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Summary

Self-replication is a fundamental property of all livingganisms, yet has only been
accomplished to limited extend in manmade systems. Th&gh& part of the ongo-
ing research endeavor to bridge the two sides of this gap.alticplar, we present
simulation results of a minimal life-like, artificial, malalar aggregate (i.e. protocell)
that has been proposed by Steen Rasussen and coworkersarreéigly pursued both
experimentally and computationally in interdisciplinamjernational research projects.

We develop a space-time continuous physically motivateuikition framework
based on the method of dissipative particle dynamics (DPii¢lwwe incrementally
extend (most notably by chemical reactions) to cope withrteeds of our model.
The applicability of the method over the entire length scdlmterest is reintroduced,
by rejecting a concern that DPD introduces a freezing attifar any model above
the atomistic scale. This is achieved by deriving an altdéreacaling procedure for
interaction parameters in the model.

We perform system-level simulations of the design whickrafit to account for
theoretical, and experimental knowledge, as well as re$udtn other computational
models. This allows us to address key issues of the repliigatibsystems — container,
genome, and metabolism — both individually and in mutuaptiog. We analyze each
step in the life-cycle of the molecular aggregate, and a fitelyrated simulation of
the entire life-cycle is prepared.

Our simulations confirm most assumptions of the theoretlealgns, but also ex-
hibit unanticipated system-level dynamics. These findargsused to revise the origi-
nal design of the Los Alamos minimal protocell over the cewbthe analysis.

The results support the hypothesis that self-replicatmah@obably other life-like
features can be achieved in systems of formerly unantipaimplicity — if these
systems exploit physicochemical principles that are imenaro their physical scale.
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Chapter 1

Introduction

“Anyone who looks at living organisms knows perfectly weélat they
can produce other organisms like themselves. .. Furtherniisr equally
evident that what goes on is actually one degree better giineproduct-
ion, for organisms appear to have gotten more elaboratesicdhrse of
time.” — von Neumann [1]

1.1 Theoretical models of self-replication

1.1.1 Replication versus self-replication

On first thought, replication seems to be easily graspahteamutually. We say that
something has replicated if it has produced a sufficienttyilar copy of itself. To

be more than a mere model, the replica has to resemble thealra least in both
structure and function. Concerning physical objects, gwiired degree of similarity
can also extend to their material properties.

We have to distinguish self-replication from other formgegblication. For exam-
ple, we would not speak of a sheet of paper as being selfeaply, merely because
we can make a copy of it. In general, a structure is not ablelfersplicate when the
replicating act is only due to its environment. A first indimathat a system is indeed
self-replicating is found in its environment: if everytgithat is embedded in the envi-
ronment will be replicated, the act of replication has to télated to the environment
rather than the system. For this reason, mathematical anthfstructures that are
generated by iterated function systems or recursive gramf(sach as Lindenmayer
systems [2]) cannot be considered to be self-replicatirjgotd, because these envi-
ronments replicate any given input. As a minimal conditithe, set of self-replicating
systems has to be a proper subset of the set of all systems.

This first requirement is necessary but not sufficient, as exgdceasily equip a
copying device that was hitherto able to copy all objecthaisensor that recognizes
and excludes an arbitrary subset of objects (such as motieto popiers that recog-
nize and prevent the replication of banknotes). Anythirggghhanced copier does still
replicate would conform to a definition of self-replicatitirat is solely based on the
proper subset condition.

This motivates the demand that a self-replicating systemebow actively partic-
ipates in the process of replication, rather than beingiyalgcopied [3]. As it turns

1



2 CHAPTER 1. INTRODUCTION

out, however, the distinction between active and passipkcegion is not easily ex-
pressed in a rigorous concept, since one can always arguatyhaction is caused by
natural laws (or by the external application of rules in arfal calculus) which puts all
objects in the passive position of being mere recipientiaaion. As a brief histor-
ical overview of self-replicating objects will elucidatidere is no clear distinction but
a smooth transition between replication and self-repbeat

We briefly highlight some of the accomplishments in the histaf artificial self-
replicating systems. The presentation is not meant as ewewit only supports back-
ground for the argument we will make in section 1.1.5. Corhpnsive reviews of the
subject can be found in Refs. [4, 5, 6].

1.1.2 Von Neumann’s universal constructor

The mathematical study of self-replicating systems odtgd in the late 1940s, when
Hungarian-American mathematician John von Neumann bedaterested in the be-
havior of complex automata and machines [see e.g. 6]. Istgteén the evolution of
complexity in living systems, von Neumann tackled the peabWwhether an automa-
ton would be able to produce an at least equally complex aattmm In particular, von
Neumann searched for automata that are able to replicatete structure. Until his
death in 1957, von Neumann had outlined five concepts foireplfcating machines
that all derive from a common sufficiency proof.

Von Neumann concluded that the following properties suffizea machineX to
allow it to self-replicate:

1. X must be able to construct, i.e. it must be able to manipulsenaterial,
information, and energy it consists of.

2. X must be constructionally universal, i.e. it must be possiblprogram it by
a sequence of instructions to construct any machine wittlipstemsS of ma-
chines.

3. X must be a member of the systein

As Barry McMullin points out [7], the notion of universal csinuction is context
dependent with respect to the systSmwhich is implicitly defined by the constructive
operations ofX, similar to how set operations define an algebra. This irsgl@nsid-
erable freedom in the design of a universal constructor visionly partly constrained
by condition 3.

Starting from these prerequisites, von Neumann designedchime that consists
of four components: First, a universal constructowhich can build any maching
in S when given an appropriate instruction tape; second, a ngmévice B that can
replicate an arbitrary instruction tape; third, a con&oll’ to control the operations
of both the constructor and copier; and forth, an instructape®(Y") that tells the
universal constructor how to build machife If & encodes instructions on how to
build the machiné A+ B+C), the setup allows for self-replication: first, the conteoll
initiates the constructod to build a replica(A’ + B’ + C"); second, the controller
commands the copieB to replicate the instruction tapB(A + B + C). Finally, the
controller activates the newly formed copy so that it stéstewn replication cycle.

Note that in this setup, the instruction tape appears both@mesgram (to control
the universal constructor) and as data (when copied to antdpe). This ambiguity
resolves an infinite regress that would otherwise appeé#eifristructions where not
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copied but would instead directly instruct the construétobuild the instruction tape
de novo ("build a tape with instructions to build a tape witistructions to ..."). In
parenthesis, we mention that this ambiguity parallels thete role of DNA in natural
organisms, which serves both as code for the productionatéjms and as data when
these very proteins copy the genome during DNA replicatidiso, the resolution of
this infinite regress has become standard in modern genemabge computer archi-
tectures which employ a unique memory space for both dat@ogtam instructions.

The original framework von Neumann had in mind for the abaw®fwas what he
later referred to as the kinematic machine [6]: a hypothépbysical device located
in an environment of building blocks (such as a stockroonpafs parts) in which the
machine could move to access and assemble parts. As a métiambowever, von
Neumann abandoned the physical scenario in favor of the ngmmus framework of
lattice models following a suggestion of his colleague Btam Ulam. The class of
lattice models that von Neumann designed as the environfoetite self-replicating
machine has now become widely popular and known as cellutanzata [8].

Cellular automata (CA) consist of a grid of locally linkedifenstate machines
(cells) where each machine is in one of a finite set of statdschanges its state ac-
cording to its current state and the current input from cotetkcells. This update is
assumed to happen synchronous in all cells and in discreettieps. A CA is uniquely
defined by its state set, topology (i.e. linking of cells andidary conditions), and set
of transition rules. In the CA model, a machine corresponds pattern (i.e. configu-
ration of cell states). The performance of the machine ismghy the time evolution of
the state space which is completely determined by the definif the CA.

In von Neumann'’s CA (a two-dimensional square lattice withua-cell orthogonal
neighborhood), condition 1 is trivially met by observingtiCA transition rules change
cell states in response to the current pattern. In othersyting pattern that constitutes
a machine in a CA is able to manipulate its constituting elesdn order to show that
conditions 2 and 3 can be met by a CA, von Neumann laid out astemde proof by
explicitly designing a particular CA that can replicate #tgan.

Von Neumann’s cellular automaton consists of 29 state$) aiie of them repre-
senting a ‘ground’ state or substrate that only changesaintdher state upon actions
from neighboring non-ground states [8]. The other stateblerthe machine to direc-
tionally transmit and process information thereby modifysubstrate cells. Equipped
with this framework, von Neumann designed basic elemertis as logic gates, delay
stations, and their wiring. The universe of machines thattsabuilt out of these ele-
ments (the systerf in the above outline) holds a memory tape, read/write elésnen
“construction arm” which are finally combined to form the iemtself-replicating ma-
chine(A 4+ B + C) [9]. Due to its complexity, the automaton was first impleneeht
on a digital computer by 1995 by Nobili and Pesavento [10]required a memory
tape that was too long to allow for self-replication withigasonable time. In 2008,
Nobili [11] incorporated run-length compression into teading device to shorten the
memory tape which allowed for the first actual in silico reption of von Neumann’s
machine (see Fig. 1.1).

The CA model is certainly the furthest developed framewdrkedf-reproducing
automata that von Neumann envisioned. But it was only onevefgéneral concepts.
The idea of a mechanical automaton in the form of the kinanmatichine has already
been mentioned. Other than these two, von Neumann alsa@mefisa variant of his
CA that employs the McCulloch-Pitts model of artificial nens [12] (referred to as the
neuron-type machine by A. Burks [8]); a differential eqoatbased continuous variant
of the neuron-type machine, and finally a stochastic verdiereof. For details, the
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Figure 1.1: Implementation of von Neumann’'s self-replitgtmachine by No-
bili [11]. The pictues shows the replicating machine in théldfe of its sec-
ond replication cycle. Each machine consists of a univecsaistructor (upper
part), a tape reader (lower right part), a control unit (lovieft part), a mem-
ory tape (extending from each automaton to the right), ankbilénsin operation)
a construction arm (red link connecting second and thirdraaton). To sim-
plify the layout, the cellular automaton employs 32 ratheant von Neumann's
original 29 states and employs run-length compression tuae the length of
the instruction tape. (Public domainhtt p://en. wi ki pedi a. or g/ wi ki /

| mage: Nobi | i _Pesavent 0_2r eps. png, version of August 1., 2008.)
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reader is referred to Refs. [6, 13].

At the same time, the CA based automaton has given raise tenous variations
that link the capabilities of von Neumann'’s and alike maehito self-inspection [14]
(thereby removing the need for explicit instructions on peda self-repair [15], and
evolution [16] while the original design has been greatiydified by Codd [17], re-
ducing it to 8 states instead of 29.

1.1.3 Artificial Life models of self-replication

While von Neumann presented a mathematical proof, thatsplfeation is achievable
in a mechanical universe, the work does not seek for a p&tlgusimple solution.
Clearly, enabling a machine to construct any machine, agisté only its own unique
structure, adds to the complexity of von Neumann’s approadtile a universal con-
structor is sufficient for self-replication, it is certagmot a necessity. This observation
lead to a search for minimal structures in CAs, that wouldlide 8o accomplish self-
replication (and nothing else). Since “minimality” is amgbous and can refer to the
number of states, cells, or iterations needed for repboathere is no single minimal
solution, but a set of candidates to be considered.

In 1984, Langton [18] published his work on a “self-repliogtloop”: an eight
state cellular automaton (instead of von Neumann’s 29)dbasists of mere 86 non-
quiescent cells (rather than about 150,000 cells in von Neurs design implemented
in Ref. [9]) and can self-replicate in 151 time steps (as gpddo 63 billion in Ref. [9]).

Basically, Langton’s CA consists of a looped rectangulaetthat is sheathed in
“walls” with a construction arm extending it at one cornarg$-ig. 1.2). Cell states that
code for instructions are constantly transmitted amongfis in the circular memory
tape. They are duplicated at the junction of the storage #abthe construction arm.
Instructions are transmitted without affecting the geagnet the device, as long as
there is a free tape cell other than the one they have beesnitted from in the last
time step. This enables the device to store and transmitnreftion without actually
being altered. When instructions do reach a tape cell, hawé&een which no other
tape cell is reachable—i.e. at the end of the construction-athese instructions cause
the device to extend its instruction tape by one cell, eititdrogonal or perpendicular,
depending on the respective instruction. By this mechanisenconstruction arm can
be programmed to construct a second loop adjacent to it. #isiictions are automati-
cally duplicated at the junction, nothing is needed to edqjugpnewly constructed loop
with its own set of instructions. The replication cycle emdsen the first instruction
of the copied code reaches the end of the parent’'s constnuatm and initiates it to
separate. A total of 207 CA transition rules are needed tmédfiis behavior.

Langton’s contribution started a race toward ever more rsgf-replicating loop-
like CA structures of which Byl's loop [19] with 6 states an2ldells and Reggia et al.'s
loop [20] with 8 states but only 5 cells are the current redwidlers. Still, these imple-
mentations require a set of about one hundred transiti@s riturthermore, looplike
self-replicating devices have been modified to allow forusihess [21] and evolu-
tion [22, 23]. Also, Mange et al. [24] linked self-replicadj loops back to universal
construction: in their approach, the instruction tape carpmgrammed to perform
arbitrary modifications of the cell space after replicatidthe loop.

In general, the Artificial Life movement of which Langton wag premier spokes-
man [4] demonstrates the relative ease with which life-fikeperties can be obtained
from simple mathematical models. It does so by adopting timepuitational paradigm
of von Neumann'’s distributed, locally interacting, and eletcalized CAs in order to
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Figure 1.2: Langton’s loop after replication. Two replicgt loops are
shown, each consisting of a circular instruction tape andoasttuction arm
(dark blue cells) sheathed by walls (red cells) with indinrs to extend the
arm orthogonal (cyan cells) or perpendicular (two yellowlls}e  Courtesy
of Thomas Schoch taken frorhtt p://comons. wi ki nedi a. or g/ wi ki /

| mage: Langt on_Loops_after replication. gi f,versionof April 16, 2007.

emphasize the emergence of global behavior and propertissdimple, distributed,
locally interacting components. However, where von Neumpopulates his cellu-
lar world with devices that are nowadays recognized as ctioreal engineered com-
pounds (such as logic gates, random access memory, etifiialrLife research seeks
for behavior that is an immediate consequence of the uridgripmputational model.
As a result, Langton notes that “the essential machinerivioig organisms is quite a
bit different from the machinery of our own invention, and weuld be quite mistaken
to attempt to force our preconceived notion of abstract nm&shonto the machinery of
life.” [4, page 21].

At the same time, the Artificial Life movement set its focugioalogic of emergent
behavior rather than its physical foundation. In the worfdsamgton: “Since we know
thatitis possible to abstract the logical form of a machmefits physical hardware, it
is natural to ask whether it is possible to abstract the Ed@m of an organism from
its biochemical behavior. The field of Artificial Life is detanl to the investigation of
this question.” [4, page 21].

1.1.4 Mechanical self-replicating devices

Mechanical implementations of self-replicating systenesnsfrom the original con-
ception of von Neumann’s physically embedded kinematichimec Notable early
solutions are the work of Penrose and Penrose in 1957 [25), mdnufactured me-
chanically connectable building blocks that could repbca specific local connection
configuration (the “seed”) when the container in which theside is shaken. Similarly,
Jacobson in 1958 [26] designed a railroad system, in whigleeific sequence of self-
propelled toy train coaches replicates by detecting pgssiaches and directing their
coupling. Freitas and Merkle [6] note “that a great deal afctionality essential for
replication [in Jacobson’s system] resides in the enviremith This concern corrobo-
rates the hypothesis of a the smooth transition from refolisato self-replicators that
has been postulated in section 1.1.1.

The pioneering work of Penrose and Jacobson lead to the esrgig of self-
replicating robots which has succeeded in recent years2,729, 30]. These de-
signs basically imitate the conceptions of Penrose and3acg by allowing a modular
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robot to detect and assemble spare modules to eventuallginerthem into a copy of
its own structure. While being remarkable in achieving datuechanical replicators,
these solutions share the engineer’s approach of von Neunmratthat they employ
conventional building blocks in order to mimic life-like tavior.

Contemporary approaches in robotics that directly apptii¢cself-replicating sys-
tems presented in this thesis are the research areas otahgsibodiment and mor-
phological computation, i.e. the ability of passive medbainelements to perform
complicated computational tasks [31, 32, 33, 34]. A panaditic example of mor-
phological computation is the passive dynamic walker by ed35], a bi-ped robot
that is able to stably walk down a slope without employing antive element such
as motors or sensors. The “robot” gains this ability from eefidly balanced mass-
spring system that transforms gravitational force intectied motion. Pfeiffer notes:
“We showed that by exploiting morphology, materials, anstegn-environment inter-
action, hard tasks such as rapid locomotion or grasping eaachieved in a ‘cheap’
manner.” [33]. Paul goes beyond that statement by noting‘the fact that such com-
putation can be so simply achieved suggests that it is nqilgianrare phenomena, but
possibly a pervasive characteristic of physical structUr&l].

1.1.5 Physically embedded self-replication

The present work is an attempt to apply the capabilities afpfmalogical computation

to the area of self-replicating structures. The centralolygsis of our work is that

natural self-replicating systems are not only embeddedphyaical environment, but
that their material, structure, and function is intimatelyaped by the natural laws
that govern their physical environment. We argue that mgificating structures could
grow to abundance in our world, because they employ meananésd components
that are favored by the underlying laws of nature. In otherdsp existing natural

self-replicators have been selected for being simple. &beg, we argue that self-
replication, and likely other features hitherto uniqueife &re deeply immersed in the
physical laws of our universe.

We support this hypothesis by a computational model whidhased on a sim-
plified representation of the physical laws relevant to ratself-replicating systems.
Basically, our framework relies on two physically motivéijgrocesses for motion and
reactive turn-over of building blocks. We then design dures that directly exploit
the modeled physicochemical laws of the framework in ordesdlf-replicate. The
simplest of such structures consists of only three typesofponents with few pa-
rameterized interaction laws (see chapter 4). Due to theeginal difference of our
model compared to CA models, it is unclear how the presergfeeplicator com-
pares in terms of complexity and minimality to the systenscdbed in section 1.1.3.
However, we can demonstrate that self-replicating strestin our framework do not
require a pre-designed seed, but spontaneously self-aksé&mm constituting parts,
and that our mechanism of self-replication is dynamicaifbke against random fluc-
tuations and robust (i.e. structurally stable) over a waege of system parameters —
all features that are difficult to achieve in CA based systems

Choosing a conceptual framework grounded in physical laassfhrther advan-
tages: (i) the relative closeness to physical theoriesvalto connect to the vast amount
of knowledge from the areas of statistical physics, physibamistry, and biophysics,
which allows e.g. for calibration of the method. (ii) As a sequence, concepts behind
the presented replicating structures become testablellyotomputation and experi-
ments. (iii) The framework can not only be employed to stuelf-eplicating objects
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as abstract mathematical structures, but rather allowséateling real self-replicating
systems or conceptions thereof. A major part of this workésefore dedicated to the
modeling capabilities of the employed framework (chapfeasnd 3) as well as the ac-
tual model of a proposed molecular system that is envisibtme#hibit self-replication
and other life-like properties (chapters 5 and 6).

1.2 Self-replicating chemical structures

1.2.1 Emergence of self-replicating structures - the origimf life

The emergence of self-replicating systems in our world iealiy connected to the
origin of life on Earth or in the universe. As it is our hyposie that natural self-
replicating systems are simple because they directly @xphysical laws for their
functioning, it seems mandatory to briefly review what is\knoabout simple self-
replicating physico-chemical systems and their possitikrplay in the origin of life.

Throwing light on the origin of life is particularly diffictidue to the lack of know-
ledge about the early Earth’'s atmosphere, the multitudes$iple physico-chemical
environments and the absence of any fossil records of lf'g origin. Even the most
simple living organisms abundant today as well as the olaesitable fossils display
a complexity that renders their spontaneous appearanaceivable. Nevertheless,
the organizational structure of living systems eluciddtesrigins by rendering some
scenarios more likely than others.

At the simplest level of description, living organisms csh®f a container, or
body, that separates the organism from its environment,tabuksm, and a carrier of
inheritable information. In simple procaryotic cells, thedy is a bilayer lipid mem-
brane composed of phospholipids, glycolipids, steroidsl{sas cholesterol) and em-
bedded membrane proteins [36] (Lipid membranes are presafitorganisms known
today, but higher developed organisms possess addition#hioer components such
as cell walls or a multicellular body plan [37]). Furtherraptiving organisms pos-
sess a metabolism that harvests energy from the environimerder to produce their
constituent components. Needless to say, the very firshiga must have been
autotrophic and able to drive their metabolism with eithleeroical (redox) or light
energy. Finally, all present living organisms possessritdtde information, i.e. a
genome, in the form of DNA. Upon replication, an organism twuplicate its con-
tainer, its genetic information, as well as the constitaaftts metabolism.

As has been stated in section 1.1.2, DNA plays a double rolevradays organisms
as it encodes information for protein synthesis on the omel hanhile being operand
of a working protein machinery on the other hand. This poseapparent “chicken
and egg paradox” for both DNA and proteins must exist in ofdethe other to func-
tion: DNA directed protein synthesis is only possible in arldavith DNA, whereas
DNA requires a working proteome to function. To resolve tegadox, Woese [38]
and Gilbert [39] have formulated the hypothesis of an RNAIldian which RNA as
a single constituent would act both as information carriet as enzyme (sometimes
called ribozyme) that catalyzes its own or the replicatibotber RNA molecules or its
constituents [40]. The widely accepted RNA world hypothésisupported by experi-
mental findings of ribozymes [41, 42, 43], as well as the noceding but catalyzing
role of rRNA in nowadays organisms’ protein synthesis — edJeéhe catalytic centers
of ribosomes, the pivotal point of protein synthesis, haaerbidentified as being made
of rRNA rather than proteins [44, 45, 37]. Finally, scenar@ve been conceived by
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which an RNA world might have given birth to the familiar DN#&btein world [39].

With respect to the discussion in sections 1.1.2 and 1.E;replicating bio-
polymers in the RNA world constitute a simple scenario inahtself-replication and
construction are tied together in that construci®replication. Only with the advent
of a DNA/protein world, evolution discovered universal stmction in the sense of
von Neumann, in which a multipurpose constructor (the iiipos and its associated
biomolecular machinery) can be programmed (via encodind/@MRNA strings) to
construct arbitrary machines (proteins). As the biopolymehe RNA world does not
encode building instructions, the term “genome” is sometimejected. Nevertheless,
RNA is capable to store inheritable information also in theemce of an encoding, as
will be shown in section 1.2.3.

We will now discuss the replicative abilities of prebiotipitl aggregates and bio-
polymers, as they might have contributed to the containdrimeritable information
of the very first organisms.

1.2.2 Self-replicating lipid aggregates

Whereas the membranes of contemporary cells exhibit a caraptaposition of lipids
and proteins which is adapted to the environment and fumctfdhe cell [37], origin
of life scenarios commonly envision the first lipid aggregato be of a much simpler
composition [46]. For a review on the availability and alnatynthesis of lipids in
prebiotic scenarios, see Ref. [47]. In general, it is beliethat single-chain surfactants
such as the fatty acids and alcohols that contribute the gohitib property of con-
temporary lipids are likely candidates of prebiotic andyehiotic membranes [47]. In
particular, fatty acid lipids and amphiphilic alcohols bdyeen shown to form vesicles
and micelles by spontaneous self-assembly in aqueousso[48].

The phase diagram of these aggregates is subject to a vafietwylecular and
systemic parameters: whether an amphiphile solution fonmslles, vesicles, or other
(less prominent or less defined) structures, is influencethbylength and possible
branching of the hydrocarbon chain, the characteristiés dfead group, its pK value,
pH, temperature, and other systemic parameters. Ternatymas of oil, surfactant and
water exhibit an even richer phase behavior. Notably, fattg surfactants can stabilize
otherwise unstable oil water emulsions, giving raise tdastiant coated oil droplets
known as micro-emulsion compartments. Unfortunatelystiigect of soft condensed
matter systems is too broad to allow for a concise overviehe feader is referred to
Ref. [49]. The following overview will be restricted to uaihellar vesicles, micelles
and micro-emulsion compartments as conceivable contaifeprebiotic organisms,
although other lipid phases might have also played a roleghiptic evolution [50].

Induced budding and fission of vesicles

Spontaneous division of vesicles has not been reporteckititdrature. Division of
vesicles requires bending of the bilayer membrane to formucadmall enough for
lipids of the adjacent bilayer sheets to rearrange. For giaipid (and likely also
fatty acid) membranes, the bending energy of the membrapeses an energy barrier
that is unlikely to be overcome by thermal motion [37]. Fdstteason, the division
of contemporary cells is orchestrated by the complex machiof the cytoskeleton
which itself is subject to the proteomics of the cell cyclé][qNeedless to say, if proto-
organisms were based on a vesicular embodiment, they l#lcissmtlvanced machinery
and must have relied on other (possibly external) meansvisidin.
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Division of vesicles can be induced externally. Experinaéiptthis is most easily
achieved by extrusion, a standard procedure of pressingiphife solutions through
a porous filter [51]. As Hanczyc and Szostak demonstratel] @@rusion can force
giant unilamellar vesicles to devide without significarpttae of the membrane that
would lead to leakage of encapsulated material (in theie eadye). In a separate step,
vesicles of the next generation are grown by supplying audtit lipids to the solution,
until they reach the original size.

Apart form extrusion, externally induced budding off of dhwasicles from a giant
“mother” vesicle has been employed as a mechanism for JVasidivision. Budding
can be enforced for example by (i) osmotically changing tnase to volume ratio
of the vesicle, (ii) by selectively increasing the area & tluter bilayer leaflet through
a temperature difference between the internal and extsoiation, or (i) through
an asymmetry in the density of inner and outer membrane ted82, and references
therein]. Budding can further be supported by the boundarielomain forming lipid
compositions [53]. Theoretical studies have suggestediadal means of induced
vesicle division based on adhesive nano-particles [54koratic pressure [55, 56].

Replication of micelles, reverse micelles, and oil droplst

Whereas spontaneous replication scenarios of vesicleoak@mown, autonomous di-
vision processes have been reported for micelles, andseveicelles [57, 58, 59].
Bachmann et al. [57] first reported self-replication of mseemicelles which are water
droplets stabilized in organic solvent by an amphiphilesfayif the reverse micelle
hosts a catalyst for a metabolic reaction, an autonomouwsthytand division cycle can
be achieved by the following means: A hydrophobic esterh{@irtcase octanoic acid
octyl ester) is provided to the organic solvent of the sysaéemh serves as nutrient for
the single metabolic reaction of cleaving the ester bondyllydiysis. Reaction prod-
ucts are fatty acids (octanoic acids) and alcohols (oclanalhich are essentially the
surfactants of the ternary system. Ester cleavage is eatlameca hydrophilic cata-
lyst (here LiOH) that will reside in the aqueous interior b&étreverse micelle. The
setup guarantees that the metabolic turnover of nutriesdare at the micellar inter-
face. Ref. [59] reports that ester cleavage is also foundérabsence of a catalyst as
the metabolic reaction can instead be mediated by miliectffin the micellar struc-
tures themselves. Ref. [58] presents a similar recipe foeags micelles in which the
geometry of the aqueous and lipid phase are reversed.

The supposed replication process in these system is beastlbasfor the original
setup of Ref. [57]: surfactants that are newly produced lgrés/drolysis arrange at
the lipid water interface of the reverse micelles as a reduthieir amphiphilic proper-
ties. Under the course of the reaction, this leads to a chiantipe surface-to-volume
ratio of these aggregates, as the water is entrapped intdr@irof the reverse micelles.
It is supposed that this induces an elongation of the streictp to a point where ther-
mal fluctuation suffices to divide the aggregate in two. Adatdight interpretation of the
results, however, suggests that the surface-to-volumegehef the aggregates may be
prevented by the rapid exchange of surfactants with the fplitise [60] where excess
amphiphiles would form micellar structures de novo. Thecexathway of micellar
self-replication has not been identified in their publicat [57, 58, 59] and is likely
subject to system parameters. Self-replication of suafaatoated oil-droplets is com-
putationally studied in chapter 4 of the this work.
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1.2.3 Self-replication of biopolymers

Biopolymers, such as deoxyribonucleic acid (DNA) and ribdeic acid (RNA), are
the premier self-replicating molecules in living organssnTheir chemical structure
— linear heterogeneous polymers of pairwise complememacieotides that are able
to align to each other by specific and energetically weak @vatrick binding [36]
— immediately suggests the replication mechanism thatuaddn all contemporary
cells [37]. Nevertheless, even in the most simple procasdiiological DNA replica-
tion is controlled by enzymes in almost every single stef.[B&ignificantly less com-
plex, non-ezymatic replication mechanism must have pextedntemporary replica-
tion, which might have partially employed external fact&®a].

Basically, the replication of biopolymers requires thegasses of hybridization,
ligation, and melting. Hybridization is the alignment ofneplementary nucleotides or
oligomers along a template strand. Ligation is the formihgavalent bonds between
the aligned nucleotides. Finally, melting separates thébtdostrand into the original
and its complementary copy.

As the ligation reaction is energetically uphill, monomersligomers need to be
activated in order to perform ligation. Nonenzymatic teatgidirected RNA polymer-
ization of elementary activated nucleotides (monomersyvsHittle yield in aqueous
solution but can be enhanced at surfaces (e.g. clay) ordhrap-concentration in
water-ice [50]. Template-directed replication from skomctivated oligomers, on the
other hand, has be shown to produce high yields for both RNARNA [61, 62, and
references therein]. The shortest DNA strand that has bgegrienentally replicated
in the absence of enzymes is a hexamer with complementargrsi[63].

1.3 Approaches toward artificial cells

The last section has discussed the replication of prebmtiecular systems as they
are thought to have predated contemporary life, namelycagpig lipid aggregates
and biopolymers. Trying to tie these subsystems to each atik to a metabolism
has lead to the field of protocell research [64, 65]. Protecer artificial cells, are
molecular aggregates that are able to grow, replicate, asdily provide means to
grow in complexity, such that they might eventually undeBgrwinian evolution. In
contrast to the top-down approach of minimal genome rekd&63, protocell research
takes a bottom-up approach by combining inanimate mattsystems that can be
identified as being alive. They are not confined to employ bidyogical components,
and they are not primarily intended to be plausible in edfidyscenarios. Two proposed
protocellular designs will now be presented. For a recentprehensive overview of
the field, see Ref. [65, 67].

1.3.1 The chemoton

The chemoton (short for chemical automaton) is the desigpqsal of a minimal
artificial life-like system that was introduced bya@ti in the 1970s and has been con-
tinuously redefined since then [68, and references therein]

In its current conception [69], the chemoton consists ofttinee subsystems con-
tainer, metabolism, and genome. The genetic informatiornierga biopolymer sys-
tem) is conceived to reside in a lipid container (vesicleevehit replicates by con-
suming monomer material produced via an autocatalytic Inoditan [68]. The subsys-
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tems are stoichiometrically coupled: in particular, theabelic production of genetic,
metabolic, and container building blocks is controlled lmjiféerential feedback mech-
anism that maintains an orchestrated growth of the entstesy[70].

In total, the chemoton model employs 5 metabolic reagerds a¢bnstitute the
autocatalytic cycle, one metabolic precursors for mendnaolecules and one for
monomers of the genetic systems. With additional nutriantswaste components, the
chemoton adds up to 12 components which interact throughdfdical reactions [70].

It has to be emphasized, however, that the biopolymer in tieenoton does not
carry any information that would affect the behavior of tlgetem apart from its need
of being reproduced in order for full replication to occuherefore, the chemoton does
not feature a true information component.

1.3.2 The Los Alamos minimal protocell

The protocellular design conceived by Rasmussen et al.if7&lirrently subject to
combined experimental and computational studies. The hprdsented in chapters 5
and 6 of this work contributes to the computational portfaf the Los Alamos pro-
tocell assembly project. A recent report of the overall @cbjstatus can be found in
Refs. [72, 67].

In adherence with the simplicity paradigm of the Artificialfé movement, the
underlying design principle of this protocell is to miniraithe number and complexity
of the physicochemical structures that a molecular ag¢geegguires in order to self-
assemble, grow, self-replicate, and exhibit limited etiohary potential [71, 72]. To
achieve this, the Los Alamos minimal protocell featuresesavimajor simplifications
(a detailed presentation of the system will be given in cbiap):

1. The metabolic and genetic complexes operate at the exiatarface of a lipid
aggregate, rather than in the interior volume of a vesictehRatty acid vesicles
and oil droplets are considered as proto-container.

2. The metabolism is reduced to a single reaction mechanamely a light driven
ester hydrolysis similar to the reaction described in secti.2.2.

3. Theinformation carrier (biopolymer) directly influesde rate of the metabolic
turnover reaction rather than encoding for the productiboatalysts (such as
enzymes).

4. Catalytic coupling between container, metabolism, arfidrination carrier at-
tempts to harvest robustness from self-balancing systemardics, rather than
relying on a tight and more fault-prone stoichiometric dingp

As this design tries to exploit ordering mechanisms whiclemrga from fundamental
physicochemical processes and properties, we argue thabthAlamos minimal pro-
tocell is a paradigmatic example of the physically embedsifireplication outlined
in section 1.1.5.

As has been shown in section 1.2.1, a non-encoding biopoldoes not provide
programmability of the system. This allows for self-replion as in section 1.1.3,
but not for universal construction as in section 1.1.2. A®@asequence, selection is
expected to generate adaptation of the system toward Ipettierming configurations
(i.e. inherited nucleotide sequences), but the evolutiopatential of the system might
turn out to be limited [73].
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The reader is invited to understand this thesis as two-sidadhe one hand, the
work presents an abstract self-replicating structurerésitles in a mathematical uni-
verse along the lines of von Neumann'’s and Langton’s cellhd#gomata. Its most no-
table difference of being space-time continuous argudtiwa both for the mathemat-
ical framework as well as the replicating structure itselbé of unpreceded simplicity.
On the other hand, the work presents a computational model efivisioned physico-
chemical system. It has to be emphasized, however, thatlieeant simplifications of
the employed modeling framework do not allow one to blindisvd quantitative pre-
dictions from simulation outcomes. Rather than predictibe model has been used
within the protocell assembly project to support or rejezsign decisions, illuminate
system-level dynamics, and similar quantitative consitiens. Only the comparison
with laboratory results and simulation results of other patation methods (such as
mass reaction kinetics and Molecular Dynamics simulajiarls allow for reliable in-
terpretation of the presented results. Where availablsgthesults are included in the
discussion.

Outline of the remainder of this work

The remainder of this work is organized as follows: chaptert@duces to the mod-
eling techniques of Brownian dynamics and dissipativeigardynamics (DPD), its
physical foundations along with recent extensions to coipie ehemical reactions, the
latter being used in the upcoming simulations. The chapisgnts implementation
details, gives a comprehensive overview of recent apjdicatn the field of Atrtificial
Life, and presents available software tools to perform saidulations.

Chapter 3 is dedicated to method development and rejectsra that DPD is in-
applicable in the mesoscopic range, i.e. on the length sdatsicro- to millimeters,
on which most lipid dynamics of our interest take place. Toiee this, scaling rela-
tions are derived for all simulation parameters which resphysical and geometrical
constraints of the coarse-graining procedure, while dimmglously exploiting gauge
freedoms in the choice of units. The derived scaling reteti@nder simulation param-
eters scale free and it is shown that a single DPD simulaéipresents an entire family
of physical systems that cover the entire mesoscopic regieenote that the applica-
bility of DPD to the entire scale is helpful but not crucial fihe validity of the later
simulations, as those take place on a length scale on wheamditlelling technique has
not been questioned.

Chapter 4 presents a simple model of physically embodidfiregglicating proto-
cells that couples a minimal autocatalytic metabolism torgke container. The setup
is shown to be able to self-replicate, and the effect of@itmodel parameters on the
ability and performance of replication is analyzed.

In chapter 5 the minimal self-replicating system of chaptas extended by an
inheritable information molecule and the metabolic reacis modified in order for
the system to closely model the Los Alamos approach towattifcial protocells.
The model is used to identify and analyze systemic issuestbeeentire life cycle
of the protocell as well as the coupling of its subsystemsningegrated simulation
framework. Results are compared to experimental data adohda of more detailed
computational studies.

Chapter 6 collects presently unpublished simulation tesuh specific issues of
the protocellular toy model that are not addressed in theiquie chapters. Specifi-
cally, the chapter presents means to vary temperature in BRDanalyses the effect



14 CHAPTER 1. INTRODUCTION

of temperature cycles on the melting behavior of the coetaamd genome. The origi-
nal conceptual design of the protocell is revised to pretlembccurrence of otherwise
infertile offspring. Namely, this is done by choosing dabtranded information car-
riers over single stranded one. Preliminary results iridittzat this design change may
cause product inhibition which may ultimately prevent sssful self-replication of
the system.

Parts of this thesis have been published individually as@éewed contributions:

e Chapter 2: H. Fellermann, Spatially resolved artificialroisdry, In: A. Adam-
atzky and M. Komosinski (eds.Artificial Life Models in Softwar@nd edition,
Springer, 2009

e Chapter 3: R. Echslin, H. Fellermann, A. Eriksson, and H.-J. Ziock, Cears
graining and scaling in dissipative particle dynamitsPhys. Chem130(21),
2009

e Chapter 4: H. Fellermann, and R. 8pMinimal model of self-replicating nanocells:
A physically embodied, information-free scenamhilos. Trans. R. SoSer. B
362(1486):1803-1811, 2007

e Chapter 5: H. Fellermann, S. Rasmussen, H.-J. Ziock, ancdR, Sife-cycle
of a minimal protocell - a dissipative particle dynamics @FBtudy,Artif. Life
13(4):319-345, 2007

Acknowledgments

| want to thank my supervisor, Steen Rasmussen, for his grietted guidance, and
the constant support of advice and optimism that was negessaccomplish the
presented work; Hans-Joachim Ziock for uncountable contsneamd careful proof-
reading of the publications; and Ricard V. 8oRAnders Eriksson and RudolfiEhslin
for useful discussion during development of the simulafiamework. The partici-
pants of the European Community funded PACE project and BeAlaimos sponsored
Protocell Assembly project are acknowledged for providandynamic and stimulat-
ing interdisciplinary research atmosphere. Finally, | anthank my mother, Helga
Fellermann, for without her support this work would not haeen accomplished.



Chapter 2

Spatially Resolved Artificial
Chemistry

Reprinted with kind permission of Springer Science and BessnMedia from H. Fellermann, Spatially
resolved artificial chemistry, In: A. Adamatzky and M. Komosirn(&ds.), Artificial Life Models in Software
2nd Edition, Springer, 2009.

2.1 Introduction

Although spatial structures can play a crucial role in cleaingystems and can dras-
tically alter the outcome of reactions, the traditionahiework of artificial chemistry
is a well-stirred tank reactor with no spatial represeatain mind. Advanced method
development in physical chemistry has made a class of madetssible to the realms
of artificial chemistry, that represent reacting molecutes coarse-grained fashion
in continuous space. This chapter introduces the matheahatiodels of Brownian
dynamics (BD) and dissipative particle dynamics (DPD) falesular motion and re-
action. It reviews calibration procedures, outlines thepaotational algorithms and
summarizes examplary applications. Four different ptat&for BD and DPD simu-
lations are presented which differ in their focus, featuamsl complexity.

The traditional mindset of artificial chemistry (AC) is a Wwstirred tank reactor
with possible inflow and outflow of substrates (see Dittritlale[74] for a review of
AC). In this framework, spatial heterogeneities within @ictical solution are usually
not taken into account: the focus lies on the mere presehsenae or concentration
of chemicals rather than their spatial organization in tection vessel.

Itis well known, however, that spatial structures can playial role in chemical
systems and can drastically alter the outcome of reactiBash structures can be ei-
ther imposed from the outside or they can be the result ofibenecal reactions them-
selves. An example for imposed heterogeneities are uplwldentration gradients
along a reaction vessel. An example for self-organizecctiras are self-assembled
lipid aggregates which play a prominent role in moleculaidiy and its primordial
origins and are thus of primary interest for the field of auidfi life (AL) and AC.

The surplus of complexity that results from the presencedaf btructures is mani-
fold: closed impermeable or semipermeable membranesdipes) compartmentalize
the reaction space thereby allowing for a variety of chehegimes at once; proteins
embedded in such membranes allow for specific transportistances (under the use

15
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of energy even against a concentration gradient); lipidcstires can increase the ef-
fective concentration of hydrophobic chemicals and aléée constants of reactions
therein (milieu effect).

Notable AL and AC models that explicitly incorporate space thhe pioneering
works by Varela and Maturana [75], the lattice moleculabedton (LMA) by Mayer
and Rasmussen [76, 77], and a model of self-reproducingaastells by Ono and
Ikegami [78]. The common ground of all these models is thateps treated by means
of cellular automata: molecules or parts of molecules ardetenl as point particles
that occupy sites on a 2D or 3D lattice. Motion of these plagiand reactions between
them are defined by transition rules and a (possibly stoichagidating algorithm is
used to follow a system state through time.

Advanced method development in computational physicaiistey paired with
the dramatic increase in computational power made a new ofasodels accessible to
the realm of AC. While being similar to the above mentionedlta automata in that
space is modeled explicitly, these models operate oft:igtt.e. particle positions are
not confined to sites on a grid. Instead of a fixed set of tramsitiles, particle motion is
determined by means of differential equations. Among tmese methods, Brownian
dynamics (BD) and dissipative particle dynamics (DPD) heerhost prominent ones.

Off-lattice simulation techniques have several advargagenpared to cellular au-
tomata: i) not being constrained to fixed lattice sites andnggtranslational invariant
interactions results in a significantly smaller set of regditransition rules, ii) contin-
uous particle coordinates allow to closely connect to meistia physical theories, iii)
unconstrained motion of the particles avoids some of thifaets$ found in lattice mod-
els (see e.g. [79]). However, the price one has to pay foethdsantages is generally
a higher computational effort both in implementation anatime.

The remainder of the chapter is organized as follows: Se2tp&sents the the-
oretical concepts of BD and DPD. First, the general prircipthind coarse-grained
off-lattice simulation methods are outlined in Sect. 2.Zhis overview is followed by
detailed discussions of individual aspects of the phy$Ses(. 2.2.2 through 2.2.4) and
implementation (Sect. 2.2.5). The theoretical sectioroisctuded by a summary of
recent applications in Sect. 2.2.6. Sect. 2.3 is dedicatéuket presentation of software
to perform off-lattice simulations with the possible caipador chemical reactions.
The software packages — ESPresSo (Sect. 2.3.1), Spartaeds (2.3.2), Smoldyn
(Sect. 2.3.3) and LAMMPS (Sect. 2.3.4) — are summarized ésgction each that list
respective features and shows examplary simulation sethpee appropriate.

2.2 Concepts

2.2.1 Basic principles of coarse-grained, off-lattice sinlation
techniques

BD and DPD are instances of coarse-grained modeling teghsim which the spa-
tial structure of molecules is represented explicitly,utio not in full atomistic detail.
Instead, groups of atoms within a molecule are lumped t@gettio point particles,
usually calledbeads These beads are then connected by elastic springs to ferm th
whole molecule. Small molecules such as water, are everidayed to be lumped
together into a single bead by groups of 3 to 5 molecules. Theber of solvent
molecules per bead is referred to astbarse-grainingparameter. While it is possible

to relate coarse-grained representations to physicalaulge [80], qualitative studies
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Figure 2.1: Example coarse-grained representation ofrdécacid (a fatty acid sur-
factant) and water. The molecules are modeled by three tfgesads: one represent-
ing the hydrophobic tail of the surfactant (3 hydrocarboougs), one representing the
hydrophilic carboxyle group, and one representing watdemues of approximately
the same molecular volume.

often content themselves with simply specifying functiaraups like hydrophobic or
charged parts of a molecule without a particular reactantiind.

Concerning the treatment of solvent molecules, one caeregkplicitly represent
them by beads or implicitly account for their effect on thienactions of other beads.
If one is not interested in the dynamics of the solvent (eydrédynamic modes of the
system), its implicit treatment can save significant corapiahal effort, since most of
the calculations are typically spent on solvent-solvetdractions.

An off-lattice simulation consists of a set 8f beads in a two- or three-dimensional
box. In explicit simulations, the space is considered to éesdly filled, whereas
in implicit simulations, the bead density will depend on ttncentration of solved
molecules. Since only a finite volume is simulated, boundanditions need to be de-
fined to determine the outcome of collisions with the wall. ¥lcommon are periodic
boundary conditions, but closed, reflecting boundariescamabination of the two can
also be found in the literature. Each bead has a positiongcitgl and a type (for an
example configuration, see Fig. 2.2). The type of the beagrhites its mass and its
interactions with other beads. The motion of the beadsvaewton’s Second Law
of Motionaccording to which a particle accelerates proportionah&oforce that acts
on it and inversely proportional to its mass. Written as ainany differential equation
(ODE) in bead position and velocity, the law reads:

1 2.1)

wherer; is the position,y; the velocity, andn; the mass of beaf] dots denote time
derivatives (instantaneous changes in tinie), the force that acts on beagdcollects
all bead interactions.

If all atoms were simulated individually (as is done in fudipmistic Molecular Dy-
namics (MD)), the force could be expressed as the negatagiagrt of some potential
¢; such that Eqg. 2.1 constantly transforms kinetic into paatenergy and vice versa.
But when individual atoms are lumped together into coarsingd beads, energy is
also exchanged with the internal energy of these beadsddsif explicitly account-
ing for the internal energy of each bead, coarse-grainetiadstemploy d_angevin
formalism to express the energy exchange with internalesdegof freedom: the force
F; is expressed by three additive components, a conservaiwdy’), a dissipative
one FP), and a random ondi¢*):

F, =F{ +F + F. (2.2)
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Figure 2.2: Example configuration of a coarse-grained stion: the image shows a
bilayer membrane composedidii T trimers (green-yellow surfactants) in water (not
shown).

The dissipative force models friction by which kinetic emers dissipated into succes-
sively less coherent motion, thereby removing energy froeneixplicitly represented
mesoscale into the assumed underlying microscale (idteneagy of the beads). This
energy flow is counteracted by a random force, that modeleffleet of microscopic
thermal noise on the mesoscale (Brownian motion). As theensnggestsFF} in-
volves random variables, turning Eq. 2.1 into a stochastierdntial equation, such
that the change in system energy can be captured by an Ukleqlrastein process.
Combined, the dissipative and random forces act as a théatrtosregulate the tem-
perature, i.e. the kinetic energy of the explicitly modeteglsoscale.

Several proposals have been made to combine off-latticelations with chemi-
cal reaction kinetics. To enable this, a set of chemicaltieacules is added to the
system description that defines allowed transitions batkead types. To account for
these reactions, the numerical integrator is intertwinétl & stochastic process that
applies bead transformations to the reaction vessel: nvghch time step, first the po-
sitions and velocities of all beads are updated, and seceadiion rules are applied
subsequently to all beads in the system.

To summarize, the coarse-grained models described inHhjster draw on a set of
(possibly interconnected) beads whose motion is govergeaehd-bead interactions
expressed by potential functions and by the action of a tbstah. Additionally, transi-
tion rules between beads can be defined to describe chemizions. The following
sections will detail on each of these aspects.

A simple example of the overall setup is given in Fellermanad Sok [81, chapter
4 of this work] where the system consists of beads of threeoubés: water, fatty acid
surfactants, and oily fatty acid esters. Water is represkexplicitly by beads of type
W, esters are represented as dimers of two interconnécteeilads, and surfactants
are modeled as @ bead with a surfactant headl bead attached to it. The potential
interactions are chosen such that the model qualitatieglyoduces the phases of these
binary and ternary systems. A catalytic reaction is defingavhich ester molecules
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are transformed into surfactant molecules in the vicinftgtber surfactant molecules:
TT +HT — 2TT (2.3)

This reaction models the hydrolysis of the ester bond untkerassumption that the
produced alcohol is small enough to be neglected.

In this setup, the ester forms oil droplets in water whicharated by surfactants.
The size distribution of these droplets is determined bywhter/oil/surfactant ratio.
The relatively slow reaction constantly transforms estés new surfactants, thereby
changing the oil/surfactant ratio of the system. The changmncentrations is ac-
companied by a shift in surface to volume ratio of the draplehich respond by a
shape change from spherical to elongated, rod-like aggreg®nce a critical thresh-
old ratio is reached, the oil core is not sufficiently big tatstize the aggregate which
divides into two spherical aggregates. When ester is suppbastantly, the growth
and division process continues and leads to exponentialtgraf the aggregates.

2.2.2 Interaction potentials

In the picture of Newtonian mechanics, each bead has a fatenergy that results
from its interactions with other beads. This energy comesis, for example, to pres-
sure in thermally fluctuating fluids, but could also have ofbey. electrostatic origins).
Alternatively, one might say that the bead “feels” the ptitdrenergy of its neigh-
borhood and responds to it by moving away from high energesta known as the
principle of least constraints.

As commonly done in particle based simulations, BD and DPiDm=a that the po-
tential of a bead can be expressed as the sum of pairwise interactions wigibering

beads:
Vo= Vij(ri,r)).
J#
Since the space is assumed to be isotropic, the potentiaebatparticles and;j can
only depend on their distance rather than their absolutigtigosUsing

Vij(ri,xj) = ¢ij(riz),

wherer;; = |r; — r;|, the conservative force in Eq. 2.2 becomes

N

i#j
For further computational conveniengg; is usually truncated after a certain distance
r¢, such thatp;; (r) = 0 for r > rc.

It has to be pointed out that the potential functions usedarse-grained simula-
tion techniques must not be taken for mere mechanical eexees in atomistic (MD)
simulations. Instead, the potential functions used in s®grained simulations are
rather to be understood as a free energy that captures sygtaperties of the system
such as heat, pressure, pH, or the concentration of cogslf#2]. This is particularly
important for the study of entropy-driven processes uryitegllipid systems, since en-
tropy is included in the free energy. Although there is ncsetbtheory to derive the
functional form of the potential energy employed in coagsaned simulations from
first principles, it is still possible to relate the potehfianctions to structure proper-
ties of the system under consideration. For example, tleegedne to one mapping
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between the potential function and the radial distribufiomction which expresses the
average probability for two beads to be separated by a natistance. Measuring the
radial distribution function of detailed atomistic MD sitations allows to construct

energy functions of a coarse-grained representationdhésee Lyubartsev et al. [83]

and references therein). A further difficulty arises frore fact, that the dynamics

in coarse-grained simulations should represent a timeageeof the assumed under-
lying atomistic motion, since the fast degrees of motioe likost vibrational modes

of covalent bonds are meant to be removed in the coarsehgygginocess and instead
comprised in the noise term of the thermostat.

In general, the spatial and temporal averaging of the cegnaieing process moti-
vates the use of much smoother interaction potentials tiories commonly applied
in atomistic MD simulations. In particular, they typicallip not possess a singularity
atr = 0, meaning that two beads are allowed to sit right on top of egleér (although
under an energy “penalty” that may render this event praltyiempossible). This can
be justified by the observation that (i) the bead positionatyedentifies the center of
mass of a collection of molecules, and (ii) even if the begdasents a single molecule
or part thereof, it denotes the average position of the nudeduring some short time
interval; for both of these mean positions it is perfectlydefor two positions to co-
incide. Whichever justification one might assent to, the Itegusoft corepotential
allows to run the numerical integrator of Eq. 2.1 with a siigaintly wider time step
compared to functional forms that include a singularity.

Given these difficulties, many studies (that treat the suhexplicitly) content
themselves with simple potentials of the form

1 T 2 H

ij(r) = { 2% (1 - 7”7) it <re (2.5)
0 otherwise

wherea;; > 0 denotes the mutual repulsion strength between two beagp®i tind

j. Note that there is no theoretical foundation for this fimttother than being the

most simple confined function with continuous derivativé.hads to be pointed out,

however, that Eq. 2.5 relies on the explicit treatment ofeol, since the absence of an

energy minimum would not allow for the formation of structsr

Having fixed the functional form of the potential, the matfix;) is the premier
place for model calibration. A standard calibration pragedto mesoscopic observ-
ables has been suggested by Groot and Rabone [80, 84, 8%]diseger Fichslin et
al. for issues on its scaling behavior [86, chapter 3 of trogkl). Generally, the proce-
dure starts by matching the diagonal interaction parameteto the compressibility
of the physical fluid. The off-diagonal elementg(: # j) express the mutual solubil-
ity of substances. and are calibrated in a later step to peteamobtained from mixing
theories, in particular the Flory-Huggins theory of polymaxing where mutual in-
teraction parameters are derived from free energy coraides in a lattice model of
polymers. For specific systems, other mesoscopic obsewable been suggested for
calibration (e.g. [87, 88, 89, 85]).

Additional terms can be added to the “ground” potential i€ded. Most promi-
nently, mechanical potentials between bonded beads haveuse to model extended
molecules. Venturoli and Smit [90] were the first to introdu@rmonic spring poten-
tials into DPD simulations, where bonded beads feel thetiatdil potential

5 = ks(ri; —rs)”,
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with rg being the optimal bond distance akg the spring constant. Shillcock and
Lipowsky [91] have added a three-body angular potential tmeh stiffness in ex-

tended polymer chains. Higher order potentials used in Miukitions (e.g. torsion

potentials) are barely needed in coarse-grained simaktioe to the simplistic rep-
resentation of molecules. Other notable add-ons are Cduforces for electrostatic

interactions [92], gravity [93], and shear forces [94, 95].

2.2.3 Thermostats

As pointed out in Sect. 2.2.1, thermostats in coarse-gaasimaulations are an integral
part of the system description: whereas MD simulationgzetithermostats merely to
keep the system at constant temperature, and generallg tninimize their impact
on simulation results, coarse-grained simulations imetrihe energy exchange with a
heat bath as physically meaningful. As a consequence,eggaéned models employ
entirely different thermostats than the ones found in MDwations.

The theoretical foundation of thermostats for coarsengmhisimulations is the
Langevin formalism for diffusive motion [96]: a sphericalrticle in a steady medium
will experience a viscous drag proportional to its velogityd stochastic kicks from
other particles randomly hitting it. In the presence of agilie external forc&', the
equation of motion reads

V(t) =~ (B(t) — yv(t) + £(1)). (2.6)

m
where~y > 0 is a friction coefficient ang¢ an uncorrelated random vector with zero
mean and finite variance%;(t),&;(t')) = 2046;;6(t — t'). In the context of Eq. 2.2,
the first term of the sum represe®§’, the second onEP, and the last on&®. The
equilibrium temperature is given byando and resolves to /. Off-lattice models
that employ this thermostat are commonly referred to as Brawdynamics (BD).
They are particularly suited for implicit simulations, sinthe effect of the solvent
is already accounted for in the thermostat. It has to be esipd@d, however, that
Eqg. 2.6 models motion in a steady medium, as the frictionapgrtional to the absolute
velocity of the bead, rather than the velocity relative ® $kairrounding medium. Thus,
the dynamics of the system is purely diffusive and neglegthddynamic modes.

To incorporate hydrodynamics into coarse-grained sinariat Hoogerbrugge and
Koelman introduced the method of dissipative particle ayica (DPD) [97] whose
thermostat has become increasingly popular. The DPD thetehdecomposes all
forces into pairwise contributions:

Fi=Y F;=> F+FD+FF (2.7)
i J#i
which are required to be central
Fij = _Fji and Fij X fija (28)

wheret;; is the unit vector pointing from beagto <. The centrality asserts that the
linear and angular momentum of the system is preservedftirerallowing to analyze
hydrodynamic flows. In fact, it can be shown that the DPD thastat implements a
numerical solver for the Navier-Stokes equations [98]. H/fitese requirements, the
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Figure 2.3: Schematic of the dissipative force (frictiampDPD. The force acts central
on the line given by the bead positionsandr; (parallel tor;;). Its magnitude de-
pends on the relative velocity;;: friction is maximal when beads approach each other
directly and zero when they move parallel.

only (local and memory-free) way to achieve an Uhlenbecksin process whose
equilibrium distribution is a Gibbs ensemble is to set [99]

0.2

D 2 - ~
Fij = —kaTw (’I"ZJ) (Vij . rij) rij;

Fii = ow(ri)G;bij,

wherer;; is the Euclidean distance between beadsadj, andv;; is the relative ve-
locity between beagd andi. (;; is an uncorrelated random variable with zero mean,
Gaussian statistics and a varianceaf /2 for the numerical time stept. In order to
preserve linear momentum, it has to hold thgt= (;;. o is the friction coefficient

of the medium (related to its Reynolds numbég)]" defines the energy unit whefé
denotes the temperature in Kelvin aldis the Boltzmann constant: is a dimension-
less weighing function which is not specified by the genesahfalism. Most studies
employ a weight function similar to the soft core interantfotential:

wz{(l_ch)Z if r <

0 otherwise.

While itis known thatu has impact on the overall system dynamics, like viscositg]1
and temperature conservation [101], no proposal has yet ioaele on how to derive
the weight function from first principles.

The scalar product in Eg. 2.9 ensures i&tis maximal when two beads approach
each other and zero, when the particles move parallel (sge23). This leads to
the alignment and collaborative motion of nearby beads. Assalt, the pairwise
coupling of the dissipative and random forces in DPD redgualfaster dynamics than
the ones observed in BD simulations. However, the accel@dgnamics of the DPD
thermostat are actually an artifact of the method: in DPDsvtifusion is too high
when compared to travel of momentum. The Schmidt numberrétie of kinematic
viscosity vs. self-diffusion coefficient) is about threelers of magnitude lower in the
DPD simulation of water than in the real system [84, 100].

2.2.4 Chemical Reactions

Probably the first approach to extend spatially resolvedtoearessels with chemical
reactions was the work by Ono [78] who incorporated a std@hpsocess for reactions
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into a BD simulation. This approach has later been put on a&migorous theoreti-
cal foundation (the Smoluchowski model for diffusion-Ited reactions) by Andrews
and Bray [102] and Monine and Haugh [103]. Similar approachie the work of
Buchanan et al. [104, 105], Fellermann et al. [88, 81, clrapteand 5 of this work]
and Liu et al. [106], who extended DPD by similar means toipocate reactions.

Most chemical reactions can be classified as uni- or bimtdeceactions — de-
pending on the number of molecules that participate asaetsct Higher order reac-
tions barely occur in nature due to the unlikelihood of thme@lecules hitting each
other concurrently. Following this formalism, inflow of ah&als can be regarded
as a zeroth-order reaction that has no educt, whereas ouwflohemicals can be re-
garded as a first-order reaction that has no product. Reaaten be further classified
as syntheses or analyses, depending on whether covaleig hom formed or broken
by the reaction. The formation and braking of covalent barats result in a change
of physico-chemical properties of the molecular speciaghé coarse-grained repre-
sentation of BD and DPD, this is expressed as a type chandgeeaktcting beads.
Depending on the coarse-graining level and representafiolecules, bond braking
and formation might even happen completely below the réisolwf the model such
that chemical reactions are mere type transformationgithaot affect explicitly mod-
eled covalent bonds. In the formalism presented here, da¢mgactions only occur
between beads that represent a single molecule or part ofexut®— no attempt has
been made yet to define chemical reactions between beady gt together several
molecules. Examples of possibles reactions are

- X inflow (zeroth-order)
A K outflow (first-order)
A Fox molecular reconfiguration (first-order)
AB 5 x4y unimolecular analysis (first-order)
A+B & Xy bimolecular synthesis (second-order)

Here, A, B, X, andY denote beads that may be part of an extended molecule. Con-

catenated symbols refer to bonded beads. For simplicityeattions are written as
irreversible reactions. Reversible reactions can be seited as pairs of irreversible
reactions, where each member represents one of the twdiditec

Evidently, bimolecular reactions occur only when the twagents are in close
vicinity. For diffusion limited reactions, i.e. in the alm® of an activation energy
barrier, this distance is given by the sum of the moleculdii &f the two reagents.
If there is an activation barrier, one possibility is to defam effective binding radius
smaller than the sum of molecular radii. The size of this lriga@adius can be related
to the effective reaction rate by the Smoluchowski equation

k

4m(Da + Dg)’ &

Th =

whereD 4 and Dy are the diffusion coefficients of the two reagents &nd the ef-
fective (measured) reaction rate [102]. Following Collarsl Kimball [107], one can
alternatively define a probability for reactions to occuthini the unaltered reaction
radius. Likewise, unimolecular reactions either occuhwaitcertain probability

1— e—k?At

?
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or — if explicit bond breaking is involved in the reaction —centhe reacting beads
separate by more than a certain unbinding radius r,. r, can be related te, by the
equation:
Th

"= KTk (2.10)
wherek; is the rate of geminate recombination [102]. When a pair ofiforming and
breaking reactions is used to model a reversible reactanm must be taken that the
reactants are separated by more thaafter bond breaking. Note that (2.9) and (2.10)
are only valid for numerical time stegst smaller than the root mean square displace-
ment of the reacting particles. Andrews and Bray [102] giwgrected equations for
larger simulation time steps, as well as a comparison of¢berthinistic and stochastic
method. Zeroth-order reaction do not depend on any educenbration, and their oc-
currence is simply determined by comparing the reactiom taf Poisson distributed
random number with average\t for the simulation time stepz.

Ono [108] and Fellermann et al. [88, 81, chapters 4 and 5 sflark] use an
extended variant of the Collins and Kimball scheme that antofor the presence of
nearby catalysts. Other than modeling the exact reactiochamsm by which the
catalyst participates in the reaction scheme, it is assuimtdthe mere presence of
catalytic molecules enhances the effective reaction fidte.equation to calculate this

effective rate is
k=ki+3 ke (1 T) (2.11)
C Tcut

wherer is the distance between the catalyst and any of the reactadtthe sum runs
over all catalystg with r < reyt.

All of the stochastic approaches assume that reactions owbependently, which
is violated when a single bead might react with one of sevezalby other reagents.
A proper mathematical framework to deal with this stocltastdependence would
be provided by the Master equation [96]. However, its cormafom is too expensive
to be redone in each updating step, which is why current esudommonly ignore
the problem of interdependence and merely try to avoid it ypgi small reaction
and catalyst rates and constantly reshuffling the list oftieas and reagents to avoid
biases.

Having defined the set of possible reaction rules, the iategifor the equations
of motion is intertwined with a stochastic process such ith@ach time step particle
motion and chemical reactions are taken care of sequentiall

Further method development needs to be done in connectngptiential, kinetic,
and chemical energy reservoirs: the change in internanfadad) energy associated
with bond formation and breaking and change of potentiatg@ndue to bead type
transformation would need to be accounted for in a velodignge of the reacting
beads leading to local heating (A first step in this directias been taken by Yingling
and coworkers [109]). This would e.g. allow to capture dfebat rely on activation
energy barriers.

2.2.5 Updating schemes and spatial organization

At the heart of all BD and DPD simulators lies an integratortfe stochastic differen-
tial equation 2.1. Owing to the special form of the Newtordgnamics, an inexpensive
high-order integrator can be derived from two Taylor exjiams
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4 1. 1.

ri(t+ At = ri(t) +ri(t) At + 5ri(t)At2 + 6ri(t)At3 + O(AtY)
. 1. 1.

ri(t—At) = r;(t) —ri(t)At + §ri(t)At2 - 6ri(ﬁ)At3 +O(AtY).

Adding these two equations and substituting) = a;(¢) leads to a very simple forth-
order integrator known agerletintegrator [110]:

ri(t 4+ At) = 2r;(t) — ri(t — At) + a; (1) At® + O(AtY).

Verlet-based integrators outperform standard procedikeeRunge-Kutta not only be-
cause of their computational inexpensiveness but alsoulectney preserve phase
space volume in conservative systems, which reducesdastifuch as gradual tem-
perature increase.

If velocities are to be known explicitly, e.g. to compute Hieetic energy of the
system, the substitution; (t) = (r;(t) — r;(t — At)) /At+ 1a;(t) At+ O(At?) leads
to a variant called/elocity Verletalgorithm

B+ A) = rit) £ Vi) AL+ %ai(t)AtQ 2.12)
Vit £ At) = vi(t) + % (ai(t) +a;(t + At)) At (2.13)

which is forth order in positions; and second order in velocitiag. This is a com-
monly used integrator for BD simulations. There is a sultlebwever, when acceler-
ationsa; do not only depend on positions but also on velocities, dsdsase foFP
in the DPD equations. Eq. 2.13 then becomes

1
2mi

vi(t + At) = vi(t) + (Fi(r(t),v(t)) + Fi(r(t + At), v(t + At))), (2.14)
where the termv; (¢ + At) appears in both sides of the equation. To overcome this
problem, Groot and Warren [84] have suggested a predictwector like integrator
which has become the de facto standard in DPD simulationghélin integrator, the
positional update is unchanged (Eg. 2.12). To compute thezities, the algorithm
first makes a prediction (Eqg. 2.15) followed by a correctiasdd on the force field of
the predicted state (Eg. 2.16):

A

Vi(t+ At) = vi(t) + —Fi(x(t),v(t))  A€[0,1] (2.15)
vi(t+ At) =
1 N (2.16)
vi(t) + (Fi(r(t),v(t)) + Fi(r(t + At),v(t + At))).

Qmi

If F; does not depend ow, the original Velocity Verlet integrator is recovered for
A = 0.5. Due to the stochastic nature of the force field, the ordehefintegrator is
unclear. There is no imperative on hovshould optimally be chosen. Reported values
differ between\ = 0.5 [111] andX = 0.65 [84]. Thus, X clearly depends on other
systems parameters and needs to be fine-tuned to the systemcemsideration.
Subsequent studies [112, 111, 113] have identified artifaicthe Verlet based al-
gorithms, predominantly in the radial distribution furetiof the system [113]. Build-
ing upon work by Pagonabarraga et al. [114], Vattulainen.¢1 &3] have proposed a
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Figure 2.4: Internal partitioning of a two dimensional spgdashed grid) filled with
beads (black dots). The size of the cells is at least the ffutdius of all involved
interactions (radius of the solid circle). To find all intetian partners for a given bead
(white dot) it is sufficient to consider only beads withi3 & 3 -Moore neighborhood
around the cell that contains the bead (solid square). Matethe grid representation
is only internal and does not restrict the actual positiohexds within each cell.

more elaborate so-calleklf-consistenintegrator in which the system temperature is
constantly measured and compared to its target value. Mambe is used to fine-tune
the dissipation rate of the system. In general, the perfoo@af DPD integrators is
still an active area of research due to the stochastic nafute interactions.

Beside well-suited integrators, simulators for coarssirgrd simulations need to
provide efficient means to access neighbors of beads. Hagstioe look-up is essential
for the computation oFC in the case of BD (Eq. 2.4) arl8®, FP, andF® in the case
of DPD (Eq. 2.7). If all particles where naively held in a simfist or array, look-up
time would scale quadratic with the number of particles. &8kirig advantage of the
limited cutoff ranger for all forces, careful bead management can reduce the numbe
of look-ups to scale linear with the number of beads. To aghthis, an algorithm
calleddomain decompositioor linked listsis commonly used: the space is partitioned
in cells with a side length of at least the cutoff radittss Each cell holds a list of
particles it contains, as well as information about neightzpcells (dashed grid in
Fig. 2.4). For each bead, neighbor look-up can now be réstrio the3 x 3 -Moore
neighborhood of the cell that holds the current bead (sagjicaee in Fig. 2.4). If bead
interactions are symmetric (e.g. due to Eqgs. 2.4 and 2.8)uhaber of cells to check
can even be reduced by one half. With this management, anatsti62.8% of all
tested pairs will be within the cutoff radius (solid circtefig. 2.4) and®9.9% in three
dimensions. It should be emphasized that the grid repratentof the space is only
an algorithmic organization principle and does not confireegctual position of beads
within each cell. Implementation can either use one linkgtddr all beads or separate
lists for each bead type, which can improve the performanoermbead interactions
are highly type specific (as in case of chemical reactions).

2.2.6 Applications

Pure BD and DPD models that do not incorporate chemicalimechave been used
extensively in areas as diverse as rheology, material cegrsoft matter studies, and
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molecular biology. Concerning the latter, the study ofdigirctures such as mem-
branes and vesicles, their self-assembly, fission, fusapture, and dissolution has
arrested particular attention [80, 115, 54, 90, 116, 11'He flecent incorporation of
chemical reactions into these models has initiated segarallations in the area of
artificial chemistry and artificial life.

Gazzola et al. [105] have used reactive DPD to study theyatadffect of self-
assembled lipid structures due to effective upconcentratf hydrophobic reagents.
Simulating abstract chemistries, they observed that tfieitgfof reagents to reside
either in the solvent or in the interior of self-assemblpdistructures (micelles), alters
the effective reaction networks that emerge in the reactassel.

Ono [108] and Fellermann and $di81, chapter 4 of this work] have studied the
self-assembly, growth, and replication of minimal lifedientities: lipid aggregates
equipped with a minimal artificial metabolism. Ono preséwts-dimensional BD sim-
ulations of vesicular structures driven by a catalytic twer of precursor molecules,
Fellermann and Sélperformed three-dimensional DPD simulations of surfaetaat-
ed oil droplets that replicate by means of an auto-catatydicient turnover (described
in Sect. 2.2.1).

Complementary to the above work are qualitative simulation non-enzymatic
replication of short genetic polymer sequences. Bedau.dtl48] have analyzed
the ability of complementary polymer strands to spontarboreplicate in solution,
whereas Fellermann et al. [88, chapter 5 of this work] haudietl a similar process
at the oil-water interface of the aforementioned lipid aggtes. Taken together, these
works present integrated simulations of the spontaneoesgeamce of artificial life-like
aggregates, or “protocells” [65].

2.3 Available Software and Tools

Several BD and DPD simulators exist both in commercial a$ asbpen source ap-
plications. The following list is not meant to be completet tries to identify those
programs that stand out for maturity, extensibility, orenaperability. The programs
are similar in that they use configuration files to set up a kitian. The configuration
file is sent to a non-interactive simulator that calculabtesstystem trajectory and writes
out the result of various analyzers.

2.3.1 ESPresSo

ESPResSo is a fairly developed and feature-rich open sa@imaglation package for
soft matter research (BD and DPD among others) developed bintthach et al. [119]
and licensed under the GNU General Publishing License (GR18 software is avail-
able for Windows, Unix/Linux, and Mac OS. ESPresSo is wniiteC and can operate
in parallel mode via MPI, and can be controlled via Tcl s&ifit20]. Online visu-
alization is delegated to VMD, an independent open sourévae for molecular
visualization [121]. Out of the box, ESPresSo does not ohelchemical reactions.

In ESPresSo, simulations are set up via configuration sdtigt define system size,
boundary conditions, bead types, interactions, an in@gaidition, analyzers, a.s.o.
These configuration files are actual Tcl scripts that offevgréul means for arbitrarily
complex simulation setups. An example script to set up andarsimulation is shown
in Fig. 2.5. The system consists of 1780 beads (water), 600T dimers (oil), and
10 HT dimers (surfactants) in a box of si2@2. Bead interaction parameters are:
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aww = 25,CLW,H = 15,CLW,T = 8O,aH,H = 35,UJH,T = SO,GTVT = 15. The DPD
thermostat is chosen with a temperature of 1 and frictiompater 4.5. Integration
step size and number of steps is set to 0.01 and 1000, resggctind the system is
finally integrated. Various analyzers could further be npooated.

The package offers support for various boundary conditianariety of potentials
for bonded and non-bonded short range interactions, ektatics (Coulomb forces),
rigid bonds, as well as bond-angle and dihedral interasti@SPresSo also provides
tabulated interactions to incorporate interaction patdsiimeasured e.g. from more
detailed interactions (see Sect. 2.2.2).

ESPresSo comes with a variety of predefined analyzers fonmmmobservables.
Among the most common ones are

o statistical physics

energies (total, kinetic, Coulomb, non-bonded, bonded)
pressure (total, ideal, Coulomb, non-bonded, bonded)

stress tensor (total, ideal, Coulomb, non-bonded, bonded)

mean square displacement

e distribution and correlation functions

radial distribution function

structure factor
van-Hove autocorrelation function

aggregate size distribution
free volume distribution

e analyzers for polymer chains

— end to end distance
— radius of gyration

In addition, custom analyzers can be defined with ease. &aedyare ordinary func-
tions that can be used anywhere in the configuration scripPreésSo provides a few
built-in commands for statistics (averaging, errors,)edad plotting, the latter by del-
egation to gnuplot [122].

Owing to the flexibility of the Tcl based design, it is easyiodrporate chemical
reactions into ESPreSso. Fig. 2.6 shows an exemplary gigothat implements the
reaction (2.3) based on a simplified version of Eq. 2.11. Timglémentation is only
meant for the purpose of illustration: for a productive petine algorithm should be
written in a compilable computer language and wrapped icto T

2.3.2 Spartacus

Spartacus is an experimental open source framework for BDRD simulations
developed by the author and licensed under the GNU GeneldisRing License
(GPL) The software is available for Mac Os, Linux. Spartasusmilar in function to
EsPresSo, but focuses on chemistry rather than physiagscdtporates all algorithms
for chemical reactions that have been described in Sectl.ZlRe framework consists
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# System paraneters

set box_| 10. # box size

set n_W 1780 ;# nunber of W beads

set n_TT 600 i # nunber of TT diners

set n_HT 10 ;# nunber of HT diners

set n_total 3000 ;# total nunber of particles

# Integration parameters

set cut 1.0 ;# cut off range r_c

set int_steps 100 ;# mcro-integration steps (between anal ysis)
set int_n_times 1000 # macro-integration steps

setmd tinme_step 0.01

setnd skin 0.4

setnd box_| $box_| $box_| $box_|
thernostat dpd 1.0 4.5 $cut

# Interaction setup
inter 0 harnonic 100 0.75

inter 0 0 soft-sphere 25 2 $cut 0
inter 0 1 soft-sphere 80 2 $cut 0
inter 0 2 soft-sphere 15 2 $cut 0
inter 1 1 soft-sphere 15 2 $cut O
inter 1 2 soft-sphere 80 2 $cut 0
inter 2 2 soft-sphere 35 2 $cut 0

# Particle setup

# water beads

for {set i 0} { $i < $n_W} {incr i} {
set posx [expr $box_|*[t_randoni]
set posy [expr $box_| [t _randoni]
set posz [expr $box_|*[t_randoni]
part $i pos $posx $posy $posz type 0

}

# TT dimers
for {} { $i < [expr $n_WS$n_TT] } {incr i 2} {
set posx [expr $box_| *[t_randonj]
set posy [expr $box_|*[t_randoni]
set posz [expr $box_|*[t_randoni]
part $i pos $posx $posy $posz type 1
part [expr $i+1] pos $posx $posy [expr $posz+0.8] type 1 bond 0 $i
part $i bond O [expr $i+1]
}

# HT dinmers

for {} { $i < [expr $n_WS$n_TT+$n_HT] } {incr i 2} {
set posx [expr $box_|*[t_randon]
set posy [expr $box_|*[t_randoni]
set posz [expr $box_| [t _randoni]

part $i pos $posx $posy $posz type 1
part [expr $i+1] pos $posx $posy [expr $posz+0.8] type 2 bond 0 $i
part $i bond O [expr $i+1]

}
# Integration
set j O

for {set i 0} { $i < Sint_n_tines } { incr i} {
integrate $int_steps
#[...] do some analysis here

Figure 2.5: Example Tcl script to control ESPresSo for thangae system of
Sect. 2.2.1. See text for explanation.
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proc react {reaction}

{
# reaction is { educt product rate catal yst cat_rate cat_range}
# educt and product are list of 2 elenents, specifying bead types

set educt [lindex $reaction 0]
set product [lindex $reaction 1]
set rate [l'index $reaction 2]
set catalyst [lindex $reaction 3]
set cat_rate [lindex $reaction 4]
set cat_range [|index $reaction 5]

foreach {part_a} [part]

# iterate over all possible educts

set a_id [lindex $part_a 0]

set a_type [lindex $part_a 6]

set a_bonds [lindex $part_a 33]

if { $a_type != [lindex $educt 0] } { continue }
set b_id [lindex [lindex $a_bonds 0] 1]

set b_type [part $b_id print type]

if { "$a_type $b_type" != $educt } { continue }

# conpute effective reaction rate
set k $rate
foreach {cat} [anal yze nbhood $a_id $cat_range]

set c_type [part $cat print type]
if { $c_type !'= $catalyst } { continue }
set k [expr $k+$cat _rate]

# exchange bead types if a reaction occurs
if { [expr $k+[setnd tine_step]] > [t_randon] }
{
part $a_id type [lindex $product O]
part $b_id type [lindex $product 1]
continue

-

#[0...1]
# This part replaces ‘integrate $int_steps’ fromthe exanple in Fig. 4

for {set t 0} { $t < $int_steps } { incr t}

integrate 1
react "{1 1} {1 2} 0 2 0.5 $cut"

Figure 2.6: Algorithm for reconfiguration reactions in E&§80 that implements a
simplified version of Eqg. 2.11 (not implementing the lineacrkase with catalyst dis-
tance). The functiom eact is called with 6 arguments — the reactant, product, spon-
taneous reaction rate, catalyst bead type, the catalgdésenhancement, and range.
Reactant and product are assumed to be Tcl lists of 2 elem@otgether with the
system setup in Fig. 2.5, this implements the example giveect. 2.2.1.
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# set systemsize, bead nunber, and density
fromsinmulation.grid inport Space3D

size = 10

space = Space3D

# define bead types
fromsinmulation.chemstry inport Particle
class WParticle)

pass

class H(Particle)
color = "green"

class T(Particle)

color = "yellow'
H. binds = [T]
T.binds = [T, H
particles = [WH, T]

# reactions
from simulation.chemistry inmport Reaction
reactions = [

React i on(
[T, T, [HT], # educt, product
1.0, 0.0, # range (unused), spontaneous rate
H 1.0, 0.5 # catal yst, range, and rate

)

# randominitial condition
initial_condition = Random nit(n_W-1780, n_T=600, n_H=10)

# define interactions
import sinulation. physics.dpd as dpd

cut =1
cl ass Physi cs(dpd. Physi cs)
matrix = {

(WW : (25,cut),
(WH : (15 cut),

(WT) : (80,cut),
(H H) (35, cut),
(HT) (80, cut),
(T, T) (15, cut),

# thernostat variables and integration tine step
gamma = 4.5

sigm = 3.0

time_step = 0.01

physi cs = Physics(cut, gamma, sigma, tinme_step)

Figure 2.7: The same system setup as in Fig. 2.5 implementeSfartacus in the
python programming language. Unlike ESPresSo, Spartases eonfiguration files
only for the system setup but not for the actual integration.
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of a core simulation engine written in C and python [123], aad be controlled and
extended via python scripts, and inspected at runtime byaphigal interface. Fig. 2.7
shows the example configuration of Fig. 2.5 implemented fartcus.

Spartacus offers predefined analyzers comparable to ESdbeg with emphasis
on chemistry instead of physics:

e statistical physics

— energies (kinetic, potential)
— pressure (virial and excess pressure)

— mean square displacement
e distribution and correlation functions

— velocity correlation and autocorrelation
— radial distribution function

— aggregate size distribution
e system chemistry

— bead numbers
— reactivity

— compositional entropy (of aggregates)

Additional analyzers can be defined in the configuration fipartacus prints out the
result of analyzers for further processing. Alternatiyéhg system state or screen shots
can be saved along a trajectory. Scripts are provided torddsenovies from this data.

2.3.3 Smoldyn

Smoldyn is a spatially resolved simulator for chemical tiescnetworks with focus
on molecular biology. It has been implemented by S. Andrawksl@ensed under the
GNU Lesser Publishing License (LGPL). Smoldyn does noticiemdead interactions
but merely diffusive motion (implemented as momentumlesslom walk). Conse-
guently, molecules can only be represented by single beatithair internal structure
cannot be modeled — the framework is therefore most appatepfor higher coarse-
graining parameters.

The main focus of Smoldyn is its accurate incorporation efuoltal reactions [102].
Reactions can be zeroth-, first-, and second-order (typegeh)aeactions. Smoldyn im-
plements reactions based on the Smoluchowski formalissm$set. 2.2.4). Smoldyn
further allows to define surfaces and compartments for mangsrand vesicles by ge-
ometrical shapes. These structures can reflect, absormdbbads, and may have an
influence on their reactivity and diffusion.

Simulations in Smoldyn are set up by plain text configurafites, implying that
the software is not extensible by scripting. The time evolubf a system can be
inspected at runtime via a graphical interface and can beiepas movie. Addition-
ally, analyzer results can be printed out for further arialyAnalyzers focus on bead
numbers, either in total, or located at specific surface®ppartments.
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2.3.4 LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Paral&mulator) is a fast and
feature-rich molecular (MD) dynamics software that inésaode for coarse-grained
DPD simulations. The software has been developed by S.npRIn, P. Crozier, and
A. Thompson [124] and licensed under the GNU General Puhlishicense (GPL).
LAMMPS is implemented in C++ and runs on single processoki@smachines but
is designed with massively parallel architectures in mendgloying MPI). LAMMPS
does not support chemical reactions and is not extensiblechgting but defines a
clear interface for C++ extensions.

LAMMPS consists of a core-engine that is controlled by auektonfiguration
file. It can print out the system’s time evolution. Altervatly, LAMMPS allows to
print out the results of custom analyzers that can be defimélei configuration file.
Since the configuration file does not define a full-featureymmming language, the
range of possible analyzers is limited (e.g. to time and mabée averages of per-atom
guantities). More complex observables need to be calcufaten the system’s trajec-
tory files. The package includes scripts to generate moviesan produce output for
VMD [121] and other visualization softwares.

2.4 Conclusion

This chapter has introduced modeling techniques and skdtfea spatially resolved,
coarse-grained Artificial Chemistry — primarily Browniapréimics (BD) and dissipa-
tive particle dynamics (DPD) with incorporated chemicalations. The chapter has
derived the underlying mathematical models, and has redamplementation princi-
ples, means of calibration. The presented methods allowniolate molecular motion,
reaction, and spatial organization in an integrated fraonkywhich makes them valu-
able tools in the study of emergent physico-chemical stirest(e.qg. lipid aggregates)
and processes that influence or are influenced by thoselsacas the existing exam-
ples from the areas of artificial chemistry, artificial lifad systems chemistry indicate.
Four existing software packages (ESPresSo, Spartacusdgmand LAMMPS)

have been presented. These applications differ in focusfeatdres, and vary in
their requirements on hardware and user-knowledge fromaguagical tools to high-
performance computing applications. Most of the preseptedrams are scriptable/
extensible, so that flexible simulation setup and incorp@manto existing simulation
environments can be achieved easily.
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Chapter 3

Coarse-Graining and scaling in
dissipative particle dynamics
(DPD)

Reprinted with permission from Ri€hslin, H. Fellermann, A. Eriksson, and H.-J. Ziock, Coagsaning
and scaling in dissipative particle dynamics, J. Chem. Phy9(21), 214102 (2009), Copyright 2009,
American Institute of Physics.

Abstract

Dissipative particle dynamics (DPD) is now a well-estdimid method for simulating
soft matter systems. However, its applicability was relgamtestioned because some
investigations showed an upper coarse-graining limitwaatld prevent the applicabil-
ity of the method to the whole mesoscopic range. This aréictes to reestablish DPD
as a truly mesoscopic method by analyzing the problems teghoy other authors and
by presenting a scaling scheme that allows one to apply DRIDHations directly to
any desired length scale.

3.1 Introduction

Dissipative particle dynamics (DPD) was introduced in 1892Hoogerbrugge and
Koelman [97] as a novel method for performing mesoscopialkitions of complex
fluids. Since then, the method has gained significant thieatetupport and refine-
ment [84, 99, 125, 126], and has been applied to fluid dynamigtumerous re-
search areas such as rheology [95, 97, 127, 128], mater@icss [129, 130], and
molecular biology, where membranes [80, 90], vesicles [11§], and micellar sys-
tems [81, 89, 92] have been modeled.

Initially, DPD was understood to be a truly mesoscopic méthble to bridge
the whole gap between the underlying atomistic scale (inréimge of nanometers
and nanoseconds) that is accessible by molecular dynaMIg¥ gimulations and the
macroscopic scale (in the range of micrometers and mibiisés) considered by con-
tinuum descriptions. To fulfill this promise, it is crucidlat the method is scalable,

35
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meaning that its coarse-graining level can be adjustecwitimtroducing serious arti-
facts that would render the method worthless.

In fact, it was originally stated that the DPD method is sdede, meaning that the
parameters used in the simulation do not depend on the Iegebose-graining [84]. In
a later publication this earlier finding was declared eroursd80], and it was proposed
that interaction parameters determining the conservédiees between DPD particles
scale linearly with the coarse-graining level.

Based on this linear scaling relation, the performance oDDRs analyzed for
various coarse-graining levels [87, 131]. It was found thate exists an upper coarse-
graining level above which the simulated fluid freezes. mf reported that this
coarse-graining limit is disappointingly low and only all® up to about 10 water
molecules to be grouped together into one DPD particle [13l]s limit would pre-
vent DPD from covering the whole mesoscopic range and canifiseapplicability
essentially to the order of magnitude of MD simulations. Dmiand Yuen even con-
cluded that the DPD method would be best suited for the siioulaf vapors and gases
(where the freezing artifact would happen only for much kigtoarsening levels) [87].

The usual method of expressing dynamics in DPD represeatadtording equa-
tions in reduced units, as it is done in several other brasmohphysics. Using reduced
units has considerable advantages: one and the same edsiatiepresent a whole
family of physical systems which means that qualitative godntitative statements
about the behavior of one system can be translated into thavime of another one.
Nonetheless, different members of this family, e.g. pateneed by some typical
length scale, may exhibit different physical properties iliportant example for the
usage of reduced units is given by the continuous field datsmni of hydrodynamic
flow, the reduced Navier-Stokes equations. These reducgatieqs have the same
form for all systems with identical Reynolds and Euler numb&ugh these systems
differ with respect to physical parameters, such as thegisc

In contrast to the Navier-Stokes equations, which are bgidetermined by con-
servative laws, dynamic equations describing a partiakeeld approach are subject to
additional, method related features. For DPD, the relatiemveen different physical
systems represented by the same reduced dynamic equaticallgrdepends on the
coarse-granining procedure that one uses. Changing thisecgeaining level affects
various properties of the “particles” of a particle-baseetmod. Whereas the scaling
of some of these features is motivated by physical condidesa(for example, the
number of DPD particles times the particle mass should bstaat), the choice of the
scaling of others (e.g. the cut-off radius, see below) igestihio some freedom.

In this article, we study the consequences of differentsmaraining procedures
with respect to the reduced dynamical equations the acuwpslistem defines. The
purpose of this work is threefold:

1. As our main result, we argue that the original statemeatt @D is scale free
can be upheld for equilibrium systems by the usage of an gpjpte scaling
scheme for the usual conservative DPD interactions (c.fnse3.4)). Our
coarse-graining procedure renders all interaction patensi@ncluding the elas-
tic conservative one, to scale in such a manner that expgessireduced units
the dynamics of physically equivalent but differently sizystems leads to com-
pletely scale free equations.

2. For non-conventional interactions, e.g. surface teimdgpendence of length
cannot be achieved. This is physically plausible: suchesysttend to exhibit
a typical length scale (e.g. in domain formation) and counsatly, systems on
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different length scale will look different even when exged in reduced units.
However, we will demonstrate that our coarse-graining @doce does not result
in an unfavourable scaling of the interaction parametelngs means: if a system
can be simulated with DPD on small scales, at least the gpalithe interactions

does not prevent a simulation on a larger scale (though thayebe other, system
specific issues to be dealt with).

3. DPD is also used for the simulation of transport processek certain non-
equilibrium situations. Whereas, e.g. for the formation lbage diagrams, the
time scale plays a somewhat minor role and is closely relatéte choice of the
energy scale, the simulation of transport phenomena regjaiproper calibration
of time. We will discuss some of the consequences of thidceion.

In order to present our argument, we need to define the noatenelused and
introduce some notation. By “coarse-graining” we underdtthe operation of coa-
lescingr physical particles into one DPD particle [80]. BY, we denote the total
number of DPD particles in a simulation and it holds that = Npnys, With Npnys be-
ing the number of physical molecules the simulation repressélhe main objective of
this article is the comparison of DPD simulations with diéfet coarse-graining levels
v andv’, which motivates the introduction of the scaling ratie= N/N' = v/ /v. In
what follows, functions ofp will be used to describe the scaling of various quantities
at different coarse-graining levels.

By “scaling” we refer to the functional relation between tespective parameters
of two systems with different coarse-graining resolutiong’. In general, simulation
guantities and parametekswill be functions of their respective coarse-graining leye
we write X = X (v) and X’ = X (/).

Conventionally, DPD operates in reduced units, such thatggnis measured in
units ofe, length in units of a cut-off radius,, and mass in units o, the mass of a
single DPD particle; in these units, length, mass, time aratgy are dimensionless.
We adhere to this practice with the sole difference that veeaumer instead of an
energy as basic unit. That a quantity is expressed in reduaiesl (with respect to its
coarse-graining level) is denoted by a tilde; we XgeX".

In DPD, one usually sets the time unit to

T =rcv/mje 3.1)

with . andm defined as above anddetermining the unit of energy, most often set
toe = kgT. Choosingr = rc\/m/kpT is especially convenient for investigations
of equilibrium states (e.g., amphiphilic phases), but pthmices are possible as well,
such as comparing simulated with experimental transpeffic@nts is a way to deter-
mine time scales in non-equilibrium settings. In princjpae has complete freedom
to choose the time scale; however, if the unit of time, lepgtid mass are fixed and
the system is governed by a dynamics according to the easatiomotion (Egn. 3.4
below), the energy unit is also given (Egn. 3.1).

Restating the objective of this work in more technical terms will construct a
family of DPD-calculations such that its members share jghyproperties, namely
temperature and compressibility, but represent physigstems on different length
and time scales. Further, we will show that using this pracedwhich is based on an
appropriate scaling of length and time together with a dpecoarse-graining proce-
dure, the velocity increments calculated from integratirgequations of motion of the
DPD particles expressed in reduced units (c.f. Egns. (v do not depend on the
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coarse-graining value, i.e. are the same for all membetseafanstructed family. This
is in contrast to earlier publications [80, 132]. Our reguiplies that, in reduced units,
a DPD-calculation performed for a system with small extemsiand over a small time
interval is numerically identical to one for a much largestgyn and covering a longer
time range.

Using the above notational conventions, one may summadr&edmbined relative
coarse-graining (i.e. scaling by a factgy and change of units with the following
diagram:

Change of coarse
-graining ¢

X/ (3.2)

units forv units forv’

X
Reduction oﬁ Reduction of
X

X/
The non-trivial fact that two physically equivalent systera.g. only differing in their
size, exhibit the same reduced equations then alters the @lsbeme to:

Scaling
and zooming

X X' (3.3)

Unit reductio
for v

The article is structured as follows: in Sec. 3.2.1, we disdhe results of Groot
and Rabone [80] and specify where we deviate from their aimalyVe show that their
approach of decreasing the number of DPD patrticles (narhelyarticle density) while
keeping relevant properties (in particular the particteslius of interaction) constant,
is not appropriate. The alternative scaling process we @nriplschematically shown
in Fig. 3.1A and 3.1B. When we change the level of coarse-gmgifor the DPD-
particles, we accordingly scale their number and adjust $iee (radius of interaction).

Fig. 3.1C depicts the main result to be shown in this artidenely that by employ-
ing the correct scaling relations and unit reduction onezhesmplete equivalence of
a simulation performed at the scale of Fig. 3.1A with the zedersion in Fig. 3.1C.
This demonstration is split into two parts. In Sec. 3.2.2 &rid3, we change the inter-
action parameters according to the necessities of the edisptling procedure (upper
arrow of diagram 3.2). The interaction parameters have tthhaged such that when a
system with many DPD-particles is mapped onto one with felugrarger and heavier
particles, the overall system properties are maintained. $2.4 presents simulation
results that corroborate the derived scaling relations.

In Sec. 3.3, we analyze the behavior of the DPD algorithm vtherrescaled sys-
tem is expressed in its own set of reduced units and the sysitmneffectively is in-
creased to recover the original number of particles. Thexghaf units affects the
natural energy scale (given ky= mr2 /72 and we will show that as a result of our
chosen scaling the numerical values that appear in the eedumt system (Fig. 3.1C)
are identical to those of the original one and, as a conseguéeheir dynamics are
equivalent, thereby establishing diagram 3.3, in paricil = X'

Also in Sec. 3.3, the question about the time scales are taeagain; we show
that the presented scaling behaves consistently undereiff methods of time calibra-
tion, using different transport processes as measure.elndhcluding discussion, we
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Figure 3.1: Starting from Frame A, a coarse-graining is graened that in this 2D
picture coalesces four of the original DPD-patrticles int@ @oarse-grained particle,
leading to Frame B. Associated with this coarse-grainimgnarmalization or scaling
is performed that changes the interaction parametersegbués the units unchanged.
This step also involves scaling some of the interactionrpatars in order to maintain
relevant physical properties of the system. In transitignio Frame C, the overall
system is expressed in terms of reduced units. The dynamibe reduced unit system
(Frame C) is numerically exactly the same as in Frame A. g rame C is effectively
a zoomed version of Frame A.

comment on conservative interactions with a more complegsiphl scaling behavior
than the repulsion given in Eqns. (3.4) and the resultingsequences for upscaling
DPD.

3.2 Scaling DPD

Excellent descriptions of the DPD-method are given in ussiarticles; we will not

recapitulate the method itself, but instead refer to Graomt Warren [84]. Here, we
only give the definitions of the conservative, dissipatasg random forces in order to
define the notation of the parameters:

Tij
Fg = a;xi; (1 — =)y,

F3 = —wP(ryg) [(vi = vj) - £45] B,

FR R(ﬁ;)@gl’zg, (34)

wherer;; is the Euclidean distance between particlemd j, #;; is the unit vector
pointing from particlej to particles, andy;; equals one for pairs of particles separated
by distances less than the force cut-off radiuand equals zero otherwise. The param-
etera;; determines the magnitude of the conservative interactioivall be regarded
in this work as being the same for all pairs of particles; = a (for other types of
interaction, see the discussiogy; is a random variable with Gaussian statistics, a van-
ishing mean and a variance bfAt¢ for the numerical time steft (see e.g. Ref. [96]).
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As a consequence, the unit®f is time™ /2. Furthermore, the values 0f; in two dif-

ferent time intervals are uncorrelated. In generali,if) and(k, ) are different pairs
of particles,(;; and(y; are independent; however, in order to guarantee the cigptral
of all forces, one must require thgt = (j;.

The following dissipation-fluctuation relation [99] leatisa thermal equilibrium
at a given temperaturE:

2kpTywP (r) = o2 [wh(r)]2. (3.5)

Without loss of generality, we may take®(r) = [w®(r)]? for the dimensionless
weighing functionsv? (r) andw®(r). The dissipation-fluctuation relation (3.5) then
reduces to

0% = 2kpTH. (3.6)

One is free to choose either” (r) or w!(r) without changing the thermodynamic
equilibrium, but it is customary in the literature to také(r) = 1 — r/r. mimicking
the conservative forc® . One also notes that through Eqgns. (3.5) and (3.6), the
relations between the parameters therein are dependein¢ e@nperature.

In this paper, the physical molecules will refer to bulk flpatticles (such as water),
which is in accordance with the cited literature. Otherayst including surfaces, such
as binary fluids, will be commented on in the discussion.

3.2.1 Compressibility and equation of state

Following Groot and Warren [84], we analyze the scaling baraof the conserva-
tive interaction parameterby relating the thermodynamic definition of the isothermal
compressibility<r to the equation of state (involving of a system of DPD-patrticles.
The isothermal compressibility is defined as the fractiehainge in the volum¥ that
results from a change in the pressit®f the system, in a process where the tempera-
tureT is constant:

LoV 10p

VOP|, pOP|;’
Herep denotes the number density of particles, Ng.V. Itis convenient to define the
dimensionless parameter ! by

. 1 1 0P

KT 3.7)

— = 3.8
w kJBTpKT kiBT 8p ( )
which we require to be invariant under scaling.
1 1 0P 1 0P
- - = = —— = const. (3.9)
ksTprr simulation ksT dp simulation ksT On experiment

Here,n = vp denotes the molecular number density of the physical system
The equation of state relates the pressure with the partictgber density. From
simulation results, Groot and Warren [84] evaluated theMaxpression

1 c

j>i

2 Te
= pkpT + ?sz / ra (1 - r) g(r)r?dr.
Jo

Tc
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Here,g(r) denotes the radial distribution function. For densities 2 in reduced units
(i.e. more than 2 particles in a cubic box with linear dimensiofr.), the following
equation of state is a good approximation to the numericalisitions [84]:

P = pkpT + aap?, (o = 0.101 £ 0.001). (3.12)

(Note thata has the dimension déngthto the power of 4.) From this, one concludes
that the part of the pressure caused by the conservativadtiten scales linearly in.
Further, from Eqn. (3.9), we obtain that at constant tentpeza

1
M;p (kgTp + aap®) = const. (3.12)

Using p = n/v wheren is the molecular number density andthe chosen coarse-
graining parameter, it follows that

2aan
V]{?BT

1+ = const. (3.13)
Sincen andT are constant, Groot and Rabone concluded d¢hatust scale linearly
with ¢ = ¢/ /v in order to maintain isothermal compressibility under angeof the
coarse-graining level [80].

Several authors regard this scaling as an inherent drawdifaitle DPD method,
since on the micrometer scale the method would appear tofbetieély thwarted.
We claim that this scaling — and hence its implications — isngr The problem is
rooted in the construction of the equation of state (EqnL)3.th their computer simu-
lations, Groot and Rabone [80] decreased the density of Datficjes while keeping
the interaction cutoff radius. constant. This approach allows one to keep the system
behavior invariant by scaling the interaction parameterdenchanging the DPD par-
ticle density, without altering their properties. Howewse claim that proper scaling
means lowering the number of employed DPD patrticles whiteutaneously enlarg-
ing their interaction radius. The difference is illustihie Fig. 3.2. Frame 3.2A is
taken to be a system with fine coarse-graining. Frame 3.2f&septs a scaled system
with a lower DPD particle density but unchanged particlerditers. The result is that
the mutual overlap of the soft particles is smaller (as sedrrame 3.2B). Hence it
is intuitively clear that the interaction parameter has eadricreased in order to keep
the system properties constant; formally, this argumergflected in Eqn. (3.13). In
contrast, Frame 3.2C shows the system with the same scaliogas for Frame 3.2B,
but with therelative overlap of the interacting particles kept constant, whichdcom-
plished by scaling-.. A closer examination of Frame 3.2C shows that it is part of a
magnified version of Frame 3.2A, namely a system where allehgths associated
with a single DPD particle have been uniformly scaled by #dfiag while keeping the
system size constanf{ = L). This results in the following scaling relations for the
coarse-graining level, number, mass, and size of DPD (estic

Vv = ¢v

N'=¢~'N

m' =¢m

=o', (3.14)

whered is the number of dimensions of the system (see Fig. 3.2C).
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Figure 3.2: Schematic of the scaling process: Frame A shdRIasimulation with a
cutoff radius ofr.. Frame B depicts the coarse-graining procedure performe&aaot
and Rabone [80]. With changing particle density, the plerticameter is kept constant
while the interparticle force is increased to maintain th&tem pressure. However, in
order to properly conserve systemic parameters like cossjioiity, both the interac-
tion parameter and the interaction cut-off radius need tmbeeased as measured in
physical units. Frame C depicts the proper scaling in cegraiming. Along with a
decrease of the particle density (in physical units), theraction range is increased.
In this case, the interaction parametescales differently than in Frame B in order to
preserve systemic properties.
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3.2.2 Scaling of the potential energy

We start by calculating the change of potential endrgyf a system of DPD particles
enclosed in a box that undergoes compression. This changated to the com-
pressibility of the system and is required to be invariararrscaling. In practice, we
require the dependence @fon ¢, such that the chosen coarse-graining level does not
affect the compressibility. For the uncompressed systesrhave

UO Z Xij@ TL] Tc 2 . (3 15)

i>7

This equation holds for soft core repulsions which are ukealighout the literature.
In general, the potential may be viewed as a harmonic apmation of any potential
close to an energy minimum. For an isotropically compresgstem with box length
(1 —0)L, whered < 1 is the relative compression parameter, the change in the in-
terparticle distancé\r;;(J) is not assumed to be the same for all pairs of particles.
However, we require that

Arij(8) = 6rij + O(5%), (3.16)

which means that we rule out (first order) phase transitiordeu compression. The
total potential energy of the compressed system is themdiye

Us = X” C— Ari;(8) — 1e)2. (3.17)

P>
To first order ind, we obtain for the change of internal energy
AU=Us—Up= xija(l—=L)5ry. (3.18)
i>7 Te

Because the change in potential energy of the system as & Whslto be invariant
under scaling, we have

N /
T
inja (1 o ) orij = ZXU ( — 7"’j> ori; (3.19)

i>j >3] ¢

Due to the scaling ofV, the number of terms in the sum of the left hand side of
Eqn. (3.19) is proportional to—!. Since we requird\U to be invariant under scaling,
the force constant has to scale as

a = ¢l=q, (3.20)

the ¢! coming from the change in the number of terms in the sum andjtHé?
from the change in length scale. This scaling is the resuduofrequirement of main-
taining the fractional particle overlap during the chanfi¢he coarse-graining level.
Everything else being equal, this scaling would seemintillimply an upper coarse-
graining limit.

3.2.3 Scaling of time and energy, dissipation and fluctuatits

Beside compressibility, the temperature in the simulasioould also be unaffected by
the coarse-graining. Hence, we require

T =T. (3.21)
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As detailed in the introduction, there is a gauge freedontHferchoice of the time
unit:

7" = Ttime(®)T. (3.22)
We employ this freedom by scaling the time unit equal to tingitle unit, i.e.
Lime(¢) = ¢*/¢ (3.23)

and thust’ = ¢/r for which the motivation will become clear in the following.
As also described in the introduction, the freedom to setithe unit also affects the
energy unit for which we get

¢ =m'le — ge. (3.24)
T

The behavior ofy and o under scaling remains to be determined. Examining
Egn. (3.10), we note that the pressure is independentarfdos. This means that,
with respect to static compressibility, we have signifidaeedom in the choice of the
scaling functiom herns

’7/ = I‘therm(¢)’}/
o' = (Ftherm(¢)¢)1/20 (3.25)
the latter equation is a consequencesbt= /2+/(kpT)’ and, due to the scaling of

the unit of energy(kpT) = ¢(kpT).
Dimensional analysis motivates the choice

Tinerm() = o' 1/, (3.26)
which in turn implies that
,71 _ ¢171/d,y
o = ¢'Hdg (3.27)

This specific choice will later be shown to be crucial for bfithing the scalability of
the method, but investigations with other goals (such thaiding on a coarse-graining
level v with least artifacts) may require alternative gauges.

To summarize what has been established throughout thevasettions, changing
the level of coarse-graining in DPD requires the followilegling relations:

N = qb*lN a = ¢171/da

m = ¢m ,y/ — ¢171/d

r = Qsl/d e o = ¢1—2/d0. (328)
A de

3.2.4 Validation by simulations

In order to illustrate the correctness of the above scaliggraents, we have measured
the pressure in simulations for different coarse-grainéwgls (i.e. a box of constant
size L = 50 with DPD-particles of different radii). Simulation paratees for¢ = 1
arerc = 1,m = 1,p = 3.0, = 4.5,0 = 3.0, anda ranging from0 to 50. These
parameters have been scaled according to Eqgn. (3.28) fer oblarse-graining values.
We want to show that the pressure of this system is invariadeuscaling, for all
values ofa andT', if we follow the described scaling relations.
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First, we measure the pressure of a DPD fluid in a closed bdxneftective walls
(see Fig. 3.3). When a particle collides with a wall, it is refibel elastically and the
instantaneous impulse normal to the wall is measured. Té®spre is once measured
as the time-average of the normal forces on the walls pertiumé divided by the
surface area of the cub&? = (mAv, /(AAt)) where A is the area of the box and
Av is the component of the particle velocity orthogonal to thelwSecond, the
pressure is measured from the conservative force via thethieorem (Eqgn. 3.10).

Fig. 3.3 show the pressure measured as a functiary¢t/3 for ¢ = 1 (circles),
¢ = 8 (squares), and = 125 (diamonds). Hollow symbols give the pressure cal-
culated by wall collisions, whereas solid symbols give thespure calculated via the
virial theorem. The two coincide within standard deviat{smaller than the size of
the symbols). For each coarse-graining parameter theiegqutstate (Egn. 3.11) is
reproduced accurately for small values:ofOn the one hand, far = 0, the case of an
ideal gas, the pressure should be given by

Pl,_o=0¢"'NokpT/V = pkpT, (3.29)

which it indeed is seen to be for all valuesdafOn the other hand, kinetic gas theory
establishes
P = p(mv?)/3. (3.30)

This constitutes a relationship between the thermostatrendonservative mechanical
interactions with the walls, which is non-trivial for the DRequations of motion. The
way we measure the pressure gives a direct relatigiwtp. The pressure calculated
from kinetic quantities (Eqn. 3.30) coincides with the wakequired from the ther-
modynamic relation Eqgn. (3.29). This shows that Eqn. (3htldls for our simulation.
The slopes of the three curves differ, which indicatesdhiatEqn. 3.11 depends on the
relative box sizel /r¢ in hardwall simulations. This is most likely due to a crowglin
of DPD particles at the boundary of the box which walls lack egpulsion potential.
This problem can be avoided by the use of periodic boundangitions (again in
a box of sizeL. = 50) and then measuring the pressure via the virial theoremcgwhi
has been shown to coincide with the pressure obtained byce#illions in the previ-
ous simulation). Results are shown in Fig. 3.4 for diffem@mulsion parameteksin
[0,10042/3] and various coarse-graining ratigsn [1,125]. In the case of periodic
boundary conditions, the pressure is found to be indepérafehe coarse-graining.
The result confirms the correctness of the scaling schemenauaed in Eqn. (3.28).

3.3 Reduction of units

Our goal is now to show that the velocity increments obtained from integrating the
forces are unchanged when the scaling is combined with tberdiog reduction of
units: Av = AV’, which implies that the relative particle motions are ueetiéd by
scaling in the reduced unit systems.
The random variabl€;; has the unitr—1/2, as noted in the discussion following
Eqgn. 3.4. Given the scaling af it follows that
¢y =970, (3.31)
and therefore
o'¢l = ¢t Vo (3.32)

j
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Figure 3.3: Pressure in a DPD simulation with reflective svédir different coarse-
graining ratiosp = 1 (circles),¢ = 8 (squares), ang = 125 (diamonds) and various
repulsion parametersin [0, 50/¢/%].Hollow symbols give the pressure calculated by
wall collisions, whereas solid symbols give the pressuteutated via the virial theo-
rem. The two coincide within standard deviation (smallantthe size of the symbols).
For each coarse-graining parameter the equation of stgte @&11) is reproduced ac-
curately for small values of. For the ideal gas scenaria (= 0), the theoretical
prediction of P = pkgT is recovered independent gf The slopes of the curves
differ, which indicates thatv in Eqn. 3.11 depends on the relative box sizé in
hardwall simulations.
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Figure 3.4: Pressure in a DPD simulation with periodic bamdcconditions for dif-
ferent repulsion parametedasin [0, 100¢~2/3] for various coarse-graining rati@sin

[1,125]. The pressure (obtained from the virial theorem) is indepetof the coarse-
graining.
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This is the same scaling as seen dofEqn. 3.20) and fory (Eqn. 3.27). As a con-
sequence, all three force components in Eqn. (3.4) scalefagtar ' ~1/¢. When
velocity increments are calculated during one time steg frs that the force scaling
is canceled by the scaling of mass and time:

/
vy =3 Eul pp
iz
¢1—1/d¢1/d

5 > Fine— Av; (3.33)
m

J#i

SinceAT = Ar’/r! andAf = At'/7’, we get for the velocity increment by con-
sidering

Because time and length scale in the same way we’get = 7/r.. Combining this
with Egn. (3.33) one finally obtains

AV, = AV, (3.35)
which implies that trajectories are numerically equal:
r(t) =7(t). (3.36)

What remains to be shown is the scaling of the reduced parasigté, andé.
Sincea scales like energy over length, when going to the reducetd ofithe primed
system, we have

’ 1-1/dg1/d .
i =a'e = P e g, (3.37)
€ 10) €
and similarly, sincey scales like energy over length and velocity, frm=+/ r2 /(¢'1’)
we get
, , 72 ¢1—1/d¢2/d r2

T €T ppl/d ,y; =T (3.38)

From the fluctuation-dissipation relation it follows agé#iat

& =5 (3.39)

Hence, scaling and unit reduction precisely cancel eacér.oths a result, the DPD

formalism is scale-free for interactions as given in EqBs4) if space and time are
scaled appropriately. This means that the calculation wifingle set of parameter
values represents systems at arbitrary lengths scaleshwhtablishes the numerical
equivalence of zoomed systems as described in Fig. 3.1C.

3.4 Summary and discussion

We have shown that the coarse-graining procedure in DPD eathbsen in such a
manner that the different physical systems representetldoyetiuced DPD dynamics
share some physical properties, such as compressibilitys Was achieved by the
combined effect of a specific scaling of the cut-off radiu©&fD particles, a proper
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choice of the time scaling, the reduction of units, and finkil requiring a specific but
obvious scaling ofy ando.

The independence of scale shown for bulk fluids cannot natgsbe upheld for
other types of interactions; e.g. for binary mixtures ofilits A and B where several
conservative interaction parameters occur, 8ay,aap,apg. Whereas bulk inter-
actions given byu 4 4,app scale as discussed in this articteyp is a surface term
that determines interfacial energy and therefore scakésrelitly. For bulk interac-
tions, in the presented scheme the parameters determorvicgsfand energies scale in
physical units linearly withp, i.e. they are proportional to the number of molecules a
DPD patrticle represents. While this proves to be adequatsrfaulating elastic prop-
erties, non-elastic, surface dependent interaction peters1scale (again in physical
units) with ¢, C' < 1. Repeating the calculation presented in this work, it theng
out that those interaction parameters effectively shriitk an increase of the coarse-
graining. This is physically plausible: assume a systernekiaibits domain formation.
On a (sufficiently) small scale, the domain boundaries witwr as planar (indicating
a, with relation to the bulk energies, large surface enevgydreas on a scale above
the typical domain size, minimization of surface does ngtnaore play a dominant
role. This means that if a DPD-calculation can be perforntesdsamall scale, then, at
least with respect to the scaling of parameters, also Gtlouk at larger scales will be
feasible.

Our calculations reestablish DPD as a method to analyze gtaiperties of equi-
librium systems (most notably phase diagrams) over theeemiesoscopic length scale.
In particular, our scaling procedure overcomes the reddriezing artifact of DPD.
However, the validity of our scaling relation does not neseeity hold for the study of
dynamic properties (such as transport processes). Tdycthi$ point, we briefly dis-
cuss the scaling of diffusion constars= D’ (being a consequence of the equality of
the measured trajectories, see Eqn. 3.36) and the factihdiffusion constant scales
like length squared over time causes an apparent problesgeiningly implies that
relative fluctuationsf)/i stay constant instead of vanishing. This is not unexpected
but a consequence of the coarse-graining. For a generalsgisn of the renormaliza-
tion of diffusion, see e.g. Ref. [133]. To what extent thgectories of the particles
in DPD can be understood as representing actual transpmrégses is discussed by
Groot [132] and shown in the approach used by Groot and W484jnand Jakob-
son [134]. These authors resolve the calibration problernrdating the natural time
unit 7 as undetermined and instead obtain the physical time ¢daben calibrating
diffusion constants measured in simulation to physicalesl([84].

Note that there are applications in which the time scaleofiminor interest; for
example, for the investigation of static properties suclipéc phase diagrams only en-
ergy scales are relevant, and a direct physical interpoeteg well possible. The study
of dynamic phenomena, on the other hand, may either be omlsilde by changing
the interpretation of a DPD patrticle (and understand it asseerdiscretization point
in a dynamic lattice and its interaction energies as modedmaters without direct
physical interpretation), or by using different scalingy@mes based on other choices
for the gauge functiol'term.
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Note that in order to understand the according physical Scaes we have to
comment on transport properties of the method and the scafiffluctuations. We
base our argument on diffusion, but could equally considsrosity since the two are
related by the Schmidt-number, which is dimensionless. Aumaerical equivalence
of the measured diffusion constariis= D’ (being a consequence of the equality of
the measured displacement) and the fact that diffusioresdiéde length squared over
time causes an apparent problem: it seemingly implies tative quctuationsD/E
stay constant instead of vanishing. This problem disappe&en one calibrates the
simulation to an actual physical system. Assume that thefforedius is related to a
physical length by-. = [[cm]. We then have

r2 cm?

D-< = Dppys—— 3.40
j phys SEC’ ( )

With Dppys = L?% referring to the diffusion constant in physical units. Weé ge

D 1%[sed. (3.41)
phys

Consequently, expressed in physical units, it holds fofltieuations

lim 2evs L (3.42)

[—o00 Lphys l
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Chapter 4

Minimal model of
self-replicating nanocells: a
physically embodied
Information-free scenario

Reprinted with permission from H. Fellermann, R. &oMinimal model of self-replicating nanocells: A
physically embodied, information-free scenario, PhilosanB: R. Soc. Ser. B 362(1486):1803-1811, 2007,
Copyright 2009, The Royal Society.

Abstract

The building of minimal self-reproducing systems with a piegl embodiment (gener-
ically called protocells) is a great challenge, with imptions for both theory and
applied sciences. Although the classical view of a livingtpcell assumes that it in-
cludes information-carrying molecules as an essentiakulignt, a dividing cell-like

structure can be built from a metabolism-container cougledtem, only. An exam-
ple of such a system, modeled with dissipative particle dyins, is presented here.
This article demonstrates how a simple coupling betweereaupsor molecule and
surfactant molecules forming micelles can experience atijraivision cycle in a pre-

dictable manner, and analyzes the influence of crucial petension this replication
cycle. Implications of these results for origins of celldiée and living technology are

outlined.

4.1 Introduction

The transition from non-living to living systems covers @ spectrum of increas-
ingly complex organization [135]. One of such first stepshiis transition leads from
ordinary chemical auto-catalysis to self-replication. eTlhtter can be distinguished
from the former by the existence of self-bounded entitiesctviproduce copies of
themselves, rather than a mere increase in chemical coatient Therefore, self-
replication relies on organization principles unlikelylte found in homogeneous so-

51
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Figure 4.1: The basic model of nanocell replication expldrethis paper. Here small-
sized micelles are formed by amphiphiles (here indicateld asT" connected pairs of
balls). These amphiphiles have a hydrophilic hedyl§nd a hydrophobic taill(). Pre-
cursor molecules are also shown as two connected, smaberkmils, both of them of
hydrophobic character. Under the presence of catalyiealliye amphiphiles, precur-
sors are transformed into additional amphiphiles. Incafon of many such building
blocks allows the nanocell to grow in size. When a criticaédias been reached, the
nanocell looses its stability and divides into two smallggregates thereby closing the
replication cycle.

lutions. Within the last years increasing attention hasnbegyed to the possibil-
ity of building small-scale protocells, in particular ugia bottom-up approach [136]
where the building blocks (not necessarily from biotic ar)gvould assemble spon-
taneously and, under appropriate conditions, develop athréission cycle. While
extensive research has been performed on the self-repngdoapabilities of bio-
polymers [137, 63], even much simpler systems can be driviendynamics that we
identify as self-replication. In this context, micellesvhaeen proposed to serve as
life-like structures able to undergo self-reproductio][5

These micellar systems can be considered to be simpler anization than bio-
polymers because they lack any genetic information thatdcba passed from one
generation to the next. In this context, protocellulartéggilacking information would
be under the umbrella of Oparin’s views of life origins [138ho suggested that prim-
itive self-replicating vesicles would have predated infation-based cells. Similarly,
other authors have advocated for this scenario under a datigmal perspective. Un-
der this view, Dyson [139] indicated that current cells iweal both software (DNA
and RNA) and hardware (protein machinery). Although harévean exist under the
absence of software, the opposite is not allowed to occurcaieadd to this picture
of cells that the presence of a container is a very importadepfor the hardware to
properly work: only when the pieces are close together weegpect the machinery
to operate.

The nanocellular system discussed here is based on a ntiealles coupled to a
minimal metabolism (figure 4.1). The system is constantiyedr away from equilib-
rium by the supply of precursors, which are supposed to hagleehinternal energy
than the surfactants that build up the micelles. The meisiadransforms precursor
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molecules into new building blocks of the nanocell. The rbelia turnover is thereby
enhanced by its own outcome or—in other words—the metabo#isin auto-catalytic
turnover of precursors into new surfactants. This systesamiles one studied exper-
imentally by Bachmann et al. [59]. However, in their work ttetalytic effect is a
feature of the micelles (probably due to milieu effects),leshin our system, it is a
feature of the molecules themselves.

Either way, the replication mechanism of micelles envisibboth in Bachmann’s
as well as our system is the following: micelles incorpofayerophobic precursor
molecules where they are afterwards transformed into nefactants. Due to this
process, the number of surfactants increases, while atatie $ime, the volume of
the hydrophobic core becomes smaller. It is assumed, thahwahcritical ratio of
surfactants versus core volume is passed, the aggregateméainstable and will
divide into two daughter cells. Whether or not the experiraksystem follows this
pathway has, to our knowledge, never be clarified. Howevaresuch a replication
mechanism is considered the basis for a more complicateédgaibdesign, knowledge
of the exact replication kinetics becomes crucial.

Together with experimental approaches aimed to finding tmelitions for pro-
tocell replication to occur, there is an increasing needppirapriate, well-grounded
theoretical and computational models. Such models canuraprstanding the con-
straints that might operate in the self-assembly of misedled other molecules and
how they can properly trigger growth and splitting. Our wdiska first step in this
direction.

4.2 DPD nanocell model

In this paper we consider dissipative particle dynamicPD) approach to model-
ing embodied protocells employing a physically and chetlyicgmplified formalism.
This is one possible approach that can be used in order ttetduk complexities of
molecular aggregates. Other approaches include MoleBylaamics (MD), Brown-
ian Dynamics (BD) and Monte Carlo algorithms. Each of thesthods has its own
advantages and drawbacks [140, 141] and a compared anhbsibeen presented
elsewhere [142].

Previous work done by Ono and Ikegami involved a latticeedaprotocell dy-
namics [143]. These structures display a special type dikelreplication. While
they are remarkable in their self-organizing behavior,uhderlying rules of interac-
tion and the special properties of the membrane-like airastrestrict their relevance
to the arena of artificial life. By using more appropriate ewllar interactions within a
three-dimensional, water-filled environment (see for epl@Rasmussen and Nilsson’s
cellular automata approach to self-assembly [71]) we se@kdvide the (as far as we
know) first computational evidence that such a simple prdtolar cycle is feasible.

4.2.1 Dissipative particle dynamics

DPD is a coarse grained, particle based simulation teckrégmparable to Brownian
Dynamics. It was proposed by Hoogerbrugge and Koelmannd@d]gained signif-
icant theoretical support in the late 1990s [99, 84, 144]thin context of biological
systems, DPD models have been successfully used to captudymamics of mem-
branes [90], vesicles [117, 116] and micelles [89, 145].
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A DPD simulation consists of a set & particles which are described by their
type, massn;, positionr;, and momentuny, = m;v;. These particles—usually
called beadsthroughout the literature—are not meant to represent iddali atoms.
Instead, they represent groups of atoms within a molecike geveralC H, groups
within a hydrocarbon chain) or even a group of small molexslech as water.

Newton’s Law of motion is used to determine the trajectorgaxth individual bead:

d2I‘i 1

= _F, 4.1
dt? m (4.1)

The forceF; that acts on particléis expressed as the superposition of pairwise inter-
actions

N
F, =) F; (4.2)
j=1

In Newtonian dynamics, the (central) forEig can be expressed as the negative gradi-
ent of a potential; ;, namely
Ff = =V (4.3)

The resulting dynamics are conservative and obey the Hamidlh

1 1Y
H= §;szz + B Z Gij (4.4)

4,5=1

While this approach is undertaken in molecular dynamics kitins, coarse grained
simulation techniques try to aggregate some of the moledelgrees of freedom by the
use of the so called Langevin formalism: additional forEéﬁandej: are added to the
conservative force to express friction and thermal motidrey introduce energy flows
between the explicitly modeled mesoscale and an the uridgnhyicroscale. Together,
they act as a thermostat to regulate the effective temperate. mean velocity, of the
system.
The thermostat used in the DPD formalism is given by the éguiat

FD +F = (nw(ry)(ng; - vij) + ow?(ri;)&;) 0y (4.5)

wherer;; = |r; —r;| is the distancen;; = (r; — r;)/r;; the (unit) direction, and
vi; = v; — Vv; the relative velocity between beadandj. 1 is the friction coefficient
of the fluid ando the amplitude of thermal motion¢;; is a random variable with
&; = &;i, and otherwise Gaussian statistigsis a distance weighing function usually
defined as

w(r)=2 (1 - :) (4.6)
wherer, is a cutoff range used to limit the maximal range of all intgi@s for perfor-
mance reasons. It can be shown that the equilibrium temperaf the system tends
towardsk, T = o2 /21 [99].

While there is a variety of other thermostats used in coaramed particle sim-
ulations, the above mechanism is unique in that it both awasdinear and angular
momenta and fulfills the fluctuation-dissipation theorem.afconsequence of the for-
mer, the resulting dynamics are consistent with the NaStekes equations and hence
preserve laminar flow properties of the system. The lattepgnty ensures an energy
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distribution in the system following Maxwell-Boltzmanrasistics. The overall dynam-
ics, therefore, capture both hydrodynamic and thermodjmaaits of the systems.

In almost all DPD studies, the conservative force is derfveoh asoft-core poten-
tial of the shape

1 r 2 H
6is (r) ={ sogre (1=%) ifr<r. @7

0 if r>r.

The potential energy expressed by, should not be understood as the mechanical
energy, i. e. enthalpy, of the system, but rather as its freggy contribution [82].
Following this rationale, the interaction parametessare used to express dissimilar-
ities of substances due to high enthalpy as well as entropiribations, respectively.
Therefore, they can be related to Flory-Huggins coeffisiémiwn from polymer the-
ory.

For the study of lipids and surfactants, covalent bonds eetvbeads are commonly
introduced as harmonic spring forces: on top of the abowations, bonded beads
interact according to the potential

B(r)—b”’<1—r>2 (4.8)
gl B 2 Ty ’

whereb is the strength ang, the optimal distance of covalent bonds. As usual, we use
re, m, andk,T as units of space, mass, and energy, respectively. The tirhfoliows
from equation 4.1 as = \/m/kyTr..

To model the system under consideration, we define beadspefW (water),
H (hydrophilic “heads”) andr' (hydrophobic “tails” of amphiphiles) with interaction
parameters taken from [89], unless otherwise specified:

‘ W H T
W | 25k,T 15k T 80kpyT
H | 15k,T 35k,T 80kyT
T | 80kyT 80kyT  15kyT

All beads have massm. Precursor molecules are modeled as dimers of bofitled
beads, surfactants as dimers of dhe&nd oneH bead. Here we have: = 125k,7T,
r, = 0.5, for all covalent bonds.

The objective behind this parameter set is to model surfigsténat form spher-
ical micelles. To achieve this, the effective head area rbaestarge compared to
the volume of the hydrophobic core (packing paramé&). This is expressed by
art < aww < agyg. Furthermore, surfactant heads have a high affinity to water
(eaw < aww), Which is usually due to charges in the hydrophilic groupshe
molecules. This assumption ensures that aggregates withshirface area (spherical
micelles) are prefered over aggregates with less surfaze(ewd-like micelles) in the
process of total energy minimization.

4.2.2 Incorporation of chemistry

The metabolic reaction under consideration takes theviitig form

T-T—H-T (4.9)
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This reaction is modeled by a stochastic process that haefbr been used in Brown-
ian Dynamics simulations [108]. Inbetween every two stdpsenumerical integrator
for the DPD equation of motion, each precursor dimer candrestormed into a sur-
factant molecule with a spontaneous reaction kgt he spontaneous reaction can be
catalytically enhanced by nearby surfactants whose datatfluence decreases linear
with the distance to the reactant up to a certain threshgld For simplicity, the effect
of several catalysts is modelled as a superposition:

b=k + >k { (1-7) Hr<rw (4.10)

cC 0 otherwise

whererc is the distance of the catalyst ah¢gthe maximal catalytic rate per catalyst.
For clarity of the results, we set the spontaneous reactitain our simulations to
07~!. In the upcoming simulationg;.,; is set t01.07~}, r.q; to 1r.. If a reaction
occurs, the type of one randoiih bead is changed tH, but positions and momenta
are preserved.

We also introduce particle exchange into the model to mimmécgupport of new
precursors into the system: During the simulation, two wh&ads can be exchanged
by precursor dimers with the probabilizys - 10571 per water bead within a region
of radius2r.. Again, bead positions and momenta are preserved.

4.3 Results

We implemented the DPD method using a velocity-Verlet irdey (A = 0.5) with a
step width 0f0.047. The spatial domain is three dimensional, with periodicriztary
conditions and siz€10r.)3. In all the following simulations, the system is initialtze
with one surfactant dimer and 2998 water molecules addingougp mean particle
density of3r_ 3. Unless otherwise specified, simulations have been rufiffor ¢ <
10007 (25000 iterations).

For simulation runs with the parameter set given in the kastign, we typically get
the following behavior: water beads are successively engpda by precursors in the
exchange region of the system. While diffusing through tretesy, precursors form
droplets due to their hydrophobic trait. Once such a draglathes the initial surfac-
tant, the precursors are turned into surfactants. The vertappens fast compared to
supply and diffusion of the precursor. New surfactants kjyiarrange into a micellar
shape with hydrophobic beads in the interior and hydrophi#ads towards the sur-
face of the assembly. With the parameters introduced befuigerearrangement takes
only few time steps and is thus fast compared to the metahgiwver. Such spon-
taneously formed nanocells diffuse through the systemespa@ggregates and even-
tually incorporate additional precursor droplets in thieterior, where the metabolic
process is repeated. The evolution of the overall systenposition (number of beads
per type) traces the different processes on their resgetithe scales (see figure 4.2
for agt = awT = 80k, T (upper panel) andgr = awTt = 120k,T (lower panel).
As one can see, the overall production of surfactants igdirby a linear growth that
results from the constant supply of precursors. Locallwdwer, when a single droplet
is consumed by a nanocell, the metabolic turnover exhibibgiatic growth which is
suspected from resource limited auto-catalysis. Thetiogisowth can be best seen in
the lower panel of figure 4.2 around= 7007.

On the level of individual micelles, the metabolic processréases the aggregate
number, i. e. the number of surfactants per micelle. In a piater-surfactant system,
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Figure 4.2: Evolution of bead numbers with time for two diffiet hydrophobicity
values gt andawT). The constant supply of precursors is counteracted by thei
transformation into surfactants. This transformationgeaygs in spurts rather than con-
tinuously, as the precursor forms droplets in the aqueodusieo. Size and frequency
of these spurts depend on the hydrophobicity of the tail ead

micelles would reject the surplus of surfactants into tH& phase. In an oil-surfactant-
water system, as the one under consideration, the hydraplkobe formed by the
precursors, stabilizes the assembly far beyond its ofigiggregate number. As a
consequence, we could observe that nanocells increasgriegege number when new
surfactants are synthesized. While the precursor surfacsio shifts, the nanocell
changes its shape from a spherical to a rod-like micelle. \dtleor nearly all of the
precursor is turned into surfactant, the nanocell finallgdmees unstable and divides
into two smaller aggregates (see figures 4.3 and 4.4). Thece#rdivision occurs
in the cylindrical middle-part of the rod-like aggregate ibgentation of surfactant
heads. It induces vibrating modes into the daughter agtgega they rearrange back
to a spherical shape. Although this vibration is succefsilissipated into undirected
motion, it sometimes leads back to short series of tempdtesipn and fission of the
daughter cells.

Elongated micellar structures are well-known from workelmicelles which usu-
ally consist of two surfactants with different curvatureuc8 worm-like micelles are
stable equilibrium aggregates and exhibit an exponerngaldistribution [146]. In the
system studied in this work, however, the elongated agtgeganot stabilized by dif-
ferent curvature values of the components, but by the hydroisc core. Accordingly,
once the precursor is turned over into new surfactant mt#ecthe elongated structure
looses its stability.

There is a second pathway, however, that might jeopardezalibve scenario: once
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Figure 4.3: Here, the size evolution of figure 4.2 (lower ppiseracked for individual
nanocells: each line designates the size evolution of déestggregate. Horizontal lines
result from fission (or dissociation) events, after whicb times indicate the fate of the
daughter cells. Isolated dots denote short term vibrationsg which nanocells divide
and fuse within less thahr. For clarity, such horizontal lines have been suppressed
for such vibrations. As one can see, only two daughter cedlalt from a true fission
event (att = 7227). The other two result from dissociation of single surfatsathat
start to turn over precursor droplets found in bulk phasesgétsurfactant dissociations
happen at = 3247 andt = 684r. Furthermore, two nanocells fusetat 6557.

in a while throughout our simulations, nanocells loosevitlial surfactants into the
bulk phase. If this relaxation process happens fast cordparde metabolic turnover,
the nanocells might not be able to reach the division sizeagiants in the bulk phase
may however metabolize precursor droplets and spontalyefous nanocells on their
own.

Formally, fission events can be written in the form of a chexnieaction:

k
Spim =3 Sy + Sy (4.11)

whereS,,, S, andS,, .., are aggregates of size m, andn-+m, respectively, and,, ,
is the fission rate. Fon = 1, one obtains dissociations as a special case. Analogously,
association and fusion events take the form

+

k
S+ Sy % S (4.12)

In order to quantify micellar fission and surfactant disations, nanocells have been
identified by a variant of the flood fill algorithm: every tild beads within a distance
of 1r. or less have been considered to belong to the same aggrégaeaggregate
number is defined as the number of participating surfactaritis allows for tracking
individual aggregate sizes and their transitions throirgh .t Each of the above reaction
schemes results in two transitions, given by

S'n, — S7L+7rz ; Sm — S7L+7rz (413)

and



4.3. RESULTS 59

Figure 4.4: Metabolism and fission of a nanoc@llifeads are shown in light beads
in dark gray—water not shown): The initial surfactant mete#tes a precursor droplet
and turns it into a functioning nanocell (panels 1-3). WHile precursor is consumed,
the nanocell elongates to account for the changing precstsfactant ratio (panel
4-5). Such elongated structures can be stable for severaluhits, unti—when all
precursors are turned into surfactants—the nanocell divid® two daughter cells
(last panel).

Furthermore, the turnover of precursors results in thesttiam
. (4.15)

Not all transitions can be expressed by the chemical reasttheme given by 4.11
and 4.12. Those transitions are of the type

Sn+m + Sl — Sn + S’m+l

as well as fissions into and fusions from more than two aggesgé&or all the simula-
tions performed, such outliers amount to less than 0.3%eofdtal transitions. They
have been neglected for further analysis.

In the remainder of this work, we will analyze two key paraenstof the model
and their influence on the dynamics of the system. Therebyillgut our atten-
tion on the fission pathways discussed above. The first paeame analyze is the
hydrophobicity, i. e. the valuesrw andary. This parameter is related to the dissim-
ilarity between surfactant tails and water. For most suafats the hydrophobicity is
solely a function of the length of the hydrocarbon chaind.[#8e value is thus easily
adjustable in experimental setups.

Second, we analyze the influence of the catalytic fate- hence, the speed of
metabolic turnover—on the division pathway of the nanocAl.we did not specify
the molecular implementation of precursor and surfaciarg,conceivable that in an
experimental setup, one can choose from a wide range of/tiatefficiencies.
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Figure 4.5: Histograms of nanocell size transitions fofedént hydrophobicities (see
text on how transitions are defined). For a transitfn— S,,, n is ordered along the
vertical, m along the horizontal axis. Colors indicate the number ofioecces. Note

that colors have been scaled by root functions to emphasiders events.

4.3.1

For three hydrophobicities}0, 90 and 120k,7T, histograms of such transitions are
shown in figure 4.5. The figures reveal a clear trend both imexgge numbers as well
as transition types. For hydrophobicit9k, T, the system is almost entirely composed
of single surfactants and small aggregates in bulk phasd.%3f the transitions are
dissociations and associations of two single surfact&uisthe few bigger aggregates,
transitions are distributed more or less homogeneous, isurfactant dissociation
is as likely as proper aggregate fission. Thus, for weak tpftbbicities, the system
resembles a homogeneous solution without significant foomaf structures. For
120k,T, on the other hand, the transition histogram looks comyieliéferent. Asso-
ciations or dissociations of two isolated surfactants nmakg 3.7% of the transitions,
for this parameter. The most prominent transition type éstthinover of a precursors
within nanocells that range in size from 1 to 25 surfacta@8% of all transitions),
represented by high values in the lower secondary diagdied.absence of an upper
secondary diagonal reveals that there are no surfactasudiigions except some be-
tween aggregate numbers 8 and 16. Due to the higher staffilitygregates, there are
far less overall transitions than in the previous case (Ifpared to 24743), which
poses a problem when trying to obtain smooth histogram$iofitgh there are distinct
cases of proper fission events (e.$h5 — S14 + S11, S20 — Si1 + S9) it is hard
to tell from the histograms whether such fission is more yikban single surfactant
dissociation. Varying the hydrophobicity between these extrema yields traits of
both other histograms. One example is given in figure 4.90ég 7.

As new precursors are constantly supplied and nanocellsand divide over time,
it is somewhat difficult to capture mean aggregate numbetiseodssemblies. Never-
theless, these values are prominent characteristics stukg of micellar systems and
their knowledge can help to get insight into the system urcdesideration. To gain
aggregate numbers we compute the average valaen for all transitions of the form
Sman — Sn + S, I. €. We average aggregate numbers only in moments of fission
dissociation. The results can be regarded as the mean magdgregation number of
nanocells. Figure 4.6 shows results for hydrophobicityealfrom40k;, T to 120k, T

Influence of hydrophobicity on nanocell dynamics
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Figure 4.6: Mean aggregate and mean maximal aggregate msifob&ydrophobicity
values betweed(0 and120k,T. The latter averages only the size of nanocells which
are actually going to divide, while the former averages gliragates. System states
have been averaged f600r < t < 10007. Earlier states have been considered as
transient. Below, parts of the final simulation states amnshfor selected parameters.

together with a simple average of all aggregate sizes inyhte®. Both maximal
and average values increase constantly from 1.68 (3.59)0fy7" to 18.04 (17.51)
for 120k,7. It becomes apparent, that for very weak hydrophobicitiestnof the
surfactants are either isolated in bulk phase or in very lsmsaemblies. For strong hy-
drophobicities, aggregates are very distinct and singfastants in bulk phase are rare.
There is, however, no sharp boundary or phase transitiomelegt small sub-micellar
assemblies and proper micelles, but rather a continuonsitian.

Going back to the issue of nanocell division, we want to dggtish proper fission
into nanocells of approximately equal size from dissoecratdf sub-micellar aggre-
gates. The previous analysis revealed that one cannot eskibaggregate numbers,
as they exhibit a trend for stronger hydrophobicity. Theref we characterized each
event of the form of equation 4.11 by the function

[m — 7|

Q(m,n)=1 " (4.16)
which denotes the relative fission qualit@(m,n) = 1 for m = n, i. e. when the
resulting nanocells are equal in sizg¢ becomes smaller as daughter cells become less
alike. We have averageg as a function of the hydrophobicity over all fission events in
the simulation runs discussed before. Mean and standaratidevare shown in figure
4.7. (Q) varies betweei®.41 and0.65 with no significant trend for weak or strong
hydrophobicities. Moreover, standard deviation is veighhiThis reveals that fission
into any two daughter cells is equally probable, no matterritio of their sizes. In
terms of fission rates this finding can be written as

kn =1k (m+n) (4.17)
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Figure 4.8: Number of surfactants as a function of time fdiedent catalytic rates
k.. For slow metabolic turnover, the exponential shape of the-aatalysis becomes
apparent.

for the system under consideration.

4.3.2 Influence of the catalytic rate on nanocell dynamics

The catalytic rate has been varied framS7—! to 4.07~! in exponential steps. Hy-
drophobicity has been set 80k;,7. Global surfactant dynamics are shown in figure
4.8. For slow metabolic turnover(0.1257~1), the exponential shape of surfactant
production becomes apparent, i. e. the constant precunppiysof precursors does
not limit surfactant production over the simulated timerspEhis is tantamount to say-
ing that unmetabolized precursor droplets are presentdimaut the whole simulation.
Deceleration of the global dynamics is reflected in slowesidis rates of individual
nanocells. For example, we observed that the first fissiontéseetarded by 807 on
the average when catalytic rates are halved. Azox. 0.031257~1, no fission occurs
during the simulated time span.

Figure 4.9 shows mean aggregation numbers as a functioneaatalytic rate.
As one can see, slow metabolic turnover increases both nadsnd average aggre-
gation numbers (from 9.45 (5.27) for57—! to 18.55 (9.66) f010.031257~1). The
trend becomes less apparent for faster metabolic turnaver (* to 4.071). For
k. = 0.1257~1, the maximal aggregation number is slightly higher than aobanic
trend would imply—a fact that we relate to statistical devias, as fission events are
considerably rare for small catalytic rates. The increadeoth aggregation numbers
is a natural consequence of the decelerated metabolismn tideeprecursor is me-
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numbers have been obtained.

8  fissi t

= ISsion events

o 1000 - emzmm fusion events

O>J
s

2 750 .

o s s
g s

= s s

500 e frsssd

[O] o] s
s e

ko] s fssed
ks iz
s s
e RS855

£ 250 ks rssssss]
s s3]

2 ks s

c ks s

B
R
I
o%e%:

0.031250.0625 0.125 0.25 0.5
catalytic rate (in t")

-
o
o
o
N
o

Figure 4.10: Number of overall fission and fusion eventsnfitions of the form of
equations 4.13 and 4.14) as a function of the catalytickate

tabolized slowly while its supply is held constant, the side¢he hydrophobic core
increases, and offers a bigger area for surfactants tdhattéence, the maximal aggre-
gate numbers increase.

For the above runs, the number of fission and fusion eventsdesmeasured (see
figure 4.10). For all simulation runs, fusion and fission éseme more or less balanced.
This reveals that most of these events result from surfaetechange with the bulk
phase or from series of temporary fission and fusion durinigglesdivision process
rather than from proper nanocell divisions. For low cafalyates (.031257—! <
k. < 0.257~1) the number of such balanced transitions falls signifigaftdm 1028
for k. = 0.57~! to only 8 fork. = 0.031257—!. As in the case of aggregation
numbers, the trend in transition numbers can be relatedettiyirophobic core: the
more hydrophobic particles in the interior of a nanocek, lfss dissociations occur on
its surface. A strong anti-correlation between aggregatiombers and the number of
fission/fusion events (with a correlation coefficientdf.917) justifies this hypothesis.

It has to be pointed out, however, that the catalytic ratehinédfect nanocellular
dynamics only during a certain transient time. It has beawshhow the nanocel-
lular dynamics depend on the ratio between metabolic tumnamd precursor supply.
Precursors are supplied by diffusion. Therefore, the ratkeir incorporation into an
individual cell depends on the overall concentration ofatalis. Once a critical cell
concentration is reached, precursor incorporation mighslbwer than its metabolic
turnover, which would undermine the above discussed efféfile the duration of
such transient will depend on the ratio of precursor supptytarnover, dynamics af-
ter the transient might be little affected again. Idealiyydations would be performed
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in a homeostatic system, with an influx of precursor soluéibone side and an outflux
of reaction products at the opposite site of the system. Uptg however, little is
known about the performance of DPD in such open systems.

4.4 Discussion

In this paper we have presented an information-free nahbaséd on a micellar sys-
tem and a single auto-catalytic reaction that serves asholeten. This simple system
can be understood as a minimal self-replicating chemicstesy. As such, it denotes
the boundary between pure auto-catalysis and a more catedicself-reproducing
system which would also include inheritable informatione halyzed the dynam-
ics of this nanocell using a dissipative particle dynamigpraach. This simulation
technique can cover the relevant time scale, while it has shewn to be still phys-
ically accurate compared to other simulation techniquesaAonsequence, we have
been able to perform analyses of the system in a level ofldétat has—as far as we
know—not been reached before in the study of self-repligatintities.

The general replication cycle of micellar nanocells by rhetig turnover and di-
vision is very robust against changes in hydrophobicity eatdlytic rates. It has been
shown that the mean aggregation number of nanocells depenidie hydrophobicity
of the surfactant (and precursor) as well as on the catalytécof the metabolism. For
increasing hydrophobicity, a monotonic change in aggiegatumber with no sudden
phase transition has been observed, ranging from a nearigpdeneous solution with
only submicellar aggregates for weak hydrophobicitieh&oformation of distinct mi-
celles in surfactant-free water for a very high hydrophitpicThe same monotonic
increase in aggregation number could be observed for iscrgaatalytic rates, i. e.
fast metabolic turnover.

It has been found that the rate of nanocell fission and sarfactissociation de-
pends on the size of the hydrophobic core of the nanocelisisamore likely to occur
for small values in hydrophobicity and slow metabolic turao Daughter cells result-
ing from a fission event have been shown to vary significantlize. There is neither
atrend in the average size ratio of fission products nor ivat@nce.

Our work shows that the envisioned replication-cycle ofotatis—namely incor-
poration and turnover of precursor droplets followed bywal aggregate division—is
achievable over a wide range of parameters. In fact, theme {garameter combina-
tion for which the general replication cycle has been reedénpossible: although we
have been able to decrease mean aggregation numbers asambmdissociation rates
up to a point where the system obeys no clear structures, wvle oot observe that
dissociation of single surfactants jeopardizes the grafthotherwise stable nanocell.

We have demonstrated the feasibility of a self-replicasggtem in the absence
of genetic information. Although such a system is not ableuvolve towards higher
complexity, it could have served as a functioning subsygisoviding metabolism and
embodiment for subsequent protocells of higher evolutipnamplexity. It is conceiv-
able, that independently evolved information systems RR&A might have become
incorporated into such functioning replicators. When the farmerly independent
replication cycles of container and genome are orchhestray coupling, such that
each daughter cell of the dividing container is loaded witholy one copy of the ge-
nomic information, one would obtain a true self-reprodgqgimotocell with the ability
to metabolize, divide and evolve.

Apart from prebiotic scenarios in which micelles are coastd as possible ances-
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tors of subsequent vesicle based organisms, such systemgored in the context
of so-called living technology, i. e. artificial systemstth@mic life-like behavior. Our
results suggest that the generic replication cycle of naicelnocells is a robust basis
for artificial life forms. We are currently exploring one dgs of such an artificial pro-
tocell in which genomic information is coupled to a miceltaif-replicating system
similar to the one presented here.
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Chapter 5

Life-cycle of a minimal protocell

The final version of this article has been published, in AuiifiLife, Vol. 13, Issue 4, published by The MIT
Press.

Abstract

Cross-reactions and other systematic issues generatdwebyoupling of functional
chemical subsystems pose the largest challenge for assgnsbliable protocell in
the laboratory. Our current work seeks to identify and §asuch key issues as we
represent and analyze in simulation a full implementatiminimal protocell. Using
a 3D dissipative particle dynamics (DPD) simulation metivedare able to address the
coupled diffusion, self-assembly, and chemical reacti@mtgsses, required to model
a full life cycle of the protocell, the protocell being congeal of coupled genetic,
metabolic, and container subsystems. Utilizing this maidistructural and functional
representation of the constituent molecules, their ictéras, and their reactions, we
identify and explore the nature of the many linked procefsethe full protocellular
system. Obviously the simplicity of this simulation methaminbined with the inherent
system complexity prevents us from expecting quantitaineilation predictions from
these investigations. However, we report important fingling systemic processes,
some previously predicted, and some newly discovered, aowge the protocellular
self-assembly processes and chemical reactions.

5.1 Introduction

The twilight zone that separates nonliving matter fromilifeolves the assembly of and
cooperation among different sub-components, which we dantify as metabolism,
information, and compartment. None of these ingrediergdiang and none of them
can be ignored when looking at life as a whole. When assemligpbpriately in a
functional manner, their systemic properties constituitgnmal life.

Understanding the transition from nonliving to living neatrequires one to con-
sider far simpler cells than those of modern life. Cells askn@wv them in our current
biosphere are highly complex. Even the simplest, parasiialar forms involve hun-
dreds of genes, complex molecular machineries for energyebting and utilization,
as well as intricate membrane structures [37]. Such moderantsms are presum-
ably far away from the initial simple forms of cellular lifaat inhabited our planet a

67
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long time ago, whose primitive early cousins we are now giterg to assemble in the
laboratory [147].

Several complementary designs of protocells have beeropeaithat differ in the
actual coupling between their various internal compong8, 149, 69, 71, 52]. One
particularly important problem here, beyond the specifigsptal and chemical diffi-
culties associated with the assembly of these protocsitbeiproblem of modeling the
coupling of the possible kinetic and structural scenafiag tead to a full cell cycle.
None of the current proposed designs has yet been formufagedull mathematical
model that in a 3D simulation is able to generate the possilleomes of a success-
ful coupling between the three prime components: the gehesnetabolism, and the
container. We believe that a physically well-grounded ntiadeapproach can provide
critical insight into what can be expected from a couple$structures and reactions,
how the nano-scale stochasticity can jeopardize apptepmalecular interactions or
even what are the effects of molecular information cariiieiselping accurate replica-
tion to occur. In this paper we present such a minimal 3D mibdetlin connection with
ongoing experimental efforts is aimed at assembling anénstanding a new class of
nanoscale-sized protocells: the so called Alamos Bug

In the Los Alamos bug, the container is built of amphiphilicfactants. Due to a
their interaction with water, the surfactants spontankuosef-assemble into micelles
with the hydrophobic end of the surfactant molecules in titerior of the micelles
and their hydrophilic ends in contact with the surroundingtev. The interactions
between the micelle and the other components of the Los Addoong, namely the
photosensitizer, the genome, and the container precuraito® the micelles to host
these other components.

The genomic biopolymer (possibly decorated with hydrophiabchors) is also an
amphiphile and due to the specific nature of its interactwitis water and the micelle,
it will tend to reside at the surface of the micelle (see Fid.%. The sensitizer is a
hydrophobic molecule and will therefore reside in the iilmtenf the micelle. Once self-
assembled, the protocell aggregate is “fed” with precursalecules for the surfactants
(oily esters), sensitizers and genomic precursor oligem&s surfactant precursors are
hydrophobic they will agglomerate inside the proto-orgamiand form a hydropho-
bic core (Fig. 5.1.3). Light energy is used by the metaboligrtransform precursors
into new building blocks (surfactants and oligomers) of finetocell. The genomic
oligomers that are complementary with particular stretabfethe template strand will
hybridize with it (Fig. 5.1.4). The fully hybridized tempi&goligomers complex, which
now only has hydrophobic elements exposed, will move initierior of the con-
tainer where polymerization of the oligomers occurs fokkolhat some later time by a
random dissociation of the fully polymerized double-stteehgenome into two single-
stranded templates that move back to the surface. This gs@oeild also be enhanced
by a temperature cycle around the gene duplex melting ploattis gentle enough to
preserve the integrity of the aggregate.

As surfactant precursors are digested, the core volumeeopttbtocell decreases
while, at the same time, new surfactants are produced. Thétirgg change in the
surface to volume ratio causes the micelle to become ums(itiy. 5.1.5), until it
finally splits into two daughter cells (Fig. 5.1.6). Assuiithat components of the
growing parent micelle are appropriately distributed upivision, the two daughter
cells will be replicates of the original organism, thus coating the protocell cycle.

In the above setup, the container, genome and metaboliscoaped in various
ways. Obviously, both the replication of the container amlication of the genome de-
pend on a functioning metabolism, as the latter provideklimgj blocks for aggregate
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1

Figure 5.1: Schematic of the life cycle of the Los Alamos Biifje system consists
of surfactants, sensitizers, and a biopolymer that actgy@neme (1). The surfactants
spontaneously self-assemble into a micellar containdrimvivhich the sensitizer re-
sides while the biopolymer sticks at the surface of the doata—this forms a complete
protocell (2). Resources (genomic oligomers, sensitiaatssurfactant precursors in
the form of esters) are added to the system and get incogubiratb the container (3).
The existing information carrier acts as a template for iesgmligomers to hybridize
and effectively replicate the genome. Light energy is usedanvert the surfactant
precursor and the oligomer precursors into actual surfihatéigomers and waste. The
container grows as new surfactants are produced (5). Oramtitainer reaches a crit-
ical size, it becomes unstable and divides into two daugigks. This completes the
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Figure 5.2: Functional coupling between container, mdisimoand genome. Note
how the gene catalyzes (dashed arrows) the metabolic piodysolid arrows) of both
gene and container building blocks. The container ensuhéghelocal concentrations
(proximity) and facilitates thermodynamic reaction cdiudis (dotted arrows) of both
the metabolic molecules and the amphiphilic replicatoypmrs. The free energy is
provided by light f) and the provided resources are precursor lipidsprecursor
gene oligomers,, as well as sensitizers,.

growth and reproduction. In addition to that, the contaaiso has a catalytic influence
on the replication of both the metabolic elements and thegen the micellar struc-

ture provides a compartment which brings precursors, seais and nucleic acids
in close vicinity, thereby increasing local concentrasi@md thus metabolic turnover.
Furthermore, the micellar interface catalyzes the hybaitibn of the informational

polymer with its complementary oligomer. Once the hybsdizomplex enters the
“water-poor/free” interior of a micelle, the thermodynamshould change sufficiently
to allow a dehydration reaction to occur whereby the oliganieecome polymerized.
Alternatively the water-lipid interface could either ilisact as a ligation catalyst or the
addition of simple amphiphilic catalysts could facilitdake gene polymerization pro-
cess. Last, but not least, the nucleic acid catalyzes thalroktm, which otherwise is
extremely slow. A summary of the subsystem coupling is shiowfig. 5.2.

5.2 The model

Dissipative particle dynamics (DPD) is a mesoscale sirmafanethod introduced by
Hoogerbrugge and Koelman in 1992. The method has been imgray a result of
various theoretical support, revision, and expanded chipeb[99, 144, 84], and has
been applied to a number of biological systems such as me®f80, 80], vesicles
[117, 116], and micelles [89, 145]. Also chemical reactibase been incorporated
into the DPD method [118, 104]. In the context of protocdll®D has recently been
applied to study a self-replicating micellar system [8lamfer 4 of this work]. The
DPD formalism used in this work is the revised version frono@rand Warren [84]
that has become the de facto standard of DPD.

In general, DPD is a coarse-grained particle method in waisimgle particle does
not represent individual atoms, but instead a group of ationaslarge molecules or
several small molecules like water. This grouping allows tmaverage over fast de-
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grees of freedom [150] and treat them as noise and frictionilé/tis is the case for
many particle-based methods (coarse-grained molecutandigs, Brownian dynam-
ics, etc.) the unique feature of DPD is a thermostat thaterwes local momentum,
and therefore the hydrodynamics of the system.

5.2.1 Dissipative particle dynamics

A DPD simulation consists of a set &f particles located in three-dimensional con-
tinuous space with Euclidean metrics. Each partidi@s a positionr;, massm,; and
momentumg;, from which one can derive its velocity; = q;/m;. Its motion is
determined by a force fiell; through Newton’s second law of motion:

dQI'Z‘ 1
(t) = —F;(ri(1)) (5.1)

dt2 m;

The force acting on partickecan be decomposed into pair-wise interactions, which
respectively are the sum of three different components—aearwative, a dissipative
and a random one:

F,=Y F,;=>Y (FG+F]+F}), (5.2)
J#i J#i

whereF©, FP andF* are defined by

Fi, = Vg (5.3)
Fo = —wP(ry) (ny; - vij) (5.4)
Fl = owf(ry)&;n (5.5)

For each particle paifi,j) r;; = r; — r; is the relative positiony;; = |r;;| the
center-to-center distance, ang, = v; — v; the relative velocity. We denote with
n;; = r;;/r;; the (unit) direction between the two particles. A detailéstdssion of
the different forcestg now follows:

The conservative forcE?j is expressed in the usual way as the negative gradient of
a potentialp;; = V;; = V(r;;). In most DPD simulations, a pure repulsive soft core
potential of the form

Si(r—re)? ifr<re

Vij(r) = { 0 otherwise (5.6)

is used for all particle interactions:;; andr. are constants that define the strength
and range of the particle interaction. The magnitude of #seilting force decreases
linearly from |F((0)| = ai; to |F§(r.)| = 0. Thea,;’s depend on the type of
interacting particles—and are therefore the appropriatation to parameterize the
model. In addition, different particles pairs could be gidifferent values of-. if
one wants to effectively give particles different radii. whver, in the current work,
we chooser, = 1 for all bead interactions, which is the standard in almolsb&D
simulations.

For the study of information polymers and amphiphiles,vitiial DPD beads can
be covalently bonded. A bond between béadd bead is formalized by an additional
harmonic potential

S (r) = { b(r—m)® if (i,4) are bonded 5.7)

0 otherwise
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with bond strengtlh and range-,. In addition to that, we introduce a bending potential
to stiffen longer polymer strands: In a chain- j — k of interconnected polymer
beads, the anglg, formed by the two bonds of the central bgaidduces an additional
harmonic potential

1
Vie(6;) = Sciik (0 — 0eq)” (5.8)

whered. is the equilibrium angle and ;; denotes the strength of the bending poten-
tial.

The dissipative forc@‘g is a function of the relative velocity of the two particles.
It models the viscous damping of the fluid. The friction cagéfinty in eq. (5.4) scales
the strength of this force and” is a distance weighting function not determined by
the general formalism.

The random forceFﬁ accounts for thermal effects. It is scaled by a strength pa-
rametero and a second weighting functian®. ¢;; is a Gaussian distributed random
variable with(¢;; (1)) = 0, (&;(1)&u(t')) = (0ikdji + 036 )0(t — t') and&;; = &

In order to reproduce the right thermodynamic behaviorOR® formalism must
satisfy the fluctuation dissipation theorem. As a conseggighe equilibrium state will
obey Maxwell-Boltzmann statistics and therefore allowe derivation of thermody-
namic properties. As shown by Esfmd and Warren [99], DPD satisfies the fluctuation
dissipation theorem if and only if the weighting functian® andw’® obey the relation

w? = (W2 (5.9)
In agreement with the DPD standard, we set
X 2
wP(r) = (WR(r)? = [2(1 - 7)] . (5.10)
Te

If relation (5.9) is fquiIIed,Fg- + Ff} acts like a thermostat to regulate the temperature
of the system and the equilibrium temperatiyg& is given by

o2

kT = —. (5.11)
2n

wherek;, denotes the Boltzmann constant. In molecular dynamicslations, a vari-
ety of thermostats have been explored, but only the DPDxtbstat is guaranteed to
conserve linear and angular momenta of the particles arsliftbnr properties of the
fluid (because all involved forces are centrll;; = —F;;). It is therefore the only
thermostat that allows the study of transport processes][1dowever, it has to be
pointed out that mass transport in the original DPD methomadsfast compared to
transport of momentum. Namely, the Schmidt number (i.e.raie of the kinematic
viscosity to the mass diffusivity) of a DPD fluid is 1000 timlesver than the one of
actual water [84]. Thus, itis unclear how well diffusive pesses are actually captured
by the model.

In agreement with the DPD standard, we usandk;, T as our units of length and
energy. All particles have unit mass; = 1. From equation (5.1) we can derive the
unit of time asr = r./m/k,T. We will give an estimate of the order of magnitude of
the physical length in section 5.3.

5.2.2 Incorporation of chemical reactions

A rigorous way to extend the DPD formalism to account for cleareactions would
need to couple the free energy change of a reaction to thédkemed potential energy
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reservoirs in the model in a way that reactions result inllbeating or cooling. This
approach is highly non-trivial and further method develepirin this direction is cer-
tainly needed. However, it is also not clear that this is eded order to achieve the
gualitative results that we are seeking. Thus, we employnlsi stochastic process
on the basis of reaction rates that is employed between éwer{pPD updates. This
algorithm was used in earlier Brownian Dynamics simulai¢f08]. Our choice can
be legitimated by the observation that chemical reactioagelatively rare events in
our simulations and thus their impacts are rapidely equitéxl by the DPD thermostat.

Chemical reactions in our system occur between two reactamd fall into two
different classes: Each reaction has a given rate for speate occurrenck.

transformationU — V
polymerization (of different bases or oligomer¥:+Y — XY

The spontaneous reaction rate can be enhanced by the predemarby catalysts.
The catalytic effect decreases linearly with increasirgjatice to the reactant up to
a cutoff distance-.,; beyond which it is zero. For simplicity, the effect of severa
catalysts is modeled as a superposition. Thus, the oveaattion rate is given as

k=ke+ Y fear(rc) (5.12)
C
with
—_ Trc i
Font = cat (1 rm) if rc < 7reat (5.13)
0 else

In these equations, the sum runs over all catalyst beads;witlenoting the distance
to the first reactanty.,; the maximal catalytic range, arigl,; is the catalytic rate.
Polymerization has the further restriction that the diseabetween the reactants must
be less than a maximal reaction ranGe To deduce probabilities from the reaction
rates, we used an agent-based like algorithm that is givee 5.6.

If a reaction occurs, we change the particle types of thetaetx fromX to Y
and/or establish or remove a bond between the reactantendieg on the type of
reaction. Particle positions and momenta are conserved.

We also introduced particle exchange into the model to milesupply of chemi-
cals into the system, which drive it out of its equilibriumur@nodel allows us to define
regions, in which particles of a certain class can be exabdmgth a given probability
to reestablish a non-equilibrium state so that the systentoatinue to evolve. Note
that total particle number is kept constant. Likewise innoloal reactions, we conserve
positions and momenta when exchanging particles.

5.2.3 Components of the minimal protocell model

We model the protocell with the following components: waterfactant precursor,
surfactant, sensitizer, information templates, and mfation oligomers and their pre-
cursors. WaterW) and sensitizerZ) are single DPD particles. Surfactants are mod-
eled as amphiphilic dimers: one hydrophilic hekf) @nd one hydrophobic tail particle
(T) connected by a covalent bond. Precursor surfactants mrersliof two hydropho-
bic particles T — T). Interaction parameters (as multiplesigfl’) for the water and
amphiphiles have been taken from [89] (where surfactamtsrardeled as dimers as
well):
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QA5 ‘ A%Y% H T

W |25 15 80
H |15 35 80
T | 80 80 15

Bond parameters ate= 150k, T andr, = 0.5r.. These parameter values were
originally used to analyze polymer surfactant interactidrater, the phase diagram for
varying surfactant concentrations was analyzed [145].

In order to keep the number of different parameters as lowoasiple, we express
further interactions with the same parameters as the or@&akensitizer beads are
hydrophobic. Thus, their interaction parameters are efguidlose for surfactant tails:
az; = ary-

Genes

The gene is modeled as a strand of covalently bound monomessd B) with hy-
drophobic anchorsK) attached to it. We assume the gene is similar to a peptideicuc
acid (PNA) decorated with lipophilic side chains to the Hamke. The reason why we
are utilizing PNA and not DNA or RNA is because we want to haveoa-charged
backbone for the gene molecule to enhance its lipophilip@ries. For details, see
[71]. We note that the use of PNA decorated with lipophilibeschains in conjunction
with an amphiphilic surface layer will cause the geneticemat to have a behavior
that is quite different from that of DNA or RNA in water. In giular, it is not at all
clear that the two complementary macromolecules locallyligiin a common plane
when hybridized with each other. Thus we investigated a rarrabpossible different
orientations.

By numbering the monomers within each strand, we introdaagri@ntation of the
molecule that mimics the orientation of the actual peptidadbgiven by itsC- and
N-termini This allows us to define the following vectors for each gelmaomer bead:
u; is a unit vector pointing from the previous monomer towaruscurrent one. For
the first monomer in the strand = 0. Likewise,v; is a unit vector pointing towards
the next monomer in the strand (@for the last monomer); is a unit vector pointing
from the actual monomer towards its anchor bead. To obta&rasisociation of PNA
to the micellar surface, the molecule is modeled as interected amphiphiles. For
the hydrophobic anchors, we use the same beadTyae used for the surfactants and
precursors, while nucleotide beads share the interacticampeters of the hydrophiles:
aa; = aB; = amj. We need to introduce additional interactions that desctiite
affinity of complementary gene monomers. Due to the rathemptex combination of
hydrogen bond formation and cooperative argtacking between real gene monomers,
we cannot expect the complementary monomer bead forcesatodimple as the bead-
bead interactions introduced in the former section. We moplément and test several
alternative representations of such base affinities asissgt! below.

undirected attraction: The obvious extension cB‘iCj to include attractive interac-
tions is a combination of attractive and repulsive comptsenhus, in the first repre-
sentation, we replacg§ 5 (r) by the stepwise linear function

if r <re,

else (5.14)

FQs(r) = Fip(r) + { 2 (TCZO_ r)n
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with r., > r. anday < 0. Different attraction strengths, will be used and compared

in later computer simulations (section 5.3.4). To comptns&ong attractions for
small values of-, we will vary the repulsion strengthy = aap accordingly. Note that
another generalization @filB compared t&¢§ g is the change in the interaction range
which, in addition to the standard dependence, now also depends on the actual pair
(A, B) throughr..,.

directed “radial” attraction:  In the real gene system, hybridization is partly due
to the formation of H-bonds between the complementary mtides. H-bonds share
features with covalent bonds, which are better charaetg iy directed rather than ra-
dial interactions. Hence, in the second representationntseduce directed attraction
parallel to theA — T andB — T axes, respectively. Here, we replde§ g by

—r)(z-r)n ifr<rg

0 else (5.15)

P$p) = Falr) + { 0"
with the above definitions faf, z, andn. Again, different attraction coefficients will
be compared in the later simulations. The valye= aag, on the other hand, can be
held fixed because the attraction vanishes whapproaches 0. We set = 35k, T =
aaa = agp We call this interaction “radial”, because the strongestation will be
radial towards the center of the micelle, once the PNA stiaattached to the surface
of the micelle.

directed “tangential” attraction: ~ The third representation is similar to the second,
except that attraction is now perpendicular to the backlaoiddo theAT (or BT) axis.
The force is attractive towards one side of the PNA and rémutewards the other—
hence, it is the only implementation that catches the doratity of the molecule:

(utv) Xz

Fai(r) :FXB(rH{ a2(res =7) ((()umr)n if r < re,

(5.16)
else

This force is expected to be strongest tangential to thaserf the micelle. As in the
last case, we will varyi,, but keepu; fixed at a value 085k, 1.

Covalent bonds within PNA strands have a bond strength ef 150k,T" with
an ideal bond lengthy, = 0.5r. for bonds between nucleotides and anchors, and
r, = 0.75r. for bonds between the nucleotides themselves. In additi@nintro-
duce stiffness (eq. 5.8) within the PNA strand: angles @rttnnected strands prefer
to be stretched out§ = 180°, ¢;;, = 10k,T). With the stiffness we model folding
restrictions of the peptide bond, as well:ag electron stacking of nearby nucleotides.
This affects only the PNA chain, not the bonded hydrophohizhars, as they do not
experience any bending potential. Table 5.1 summarizeshibeen set of parameters.

Reactions

For the above listed components we introduce the followhgntical reactions:

First, we define a reaction that transforms the oil-like preor surfactants into ac-
tual surfactants. In the real chemical implementation efdotocell, the precursors are
fatty acid esters. The ester bond of the precursor surfabtaaks thereby producing
a fatty acid—the surfactant—and some small aromatic moleeulkich is considered
waste. Disregarding the production of the waste, we modgléaction by the scheme

TT+Z — HT + Z (5.17)
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a) radial attraction b) tangential attraction

Figure 5.3: Hybridization complexes for radial (a) and tamtipl (b) attraction between
complementary bases. Bases are shown as black and whit® bgdphobic anchors
in yellow. Arrows denote the direction of strongest atti@tt

Q5 W H T A B Z
W |25 15 80 15 15 80
H |15 35 80 35 35 80
T |80 80 15 80 80 15
A |15 35 8 35 (¥ 80
A |15 35 80 (¥ 35 80
Z |80 80 15 80 80 15

Table 5.1: Interaction strength; (as multiples ofk,T") for all bead types defined in
the model. The force (*) between complementary nucleotilendB has attractive

parts and cannot be expressed by a single interaction pteamgs. Three different

force fields have been considered for such interactionstteetext for details.

which reflects, that both parts of the ester are hydrophaftiigle the resulting sur-
factant is an amphiphile. For simplicity, the spontane@astion rate is set tor .
The sensitizer acts as a catalyst with a catalytic radius.@f.. In our simulation,
the catalytic rate of the sensitizer can be turnedoy,(= 1.07—1) and off 0r—1)
interactively by a switch. This mimics the photo-activitftbe sensitizer.

Second, we introduce reactions to form covalent bonds tetwee terminal mono-
mers of pairs of oligomers.

A+B — AB
A+A — AA (5.18)
B+B — BB

These syntheses are only applied to the terminal monomehteiPNA strands and
involve no catalysts. The maximal rang®ig5r., the maximal reaction rate ks, =
0.1771. The actual reaction rate between monomeasd j further depends on the
orientation of the ligating strands: we set

1 it Vi ui+v;
kz] = ikmaa: (u —;V . b ;_Vj + 1) (519)
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This formulation also prevents covalent bonds between termgntary strands (which
are anti-parallel, and thus, have an effecfivelose to zero).

5.3 Results

We use the model discussed above to study various aspedts tife cycle of the
Los Alamos Bug as depicted in Fig. 5.1. In particular, ourdations address the
spontaneous self-assembly of protocells (Fig. 5.1, frab&%), the incorporation of
resources (frames 2&3), the metabolic growth of the prdt¢gtames 4&5), template
reproduction, and finally fission into two daughter cellalfies 5&6). We will further
analyze some of the catalytic coupling processes explamtm introduction.

All simulations are performed in three-dimensional spaitk periodic boundaries.
We seto to 3 andn to 4.5, which leads to an equilibrium temperaturel&f7. A
total bead density = 3.0r_3 is used for all simulations. System size and number
of iterations is noted for each individual simulation rune \Mtegrate equation (5.1)
numerically with the DPD variant of the leapfrog Verlet igtator discussed in [84]
with A = 0.5 and a numerical step width &t = 0.04r.

5.3.1 Self-assembly of micelles

We initialize a cubic box of sizé12.5r..)2 randomly with2.9 water beads an@05 sur-
factant dimers per unit volume, or 5664 water beads and 98rdiin the box. Simula-
tions are performed fdi™ < ¢t < 10007 with the interaction parameters summarized
in Table 5.1 and the model parameters given in the introdnd this section. We
observe the formation of spherical micelles with aggregatiumbers up to about 20,
with a peak around 12. This is shown in Fig. 5.4, where oncesyistem had reached
an equilibrium state, we followed its behavior. For eachetigtep we recorded the
number of aggregates of a particular aggregation numbehande the total number
of surfactants in the aggregates of that size. The averatiésofesult over the num-
ber of time steps was than histogrammed. We also observetimeons exchange of
surfactants with the bulk phase. As a result of these agsmtsaand dissociations, we
find a number of free monomers and sub-micellar aggregatbe ibulk phase. These
observations qualitatively fit theoretical and experiraérgsults [see e.g. 49].
Although we do not intend to model specific chemicals, we caghly estimate
the order of magnitude for the physical length scale of oonuation, using a proce-
dure proposed by Groot and Rabone [80]. Our calculationssdthan sodium alkane-
sulfates as these are well studied surfactants with priegesimilar to the fatty acids
used in the real chemical implementation. Table 5.2 listsctfitical micelle concen-
tration (CMC), i.e. the minimal concentration at which nlies spontaneously form.
The table also gives the mean aggregation number and thengadfithese molecules.
Under the simplifying assumption that all DPD beads haveakeffiective volume, we
can derive the molecular volume of a single DPD bead and — kmgptine molecular

volume of water V0 = 30,&3) — we get the so-callecbarse graining parameter

1
§Vsurf

Ny =
Vh,0

(5.20)

that tells us, how many water molecules are represented mgke ODPD bead. The
average number of DPD water beads per unit cube éach one of them representing
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surfactant CMC aggregation surfactantvol. N,, Te surfactant conc. predicted
in mol/l number ind’ in A in mol/l micellization ratio

NaCgH13504 0.42 17+6 278 4.625 7.467 0.201 1-10~°
NaC;H1550, 0.22 22 + 10 305 5.075 7.701 0.183 2.5-1073
NaCgH1750, 0.13 27 332 5.525 7.923 0.168 0.2
NaCoH19S0, | 6.0-1072 33 359 5.975 8.132 0.156 0.6
NaCi2H>5504 | 8.2-1073 64+ 13 440 7.325 8.703 0.127 1
NaC14H29S0, | 21-1073 80+ 16.5 494 8.225 9.046 0.113 1

Table 5.2: Data for sodium alkanesulfate surfactants wéttying tail length. For each surfactant, CMC and mean aggieay number are listed
from [151]. The molecular volume is estimated from the numbef carbon atoms using the formula = 27(n + 1),&3 [49] plus a constant
88.51A° for the sulfate group (whose value is derived from the mdiomass §8.08¢g/mol) and density 1.84g/cm?) of sulfuric acid). The coarse
graining parameted,,,, the physical length scale, and the total surfactant concentration are the interfioetaf model parameters in case that the
model dimer represents the respective surfactant. Fjrth#yfraction of micellized surfactant is the predictiortioé closed association model for the
respective surfactant and the calculated concentratian [4
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Figure 5.4: Micellar size distribution for a system coniagn2.9 water beads and
0.05 surfactant dimers per unit cube. To obtain the aggregagehsstograms from a
system state, every two surfactants whséeads are separated by less thamre
considered to belong to the same aggregate. 20000 systates sf an equilibrated
system 2007 < t < 10007) are averaged in the shown distribution.

N,, molecules. Therefore, the physical length sealeesolves to
Te = (meVHQO)l/g' (521)

We will work with solutions that are quite dilute and hencerdioated by water. Noting
that a liter of water ha$000/18 = 55.56 moles of water in it, while a volume of®
haspN,,, molecules of water in it, we find that a concentration of liplet2 yields a
unit of concentration as

173 = 55.56mo0l / pN,,. (5.22)

With these estimations, we find that the lipid concentrativtihe above simulation
represents betweenl1 and 0.20mol/l. It is somewhat arguable to estimate the con-
centration of free lipids in the bulk phase, because our sitimns do not yield a sharp
distinction between free lipids—i.e. submicellar aggregatand proper micelles. As-
suming that the most reasonable choice for such a distm&tithe first minimum in
the micellar size distribution at aggregates of size 5 @, l&®m Fig. 5.4 we get an
average of 22.9 free surfactants in the bulk phase out ofp@@slin the total volume,
i.e. 76.6% of the surfactant is micellized and the free ligidicentration lies between
0.03 and 0.05mol/l. Knowing the physical surfactant concentration, we can-com
pare this finding to the prediction of the closed associatimalel [49]. According to
this model, surfactants are either in bulk phaSgdr in micelles of aggregation num-
ber N (Sy). With the pseudo-chemical reactionS = Sy and the condition that

dls] — dNISn] — 0.5, one can calculate the fraction of micellized surfac-
d[s]total CMC d[S]total CMC

tant for any total surfactant concentratiifjiora = [S] + N[Sn]. The respective ratio
N[Sn]/[S]total is @lso given in table 5.2.

We find that our model best matches the aggregation humbestsoof chain sur-
factants (VaCs H1350,), while our micellization ratios more closely match the-pre
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dictions for the somewhat longer chaim$¢Cy H1950,). Although our model repre-
sentation of surfactants as dimers is rather simplisticfing a reasonable match (at
least in the order of magnitude) between experiment, sitioulaand theory. It should
be noticed that the micellization parameters for fatty scichich are the container sur-
factants of choice in the Los Alamos Bug, are qualitativatyilar to the listed sodium
alkanesulfate surfactant parameters, which are the mdkstudied surfactants in the
scientific community. Given the easy availability of relevparameters for alkanesul-
fate surfactant parameters and the level of coarse grainingr DPD model we can
safely use these experimental data to calibrate our sifonlatt is conceivable that
closer matches might be found by changing interaction parars or the representa-
tion of surfactants. We have however decided to stick to thiedard parameter set in
order to get comparable results to earlier DPD simulati8fs 145, 81].

Next, we analyzed a ternary mixture of water, surfactand, @h In the system
described above, we exchanged an additionialvater beads per unit volume I9y05
hydrophobic oil dimersT—T), which represent the lipid precursors of the Los Alamos
Bug. Starting from a random initial condition, the systenmie loaded micelles: the
precursors aggregate into a core in the interior of the idd®s micelles because of
their high degree of hydrophobicity. This core is coated bfastants, which shield
it from water. We observe a stabilizing effect from the hyatrobic core: the rate of
monomer dissociation from the aggregates decreases bjoa ¢éd to 5. Dissociation
of oil dimers does not happen during the simulations. Oversimulated time span
(07 < t < 10007), these loaded micelles constantly fused to form biggerexggges.
At ¢ = 2507, the system is composed of five micelles with aggregationbaran12, 13,
16, 24, and 32, where the aggregation number just countsitfaetants in an aggregate
and not any of the precursors or other componentg.-A6007 we find four micelles
(with sizes 16, 24, 25, 32) and finally, for= 10007, the system consisted of only
two micelles with aggregation numbers 43 and 53. It remandaar, whether this
was the equilibrium solution, or whether the two micellesulgdfinally fuse to form
a single aggregate. It is known that any given mixture ofatteints and oil in water
results in some equilibrium aggregate structure, someuliaafl some less useful as a
protocellular container substrate, see e.g. the recennsuyndiscussion in [152].

In general, the addition of hydrophobic precursors alloggragates to grow far
beyond their micellar aggregation number, while at the sime, monomer disso-
ciations from the assembly falls by a factor of four or moréisTis consistent with
simulation results from earlier studies of a similar suidiat-precursor-water system
[81, chapter 4 of this work]. However, a more systematic DREstigation is neces-
sary to address the dynamics, stability, and size distabussue in this context.

5.3.2 Self-assembly of the protocell

In this section, we study the self-assembly of protocell& iMitialize a cubic box of
size(7.5r.)? with 1212 water particles, 21 surfactant dimers, 4 sersifiarticles and
one PNA strand that is four nucleotides in length. All othiemdation parameters are
as before. Using these numbers, we achieve the same ovartidle density and the
same surfactant concentration as in the previous section.

Starting from an arbitrary initial condition, we observe tpontaneous formation
of a protocell, i.e. a micelle that is loaded with sensitiaed which has PNA attached
to its surface and whose nucleotides are exposed to the aspbase (see Fig. 5.5).
Aggregation happens within a remarkably short period:r afitdy 10 time units, we al-
ready find complete protocells. The lipid aggregation nunab¢his micelle is around
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Figure 5.5: Self-assembly of the protocell from a randortightondition. The dia-
grams show the state of the system at times &) 07, b) t = 47, and ¢)t = 10r.
Surfactants are shown in green (head bead) and yellow, (taé)sensitizers in red, the
PNA backbone in yellow and the PNA monomers in black and white

14 with few associations and dissociations of monomers.slight increase in aggre-
gation number along with a decrease of monomer dissocgattomost probably due
to the stabilizing effect of the additional sensitizers.

5.3.3 Replication of the Container

The dynamics of a surfactant-precursor-water system airtalthe one under consid-
eration has been studied in detail in [81, chapter 4 of thikjv&€onsidering precursor
and surfactant kinetics, the formerly analyzed systenediffrom the one discussed
here in that i) the catalytic role of sensitizers is perfodniy the surfactants them-
selves, and ii) the metabolic turnover is not regulated byitg the light on and off, but
instead only follows chemical mass kinetics. Using sinmiatat based on classical lat-
tice gas methods, Coveney et al. [153] in 1996 reproducenhibellar self-replication
experiments of Bachmann et al. [59]. In 1998 and 2000 MaydrRasmussen devel-
oped an extended lattice polymer approach [154, 155] fdiattp including polymers
and chemical reactions similar to the current DPD approacttizey were also able to
reproduce the experimental findings by Luisi's group [59jePurpose of this section
is to show that the reported dynamics also hold for the méitabeaction scheme of
the Los Alamos Bug.

A system of sizg10r.)? is initialized with a micelle consisting of 15 surfactants
and loaded with 4 sensitizer beads in its interior. Modebpeaters are given in the
beginning of this section. In a single spherical region diua2r. located away from
the micelle, pairs of water particles are replaced by stafgalimer precursors with an
overall exchange rate ef 2.5 x 103 precursors per time unit.

Because of their hydrophobic nature, the precursor matsdind to agglomerate
into oil-like droplets. The diffusion of such droplets bewes progressively slower
the bigger they are. This initiates a positive feedback: bigger the droplets, the
more slowly they diffuse out of the exchange region. The slothey diffuse, the
more likely they are to accumulate additional precursofereehey diffuse out of the
exchange volume. By varying the volume of the exchange negiw/or the rate of
exchange, one can set the mean size of the precursor driétre formed. Due to
the positive feedback, the effect will not be linear witheit the exchange region size
or the exchange rate.

Since we do not want the non-continuous exchange eventstiarllithe systems
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Figure 5.6: Replication dynamics of the container: preatgsre fed into the system
far from the micelle at the (periodically reflected) edge I system space. They
form droplets in the aqueous phase, which are absorbed hyrthecells as a whole.

Protocells grow by incorporation of precursors. After dical amount of precursor is

transformed into surfactant, the assembly loses its #tahitd splits in two daughter

cells (right frame).

dynamics too much, we restrict particle exchange to a regi@xr. (3% of the total
system volume). By varying the exchange rate used to int®guecursors, we find
that5.0 x 10~? is close to the optimum for which droplets of precursor moles are
provided at a reasonable rate, yet are still small enougtiftesd at a reasonable speed.
With these values, the precursor droplets consisted of Bidiion average. Once in the
vicinity of a micelle, the droplets are immediately absatbe

When the micelle absorbs 15 precursor molecules into itsiantave stop supply-
ing additional precursors and trigger the catalytic attiaf the sensitizer by turning
on the light. During the metabolic turnover, the micellewgsdan amphiphile number,
while losing few, if any, amphiphiles due to the stabilizieffect of the remaining pre-
cursors as was discussed previously. It responds to thgittgasurfactant to precursor
ratio by changing its shape from spherical to rod-like. Tlxmgation continues until
nearly all the precursors are metabolized. At some momkeatelongated aggregate
becomes unstable and divides into two daughter cells (gpe3-6). With the param-
eters used, overall precursor turnover and fission takee [ifsapproximately 20 time
units (i.e., 500 time steps).

We compared the above findings to simulations of an unregailgtstem, where the
precursor supply and catalytic rate are not triggered,stead held constant over the
whole simulated time span. The objective behind this sitrarlavas to find whether
the system might feature inherent self-regulation: as tleeyrsor forms droplets in
the bulk phase, their incorporation into the micelle océarspurts rather than contin-
uously. If the introduction rate of precursors into the systs locally fast enough to
allow larger droplets to form (especially due to the positigedback effect), a larger
number of precursors can simultaneously enter the prdtogélen if the metabolic
turnover rate is sufficiently fast, the turnover of the langanber of precursors might
be sufficient to trigger container division rather than hava slow but continual loss
of newly formed amphiphiles.

To investigate this possibility, we performed simulatiams for a system of size
(10r.)? initialized with a micelle of 15 surfactants and 4 sensitizeads. Other model
parameters are the same as given in the beginning of thimsedPrecursors were
supplied by the same mechanism and rate as before. We obtsbeséncorporation
of droplets between 3 and 9 precursor dimers in size. As #mstormation of precur-
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sors happened significantly faster than the precursor gupearly each droplet was
transformed separately. When only few precursors were hedat once (i.e. a small
droplet), the micelle responded by rejecting several stafds into the bulk phase.
Such loose surfactants then formed sub-micellar aggregatattached to precursor
droplets when present. However, when the incorporatedetra@s big enough, the
outcome of the metabolic turnover was a proper cell divisfomicelle that consisted
of 15 surfactants and 4 sensitizers, for example, split im &fter the absorption and
turnover of 8 precursors. The fission products were two ri@sgbne with 14 surfac-
tants and 3 sensitizers and the other with 9 surfactants aedsitizer.

This result suggests that the explicit regulation of theaielic turnover by light
bursts might not be necessary to obtain the replicatioreaytcthe container as a simi-
lar regulation can be obtained by a careful regulation opttoeided precursor droplet
sizes. Light control might, however, still serve as a cofienmechanism to synchro-
nize container and genome replication if they occur on sg¢pdime scales.

5.3.4 Replication of the genome

In our experience, the most difficult component of the prelioim model with DPD
methods is the genome and its behavior. Furthermore, the I3®Ebdization process
seems more illdefined than the ligation process, which is ainydiscussion of the
replication of the genome is divided in two consecutive stdyybridization and liga-
tion. Please recall that hybridization denotes the alignroéshort PNA oligomer sec-
tions along the template PNA strand and “hydrogen” bondinig, tvhile ligation—or
polymerization—is the reaction that turns aligned oligosniato an actual (comple-
mentary) copy of the template.

Hybridization

Replication of the genome essentially depends on the &yabilthe hybridized com-
plex: it can only occur if the double strands are stable famee tong enough for all
the needed oligomers to diffuse to and align with the tensplitshould be noted that
if more than 2 oligomers are involved, the joining of additib oligomers and their
polymerization can occur sequentially so the unpolymerizenplates need not all be
simultaneously attached. As will be shown further belowgesome polymerization
has occurred, that section will be more stable in hybridinech. We studied the sta-
bility of the hybridization with the following simulationA system of siz&5.5r..) was
initialized with an oil layer that is meant to mimic a two pkasystem (single beads
of type T are confined to lie below a plane above which the water is éa)atThe
overall particle density ip = 3r_ 3, as in the earlier experiments. in order to make the
hybridization process as simple as possible. As we shalbsee aggregate surfactant
dimers tend to tangle with the gene anchors, which both st the hybridization
process and makes it less accurate. A four-monomer long leNplate was placed
at the oil-water-interface with its anchors pointing dowmward the oil and its bases
pointing up towards the aqueous phase. A pair of 2-nucledtidg complementary
oligomers was placed at a distance0dr. from this strand at a location/orientation
for proper hybridization. The location/orientation wagigd to match the different
hybridization cases studied. In the case of directed radiiedction, this meant that all
the beads of the complementary PNA molecules are outsidtitxace plane, with
their hydrophobic anchors pointing away from the hybritdiza site. In contrast, in
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Figure 5.7: Initial setup of the hybridization simulation¥he system is initialized
with an oil-layer that mimics the oil-water interface of ackphase system. A four-
mer template and two complementary dimers are placed ahtadadce so that they
form a hybridization complex. The association time of sughrldization complexes
is measured for different PNA implementations and atteactorces.

the case of tangential attraction, both the template andlihemers span the interface
region as shown in Fig. 5.7.

In the system modeled, we only had two different types of moers A, B) with
A and B being complementary to each other, but not self-compleangntAll dif-
ferent 4-mer templates excluding symmetric configurativese used (e.gAAAA,
AAAB, AABB, ABAB, and ABBA) and for each different template only the
proper complementary dimer oligomers were used. The diftef-mer configurations
can differentially hinder the ability of the complement&gses to slide along the tem-
plate.

During the simulations, the distances between all four dempntary base pairs
were measured at every time step. When one of these distaxussdedl.5r. (the
maximal interaction range for complementary bases), th& stNinds were considered
to be dehybridized. The time it took for the double stranddebybridize—i.e. the
association time of the hybridized complex—serves as a mea$the stability of that
state. After a maximum aof = 1007, simulations were truncated and the hybridization
was considered to be stable.

For the three different representations of PNA hybridmat{see sections 5.2.3
Genes cases a,b, and c), we performed simulations for all passibinbinations of
four bases excluding symmetrical combinations. Strenfgihattractive forces were
set with respect to the repulsive force parametgs so that complementary bases
attracted each other but did not overlap by more thén.. The association times were
measured using 10 to 20 runs for each combination. Reseltshamwn in Fig. 5.8.

undirected attraction: In the case of undirected attraction, we found mean associa-
tion times betweeB.127 for ay = 50k, T, as = —10k, T, and7.767 for aq = 65k, T,

as = —20kT. For strong attractions, association times tended to &seravith the
number of equal (preferably nearby) nucleotides in the tatagA A A A is the most,
while ABBA is the least stable sequence). However, these differeness nather
small.
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Figure 5.8: The association times (i.e. the time until thally hybridized complex
becomes dehybridized) for different PNA template sequenddength four using a)
undirected, b) radial, and c) tangential attraction. Fa@haemplementation, three dif-
ferent attraction strengths are compared, as given in tientk for each figure.a,
denotes the coefficient of the repulsive pattthe coefficient of the attractive part of
the interaction force. In the case of directed attractioar(h c)a; was set t®B5k;, T’
independent of the respective valueagf In c), the plotted averages are minimal val-
ues for the actual averages, as simulations were truncatee-al007. If runs were
truncated, the multipliers above that run designate hoendhis was done.
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directed radial attraction:  For directed radial attraction, the mean association times
ranged from0.457 for as = —10k,T t0 0.987 for as = —30k,T (a1 = aaB =
35k, T for all cases) without any significant variation for diffatesequences. For most
simulation runs, it took only a few time steps for the initt@mplex to dehybridize.
The reason for the poor nature of the hybridization of the RdtAhe radial attraction
is quite obvious: due to the amphiphilic character of PNA, skrands will arrange so
that nucleotides point towards water and the anchors t@wgitd Thus, the attraction
is directed perpendicular to the oil-water interface artd the aqueous phase where
the oligomers do not want to reside. Because of the dot ptad@gjuation (5.15), the
attraction between two PNA molecules on the interface iggmat and the association
time is essentially a matter of diffusion.

directed tangential attraction: In contrast to the other tested situations, in the case
of directed tangential attraction, one can see significdfgrdnces in the association
time of the initial hybridized complexes, provided the attion is strong enough: for
gene sequences with pairs of equal bases at terminal pwsifeng. AAAA and

A ABB), hybridization is usually less stable than for sequencéisowt equal bases
at terminal positionsABBA and ABAB). The association time of sequences with
only one such dimer lies between the values of the above twat&ins. Examination
of the simulations reveal the cause of this trend: a contiswgroup of two or more
equal monomers, one of which is a terminal position of theplate allows the attached
dimer to slide along the template strand without a strongajtgnn potential energy,
and eventually protrude beyond the end of the template. ignntiisaligned configu-
ration, the dimer can easily distort from the parallel afigant, thereby reducing the
overall attraction to the template, until it finally disasites from the complex. Dis-
tinct bases at terminal positions, on the contrary, pretréssliding along and then off
of the template, thereby significantly stabilizing the hgltmed state.

For the more promising PNA implementations — undirectedtandential attrac-
tion — we further measured the mean distance between coraptary bases (hy-
bridization distance) and the distance between those liadbs oligomers that are
supposed to polymerize (ligation distance). We perfornmedd¢ measurements using
the sequencA A A A for the undirected, and BB A for the tangential attractions (in-
teraction parameters are given in the caption of Fig. 5.Bjwtions are performed
for 07 < ¢ < 10007. The resulting time series are shown in Fig. 5.9.

In the case of tangential hybridization one finds two altBngadomains in the
hybridization distance time series: (i) when oligomers aligned to the template,
the mean hybridization distance is aroun@4r. with only small fluctuations and an
average ligation distance @f01r. (e.g. 4307 < ¢t < 4507 and7007 < t < 7807
in Fig. 5.9). In between such periods, (ii) oligomers disatecfrom the template, and
diffuse over the interface, which is indicated by the largeiance in hybridization
distance.

Undirected attraction, in contrast, yields hybridizatibstances around 07r. with
significant continual fluctuations and a mean ligation diséaof1.158r.. One cannot
observe the “locking” of the hybridized state that is appafer the tangential attrac-
tion: although the oligomers preferably stay in the vigirgf the template, they are
not forced into any particular orientation. Investigatarsimulation states reveals that
oligomers align along different sites of the template omesss the template strand.
Thus, although it appears from a quick look at Fig. 5.9 thatuhdirected attraction
performs better on average, it is only during the “locked petiod that the desired
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Figure 5.9: Mean hybridization (upper panel) and ligatigstahce (lower panel) for
the PNA templates (and corresponding oligoméx#®) A A using undirected attraction
with a; = 65k,T, as = —20k,T (red) and forABBA using tangential attraction
with a1 = 35k, T, ay = 40k, T (blue). By hybridization distance, we mean the average
distance between complementary nucleotides, by ligatistance, we mean the min-
imal distance between two terminal nucleotides that areasgd to polymerize. The
maximal values of the various distances are limited by thallssize of the box.
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Figure 5.10: Hybridization and ligation distances of PN #ate and complementary
oligomers in water. For PNA, tangential directed attrattith a; = 40k, T has been
used. The nucleotide sequencAIBBA.

reactions occur. We can therefore conclude that only théeimentation of PNA us-
ing tangential attraction is able to generate a proper bigaiion and base recognition
approximation.

It is assumed that the PNA replication is catalyzed by thevailer or surfactant-
water interface. This is because: (i) lipophilic PNA contates at the oil-water inter-
face and thus obtains a much higher local concentratiore tthem in water; (ii) that
the interface contains a lower water concentration tharbthle phase; (iii) that the
interface might directly act as a catalyst for the amide Honehation; and (iv) that the
PNA is more spread out (linear) when attached to the interfdo test the geometric
part of this hypothesis, we also performed simulations dirtayzation in pure water.
We randomly initialized a box of sizé5.57.)% with water, PNA templateABBA)
and complementary oligomers using directed tangentiakefothe overall bead den-
sity wasp = 3r_3). Simulations were performed for- < ¢+ < 10007. Hybridization
and ligation distances are plotted in Fig. 5.10. The meamitiiation distance in this
scenario isl.41r. (which is close to the maximum radiug, at which attraction of
complementary nucleotides still exists) with a standardadi®on of 0.34r.. Moreover,
there is no clear separation between hybridized and detigbd states. In contrast to
the scenario for the oil-water interface, the oligomerseneompletely dissociate from
the template. However, the oligomers are not properly loyred either. Instead, the
template and complementary strands mainly attract ea@r dtre to the hydrophobic
interactions between the tail beads of these strands rdtharforces between their
bases. Inspection of the simulated states shows that odigoane seldom aligned par-
allel to the template. The overall structure has more retsmb to that of a micelle
with geometries defined by the amphiphilic properties ofrtt@ecules, rather than a
double strand defined by base affinities. The ligation degadmas an average value
of 1.12r, with a standard deviation d@f.39r.. Unfortunately, this is smaller than in
the previous simulations. This might result in ligationeshigher than those on the
surface. However, if we decide to vary the ligation prokiabilepending on the an-
gle between PNA backbones, the effective ligation rate iallemthan at the oil-water
interface.

Last but not least, it is notable that we cannot achievebidibybridization without
a stiffness potential in the PNA chain. In the absence of stitthess, complementary
bases within one strand tend to bind to each other and formp $tzrpin loops even
for very short strands. This effectively hinders any prdpgridization except for very
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Figure 5.11: The three steps of template directed replinata) Template ABBA)
and oligomersB A andAB) diffuse over the surface of the micelle, b) oligomers form
a hybridization complex with the template strand, and @atiers polymerize to yield

a complementary copy of the template.

few sequences that do not offer any possibility for loop fation (such aA AAA).

Ligation

To study the polymerization reaction, a four-mer templ&tgnsl and two complemen-
tary dimers are placed randomly on the surface of a loadedli®i20 surfactant, 20
precursors) within a system of siz¢0r?) and total density = 3.0r_ 3. As the last
section identifiedABBA to form the most stable hybridization complex, we restrict
polymerization experiments to this particular sequendeguthe PNA representation
with tangential directed attraction (see Fig. 5.11).

Of the performed simulations, 8 out of 10 generated propaplate directed lig-
ation, while the remaining 2 reactions occur spontaneaudlye absence of the tem-
plate strand and define the expected background reactiéh [ltsour simulations, one
of the two spontaneous ligation results was a correct camgéary copy of the tem-
plate strand while the other was not. Note that in our sinmatpolymerization has
not been explicitly restricted to happen only between C-M#drminals, which means
that both ends can be concatenated with any other end. Whaiotigs template di-
rected, 6 out of 8 runs lead to correct complementary se@semchile the other two
resulted in mispairings of the forBABA. In summary, we find that correct repli-
cation is abou50% more reliable, when directed by the template. If one prabitiie
ligation of equal terminal beads (C-C and N-N), the religypdf replication is expected
to further increase.

The simulations reveal that it can take a surprisingly longetfor the oligomers to
form a ligated hybridized complex with the template. Ligatoccurs aftef0r in the
fastest and aftet747 in the slowest run. The average time is estimate228<27. The
huge variance is due to the random walk of template and okgsraver the surface
of the micelle. Compared to the oil-water interface of thevjpyus section, oligomer
motion is further slowed down by the head particles of the lzptiles as well as the
dimer structure of the aggregate building blocks.

It is worth mentioning that as expected, the hybridized demjs significantly
more stable after the ligation has occurred than before.eNdrthe hybridized com-
plexes that formed in the above simulations showed any didissociation within 750
time units after ligation took place.
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Figure 5.12: The division of the whole protocell completes life cycle of the Los

Alamos Bug. A mature protocell is loaded with precursor rooles, sensitizers, and
two complementary PNA strands. During the metabolic tuenay precursors, the
aggregate elongates and divides. Both PNA strands andigensnolecules tend to
distribute evenly among the daughter cells, when only fevgiigers are present.

5.3.5 Full protocell division

The last elemental step in the life cycle of the Los Alamos Buthe fission of the
grown cell into two daughter cells as shown in Fig. 5.12. I|diaon to what was
discussed in section 5.3.3, here we studied the fission of/tizde protocell after the
replication of its genome, that is, a micelle loaded with sdipid precursors, sensitiz-
ers and two complementary PNA templates. The objective ibutminate how tem-
plates and sensitizers are distributed among the daugtter Although not addressed
by simulations in earlier sections, here the influence ofhtimaber of sensitizers is also
investigated.

Proper division into two daughter cells requires the mgltfithe double stranded
PNA resulting from genome replication, which may be achielvg a temperature cy-
cle. In the DPD formalism, temperature translates into titeraction parametets;.
To study the impact of a temperature cycle on the whole systerm would need to
exchange the interaction parameters between all DPD béamssimplicity in these
initial investigations, and in the absence of a rigoroushcafion of our model, we
chose to invoke melting by simply turning off the attractiwgbridization interactions
between the PNA bases.

We performed simulations of a system of sigér.)® with an initial protocell
consisting of 20 surfactants, 20 precursors, 4 to 8 seasitiand two PNA template
strands randomly located on its surface. Otherwise, thedata parameters listed in
the beginning of this section were used. Snhapshots of thterayare shown in Fig.
5.12.In all cases, metabolic turnover initiated the dosisof the aggregate at times of
between 50 to 108 after the start of the simulation. Fission times were foumte
longer than in the former experiments. This was becausegbeegate consisted of
more particles and because the template strands stahilized-like aggregate that
precedes protocell division. It was observed that PNA sisamere preferably located
along the elongated part of the aggregate, rather than aafiee We believe that due to
the stiffness parameter (eq. (5.8)) of the PNA strands, gigeegate tends to elongate
in a direction that is parallel to the PNAs long axis.

Using only 4 sensitizers, the distribution of sensitizerd RNA among the daugh-
ter cells was rather diverse: in one out of 10 runs, all seesg and templates remained
in one of the fission products, while the other consisted &f @t surfactants. In 7 of
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the runs the partition was nearly even: both sensitizerstamglates were equally
distributed among the two daughter cells, which differedggregation number by at
most 3 surfactants. Last but not least, we also observedumowhere the other com-
ponents were distributed equally, but one of the daughter centained both template
strands. We note that although it was not observed, it miglgdssible for a template
to connect two otherwise divided aggregates by attachidgtio their surfaces.

One might expect the equipartition of sensitizers is mdwayi when their number
is increased. Our simulation results, however, showeddhi opposite: protocells
loaded with 8 sensitizers instead of 4 almost always resgabg rejecting an average
of 11 to 12 surfactants. By doing so, the protocell was abledmtain a stable spheri-
cal shape even with an aggregate number of 27 surfactartsisidue to the collective
stabilizing effect of the strongly hydrophobic core of sémers within the aggregate.
The more sensitizers that are added, the more they will teatidk together. The more
they stick together, the less likely they will partitionandifferent daughter cells. Thus
they are better able to stabilize the amphiphilic dimerdaaggregate. For an initial
protocell that holds 6 sensitizers, proper division calh s observed, but the results
are less reliable than in the case of 4 sensitizers. For @tigens, equipartition of sen-
sitizers was only achieved in one out of five simulations. &tier runs lead to empty
micelles or a situation where one of the daughter micellsindy one sensitizer bead.
Equipartition of PNA could not be achieved for the cases wither 6 or 8 sensitizer
beads.

5.4 Discussion

Because of the inherent simplifications of the aggregateD Bifhulation technique
and due to the inherent complexity of our protocell systesnueate predictions of nei-
ther the detailed kinetic nor thermodynamic propertieddde expected. However,
insights into generic issues and likely system behaviofdcba obtained by the illu-
mination of the systemic properties of the proposed prditdesign. In particular we
were able to see how the global behavior emerges from thelesiamal well-defined
properties of the underlying molecular ingredients. Iptdation between several sim-
ulation methods combined with experimental data is necg$sabtain predictive un-
derstanding of this protocellular system. Investigatibased on quantum mechanics,
molecular dynamics, reaction kinetics, combined with ¢hasd other DPD studies,
hopefully can address the quantitative prediction issnes inore complete manner
[147].

We found that the micellar kinetics that underlie the cargareplication are highly
affected by hydrophobic molecules present in the solutionthe design of the Los
Alamos Bug, these hydrophobic molecules can be the metapcursors and sen-
sitizers. As these molecules are incorporated into theopetl; they form a core that
stabilizes the aggregates. Such loaded micelles haveex laggregation number than
micelles in a pure surfactant-water system, and the sariaetxchange with the bulk
phase is strongly decreased. The simulations thus sudgest B-component (ternary)
surfactant-oil-water system is more suitable for yieldamguitable container than a
two-component system based on surfactant and water only.

We also observed that protocells grow in spurts rather tlmamirtuously, even
with a continuous supply of resource molecules. This is beedhe oil-like precur-
sor molecules form droplets before they are absorbed bygheegates. Furthermore,
due to slower diffusion of larger objects, once the dropdast to form, volume-wise
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they will tend to grow ever more rapidly the larger they beeopmior to being ab-
sorbed. The spurt-like support of resources might be sefftdio initiate the division
process of the aggregate if these droplets have the apategize. If so, the system
would be self-regulated and no further triggering of theabetism as with an external
light switch would be necessary. Whether or not this selfsa@ipn enables a reliable
replication of the whole organism also depends on a numhbathef factors such as the
rate of precursor supply compared to the replication rate@fienome. Further simu-
lation investigations will be necessary to identify whettie metabolic self-regulation
is sufficient when the precursor supply rate is not carefodilanced.

Our representations of the biopolymer that stores genamfacrnation can be con-
sidered to be the crudest feature of the model. None of théemmgmtations relate in
detail to the actual physicochemical traits of the real PNé&leoule. The behavior
of the PNA molecule with hydrophobic side chains in our peetbis also found to be
quite different from that seen for DNA or RNA in water. Unlik&NA where hybridized
base pairs are radially opposite, in our PNA the hybridizaskls are more likely to line
up side by side in our attempts to model them. Furthermordjave not been able to
achieve an appropriate modeling of the balance betweenytiredeen bond formation
and ther stacking between the bases in large part due to the hydraphod am-
phiphilic elements involved. More work and new ideas arededéehere. However, we
believe that the most fundamental properties of the biapelyused—a PNA strand
decorated with hydrophobic anchors that is able to hybeigiith another PNA strand
via H-bonds—is captured, at least in a qualitative manneraigl the background
of this caveat, two findings are of particular interest: timeutations reveal that even
our simple template representations are sufficient to diite an impact on the sta-
bility of the hybridization complex. In other words, it is sdrved how a molecular
fitness function emerges from very few assumptions abouttickerlying molecular
implementation. Furthermore, this fitness function is nairaple superposition of
the individual monomer properties, but rather depends esélquencef nucleotides
in the genome. This finding is consistent with experimentiadies on non-enzyme
template-directed replication of RNA [157, 158].

It should be noted that an aggregate catalyzed gene rephicaiuld be realized in
a variety of ways. In this implementation, we have assumatlttie aggregate-water
interface catalyzes the oligomer ligation process. Aléiuely, one could imagine that
the hybridized PNA complex sinks into the interior of the eggate as a consequence
of H-bond saturation. Here ligation, which is a dehydratieaction might be favored
due to the low local water content. None of our genome impfeat®ns can capture
this behavior. In order to achieve it, one would probablydhteealter the hydrophilicity
of the surfactant head groups depending on their hybridizatate. We did not explore
this route any further, since it has not yet been clarified thenhybridization complex
behaves in the experimental system.

Equipartition of the components among the daughter celés #fie division was
achieved only when a few hydrophobic sensitizers are ptéséhe protocell. Above
a minimal number of sensitizers, equipartition becomespesbable as the number of
sensitizers is further increased. This counter-intuifiaeing is connected to the fact
that sensitizers, like precursors, form a hydrophobic aotke interior of the micelle,
thereby increasing the allowed size of stable aggregat@sldition to stabilizing them
overall. Since the stability of the core itself increasethits size, once large enough,
it becomes nearly impossible for the core and therefore theopell as a whole to
divide. Instead, the instability caused by the excess stanfiss is addressed by rejecting
excess individual surfactants one at a time. The resultgesighat the volume of
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the sensitizer molecules most likely will affect the fissidynamics when a certain
threshold is reached.

Many open questions about systemic issues are still lefiswared by these initial
investigations. The main openissues include: (i) What igffext of heating the whole
system in order to de-hybridize the gene templates? Ohlyidhe lipid aggregate has
to be more heat tolerant than the gene duplex. (ii) What isffeetef defining the gene
duplex as the photo-catalyst as in the originally proposetbgell design [71]? In our
simulations, the sensitizer has been assumed to do the-fragtoentation without
any genetic catalysis. Also, what is the effect of having dbasitizer as a separate
molecule (as reported here) versus covalently linking theogene, e.g. as one of the
lipophilic anchors? (iii) What is the effect on the overalbfcell replication if both
the gene precursors (oligomers) and the lipid precurs@sapplied to the solution
and have to diffuse to the protocell? In such a case, will veetlse coordinated gene
and container growth based on reaction kinetics predicyeddrheleau et al. [159]?
As gene replication is necessary before container diviornwo viable daughters,
can that be ensured in other ways than through a sequersiialnee supply? (iv) What
new issues arise when the protocell goes through more theugemeration of its life
cycle, e.g. due to complementary resource sequence ssipplie

Subsequent work in this area must also relate the DPD simonlahplementation
in this publication and its dynamics with corresponding ecolar dynamics simula-
tions [160] and reaction kinetics studies [161] as well gseexnental findings as they
arise.

5.5 Conclusion

The overall replication dynamics that constitute the lijele of the Los Alamos Bug
was implemented using DPD simulations. In particular, wegtigated the dynamics
of container, metabolic complex, and genome subsystemsgetlas the mutual in-
teraction between these individual components. Compadiéfasion, self-assembly,
precursor incorporation, metabolic turnover, templateated replication of the gene,
and finally the protocellular division were studied in varsosimulations. The main
systemic finds are: (a) Metabolic growth orchestration Gandordinated by a switch-
able light source and/or by a continuous light source tagretvith regulation of the
size and frequency of the oily precursor package injectidrich was not anticipated.
(b) As anticipated, there is a tradeoff between the lipaplitrength of the genetic
backbone that makes it stick to the aggregate and its aliligasily hybridize with a
complementary string. (c) As anticipated, for PNA with hyplnobic side chains, three
dimensional structure formation that can potentially mthappropriate hybridization
is more likely in water than at an oil-water or lipid-watetérface, although this is in
part also dependent on the type pf hybridization attractidpnGene replication is eas-
ier at the surface of a micelle with a substantial oil corentfta a micelle with a little
or no oil core. The larger the oil core is, the easier the gepkaation becomes due to
the aggregate stability and the ability to have a linear tatep (e) As anticipated, the
stability of two full complementary gene strings is muchtegthan a gene template
and two complementary unligated gene pieces. (f) We obdeatethe template di-
rected replication rate is dependent on the monomer conmpsrguence and not only
on the monomer component composition. (g) Partition oflepsensitizers, and gene
between daughter cells strongly depends on the size ofltherei. The smaller the oil
core is, the more balanced the partition becomes, which wianticipated.
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These systemic findings are now being considered in the iexpetal designs be-
ing pursued as part of the Protocell Assembly (PAs) and Rrograble Artificial Cell
Evolution (PACE) collaborations and their validity will emtually be addressed as the
experiments are executed.
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5.6 Algorithm for chemical reactions

Between every two DPD time steps, the following algorithnajplied to perform
chemical reactions: For every reaction scheme, we susedssiheck all possible
pairs of reactantsl, B, and compare their effective reaction ratéo a number taken
from a suitably normalized pseudo-random number generdtdhne reaction rate is
smaller than this value, we perform the reaction and go ohd@mext pair of possible
reactants. Howeverd and B will not be considered again in this step. The exact
algorithm—notated in the Python programming language—readsllows:

shuffle(reaction_list)
for reaction in reaction_list
for Ain space.particles(reaction.educt_A)

if reaction.is_synthesis :
# if reaction is a synthesis, possible
# reaction partners are particles
# of type educt_B in the vicinity of A
partners = A nei ghbors(
reaction. educt _B, reaction. R
)

el se :
# ot herwi se, possible reaction partners
# are particles of type educt_B bonded to A
partners = A bonded(reacti on. educt_B)

for Bin partners :
# compute effective reaction rate
k = reaction.k
for Cin A neighbors(
reaction. catal yst,reaction.r_cat
) .

k += reaction.k_cat =
(1- (A pos-C. pos).length()/reaction.r_cat)

if random() < dt * k :
# performreaction
react (A B, reaction)
# and | eave | oop over partners
continue
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Chapter 6

Toward integrated simulations
of a minimal protocell

6.1 Introduction

Earlier studies have shown that surfactant-coated oilldtsmre able to divide into
two daughter droplets, if the internal oil is successivegnsformed into additional
surfactant under the action of a metabolic reaction [81ptdrad in this work]. It has
also been shown that template directed replication of sisgfianded biopolymers at
the oil-water interface of such droplets is achievable @&pter 5 in this work]. It
was found that even a very simple model representation obitolymer gives rise
to the emergence of a molecular fithess function: due to nomsegeometric interac-
tions, different base sequences differ significantly inrtability to form hybridization
complexes that are stable enough for template directettagiph. It has further been
shown that reliable gene hybridization occurs only a themaiter-interface provided
by the container. This is an example of the catalytic cogglinf subsystems in the
design of this particular protocell. The reverse couplifithe container dynamics to
the container of the cell had not been shown in the earlielie$/88, chapter 5 in this
work].

This work has shed light on the dynamics of the container hadjenome of such
minimal protocells and analyzed crucial steps of the prtolar life-cycle in detalil.
However, an integrated simulation that combines all stapslife-cycle in a single
simulation had not been achieved so far. Here, we preselkttivat leads to such inte-
grated simulations and analyze the additional problemsoitur when the individual
subsystems are integrated.

In particular, the following issues have not been addregsed

1. The replication of the biopolymer needs to be completethbiting the double
stranded genome after replication, to allow for their reaséemplates. As indi-
cated in chapter 5, the temperature cycle needs to be gewmtlgyk, to preserve
the integrity of the aggregate. Section 6.2 deals with teatpee changes in
DPD and analyzes the system response to temperature changes

2. The catalytic rate of the sensitizer molecule needs tabepled to the sequence
and configuration of the biopolymer. Specifically, the strei should cat-
alyze the metabolic turnover reaction only in the preseriGdouble stranded

97
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biopolymer. This is achieved in section 6.3

These studies raise an unforeseen issue in the originajrdes$ithe protocell as
presented in Refs. [71] and [88, chapter 5 of this work]: Al e seen, the protocell
needs to employ double stranded polymers instead of sitigleds, or several copies
of the biopolymer (depending on the position in the lifedeydn order to produce
viable offspring. Section 6.4 presents a revised life-eyadsed on these findings.

As we will show in section 6.5, this introduces product intim during gene repli-
cation in our simulation.

6.2 Temperature scaling in DPD

The DPD algorithm has been comprehensively described ipteh@. Here, we only
give the stochastic differential equation of motion. In@rtb define parameters and
units for the following derivation:

d2ri
dt?

= mi > (FS +FD+FL), (6.1)
i

whereF¢, FP andF % are defined by

o _ [ ai(l= 308 ifry <re
Fijy = { 0 otherwise (6.2)
Fi; = —wP(ry) By vij) By (6.3)
F% = UWR(Tij)Cijfij- (64)

DPD commonly works in reduced units where= 1, . = 1, andk,T = 1, denote
the mass, length, and energy scale. From these, the natitraf time follows as

T=rc/m/kpT. (6.5)

According to Ref. [84], the temperature in the DPD methodvsmby the relation

[\

T =2 =1. (6.6)
B

In the above equations, the term§, wP, ri;/7e, andi;; are all dimensionless.
(F;; - vi;) has the units of a velocity. Since the random paramgtehas the unit
7-1/2, we get the following units for the individual force paraewsia, v, ando:

[a] kyT /7 (6.7)
[ = (&T)*m?/r. (6.8)
(0] (kyT)3/ A4 rl/2 (6.9)

6.2.1 A simple method for temperature scaling in DPD

As interaction potentials in DPD are effective potentiald as such influenced by the
temperature. A rigorous way of implementing a temperatyotecin DPD would re-
quire to calibrate system interactions, naméfy(r), to systems at each temperature of
interest. While this is quite an endeavor on its own, one withat need to also derive
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a temperature scaling for the dissipative and random ictierss and their parameters
o and~y which are usually treated as (uncalibrated) simulatioameters, but know to
influence fluid properties [126]. Improved calibration pedares [100, 162, 163] will
hopefully be developed further to address this issue. Imtbantime, we employ a
simple though less rigorous temperature scaling procedure

We intend to increase the temperatltdy a factor of¢, such thatl” = ¢T (we
employ a primes to refer to the heated system in physicasunithe most intuitive
way to achieve tempering in the DPD framework is to simplyndeathe amplitude of
the random force by setting:

o = ¢'?%0. (6.10)

According to Eq. (6.6), this will result in a temperatdfé = ¢T. Since DPD com-
monly works in reduced units, one might want to keep the teatpee in the simulation
fixed tokgT = 1, and change all units accordingly:

T=¢ T =T (6.11)

In this procedure, we first scateas given in the previous paragraph, and then change
the energy unit;, T" by a factor ofy—!. The units of length and mass are unaffected by
this scaling, but the unit of time scales as

7 =ro\/m/kyT = re/m/kyd= 1T = ¢*/%7. (6.12)

Note that these scaling relations are easy to incorporatieeiidPD algorithm, since
they do not affect the length scale of the method. If they @Wpohe would need to
change the particle number as well as the model represemtatimolecules during
the course of the simulation. In contrast, to implement th@ve scaling relations, one
simply needs to alter the DPD parameters, ande, according to

a = ¢ la (6.13)
7= ¢y (6.14)
G o 3o = ¢~V 4g. (6.15)

It has to be warned that this simplistic temperature scabrigkely to introduce
artifacts when extrapolating over phase transitions piteag¢he modeled systems. We
validate our method by comparison with experimental data.

Comparison with experimental data

The left panel of Fig. 6.1 shows simulation results of thd-di#fusion constant of
water as a function of the temperature for both the scaling (fquares) according
to Eq. (6.10), as well as the rescaled system given by Eq3)&circles). For low
temperature values, the two curves coincide. For increaskeks ofT’, artifacts of
the numerical solver render the self-diffusion of wateglsily lower in the rescaled
system as in the original one. One might compensate thisvimhaith a step-width
correction, which has not been done here.

The self-diffusion of water has been measured experimgiaKrynicki et al. [164]
(cf. right panel of Fig. 6.1). It has been found to be best dibsd by the theoretical
predictions of the free volume model by Cohen and Turnbb]1

D = AT'/2e=E/R(T=To) (6.16)
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Figure 6.1: Self-diffusion of wateb as a function of the temperature. Left: simulation
results for two different temperature scaling methods {@&®. Simulations have been
performed in a box of siz&0r.)? with particle density3r_® and have been truncated
once the displacement of particle exceeds half the box size5.07 has been taken
as transient. Right: experimental results by Krynicki ef&64] and a fit of the free
volume model to the data points (see text).

whereTj is the (pressure dependent) temperature at which the ftamealisappears
(the glass transition temperaturé),is an activation energyd a proportionality con-

stant with units cris 'K ~'/2, and R = 8.314472JK™*mol~" the ideal gas constant.
A numerical fit of the free volume model to the measured dataals a transition

temperature ofy = 117.5K, F = 6.50kJ mol"!, andA = 9.61cm?s— 1K ~1/2.

Naturally, we cannot except our temperature scaling (egpb structureless DPD
particles) to render an accurate picture of all the anoraaldf water — the melting point
anomality being one of them. In particular, phase transgtisuch as freezing and glas
transition cannot be accounted for by our method. This Sagmitly limits calibration
of the temperature unit to physical values. Apart from battréasing monotonically,
the temperature dependence of the diffusion constant isiourlation is qualitatively
different from these data.

The closest we can get toward a calibration of the temperatale is the following
approach: We identify the freezing point of water (273K)hihe freezing point in
the DPD simulation (0.0237’) and 1kgT"’ with room temperature about 300K (for
which the repulsion value a=25 has been obtained from thepesgibility of water).
A temperature difference kT = then corresponds to about 30K, which is within a
physically meaningful range. Note, however, that thiskralion introduces an affine
mapping (as opposed to a linear proportionality) betweemptiysical energy scale and
the one of the method.

6.2.2 Temperature response of system components
Temperature dependence of lipid aggregates

We analyze the micellar size distribution of water-sudattsystems of different am-
phiphile representations for various temperatures. Thgysize in these simulations
is 122 and the surfactant concentration is 0.0167 surfactanteutse per water bead.
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Fig. 6.2 shows the aggregate size distributiorEif’ amphipihles as a function
of the temperature for hydrophobicity values&ff and 120. For agr = awT =
80, aggregates tend to dissolve, when the temperature igirais® kg7 = 1.5 and
higher, the only maximum in the micellar size distributianthe monomer peak at
one. Inlays in Fig. 6.2 show the center of gravity of the disiion as a function of
temperature. They reveal an exponential dependency betiveeaemperature and the
center of gravity. The thermal stability of aggregates carsignificantly increased
by the use amphiphiles with longer hydrophobic chains: Bi§. shows simulation
results for a aggregates formed BYT'T amphiphiles. For these systems, statistics are
necessarily noisy due to the bigger size of aggregates. @ongpthese results with
Fig. 6.2 (upper panel), one finds that such aggregates ageriry a factor of up to
5 for a temperature of” = 1T and still exhibit a mean aggregate size number of
10 at7T’ = 2.5T. While the envisioned container replication cycle has béwwa
to perform for short chained surfactants with the hydroptigbvalues analyzed in
Fig. 6.2 [81, chapter 4 in this work], the performance of eimer replication for longer
hydrophobic chains would need to be verified in simulation.

Temperature response of the biopolymer

Here and in the following we simulate nucleotide sequendgsaitangential attractive
force as introduced in chapter 5 which has been identifiedebést performing gene
representation.

To analyze the effect of a temperature change on the genoeperform the fol-
lowing computer simulations: a cubic box of sige.)? is initialized with a two phase
oil water system with two complementary 4-mer strands fagva hybridization com-
plex at the oil-water interface. The chosen template ingtsiulations is the self-
complementary sequeneB A B which has been found to form stable hybridization
complexes with its oligomers at unit temperature (see @@&i3.4 in chapter 5). The
simulation is run for40007 and the distances between the complementary bases are
measured for each time step. When none of the base distancesdsk.5r. (the
interaction distance of the attractive force) the genonmaisidered to be hybridized.

The simulations of complementary 4-mer double strands amgpared to simula-
tions of one 4-mer template and two complementary dimer® t€mplate-oligomer
complex is considered hybridized only if the bases of bothpiates are within the
attraction range. Taken together, these simulations ntbdejenome dynamics prior
to and after ligation. The ligation reaction itself is tudnaff in the course of the simu-
lations.

The fraction of time within which the genome is completelyhgized is shown in
Fig. 6.4 as a function of the temperature. The results revealse transition between
the mainly hybridized configuratiork{T" < 1) and the mainly molten configuration
(kyT > 2.5) of complementary 4-mers (line with black circles). The teerof this
phase transition - where the strands are hybridized 50%eofithe - can be varied
by changing the stiffness of the nucleic acid backbone: Tgmeupanel of Fig. 6.4
shows hybridization behavior for a stiffness of 15 (whichresponds to the choice
in chapter 5). For this value, the melting curves suggestrgpéeature cycle around
1.5 + 0.5. The lower panel reveals that a more flexible backbone rist§ set to 5)
lowers the melting temperature and suggests a cycle arbtigd).5. The time fraction
of complete hybridization for one 4-mer strand plus oligosr(@nes with white circles)
is significantly lower and unaffected by the backbone stifn

We further simulate the dynamics of a 6-mer template (secpiaiB BABB) with
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Figure 6.2: Time-averaged micellar size distributions didferent temperatures for
aupt = awT = 80 (upper panel) andgt = awT = 120 (lower panel) for aggregates
composed oHT amphiphiles. The inlays show the motion of the center of ity af
the distributions (solid line) and its least squares fit t@gponential (dotted line). See
text for details.



6.3. COUPLING INFORMATION, CONTAINER, AND GENOME 103

center of gravity

ooy
Ty \\\\\\‘w\‘\“\ T ““‘“\“"

i \\\\\\\\ T
}““““““”s‘\{:‘:“‘;‘\‘\‘\‘\i\‘\‘““\“\\\\n\v ‘\“‘ \S‘\\\\‘ \‘( \\\ v* \\\\\\ﬁ\\\\\\“‘
\ \y \
»0 “*\“"“‘e‘*\"\\"\\t‘»‘“ \\\\\\ ‘\ \\\\\‘ \\\»‘\‘:\\w
temperature [k,T '] ‘\\ \\\\\ »H ‘\‘ ‘\“ \y (\ \“ \“““\
15 \“ ‘\ nw ‘\\‘ ‘\\\w ‘\ ““““‘
[ \“\e\\‘e‘e(“ l “ L
Y R R R
o N \‘\‘\‘\‘\‘\‘\‘\‘\‘\“‘\‘\‘\‘\\\\\‘\‘\““ \“\‘\‘\\\\\VA\\\\I\\ il \ AL
1.0 g0 70

aggregate size

Figure 6.3: Time-averaged micellar size distributions ddferent temperatures for
aut = awT = 80 for aggregates formed ITT amphiphiles.

two complementary 3-mers, and a backbone stiffnesksbf7". Melting curves are

shown in Fig. 6.5. It is found that by moving from 4-mer to 6ymemplates, the

melting point slightly increases from arounds7" to 1.77°, whereas the stability of

the oligomer/template complex increases by a factor of abwo. This shows that

the synergetic effect (that individual complementary lyzeies exert on each other by
geometrically constraining their position) decreases Wit template length.

In all simulations, it is conceivable to reduce the attracforce between comple-
mentary bases in order to lower the melting temperatureefitfuble strand config-
uration. However, the previous analysis in chapter 5 hasaled that lowering the
attractive force disfavors the attachment of short oligte the template strand.

Summary

The performed simulations indicate, that a temperaturedgdeasible that is strong
enough to melt 4-mer double strands while keeping the costagssentially intact.
To achieve this, hydrophobicity of the surfactants can lmeeimsed while the back-
bone stiffness is simultaneously lowered. A temperatucdecgroundl.1 4+ 0.5 with
hydrophibicity 120 and stiffness 5 is expected to fulfill teguirements.

6.3 Coupling information, container, and genome

In order to be a veritable information carrier, the genomg teasomehow affect the
functioning of the protocell. In the Los Alamos minimal pooell, this is done by
a direct coupling of nucleotides in the genome to the catabttivity of the photo

sensitizer: a nucleotide with a suitably chosen redox pi@efoxo-guanine) can serve
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Figure 6.4: Time fraction of double strand configurationsaad complementary 4-mer
strands (line with black circles) and of one 4-mer strandhvwitmplementary dimers
(line with white circles) as a function of temperature. Iseaf template and dimers,
the genome is only considered hybridized when both dimeastat The upper panel
shows melting curves for strand with a backbone stiffnesémof{corresponding to
previous simulations), the lower panel corresponds tdfaesis of 5.
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Figure 6.5: Time fraction of double strand configurationgved complementary 6-
mer strands with sequenc®BBABB (line with black circles) and of one 6-mer
strand with complementary 3-mers (line with white circlas)a function of temper-
ature (backbone stiffness set to 15). See caption of Figo6 descriptions.
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Figure 6.6: Coupling of gene replication and metabolic dwar: A solution of lipid
precursors, dimers, and a 4-mer template with attachedtizengpanel one) self-
assembles into an oil droplet with the information moleswdétaced at the interface
(panel two). Once hybridization and ligation of the dimecswrs, the sensitizer cat-
alyzes the metabolic turnover (panel 3 through 5). The giaibw shows the time
evolution of precursors and ampiphiles in the system.

as eletron donor in the photo cleavage reaction of the estiehvagain is catalyzed by
the sensitizer (see Ref. [72] for details and an experinientairmation). In order to
allow for the electron transfer to occur, sensitizer and-gianine must be in relative
proximity. It is hypothesized that delocatedelectrons in stacked aromatic rings of
nucleotides in the biopolymer can propagate this electranster. This extends the
required proximity over the biopolymer and possibly its hgitzed complement [72,
156].

The design of the Los Alamos minimal protocell exploits tlecrochemical prop-
erties of the metabolism to introduce a coupling of gendeapbn and container repli-
cation: covalently binding the sensitizer to the templatargl and oxo-guanine to a
complementary oligomer — or vice versa — will result in a gemetabolism complex
that drives container growth and division only after sus@gyene replication.

Naturally, electrocemistry is far beyond the scope of oomsation technique. In
our system level oriented toy model, we therefore implentt@atcoupling by a simple
hybridization check: when two complementary polymer sigaare hybridized (i.e.
the distance of each base pair is smaller thdin.), the catalytic rate enhancement
of a sensitizer bead that is covalently bound to one of thends will be set td.0,
otherwise it is turned t6.0.

Snapshots of a simulation of this coupling are shown in Fi§: & solution of
lipid precursors, dimers, and a 4-mer template with attdcdensitizer (panel one)
self-assembles into an oil droplet with the information ewnlles attaced at the inter-
face (panel two). Once hybridization and ligation of the @isoccurs, the sensitizer
catalyzes the metabolic turnover (panel 3 through 5). Hewethe concentration of
precursors is too low for the resulting aggregate to divide.
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6.4 Reuvision of the protocellular life-cycle

The protocellular design presented in Ref. [71] envisidngle stranded nucleic acid
strands that would only be in a double strand configuratiaimndugene replication,
i.e. after ligation of hybridized oligomers and before rimgjtof the strands. During
the container replication, the polymers are thought to bglsistranded, such that each
daughter cell receives one of the complementary stranelsafhtainer replication (see
Fig. 5.1 in chapter 5).

However, if the metabolic turnover rate of the sensitizgrag®ls on the genome to
be in double strand configuration (see section 6.3), theaguatt division process can
only be triggered prior to melting. Having only one doublesd leads to only one of
the two daughter cells being fertile, such that the systemwalsole has not replicated.

We therefore suggest a revised system that employs doubledsd polymers in
the first place (see Fig. 6.7). Melting of the double strarlgl oncurs during gene repli-
cation: prior or parallel to the supply of oligomers, the biestrand is melted. Cooling
of the system after intake of the oligomers then allows forkate directed gene repli-
cation, after which the aggregate contains two identicabtio stranded copies. Each
of these copies is able to mediate the metabolic reactiorteShe two double strands
are more likely to be spatially separated, it is possibletiem to end up in different
daughter cells. As in the previous design, ligation andllipiecursor turnover are al-
lowed be triggered simultaneously if the polymerizatioaatéon is based on the same
photo reaction as lipid turnover.

Note that in this design, the genetic information of the taaghter cells is identi-
cal, rather than complementary as in the original desigtis d&n avoid complications
during repeated protocell replication.

Furthermore, our simulations suggest that lipid precussigply and intake should
precede melting in order to stabilize the container priohéating (see section 6.2).
Oligomers can either be supplied simultaneously or aftdtinge

6.5 Product inhibition during template replication

With the modifications described in sections 6.2 through &integrated simulation
of the entire protocellular life-cylce can be approachedstFhowever, it is advisable
to validate that the individual steps in the life-cyclelgtgrform in the modified sys-
tem. In particular, the hybridization of gene precursofig@mers) to template strands
after cooling (rightmost arrow in Fig. 6.7) needs to be t@dte a system that uses a
duplicated set of polymers compared to the previous sitoitts in section 5.3.4.

We perform simulations on hybridization and ligation ofggimers at the surface
of surfactant-coated oil droplets employing two 4-mer tlatgstrands and four com-
plementary oligomers. Different base sequences in thelttegare simulated and
scenarios that use identical template strands (A.BAB) as well as different tem-
plate strands (e.gAAAB andBBBA) are compared. Although the two templates
will be complementary in the final setup (as they result fromaiten double strand),
simulations are also performed on non-complementary te®sitrands (such as two
A A AB strands) for comparison.

Fig. 6.8 shows snapshots that illustrate typical temptditgemer interactions as
they appear in the simulations. In most cases, it is fountthiegatwo template strands
hybridize to each other, thereby preventing oligomer attaent. In some cases (lower
left panel) two templates and one oligomer form less definguitlization complexes.
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Figure 6.7: Revised version of the protocellular life-gyptoposed in Ref. [71] (shown
in Fig. 5.1): The main design change is to have the biopolyimeouble strand con-
figuration, rather than as suggested as a single strand alltwes for equipartition of
the replicated double strand into two fertile daughterscafer countainer division (see
text).
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Figure 6.8: Product inhibition of 4-mer template strandgtmnsurface of the aggre-
gates. The panels show results for different base sequéntes templates (both for
identical and different sequences in the template strahag)ost cases, it is found that
the two template strands hybridize to each other, prevgmiigomer hybridization to

occur. In some cases (lower left panel) two templates andbgemer form a less de-
fined hybridization complex that equally inhibits propemdate directed replication.
We further find interactions between two original and a nefotyned template strand
(upper central panel).
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Figure 6.9: Competing template/oligomer interactions dbgomer concentrations
ranging from 2:1 to 5:1 oligomers per template. Productiiittin occurs for all tested
concentration ratios.

We also find interactions between two original and one nesigned template strand
(upper central panel). Only in trivial cases (e.g. thdh A A templates) such product
inhibition does not occur. However, even for non-completagrntemplate strands (e.g.
two A A AB sequences in the lower right panel ah@BBB A with AAAB inthe upper
right panel), partial complementary attraction can stllise product inhibition. Our
preliminary investigations suggest that product inhdritis more likely for sequences
that were found to form stable oligomer/template compl¢gash asABAB) if only
one strand is used (see Fig. 5.8 in chapter 5). In all casestethson for product
inhibition is the significantly stronger binding betweerottemplates as opposed to
template/oligomer binding, as reported in sections 5.8d1@2.2.

The problem of product inhibition is also known from expegimal studies of non-
enzymatic template-directed DNA replication [61, 62], dtndas been shown that the
resulting growth dynamics can prohibit proper Darwinianlation [166]. While this
issue has been solved for the Los Alamos minimal protoceth ghobal level [159,
167], it still hinders gene replication on a local level —eddt in our simulation.

We try several attempts to resolve product inhibition, sarhthem motivated by
experimental findings. To isolate the problem, these sitira are preformed on
oil/water interfaces as in section 6.2.2. System size has bboosen small§r¢)?)
in order to relate findings to dynamics on the equally smaflae of our surfactant-
coated oil droplets. Preliminary results are listed:

1. Increasing oligomer concentration: We increase the oligomer concentration
in order to move the equilibrium of the competing templa®fplate and tem-
plate/oligomer binding reactions toward template/oligproomplexes. Fig. 6.9
shows simulation results with 2, 4, and 5 oligomers per tateplOligomer con-
centration has not been increased higher, as this favorspitaneous back-
ground reactions of non-hybridized oligomers (as can b@& sedhe central
panel of Fig 6.9 where two dimers ligated in the absence ofrplate). Prod-
uct inhibition occurs in all simulated scenarios. Visuapaction of the system
dynamics suggests that this is due to an effectively irsltr binding of the
template/template complex (as can also be deduced fron® Hig.

2. Altering attractive forces between complementary basedn order to turn the
template/template hybridization into an effectively nesile reaction, we lower
the attractive force between complementary bases. Thigever, also lowers
the (already low) affinity of oligomers to bind to the temglasuch that stable
oligomer/template complexes cannot be observed over fqmgrgods of time.
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Equally, increasing the attractive force to stabilize ofiger hybridization simul-
taneously increases the stability of template/templateptexes. In summary,
altering the attractive forces of complementary basesataowvercome product
inhibition.

3. Changing the preferred backbone angle of template strandsWe test the in-
troduction of a natural curvature in the backbone of tengpfitands. This is
achieved by changing the equilibrium andlg in Eq. (5.8) from180° to 135°.
Since such bending only applies to polymer strands longer &bases, we hope
that ligation of hybridized oligomers would induce a recguafiation of the newly
formed strand, which would eventually induce a separaticth® strands. It is
found by our simulations, however, that bending of the stsastcurs perpendic-
ular to the preferential direction of base attraction: kgithnds curve toward the
oil phase, leaving complementary base distances unalté&®e consequence,
the modification has no effect on the stability of templaiefplate complexes.
We note that a more elaborate force field could be employedristrain the rel-
ative orientation of backbone curvature and direction whation by combining
Eqgns. (5.8) and (5.16).

4. Employing longer polymer stands: As a main problem in the dynamics of
genome replication in our model is the relatively low hyixation affinity of
dimers, we test the performance of longer templates androkgs. Using 6-mer
templates in combination with 3-mers enhances the stalolibligomer/temp-
late hybridization by a factor of two (see Fig. 6.5) with caargibly minor sta-
bility increase of the 6-mer/6-mer complex. Visual insjpats of simulations
results confirm that this is a viable solution that desereebe studied more
carefully in the future.

5. Repeated temperature cyclelf relatively stable oligomer/template hybridiza-
tion can be achieved (by a combination of the above mechahjsme hope that
product inhibition can be overcome with the help of a repetgeperature cycle
where melting and cooling is repeated to undo irreversiigaiate/template hy-
bridization until oligomer hybridization and ligation ted out successful. This
has not been tested by us in simulation yet.

It is hoped that a combination of the above modifications wlibw for replica-
tion of the molten double strand. If the actual solution ieggielongated information
polymers and/or a surplus of oligomers, the performancenfainer replication and
equipartition (section 5.3.5 in chapter 5) need to be comdififior the additional load.

6.6 Summary

We have presented work on the Los Alamos minimal protocglitodel that builds
upon the results of chapters 4 and 5. A simple procedure ¢o &@inperature in the
DPD method has been established and compared to experirfiediags. A mecha-
nism to couple the information, container, and metabollzsgatems have been added
to the model. This has revealed a necessary design chanige ofiginally proposed
system, namely it was shown that a double stranded infoomaturrier is required for
successful replication of the entire aggregate.

Steps toward an integrated simulation that employ doubbnded genes and a
temperature cycle have been presented. It is found that tikfied protocell design
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is prone to product inhibition which currently prevents cegsful gene replication. A
careful balance of system parameters is needed to fulfiigllgrcompeting constraints
in an integrated simulation of the complete life-cycle. Wspgect similar complica-
tions to occur also in experimental work toward the impletagon of the Los Alamos
minimal protocell. To what extend these complications agwith the ones found in

our simulations cannot be predicted from the model.
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Conclusion

Self-replication is a fundamental feature of all living anisms, yet has only been
accomplished to limited extend in artificial systems.

In the presented work, we have developed a physically netivsimulation frame-
work based on the method of dissipative particle dynamite method has been ex-
tended over the course of our studies to cope with chemieatioms, scaling of the
spatial resolution, complex intermolecular interacticarsd temperature variations.

The framework enabled us to study design proposals ofike-artificial, molecu-
lar aggregates. In particular, we focussed on the desidredfds Alamos minimal pro-
tocell, and a simplified information-free predecessor. \Akehperformed system-level
simulations of the design which attempt to account for tagcal, and experimental
knowledge, as well as results from other computational nsottethe extend possi-
ble. This allowed us to address key issues of the replicatifgystems — container,
genome, and metabolism — both individually and when mutuadupled. We have
analyzed each step in the life-cycle of the molecular aggeegand a final integrated
simulation of the entire life-cycle has been prepared.

Our simulations confirmed most assumptions of the theailetiesign. In partic-
ular, we could support (i) the feasibility of surfactantated oil droplets as a self-
replicating container subsystem; (ii) the mutual catalgbupling between container
and genome, container and metabolism, metabolism and gerasnwell as the fi-
nal coupling of all components; and (iii) the necessity oémperature cycle for the
replication of the information subsystem. Various minanfaonations have been sum-
marized at the end of each chapter.

The model has also revealed unanticipated system-levéh§iadmost notably (i)
a significant influence of the oil core on both the dynamichefwhole system as well
as its subsystems; (ii) the emergence of a molecular fitnesgibn from geometric
properties of the genome; (iii) disfavored equipartitidraggregates that are loaded
with a substantial undigestable oil core; (iv) the unfedisjtof a single stranded infor-
mation carrier; (v) the problematic of product inhibition the limited surface area of
small oil droplets. More work has to be dedicated on the tast iof this list.

We emphasize that these findings could only be achieved bydbef a physi-
cally motivated simulation framework. We also emphasizg the above findings are
gualitative and do not claim predictive power.

Taken together, these findings support our hypothesis éfffateplication and sim-
ilar life-like features can be achieved in systems of folgnenanticipated simplicity —
if these systems exploit physicochemical principles thatimmanent to their physical
scale.
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