion events (transitions of the form of
equations 4.13 and 4.14) as a function of the catalytic ratekc.

tabolized slowly while its supply is held constant, the sizeof the hydrophobic core
increases, and offers a bigger area for surfactants to attach. Hence, the maximal aggre-
gate numbers increase.

For the above runs, the number of fission and fusion events hasbeen measured (see
figure 4.10). For all simulation runs, fusion and fission events are more or less balanced.
This reveals that most of these events result from surfactant exchange with the bulk
phase or from series of temporary fission and fusion during a single division process
rather than from proper nanocell divisions. For low catalytic rates (0.03125τ−1 ≤
kc ≤ 0.25τ−1) the number of such balanced transitions falls significantly from 1028
for kc = 0.5τ−1 to only 8 for kc = 0.03125τ−1. As in the case of aggregation
numbers, the trend in transition numbers can be related to the hydrophobic core: the
more hydrophobic particles in the interior of a nanocell, the less dissociations occur on
its surface. A strong anti-correlation between aggregation numbers and the number of
fission/fusion events (with a correlation coefficient of−0.917) justifies this hypothesis.

It has to be pointed out, however, that the catalytic rate might affect nanocellular
dynamics only during a certain transient time. It has been shown how the nanocel-
lular dynamics depend on the ratio between metabolic turnover and precursor supply.
Precursors are supplied by diffusion. Therefore, the rate of their incorporation into an
individual cell depends on the overall concentration of nanocells. Once a critical cell
concentration is reached, precursor incorporation might be slower than its metabolic
turnover, which would undermine the above discussed effect. While the duration of
such transient will depend on the ratio of precursor supply and turnover, dynamics af-
ter the transient might be little affected again. Ideally, simulations would be performed
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in a homeostatic system, with an influx of precursor solutionat one side and an outflux
of reaction products at the opposite site of the system. Up tonow, however, little is
known about the performance of DPD in such open systems.

4.4 Discussion

In this paper we have presented an information-free nanocell based on a micellar sys-
tem and a single auto-catalytic reaction that serves as metabolism. This simple system
can be understood as a minimal self-replicating chemical system. As such, it denotes
the boundary between pure auto-catalysis and a more complicated self-reproducing
system which would also include inheritable information. We analyzed the dynam-
ics of this nanocell using a dissipative particle dynamics approach. This simulation
technique can cover the relevant time scale, while it has been shown to be still phys-
ically accurate compared to other simulation techniques. As a consequence, we have
been able to perform analyses of the system in a level of detail, that has—as far as we
know—not been reached before in the study of self-replicating entities.

The general replication cycle of micellar nanocells by metabolic turnover and di-
vision is very robust against changes in hydrophobicity andcatalytic rates. It has been
shown that the mean aggregation number of nanocells dependson the hydrophobicity
of the surfactant (and precursor) as well as on the catalyticrate of the metabolism. For
increasing hydrophobicity, a monotonic change in aggregation number with no sudden
phase transition has been observed, ranging from a nearly homogeneous solution with
only submicellar aggregates for weak hydrophobicities to the formation of distinct mi-
celles in surfactant-free water for a very high hydrophobicity. The same monotonic
increase in aggregation number could be observed for increasing catalytic rates, i. e.
fast metabolic turnover.

It has been found that the rate of nanocell fission and surfactant dissociation de-
pends on the size of the hydrophobic core of the nanocells, and is more likely to occur
for small values in hydrophobicity and slow metabolic turnover. Daughter cells result-
ing from a fission event have been shown to vary significantly in size. There is neither
a trend in the average size ratio of fission products nor in itsvariance.

Our work shows that the envisioned replication-cycle of nanocells—namely incor-
poration and turnover of precursor droplets followed by eventual aggregate division—is
achievable over a wide range of parameters. In fact, there isno parameter combina-
tion for which the general replication cycle has been rendered impossible: although we
have been able to decrease mean aggregation numbers and increase dissociation rates
up to a point where the system obeys no clear structures, we could not observe that
dissociation of single surfactants jeopardizes the growthof a otherwise stable nanocell.

We have demonstrated the feasibility of a self-replicatingsystem in the absence
of genetic information. Although such a system is not able toevolve towards higher
complexity, it could have served as a functioning subsystemproviding metabolism and
embodiment for subsequent protocells of higher evolutionary complexity. It is conceiv-
able, that independently evolved information systems likeRNA might have become
incorporated into such functioning replicators. When the two formerly independent
replication cycles of container and genome are orchhestrated by coupling, such that
each daughter cell of the dividing container is loaded with exactly one copy of the ge-
nomic information, one would obtain a true self-reproducing protocell with the ability
to metabolize, divide and evolve.

Apart from prebiotic scenarios in which micelles are considered as possible ances-
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tors of subsequent vesicle based organisms, such systems are explored in the context
of so-called living technology, i. e. artificial systems that mimic life-like behavior. Our
results suggest that the generic replication cycle of micellar nanocells is a robust basis
for artificial life forms. We are currently exploring one design of such an artificial pro-
tocell in which genomic information is coupled to a micellarself-replicating system
similar to the one presented here.
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Chapter 5

Life-cycle of a minimal protocell
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Abstract

Cross-reactions and other systematic issues generated by the coupling of functional
chemical subsystems pose the largest challenge for assembling a viable protocell in
the laboratory. Our current work seeks to identify and clarify such key issues as we
represent and analyze in simulation a full implementation of a minimal protocell. Using
a 3D dissipative particle dynamics (DPD) simulation methodwe are able to address the
coupled diffusion, self-assembly, and chemical reaction processes, required to model
a full life cycle of the protocell, the protocell being composed of coupled genetic,
metabolic, and container subsystems. Utilizing this minimal structural and functional
representation of the constituent molecules, their interactions, and their reactions, we
identify and explore the nature of the many linked processesfor the full protocellular
system. Obviously the simplicity of this simulation methodcombined with the inherent
system complexity prevents us from expecting quantitativesimulation predictions from
these investigations. However, we report important findings on systemic processes,
some previously predicted, and some newly discovered, as wecouple the protocellular
self-assembly processes and chemical reactions.

5.1 Introduction

The twilight zone that separates nonliving matter from lifeinvolves the assembly of and
cooperation among different sub-components, which we can identify as metabolism,
information, and compartment. None of these ingredients are living and none of them
can be ignored when looking at life as a whole. When assembled appropriately in a
functional manner, their systemic properties constitute minimal life.

Understanding the transition from nonliving to living matter requires one to con-
sider far simpler cells than those of modern life. Cells as weknow them in our current
biosphere are highly complex. Even the simplest, parasiticcellular forms involve hun-
dreds of genes, complex molecular machineries for energy harvesting and utilization,
as well as intricate membrane structures [37]. Such modern organisms are presum-
ably far away from the initial simple forms of cellular life that inhabited our planet a

67
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long time ago, whose primitive early cousins we are now attempting to assemble in the
laboratory [147].

Several complementary designs of protocells have been proposed that differ in the
actual coupling between their various internal components[148, 149, 69, 71, 52]. One
particularly important problem here, beyond the specific physical and chemical diffi-
culties associated with the assembly of these protocells, is the problem of modeling the
coupling of the possible kinetic and structural scenarios that lead to a full cell cycle.
None of the current proposed designs has yet been formulatedin a full mathematical
model that in a 3D simulation is able to generate the possibleoutcomes of a success-
ful coupling between the three prime components: the genes,the metabolism, and the
container. We believe that a physically well-grounded modeling approach can provide
critical insight into what can be expected from a coupled setof structures and reactions,
how the nano-scale stochasticity can jeopardize appropriate molecular interactions or
even what are the effects of molecular information carriersin helping accurate replica-
tion to occur. In this paper we present such a minimal 3D modelthat in connection with
ongoing experimental efforts is aimed at assembling and understanding a new class of
nanoscale-sized protocells: the so calledLos Alamos Bug.

In the Los Alamos bug, the container is built of amphiphilic surfactants. Due to a
their interaction with water, the surfactants spontaneously self-assemble into micelles
with the hydrophobic end of the surfactant molecules in the interior of the micelles
and their hydrophilic ends in contact with the surrounding water. The interactions
between the micelle and the other components of the Los Alamos bug, namely the
photosensitizer, the genome, and the container precursors, allow the micelles to host
these other components.

The genomic biopolymer (possibly decorated with hydrophobic anchors) is also an
amphiphile and due to the specific nature of its interactionswith water and the micelle,
it will tend to reside at the surface of the micelle (see Fig. 5.1.2). The sensitizer is a
hydrophobic molecule and will therefore reside in the interior of the micelle. Once self-
assembled, the protocell aggregate is “fed” with precursormolecules for the surfactants
(oily esters), sensitizers and genomic precursor oligomers. As surfactant precursors are
hydrophobic they will agglomerate inside the proto-organism and form a hydropho-
bic core (Fig. 5.1.3). Light energy is used by the metabolismto transform precursors
into new building blocks (surfactants and oligomers) of theprotocell. The genomic
oligomers that are complementary with particular stretches of the template strand will
hybridize with it (Fig. 5.1.4). The fully hybridized template/oligomers complex, which
now only has hydrophobic elements exposed, will move into the interior of the con-
tainer where polymerization of the oligomers occurs followed at some later time by a
random dissociation of the fully polymerized double-stranded genome into two single-
stranded templates that move back to the surface. This process could also be enhanced
by a temperature cycle around the gene duplex melting point that is gentle enough to
preserve the integrity of the aggregate.

As surfactant precursors are digested, the core volume of the protocell decreases
while, at the same time, new surfactants are produced. The resulting change in the
surface to volume ratio causes the micelle to become unstable (Fig. 5.1.5), until it
finally splits into two daughter cells (Fig. 5.1.6). Assuming that components of the
growing parent micelle are appropriately distributed upondivision, the two daughter
cells will be replicates of the original organism, thus completing the protocell cycle.

In the above setup, the container, genome and metabolism arecoupled in various
ways. Obviously, both the replication of the container and replication of the genome de-
pend on a functioning metabolism, as the latter provides building blocks for aggregate
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Figure 5.1: Schematic of the life cycle of the Los Alamos Bug:The system consists
of surfactants, sensitizers, and a biopolymer that acts as agenome (1). The surfactants
spontaneously self-assemble into a micellar container within which the sensitizer re-
sides while the biopolymer sticks at the surface of the container—this forms a complete
protocell (2). Resources (genomic oligomers, sensitizersand surfactant precursors in
the form of esters) are added to the system and get incorporated into the container (3).
The existing information carrier acts as a template for supplied oligomers to hybridize
and effectively replicate the genome. Light energy is used to convert the surfactant
precursor and the oligomer precursors into actual surfactant, oligomers and waste. The
container grows as new surfactants are produced (5). Once the container reaches a crit-
ical size, it becomes unstable and divides into two daughtercells. This completes the
life cycle of the protocell (6).
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Figure 5.2: Functional coupling between container, metabolism and genome. Note
how the gene catalyzes (dashed arrows) the metabolic production (solid arrows) of both
gene and container building blocks. The container ensures ahigh local concentrations
(proximity) and facilitates thermodynamic reaction conditions (dotted arrows) of both
the metabolic molecules and the amphiphilic replicator polymers. The free energy is
provided by light (hν) and the provided resources are precursor lipidsrc, precursor
gene oligomersrg, as well as sensitizersrm.

growth and reproduction. In addition to that, the containeralso has a catalytic influence
on the replication of both the metabolic elements and the genome: the micellar struc-
ture provides a compartment which brings precursors, sensitizers and nucleic acids
in close vicinity, thereby increasing local concentrations and thus metabolic turnover.
Furthermore, the micellar interface catalyzes the hybridization of the informational
polymer with its complementary oligomer. Once the hybridized complex enters the
“water-poor/free” interior of a micelle, the thermodynamics should change sufficiently
to allow a dehydration reaction to occur whereby the oligomers become polymerized.
Alternatively the water-lipid interface could either itself act as a ligation catalyst or the
addition of simple amphiphilic catalysts could facilitatethe gene polymerization pro-
cess. Last, but not least, the nucleic acid catalyzes the metabolism, which otherwise is
extremely slow. A summary of the subsystem coupling is shownin Fig. 5.2.

5.2 The model

Dissipative particle dynamics (DPD) is a mesoscale simulation method introduced by
Hoogerbrugge and Koelman in 1992. The method has been improved as a result of
various theoretical support, revision, and expanded capabilities [99, 144, 84], and has
been applied to a number of biological systems such as membranes [90, 80], vesicles
[117, 116], and micelles [89, 145]. Also chemical reactionshave been incorporated
into the DPD method [118, 104]. In the context of protocells,DPD has recently been
applied to study a self-replicating micellar system [81, chapter 4 of this work]. The
DPD formalism used in this work is the revised version from Groot and Warren [84]
that has become the de facto standard of DPD.

In general, DPD is a coarse-grained particle method in whicha single particle does
not represent individual atoms, but instead a group of atomsin a large molecules or
several small molecules like water. This grouping allows one to average over fast de-
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grees of freedom [150] and treat them as noise and friction. While this is the case for
many particle-based methods (coarse-grained molecular dynamics, Brownian dynam-
ics, etc.) the unique feature of DPD is a thermostat that conserves local momentum,
and therefore the hydrodynamics of the system.

5.2.1 Dissipative particle dynamics

A DPD simulation consists of a set ofN particles located in three-dimensional con-
tinuous space with Euclidean metrics. Each particlei has a positionri, massmi and
momentumqi, from which one can derive its velocityvi = qi/mi. Its motion is
determined by a force fieldFi through Newton’s second law of motion:

d2ri

dt2
(t) =

1

mi
Fi (ri(t)) (5.1)

The force acting on particlei can be decomposed into pair-wise interactions, which
respectively are the sum of three different components—a conservative, a dissipative
and a random one:

Fi =
∑

j 6=i

Fij =
∑

j 6=i

(

FC
ij + FD

ij + FR
ij

)

, (5.2)

whereFC , FD andFR are defined by

FC
ij = −∇φij (5.3)

FD
ij = −ηωD(rij) (nij · vij)nij (5.4)

FR
ij = σωR(rij)ξijnij (5.5)

For each particle pair(i, j) rij = ri − rj is the relative position,rij = |rij | the
center-to-center distance, andvij = vi − vj the relative velocity. We denote with
nij = rij/rij the (unit) direction between the two particles. A detailed discussion of
the different forcesFX

ij now follows:
The conservative forceFC

ij is expressed in the usual way as the negative gradient of
a potentialφij = Vij = V (rij). In most DPD simulations, a pure repulsive soft core
potential of the form

Vij(r) =

{ aij

2 (r − rc)
2 if r < rc

0 otherwise
(5.6)

is used for all particle interactions.aij andrc are constants that define the strength
and range of the particle interaction. The magnitude of the resulting force decreases
linearly from

∣

∣FC
ij(0)

∣

∣ = aij to
∣

∣FC
ij(rc)

∣

∣ = 0. The aij ’s depend on the type of
interacting particles—and are therefore the appropriate location to parameterize the
model. In addition, different particles pairs could be given different values ofrc if
one wants to effectively give particles different radii. However, in the current work,
we chooserc = 1 for all bead interactions, which is the standard in almost all DPD
simulations.

For the study of information polymers and amphiphiles, individual DPD beads can
be covalently bonded. A bond between beadi and beadj is formalized by an additional
harmonic potential

V s
ij(r) =

{

b
2 (r − rb)

2 if (i, j) are bonded
0 otherwise

(5.7)
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with bond strengthb and rangerb. In addition to that, we introduce a bending potential
to stiffen longer polymer strands: In a chaini − j − k of interconnected polymer
beads, the angleθj formed by the two bonds of the central beadj induces an additional
harmonic potential

V θ
ijk(θj) =

1

2
cijk (θj − θeq)

2 , (5.8)

whereθeq is the equilibrium angle andcijk denotes the strength of the bending poten-
tial.

The dissipative forceFD
ij is a function of the relative velocity of the two particles.

It models the viscous damping of the fluid. The friction coefficientη in eq. (5.4) scales
the strength of this force andωD is a distance weighting function not determined by
the general formalism.

The random force,FR
ij accounts for thermal effects. It is scaled by a strength pa-

rameterσ and a second weighting functionωR. ξij is a Gaussian distributed random
variable with〈ξij(t)〉 = 0, 〈ξij(t)ξkl(t

′)〉 = (δikδjl + δilδjk)δ(t − t′) andξij = ξji.
In order to reproduce the right thermodynamic behavior, theDPD formalism must

satisfy the fluctuation dissipation theorem. As a consequence, the equilibrium state will
obey Maxwell-Boltzmann statistics and therefore allows the derivation of thermody-
namic properties. As shown by Español and Warren [99], DPD satisfies the fluctuation
dissipation theorem if and only if the weighting functionsωD andωR obey the relation

ωD = (ωR)2. (5.9)

In agreement with the DPD standard, we set

ωD(r) = (ωR(r))2 =

[

2(1 −
r

rc
)

]2

. (5.10)

If relation (5.9) is fulfilled,FD
ij +FR

ij acts like a thermostat to regulate the temperature
of the system and the equilibrium temperaturekbT is given by

kbT =
σ2

2η
. (5.11)

wherekb denotes the Boltzmann constant. In molecular dynamics simulations, a vari-
ety of thermostats have been explored, but only the DPD-thermostat is guaranteed to
conserve linear and angular momenta of the particles and thus flow properties of the
fluid (because all involved forces are central:Fij = −Fji). It is therefore the only
thermostat that allows the study of transport processes [131]. However, it has to be
pointed out that mass transport in the original DPD method istoo fast compared to
transport of momentum. Namely, the Schmidt number (i.e. theratio of the kinematic
viscosity to the mass diffusivity) of a DPD fluid is 1000 timeslower than the one of
actual water [84]. Thus, it is unclear how well diffusive processes are actually captured
by the model.

In agreement with the DPD standard, we userc andkbT as our units of length and
energy. All particles have unit massmi = 1. From equation (5.1) we can derive the
unit of time asτ = rc

√

m/kbT . We will give an estimate of the order of magnitude of
the physical length in section 5.3.

5.2.2 Incorporation of chemical reactions

A rigorous way to extend the DPD formalism to account for chemical reactions would
need to couple the free energy change of a reaction to the kinetic and potential energy
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reservoirs in the model in a way that reactions result in local heating or cooling. This
approach is highly non-trivial and further method development in this direction is cer-
tainly needed. However, it is also not clear that this is needed in order to achieve the
qualitative results that we are seeking. Thus, we employ a simple stochastic process
on the basis of reaction rates that is employed between everytwo DPD updates. This
algorithm was used in earlier Brownian Dynamics simulations [108]. Our choice can
be legitimated by the observation that chemical reactions are relatively rare events in
our simulations and thus their impacts are rapidely equilibrated by the DPD thermostat.

Chemical reactions in our system occur between two reactants and fall into two
different classes: Each reaction has a given rate for spontaneous occurrenceks.

transformation:U −→ V

polymerization (of different bases or oligomers):X + Y −→ XY

The spontaneous reaction rate can be enhanced by the presence of nearby catalysts.
The catalytic effect decreases linearly with increasing distance to the reactant up to
a cutoff distancercat beyond which it is zero. For simplicity, the effect of several
catalysts is modeled as a superposition. Thus, the overall reaction rate is given as

k = ks +
∑

C

fcat(rC) (5.12)

with

fcat =

{

kcat

(

1 − rC
rcat

)

if rC < rcat

0 else
(5.13)

In these equations, the sum runs over all catalyst beads, with rC denoting the distance
to the first reactant,rcat the maximal catalytic range, andkcat is the catalytic rate.
Polymerization has the further restriction that the distance between the reactants must
be less than a maximal reaction rangeR. To deduce probabilities from the reaction
rates, we used an agent-based like algorithm that is given inSec. 5.6.

If a reaction occurs, we change the particle types of the reactants fromX to Y

and/or establish or remove a bond between the reactants, depending on the type of
reaction. Particle positions and momenta are conserved.

We also introduced particle exchange into the model to mimicthe supply of chemi-
cals into the system, which drive it out of its equilibrium. Our model allows us to define
regions, in which particles of a certain class can be exchanged with a given probability
to reestablish a non-equilibrium state so that the system can continue to evolve. Note
that total particle number is kept constant. Likewise in chemical reactions, we conserve
positions and momenta when exchanging particles.

5.2.3 Components of the minimal protocell model

We model the protocell with the following components: water, surfactant precursor,
surfactant, sensitizer, information templates, and information oligomers and their pre-
cursors. Water (W) and sensitizer (Z) are single DPD particles. Surfactants are mod-
eled as amphiphilic dimers: one hydrophilic head (H) and one hydrophobic tail particle
(T) connected by a covalent bond. Precursor surfactants are dimers of two hydropho-
bic particles (T − T). Interaction parameters (as multiples ofkbT ) for the water and
amphiphiles have been taken from [89] (where surfactants are modeled as dimers as
well):
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aij W H T

W 25 15 80
H 15 35 80
T 80 80 15

Bond parameters areb = 150kbT andrb = 0.5rc. These parameter values were
originally used to analyze polymer surfactant interactions. Later, the phase diagram for
varying surfactant concentrations was analyzed [145].

In order to keep the number of different parameters as low as possible, we express
further interactions with the same parameters as the ones above: sensitizer beads are
hydrophobic. Thus, their interaction parameters are equalto those for surfactant tails:
aZj = aTj .

Genes

The gene is modeled as a strand of covalently bound monomers (A andB) with hy-
drophobic anchors (T) attached to it. We assume the gene is similar to a peptide nucleic
acid (PNA) decorated with lipophilic side chains to the backbone. The reason why we
are utilizing PNA and not DNA or RNA is because we want to have anon-charged
backbone for the gene molecule to enhance its lipophilic properties. For details, see
[71]. We note that the use of PNA decorated with lipophilic side chains in conjunction
with an amphiphilic surface layer will cause the genetic material to have a behavior
that is quite different from that of DNA or RNA in water. In particular, it is not at all
clear that the two complementary macromolecules locally will lie in a common plane
when hybridized with each other. Thus we investigated a number of possible different
orientations.

By numbering the monomers within each strand, we introduce an orientation of the
molecule that mimics the orientation of the actual peptide bond given by itsC- and
N-termini. This allows us to define the following vectors for each gene monomer bead:
ui is a unit vector pointing from the previous monomer towards the current one. For
the first monomer in the strandui = 0. Likewise,vi is a unit vector pointing towards
the next monomer in the strand (or0 for the last monomer).zi is a unit vector pointing
from the actual monomer towards its anchor bead. To obtain the association of PNA
to the micellar surface, the molecule is modeled as interconnected amphiphiles. For
the hydrophobic anchors, we use the same bead typeT as used for the surfactants and
precursors, while nucleotide beads share the interaction parameters of the hydrophiles:
aAj = aBj = aHj . We need to introduce additional interactions that describe the
affinity of complementary gene monomers. Due to the rather complex combination of
hydrogen bond formation and cooperative andπ stacking between real gene monomers,
we cannot expect the complementary monomer bead forces to beas simple as the bead-
bead interactions introduced in the former section. We now implement and test several
alternative representations of such base affinities as discussed below.

undirected attraction: The obvious extension ofFC
ij to include attractive interac-

tions is a combination of attractive and repulsive components. Thus, in the first repre-
sentation, we replaceFC

AB
(r) by the stepwise linear function

FC1

AB
(r) = FC

AB(r) +

{

a2 (rc2
− r)n if r < rc2

0 else
(5.14)
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with rc2
> rc anda2 < 0. Different attraction strengthsa2 will be used and compared

in later computer simulations (section 5.3.4). To compensate strong attractions for
small values ofr, we will vary the repulsion strengtha1 = aAB accordingly. Note that
another generalization ofFC1

AB
compared toFC

AB
is the change in the interaction range

which, in addition to the standardrc dependence, now also depends on the actual pair
(A,B) throughrc2

.

directed “radial” attraction: In the real gene system, hybridization is partly due
to the formation of H-bonds between the complementary nucleotides. H-bonds share
features with covalent bonds, which are better characterized by directed rather than ra-
dial interactions. Hence, in the second representation, weintroduce directed attraction
parallel to theA − T andB − T axes, respectively. Here, we replaceFC

AB
by

FC2

AB
(r) = FC

AB(r) +

{

a2(rc2
− r) (z · r)n if r < rc2

0 else
(5.15)

with the above definitions forr, z, andn. Again, different attraction coefficientsa2 will
be compared in the later simulations. The valuea1 = aAB, on the other hand, can be
held fixed because the attraction vanishes whenr approaches 0. We seta1 = 35kbT =
aAA = aBB We call this interaction “radial”, because the strongest attraction will be
radial towards the center of the micelle, once the PNA strandis attached to the surface
of the micelle.

directed “tangential” attraction: The third representation is similar to the second,
except that attraction is now perpendicular to the backboneand to theAT (orBT) axis.
The force is attractive towards one side of the PNA and repulsive towards the other—
hence, it is the only implementation that catches the directionality of the molecule:

FC3

AB
(r) = FC

AB(r) +

{

a2(rc2
− r)

(

(u+v)×z

|(u+v)×z| · r
)

n if r < rc2

0 else
(5.16)

This force is expected to be strongest tangential to the surface of the micelle. As in the
last case, we will varya2, but keepa1 fixed at a value of35kbT .

Covalent bonds within PNA strands have a bond strength ofb = 150kbT with
an ideal bond lengthrb = 0.5rc for bonds between nucleotides and anchors, and
rb = 0.75rc for bonds between the nucleotides themselves. In addition,we intro-
duce stiffness (eq. 5.8) within the PNA strand: angles of interconnected strands prefer
to be stretched out (θ0 = 180o, cijk = 10kbT ). With the stiffness we model folding
restrictions of the peptide bond, as well asπ-π electron stacking of nearby nucleotides.
This affects only the PNA chain, not the bonded hydrophobic anchors, as they do not
experience any bending potential. Table 5.1 summarizes thechosen set of parameters.

Reactions

For the above listed components we introduce the following chemical reactions:
First, we define a reaction that transforms the oil-like precursor surfactants into ac-

tual surfactants. In the real chemical implementation of the protocell, the precursors are
fatty acid esters. The ester bond of the precursor surfactant breaks thereby producing
a fatty acid—the surfactant—and some small aromatic molecule—which is considered
waste. Disregarding the production of the waste, we model this reaction by the scheme

TT + Z −→ HT + Z (5.17)
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Figure 5.3: Hybridization complexes for radial (a) and tangential (b) attraction between
complementary bases. Bases are shown as black and white beads, hydrophobic anchors
in yellow. Arrows denote the direction of strongest attraction.

aij W H T A B Z

W 25 15 80 15 15 80
H 15 35 80 35 35 80
T 80 80 15 80 80 15
A 15 35 80 35 (*) 80
A 15 35 80 (*) 35 80
Z 80 80 15 80 80 15

Table 5.1: Interaction strengthaij (as multiples ofkbT ) for all bead types defined in
the model. The force (*) between complementary nucleotidesA andB has attractive
parts and cannot be expressed by a single interaction parameter aAB. Three different
force fields have been considered for such interactions. Seethe text for details.

which reflects, that both parts of the ester are hydrophobic,while the resulting sur-
factant is an amphiphile. For simplicity, the spontaneous reaction rate is set to0τ−1.
The sensitizer acts as a catalyst with a catalytic radius of1.0rc. In our simulation,
the catalytic rate of the sensitizer can be turned on (kcat = 1.0τ−1) and off (0τ−1)
interactively by a switch. This mimics the photo-activity of the sensitizer.

Second, we introduce reactions to form covalent bonds between the terminal mono-
mers of pairs of oligomers.

A + B −→ AB

A + A −→ AA (5.18)

B + B −→ BB

These syntheses are only applied to the terminal monomers inthe PNA strands and
involve no catalysts. The maximal range is0.75rc, the maximal reaction rate iskmax =
0.1τ−1. The actual reaction rate between monomersi andj further depends on the
orientation of the ligating strands: we set

kij =
1

2
kmax

(

ui + vi

2
·
uj + vj

2
+ 1

)

(5.19)
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This formulation also prevents covalent bonds between complementary strands (which
are anti-parallel, and thus, have an effectivek close to zero).

5.3 Results

We use the model discussed above to study various aspects of the life cycle of the
Los Alamos Bug as depicted in Fig. 5.1. In particular, our simulations address the
spontaneous self-assembly of protocells (Fig. 5.1, frames1&2), the incorporation of
resources (frames 2&3), the metabolic growth of the protocell (frames 4&5), template
reproduction, and finally fission into two daughter cells (frames 5&6). We will further
analyze some of the catalytic coupling processes explainedin the introduction.

All simulations are performed in three-dimensional space with periodic boundaries.
We setσ to 3 andη to 4.5, which leads to an equilibrium temperature of1kbT . A
total bead densityρ = 3.0r−3

c is used for all simulations. System size and number
of iterations is noted for each individual simulation run. We integrate equation (5.1)
numerically with the DPD variant of the leapfrog Verlet integrator discussed in [84]
with λ = 0.5 and a numerical step width of∆t = 0.04τ .

5.3.1 Self-assembly of micelles

We initialize a cubic box of size(12.5rc)
3 randomly with2.9 water beads and0.05 sur-

factant dimers per unit volume, or 5664 water beads and 98 dimers in the box. Simula-
tions are performed for0τ < t < 1000τ with the interaction parameters summarized
in Table 5.1 and the model parameters given in the introduction to this section. We
observe the formation of spherical micelles with aggregation numbers up to about 20,
with a peak around 12. This is shown in Fig. 5.4, where once thesystem had reached
an equilibrium state, we followed its behavior. For each time step we recorded the
number of aggregates of a particular aggregation number andhence the total number
of surfactants in the aggregates of that size. The average ofthis result over the num-
ber of time steps was than histogrammed. We also observe a continuous exchange of
surfactants with the bulk phase. As a result of these associations and dissociations, we
find a number of free monomers and sub-micellar aggregates inthe bulk phase. These
observations qualitatively fit theoretical and experimental results [see e.g. 49].

Although we do not intend to model specific chemicals, we can roughly estimate
the order of magnitude for the physical length scale of our simulation, using a proce-
dure proposed by Groot and Rabone [80]. Our calculation is based on sodium alkane-
sulfates as these are well studied surfactants with properties similar to the fatty acids
used in the real chemical implementation. Table 5.2 lists the critical micelle concen-
tration (CMC), i.e. the minimal concentration at which micelles spontaneously form.
The table also gives the mean aggregation number and the volume of these molecules.
Under the simplifying assumption that all DPD beads have equal effective volume, we
can derive the molecular volume of a single DPD bead and – knowing the molecular
volume of water (VH2O = 30Å

3
) – we get the so-calledcoarse graining parameter

Nm =
1
2Vsurf

VH2O
(5.20)

that tells us, how many water molecules are represented by a single DPD bead. The
average number of DPD water beads per unit cube isρ, each one of them representing
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surfactant CMC aggregation surfactant vol. Nm rc surfactant conc. predicted

in mol/l number inÅ
3

in Å in mol/l micellization ratio
NaC6H13SO4 0.42 17 ± 6 278 4.625 7.467 0.201 1 · 10−5

NaC7H15SO4 0.22 22 ± 10 305 5.075 7.701 0.183 2.5 · 10−3

NaC8H17SO4 0.13 27 332 5.525 7.923 0.168 0.2
NaC9H19SO4 6.0 · 10−2 33 359 5.975 8.132 0.156 0.6
NaC11H23SO4 1.6 · 10−2 52 413 6.875 8.521 0.135 0.935
NaC12H25SO4 8.2 · 10−3 64 ± 13 440 7.325 8.703 0.127 1
NaC14H29SO4 2.1 · 10−3 80 ± 16.5 494 8.225 9.046 0.113 1

Table 5.2: Data for sodium alkanesulfate surfactants with varying tail length. For each surfactant, CMC and mean aggregation number are listed
from [151]. The molecular volume is estimated from the number n of carbon atoms using the formulaV = 27(n + 1)Å

3
[49] plus a constant

88.51Å
3

for the sulfate group (whose value is derived from the molecular mass (98.08g/mol) and density (1.84g/cm3) of sulfuric acid). The coarse
graining parameterNm, the physical length scalerc, and the total surfactant concentration are the interpretation of model parameters in case that the
model dimer represents the respective surfactant. Finally, the fraction of micellized surfactant is the prediction ofthe closed association model for the
respective surfactant and the calculated concentration [49].
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Figure 5.4: Micellar size distribution for a system containing 2.9 water beads and
0.05 surfactant dimers per unit cube. To obtain the aggregate size histograms from a
system state, every two surfactants whoseT-beads are separated by less thanrc are
considered to belong to the same aggregate. 20000 systems states of an equilibrated
system (200τ < t < 1000τ ) are averaged in the shown distribution.

Nm molecules. Therefore, the physical length scalerc resolves to

rc ≡ (ρNmVH2O)1/3. (5.21)

We will work with solutions that are quite dilute and hence dominated by water. Noting
that a liter of water has1000/18 = 55.56 moles of water in it, while a volume ofr3

c

hasρNm molecules of water in it, we find that a concentration of 1 particle/r3
c yields a

unit of concentration as
1r−3

c ≡ 55.56mol/ρNm. (5.22)

With these estimations, we find that the lipid concentrationin the above simulation
represents between0.11 and 0.20mol/l. It is somewhat arguable to estimate the con-
centration of free lipids in the bulk phase, because our simulations do not yield a sharp
distinction between free lipids—i.e. submicellar aggregates—and proper micelles. As-
suming that the most reasonable choice for such a distinction is the first minimum in
the micellar size distribution at aggregates of size 5 or less, from Fig. 5.4 we get an
average of 22.9 free surfactants in the bulk phase out of 98 lipids in the total volume,
i.e. 76.6% of the surfactant is micellized and the free lipidconcentration lies between
0.03 and 0.05mol/l. Knowing the physical surfactant concentration, we can com-
pare this finding to the prediction of the closed associationmodel [49]. According to
this model, surfactants are either in bulk phase (S) or in micelles of aggregation num-
ber N (SN ). With the pseudo-chemical reactionNS ⇋ SN and the condition that

d[S]
d[S]total

∣

∣

∣

CMC
= dN [SN ]

d[S]total

∣

∣

∣

CMC
= 0.5, one can calculate the fraction of micellized surfac-

tant for any total surfactant concentration[S]total = [S] + N [SN ]. The respective ratio
N [SN ]/[S]total is also given in table 5.2.

We find that our model best matches the aggregation numbers ofshort chain sur-
factants (NaC6H13SO4), while our micellization ratios more closely match the pre-
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dictions for the somewhat longer chains (NaC9H19SO4). Although our model repre-
sentation of surfactants as dimers is rather simplistic, wefind a reasonable match (at
least in the order of magnitude) between experiment, simulation, and theory. It should
be noticed that the micellization parameters for fatty acids, which are the container sur-
factants of choice in the Los Alamos Bug, are qualitatively similar to the listed sodium
alkanesulfate surfactant parameters, which are the most well studied surfactants in the
scientific community. Given the easy availability of relevant parameters for alkanesul-
fate surfactant parameters and the level of coarse grainingin our DPD model we can
safely use these experimental data to calibrate our simulation. It is conceivable that
closer matches might be found by changing interaction parameters or the representa-
tion of surfactants. We have however decided to stick to the standard parameter set in
order to get comparable results to earlier DPD simulations [89, 145, 81].

Next, we analyzed a ternary mixture of water, surfactant, and oil. In the system
described above, we exchanged an additional0.1 water beads per unit volume by0.05
hydrophobic oil dimers (T−T), which represent the lipid precursors of the Los Alamos
Bug. Starting from a random initial condition, the system forms loaded micelles: the
precursors aggregate into a core in the interior of the individual micelles because of
their high degree of hydrophobicity. This core is coated by surfactants, which shield
it from water. We observe a stabilizing effect from the hydrophobic core: the rate of
monomer dissociation from the aggregates decreases by a factor of 4 to 5. Dissociation
of oil dimers does not happen during the simulations. Over the simulated time span
(0τ < t < 1000τ ), these loaded micelles constantly fused to form bigger aggregates.
At t = 250τ , the system is composed of five micelles with aggregation numbers 12, 13,
16, 24, and 32, where the aggregation number just counts the surfactants in an aggregate
and not any of the precursors or other components. Att = 500τ we find four micelles
(with sizes 16, 24, 25, 32) and finally, fort = 1000τ , the system consisted of only
two micelles with aggregation numbers 43 and 53. It remains unclear, whether this
was the equilibrium solution, or whether the two micelles would finally fuse to form
a single aggregate. It is known that any given mixture of surfactants and oil in water
results in some equilibrium aggregate structure, some useful and some less useful as a
protocellular container substrate, see e.g. the recent summary discussion in [152].

In general, the addition of hydrophobic precursors allows aggregates to grow far
beyond their micellar aggregation number, while at the sametime, monomer disso-
ciations from the assembly falls by a factor of four or more. This is consistent with
simulation results from earlier studies of a similar surfactant-precursor-water system
[81, chapter 4 of this work]. However, a more systematic DPD investigation is neces-
sary to address the dynamics, stability, and size distribution issue in this context.

5.3.2 Self-assembly of the protocell

In this section, we study the self-assembly of protocells. We initialize a cubic box of
size(7.5rc)

3 with 1212 water particles, 21 surfactant dimers, 4 sensitizer particles and
one PNA strand that is four nucleotides in length. All other simulation parameters are
as before. Using these numbers, we achieve the same overall particle density and the
same surfactant concentration as in the previous section.

Starting from an arbitrary initial condition, we observe the spontaneous formation
of a protocell, i.e. a micelle that is loaded with sensitizerand which has PNA attached
to its surface and whose nucleotides are exposed to the aqueous phase (see Fig. 5.5).
Aggregation happens within a remarkably short period: after only 10 time units, we al-
ready find complete protocells. The lipid aggregation number of this micelle is around
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Figure 5.5: Self-assembly of the protocell from a random initial condition. The dia-
grams show the state of the system at times a)t = 0τ , b) t = 4τ , and c)t = 10τ .
Surfactants are shown in green (head bead) and yellow (tail), the sensitizers in red, the
PNA backbone in yellow and the PNA monomers in black and white.

14 with few associations and dissociations of monomers. Theslight increase in aggre-
gation number along with a decrease of monomer dissociations is most probably due
to the stabilizing effect of the additional sensitizers.

5.3.3 Replication of the Container

The dynamics of a surfactant-precursor-water system similar to the one under consid-
eration has been studied in detail in [81, chapter 4 of this work]. Considering precursor
and surfactant kinetics, the formerly analyzed system differs from the one discussed
here in that i) the catalytic role of sensitizers is performed by the surfactants them-
selves, and ii) the metabolic turnover is not regulated by turning the light on and off, but
instead only follows chemical mass kinetics. Using simulations based on classical lat-
tice gas methods, Coveney et al. [153] in 1996 reproduced themicellar self-replication
experiments of Bachmann et al. [59]. In 1998 and 2000 Mayer and Rasmussen devel-
oped an extended lattice polymer approach [154, 155] for explicitly including polymers
and chemical reactions similar to the current DPD approach and they were also able to
reproduce the experimental findings by Luisi’s group [59]. The purpose of this section
is to show that the reported dynamics also hold for the metabolic reaction scheme of
the Los Alamos Bug.

A system of size(10rc)
3 is initialized with a micelle consisting of 15 surfactants

and loaded with 4 sensitizer beads in its interior. Model parameters are given in the
beginning of this section. In a single spherical region of radius2rc located away from
the micelle, pairs of water particles are replaced by surfactant dimer precursors with an
overall exchange rate of≈ 2.5 × 10−3 precursors per time unit.

Because of their hydrophobic nature, the precursor molecules tend to agglomerate
into oil-like droplets. The diffusion of such droplets becomes progressively slower
the bigger they are. This initiates a positive feedback: thebigger the droplets, the
more slowly they diffuse out of the exchange region. The slower they diffuse, the
more likely they are to accumulate additional precursors before they diffuse out of the
exchange volume. By varying the volume of the exchange region and/or the rate of
exchange, one can set the mean size of the precursor dropletsthat are formed. Due to
the positive feedback, the effect will not be linear with either the exchange region size
or the exchange rate.

Since we do not want the non-continuous exchange events to disturb the systems
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Figure 5.6: Replication dynamics of the container: precursors are fed into the system
far from the micelle at the (periodically reflected) edge of the system space. They
form droplets in the aqueous phase, which are absorbed by theprotocells as a whole.
Protocells grow by incorporation of precursors. After a critical amount of precursor is
transformed into surfactant, the assembly loses its stability and splits in two daughter
cells (right frame).

dynamics too much, we restrict particle exchange to a regionof 2.0rc (3% of the total
system volume). By varying the exchange rate used to introduce precursors, we find
that5.0 × 10−5 is close to the optimum for which droplets of precursor molecules are
provided at a reasonable rate, yet are still small enough to diffuse at a reasonable speed.
With these values, the precursor droplets consisted of 5 dimers on average. Once in the
vicinity of a micelle, the droplets are immediately absorbed.

When the micelle absorbs 15 precursor molecules into its interior, we stop supply-
ing additional precursors and trigger the catalytic activity of the sensitizer by turning
on the light. During the metabolic turnover, the micelle grows in amphiphile number,
while losing few, if any, amphiphiles due to the stabilizingeffect of the remaining pre-
cursors as was discussed previously. It responds to the changing surfactant to precursor
ratio by changing its shape from spherical to rod-like. The elongation continues until
nearly all the precursors are metabolized. At some moment, the elongated aggregate
becomes unstable and divides into two daughter cells (see Fig. 5.6). With the param-
eters used, overall precursor turnover and fission takes place in approximately 20 time
units (i.e., 500 time steps).

We compared the above findings to simulations of an unregulated system, where the
precursor supply and catalytic rate are not triggered, but instead held constant over the
whole simulated time span. The objective behind this simulation was to find whether
the system might feature inherent self-regulation: as the precursor forms droplets in
the bulk phase, their incorporation into the micelle occursin spurts rather than contin-
uously. If the introduction rate of precursors into the system is locally fast enough to
allow larger droplets to form (especially due to the positive feedback effect), a larger
number of precursors can simultaneously enter the protocell. Then if the metabolic
turnover rate is sufficiently fast, the turnover of the largenumber of precursors might
be sufficient to trigger container division rather than having a slow but continual loss
of newly formed amphiphiles.

To investigate this possibility, we performed simulation runs for a system of size
(10rc)

3 initialized with a micelle of 15 surfactants and 4 sensitizer beads. Other model
parameters are the same as given in the beginning of this section. Precursors were
supplied by the same mechanism and rate as before. We observed the incorporation
of droplets between 3 and 9 precursor dimers in size. As the transformation of precur-
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sors happened significantly faster than the precursor supply, nearly each droplet was
transformed separately. When only few precursors were absorbed at once (i.e. a small
droplet), the micelle responded by rejecting several surfactants into the bulk phase.
Such loose surfactants then formed sub-micellar aggregates or attached to precursor
droplets when present. However, when the incorporated droplet was big enough, the
outcome of the metabolic turnover was a proper cell division. A micelle that consisted
of 15 surfactants and 4 sensitizers, for example, split in two after the absorption and
turnover of 8 precursors. The fission products were two micelles, one with 14 surfac-
tants and 3 sensitizers and the other with 9 surfactants and 1sensitizer.

This result suggests that the explicit regulation of the metabolic turnover by light
bursts might not be necessary to obtain the replication cycle of the container as a simi-
lar regulation can be obtained by a careful regulation of theprovided precursor droplet
sizes. Light control might, however, still serve as a convenient mechanism to synchro-
nize container and genome replication if they occur on separate time scales.

5.3.4 Replication of the genome

In our experience, the most difficult component of the protocell to model with DPD
methods is the genome and its behavior. Furthermore, the DPDhybridization process
seems more illdefined than the ligation process, which is whyour discussion of the
replication of the genome is divided in two consecutive steps: hybridization and liga-
tion. Please recall that hybridization denotes the alignment of short PNA oligomer sec-
tions along the template PNA strand and “hydrogen” bonding to it, while ligation—or
polymerization—is the reaction that turns aligned oligomers into an actual (comple-
mentary) copy of the template.

Hybridization

Replication of the genome essentially depends on the stability of the hybridized com-
plex: it can only occur if the double strands are stable for a time long enough for all
the needed oligomers to diffuse to and align with the template. It should be noted that
if more than 2 oligomers are involved, the joining of additional oligomers and their
polymerization can occur sequentially so the unpolymerized templates need not all be
simultaneously attached. As will be shown further below, once some polymerization
has occurred, that section will be more stable in hybridizedform. We studied the sta-
bility of the hybridization with the following simulation:A system of size(5.5rc)

3 was
initialized with an oil layer that is meant to mimic a two phase system (single beads
of type T are confined to lie below a plane above which the water is located). The
overall particle density isρ = 3r−3

c , as in the earlier experiments. in order to make the
hybridization process as simple as possible. As we shall seelater, aggregate surfactant
dimers tend to tangle with the gene anchors, which both slowsdown the hybridization
process and makes it less accurate. A four-monomer long PNA template was placed
at the oil-water-interface with its anchors pointing down toward the oil and its bases
pointing up towards the aqueous phase. A pair of 2-nucleotide long complementary
oligomers was placed at a distance of0.5rc from this strand at a location/orientation
for proper hybridization. The location/orientation was varied to match the different
hybridization cases studied. In the case of directed radialattraction, this meant that all
the beads of the complementary PNA molecules are outside theinterface plane, with
their hydrophobic anchors pointing away from the hybridization site. In contrast, in
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Figure 5.7: Initial setup of the hybridization simulations. The system is initialized
with an oil-layer that mimics the oil-water interface of a two-phase system. A four-
mer template and two complementary dimers are placed at the interface so that they
form a hybridization complex. The association time of such hybridization complexes
is measured for different PNA implementations and attraction forces.

the case of tangential attraction, both the template and theoligomers span the interface
region as shown in Fig. 5.7.

In the system modeled, we only had two different types of monomers (A, B) with
A andB being complementary to each other, but not self-complementary. All dif-
ferent 4-mer templates excluding symmetric configurationswere used (e.g.AAAA,
AAAB, AABB, ABAB, andABBA) and for each different template only the
proper complementary dimer oligomers were used. The different 4-mer configurations
can differentially hinder the ability of the complementarybases to slide along the tem-
plate.

During the simulations, the distances between all four complementary base pairs
were measured at every time step. When one of these distances exceeded1.5rc (the
maximal interaction range for complementary bases), the PNA strands were considered
to be dehybridized. The time it took for the double strands todehybridize—i.e. the
association time of the hybridized complex—serves as a measure of the stability of that
state. After a maximum oft = 100τ , simulations were truncated and the hybridization
was considered to be stable.

For the three different representations of PNA hybridization (see sections 5.2.3
Genes, cases a,b, and c), we performed simulations for all possible combinations of
four bases excluding symmetrical combinations. Strengthsfor attractive forces were
set with respect to the repulsive force parameteraAB so that complementary bases
attracted each other but did not overlap by more than0.6rc. The association times were
measured using 10 to 20 runs for each combination. Results are shown in Fig. 5.8.

undirected attraction: In the case of undirected attraction, we found mean associa-
tion times between2.12τ for a1 = 50kbT , a2 = −10kbT , and7.76τ for a1 = 65kbT ,
a2 = −20kbT . For strong attractions, association times tended to increase with the
number of equal (preferably nearby) nucleotides in the template (AAAA is the most,
while ABBA is the least stable sequence). However, these differences were rather
small.
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Figure 5.8: The association times (i.e. the time until the initially hybridized complex
becomes dehybridized) for different PNA template sequences of length four using a)
undirected, b) radial, and c) tangential attraction. For each implementation, three dif-
ferent attraction strengths are compared, as given in the legend for each figure.a1

denotes the coefficient of the repulsive part,a2 the coefficient of the attractive part of
the interaction force. In the case of directed attraction (band c)a1 was set to35kbT
independent of the respective value ofa2. In c), the plotted averages are minimal val-
ues for the actual averages, as simulations were truncated at t = 100τ . If runs were
truncated, the multipliers above that run designate how often this was done.
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directed radial attraction: For directed radial attraction, the mean association times
ranged from0.45τ for a2 = −10kbT to 0.98τ for a2 = −30kbT (a1 = aAB =
35kbT for all cases) without any significant variation for different sequences. For most
simulation runs, it took only a few time steps for the initialcomplex to dehybridize.
The reason for the poor nature of the hybridization of the PNAfor the radial attraction
is quite obvious: due to the amphiphilic character of PNA, the strands will arrange so
that nucleotides point towards water and the anchors towards oil. Thus, the attraction
is directed perpendicular to the oil-water interface and into the aqueous phase where
the oligomers do not want to reside. Because of the dot product in equation (5.15), the
attraction between two PNA molecules on the interface is marginal and the association
time is essentially a matter of diffusion.

directed tangential attraction: In contrast to the other tested situations, in the case
of directed tangential attraction, one can see significant differences in the association
time of the initial hybridized complexes, provided the attraction is strong enough: for
gene sequences with pairs of equal bases at terminal positions (e.g. AAAA and
AABB), hybridization is usually less stable than for sequences without equal bases
at terminal positions (ABBA andABAB). The association time of sequences with
only one such dimer lies between the values of the above two situations. Examination
of the simulations reveal the cause of this trend: a continuous group of two or more
equal monomers, one of which is a terminal position of the template allows the attached
dimer to slide along the template strand without a strong penalty in potential energy,
and eventually protrude beyond the end of the template. In this misaligned configu-
ration, the dimer can easily distort from the parallel alignment, thereby reducing the
overall attraction to the template, until it finally disassociates from the complex. Dis-
tinct bases at terminal positions, on the contrary, preventthis sliding along and then off
of the template, thereby significantly stabilizing the hybridized state.

For the more promising PNA implementations – undirected andtangential attrac-
tion – we further measured the mean distance between complementary bases (hy-
bridization distance) and the distance between those basesin the oligomers that are
supposed to polymerize (ligation distance). We performed these measurements using
the sequenceAAAA for the undirected, andABBA for the tangential attractions (in-
teraction parameters are given in the caption of Fig. 5.9). Simulations are performed
for 0τ ≤ t ≤ 1000τ . The resulting time series are shown in Fig. 5.9.

In the case of tangential hybridization one finds two alternating domains in the
hybridization distance time series: (i) when oligomers arealigned to the template,
the mean hybridization distance is around1.04rc with only small fluctuations and an
average ligation distance of1.01rc (e.g. 430τ ≤ t ≤ 450τ and700τ ≤ t ≤ 780τ
in Fig. 5.9). In between such periods, (ii) oligomers dissociate from the template, and
diffuse over the interface, which is indicated by the large variance in hybridization
distance.

Undirected attraction, in contrast, yields hybridizationdistances around1.07rc with
significant continual fluctuations and a mean ligation distance of1.158rc. One cannot
observe the “locking” of the hybridized state that is apparent for the tangential attrac-
tion: although the oligomers preferably stay in the vicinity of the template, they are
not forced into any particular orientation. Investigationof simulation states reveals that
oligomers align along different sites of the template or even cross the template strand.
Thus, although it appears from a quick look at Fig. 5.9 that the undirected attraction
performs better on average, it is only during the “locked in”period that the desired
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Figure 5.9: Mean hybridization (upper panel) and ligation distance (lower panel) for
the PNA templates (and corresponding oligomers)AAAA using undirected attraction
with a1 = 65kbT , a2 = −20kbT (red) and forABBA using tangential attraction
with a1 = 35kbT, a2 = 40kbT (blue). By hybridization distance, we mean the average
distance between complementary nucleotides, by ligation distance, we mean the min-
imal distance between two terminal nucleotides that are supposed to polymerize. The
maximal values of the various distances are limited by the small size of the box.
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Figure 5.10: Hybridization and ligation distances of PNA template and complementary
oligomers in water. For PNA, tangential directed attraction with a2 = 40kbT has been
used. The nucleotide sequence isABBA.

reactions occur. We can therefore conclude that only the implementation of PNA us-
ing tangential attraction is able to generate a proper hybridization and base recognition
approximation.

It is assumed that the PNA replication is catalyzed by the oil-water or surfactant-
water interface. This is because: (i) lipophilic PNA concentrates at the oil-water inter-
face and thus obtains a much higher local concentration there than in water; (ii) that
the interface contains a lower water concentration than thebulk phase; (iii) that the
interface might directly act as a catalyst for the amide bondformation; and (iv) that the
PNA is more spread out (linear) when attached to the interface. To test the geometric
part of this hypothesis, we also performed simulations of hybridization in pure water.
We randomly initialized a box of size(5.5rc)

3 with water, PNA template (ABBA)
and complementary oligomers using directed tangential forces (the overall bead den-
sity wasρ = 3r−3

c ). Simulations were performed for0τ ≤ t ≤ 1000τ . Hybridization
and ligation distances are plotted in Fig. 5.10. The mean hybridization distance in this
scenario is1.41rc (which is close to the maximum radiusrc2

at which attraction of
complementary nucleotides still exists) with a standard deviation of0.34rc. Moreover,
there is no clear separation between hybridized and dehybridized states. In contrast to
the scenario for the oil-water interface, the oligomers never completely dissociate from
the template. However, the oligomers are not properly hybridized either. Instead, the
template and complementary strands mainly attract each other due to the hydrophobic
interactions between the tail beads of these strands ratherthan forces between their
bases. Inspection of the simulated states shows that oligomers are seldom aligned par-
allel to the template. The overall structure has more resemblance to that of a micelle
with geometries defined by the amphiphilic properties of themolecules, rather than a
double strand defined by base affinities. The ligation distance has an average value
of 1.12rc with a standard deviation of0.39rc. Unfortunately, this is smaller than in
the previous simulations. This might result in ligation rates higher than those on the
surface. However, if we decide to vary the ligation probability depending on the an-
gle between PNA backbones, the effective ligation rate is smaller than at the oil-water
interface.

Last but not least, it is notable that we cannot achieve reliable hybridization without
a stiffness potential in the PNA chain. In the absence of suchstiffness, complementary
bases within one strand tend to bind to each other and form sharp hairpin loops even
for very short strands. This effectively hinders any properhybridization except for very
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Figure 5.11: The three steps of template directed replication: a) Template (ABBA)
and oligomers (BA andAB) diffuse over the surface of the micelle, b) oligomers form
a hybridization complex with the template strand, and c) oligomers polymerize to yield
a complementary copy of the template.

few sequences that do not offer any possibility for loop formation (such asAAAA).

Ligation

To study the polymerization reaction, a four-mer template strand and two complemen-
tary dimers are placed randomly on the surface of a loaded micelle (20 surfactant, 20
precursors) within a system of size(10r3

c ) and total densityρ = 3.0r−3
c . As the last

section identifiedABBA to form the most stable hybridization complex, we restrict
polymerization experiments to this particular sequence using the PNA representation
with tangential directed attraction (see Fig. 5.11).

Of the performed simulations, 8 out of 10 generated proper template directed lig-
ation, while the remaining 2 reactions occur spontaneouslyin the absence of the tem-
plate strand and define the expected background reaction [156]. In our simulations, one
of the two spontaneous ligation results was a correct complementary copy of the tem-
plate strand while the other was not. Note that in our simulation, polymerization has
not been explicitly restricted to happen only between C- andN-terminals, which means
that both ends can be concatenated with any other end. When ligation is template di-
rected, 6 out of 8 runs lead to correct complementary sequences, while the other two
resulted in mispairings of the formBABA. In summary, we find that correct repli-
cation is about50% more reliable, when directed by the template. If one prohibits the
ligation of equal terminal beads (C-C and N-N), the reliability of replication is expected
to further increase.

The simulations reveal that it can take a surprisingly long time for the oligomers to
form a ligated hybridized complex with the template. Ligation occurs after90τ in the
fastest and after674τ in the slowest run. The average time is estimated as223.2τ . The
huge variance is due to the random walk of template and oligomers over the surface
of the micelle. Compared to the oil-water interface of the previous section, oligomer
motion is further slowed down by the head particles of the amphiphiles as well as the
dimer structure of the aggregate building blocks.

It is worth mentioning that as expected, the hybridized complex is significantly
more stable after the ligation has occurred than before. None of the hybridized com-
plexes that formed in the above simulations showed any sign of dissociation within 750
time units after ligation took place.
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Figure 5.12: The division of the whole protocell completes the life cycle of the Los
Alamos Bug. A mature protocell is loaded with precursor molecules, sensitizers, and
two complementary PNA strands. During the metabolic turnover of precursors, the
aggregate elongates and divides. Both PNA strands and sensitizer molecules tend to
distribute evenly among the daughter cells, when only few sensitizers are present.

5.3.5 Full protocell division

The last elemental step in the life cycle of the Los Alamos Bugis the fission of the
grown cell into two daughter cells as shown in Fig. 5.12. In addition to what was
discussed in section 5.3.3, here we studied the fission of thewhole protocell after the
replication of its genome, that is, a micelle loaded with some lipid precursors, sensitiz-
ers and two complementary PNA templates. The objective is toilluminate how tem-
plates and sensitizers are distributed among the daughter cells. Although not addressed
by simulations in earlier sections, here the influence of thenumber of sensitizers is also
investigated.

Proper division into two daughter cells requires the melting of the double stranded
PNA resulting from genome replication, which may be achieved by a temperature cy-
cle. In the DPD formalism, temperature translates into the interaction parametersaij .
To study the impact of a temperature cycle on the whole system, one would need to
exchange the interaction parameters between all DPD beads.For simplicity in these
initial investigations, and in the absence of a rigorous calibration of our model, we
chose to invoke melting by simply turning off the attractivehybridization interactions
between the PNA bases.

We performed simulations of a system of size(10rc)
3 with an initial protocell

consisting of 20 surfactants, 20 precursors, 4 to 8 sensitizers, and two PNA template
strands randomly located on its surface. Otherwise, the standard parameters listed in
the beginning of this section were used. Snapshots of the system are shown in Fig.
5.12.In all cases, metabolic turnover initiated the division of the aggregate at times of
between 50 to 100τ after the start of the simulation. Fission times were found to be
longer than in the former experiments. This was because the aggregate consisted of
more particles and because the template strands stabilizedthe rod-like aggregate that
precedes protocell division. It was observed that PNA strands were preferably located
along the elongated part of the aggregate, rather than at thecaps. We believe that due to
the stiffness parameter (eq. (5.8)) of the PNA strands, the aggregate tends to elongate
in a direction that is parallel to the PNAs long axis.

Using only 4 sensitizers, the distribution of sensitizers and PNA among the daugh-
ter cells was rather diverse: in one out of 10 runs, all sensitizers and templates remained
in one of the fission products, while the other consisted of only 11 surfactants. In 7 of
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the runs the partition was nearly even: both sensitizers andtemplates were equally
distributed among the two daughter cells, which differed inaggregation number by at
most 3 surfactants. Last but not least, we also observed two runs where the other com-
ponents were distributed equally, but one of the daughter cells contained both template
strands. We note that although it was not observed, it might be possible for a template
to connect two otherwise divided aggregates by attaching toboth their surfaces.

One might expect the equipartition of sensitizers is more likely when their number
is increased. Our simulation results, however, showed quite the opposite: protocells
loaded with 8 sensitizers instead of 4 almost always responded by rejecting an average
of 11 to 12 surfactants. By doing so, the protocell was able tomaintain a stable spheri-
cal shape even with an aggregate number of 27 surfactants. This is due to the collective
stabilizing effect of the strongly hydrophobic core of sensitizers within the aggregate.
The more sensitizers that are added, the more they will tend to stick together. The more
they stick together, the less likely they will partition into different daughter cells. Thus
they are better able to stabilize the amphiphilic dimers in the aggregate. For an initial
protocell that holds 6 sensitizers, proper division can still be observed, but the results
are less reliable than in the case of 4 sensitizers. For 6 sensitizers, equipartition of sen-
sitizers was only achieved in one out of five simulations. Theother runs lead to empty
micelles or a situation where one of the daughter micelles has only one sensitizer bead.
Equipartition of PNA could not be achieved for the cases witheither 6 or 8 sensitizer
beads.

5.4 Discussion

Because of the inherent simplifications of the aggregated DPD simulation technique
and due to the inherent complexity of our protocell system, accurate predictions of nei-
ther the detailed kinetic nor thermodynamic properties could be expected. However,
insights into generic issues and likely system behavior could be obtained by the illu-
mination of the systemic properties of the proposed protocell design. In particular we
were able to see how the global behavior emerges from the simple and well-defined
properties of the underlying molecular ingredients. Interpolation between several sim-
ulation methods combined with experimental data is necessary to obtain predictive un-
derstanding of this protocellular system. Investigationsbased on quantum mechanics,
molecular dynamics, reaction kinetics, combined with these and other DPD studies,
hopefully can address the quantitative prediction issues in a more complete manner
[147].

We found that the micellar kinetics that underlie the container replication are highly
affected by hydrophobic molecules present in the solution.In the design of the Los
Alamos Bug, these hydrophobic molecules can be the metabolic precursors and sen-
sitizers. As these molecules are incorporated into the protocell, they form a core that
stabilizes the aggregates. Such loaded micelles have a larger aggregation number than
micelles in a pure surfactant-water system, and the surfactant exchange with the bulk
phase is strongly decreased. The simulations thus suggest that a 3-component (ternary)
surfactant-oil-water system is more suitable for yieldinga suitable container than a
two-component system based on surfactant and water only.

We also observed that protocells grow in spurts rather than continuously, even
with a continuous supply of resource molecules. This is because the oil-like precur-
sor molecules form droplets before they are absorbed by the aggregates. Furthermore,
due to slower diffusion of larger objects, once the dropletsstart to form, volume-wise
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they will tend to grow ever more rapidly the larger they become prior to being ab-
sorbed. The spurt-like support of resources might be sufficient to initiate the division
process of the aggregate if these droplets have the appropriate size. If so, the system
would be self-regulated and no further triggering of the metabolism as with an external
light switch would be necessary. Whether or not this self-regulation enables a reliable
replication of the whole organism also depends on a number ofother factors such as the
rate of precursor supply compared to the replication rate ofthe genome. Further simu-
lation investigations will be necessary to identify whether the metabolic self-regulation
is sufficient when the precursor supply rate is not carefullybalanced.

Our representations of the biopolymer that stores genomic information can be con-
sidered to be the crudest feature of the model. None of the implementations relate in
detail to the actual physicochemical traits of the real PNA molecule. The behavior
of the PNA molecule with hydrophobic side chains in our protocell is also found to be
quite different from that seen for DNA or RNA in water. UnlikeDNA where hybridized
base pairs are radially opposite, in our PNA the hybridized bases are more likely to line
up side by side in our attempts to model them. Furthermore, wehave not been able to
achieve an appropriate modeling of the balance between the hydrogen bond formation
and theπ stacking between the bases in large part due to the hydrophobic and am-
phiphilic elements involved. More work and new ideas are needed here. However, we
believe that the most fundamental properties of the biopolymer used—a PNA strand
decorated with hydrophobic anchors that is able to hybridize with another PNA strand
via H-bonds—is captured, at least in a qualitative manner. Against the background
of this caveat, two findings are of particular interest: the simulations reveal that even
our simple template representations are sufficient to introduce an impact on the sta-
bility of the hybridization complex. In other words, it is observed how a molecular
fitness function emerges from very few assumptions about theunderlying molecular
implementation. Furthermore, this fitness function is not asimple superposition of
the individual monomer properties, but rather depends on the sequenceof nucleotides
in the genome. This finding is consistent with experimental studies on non-enzyme
template-directed replication of RNA [157, 158].

It should be noted that an aggregate catalyzed gene replication could be realized in
a variety of ways. In this implementation, we have assumed that the aggregate-water
interface catalyzes the oligomer ligation process. Alternatively, one could imagine that
the hybridized PNA complex sinks into the interior of the aggregate as a consequence
of H-bond saturation. Here ligation, which is a dehydrationreaction might be favored
due to the low local water content. None of our genome implementations can capture
this behavior. In order to achieve it, one would probably need to alter the hydrophilicity
of the surfactant head groups depending on their hybridization state. We did not explore
this route any further, since it has not yet been clarified howthe hybridization complex
behaves in the experimental system.

Equipartition of the components among the daughter cells after the division was
achieved only when a few hydrophobic sensitizers are present in the protocell. Above
a minimal number of sensitizers, equipartition becomes less probable as the number of
sensitizers is further increased. This counter-intuitivefinding is connected to the fact
that sensitizers, like precursors, form a hydrophobic corein the interior of the micelle,
thereby increasing the allowed size of stable aggregates, in addition to stabilizing them
overall. Since the stability of the core itself increases with its size, once large enough,
it becomes nearly impossible for the core and therefore the protocell as a whole to
divide. Instead, the instability caused by the excess surfactants is addressed by rejecting
excess individual surfactants one at a time. The results suggest that the volume of
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the sensitizer molecules most likely will affect the fissiondynamics when a certain
threshold is reached.

Many open questions about systemic issues are still left unanswered by these initial
investigations. The main open issues include: (i) What is theeffect of heating the whole
system in order to de-hybridize the gene templates? Obviously, the lipid aggregate has
to be more heat tolerant than the gene duplex. (ii) What is the effect of defining the gene
duplex as the photo-catalyst as in the originally proposed protocell design [71]? In our
simulations, the sensitizer has been assumed to do the photo-fragmentation without
any genetic catalysis. Also, what is the effect of having thesensitizer as a separate
molecule (as reported here) versus covalently linking it tothe gene, e.g. as one of the
lipophilic anchors? (iii) What is the effect on the overall protocell replication if both
the gene precursors (oligomers) and the lipid precursors are supplied to the solution
and have to diffuse to the protocell? In such a case, will we see the coordinated gene
and container growth based on reaction kinetics predicted by Rocheleau et al. [159]?
As gene replication is necessary before container divisionfor two viable daughters,
can that be ensured in other ways than through a sequential resource supply? (iv) What
new issues arise when the protocell goes through more than one generation of its life
cycle, e.g. due to complementary resource sequence supplies?

Subsequent work in this area must also relate the DPD simulation implementation
in this publication and its dynamics with corresponding molecular dynamics simula-
tions [160] and reaction kinetics studies [161] as well as experimental findings as they
arise.

5.5 Conclusion

The overall replication dynamics that constitute the life cycle of the Los Alamos Bug
was implemented using DPD simulations. In particular, we investigated the dynamics
of container, metabolic complex, and genome subsystems, aswell as the mutual in-
teraction between these individual components. Componentdiffusion, self-assembly,
precursor incorporation, metabolic turnover, template directed replication of the gene,
and finally the protocellular division were studied in various simulations. The main
systemic finds are: (a) Metabolic growth orchestration can be coordinated by a switch-
able light source and/or by a continuous light source together with regulation of the
size and frequency of the oily precursor package injection,which was not anticipated.
(b) As anticipated, there is a tradeoff between the lipophilic strength of the genetic
backbone that makes it stick to the aggregate and its abilityto easily hybridize with a
complementary string. (c) As anticipated, for PNA with hydrophobic side chains, three
dimensional structure formation that can potentially inhibit appropriate hybridization
is more likely in water than at an oil-water or lipid-water interface, although this is in
part also dependent on the type pf hybridization attraction. (d) Gene replication is eas-
ier at the surface of a micelle with a substantial oil core than for a micelle with a little
or no oil core. The larger the oil core is, the easier the gene replication becomes due to
the aggregate stability and the ability to have a linear template. (e) As anticipated, the
stability of two full complementary gene strings is much higher than a gene template
and two complementary unligated gene pieces. (f) We observethat the template di-
rected replication rate is dependent on the monomer component sequence and not only
on the monomer component composition. (g) Partition of lipids, sensitizers, and gene
between daughter cells strongly depends on the size of the oil core. The smaller the oil
core is, the more balanced the partition becomes, which was not anticipated.
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These systemic findings are now being considered in the experimental designs be-
ing pursued as part of the Protocell Assembly (PAs) and Programmable Artificial Cell
Evolution (PACE) collaborations and their validity will eventually be addressed as the
experiments are executed.
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5.6 Algorithm for chemical reactions

Between every two DPD time steps, the following algorithm isapplied to perform
chemical reactions: For every reaction scheme, we successively check all possible
pairs of reactantsA,B, and compare their effective reaction ratek to a number taken
from a suitably normalized pseudo-random number generator. If the reaction rate is
smaller than this value, we perform the reaction and go on to the next pair of possible
reactants. However,A andB will not be considered again in this step. The exact
algorithm—notated in the Python programming language—readsas follows:

shuffle(reaction_list)
for reaction in reaction_list :

for A in space.particles(reaction.educt_A) :

if reaction.is_synthesis :
# if reaction is a synthesis, possible
# reaction partners are particles
# of type educt_B in the vicinity of A.
partners = A.neighbors(
reaction.educt_B,reaction.R

)

else :
# otherwise, possible reaction partners
# are particles of type educt_B bonded to A.
partners = A.bonded(reaction.educt_B)

for B in partners :
# compute effective reaction rate
k = reaction.k
for C in A.neighbors(
reaction.catalyst,reaction.r_cat

) :
k += reaction.k_cat *

(1-(A.pos-C.pos).length()/reaction.r_cat)

if random() < dt * k :
# perform reaction
react(A,B,reaction)
# and leave loop over partners
continue
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Chapter 6

Toward integrated simulations
of a minimal protocell

6.1 Introduction

Earlier studies have shown that surfactant-coated oil droplets are able to divide into
two daughter droplets, if the internal oil is successively transformed into additional
surfactant under the action of a metabolic reaction [81, chapter 4 in this work]. It has
also been shown that template directed replication of single stranded biopolymers at
the oil-water interface of such droplets is achievable [88,chapter 5 in this work]. It
was found that even a very simple model representation of thebiopolymer gives rise
to the emergence of a molecular fitness function: due to numerous geometric interac-
tions, different base sequences differ significantly in their ability to form hybridization
complexes that are stable enough for template directed replication. It has further been
shown that reliable gene hybridization occurs only a the oil-water-interface provided
by the container. This is an example of the catalytic couplings of subsystems in the
design of this particular protocell. The reverse coupling of the container dynamics to
the container of the cell had not been shown in the earlier studies [88, chapter 5 in this
work].

This work has shed light on the dynamics of the container and the genome of such
minimal protocells and analyzed crucial steps of the protocellular life-cycle in detail.
However, an integrated simulation that combines all steps the life-cycle in a single
simulation had not been achieved so far. Here, we present work that leads to such inte-
grated simulations and analyze the additional problems that occur when the individual
subsystems are integrated.

In particular, the following issues have not been addressedyet:

1. The replication of the biopolymer needs to be completed bymelting the double
stranded genome after replication, to allow for their reuseas templates. As indi-
cated in chapter 5, the temperature cycle needs to be gentle enough, to preserve
the integrity of the aggregate. Section 6.2 deals with temperature changes in
DPD and analyzes the system response to temperature changes.

2. The catalytic rate of the sensitizer molecule needs to be coupled to the sequence
and configuration of the biopolymer. Specifically, the sensitizer should cat-
alyze the metabolic turnover reaction only in the presence of a double stranded
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biopolymer. This is achieved in section 6.3

These studies raise an unforeseen issue in the original design of the protocell as
presented in Refs. [71] and [88, chapter 5 of this work]: As will be seen, the protocell
needs to employ double stranded polymers instead of single strands, or several copies
of the biopolymer (depending on the position in the life-cycle) in order to produce
viable offspring. Section 6.4 presents a revised life-cycle based on these findings.

As we will show in section 6.5, this introduces product inhibition during gene repli-
cation in our simulation.

6.2 Temperature scaling in DPD

The DPD algorithm has been comprehensively described in chapter 2. Here, we only
give the stochastic differential equation of motion. In order to define parameters and
units for the following derivation:

d2ri

dt2
=

1

mi

∑

j 6=i

(

FC
ij + FD

ij + FR
ij

)

, (6.1)

whereFC , FD andFR are defined by

FC
ij =

{

aij(1 −
rij

rc
)r̂ij if rij < rc

0 otherwise
(6.2)

FD
ij = −γωD(rij) (r̂ij · vij) r̂ij (6.3)

FR
ij = σωR(rij)ζij r̂ij . (6.4)

DPD commonly works in reduced units wherem = 1, rc = 1, andkbT = 1, denote
the mass, length, and energy scale. From these, the natural unit of time follows as

τ = rc

√

m/kbT . (6.5)

According to Ref. [84], the temperature in the DPD method is given by the relation

kbT =
σ2

2γ
≡ 1. (6.6)

In the above equations, the termsωR, ωD, rij/rc, and r̂ij are all dimensionless.
(r̂ij · vij) has the units of a velocity. Since the random parameterζij has the unit
τ−1/2, we get the following units for the individual force parametersa, γ, andσ:

[a] = kbT/rc (6.7)

[γ] = (kbT )1/2m1/2/rc (6.8)

[σ] = (kbT )3/4m1/4/r1/2
c (6.9)

6.2.1 A simple method for temperature scaling in DPD

As interaction potentials in DPD are effective potentials and as such influenced by the
temperature. A rigorous way of implementing a temperature cycle in DPD would re-
quire to calibrate system interactions, namelyFC(r), to systems at each temperature of
interest. While this is quite an endeavor on its own, one wouldthen need to also derive
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a temperature scaling for the dissipative and random interactions and their parameters
σ andγ which are usually treated as (uncalibrated) simulation parameters, but know to
influence fluid properties [126]. Improved calibration procedures [100, 162, 163] will
hopefully be developed further to address this issue. In themeantime, we employ a
simple though less rigorous temperature scaling procedure.

We intend to increase the temperatureT by a factor ofφ, such thatT ′ = φT (we
employ a primes to refer to the heated system in physical units). The most intuitive
way to achieve tempering in the DPD framework is to simply change the amplitude of
the random force by setting:

σ′ = φ1/2σ. (6.10)

According to Eq. (6.6), this will result in a temperatureT ′ = φT . Since DPD com-
monly works in reduced units, one might want to keep the temperature in the simulation
fixed tokBT̃ = 1, and change all units accordingly:

T̃ = φ−1T ′ = T (6.11)

In this procedure, we first scaleσ as given in the previous paragraph, and then change
the energy unitkbT̃ by a factor ofφ−1. The units of length and mass are unaffected by
this scaling, but the unit of time scales as

τ̃ = rc

√

m/kbT̃ = rc

√

m/kbφ−1T = φ1/2τ. (6.12)

Note that these scaling relations are easy to incorporate inthe DPD algorithm, since
they do not affect the length scale of the method. If they would, one would need to
change the particle number as well as the model representation of molecules during
the course of the simulation. In contrast, to implement the above scaling relations, one
simply needs to alter the DPD parametersa, γ, andσ, according to

ã = φ−1a (6.13)

γ̃ = φ−1/2γ (6.14)

σ̃ = φ−3/4σ′ = φ−1/4σ. (6.15)

It has to be warned that this simplistic temperature scalingis likely to introduce
artifacts when extrapolating over phase transitions present in the modeled systems. We
validate our method by comparison with experimental data.

Comparison with experimental data

The left panel of Fig. 6.1 shows simulation results of the self-diffusion constant of
water as a function of the temperature for both the scaling ofσ (squares) according
to Eq. (6.10), as well as the rescaled system given by Eq. (6.13) (circles). For low
temperature values, the two curves coincide. For increasedvalues ofT , artifacts of
the numerical solver render the self-diffusion of water slightly lower in the rescaled
system as in the original one. One might compensate this behavior with a step-width
correction, which has not been done here.

The self-diffusion of water has been measured experimentally by Krynicki et al. [164]
(cf. right panel of Fig. 6.1). It has been found to be best described by the theoretical
predictions of the free volume model by Cohen and Turnbull [165]:

D = AT 1/2e−E/R(T−T0), (6.16)
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Figure 6.1: Self-diffusion of waterD as a function of the temperature. Left: simulation
results for two different temperature scaling methods (seetext). Simulations have been
performed in a box of size(20rc)

3 with particle density3r−3
c and have been truncated

once the displacement of particle exceeds half the box size.t < 5.0τ has been taken
as transient. Right: experimental results by Krynicki et al. [164] and a fit of the free
volume model to the data points (see text).

whereT0 is the (pressure dependent) temperature at which the free volume disappears
(the glass transition temperature),E is an activation energy,A a proportionality con-
stant with units cm2s−1K−1/2, andR = 8.314472JK−1mol−1 the ideal gas constant.
A numerical fit of the free volume model to the measured data reveals a transition
temperature ofT0 = 117.5K, E = 6.50kJ mol−1, andA = 9.61cm2s−1K−1/2.

Naturally, we cannot except our temperature scaling (applied to structureless DPD
particles) to render an accurate picture of all the anomalities of water – the melting point
anomality being one of them. In particular, phase transitions such as freezing and glas
transition cannot be accounted for by our method. This significantly limits calibration
of the temperature unit to physical values. Apart from both increasing monotonically,
the temperature dependence of the diffusion constant in oursimulation is qualitatively
different from these data.

The closest we can get toward a calibration of the temperature scale is the following
approach: We identify the freezing point of water (273K) with the freezing point in
the DPD simulation (0.02kBT ′) and1kBT ′ with room temperature about 300K (for
which the repulsion value a=25 has been obtained from the compressibility of water).
A temperature difference of∆T = then corresponds to about 30K, which is within a
physically meaningful range. Note, however, that this calibration introduces an affine
mapping (as opposed to a linear proportionality) between the physical energy scale and
the one of the method.

6.2.2 Temperature response of system components

Temperature dependence of lipid aggregates

We analyze the micellar size distribution of water-surfactant systems of different am-
phiphile representations for various temperatures. The system size in these simulations
is 123 and the surfactant concentration is 0.0167 surfactant molecules per water bead.
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Fig. 6.2 shows the aggregate size distribution ofHT amphipihles as a function
of the temperature for hydrophobicity values of80 and120. For aHT = aWT =
80, aggregates tend to dissolve, when the temperature is raised. ForkBT = 1.5 and
higher, the only maximum in the micellar size distribution is the monomer peak at
one. Inlays in Fig. 6.2 show the center of gravity of the distribution as a function of
temperature. They reveal an exponential dependency between the temperature and the
center of gravity. The thermal stability of aggregates can be significantly increased
by the use amphiphiles with longer hydrophobic chains: Fig.6.3 shows simulation
results for a aggregates formed byHTT amphiphiles. For these systems, statistics are
necessarily noisy due to the bigger size of aggregates. Comparing these results with
Fig. 6.2 (upper panel), one finds that such aggregates are bigger by a factor of up to
5 for a temperature ofT ′ = 1T and still exhibit a mean aggregate size number of
10 atT ′ = 2.5T . While the envisioned container replication cycle has been shown
to perform for short chained surfactants with the hydrophobicity values analyzed in
Fig. 6.2 [81, chapter 4 in this work], the performance of container replication for longer
hydrophobic chains would need to be verified in simulation.

Temperature response of the biopolymer

Here and in the following we simulate nucleotide sequences with a tangential attractive
force as introduced in chapter 5 which has been identified as the best performing gene
representation.

To analyze the effect of a temperature change on the genome, we perform the fol-
lowing computer simulations: a cubic box of size(6rc)

3 is initialized with a two phase
oil water system with two complementary 4-mer strands forming a hybridization com-
plex at the oil-water interface. The chosen template in these simulations is the self-
complementary sequenceABAB which has been found to form stable hybridization
complexes with its oligomers at unit temperature (see section 5.3.4 in chapter 5). The
simulation is run for4000τ and the distances between the complementary bases are
measured for each time step. When none of the base distances exceeds1.5rc (the
interaction distance of the attractive force) the genome isconsidered to be hybridized.

The simulations of complementary 4-mer double strands are compared to simula-
tions of one 4-mer template and two complementary dimers. The template-oligomer
complex is considered hybridized only if the bases of both templates are within the
attraction range. Taken together, these simulations modelthe genome dynamics prior
to and after ligation. The ligation reaction itself is turned off in the course of the simu-
lations.

The fraction of time within which the genome is completely hybridized is shown in
Fig. 6.4 as a function of the temperature. The results reveala phase transition between
the mainly hybridized configuration (kbT < 1) and the mainly molten configuration
(kbT > 2.5) of complementary 4-mers (line with black circles). The center of this
phase transition - where the strands are hybridized 50% of the time - can be varied
by changing the stiffness of the nucleic acid backbone: The upper panel of Fig. 6.4
shows hybridization behavior for a stiffness of 15 (which corresponds to the choice
in chapter 5). For this value, the melting curves suggest a temperature cycle around
1.5 ± 0.5. The lower panel reveals that a more flexible backbone (stiffness set to 5)
lowers the melting temperature and suggests a cycle around1.1±0.5. The time fraction
of complete hybridization for one 4-mer strand plus oligomers (lines with white circles)
is significantly lower and unaffected by the backbone stiffness.

We further simulate the dynamics of a 6-mer template (sequenceABBABB) with
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Figure 6.2: Time-averaged micellar size distributions fordifferent temperatures for
aHT = aWT = 80 (upper panel) andaHT = aWT = 120 (lower panel) for aggregates
composed ofHT amphiphiles. The inlays show the motion of the center of gravity of
the distributions (solid line) and its least squares fit to anexponential (dotted line). See
text for details.
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Figure 6.3: Time-averaged micellar size distributions fordifferent temperatures for
aHT = aWT = 80 for aggregates formed byHTT amphiphiles.

two complementary 3-mers, and a backbone stiffness of15kbT . Melting curves are
shown in Fig. 6.5. It is found that by moving from 4-mer to 6-mer templates, the
melting point slightly increases from around1.5T to 1.7T , whereas the stability of
the oligomer/template complex increases by a factor of about two. This shows that
the synergetic effect (that individual complementary basepairs exert on each other by
geometrically constraining their position) decreases with the template length.

In all simulations, it is conceivable to reduce the attractive force between comple-
mentary bases in order to lower the melting temperature of the double strand config-
uration. However, the previous analysis in chapter 5 has revealed that lowering the
attractive force disfavors the attachment of short oligomers to the template strand.

Summary

The performed simulations indicate, that a temperature cycle is feasible that is strong
enough to melt 4-mer double strands while keeping the container essentially intact.
To achieve this, hydrophobicity of the surfactants can be increased while the back-
bone stiffness is simultaneously lowered. A temperature cycle around1.1 ± 0.5 with
hydrophibicity 120 and stiffness 5 is expected to fulfill therequirements.

6.3 Coupling information, container, and genome

In order to be a veritable information carrier, the genome has to somehow affect the
functioning of the protocell. In the Los Alamos minimal protocell, this is done by
a direct coupling of nucleotides in the genome to the catalytic activity of the photo
sensitizer: a nucleotide with a suitably chosen redox potential (oxo-guanine) can serve
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Figure 6.6: Coupling of gene replication and metabolic turnover: A solution of lipid
precursors, dimers, and a 4-mer template with attached sensitizer (panel one) self-
assembles into an oil droplet with the information molecules attaced at the interface
(panel two). Once hybridization and ligation of the dimers occurs, the sensitizer cat-
alyzes the metabolic turnover (panel 3 through 5). The graphbelow shows the time
evolution of precursors and ampiphiles in the system.

as eletron donor in the photo cleavage reaction of the ester which again is catalyzed by
the sensitizer (see Ref. [72] for details and an experimental confirmation). In order to
allow for the electron transfer to occur, sensitizer and oxo-guanine must be in relative
proximity. It is hypothesized that delocatedπ-electrons in stacked aromatic rings of
nucleotides in the biopolymer can propagate this electron transfer. This extends the
required proximity over the biopolymer and possibly its hybridized complement [72,
156].

The design of the Los Alamos minimal protocell exploits the electrochemical prop-
erties of the metabolism to introduce a coupling of gene replication and container repli-
cation: covalently binding the sensitizer to the template strand and oxo-guanine to a
complementary oligomer – or vice versa – will result in a gene-metabolism complex
that drives container growth and division only after successful gene replication.

Naturally, electrocemistry is far beyond the scope of our simulation technique. In
our system level oriented toy model, we therefore implementthis coupling by a simple
hybridization check: when two complementary polymer strands are hybridized (i.e.
the distance of each base pair is smaller than1.5rc), the catalytic rate enhancement
of a sensitizer bead that is covalently bound to one of the strands will be set to1.0,
otherwise it is turned to0.0.

Snapshots of a simulation of this coupling are shown in Fig. 6.6: a solution of
lipid precursors, dimers, and a 4-mer template with attached sensitizer (panel one)
self-assembles into an oil droplet with the information molecules attaced at the inter-
face (panel two). Once hybridization and ligation of the dimers occurs, the sensitizer
catalyzes the metabolic turnover (panel 3 through 5). However, the concentration of
precursors is too low for the resulting aggregate to divide.
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6.4 Revision of the protocellular life-cycle

The protocellular design presented in Ref. [71] envisions single stranded nucleic acid
strands that would only be in a double strand configuration during gene replication,
i.e. after ligation of hybridized oligomers and before melting of the strands. During
the container replication, the polymers are thought to be single stranded, such that each
daughter cell receives one of the complementary strands after container replication (see
Fig. 5.1 in chapter 5).

However, if the metabolic turnover rate of the sensitizer depends on the genome to
be in double strand configuration (see section 6.3), the container division process can
only be triggered prior to melting. Having only one double strand leads to only one of
the two daughter cells being fertile, such that the system asa whole has not replicated.

We therefore suggest a revised system that employs double stranded polymers in
the first place (see Fig. 6.7). Melting of the double strand only occurs during gene repli-
cation: prior or parallel to the supply of oligomers, the double strand is melted. Cooling
of the system after intake of the oligomers then allows for template directed gene repli-
cation, after which the aggregate contains two identical double stranded copies. Each
of these copies is able to mediate the metabolic reaction. Since the two double strands
are more likely to be spatially separated, it is possible forthem to end up in different
daughter cells. As in the previous design, ligation and lipid precursor turnover are al-
lowed be triggered simultaneously if the polymerization reaction is based on the same
photo reaction as lipid turnover.

Note that in this design, the genetic information of the two daughter cells is identi-
cal, rather than complementary as in the original design. This can avoid complications
during repeated protocell replication.

Furthermore, our simulations suggest that lipid precursorsupply and intake should
precede melting in order to stabilize the container prior toheating (see section 6.2).
Oligomers can either be supplied simultaneously or after melting.

6.5 Product inhibition during template replication

With the modifications described in sections 6.2 through 6.4, an integrated simulation
of the entire protocellular life-cylce can be approached. First, however, it is advisable
to validate that the individual steps in the life-cycle still perform in the modified sys-
tem. In particular, the hybridization of gene precursors (oligomers) to template strands
after cooling (rightmost arrow in Fig. 6.7) needs to be tested for a system that uses a
duplicated set of polymers compared to the previous simultations in section 5.3.4.

We perform simulations on hybridization and ligation of oligomers at the surface
of surfactant-coated oil droplets employing two 4-mer template strands and four com-
plementary oligomers. Different base sequences in the templates are simulated and
scenarios that use identical template strands (e.g.ABAB) as well as different tem-
plate strands (e.g.AAAB andBBBA) are compared. Although the two templates
will be complementary in the final setup (as they result from amolten double strand),
simulations are also performed on non-complementary template strands (such as two
AAAB strands) for comparison.

Fig. 6.8 shows snapshots that illustrate typical template-oligomer interactions as
they appear in the simulations. In most cases, it is found that the two template strands
hybridize to each other, thereby preventing oligomer attachment. In some cases (lower
left panel) two templates and one oligomer form less defined hybridization complexes.
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Figure 6.7: Revised version of the protocellular life-cycle proposed in Ref. [71] (shown
in Fig. 5.1): The main design change is to have the biopolymerin double strand con-
figuration, rather than as suggested as a single strand. Thisallows for equipartition of
the replicated double strand into two fertile daughter cells after countainer division (see
text).
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Figure 6.8: Product inhibition of 4-mer template strands onthe surface of the aggre-
gates. The panels show results for different base sequencesin the templates (both for
identical and different sequences in the template strands). In most cases, it is found that
the two template strands hybridize to each other, preventing oligomer hybridization to
occur. In some cases (lower left panel) two templates and oneoligomer form a less de-
fined hybridization complex that equally inhibits proper template directed replication.
We further find interactions between two original and a newlyformed template strand
(upper central panel).
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Figure 6.9: Competing template/oligomer interactions foroligomer concentrations
ranging from 2:1 to 5:1 oligomers per template. Product inhibition occurs for all tested
concentration ratios.

We also find interactions between two original and one newly formed template strand
(upper central panel). Only in trivial cases (e.g. twoAAAA templates) such product
inhibition does not occur. However, even for non-complementary template strands (e.g.
twoAAAB sequences in the lower right panel andABBA with AAAB in the upper
right panel), partial complementary attraction can still cause product inhibition. Our
preliminary investigations suggest that product inhibition is more likely for sequences
that were found to form stable oligomer/template complexes(such asABAB) if only
one strand is used (see Fig. 5.8 in chapter 5). In all cases, the reason for product
inhibition is the significantly stronger binding between two templates as opposed to
template/oligomer binding, as reported in sections 5.3.4 and 6.2.2.

The problem of product inhibition is also known from experimental studies of non-
enzymatic template-directed DNA replication [61, 62], andit has been shown that the
resulting growth dynamics can prohibit proper Darwinian evolution [166]. While this
issue has been solved for the Los Alamos minimal protocell ona global level [159,
167], it still hinders gene replication on a local level – at least in our simulation.

We try several attempts to resolve product inhibition, someof them motivated by
experimental findings. To isolate the problem, these simulations are preformed on
oil/water interfaces as in section 6.2.2. System size has been choosen small ((6rc)

3)
in order to relate findings to dynamics on the equally small surface of our surfactant-
coated oil droplets. Preliminary results are listed:

1. Increasing oligomer concentration: We increase the oligomer concentration
in order to move the equilibrium of the competing template/template and tem-
plate/oligomer binding reactions toward template/oligomer complexes. Fig. 6.9
shows simulation results with 2, 4, and 5 oligomers per template. Oligomer con-
centration has not been increased higher, as this favors thespontaneous back-
ground reactions of non-hybridized oligomers (as can be seen in the central
panel of Fig 6.9 where two dimers ligated in the absence of a template). Prod-
uct inhibition occurs in all simulated scenarios. Visual inspection of the system
dynamics suggests that this is due to an effectively irreversible binding of the
template/template complex (as can also be deduced from Fig.6.4).

2. Altering attractive forces between complementary bases:In order to turn the
template/template hybridization into an effectively reversible reaction, we lower
the attractive force between complementary bases. This, however, also lowers
the (already low) affinity of oligomers to bind to the template, such that stable
oligomer/template complexes cannot be observed over longer periods of time.
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Equally, increasing the attractive force to stabilize oligomer hybridization simul-
taneously increases the stability of template/template complexes. In summary,
altering the attractive forces of complementary bases cannot overcome product
inhibition.

3. Changing the preferred backbone angle of template strands:We test the in-
troduction of a natural curvature in the backbone of template strands. This is
achieved by changing the equilibrium angleθeq in Eq. (5.8) from180◦ to 135◦.
Since such bending only applies to polymer strands longer than 3 bases, we hope
that ligation of hybridized oligomers would induce a reconfiguration of the newly
formed strand, which would eventually induce a separation of the strands. It is
found by our simulations, however, that bending of the strands occurs perpendic-
ular to the preferential direction of base attraction: bothstrands curve toward the
oil phase, leaving complementary base distances unaltered. As a consequence,
the modification has no effect on the stability of template/template complexes.
We note that a more elaborate force field could be employed to constrain the rel-
ative orientation of backbone curvature and direction of attraction by combining
Eqns. (5.8) and (5.16).

4. Employing longer polymer stands: As a main problem in the dynamics of
genome replication in our model is the relatively low hybridization affinity of
dimers, we test the performance of longer templates and oligomers. Using 6-mer
templates in combination with 3-mers enhances the stability of oligomer/temp-
late hybridization by a factor of two (see Fig. 6.5) with comparably minor sta-
bility increase of the 6-mer/6-mer complex. Visual inspections of simulations
results confirm that this is a viable solution that deserves to be studied more
carefully in the future.

5. Repeated temperature cycle:If relatively stable oligomer/template hybridiza-
tion can be achieved (by a combination of the above mechanisms), we hope that
product inhibition can be overcome with the help of a repeated temperature cycle
where melting and cooling is repeated to undo irreversible template/template hy-
bridization until oligomer hybridization and ligation turned out successful. This
has not been tested by us in simulation yet.

It is hoped that a combination of the above modifications willallow for replica-
tion of the molten double strand. If the actual solution requires elongated information
polymers and/or a surplus of oligomers, the performance of container replication and
equipartition (section 5.3.5 in chapter 5) need to be confirmed for the additional load.

6.6 Summary

We have presented work on the Los Alamos minimal protocell toy model that builds
upon the results of chapters 4 and 5. A simple procedure to alter temperature in the
DPD method has been established and compared to experimental findings. A mecha-
nism to couple the information, container, and metabolic subsystems have been added
to the model. This has revealed a necessary design change of the originally proposed
system, namely it was shown that a double stranded information carrier is required for
successful replication of the entire aggregate.

Steps toward an integrated simulation that employ double stranded genes and a
temperature cycle have been presented. It is found that the modified protocell design
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is prone to product inhibition which currently prevents successful gene replication. A
careful balance of system parameters is needed to fulfill partially competing constraints
in an integrated simulation of the complete life-cycle. We suspect similar complica-
tions to occur also in experimental work toward the implementation of the Los Alamos
minimal protocell. To what extend these complications overlap with the ones found in
our simulations cannot be predicted from the model.
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Conclusion

Self-replication is a fundamental feature of all living organisms, yet has only been
accomplished to limited extend in artificial systems.

In the presented work, we have developed a physically motivated simulation frame-
work based on the method of dissipative particle dynamics. The method has been ex-
tended over the course of our studies to cope with chemical reactions, scaling of the
spatial resolution, complex intermolecular interactions, and temperature variations.

The framework enabled us to study design proposals of life-like, artificial, molecu-
lar aggregates. In particular, we focussed on the design of the Los Alamos minimal pro-
tocell, and a simplified information-free predecessor. We have performed system-level
simulations of the design which attempt to account for theoretical, and experimental
knowledge, as well as results from other computational models to the extend possi-
ble. This allowed us to address key issues of the replicatingsubsystems – container,
genome, and metabolism – both individually and when mutually coupled. We have
analyzed each step in the life-cycle of the molecular aggregate, and a final integrated
simulation of the entire life-cycle has been prepared.

Our simulations confirmed most assumptions of the theoretical design. In partic-
ular, we could support (i) the feasibility of surfactant-coated oil droplets as a self-
replicating container subsystem; (ii) the mutual catalytic coupling between container
and genome, container and metabolism, metabolism and genome, as well as the fi-
nal coupling of all components; and (iii) the necessity of a temperature cycle for the
replication of the information subsystem. Various minor confirmations have been sum-
marized at the end of each chapter.

The model has also revealed unanticipated system-level findings, most notably (i)
a significant influence of the oil core on both the dynamics of the whole system as well
as its subsystems; (ii) the emergence of a molecular fitness function from geometric
properties of the genome; (iii) disfavored equipartition of aggregates that are loaded
with a substantial undigestable oil core; (iv) the unfeasibility of a single stranded infor-
mation carrier; (v) the problematic of product inhibition on the limited surface area of
small oil droplets. More work has to be dedicated on the last item of this list.

We emphasize that these findings could only be achieved by theuse of a physi-
cally motivated simulation framework. We also emphasize that the above findings are
qualitative and do not claim predictive power.

Taken together, these findings support our hypothesis that self-replication and sim-
ilar life-like features can be achieved in systems of formerly unanticipated simplicity –
if these systems exploit physicochemical principles that are immanent to their physical
scale.
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