
Institut für Informatik
Neuroinformatics Group

Reinforcement Learning
with

Recurrent Neural Networks

Dissertation
zur

Erlangung der Doktorwürde
der Universität Osnabrück

– Fachbereich Mathematik/Informatik –

Vorgelegt von
Herrn Anton Maximilian Schäfer

Osnabrück, den 31.10.2008

Supervisors: Prof. Dr. Martin Riedmiller, University of Osnabrück
Dr. Hans-Georg Zimmermann, Siemens AG

Abstract

Controlling a high-dimensional dynamical system with continuous state and ac-
tion spaces in a partially unknown environment like a gas turbine is a challeng-
ing problem. So far often hard coded rules based on experts’ knowledge and
experience are used. Machine learning techniques, which comprise the field of
reinforcement learning, are generally only applied to sub-problems. A reason
for this is that most standard reinforcement learning approaches still fail to pro-
duce satisfactory results in those complex environments. Besides, they are rarely
data-efficient, a fact which is crucial for most real-world applications, where the
available amount of data is limited.

In this thesis recurrent neural reinforcement learning approaches to identify
and control dynamical systems in discrete time are presented. They form a novel
connection between recurrent neural networks (RNN) and reinforcement learn-
ing (RL) techniques. Thereby, instead of focusing on algorithms, neural network
architectures are put in the foreground.

RNN are used as they allow for the identification of dynamical systems in form
of high-dimensional, non-linear state space models. Also, they have shown to be
very data-efficient. In addition, a proof is given for their universal approximation
capability of open dynamical systems. Moreover, it is pointed out that they are, in
contrast to an often cited statement, well able to capture long-term dependencies.

As a first step towards reinforcement learning, it is shown that RNN can well
map and reconstruct (partially observable) Markov decision processes. In doing
so, the resulting inner state of the network can be used as a basis for standard
RL algorithms. This so-called hybrid RNN approach is rather simple but showed
good results for a couple of applications. The further developed recurrent control
neural network combines system identification and determination of an optimal
policy in one network. It does not only learn from data but also integrates prior
knowledge into the modelling in form of architectural concepts. Furthermore, in
contrast to most RL methods, it determines the optimal policy directly without
making use of a value function. This distinguishes the approach also from other
works on reinforcement learning with recurrent networks.

The methods are tested on several standard benchmark problems. In addition,
they are applied to different kinds of gas turbine simulations of industrial scale.

III

Acknowledgement

This work was supported by Siemens AG, Corporate Technology, department
Learning Systems in Munich.

I especially thank Prof. Dr. Martin Riedmiller for his supervision, help and
support. I further thank Dr. Thomas Runkler, head of the department Learning
Systems, Siemens AG, for giving me the opportunity to develop and to write my
thesis within this scientifically highly competent research group.

Besides my thanks goes to all my colleagues for their support and patience dur-
ing the preparation of my thesis. The multiple discussions and meetings formed
a great enrichment to my research. In particular I want to thank my two advisors
at Siemens AG, Dr. Hans-Georg Zimmermann and Dr. Steffen Udluft, for their
continuous encouragement and the advice they gave me.

The computations in this thesis were performed on the neural network mod-
elling software SENN (Simulation Environment for Neural Networks), which is a
product of Siemens AG. Thanks to Dr. Christoph Tietz for its continuous adaption
and extension to the new requirements of the developed networks.

V

Contents

Abstract . III
Acknowledgement . V
List of Figures . X
List of Tables . XI
List of Abbreviations . XIII

1 Introduction 1
1.1 Reinforcement Learning Problems 1
1.2 Main Focus of the Thesis . 4
1.3 Structure of the Thesis . 5

2 Reinforcement Learning 7
2.1 Markov Decision Process . 9
2.2 Partially Observable Markov Decision Process 10
2.3 Dynamic Programming . 11
2.4 Reinforcement Learning Methods 14

2.4.1 Temporal Difference Learning 14
2.4.2 Q-Learning . 15
2.4.3 Adaptive Heuristic Critic 15
2.4.4 Prioritised Sweeping . 16
2.4.5 Policy Gradient Methods 16

2.5 Classification of the Regarded RL Problems 17
2.5.1 High-Dimensionality . 17
2.5.2 Partial-Observability . 17
2.5.3 Continuous State and Action Spaces 18
2.5.4 Data-Efficiency . 18

3 System Identification with RNN 19
3.1 Feedforward Neural Networks 21
3.2 Recurrent Neural Networks . 22

3.2.1 Finite Unfolding in Time 24
3.2.2 Overshooting . 26
3.2.3 Dynamical Consistency 28

VII

VIII CONTENTS

3.3 Universal Approximation . 29
3.3.1 Approximation by FFNN 29
3.3.2 Approximation by RNN 32

3.4 Training of RNN . 35
3.4.1 Shared Weight Extended Backpropagation 36
3.4.2 Learning Methods . 38
3.4.3 Learning Long-Term Dependencies 41

3.5 Improved Model-Building with RNN 45
3.5.1 Handling Data Noise . 46
3.5.2 Handling the Uncertainty of the Initial State 47
3.5.3 Optimal Weight Initialisation 49

4 Recurrent Neural Reinforcement Learning 53
4.1 The Hybrid RNN Approach . 54
4.2 The Partially Observable Cart-Pole Problem 57

4.2.1 Model Description . 59
4.2.2 Results . 59

4.3 Markovian State Space Reconstruction by RNN 61
4.4 The Recurrent Control Neural Network 64
4.5 The Data-Efficient Cart-Pole Problem 68

4.5.1 Model Description . 68
4.5.2 Results . 69

4.6 The Mountain Car Problem . 72
4.6.1 Model Description . 73
4.6.2 Results . 74

4.7 Extended Recurrent Control Neural Network 74

5 Control of Gas Turbine Simulations 77
5.1 Problem Description . 78
5.2 Model Description . 80
5.3 Results . 81

6 Conclusion 85

VIII

List of Figures

1.1 Main Objective of the Thesis . 5

2.1 Basic Idea of Reinforcement Learning 8
2.2 Markov Decision Process . 10
2.3 Partially Observable Markov Decision Process 11
2.4 Classification of RL Methods . 18

3.1 Open Dynamical System . 23
3.2 RNN Finitely Unfolded in Time 25
3.3 Comparison of Feedforward and Recurrent Neural Networks . . . 26
3.4 Concept of Overshooting . 27
3.5 RNN with Dynamically Consistent Overshooting 29
3.6 Backpropagation Algorithm for Recurrent Neural Networks . . . 38
3.7 RNN Architecture used for Long-Term Learning Experiment . . . 42
3.8 Exemplary Adaptation of the Gradient Error Flow during Learning 45
3.9 Tube-Trajectory . 49
3.10 Influence of Initial Weight Distribution on Backpropagated Error . 50

4.1 RNN Architecture for Hybrid RNN Approach 55
4.2 Hybrid RNN Approach . 57
4.3 The Cart-Pole Problem . 58
4.4 Results for State Space Reconstruction 60
4.5 Results for Partially Observable Cart-Pole Problem 61
4.6 RNN Architecture for Modelling POMDP 63
4.7 Recurrent Control Neural Network 65
4.8 Results for Data-Efficient Cart-Pole Problem 70
4.9 Results with Different Noise Levels 72
4.10 The Mountain Car Problem . 73
4.11 Extended Recurrent Control Neural Network Architecture 76

5.1 Gas Turbine . 79
5.2 Evaluation of the Reward Development 83
5.3 Final Turbine Operation Points 84

IX

List of Tables

3.1 Results for Long-Term Learning Experiment 44
3.2 Overview of Initialisation Techniques 49

4.1 Summarised Features of the Recurrent Control Neural Network . . 67
4.2 Results for Data-Efficient Cart-Pole Problem 70
4.3 Results for Data-Efficient Cart-Pole Problem with Noise 71
4.4 Results for Mountain Car Problem 74

5.1 Results for Regarded Turbine Settings 82

XI

List of Abbreviations

AHC adaptive heuristic critic

CT combustion tuning

DP dynamic programming

ET emission tuning

EET extended emission tuning

FFNN feedforward neural network

IGV inlet guide vane

LSTM long short-term memory

MDP Markov decision process

POMDP partially observable Markov decision process

PS prioritised sweeping

RL reinforcement learning

RMS pressure intensities in the combustion chamber

RNN recurrent neural network

RPS RNN based prioritised sweeping

RQ RNN based Q-learning

RCNN recurrent control neural network

STD standard deviation

TD temporal difference

XIII

”To raise new questions, new possibilities,
to regard old problems from a new angle,
requires creative imagination and marks
real advance in science.”

Albert Einstein, 1879 – 1955

CHAPTER 1

Introduction

Reinforcement learning and control problems of industrial scale, like the con-
trol of a gas turbine, are generally high-dimensional, extensive and only partially
observable. Due to the large amount of different inter-depending parameters and
information, which is still insufficient to fully describe the problem, human beings
are hardly able to find an optimal solution.

Therefore the field of machine learning, in particular approximate dynamic
programming or reinforcement learning, aims at developing (self-adapting) algo-
rithms, which are able to learn how to control a system out of the available data.
Many different solution methods have been proposed during the last 50 years. The
prevalent ones are well summarised in the books of Bertsekas [10, 11], and Sutton
and Barto [89]. Still, besides other restrictions due to Bellman’s ”curse of di-
mensionality” [7], most of them fail to produce good results for high-dimensional
and partially observable problems with continuous state and action spaces where
further the available amount of data is limited. In order to cover these issues,
sophisticated and data-efficient learning methods are required, which are able to
deal with high-dimensionality and non-linearities, and take short and long-term
influences into account.

1.1 Reinforcement Learning Problems

Reinforcement learning (RL) (chap. 2) is an ideal approach to solve optimal con-
trol problems by learning a policy, which maximises a desired outcome. It ba-
sically considers a controller or agent and the environment, with which the con-
troller interacts by carrying out different actions. For each interaction the con-
troller can observe the outcome of its action. In other words, the agent gets a
positive or negative reward, which is used to optimise its action selection or con-
trol policy, i.e., its future actions based on the respective state.

1

2 Introduction

Throughout this thesis a reinforcement learning or control problem is regarded
as an open, time-discrete dynamical system with a correspondent additive reward
function [10]. Those systems can be used to describe most technical or eco-
nomical real-world applications, which are by construction mainly deterministic.
Hereby, it is assumed that stochasticity basically occurs due to partial observabil-
ity.

Let therefore be S ⊆ RJ the system’s (real) environmental state space with
states st ∈ S, X ⊆ RI the space of observables xt ∈ X , which generally is a
subspace of S, and U ⊆ RK the control or action space with control or action
parameters ut ∈ U (with I, J, K ∈ N and t = 1, . . . ,∞). The dynamical system
can then be described by the following set of equations

st+1 = g(st,ut)
xt = h(st)

(1.1)

with g : RJ × RK → RJ and h : RJ → RI being two arbitrary (non-linear)
functions. This corresponds to the assumption that the next internal state st+1

evolves from the current one st, influenced by the current action ut. Further, the
observables xt develop out of the current internal state st.1

Nearly all reinforcement learning problems of industrial scale are partially
observable as it is generally too expensive or just impossible to collect all data
determining the system’s state space S. However, in the unlikely event that the
system is fully observable, which means that S = X , equation 1.1 simplifies to

st+1 = g(st,ut) .

The corresponding reward function is denoted by R : X → R (and respec-
tively R : S → R in the case of a fully observable problem). Hence it is based
on the current observation and respectively state of the system.2 Generally the
particular immediate reward Rt := R(xt) is not of major interest as a correspond-
ing action might lead to low rewards in the long run. Therefore, an accumulated
reward over time with a possible discount factor γ ∈ [0, 1] is regarded:

R :=
∞∑

t=1

γt−1Rt (1.2)

Based on this, the underlying challenge for every high-dimensional and com-
plex control task can be seen as a two step problem:

1Other formulations of controlled dynamical systems can be found in [27, 98].
2Other forms of reward functions, which e.g., also take the applied action into account, can be

found in [89].

1.1 Reinforcement Learning Problems 3

(i) System identification: The majority of technical and economical control sys-
tems cannot be described or represented by simple mathematical equations
as most often the physical or economical interdependencies within the sys-
tem are not (yet) fully explored or the system is simply only partially ob-
servable. Consequently, a model of the system is not a priori known. It
rather has to be learnt out of the data collected during system operation. A
model-building approach is therefore of avail as it allows to derive the future
behaviour of the system given a certain control sequence. As the amount of
available data is, due to time or cost restrictions, further generally limited,
a data-efficient system identification is of importance. Moreover, system
identification is the crucial part of solving a control problem as it serves as
a basis for the second step, where the actual optimal control policy is learnt.

With regard to the open dynamical system (eq. 1.1), the related optimisation
task consists of determining two functions ḡ : RJ̄ × RK → RJ̄ and h̄ :
RJ̄ → RI (with J̄ ∈ N), such that the error between the observable data,
determined by the model, x̄t ∈ RI , and the one of the real system, xt, is
minimal for all available data patterns t = 1, . . . , T ∈ N:

T∑
t=1

‖x̄t − xt‖2 → min
ḡ,h̄

(1.3)

This implies that the unknown system state st ∈ RJ is modelled by the
model’s inner state s̄t ∈ RJ̄ , which might be of a different dimension,
i.e. J 6= J̄ . Note that in this step there is no change in the applied con-
trol parameters ut. These are given as a part of the available data set and are
used to learn their effects on the system’s dynamics. In case that a model of
the analysed system is known and can easily be described by a set of differ-
ential equations, one can directly refer to step (ii). However, throughout this
thesis it is assumed that a model has to be determined out of an available
data set.

(ii) Learning of the optimal control policy: The determination of the optimal
control policy is based on the model identified in step (i). The objective
is to find an optimal control policy, which maximises the future rewards
Rt (eq. 1.2) of the RL problem. In the ideal case one can achieve a stable
operating point of the system but mostly a continuous adjustment of the
control parameters is required. In other words, the objective of step (ii) is
the calculation of an optimal action selection or control policy, π̄ : RJ̄ ×
RI → RK , which determines the model’s next action ūt ∈ RK based on
the approximated inner state of the system s̄t ∈ RJ̄ and the calculated latest

4 Introduction

observation x̄t ∈ RI ,

ūt = π̄(̄st, x̄t)

under the consideration of the reward function R (eq. 1.2). This results in
the following optimisation problem

T∑
t=1

γt−1Rt → max
π̄

. (1.4)

1.2 Main Focus of the Thesis
The main objective of the thesis is the development of a new model-based rein-
forcement learning method on the basis of recurrent neural networks for a data-
efficient solution to the described reinforcement learning problems (sec. 1.1). The
approach focuses on a novel connection between reinforcement learning (RL)
(chap. 2) and recurrent neural networks (RNN) (chap. 3) with the objective to
solve the outlined two step problem (sec. 1.1).

RNN are used as they allow for the identification of dynamical systems in form
of high-dimensional, non-linear state space models. Moreover, the architecture of
RNN allows for a perfect modelling of the RL environment over a certain num-
ber of consecutive time steps. Also, they have shown to be very data-efficient.
Therefore they are well suited for an application to the described extensive RL
problems. To strengthen their utilisation it is proven that RNN possess a universal
approximation ability and that they are well able to learn long-term dependencies.
Also, some elaborated model-building approaches for RNN are presented. In this
regard the thesis also provides important new theoretic results on RNN.

For the development of the aspired recurrent neural reinforcement learning ap-
proach the focus is on new neural network architectures instead of algorithms. In
doing so the new methods not only learn from data but also integrate prior knowl-
edge into the modelling in form of architectural concepts. This aims at support-
ing the efficient learning and mapping of the full environment of an RL problem.
Furthermore, in contrast to most RL methods, the optimal policy is determined di-
rectly without making use of an evaluation respectively value function (sec. 2.3).
This distinguishes the approach also from other works on RL with different kinds
of recurrent networks (chap. 4).

However, the thesis does not aim at improving or even outperforming those
existing approaches. It rather presents a new application of the described RNN
(chap. 3) to RL (chap. 2) and shows that this combination can be successfully
used to solve the aforesaid RL problems (sec. 1.1).

1.3 Structure of the Thesis 5

The new methods are tested on several standard benchmark problems, like
different settings of the cart-pole (sec. 4.2) and mountain car problem (sec. 4.6).
Still, from the application point of view, the main focus has been put on the con-
trol of gas turbine simulations as used in industry. Those mainly show the focused
characteristics of RL problems, high-dimensionality, partial observability, contin-
uous state and action spaces and a requirement for data-efficiency (sec. 2.5). They
also motivated the generated work and underlying research.

Based on the mentioned characteristic figure 1.1 illustrates the main objective
of the thesis and classifies it in terms of data efficiency and the ability to solve
complex, i.e., high-dimensional, partially observable and with continuous state
and action spaces, RL problems.

− model−based

− table−based

− model−free

− table−based

Main Objective
of the thesis

D
at

a−
ef

fic
ie

nc
y

Complexity

− model−based
− funct. approx.

− model−free

− funct. approx.of a model
inclusion

generalisation

Figure 1.1: Main objective of the thesis classified in comparison to other principal
classes of standard RL methods (sec. 2.4) with regard to data-efficiency
and the ability to solve complex (high-dimensional, partially observable,
continuous state and action spaces) RL problems. The purpose is the
development of a model-based method on the basis of RNN for a data-
efficient solution to complex RL problems.

1.3 Structure of the Thesis
Chapter 1 outlines the problem setting and states the main focus of the thesis.

Chapter 2 forms a brief introduction to reinforcement learning. The presen-
tation focuses on basic aspects, which are relevant for the further course of the
thesis. It enfolds a description of Markov decision processes and dynamic pro-
gramming. Furthermore, standard reinforcement learning algorithms, which are

6 Introduction

used as benchmarks in chapters 4 and 5, are introduced and analysed. Finally,
the key problems and requirements for real-world applied reinforcement learning
algorithms are discussed in more detail.

In chapter 3 recurrent neural networks and their capability to identify open
dynamical systems are introduced and described. A proof for their universal ap-
proximation capability is given. Learning techniques and especially the capability
to learn long-term dependencies are examined, analysed and discussed. Those
aspects, long-term learning and universal approximation, form a basis and pre-
requirement for the application of the networks to RL and control problems. Ad-
ditionally, a couple of modelling issues, which have been shown to be valuable in
practise, are presented.

Chapter 4 presents the novel conjunctions between recurrent neural networks
and reinforcement learning. As a first recurrent neural RL approach, only the
ability of RNN to model and reconstruct the (approximately) Markovian state
space of an RL problem is used. This is especially useful for partially observ-
able RL problems. In this context a hybrid RNN approach is presented, where the
RNN identifies the problem’s dynamics (step (i)) and subsequent to that standard
RL algorithms are applied on the networks inner state space to learn the opti-
mal policy (step (ii)). On this basis the recurrent control neural network (RCNN)
is introduced, which combines the two steps ((i) + (ii)) into one integrated neu-
ral network. Consequently, it not only learns the underlying dynamics but also
determines the optimal policy. In an extended version, the idea of approximat-
ing the system’s (minimal) Markovian state space is further incorporated. Thus,
the extended RCNN embeds the presented hybrid RNN approach within one sin-
gle neural network. Furthermore, the extended network calculates the changes in
the control parameters instead of absolute values. Both aspects marked crucial
improvements for controlling the gas turbine simulations (chap. 5). The two ver-
sions of RCNN and the idea of a state space reconstruction with RNN form the
key contribution of this thesis. They have been filed for patents by Siemens AG.

In chapter 5 the novel recurrent neural RL approaches are tested on a real-
world problem, the control of different kinds of gas turbine simulations. The
problem is, within the limits of confidentiality, described and analysed. The new
methods are applied and compared to standard controllers. It turns out that a
significant increase in performance can be achieved.

Finally chapter 6 summarises the main results of the thesis.

”Knowledge must come through action; you can
have no test which is not fanciful, save by trial.”

Sophocles (496 BC – 406 BC)

CHAPTER 2

Reinforcement Learning

Reinforcement learning (RL) combines the fields of dynamic programming [11]
and supervised learning to develop powerful machine learning algorithms [32].
Besides its use for solving control problems, RL can be seen as “one of the only
designs of value in understanding the human mind” [96]. It is an approach to
learn an optimal behaviour, i.e. policy, in an unknown or at most partially known
environment. Thereby, it is based on the idea of trial-and-error interactions with
the dynamic environment [32, 42, 89]. The main elements of an RL or control
problem (sec. 1.1) are shortly summarised in the following. Their interrelationship
is also illustrated in figure 2.1:

(i) Environment: The environment corresponds to any kind of economical or
technical system, e.g. stock market, revenue management, or a gas turbine.
Its development is based on its history and the actions performed by the
agent. For each interaction it sends a reward Rt to the agent, which serves
as an evaluation criteria for the agent’s action in the last system state. The
state st of the environment can be discrete or continuous.

(ii) Agent: The agent represents the controller of the system. It can at least
partially observe the system’s state st by receiving observations xt. Us-
ing those, it interacts with the environment by performing actions ut and in
return retrieving rewards Rt+1, which it can use to improve its policy.

(iii) Actions: Actions influence the development of the environment. They gen-
erally represent a chosen change in or an absolute value of the control pa-
rameters allowed by the system. According to the problem setting those can
be discrete or continuous. Here, a credit-assignment problem [54] has to be
solved as the temporal dependencies are generally a priori unknown, i.e.,
some actions may not immediately change the system but may do so with
a certain delay. Actions can be bounded or limited by the problem setting.

7

8 Reinforcement Learning

Examples for actions are the decision of buying or selling, adjustments of
a temperature or of a steering wheel, or simply the application of a certain
physical force to the environment.

(iv) Policy: The mapping from states of the environment to the action to be taken
in this state is called a policy π. Following a policy forms a sequence of ac-
tions and reflects the learnt behaviour of the agent at a given time. For most
applications one is interested in controlling a system over a certain time pe-
riod. Therefore, instead of a one-step optimisation, one tries to determine an
optimal policy with regard to a given overall objective, respectively reward
function. According to Sutton and Barto ”the policy is the core of a rein-
forcement learning agent in the sense that it alone is sufficient to determine
behaviour” [89].

(v) Reward / cost function1: The reward function specifies the overall objec-
tive of the reinforcement learning problem. It depicts the immediate reward
the agent receives for performing a certain action at a given system state.
Consequently, it defines the desirability of an event for the agent. Generally
the simple immediate reward is only of minor interest because high imme-
diate rewards might lead to low ones in the future. Instead, one is usually
interested in the (discounted) value of collected rewards in the long run.

s t

st+1

R t+1

Agent

Environment

reward action
utR t

x
ob

se
rv

at
io

n
t

st
at

e

Figure 2.1: Basic idea of reinforcement learning: An agent iteratively interacts with
an environment by carrying out an action ut based on its observed state
information xt, which can be smaller (partially observable) or equal
(fully observable) to the environmental state st. In return it retrieves
a feedback in form of a reward Rt+1, which it uses to improve its policy
π and thereby increase its future sum of rewards (t = 1, . . . ,∞) [89].
The dashed line indicates the transition to the next time step.

1For simplification in the following it is mostly referred to reward functions. However, reward
maximisation and cost minimisation can be used interchangeably.

2.1 Markov Decision Process 9

2.1 Markov Decision Process
The mathematical basis for most theoretical RL problems is a Markov decision
process (MDP), which describes the development of a (fully observable) con-
trollable dynamical system (eq. 1.1). An MDP is basically defined by a tuple
(S, U, Tr, R) with the following objects [18, 41, 65], whereby t ∈ N indicates the
time step:

• a state space of the environment S,

• an action or control space U , with sets U(st) of available or allowed actions
in state st ∈ S,

• a deterministic or stochastic state-transition function Tr(st+1|st,ut) : S ×
U × S → [0, 1], which defines the probability for reaching state st+1 being
in state st and applying action ut with st, st+1 ∈ S and ut ∈ U(st),2

• a reward function Rt := R(st) : S → R denoting the immediate one-step
reward for being in state st.3

The relation of the different objects is described by a one-step transition:
Given an open (controllable) dynamical system (eq. 1.1) with a state space S.
Being in an arbitrary state st ∈ S at time step t, the agent chooses an action
ut ∈ U(st). As a consequence the system evolves to the next state st+1 ∈ S
according to the transition function Tr(st+1|st,ut). At the same time the agent
receives the one-step reward R(st+1) [18]. The generated sequence of states and
actions is called a trajectory. Due to the assumed Markov property (defn. 2.1) the
next state st+1 hereby only depends on the current state st and the applied action
ut. In other words, the Markov property states that the development of the system
only depends on the last system state and the taken action [18, 50]. Consequently,
it is independent of its history, i.e. the previous states and actions.

In mathematical terms the Markov property in discrete time is stated as fol-
lows, whereby s0 stands for an arbitrary starting state [50].

Definition 2.1. Markov property: A discrete stochastic process st ∈ S with action
ut ∈ U and a transition function Tr(st+1|st,ut) is called Markovian if for every
t ∈ N it is

Tr(st+1|ut, st,ut−1, st−1, . . . ,u0, s0) = Tr(st+1|ut, st) .

2In case of a continuous state space Tr is defined as a probability density function.
3Again, it is also possible to define the reward function such that it takes the applied action

or even the full transition (st,ut, st+1) into account. An extension is trivial, but for simplicity
throughout this thesis it is referred to the described form.

10 Reinforcement Learning

The actions can be chosen on the basis of a pre-defined (or learnt) decision
rule, i.e. policy, or simply randomly. If the state and action spaces, S and U ,
are discrete, the MDP is called discrete. In the non-discrete case, one naturally
assumes that they are measurable spaces endowed with σ-algebras S and U [18].
This comprises the case that S and U are continuous spaces in RJ and RK . The
MDP is called deterministic if Tr(st+1|ut, st) is deterministic and stochastic oth-
erwise.

Following the illustration of basic reinforcement learning (fig. 2.1), figure 2.2
gives a (general) graphical representation of a Markov decision process. As the
system is per definition fully observable, the agent’s observation xt is equal to
the environmental state st. Due to the Markov property (defn. 2.1) this contains
all required information for the agent to determine its next action ut. Its decision
rule and respectively policy is therefore a direct mapping from the observed state
xt(= st) to the next action ut. The environment then evolves according to the
transition function Tr(st+1|ut, st).

action
ut

reward
R t

s t

st+1

R t+1

Environment

Agent

system state s

direct mapping

=
x

ob
se

rv
at

io
n

t
st

at
e

Figure 2.2: Graphical representation of a Markov decision process. As the system is
per definition fully observable, it is xt = st. Due to the Markov property
the agent’s decision making process is a direct mapping from the ob-
served state to its action. Anew, the dashed line indicates the transition
to the next time step.

2.2 Partially Observable Markov Decision Process
Partially observable Markov decision processes (POMDP) differ from MDP (sec.
2.1) in the fact that the state space S is not fully observable. This is generally
the case in real-world applications, e.g. gas turbine control (chap. 5). The agent
only receives an observation xt ∈ X as an indicator for the actual state of the
system, st ∈ S. Hereby xt is generally not Markovian. Formally a POMDP can

2.3 Dynamic Programming 11

be described by a tuple (S, X,U, Tr,R), where in addition to MDP X represents
the observation space, which can be a subspace of the state space S but might also
include redundant information.

Figure 2.3 gives a (general) graphical representation of a partially observable
Markov decision process. Unlike in MDP (fig. 2.2) the environmental state st is
now only partially observable by the agent, which is depicted by the expression
xt ⊂ st. This implies that the agent has the additional task to approximate or
reconstruct the environmental, Markovian state st out of its observations xt to
determine its next action ut. In other words, the agent has to build a model of the
environment, which it uses as a basis for its decision making. Therefore also past
time information about the system’s development can be helpful.

action
ut

reward
R t

s t

st+1

R t+1

Environment

Agent

system state

internal state

x
ob

se
rv

at
io

n
t

st
at

e

Figure 2.3: Graphical representation of a partially observable Markov decision pro-
cess. As the system is partially observable, the agent only receives an ob-
servation xt as an indicator for the system state st (xt ⊂ st). Therefore,
it builds up an internal state out of past time information to determine
the next action ut. Again, the dashed line indicates the transition to the
next time step.

As already pointed out, most real-world RL applications are partially observ-
able (sec. 1.1). Therefore partial observability (sec. 2.5.2) is also in the main focus
of this thesis. In chapter 4 new RNN based RL approaches are presented, which
amongst others reconstruct the state space of a POMDP.

2.3 Dynamic Programming
The term dynamic programming (DP) refers to a group of algorithms, which can
be used to solve multi-state decision processes with a perfect model of the envi-
ronment, like MDP [89]. It is based on Bellman’s principle of optimality, which
can be formally written in the following form [6, 10]:

12 Reinforcement Learning

Theorem 2.1. Principle of Optimality
Let {u∗0,u∗1,u∗2,u∗3, . . .} be an action sequence resulting from an optimal policy
π∗ for the basic (fully observable) problem and assume that when using π∗ a
given state st occurs at time t with positive probability. Consider the sub-problem
whereby one is at st at time t and wishes to maximise the ”reward-to-go” from
time t on with a discount factor γ ∈ [0, 1]

∞∑
τ=t

γτ−tR(sτ+1)

Then the truncated action sequence {u∗t ,u∗t+1,u
∗
t+2, . . .} is optimal for this sub-

problem.

The explanation is quite intuitive. If the solution to the sub-problem was not
optimal, the total reward of the problem could be further increased by switching
to the optimal policy when being at state st. Hence, π∗ could not be optimal [10].
In return this implies that the optimal policy can be determined by solving step by
step the respective ”tail sub-problem”, which is the basic principle of the dynamic
programming algorithm [10].

Based on the principle of optimality DP operates on a so-called value function
V π(st), which represent the (expected) reward-to-go [10] for each system state st

given a policy π : S → U :

V π(st) = E

(
∞∑

τ=t

γτ−tR(sτ+1)

)
The DP algorithm, which is also called value iteration, aims at maximising the

value function by proceeding a backward iteration (k ∈ N)[10]:

Vk+1(st) = max
ut

∈U(st)

 ∑
st+1∈S

Tr(st+1|ut, st) [R(st+1) + γVk(st+1)]

 ∀t (2.1)

It has been shown to converge to the correct V ∗, the value function of the optimal
policy π∗ [6, 9, 42].

The maximisation of V is done over the policy space because the dynamics of
the state-action space is given by the underlying system respectively problem set-
ting. Typically one takes an intermediate step and regards a so-called Q-function,
which takes in addition to the value function also the chosen action ut into ac-
count. This allows for an evaluation of every state-action pair instead of the states
only. The Q-function is defined by

Qπ(st,ut) =
∑

st+1∈S

Tr(st+1|ut, st) [R(st+1) + γQπ(st+1, π(st+1))] ∀t.

2.3 Dynamic Programming 13

Furthermore, it is V π(st) = Qπ(st, π(st)) ∀t.
Analogue to V ∗ the optimal Q-function is set as

Q∗(st,ut) :=
∑

st+1∈S

Tr(st+1|ut, st) [R(st+1) + γV ∗(st+1)]

=
∑

st+1∈S

Tr(st+1|ut, st)

[
R(st+1) + γ max

ut+1
∈U(st+1)

Q∗(st+1,ut+1)

]
∀t

(2.2)
The latter (eq. 2.2) is called the Bellman optimality equation [6]. The optimal

policy π∗ is the one maximising the Q-function:

π∗(st) = arg max
ut

∈U(st)

Q∗(st,ut) ∀t

A variation to value iteration (eq. 2.1) is a so-called policy iteration [42, 89],
which directly takes the policy into account. Here, the value function is deter-
mined by doing a policy evaluation for a given policy πi (i, k ∈ N):

V πi
k+1(st) =

∑
st+1∈S

Tr(st+1|ut, st) [R(st+1) + γV πi
k (st+1)] ∀t

In fact, this is simply the expected infinite discounted reward, which will be gained
when following policy πi. In practical applications the equation is iterated until
|V πi

k+1(st) − V πi
k (st)| < ε ∀t, with ε > 0. In a second step policy iteration de-

termines whether this value could be improved by changing the immediate action
taken. This results in the following policy update:

πi+1(st) = arg max
ut

∈U(st)

 ∑
st+1∈S

Tr(st+1|ut, st) [R(st+1) + γV πi(st+1)]

 ∀t

The two steps are iterated until the policy becomes stable, i.e. πi = πi+1.
Comparing value and policy iteration it has been shown in practice that the

first is much faster per iteration but the latter needs fewer iterations. For both,
justifications have been brought up, why they are better suited for large problems.
Also modifications, especially with a focus on speed, have been developed [42].

Due to the requirement of a perfect model the standard DP algorithms are only
of limited utility for extensive RL or control problems. Still, they serve as a basis
for a couple of further developed methods, e.g. in combination with feedforward
neural networks [11]. Moreover, they can been seen as the foundation of modern
reinforcement learning [89].

14 Reinforcement Learning

2.4 Reinforcement Learning Methods
Several different RL methods have been developed over the last years. A good
introduction can be found in the book of Sutton and Barto [89]. In the following
a couple of algorithms are presented, which are either used as a benchmark in the
experiments of chapters 4 and 5 or are required as a reference.

There are many different ways to classify RL methods. A principle distinction
can be made between table-based and function approximation methods. Table-
based methods store the value of each state-action combination within a table. As
the size of the table is computationally limited, those methods are mainly applied
to RL problems with a low-dimensional discrete state space. Examples are Q-
learning (sec. 2.4.2) and adaptive heuristic critic (sec. 2.4.3). In contrast, function
approximation methods learn a mapping from state-action pairs to their respective
value. Those methods can be easier applied to higher dimensions and continuous
state and action pairs. Examples for those are temporal difference (TD-) methods
(sec. 2.4.1) on local basis functions [89] or with neural networks [91, 92] as well
as neural fitted Q-iteration [68].

Another important distinction can be made between model-free and model-
based algorithms. In short, model-free methods learn a controller without learn-
ing a model, i.e., without using the transition function Tr. They directly learn
from the available data without making a detour by building a model. This makes
them generally fast and also easy to implement. Model-based methods however
learn a model first and then use it to derive a controller. This requires additional
computation but makes them generally more data-efficient and hence better ap-
plicable to extensive real-world problems like a gas turbine (chap. 5), which can
hardly be controlled directly out of the available data. TD-learning (sec. 2.4.1)
and also Q-learning (sec. 2.4.2) for example are model-free whereas DP (sec. 2.3)
and prioritised sweeping (PS) (sec. 2.4.4) are model-based.

2.4.1 Temporal Difference Learning
Temporal difference (TD) learning [88] can be seen as a combination of dynamic
programming (sec. 2.3) and Monte-Carlo [52] ideas, as its methods bootstrap like
DP and directly learn from raw experience without a model of the dynamics [89].
Hence, in contrast to standard DP (sec. 2.3), TD-learning is model-free. In fact,
the iteration over the value function is done without any knowledge of the underly-
ing dynamics, i.e. the transition function is not explicitly taken into account. TD-
learning served as a basis for many further developed algorithms like Q-learning
(sec. 2.4.2) or SARSA [89]. They all focus on improving the basic method for
a certain problem class. Therefore standard TD-learning is rarely applied but the
extended algorithms are of high value for solving RL problems.

2.4 Reinforcement Learning Methods 15

The standard update rule for TD-learning is defined as

V (st)← V (st) + α[R(st+1) + γV (st+1)− V (st)]

with a learning rate α ∈ [0, 1], which can either be fixed or variable [89].
TD-learning can either be implemented table-based or with function approxi-

mation [89, 91, 92].

2.4.2 Q-Learning
Q-learning [93] represents an off-policy TD-algorithm and is considered to be
one of the ”most important breakthroughs in RL” [89]. Off-policy means that
in contrast to standard TD-learning (sec. 2.4.1) the algorithm iterates without the
assumption of a specific policy. It rather assumes that every state-action pair is
performed infinitely often, independent of a particular policy. In its original form
Q-learning is table-based. The different Q-values are all stored in a table, which
is updated during every iteration. As Q-learning is based on TD-learning it is also
model-free, which means that no knowledge about the underlying dynamics is
required. Its update rule is defined as follows:

Q(st,ut)← Q(st,ut) + α

(
R(st+1) + γ max

ut+1
∈U(st+1)

Q(st+1,ut+1)−Q(st,ut)

)

At hitherto, the learning rate α ∈ [0, 1] can be fixed or variable, which mainly
is a trade-off between efficiency and accuracy. Convergence can only be guaran-
teed with a decreasing α. Still, this is based on the assumption that the number of
observations goes to infinity. Since one focus of this thesis is data-efficiency, this
theoretic result is of minor interest. Hence, for the experiments in chapters 4 and
5 the learning rate is kept fixed.

Again, several extensions have been developed for Q-learning. Most important
is the replacement of the table by function approximation. In connection with
neural networks, especially neural fitted Q-iteration [68] has shown remarkable
results. Here the Q-values are approximated by a feedforward neural network
(eq. 3.1). In contrast to similar approaches past-time transition triples (st,ut, st+1)
are stored and reused. The updates are done offline on the basis of a batch of
transition triples, which are provided as inputs to the neural network. Thus, the
method significantly improves the learning quality and data-efficiency.

2.4.3 Adaptive Heuristic Critic
The adaptive heuristic critic algorithm (AHC) [5, 72] is an adaptive and model-
free version of policy iteration (sec. 2.3), in which the value function is computed

16 Reinforcement Learning

by TD-learning. Similar to this, the process of learning the policy is separated
from learning the value function. Basically the algorithm consists of two com-
ponents, a critic and a controller part. The controller determines the policy π by
maximising the heuristic value function V π determined by the critic. The critic
however learns the value function V π, given the policy determined by the con-
troller. In contrast to policy iteration, this is mostly done simultaneously although
only the alternating implementation has shown to converge under appropriate con-
ditions [100].

The AHC belongs to the class of actor-critic methods [45, 89]. Those all apply
the same principle by separating the learning of the value function and the one of
the controller. Over the last years all sorts of algorithms have been applied for
both components, two even with kinds of recurrent neural network [4, 62]. A
discussion on those is given in chapter 4.

2.4.4 Prioritised Sweeping
Prioritised Sweeping (PS) [55] is a model-based approach, which aims for the
advantages of both DP (sec. 2.3) and TD-learning (sec. 2.4.1). The algorithm is
very close to DP respectively value iteration (eq. 2.1) with the important difference
that a backup is only done for the values of those states whose estimated value
is changing significantly. For this PS keeps a list of states, prioritised by the
size of their changes. When the top state in the list is updated, the effect on
each of its predecessors is computed. If the effect is greater than some small
threshold, the pair is inserted in the list or updated with the new priority. In this
way the effects of changes are efficiently propagated backwards until some kind of
convergence [89]. In doing so, the algorithm needs less computation and is hence
much faster than standard DP. This is important when the number of states is
increasing. Still, PS is generally implemented table-based, which limits its use for
high-dimensional, real-world applications, e.g. control of a gas turbine (chap. 5).

2.4.5 Policy Gradient Methods
Policy gradient methods [90] represent the policy itself by a function approxima-
tor, which is independent of the value function and only updated according to the
gradient information of the expected reward with respect to the policy parame-
ters. By contrast to actor-critic methods (sec. 2.4.3), policy gradient methods not
even make use of the value function. They directly search in the policy space.
This resolves the disadvantage that a small shift of the value function can re-
sult in a decisive change of the policy. In contrast to value function approaches,
policy gradient methods circumvent those discontinuities by learning the policy
directly. Furthermore, they are known to be robust and to behave well in partially

2.5 Classification of the Regarded RL Problems 17

observable domains [45, 64, 90]. Still, they usually base on Monte-Carlo esti-
mations of the discounted future rewards [89], which implies that they are hardly
data-efficient. Latest results and examples for different kinds of policy gradient
methods can be found in [59, 70]. Besides, a conjunction of actor-critic and policy
gradient methods forms the natural actor-critic method [60].

Also the in chapter 4 developed recurrent control neural network can be clas-
sified as a form of policy gradient method. A deeper discussion on this is given in
section 4.4.

2.5 Classification of the Regarded RL Problems
There is a huge variety of RL-problems, depending on the respective setting and
the underlying objective. In the following the regarded problem class of the thesis
is described in detail and it is pointed out where the existing methods (sec. 2.4)
have drawbacks or even fail to produce satisfactory results. Practical applica-
tions, like the control of a gas turbine, mainly show four important characteristics:
High-dimensionality, partial-observability, continuous state and action spaces and
a limited amount of training data, which in turn requires data-efficiency.

2.5.1 High-Dimensionality
In practical applications high-dimensionality usually comes out of the large
amount of parameters, which influence the (extensive) dynamics of the regarded
RL-problem in one way or the other. Reducing the amount by e.g. feature selec-
tion might result in a loss of important information. In addition, as the amount of
data is often limited (sec. 2.5.4), it will be of advantage to take into account most
of the available information concerning states and actions. For that reason RL
methods, which are able to deal with high dimensions and which are easily scal-
able, are required. This basically excludes all table-based methods, as those are
not representable in large dimensions. Rather an accurate and efficient function
approximation is needed.

2.5.2 Partial-Observability
In plant control often several hundreds of state space variables (sec. 2.5.1) are
measured. Still, those are mostly insufficient to fully describe the system be-
haviour. In other words, real-world applications are generally partially observable
because it is either impossible or too expensive to observe all corresponding infor-
mation. In those cases an optimal system identification of the underlying dynam-
ics is beneficial. Hence, model-based approaches are of advantage as they first

18 Reinforcement Learning

reconstruct the system’s dynamics out of the observed data. However, the quality
of the model is crucial, as otherwise every policy learnt will be sub-optimal.

2.5.3 Continuous State and Action Spaces
Discrete state and action spaces, whereon most RL-methods focus, are rare in
real-world problems. In most cases both are continuous. Table-based methods can
handle those only with an appropriate discretisation, which tampers the problem.
An appropriate function approximation is therefore of avail.

2.5.4 Data-Efficiency
In real-world applications the amount of available data is generally limited.
Consequently, data-efficiency and generalisation capability are important require-
ments. It is hence of advantage to take the observed trajectories fully into account
and to use them as efficient as possible. So far, most approaches with a focus
on data-efficiency like least-squares policy-iteration [46] have the disadvantage
of not being directly applicable in partially observable environments. They also
possess practical limitations while applying them on continuous action spaces.

Classifying the presented RL methods (sec. 2.4) analogue to figure 1.1 accord-
ing to the four characteristics one achieves the following graphical representation:

Q
Learning

DP,
PS

AHC
TD

Learning

Policy
Gradient

Regarded
RL Problem
Class

D
at

a−
ef

fic
ie

nc
y

Complexity

Figure 2.4: Classification of the presented RL methods according to the four char-
acteristics of the regarded RL problem class. For simplicity high dimen-
sionality, partial observability and continuous state and action spaces are
again clustered as complex.

”The art of model-building is the exclusion of real but
irrelevant parts of the problem, and entails hazards for
the builder and the reader. The builder may leave out
something genuinely relevant; the reader, armed with
too sophisticated an experimental probe or too accurate
a computation, may take literally a schematised model
whose main aim is to be a demonstration of possibility.”

P. W. Anderson (from Nobel acceptance speech, 1977)
CHAPTER 3

System Identification with Recurrent
Neural Networks

System identification comprehends the process of learning a model out of an avail-
able amount of observed system data. Thereby it is of importance to capture the
main developments of the underlying system and hence to be able to generalise,
i.e. to explain the system evolvement beyond the observed data region. For this,
one needs amongst others to be able to build up memory, to learn long-term de-
pendencies, capture non-linearities and deal with high dimensions.

Basic time delay recurrent neural networks were already applied to system
identification in 1990 by Elman [17]. Similar types of recurrent networks were
developed in parallel by Williams and Zipser [101] or Giles et al. [23]. These
networks marked a starting point in system identification with recurrent neural
network research, as they seemed to offer the mentioned abilities. However, a
couple of problems, like the learning of long-term dependencies or the efficient
training of the networks, still had to be solved. For this reason various kinds of
recurrent networks have been developed, by what today the expression ”recurrent
neural network” is not clearly defined in literature. Although, they are all more
or less based on neural network techniques, their structure and functioning differs
substantially.

The recurrent neural networks (RNN) used in this thesis are in state space
model form. Their structure is based on the principle of finite unfolding in time
and a shared weight extension of the backpropagation algorithm. The focus is
on the mathematical modelling and the development of architectures instead of
new algorithms. However, Zimmermann [103, 111] could show that a network
architecture automatically implies the use of an adjoint solution algorithm for the
respective parameter identification problem. This correspondence between archi-
tecture and equations holds for simple as well as extensive network architectures
[106]. The application of backpropagation further allows for an easy extension

19

20 System Identification with RNN

of the networks, as the algorithm is local in the sense that all necessary informa-
tion is calculated at the affected place, which implies that no global information
storage is required. This has the advantage that training becomes more efficient
and that the networks can be adapted according to the regarded problem setting.
In doing so, one not only learns from data but can also integrate prior knowledge
into the modelling in form of architectural concepts. Moreover, in contrast to lin-
ear function approximators on local basis functions or with fixed local properties,
the proposed RNN have the advantage that by using global, sigmoidal activa-
tion functions, they are well able to cope with higher dimensions. Thus, they
are suited to break the curse of dimensionality [7]. It is further shown that they
are universal approximators and that they are well able to learn long-term depen-
dencies. These aspects are particularly important for the new connection with
reinforcement learning (chap. 4). So far, the outlined RNN architectures have
been mainly used for forecasting of e.g. foreign exchange rates or energy prices
[104, 107, 110]. However, one can profit from the developments and experiences
in this field for their application to RL problems (sec. 1.1).

Other recurrent networks, which have been developed with the particular in-
tention to overcome the problems of basic time-delay recurrent neural networks
[17, 23, 101] are for example echo-state [39, 40] and long short-term memory
(LSTM) networks [22, 37]. Echo-state networks [39, 40] are constructed like
feedforward neural networks, whereby the neurons in the hidden layer have re-
current but fixed connections. The only part that is learnt is a linear connection
between hidden and output layer. This allows for a fast training, but leaves out the
possibility to learn non-linearities, i.e., to adapt the features defined by the hidden
layer. The input data is simply increased to a higher dimensional recurrent hidden
layer, wherefrom the required information is taken to explain the desired output.
Therefore, echo state networks can also be seen as a special form of linear feature
selection. LSTM networks [22, 37] have again a completely different structure.
Those networks possess so-called memory cells, which act as an additional layer
to the network and store the essential inter-temporal information. They have been
developed with a special focus on long-term learning, like in speech recognition
[81]. However, despite their success in certain problem classes, in comparison
to RNN they are not able to integrate prior knowledge into the modelling and to
adapt the network accordingly. An overview of further developments on recurrent
neural networks can be found in the books of Haykin [33, 34], Kolen and Kremer
[44], Medsker and Jain [51], and Soofi and Cao [85].

In the following the outlined RNN are presented in detail. In preparation for
this, first feedforward neural networks are briefly described (sec. 3.1). This is
necessary as they serve as a basis for RNN. Besides, they are used to model the
policy in the developed recurrent control neural network (sec. 4.4). In section
3.2 RNN are introduced. Subsequent to that it is proven that RNN are universal

3.1 Feedforward Neural Networks 21

approximators in the sense that they can approximate any open dynamical system
(sec. 3.3). In section 3.4 the learning of RNN is described and analysed. Here,
it is especially shown that RNN are well able to learn long-term dependencies.
As already pointed out, being able to universally approximate and to learn long-
term dependencies are key requirements for the aspired connection of RNN with
reinforcement learning (chap. 4). Finally in section 3.5 a number of practical
issues are discussed, which have shown to be very useful for RNN modelling.

3.1 Feedforward Neural Networks
Multi-layer feedforward neural networks (FFNN), also called multi-layer percep-
trons (MLP), basically consist of an input, a number of hidden, and an output
layer. Between the different layers there is a weighted forward directed informa-
tion flow from the input layer over the hidden to the output layer. There are no
backward connections between or within the layers [33], which means that the
output of one layer cannot be used as an input to a previous or the same one.
FFNN therefore mainly serve for a static information processing or respectively
pattern matching.

Consider a three-layered FFNN, which is per definition composed of an input,
one hidden and an output layer. Let x1, . . . ,xt, . . . ,xT , with xt ∈ RI and I ∈ N,
and y1, . . . ,yt, . . . ,yT , with yt ∈ RN and N ∈ N, be the measured or given input
and respectively output data. Again, T ∈ N denotes the number of regarded data
patterns. Further, let J̄ ∈ N be the dimension of the single hidden layer.

A three-layered FFNN can then be represented by the following equation

ȳt = V · f(W · xt − θ) ∀t = 1, . . . , T , (3.1)

where W = (wji) j=1,...,J̄
i=1,...,I

∈ RJ̄×I and V = (vnj)n=1,...,N
j=1,...,J̄

∈ RN×J̄ are the weight

matrices between input and hidden and respectively hidden and output layer, θ ∈
RJ̄ is a bias, which handles offsets in the inputs, and f(·) : RJ̄ → RJ̄ an arbitrary,
but generally sigmoid (defn. 3.3), (non-linear) activation function.

Here, in short, the information flow proceeds as follows: The input vector xt

is transferred from the input layer to the hidden layer by a multiplication with the
weight matrix W . There, the neurons are mapped by the activation function f(·).
Finally the network’s output ȳt ∈ RN is calculated according to the weight matrix
V [33].

The network is trained by comparing its outputs ȳt with the given target values
yt and adapting the weights such that the error, i.e. the deviation between output
and target, becomes minimal (sec. 3.4). Therefore, neural networks in general
belong to the class of supervised learning.

22 System Identification with RNN

Remark 3.1. The hyperbolic tangent, tanh, has shown to be very suitable as an
activation function for most networks and applications due to its characteristics
like non-linearity, differentiability and its codomain (−1, 1), which allows posi-
tive and negative forward (and backward) flows within the network. The latter
corresponds to positive and negative influences of the weights on the next network
layer. Still, any other (sigmoid) activation function (def. 3.3) could be applied.

In any case it is important to note that in the context of artificial neural net-
works the computation of the activation function f(·) : RJ̄ → RJ̄ is defined
component-wise, i.e.,

f(Wxt − θ) :=


f(W1 · xt − θ1)

...
f(Wj · xt − θj)

...
f(WJ̄ · xt − θJ̄)

 (3.2)

where Wj (j = 1, . . . , J̄) denotes the j − th row of the matrix W .

It has been proven that a three-layered feedforward neural network (eq. 3.1)
is already able to approximate any measurable function on a compact domain
with an arbitrary accuracy [15, 19, 38]. The main steps of the respective proof of
Hornik, Stinchcombe and White [38] are given in section 3.3.1.

However, a disadvantage of FFNN is their lack of recurrence, which limits
the incorporation of inter-temporal dependencies. By construction they can only
perform a pattern matching from inputs to outputs, which makes their application
to (non-Markovian) dynamical systems questionable.

3.2 Recurrent Neural Networks
System identification with recurrent neural networks (RNN) originally refers to
open dynamical systems (fig. 3.1), which are analogue to equation 1.1 described
as a set of equations, consisting of a state transition and an output equation:1

st+1 = g(st,xt) state transition

yt = h(st) output equation
(3.3)

where g : RJ × RI → RJ , with J ∈ N, is a measurable and h : RJ → RN

a continuous function, xt ∈ RI represents the external inputs, st ∈ RJ the inner
states and yt ∈ RN the output of the system [79]. The state transition is a mapping

1Alternative descriptions can be found in [79].

3.2 Recurrent Neural Networks 23

from the internal hidden state of the system st and the external inputs xt to the
next state st+1. The output equation computes the observable output yt out of the
current state st [33, 109].

System
Dynamical

x

y

s

Figure 3.1: Open dynamical system with input x, hidden state s and output y.

The system can be seen as a partially observable autoregressive dynamic state
transition st → st+1 that is also driven by external forces xt. Without the external
inputs the system is called an autonomous system [33, 49]. However, most real-
world systems are driven by a superposition of an autonomous development and
external influences.

The task of identifying the open dynamical system of equation 3.3 can be
stated as the problem of finding (parametrised) functions ḡ and h̄ such that a dis-
tance measurement (eq. 3.4) between the observed data yt and the computed data
ȳt of the model is minimal:2

T∑
t=1

‖ȳt − yt‖2 → min
ḡ,h̄

(3.4)

If one makes the assumption that the state transition does not depend on st, i.e.,
yt = h(st) = h(g(xt−1)), one is back in the framework of FFNN (sec. 3.1). How-
ever, the inclusion of the internal hidden dynamics makes the modelling task much
harder, because it allows varying inter-temporal dependencies. Theoretically, in
the recurrent framework an event in state st+1 is explained by a superposition of
external inputs xt,xt−1, . . . from all the previous time steps [33].

The identification task of equations 3.3 and 3.4 can be easily modelled by a re-
current neural network. Again, let therefore I , J̄ , and N ∈ N denote respectively
the number of input, hidden and output neurons. For discrete time the basic RNN
is depicted as follows [33, 109]:

s̄t+1 = f(As̄t + Bxt − θ) state transition

ȳt = C s̄t output equation
(3.5)

2For other error functions see [57].

24 System Identification with RNN

Here, the (non-linear) state transition equation s̄t+1 ∈ RJ̄ (t = 1, . . . , T where
T ∈ N is the number of available patterns) is a non-linear combination of the
previous state s̄t ∈ RJ̄ and the external influences xt ∈ RI using weight matrices
A ∈ RJ̄×J̄ and B ∈ RJ̄×I , and a bias θ ∈ RJ̄ , which handles offsets in the input
variables xt ∈ RI . Note that the (non-linear) activation function f is applied
component-wise (eq. 3.2). The network output ȳt ∈ RN is computed from the
present state s̄t ∈ RJ̄ employing matrix C ∈ RN×J̄ . It is therefore a non-linear
composition applying the transformations A, B, and C. Note here that the state
space of the RNN s̄t ∈ RJ̄ (eq. 3.5) generally does not have the same dimension
as the one of the original open dynamical system st ∈ RJ (eq. 3.3), i.e., in most
cases it is J̄ 6= J . This basically depends on the system’s complexity and the
desired accuracy.

Training the RNN of equation (3.5) is equivalent to the described system iden-
tification (eq. 3.4) by specifying the functions ḡ and h̄ as a recurrent neural net-
work with weight matrices A, B, and C and a bias vector θ. In doing so, the
system identification task of equation 3.4 is transformed into a parameter optimi-
sation problem:

T∑
t=1

‖ȳt − yt‖2 → min
A,B,C,θ

(3.6)

In section 3.3.2 it is proven that RNN (eq. 3.5) are universal approximators,
as they can approximate any open dynamical system (eq. 3.3) with an arbitrary
accuracy.

3.2.1 Finite Unfolding in Time
The parameter optimisation problem of equation 3.6 can be solved by finite un-
folding in time using shared weight matrices A, B, and C [33, 71]. Shared weights
share the same memory for storing their weights, i.e., the weight values are the
same at each time step of the unfolding τ ∈ {1, . . . , T} and for every pattern t
[33, 71]. This guarantees that the dynamics stays the same in every time step. A
major advantage of RNN written in form of a state space model (eq. 3.5) is the
explicit correspondence between equations and architecture. It is easy to see that
by using unfolding in time the set of equations 3.5 can be directly transferred into
a spatial neural network architecture (fig. 3.2) [33, 71]. Here, circles indicate the
different clusters, whereat the hidden layer s̄τ also includes the (non-linear) tran-
sition function. Connections stand for the addition of the neurons of one layer (or
the bias) to another one, respectively multiplied by one of the weight matrices.

The recurrence of the system is approximated with a finite unfolding, which
truncates after a certain number of time steps m− ∈ N. Hereby, the determination

3.2 Recurrent Neural Networks 25

x

s

y

θ

xt−1xt−2xt−3

st−2 st−1

xt

y
t

yt+1

θ
st st+1

C

B

A

B B B

C

B

A A
C

y

C

y

C

t−1t−2

A

θ θ θθ
(...)

(...)

(...)

B

C
A

Figure 3.2: RNN with finite unfolding in time using shared weight matrices A, B
and C: The recurrent network on the left is transferred to the spatial
architecture on the right. Here, circles represent the different clusters,
whereas connections stand for the addition of one layer (or the bias)
to another one, respectively multiplied by one of the weight matrices.
The dashed connection and (. . .) indicate that the network can be finitely
further unfolded into the past.

of the correct amount of past time information needed to predict yt+1 can be de-
termined by a simple heuristic. Since the outputs are explained by more and more
external information, the error of the outputs is decreasing with each additional
time step from left to right until a minimum error is achieved. This saturation
level indicates the maximum number of time steps m−, which contribute relevant
information for modelling the present time state [109].

The unfolded RNN shown in figure 3.2 (right) can be trained with a shared
weights extension of the standard backpropagation algorithm (sec. 3.4.1). Due to
unfolding in time in comparison to equation 3.6 the corresponding optimisation
problem is only slightly altered into:

T∑
t=m−

t+1∑
τ=t−m−

‖ȳτ − yτ‖2 → min
A,B,C,θ

(3.7)

In contrast to typical FFNN (sec. 3.1), RNN are able to explicitly build up
memory. This allows the identification of inter-temporal dependencies. Further-
more, RNN contain less free parameters. In a FFNN an expansion of the delay
structure automatically increases the number of weights (fig. 3.3, left). In the
recurrent formulation, the shared matrices A, B, and C are reused when more
delayed input information from the past is needed (fig. 3.3, right).

Additionally, if weights are shared more often, more gradient information is
available for learning due to the numerous error flows when using backpropaga-
tion (sec. 3.4.1). As a consequence, potential overfitting is not as dangerous in

26 System Identification with RNN

Hidden

yt+1

xtxt−1xt−2xt−3
xt−1xt−2xt−3

st−2 st−1

xt

st

y
t

yt+1

θθ

st+1

V

W B B B

C

B

A A
C

y

C

y

C

t−1t−2

A

θ θ θθ
(...)

(...)

(...)

B

C
A

Figure 3.3: Comparison of feedforward and recurrent neural networks: An addi-
tional time step leads in the feedforward framework (left) to a higher
dimension of the input layer, whereas the number of free parameters re-
mains constant in RNN (right) due to the use of shared weights.

recurrent as in feedforward networks, which in turn implies that RNN are better
able to generalise. Moreover, due to the inclusion of temporal structure in the
network architecture, RNN are applicable to tasks where only a small training set
is available [109]. This qualifies their application for data-efficient RL.

3.2.2 Overshooting
In its simplest form RNN unfolded in time only provide a one-step prediction of
the variable of interest, ȳt+1 (fig. 3.2). Especially with regard to RL but also for
other decision support systems or simply multi-step forecasting this is generally
insufficient. Most often one wants to evaluate the system’s performance over a
certain period of time and hence needs a sequence of forecasts as an output. An
obvious generalisation of the network in figure 3.2 is therefore the extension of
the autonomous recurrence coded in matrix A, i.e., matrices A and C are further
iterated into future direction t + 1, t + 2, . . . [109]. The number of autonomous
iterations into the future, which is defined with m+ ∈ N, most often depends
on the required forecast horizon of the application, but can also be determined
analytically by regarding the error flow. The later can be done analogue to the de-
termination of the number of optimal unfolding steps into the past m− (sec. 3.2.1)
[109]. Note again that overshooting does not add new parameters, since the shared
weight matrices A and C are reused.

Altogether an RNN with overshooting can be described by the following set
of equations:

s̄τ+1 = f(As̄τ + Bxτ − θ) ∀τ ≤ t
s̄τ+1 = f(As̄τ − θ) ∀τ > t

ȳτ = C s̄τ

(3.8)

3.2 Recurrent Neural Networks 27

Figure 3.4 depicts the corresponding network architecture. Here, the dotted
connections indicate that the network can be (finitely) further unfolded into past
and future.

xt−1xt−2xt−3

st−1

xt

st

yt+1

st+1

B B B

C

B

A A
C

yt+3

st+3st+2

C

y

C

y

C

t−1t−2

C

t+2y

A

θ

A A

θ θ θ θθ

t
y

st−2

Figure 3.4: Overshooting extends the autonomous part of the dynamics into future
direction.

The most important property of the overshooting network (fig. 3.4) is the con-
catenation of an input-driven system and an autonomous system. One may argue
that the unfolding-in-time network (fig. 3.2) already consists of recurrent func-
tions and that this recurrent structure has the same modelling characteristics as
the overshooting network. This is not the case as the learning algorithm leads
to different models for each of the architectures. Learning with backpropagation
usually tries to model the relationship between the most recent inputs and the lat-
est output because the fastest adaptation takes place in the shortest path between
input and output [35]. Thus, the learning of yt+1 mainly focuses on xt. Only later
in the training process learning will also extract useful information from input
vectors xτ (t −m− ≤ τ < t), which are more distant from the output. As a con-
sequence, the simple RNN unfolded in time (fig. 3.2, right) tries to rely as much
as possible on the part of the dynamics that is driven by the most recent inputs
xt, . . . ,xt−k with k < m−. In contrast, the overshooting network (fig. 3.4) forces
learning to focus on modelling the autonomous dynamics of the system, i.e., it
supports the extraction of useful information from input vectors that are more dis-
tant to the output [109]. In extension to equation 3.7 the complete optimisation
problem for an RNN unfolded in time and with overshooting is

T−m+∑
t=m−

t+m+∑
τ=t−m−

‖ȳτ − yτ‖2 → min
A,B,C,θ

(3.9)

In summary, overshooting generates additional valuable forecast information
about the analysed dynamical system and stabilises learning. It also further en-
hances the generalisation ability of the RNN.

28 System Identification with RNN

3.2.3 Dynamical Consistency

RNN with overshooting have the problem of unavailable external information xτ

in the overshooting part (τ > t) of the network. Those are simply set to zero.
This might form a gap in the input information between past and future part of the
network, if it doesn’t correspond to the expected value of the inputs. Even then
neglecting the missing influences of future inputs is equivalent to the assumption
that the environment of the dynamics stays constant or respectively that the ex-
ternal influences are not significantly changing, when the network is iterated into
future direction. In other words the networks are not dynamically consistent [106].
Considering external variables with a high impact on the dynamics of interest like
control parameters, this becomes questionable. Especially in long-term forecasts,
it might lead to bad generalisation abilities.

RNN with dynamically consistent overshooting solve this problem by fore-
casting not only the variables of interest yτ but all environmental data xτ and
using the network’s own predictions for those, x̄τ , as a replacement for the un-
known future inputs xτ (τ > t). In doing so the expected future development
of the environment gets integrated into the modelling and the networks become
dynamically consistent. As a side effect this allows for an integrated modelling of
the dynamics of interest. Analogue to equations 3.8 and 3.9 RNN with dynami-
cally consistent overshooting can be described by the following set of equations
(eq. 3.10). Here, for τ ≤ t the state transition uses the available external infor-
mation xτ as inputs, whereas in the future part (τ > t) this gets replaced by the
network’s own predictions x̄τ .

s̄τ+1 = f(As̄τ + Bxτ − θ) ∀τ ≤ t
s̄τ+1 = f(As̄τ + Bx̄τ − θ) ∀τ > t

x̄τ = C s̄τ

T−m+∑
t=m−

t+m+∑
τ=t−m−

‖x̄τ − xτ‖2 → min
A,B,C,θ

(3.10)

Again, it can be easily represented in an architectural form (fig. 3.5), where in
the overshooting part (τ > t) of the network the (dashed) connections between
the outputs x̄τ and the states s̄τ provide dynamical consistency. Again, the dotted
connections indicate that the network can be (finitely) further unfolded into past
and future.

3.3 Universal Approximation 29

xt−1xt−2xt−3

st−1

xt

st

xt+1

st+1

B B B

C

B

A A
C

xt+3

st+3st+2

C

x

C

x

C

t−1t−2

C

t+2x

A

θ

A A

B B

θ θ θ θθ

t
x

st−2

Figure 3.5: RNN with dynamically consistent overshooting. The network now fore-
casts all environmental data xτ . Thus, the dashed connections between
output and hidden layer provide dynamical consistency.

3.3 Universal Approximation

In 1989 Hornik, Stinchcombe, and White [38] proved that any Borel-measurable
function on a compact domain can be approximated by a three-layered neural
feedforward network (sec. 3.1) with an arbitrary accuracy. In the same year Cy-
benko [15] and Funahashi [19] found similar results, each with different meth-
ods. Whereas the proof of Hornik, Stinchcombe, and White [38] is based on the
Stone-Weierstrass theorem [86, 94], Cybenko [15] makes in principle use of the
Hahn-Banach and Riesz theorem. Funahashi [19] mainly applies the Irie-Miyake
and the Kolmogorov-Arnold-Sprecher theorem.

Some work has already been done on the capability of RNN to approximate
measurable functions, e.g. [30]. In the following it is proven that RNN (sec. 3.2)
are able to approximate any open dynamical system with an arbitrary accuracy.
The proof is based on the work of Hornik, Stinchcombe and White [38]. Therefore
their definitions and main results are recalled in section 3.3.1.

3.3.1 Universal Approximation by FFNN

Definition 3.1. Let AI with I ∈ N be the set of all affine mappings A(x) = w·x−θ
from RI to R with w,x ∈ RI and θ ∈ R. ‘·’ denotes the scalar product.

Transferred to neural networks x corresponds to the input, w to the network
weights and θ to the bias.

Definition 3.2. For any (Borel-)measurable function f(·) : R→ R and I ∈ N be

30 System Identification with RNN

∑I(f) the class of functions

{NN : RI → R : NN(x) =
∑J̄

j=1 vjf(Aj(x))

x ∈ RI , vj ∈ R, Aj ∈ AI , J̄ ∈ N}.

Here NN stands for a three-layered feedforward neural network (sec. 3.1)
with I input-neurons, J̄ hidden-neurons and one output-neuron. vj denotes the
weights between hidden- and output-neurons. f is an arbitrary activation function
(sec. 3.2).

Remark 3.2. The function class
∑I(f) can also be written in matrix form

NN(x) = vf(Wx− θ)

where x ∈ RI , v, θ ∈ RJ̄ , and W ∈ RJ̄×I .
Recall, that in this context the computation of the function f(·) : RJ̄ → RJ̄ is

defined component-wise (eq. 3.2).

Definition 3.3. A function f is called a sigmoid function, if f is monotonically
increasing and bounded, i.e.,

f(a) ∈ [α, β], whereas lim
a→−∞

f(a) = α

and lim
a→∞

f(a) = β

with α, β ∈ R and α < β.

Definition 3.4. Let CI andMI be the sets of all continuous and respectively all
Borel-measurable functions from RI to R. Further denote BI the Borel-σ-algebra
of RI and (RI , BI) the I-dimensional Borel-measurable space.

MI contains all functions relevant for applications. CI is a subset of it. Con-
sequently, for every Borel-measurable function f the class

∑I(f) belongs to the
setMI and for every continuous f to its subset CI .

Definition 3.5. A subset S of a metric space (X, ρ) is ρ-dense in a subset T , if
there exists, for any ε > 0 and any t ∈ T , s ∈ S, such that ρ(s, t) < ε.

This means that every element of S can approximate any element of T with
an arbitrary accuracy. In the following T and X are replaced by CI andMI and
S by

∑I(f) with an arbitrary but fixed f . The metric ρ is chosen accordingly.

Definition 3.6. A subset S of CI is uniformly dense on a compact domain in CI ,
if, for any compact subset K ⊂ RI , S is ρK-dense in CI , where for f, g ∈ CI

ρK(f, g) ≡ supx∈K |f(x)− g(x)|.

3.3 Universal Approximation 31

Definition 3.7. Given a probability measure µ on (RI , BI), the metric ρµ :MI ×
MI → R+ be defined as follows

ρµ(f, g) = inf{ε > 0 : µ{x : |f(x)− g(x)| > ε} < ε}.

Theorem 3.1. (Universal approximation theorem for FFNN)
For any sigmoid activation function f , any dimension I and any probability mea-
sure µ on (RI , BI),

∑I(f) is uniformly dense on a compact domain in CI and
ρµ-dense inMI .

Proof. The full proof of the theorem can be found in [38]. Its main steps are as
follows: First the theorem is proven for an extended class of functions

∑
ΠI(f),

which is defined as {F : RI → R : F (x) =
∑J̄

j=1 vjΠ
l
k=1f(Aj(x)) x ∈

RI , vj ∈ R, Aj ∈ AI , J̄ , l ∈ N}, by applying the Stone-Weierstrass theorem
[86, 94]. The transfer from the extended function class,

∑
ΠI(f), to the original

one,
∑I(f), is then done with the help of the trigonometric equation. According

to this, functions of the class
∑

ΠI(cos) can be rewritten in the form of
∑I(cos).

Finally, by using the cosine squasher of Gallant and White[20] it is shown that
any function of the form

∑I(cos) can be approximated by one of
∑I(f), which

proves the theorem.
The theorem states that a three-layered feedforward neural network is able to

approximate any continuous function uniformly on a compact domain and any
measurable function in the ρµ-metric with an arbitrary accuracy. The proposition
is independent of the applied sigmoid activation function f (def. 3.3), the dimen-
sion of the input space I , and the underlying probability measure µ. Consequently
three-layered FFNN are universal approximators.

Theorem 3.1 is only valid for FFNN with I input-, J̄ hidden- and a single
output-neuron. Accordingly, only functions from RI to R can be approximated.
However with a simple extension it can be shown that the theorem holds for net-
works with a multiple output (cor. 3.1).

For this, the set of all continuous functions from RI to RN , I, N ∈ N, be
denoted by CI,N and the one of (Borel-)measurable functions from RI to RN by
MI,N respectively. The function class

∑I gets extended to
∑I,N by (re-)defining

the weights vj (j = 1, . . . , J̄) in definition 3.2 as N × 1 vectors. In matrix-form
the class

∑I,N is then given by

NN(x) = V f(Wx− θ)

with x ∈ RI , θ ∈ RJ̄ , W ∈ RJ̄×I , and V ∈ RN×J̄ . The computation of the
function f(·) : RJ̄ → RJ̄ be once more defined component-wise (rem. 3.2).

In the following, function g : RI → RN has got the elements gk, k =
1, . . . , N .

32 System Identification with RNN

Corollary 3.1. Theorem 3.1 holds for the approximation of functions in CI,N and
MI,N by the extended function class

∑I,N . Thereby the metric ρµ is replaced by
ρN

µ :=
∑N

k=1 ρµ(fk, gk).

Proof. [38].
Consequently three-layered multi-output FFNN are universal approximators

for vector-valued functions.

3.3.2 Universal Approximation by RNN
The universal approximation theorem for feedforward neural networks (theo. 3.1)
proves that any (Borel-)measurable function can be approximated by a three-
layered FFNN. Based on this it is now proven that RNN in state space model form
(eq. 3.5) are also universal approximators and able to approximate any open dy-
namical system (eq. 3.3) with an arbitrary accuracy. The proof resolves a couple of
major difficulties. First the results for FFNN approximating functions (sec. 3.3.1)
has to be transferred to RNN mapping open dynamical systems. Here, especially
the effect of recurrence has to be taken into account. One also has to pay attention
at the different dimensions. Furthermore, the output equation of the open dynam-
ical system (eq. 3.3) is in contrast to the one of the RNN (eq. 3.5) non-linear.
Therefore its non-linearity has to be incorporated into the state equation of the
RNN.

Definition 3.8. For any (Borel-)measurable function f(·) : RJ̄ → RJ̄ and
I, N, T ∈ N be RNN I,N(f) the class of functions

s̄t+1 = f(As̄t + Bxt − θ)
ȳt = C s̄t .

Thereby be xt ∈ RI , s̄t ∈ RJ̄ , and ȳt ∈ RN , with t = 1, . . . , T . Further be the
matrices A ∈ RJ̄×J̄ , B ∈ RJ̄×I , and C ∈ RN×J̄ and the bias θ ∈ RJ̄ . In the
following, analogue to remark 3.2, the calculation of the function f be defined
component-wise, i.e.,

(̄st+1)j = f(Aj s̄t + Bjxt − θj),

where Aj and Bj (j = 1, . . . , J̄) denote the j − th row of the matrices A and B
respectively.

It is obvious that the class RNN I,N(f) is equivalent to the RNN in state space
model form (eq. 3.5). Analogue to its description in section 3.2 as well as defini-
tion 3.2, I stands for the number of input-neurons, J̄ for the number of hidden-
neurons and N for the number of output-neurons. xt denotes the external inputs,

3.3 Universal Approximation 33

s̄t the inner states and ȳt the outputs of the RNN (t = 1, . . . , T). The matri-
ces A, B, and C correspond to the weight-matrices between hidden- and hidden-,
input- and hidden-, and hidden- and output-neurons. f is an arbitrary activation
function.

Theorem 3.2. (Universal approximation theorem for RNN)
Let g : RJ × RI → RJ be measurable and h : RJ → RN be continuous, the
external inputs xt ∈ RI , the inner states st ∈ RJ , and the outputs yt ∈ RN

(t = 1, . . . , T). Then, any open dynamical system of the form

st+1 = g(st,xt)
yt = h(st)

can be approximated by an element of the function class RNN I,N(f) (def. 3.8)
with an arbitrary accuracy, where f is a continuous sigmoidal activation function
(def. 3.3).

Proof. The proof is given in two steps. Thereby the equations of the dynamical
system are traced back to the representation by a three-layered FFNN.

In the first step, it is concluded that the state space equation of the open dy-
namical system, st+1 = g(st,xt), can be approximated by a neural network of the
form s̄t+1 = f(As̄t + Bxt − θ) for all t = 1, . . . , T .

Let now be ε > 0 and f : RJ̄ → RJ̄ be a continuous sigmoid activation
function. Further let K ⊂ RJ × RI be a compact set, which contains (st,xt)
and (̄st,xt) for all t = 1, . . . , T . From the universal approximation theorem for
FFNN (theo. 3.1) and the subsequent corollary (cor. 3.1) it is known that for any
measurable function g(st,xt) : RJ × RI → RJ and for an arbitrary δ > 0, a
function

NN(st,xt) = V f(W st + Bxt − θ̄),

with weight matrices V ∈ RJ×J̄ , W ∈ RJ̄×J and B ∈ RJ̄×I and a bias θ̄ ∈ RJ̄

exists, such that

sup
st,xt∈K

‖g(st,xt)−NN(st,xt)‖∞ < δ ∀t = 1, . . . , T. (3.11)

As f is continuous and T finite, there exists a δ > 0, such that according to the
ε-δ-criterion one gets out of equation (3.11) that for the dynamics

s̄t+1 = V f(W s̄t + Bxt − θ̄)

the following condition holds

‖st − s̄t‖∞ < ε ∀ t = 1, . . . , T. (3.12)

34 System Identification with RNN

Further let
s′t+1 := f(W s̄t + Bxt − θ̄)

which gives that
s̄t = V s′t. (3.13)

With the help of a variable transformation from s̄t to s′t and the replacement A :=
WV (∈ RJ̄×J̄), one gets the desired function on state s′t:

s′t+1 = f(As′t + Bxt − θ̄) (3.14)

Remark 3.3. The transformation from s̄t to s′t might involve an enlargement of
the internal state space dimension.

In the second step it is shown that the output equation yt = h(st) can be
approximated by a neural network of the form ȳt = C s̄t. Thereby one has to
cope with the additional challenge, to approach the non-linear function h(st) of
the open dynamical system by a linear equation C s̄t.

Let ε̃ > 0. As h is continuous per definition, there exists an ε > 0, such
that (according to the ε-δ-criterion) out of ‖st − s̄t‖∞ < ε (eq. 3.12) follows that
‖h(st) − h(̄st)‖∞ < ε̃. Consequently it is sufficient to show that ŷt = h(̄st) can
be approximated by a function of the form ȳt = C s̄t with an arbitrary accuracy.
The proposition then follows out of the triangle inequality.

Once more the universal approximation theorem for FFNN (theo. 3.1) and the
subsequent corollary (cor. 3.1) are used, which gives that equation

ŷt = h(̄st)

can be approximated by a feedforward neural network of the form

ȳt = Nf(M s̄t − θ̂)

where N ∈ RN×Ĵ and M ∈ RĴ×J be suitable weight matrices, f : RĴ → RĴ

a sigmoid activation function, and θ̂ ∈ RĴ a bias. According to equations (3.13)
and (3.14) it is known that s̄t = V s′t and s′t = f(As′t−1 +Bxt−1− θ̄). By insertion
one gets

ȳt = Nf(M s̄t − θ̂)

= Nf(MV s′t − θ̂)

= Nf(MV f(As′t−1 + Bxt−1 − θ̄)− θ̂). (3.15)

Using again theorem 3.1 equation (3.15) can be approximated by

ỹt = Df(Es′t−1 + Fxt−1 − θ̃) , (3.16)

3.4 Training of RNN 35

with suitable weight matrices D ∈ RN× ¯̄J , E ∈ R ¯̄J×J̄ , and F ∈ R ¯̄J×I , a bias
θ̃ ∈ R ¯̄J , and a (continuous) sigmoid activation function f : R ¯̄J → R ¯̄J .

If one further sets

rt+1 := f(Es′t + Fxt − θ̃) (∈ R
¯̄J)

and enlarges the system equations (3.14) and (3.16) about this additional compo-
nent, one achieves the following form(

s′t+1

rt+1

)
= f

((
A 0
E 0

)(
s′t
rt

)
+

(
B
F

)
xt −

(
θ̄

θ̃

))
ỹt = (0 D)

(
s′t
rt

)
.

Their equivalence to the original equations (3.14) and (3.16) is easy to see by a
component-wise computation.

Finally out of

J̃ := J̄ + ¯̄J, s̃t :=

(
s′t
rt

)
∈ RJ̃ ,

Ã :=

(
A 0
E 0

)
∈ RJ̃×J̃ , B̃ :=

(
B
F

)
∈ RJ̃×I ,

C̃ := (0 D) ∈ RN×J̃ and θ :=

(
θ̄

θ̃

)
∈ RJ̃ ,

follows
s̃t+1 = f(Ãs̃t + B̃xt − θ)

ỹt = C̃ s̃t .
(3.17)

Equation (3.17) is apparently an element of the function class RNN I,N(f). Thus,
the theorem is proven.

A further extension of the proof to other open dynamical systems and nor-
malised RNN [106] can be found in [79].

3.4 Training of Recurrent Neural Networks
Training of neural networks is an important factor, as it is essential for the qual-
ity, speed and robustness in approximation of the networks. Especially with RNN
many researchers apparently see a challenge in finding an optimal training algo-
rithm and even claim that certain structures are impossible to learn with those

36 System Identification with RNN

networks [36]. For that reason also new recurrent networks have been developed,
like the mentioned echo-state [39] and LSTM [37] networks, which aim at cir-
cumventing the apparent learning problem. Besides many different algorithms
for recurrent but especially for feedforward neural networks have been proposed,
each with a different focus on performance improvement, e.g. [57, 58, 67, 69, 83].

To show that training of RNN is not a major problem or particularly difficult,
its main aspects are presented in this section. First the already mentioned shared
weights extension of the standard backpropagation algorithm [71, 95, 97] is briefly
explained (sec. 3.4.1). Subsequent, in section 3.4.2, two different learning meth-
ods based on the gradient calculation of the backpropagation algorithm are given.
Here, the focus is on accuracy in combination with robustness instead of speed, as
especially for system identification and reinforcement learning, the quality of the
performance is considered as the crucial issue. In section 3.4.3 finally the often
doubted and criticised aspect of long-term learning is analysed. It is shown that
RNN are in contrast to an often cited statement well able to identify and learn
long-term dependencies.

3.4.1 Shared Weight Extended Backpropagation

Originally the backpropagation algorithm was invented by Paul Werbos in his
PhD-thesis [95]. Still, it was not widely recognised until the (re-)invention of
Rumelhart and McClelland in 1986 [71]. Further developments about the algo-
rithm are summarised in [97].

The backpropagation algorithm is an efficient method for the gradient calcula-
tion of the error function with respect to the weights of a neural network. The error
gradient can then be used to optimise the network’s weights with the objective to
minimise the difference between output and target. Hereby nearly any kind of
mathematical optimisation method [24, 48] can be applied, whereas a couple, like
pattern-by-pattern (sec. 3.4.2.1) and vario-eta learning (sec. 3.4.2.2), have proven
their practicality.

For an application of the standard backpropagation algorithm to the presented
RNN only a slight modification is necessary. Due to unfolding in time and shared
weights (sec. 3.2) the principle structure of the algorithm remains unchanged [71].

The required adjustments in comparison to standard backpropagation are in
the following illustrated on the example of three-layered FFNN. Thereby, the
assumption is made that the weight matrices between input and hidden layer
W ∈ RJ̄×I with the entries wji and between hidden and output layer V ∈ RN×J̄

with the entries vnj are shared. For two arbitrary but fixed weights wji and vnj ,
this implies that

w := wji = vnj

3.4 Training of RNN 37

Assuming the quadratic error function3

E(w) =
1

2
‖ȳ − y‖22 =

1

2

N∑
n=1

(ȳn − yn)2 (3.18)

the global partial derivative to the weight w is derived by making use of the
product- and chain-rule:

∂E

∂w
= (ȳn − yn)

∂ȳn

∂ȳin
n

∂ȳin
n

∂vnj

+
N∑

n=1

(ȳn − yn)
∂ȳn

∂ȳin
n

∂ȳin
n

∂s̄out
j

∂s̄out
j

∂s̄in
j

∂s̄in
j

∂wji

= (ȳn − yn)s̄out
j + f ′(s̄in

j)
N∑

n=1

vnj(ȳn − yn)xout
i

(3.19)

Taking a deeper look at equation 3.19 it turns out that the calculation of the
global partial derivative of weight w is simply the sum of the two local ones of
the weights vnj and wji [28, 71]. Those can be easily determined by the standard
backpropagation algorithm [95, 97]. Therefore the extension of the backpropa-
gation algorithm to shared weights is simply done by adding a summation of the
respective shared local partial derivatives.

The notation of equation 3.19 can be simplified by setting

∆n = (ȳn − yn)

δj = f ′(s̄in
j)

N∑
n=1

∆nvnj .

Using those, equation 3.19 becomes by insertion:

∂E

∂w
= ∆n · s̄out

j + δj · xout
i

Figure 3.6 depicts the extended gradient calculation. Analogue to the standard
backpropagation algorithm [95, 97], the local partial derivatives of the weights
vnj and wji are determined by the forward and backward flow of the network.
However, the local derivatives are saved separately for each weight during the
backward iteration. Not until all those are calculated, the extended algorithm de-
termines the complete partial derivative of a weight w by summing the respective
stored local ones [28, 71]. Proceeding this way also the backpropagation algo-
rithm for shared weights stays local, i.e., it only applies values calculated at the

3Here, for simplicity the pattern index t is omitted.

38 System Identification with RNN

out
ijij

in w xΣ
i = 1

s =
I

in
i
out

i ix = x = x

out
nn

in
ny = y = y

in
j

out
j

nj
v

ji
w

j j
in

n∆Σ
n = 1

N

nj
vδ = f’(s)

n
out
j∆ s i

outδj x
d E

d w
= +

n n

n
out
j∆ s

i
outδj x

ji

nj

njn
in

j
out

Output: n = 1,...,N

Hidden: j = 1, ..,J

Input: i = 1,...,I

Output Target

s = f(s)

∆ =
n

(y − y)

d E

d w
=

d E

d v
=

J

Σ v s
j = 1

y =

Figure 3.6: Extension of the backpropagation algorithm to shared weights on the
example of a simple three-layered FFNN with the constraint that w :=
vnj = wji. For simplicity the pattern index t is omitted [28].

required position and not somewhere else in the architecture. This is important
for the extendability of the algorithm and respectively the recurrent networks.

The application of the extended backpropagation algorithm to RNN is due to
unfolding in time and the described connection to FFNN straight forward [28].

3.4.2 Learning Methods

In the following two different learning methods for neural networks are shortly
presented: pattern-by-pattern (sec. 3.4.2.1) and vario-eta learning (sec. 3.4.2.2).
For simplification, the learning rate is assumed to be fixed. In practice it is also
often either reduced manually during training or adjusted according to an algo-
rithm like simulated annealing [43]. As already pointed out, several other learning
algorithms for neural networks have been developed, like Rprop [67, 69] or rapid
stochastic gradient descent [83]. For recurrent neural networks some of them are
summarised in Pearlmutter [58]. However, the following two have shown to be
very useful for training the regarded RNN (sec. 3.2). They have the particular ad-
vantage that they implicitly posses a stochastic term, which allows to leave local

3.4 Training of RNN 39

minima for a global one. Furthermore, they both regularise learning through an
implicit penalty term, which avoids large curvature of the error curve and conse-
quently favours flat minima. This assures a good performance also under noisy
data, because it prevents that a small weight shift might result in a large increase
of the error value [57]. Besides, they are easily scalable into high dimensions and
only require local gradient information, which is both important for the extend-
ability of the networks.

3.4.2.1 Pattern-by-Pattern Learning

The pattern-by-pattern learning algorithm corresponds to (standard) gradient de-
scent [24, 48] with the important difference that the weights are updated after
each training pattern [57]. Thus, the batch size is one, which results in the follow-
ing learning rule for an arbitrary but fixed weight wl ∈ R (l = 1, . . . , L, where
L ∈ N denotes the number of weights in the network), and for each training pat-
tern t = 1, . . . , T

wl ← wl − η
∂Et

∂wl

= wl − ηglt , (3.20)

where η ∈ R+ denotes the learning rate and glt = ∂Et

∂wl
the gradient for a pattern t

with respect to wl (sec. 3.4.1). Thereby, the pattern are generally chosen randomly
out of the training data to explore the solution space more efficiently [57].

Rewriting equation 3.20, with gl = ∂E
∂wl

= 1
T

∑T
t=1 glt as the cumulative gradi-

ent, it becomes obvious that the pattern-by-pattern learning rule exhibits a stochas-
tic component [57]:

wl ← wl − ηgl − η(glt − gl)

In this form the learning rule consists of the cumulative gradient gl, with a ten-
dency to local minima, and a perturbation term (glt − gl), which acts against it.
The latter is in contrast to gl unequal to zero in a local minima. Therefore it helps
to leave a local minimum for a global one during the learning process.

For the mentioned regularisation effect one regards the expected value of the
error function E(wl) (eq. 3.18) while learning. Around local minima one can
assume that the gradients glt are i.i.d. (independent and identically distributed)
with mean zero and a variance vector var(gl). Further assuming that the first and
second derivatives are stable close to local minima, the expected value of the error
function [E(wl)] can, by Taylor expansion, be approximated as follows

[E(wl)] ≈
1

T

T∑
t=1

E(wl − ηglt) = E(wl) +
η2

2

L∑
l=1

var(gl)
∂2E

∂w2
l

. (3.21)

Consequently pattern-by-pattern learning possesses an implicit local penalty
term var(gl), which represents the stability or respectively uncertainty in the

40 System Identification with RNN

weights wl (l = 1, . . . , L). In a local minimum the sum of the gradients of a
particular weight wl is zero, whereas the variance var(gl) can be very large. In
this case the solution is susceptible to disturbances. The regularising penalty term
now causes a tendency towards flat or stable minima and therefore decreases the
uncertainty through varying gradient information [57].

3.4.2.2 Vario-Eta Learning

The vario-eta learning rule equals to a stochastic approximation of the Newton
method [24, 48] and therefore belongs to the class of quasi-Newton methods [24,
48]. Thereby the inverse of the Hessian is approximated or respectively replaced,
by the standard deviation of the particular gradients glt for each weight wl (l =
1, . . . , L). In doing so, vario-eta uses, according to its name, a variable factor,

1√
1
T

PT
t=1(glt

−gl)2
in addition to the learning rate η [57]. Consequently an arbitrary

but fixed weight wl is updated as follows

wl ← wl −
η√

1
T

∑T
t=1(glt − gl)2

N∑
t=1

glt

where N ≤ T denotes the implemented batch size. The additional variable factor
effects that the learning rate is scaled according to the standard deviation of the
several gradients glt . It is increased when the standard deviation is low and de-
creased when it is high. Therefore the achievement of an optimum is accelerated
[28]. The batch size is generally kept small to achieve, analogue to pattern-by-
pattern learning (sec. 3.4.2.1), a stochastic effect during learning [28, 57].

Note that the effected re-scaling of the gradient in every time step also con-
tradicts the alleged vanishing of the gradient flow in RNN [8, 35, 36]. Here, the
scaling factor serves as a reprocessing of the error information for each weight,
independent of its position in the network [57, 109]. A more detailed analysis of
the corresponding learning of long-term dependencies is given in section 3.4.3.

Similar to pattern-by-pattern learning (sec. 3.4.2.1) also vario-eta possess a
regularisation towards stable minima. Analogue to equation 3.21, with batch size
N = 1 the weight update of this method, − η√

1
T

PT
t=1(glt

−gl)2
glt , leads to an ex-

pected value of the error function

[E(wl)] ≈
1

T

T∑
t=1

E(wl −
η√

1
T

∑T
t=1(glt − gl)2

glt) = E(wl) +
η2

2

L∑
l=1

∂2E

∂w2
l

.

However, in comparison to pattern-by-pattern learning this penalty term is only
global, as the (local) variance term var(gl) has been cancelled down. This can be

3.4 Training of RNN 41

of disadvantage especially in high dimensions [57].
Due to the different properties of vario-eta and pattern-by-pattern learning, in

Neuneier and Zimmermann [57] an iterative application is proposed. Here, the
network is first trained to a minimum with vario-eta and afterwards optimised by
pattern-by-pattern learning.

3.4.3 Learning Long-Term Dependencies
Despite the presented properties and advantages of RNN unfolded in time, there
is often a negative attitude towards them. One reason is, that it has been claimed
by several authors that RNN are unable to identify and learn long-term depen-
dencies of more than ten time steps [8, 35, 36]. To overcome the stated dilemma
new forms of recurrent networks like for example the already mentioned LSTM
networks [37] were developed. Still, these networks do not offer the described
correspondence, i.e., the mutual transferability, between equations and architec-
tures as RNN unfolded in time do.

However, the analysis in the mentioned papers [8, 35, 36] were all based on
basic RNN architectures simulating closed dynamical systems, which do not con-
sider any external inputs. Even more important, they were made from a static
perspective, which means that for the presented calculations only RNN with fixed
weights were assumed whereas the effect of learning and weight adaption was
not taken into account. In the following the statement that RNN unfolded in
time and trained with a shared weight extension of the backpropagation algorithm
(sec. 3.4.1) are in general unable to learn long-term dependencies is therefore
refuted. It is shown that basic RNN (sec. 3.2) have no difficulties with an identi-
fication and learning of past-time information within the data, which is more than
ten time steps apart. In addition it is pointed out that by using shared weights,
training of these networks even helps to overcome the problem of a vanishing gra-
dient [8, 35, 36] as the networks possess a self-regularisation characteristic, which
adapts the internal error backflow.

A very simple but well-known problem is used to demonstrate the ability of
learning long-term dependencies of RNN (sec. 3.2): the prediction of periodic
indicators in a time series. Therefore time series of 10000 random values, which
are uniformly distributed on an interval [−r, r] with r ∈ R and 0 ≤ r < 1, were
created. Every d-th value, with d ∈ N is 1. By construction these time indicators
are the only predictable values for the network. Consequently, for a successful
solution to the problem the network has to remember the occurrence of the last 1,
d-time steps before in the time series. In other words, it has to be able to learn
long-term dependencies. The higher the d the longer memory is necessary. The
first 5000 data points were used for training whereas the other half served for
testing.

42 System Identification with RNN

Similar problems have already been studied in [35] and [37]. In both pa-
pers the performance of the thereby considered recurrent networks trained with
backpropagation through time [102] has been tested to be unsatisfactory and the
authors concluded that RNN are not suited for the learning of long-term depen-
dencies.

3.4.3.1 Model Description

An RNN (sec. 3.2) with one input xτ per time step τ ≤ t in the past and a single
output yt+1 in the future was applied. In contrast to the descriptions in section 3.2
no outputs were implemented in the past part of the network, as those would not
help to solve the problem. This implies that the gradient information of the error
function had to be propagated back from the future output to all past time steps.
It also avoided a superposition of the long-term gradient information with a local
error flow in the past. Therefore the omission of outputs in the past also eased the
analysis of the error backflow.

The network was unfolded a hundred time steps into the past. No overshooting
was implemented. This kept the RNN as simple as possible to show that even
such a basic RNN is able to learn long-term dependencies. Thus, total unfolding
amounted to 101 time steps. The dimension of the internal state s̄ was set to 100,
which was equivalent to the amount of past unfolding. Input and output were one
dimensional consisting of the time series information at a time. The architecture
of the network is depicted in figure 3.7.

xt−1xt−2

st−1

xt

st

yt+1

θ

xt−100

st−99

xt−3

st−2 st+1

B B

C

B

A AA

θ θθ
(...)

(...)

B

AA

B

θ

B

θ

Figure 3.7: RNN architecture used for the long-term learning experiment. Accord-
ing to the problem setting it is A ∈ R100×100, B ∈ R100×1, C ∈ R1×100,
and θ ∈ R100.

The weights were initialised randomly with a uniform distribution on
[−0.2, 0.2]. In all hidden units the hyperbolic tangent was implemented as activa-
tion function f . Furthermore, the quadratic error function was used to minimise
the difference between network output and target (eq. 3.6). The RNN was trained

3.4 Training of RNN 43

with the shared weight extension of the backpropagation algorithm (sec. 3.4.1) in
combination with pattern-by-pattern learning (sec. 3.4.2.1). The learning rate η
was set to 10−4, which is a good trade-off between speed and accuracy. The learn-
ing was restricted to this rather simple algorithm to strengthen the significance of
the experiments. Otherwise also vario-eta learning (sec. 3.4.2.2) could be applied,
which, as already mentioned, inherently avoids a vanishing gradient.

3.4.3.2 Results

An error limit was defined, which marks the optimal achievable error for each
problem plus a 10% tolerance. For r > 0 it is calculated by the variance of the
uniform distribution given a certain noise range r, assuming no error for the time
indicators in every d-th time step and adding 10%. For r = 0 it is set to 0.0001,
which gives together:

error limit =

{
0.0001 for r = 0

1.1 · d−1
d
· r2

3
for r > 0

(3.22)

Table 3.1 summarises the results for different time gaps d and several noise
ranges r. It shows the median, the average number (mean) and the standard de-
viation (STD) of epochs the RNN needed to pass the error limit (eq. 3.22) on the
test set for a minimum of 15 trials each. Hereby, not the actual value but rather
the fact that the networks are able to learn the given task within a limited number
of epochs is of importance. As already pointed out, the former could most likely
be decreased by applying a problem-dependent learning method.

The results demonstrate the capability of a basic RNN to learn long-term de-
pendencies of d = 40, 60 and even 100, which is obviously more than the often
cited limit of ten time steps [36]. As expected, a larger gap d resulted in more
learning epochs for the RNN to succeed. Also a higher noise range, i.e., a larger
uniform distribution of the data, made it more challenging for the network to iden-
tify the time indicators. Still, even in more difficult settings, the RNN captured
the structure of the problem very quickly.

Using smaller dimensions for the internal state s̄ and hence for the transition
matrix A increased the number of epochs necessary to learn the problem. This is
due to the fact that the network needs a certain dimension to store long-term infor-
mation. So e.g., with a hundred dimensional matrix the network can easily store a
time gap of d = 100 in form of a simple shift register. Downsizing the dimension
forces the network to build up more complicated internal matrix structures, which
take more learning epochs to develop [78].

44 System Identification with RNN

epochs RNN
time gap d range r Median Mean STD

40 0.0 27 29 19
40 0.1 41 70 103
40 0.2 27 73 114
40 0.4 93 158 168
60 0.0 131 280 348
60 0.1 132 317 362
60 0.2 298 472 482
60 0.4 596 584 284
100 0.0 50 106 231
100 0.1 30 181 319
100 0.2 23 193 318
100 0.4 123 225 273

Table 3.1: Median, average number (Mean) and standard deviation (STD) of learning
epochs the RNN needed to pass the error limit (eq. 3.22) for a minimum
of 15 trials each, i.e. to solve the problem, on the test set for different time
gaps d and noise ranges r.

3.4.3.3 Analysis of the Backpropagated Error

To put the claim of a vanishing gradient in RNN unfolded in time and trained
with backpropagation [36] into perspective the backpropagated error within the
applied networks was analysed. It turned out that under certain conditions van-
ishing gradients do indeed occur, but are only a problem if one puts a static view
on the networks like it has been done in [35, 36]. Studying the development of
the error flow during the learning process it could be observed that the RNN it-
self has a regularising effect, i.e., it is able to prolong its information flow and
consequently to solve the problem of a vanishing gradient. The concept of shared
weights (sec. 3.2) is mainly responsible for this self-regularisation behaviour, as
it constrains the network to change weights (concurrently) in every unfolded time
step according to several different error flows. This allows the RNN to adapt the
gradient information flow.

Similar to the analysis in [35] and [36] it could further be confirmed that
the occurrence of a vanishing gradient is dependent on the values of the weights
within the weight matrices. By initialising with different weight values it turned
out that an initialisation with a uniform distribution in [−0.2, 0.2] is a good choice
for the tested networks. In these cases no vanishing gradient could be experienced.
In contrast, when initialising the RNN only within [−0.1, 0.1], the gradient van-
ished in the beginning of the learning process. Nevertheless, during the learning

3.5 Improved Model-Building with RNN 45

process the RNN itself solved this problem by changing the weight values. Fig-
ure 3.8 shows an exemplary change of the gradient information flow during the
learning process.

step unfolded into past

ep
och

er
ro

r

0 20 40 60 80 100
0

50
100

150
200

0

0.05

0.1

0.15

0.2

Figure 3.8: Exemplary adaptation of the gradient error flow during the learning pro-
cess of an RNN, which has been initialised with small weights, i.e.,
within [−0.1, 0.1]: The graph shows that for about the first 100 learn-
ing epochs the gradient vanishes very quickly. After that the error in-
formation distributes more and more over the different unfolding steps,
i.e., the network prolongs its memory span. Finally after about a 150
epochs the error information is almost uniformly backpropagated to the
last unfolded time step.

A further analysis of an optimal weight initialisation is given section 3.5.3.

3.5 Improved Model-Building with RNN
In practical applications different approaches in model-building with RNN have
shown to be very useful, e.g. [29, 104, 107, 110]. Although it is mostly difficult
to prove their evidence, they have empirically demonstrated their effectiveness.

One aspect is the dealing with uncertainty, which can disturb the development
of the internal dynamics and derogate the quality of the system identification. In

46 System Identification with RNN

particular, the input data itself might be corrupted or noisy (sec. 3.5.1). Moreover,
in the framework of RNN finitely unfolded in time one is confronted with the
uncertainty of the initial state (sec. 3.5.2). Both types are also relevant for the
application of RNN to RL problems (chap. 4). Furthermore, the topic of weight
initialisation (sec. 3.5.3) is discussed. As already pointed out, it is important for a
proper training of RNN, especially with a focus on long-term learning.

3.5.1 Handling Data Noise
In most real-world applications data is often corrupted or noisy. Reasons for this
are multifarious. Examples are inexact or forgotten measurements, lost data or just
an unstable system development. As one of those generally applies to any appli-
cation, a couple of approaches have been developed, which aim at a minimisation
of this uncertainty in data quality.

One of those methods is so-called cleaning noise. It improves the model’s
learning behaviour by correcting corrupted or noisy input data. The method is an
enhancement of the cleaning technique, which is described in detail in [57, 108].
In short, cleaning considers the inputs as corrupted and adds corrections to the
inputs if necessary. However, one generally wants to keep the cleaning correction
as small as possible. This leads to an extended error function

Ey,x
t =

1

2
‖ȳt − yt‖22 + ‖x̄t − xt‖22 = Ey

t + Ex
t → min

x̄t,w
,

where in addition to equation 3.18 also a correction of the input variables xt is
allowed. Hereby x̄t ∈ RI stands for the corrected input and w represents all
adjustable weights in the respective network.

The new error function does not change the weight adaption rule (sec. 3.4). To
calculate the cleaned input only the correction vector ρt ∈ RI for all input data of
the training set is needed:

Cleaning: x̄t = xt + ρt

The update rule for these cleaning corrections, initialised with ρt = 0, can be
derived from typical adaption sequences

x̄t ← x̄t − η
∂Ey,x

t

∂xt

,

leading to

ρt ← (1− η)ρt − η
∂Ey

t

∂xt

.

This is a non-linear version of the error-in-variables concept from statistics [21].

3.5 Improved Model-Building with RNN 47

All required information, especially the residual error ∂Ey,x
t

∂xt
, is derived from

training the network with backpropagation (sec. 3.4.1), which makes the com-
putational effort negligible. In this way the corrections are performed by the
model itself and not by applying external knowledge. This refers to the so-called
”observer-observation-dilemma”, which is an important problem in (neural net-
work) model-building [108].

If the data is not only corrupted but also noisy, it is useful to add an extra noise
vector −ρτ ∈ RI (τ = 1, . . . , T) to the cleaned value as this allows to represent
the whole input distribution to the network instead of using only one particular
realisation [57]:

Cleaning Noise: x̄t = xt + ρt − ρτ

The noise vector ρτ is hereby a randomly chosen row vector {ρiτ}i=1,...,I of the
cleaning matrix

CCl :=


ρ11 · · · · · · · · · ρI1

ρ12
. . . ρI2

... ρit
...

...
ρ1T · · · · · · · · · ρIT

 ,

which stores the input error corrections of all data patterns. The matrix has the
same size as the pattern matrix, as the number of rows equals the number of pat-
terns T and the number of columns equals the number of inputs I .

A variation on the cleaning noise method is so-called local cleaning noise.
Cleaning noise adds to every component of the input vector the same noise
term −ρτ . In contrast, local cleaning noise is able to differentiate component-
wise. Hence, it corrects each component of the input vector xit individually by a
cleaning correction and a randomly taken entry ρiτ of the corresponding column
{ρit}t=1,...,T of the cleaning matrix CCl:

x̄it = xit + ρit − ρiτ

The advantage of the local cleaning technique is that, with the increased num-
ber of (local) correction terms (T · I), one can cover higher dimensions. In con-
trast, with the normal cleaning technique the dimension is bounded by the number
of training patterns T , which can be insufficient for high-dimensional problems,
where only a limited amount of training data is available.

3.5.2 Handling the Uncertainty of the Initial State
A difficulty with finite unfolding in time RNN is to find a proper initialisation
for the first state vector. An obvious solution is to set the last unfolded state

48 System Identification with RNN

s̄m− ∈ RJ̄ to zero. However, this implicitly assumes that the unfolding includes
enough (past) time steps such that the misspecification of the initialisation phase
is compensated along the state transitions. In other words, one supposes that the
network accumulates sufficient information over time, and thus can eliminate the
impact of the arbitrary initial state on the network outputs.

The model can though be improved by making the unfolded RNN less sensi-
tive to the unknown initial state s̄m− . For this purpose an initialisation is proposed
for which the interpretation of the state recursion is consistent over time.

Here, a noise term is added to the last unfolded state vector s̄m− to stiffen
the model against the uncertainty of the unknown initial state. In practise a fixed
noise term that is drawn from a predetermined noise distribution has shown to be
inadequate, as in particular the associated variance is difficult to estimate. There-
fore, according to the cleaning noise method (sec. 3.5.1), an adaptive noise term
is added, which fits best the volatility of the unknown initial state. As explained
in section 3.5.1, the characteristics of the adaptive noise term are automatically
determined as a by-product of the error backpropagation algorithm (sec. 3.4.1).

The basic idea is as follows: The residual error ρt ∈ RJ̄ of an arbitrary but
fixed pattern t (t = 1, . . . , T) as measured at the last unfolded state vector s̄m−

can be interpreted as a measure for the uncertainty originating from missing in-
formation about the true initial state vector. If one disturbs s̄m− with a noise term,
which follows the distribution of the residual error of the network, the uncertainty
about the unknown initial state during system identification can be diminished.

Technically, the noise is introduced into the model via an additional input
layer. Its dimension is equal to that of the internal state. The input values are fixed
to zero over time. The desensitisation of the network from the initial state vector
s̄m− can therefore be seen as a self-scaling stabiliser of the modelling. The noise
vector ρτ ∈ RJ̄ is drawn randomly from the observed residual errors, without any
prior assumption on the underlying noise distribution.

The effect becomes easier to understand if one regards the model’s internal de-
velopment over time. In general, a time-discrete state trajectory forms a sequence
of points over time. Such a trajectory is comparable to a thread in the internal
state space. Most notably, it is very sensitive to the initial state vector s̄m− . If
noise is applied to s̄m− , the space of all possible trajectories becomes a tube in the
internal state space (fig. 3.9). Due to the characteristics of the adaptive noise term,
which decreases over time, the tube contracts. This enforces the identification of
a stable dynamical system. Consequently, the finite volume trajectories act as a
regularisation and stabilisation of the dynamics.

Table 3.2 gives an overview of several initialisation techniques, which have
been developed and examined. The first three methods have already been ex-
plained in section 3.5.1. The idea behind the initialisation with start noise is, that
one abstains from a cleaning correction but solely focuses on the noise term. In

3.5 Improved Model-Building with RNN 49

s t

steps of unfolding in time

Figure 3.9: Creating a tube in the internal state space by applying noise to the initial
state.

all cases local always corresponds to the individual application of a noise term
to each component of the initial state s̄m− (sec. 3.5.1). From top to bottom the
methods listed in table 3.2 use fewer information about the training set. Hence,
start noise is preferred when only a limited amount of training data is available.

Cleaning: s̄m− = 0 + ρt

Cleaning Noise: s̄m− = 0 + ρt − ρτ

Local Cleaning Noise: s̄m−
i

= 0 + ρit − ρiτ

Start Noise: s̄m− = 0 + ρτ

Local Start Noise: s̄m−
i

= 0 + ρiτ

Table 3.2: Overview of initialisation techniques

3.5.3 Optimal Weight Initialisation
In section 3.4.3.3 it was already stated that a proper weight initialisation is of
importance for the learning of the networks. It turned out that choosing the dis-
tribution interval too small can lead to a vanishing gradient in the beginning of
learning. In contrast, a too large one can generate very high values in the back-
flow. In most cases this can be corrected during training (sec. 3.4.3.3), but it
generally leads to long computational times. For extremely small or large values
the network might even be unable to solve the problem.

For that reason the effects on the backpropagated error flow of different weight
initialisations in RNN were analysed. This can be done by measuring the error
values backpropagated to the last unfolded time step.

For the experiment the same RNN as in section 3.4.3.2 with internal state
dimensions of dim(s) = 40, 50, 60, 70, 80, 90 and 100 was taken and the error

50 System Identification with RNN

value backpropagated to the hundredth unfolded time step for different weight
initialisations was calculated. The problem setting was as before d = 40 and r =
0.1. Figure 3.10(a) plots the measured logarithmic error values against different
ranges of uniform distributed weight initialisations, each respectively averaged
over ten different random initialisations. Note that for this no learning, i.e., weight
adaption, was involved, which is equivalent to η = 0 (sec. 3.4). In the plot the
more left the curve is the larger is its internal state dimension.

The test confirmed that for the 100-dimensional RNN as used in the long-term
experiment (sec. 3.4.3.1) an initialisation with weights in [−0.2, 0.2] generates
a stable error backflow with neither a vanishing nor an exploding gradient. For
those values a reasonable error E (0.0001 < E < 1) is propagated back to the last
unfolded time step. Interestingly also for initialisations close to [−0.2, 0.2] the
error flow stays on a similar level whereas for higher or smaller values it increases
and respectively decreases quickly. This saddle point exists for all tested state
dimensions, respectively for a slightly shifted interval. A plausible explanation
for this, is the transfer function used, the hyperbolic tangent, which stays in the
linear range for those values.

weight initialisation range

lo
g 10

 (
er

ro
r)

-30

-20

-10

0

10

20

30

0 0.2 0.4 0.6 0.8 1

(a) Backpropagated error information to
the last unfolded time step in relation
to the range of the uniform weight ini-
tialisation. From left to right the cor-
responding internal state dimension is
100, 90, 80, 70, 60, 50, and 40.

normalised weight initialisation range

lo
g 10

 (
er

ro
r)

-30

-20

-10

0

10

20

30

0 0.2 0.4 0.6 0.8 1

(b) Backpropagated error flow to the
last unfolded time step in relation to
the range of the uniform weight ini-
tialisation for the different regarded
state dimensions normalised according
to equation (3.23).

Figure 3.10: Influence of the initial weight distribution on the backpropagated error
flow in RNN using different internal state dimensions.

3.5 Improved Model-Building with RNN 51

Figure 3.10(a) also illustrates that the smaller the internal state dimension is
the higher the weights should be initialised. This is caused by the fact that with
a higher dimension the probability of larger absolute values of the row sum in
the weight matrices increases, which leads to larger factors backpropagating the
error through the unfolded network. Still, as the curves all run in parallel, there is
obviously a connection between the optimal weight initialisation and the internal
state dimension of the network.

The following useful conjecture was developed

%2 = %1

√
dim1

dim2

(3.23)

where %i stands for the range of the initialisation interval [−%i, %i] and dimi for
two different internal state dimensions of the RNN (i = 1, 2). It is based on con-
siderations about connectivity within a matrix [106] and can be easily confirmed
by normalising the results of the initialisation test (fig. 3.10(a)). As expected af-
ter normalisation all curves coincide (fig. 3.10(b)), which shows that, for a given
problem, there is a general development of the error flow within RNN. Still, inde-
pendent of the internal state dimension the optimal weight initialisation should be
determined for each problem setting and network architecture individually. How-
ever, as described, this can always be done by measuring the backpropagated error
in the last unfolded time step.

The results correspond to an heuristic for weight initialisation in feedforward
neural networks [16]. Thereby a reported rule for an optimal weight initialisation
is

% =
3√
dim

, (3.24)

where dim denotes the dimension of the hidden layer. For the tested RNN this
would result in % = 0.3, which is slightly larger than the empirically determined
value, 0.2. The deviation is probably caused by the different network structures.
In contrast to feedforward networks for RNN the number of unfolded time steps
m− has to be taken into account. The larger m− the greater is the influence of the
weight initialisation on the last unfolded state, because the weights factorise the
error flow in each time step.

52 System Identification with RNN

”The sciences do not try to explain, they hardly
even try to interpret, they mainly make models.
By a model is meant a mathematical construct
which, with the addition of certain verbal
interpretations, describes observed phenomena.
The justification of such a mathematical construct
is solely and precisely that it is expected to work.”

John von Neumann (1903 – 1957)
CHAPTER 4

Recurrent Neural Reinforcement
Learning

There have already been a few attempts to combine RL with different kinds of
recurrent neural networks, e.g. [3, 4, 62, 80]. Schmidhuber’s approach [80] is
the first work into this direction. He already applies a form of RNN for learn-
ing the reward and the dynamics. Two independent networks are used, one for
modelling the dynamics and one for modelling the control. Training is done in
parallel or sequential. However, in contrast to the presented dynamical consistent
RNN (sec. 3.2.3) the applied networks are fully recurrent but do not offer the same
flexibility and adaptation ability. Furthermore, problems with learning have been
reported [80], which do not apply to the presented RNN (chap. 3).

Bakker [3, 4] showed remarkable results in combining reinforcement learning
with LSTM networks [37]. In his PhD-thesis [3] he developed an integrated ap-
proach, which learns the problem’s dynamics and the optimal policy at the same
time. However, he altered this approach to learning both tasks separately and even
showed that this is superior than the original version [4]. Still, LSTM networks
do not offer the explicit resemblance, in architecture and method, to RL or respec-
tively MDP like RNN (sec. 4.3). Besides, the presented approach follows the idea
of an actor-critic method (sec. 2.4.3), where one network learns the value function
and the other one determines the optimal policy. As pointed out, this construction
has a couple of drawbacks for the regarded RL problem class (sec. 2.5).

Prokhorov [62] follows a similar idea, but uses recurrent networks close to
those applied in this thesis (chap. 3). His approach is also based on the idea
of actor-critic (sec. 2.4.3). Due to that, the construction of his neural controller
differs essentially. Most important, as in the work of Bakker [4], two recurrent
networks are trained, one for the critic and one for the actor. However, it is the
only known method that is also applied to an industrial problem [63].

In the following different novel recurrent neural RL approaches based on RNN

53

54 Recurrent Neural Reinforcement Learning

(chap. 3) are presented. It starts with a so-called hybrid RNN approach, where
RNN are solely used for the system identification of RL problems (sec. 4.1). The
method is successfully applied to a partially observable version of the cart-pole
problem (sec. 4.2). Subsequent, an enhanced RNN architecture to model and re-
spectively reconstruct (partially observable) Markov decision processes, which
improves the hybrid RNN approach, is introduced (sec. 4.3). Finally the recurrent
control neural network (RCNN), which combines RL and RNN within one inte-
grated network architecture, is presented (sec. 4.4). Its performance is evaluated
on a data-efficient cart-pole (sec. 4.5) and the mountain-car problem (sec. 4.6). At
last, the RCNN is further extended to improve its applicability to RL problems of
industrial scale (sec. 4.7).

4.1 The Hybrid RNN Approach
As pointed out in the introduction, in technical or economic applications the state
st of an RL problem (eq. 1.1) is generally at least partially unknown. Mostly one
can only observe a certain number of variables, which might have an influence
on the system’s dynamics. In contrast, for solving an optimal control problem the
knowledge about the dynamics is an essential requirement to estimate the (future)
influence of a certain action. Therefore an accurate and robust system, respec-
tively state space, identification is a valuable first step for a real-world application
of RL methods (sec. 1.1).

The hybrid RNN approach aims into this direction. It basically consists of
a subsequent application of an RNN (sec. 3.2.3) and any standard RL method
(sec. 2.4). The idea is quite intuitive. Due to partial observability but also high
dimensionality, a couple of RL problems (sec. 2.5) cannot directly be treated by
standard RL methods. The hybrid RNN approach now uses an RNN first to trans-
form the state space of the RL problem such that standard RL methods can be
applied. As argued in chapter 3, RNN offer an ideal framework to model open
dynamical systems. This quality is used to simulate the system development
of an RL problem. Hereby one can profit from the description of RL problems
by dynamical systems (sec. 1.1) and a structural resemblance between RNN and
POMDP (sec. 2.2). The latter aims at the fact that both are state space models.
The states of an POMDP can therefore easily be mapped into the architecture of
an RNN.

The RNN gets the observable state information xτ as external inputs and tar-
gets. Additionally, the last chosen actions uτ−1 are provided as inputs. Impor-
tantly, this is also done in the overshooting part of the network (τ > t) as the
actions are necessary to determine the system’s dynamics but cannot or should
not be learnt by the network. The RNN can then learn the underlying dynamics of

4.1 The Hybrid RNN Approach 55

the RL problem within its inner state s̄t+1. Altogether, analogue to equation 3.10,
this results in the following set of equations:

s̄τ+1 = f(As̄τ + B

(
xτ

uτ−1

)
− θ) ∀τ ≤ t

s̄τ+1 = f(As̄τ + B

(
x̄τ

uτ−1

)
− θ) ∀τ > t

x̄τ = C s̄τ

T−m+∑
t=m−

t+m+∑
τ=t−m−

‖x̄τ − xτ‖2 → min
A,B,C,θ

(4.1)

The corresponding architecture is depicted in figure 4.1. For the illustration of
dynamical consistency a matrix [II 0]T , where II denotes a fixed identity matrix
of dimension I and 0 a K × I dimensional zero matrix, is added. It transfers the
predicted observations x̄τ+1 (τ ≥ t) to the input vector without overwriting the
observed action uτ .

I I

st−1

xt+1

ut−2

xt−1 xt

ut−4

xt−3

I

0

I

0

st+1

xt−2

ut−3 ut−1 ut ut+1

st

C
A A

C

xt+3

st+3st+2

C

x

C

x

C

t−1t−2

C

t+2x

A

θ

A A

B B

θ θ θ θθ

t
x

st−2

0 0

BBBB

Figure 4.1: RNN architecture for the hybrid RNN approach. Matrix [II 0]T is added
for the illustration of dynamical consistency. In the second step the in-
ternal state s̄t+1 (shaded) is used as a basis for common RL methods.

The approach can mainly be applied for two different aspects. One can either
use the RNN to reduce a problem’s dimensionality or to reconstruct a partially
observable state space:

(i) A reduction of a problem’s dimensionality is done by setting the dimension of
the RNN’s inner state s̄t+1 to a desired value, which is minimal but sufficient
to learn the problem’s dynamics. Thus, one can compress the observables’
system information to the problem’s essential state space. The dimension of

56 Recurrent Neural Reinforcement Learning

s̄t+1 just has to be large enough to evolve the original system development.
Alternatively one can also start with a larger state space and reduce its di-
mension by incrementally applying node pruning [12, 47]. That way, the
RNN provides some kind of feature selection, where in contrast to classical
approaches, the features provide across-the-time information.

(ii) A state space reconstruction profits from the advantage that RNN can fairly
easy handle partially observable problems as they are, in contrast to most
standard RL methods, still able to learn a problem’s dynamics although
only a small part of the system’s information is provided. In short, due to
the techniques of unfolding in time and overshooting RNN can develop au-
tonomously the complete system dynamics. They build up a finite memory
and learn inter-temporal dependencies out of the available data to compen-
sate the missing information at each time step (sec. 3.2). In doing so they
can reconstruct the original state space of the RL environment in their inter-
nal state s̄t+1. An application of this approach is given in section 4.2, where
it is shown to be a valuable method.

In a second step the developed internal state s̄t+1 of the RNN is used as basis
for common RL methods. In other words, having a lower dimensional or recon-
structed state space, one can, after a sufficiently fine-gridded discretisation, apply
standard and well-known RL algorithms like Q-learning (sec. 2.4.2), prioritised
sweeping (sec. 2.4.4), or AHC (sec. 2.4.3) to determine an optimal policy. Simi-
larly one can also use the hybrid RNN approach to extend the applicability of other
data-efficient RL methods like least-squares policy-iteration (sec. 2.5) to partially
observable problems.

Figure 4.2 illustrates the structure of the hybrid RNN approach, after the RNN
has been trained on the observed environmental data xτ and actions uτ−1. Here,
the RNN is used to provide its inner state s̄t+1 as an estimator for the real environ-
mental state st. The calculation is done by the RNN’s learnt dynamics, which is
based on the respective past time observations xτ and chosen actions uτ−1 (τ ≤ t).
Note that for this no learning is involved and no overshooting is used. Based on
the RNN’s inner state s̄t+1 an RL method determines the next action ūt. After-
wards the RNN’s inputs are shifted by one time step to the past (τ ← τ−1) and the
chosen action and the resulting next observation xt+1 are given to the network as
most recent input. Thus, referring to section 1.1 the RNN fulfils step (i), whereas
the RL method is applied for step (ii).

The hybrid RNN approach can be further enhanced by using an extended RNN
architecture, where the observables xτ and the control variables uτ are imple-
mented as separate inputs (sec. 4.3).

4.2 The Partially Observable Cart-Pole Problem 57

RNN
tx

ut−1

st

ut

st+1

R t+1

st+1

internal
state

Environment

RL algorithmobservation

action

state

action

reward
R t

Figure 4.2: Hybrid RNN approach. The trained RNN is applied to minimise or re-
construct the environmental state space st out of the current observation
xt, the last applied action ūt−1 and its past time information about the
system’s development. The RNN’s inner state s̄t+1 then serves as a basis
for an arbitrary RL method, which in turn determines the next action ūt.
Again, the dashed line indicates the transition to the next time step.

4.2 The Partially Observable Cart-Pole Problem
The classical cart-pole problem [89] consists of a cart, which is able to move on a
bounded track and trying to balance a pole on its top. The system is fully defined
through four variables (t = 1, . . . , T):

χt ∈ R := horizontal cart position
χ̇t ∈ R := horizontal velocity of the cart
αt ∈ R := angle between pole and vertical
α̇t ∈ R := angular velocity of the pole

(4.2)

The problem’s system dynamics is given by[
M + m ml cos αt

ml cos αt
3
4
ml2

] [
χ̈t

α̈t

]
−
[

mlα̇t
2 sin αt

mgl sin αt

]
=

[
F
0

]
where M ∈ R+ and m ∈ R+ are the masses of the cart and pole respectively,
l ∈ R+ is half the length of the pole, g ∈ R+ the acceleration due to gravity and
F ∈ R the force applied to the cart. Here, the following setting was used [89]:
χt ∈ [−2.4, 2.4] and αt ∈ [−12◦, 12◦] ∀t = 1, . . . , T , M := 1.0, m := 0.1,
l := 0.5, g := 9.8, and F = 10.0. The system is illustrated in figure 4.3.

The goal is to balance the pole for a preferably long sequence of time steps
without moving out of the limits. Possible actions are to push the cart left or

58 Recurrent Neural Reinforcement Learning

α

F

χ

Figure 4.3: The cart-pole problem [53].

right with the constant force F . The pole tilts when its angle αt is larger than 12
degrees. Either then or when the cart hits one of the boundaries (±2.4) the system
is punished with a negative reward of one. In all other cases the reward is zero.

The problem has been extensively studied in control and RL theory and serves
as a standard benchmark, because it is easy to understand and also quite repre-
sentative for related questions. The classical problem has been completely solved
in the past. Sutton and Barto [89] for example demonstrated that the pole can be
balanced for an arbitrary number of time steps.

Still, there exist a couple of variations, which are generally more challenging.
Gomez for example solved the problem with two poles [25], whereas Gomez and
Miikkulainen considered a two dimensional cart [26]. Besides, often the original
problem is regarded as only partially observable [2, 53]. A good summary of the
different problem classes is given in [99].

Nevertheless so far nobody tried to reduce the observability to only one single
variable. When the system was studied as partially observable, one usually omit-
ted the two velocities, χ̇t and α̇t, i.e. only the cart’s position and the angle between
the pole and the vertical were given as inputs [2, 25, 53]. Solving this problem
is not very challenging because the model or algorithm just needs the memory of
one past time step to calculate the missing information.

While the following experiment is aimed at fully profiting from the advantages
of RNN reconstructing a partially observable state space (sec. 4.1), only the hori-
zontal position of the cart, χt, is given as an observable. All other information is
absolutely unknown to the system.

In an extension the problem is even further complicated by adding noise to
the only observable variable χt. This strengthens the requirement that the hybrid
RNN approach cannot absolutely rely on the single information that it receives
about the cart-pole problem’s environment, but has to extract the true underlying
dynamics.

4.2 The Partially Observable Cart-Pole Problem 59

4.2.1 Model Description

To solve the described partially observable cart-pole problem the hybrid RNN ap-
proach was applied. According to its description (sec. 4.1), first an RNN (eq. 4.1)
was used to develop the full dynamics of the cart-pole system. Here, the observ-
able environmental information consisted of the horizontal cart position χt as well
as the first and second discrete differences of it. It was given to the RNN as part
of the input and as target xτ ∈ R3. Additionally, the input contained the agent’s
last action uτ−1 ∈ R. No other information was observable by the model. The
internal state space s̄t ∈ R4 was limited to four neurons. Thus, it was intended
that the RNN reconstructs the complete but only partially observable environment
(eq. 4.2) in its internal state space. The network was respectively unfolded ten
time steps into past and future. The results had shown that this memory length
was sufficient to identify the dynamics. To make the network independent from
the last unfolded state cleaning noise was used as a start initialisation (sec. 3.5.2).
The hyperbolic tangent was implemented as activation function f and the RNN
was trained with the shared weight extended backpropagation (sec. 3.4.1) and
pattern-by-pattern learning (sec. 3.4.2.1) until a minimum error between output
x̄t and target xt is achieved.

In the second step the adaptive heuristic critic (AHC) algorithm (sec. 2.4.3),
which has shown competitive results on the standard cart-pole problem setting,
was applied on the developed internal state s̄t+1 of the RNN. Note that, due to the
unfolding in time of the RNN, the algorithm had to be started with an already filled
lag structure. Otherwise the first ten steps would be uncontrolled and consequently
there would be a high probability that the algorithm is faced with an unstable pole
in its first learning step.

4.2.2 Results

Several different data sets were used to train the described RNN (sec. 4.2.1). As
a first result it was confirmed that the number of observed transitions is more
important than the number of training epochs. The more different information
about the single input variable the network experienced the more it was able to
reconstruct the original (complete) state space.

As a verification of if and how well the RNN could identify the underlying
dynamics out of the single observable variable, the original and the recon-
structed state vectors were analysed and compared. The result is shown in figure
4.4. The four plots show the correlation between the original state space vari-
ables of the environment, χt, χ̇t, αt, α̇t, (eq. 4.2) and the best linear combination
of the reconstructed state space variables (s̄t+1)1, . . . , (s̄t+1)4 and their squares
(s̄t+1)

2
1, . . . , (s̄t+1)

2
4 in each case. It turned out that the correlation for each state

60 Recurrent Neural Reinforcement Learning

space variable was very high. This demonstrates the reconstruction quality of the
RNN and underlines the use of the hybrid RNN approach for partially observable
RL problems.

be
st

 c
om

bi
na

tio
n

χ

be
st

 c
om

bi
na

tio
n

χ
⋅

be
st

 c
om

bi
na

tio
n

α

be
st

 c
om

bi
na

tio
n

α
⋅

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2

-0.2

-0.1

0

0.1

0.2

-0.2 -0.1 0 0.1 0.2
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-1.2 -1 -0.8-0.6-0.4-0.2 0 0.2

Figure 4.4: Correlation between the best quadratic combination of the reconstructed
state space variables (s̄t+1)1, . . . , (s̄t+1)4 of the RNN and the original
ones (eq. 4.2).

The results of the hybrid RNN approach were compared to a direct application
of the AHC algorithm, which means without using an RNN in the first step. In
both cases the discretisation of the state space that yielded the best results was
taken. Figure 4.5(a) plots the achieved number of steps the pole could be balanced
to the number of trials. The training was stopped when the first method was able
to balance the pole for a minimum of 1000 steps. The result reveals the advantage
of the hybrid RNN approach as it outperforms a direct application of the AHC
algorithm by far.

The better performance of the hybrid RNN approach became even more obvi-
ous when a Gaussian noise was added to the single observation χt. Already for
a 1% noise level a direct application of the AHC algorithm failed almost com-
pletely to learn the task. In contrast, the hybrid RNN approach was, for all tested
noise levels, able to balance the pole for at least more than a hundred time steps

4.3 Markovian State Space Reconstruction by RNN 61

(fig. 4.5(b)). This result well demonstrates that the RNN is still able to identify
and reconstruct the original state space of the environment although the only ob-
servable information is covered by noise.

Trials

N
um

be
r

of
 s

te
ps

 b
al

an
ce

d

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

(a) Without Noise

Trials

N
um

be
r

of
 s

te
ps

 b
al

an
ce

d

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

(b) With Noise

Figure 4.5: Comparison of the performance in the partially observable cart-pole
problem of the hybrid RNN approach (solid) to a direct application of
the AHC algorithm (dotted). The hybrid RNN approach clearly outper-
forms the direct application of the AHC. With a 1% noise level on the
single observable variable χt it is able to balance the pole for at least a
hundred time steps whereas the direct application of the AHC fails al-
most completely to learn the task. The curves have been averaged over
50 trials.

4.3 Markovian State Space Reconstruction by RNN
The basic hybrid RNN approach (sec. 4.1) applies a standard RNN to identify
and respectively reconstruct the RL problem’s state space. The following RNN
resumes this idea by adapting its structure to the task of reconstructing the sys-
tem’s (minimal) Markovian state space. Here, one can profit from the described
extension ability of RNN (chap. 3).

Modelling and respectively reconstructing higher-order POMDP (sec. 2.1)
with RNN (sec. 3.2) follows the idea of explicitly mapping the process’s dynam-
ics by a high-dimensional non-linear system equation. Similar to equation 4.1
the RNN is therefore constructed such that it receives the external observations

62 Recurrent Neural Reinforcement Learning

xτ (τ = 1, . . . , T) of a POMDP (sec. 2.2) as inputs and targets. However, now
the actions uτ are given to the network as separate inputs (fig. 4.6). In doing so
one gets, analogue to a POMDP, the sequence of the observable states xτ and the
subsequent actions uτ on the input side of the RNN. Moreover, also with regard
to the later extension to the recurrent control neural network (RCNN) (sec. 4.4),
an additional internal state ŝτ is included, which adapts the role of the approxi-
mately Markovian state. It allows to explicitly reconstruct the RL problem’s state
sτ out of the observables xτ (respectively x̄τ) and the RNN’s inner state s̄τ , before
applying a new action ūτ . The vector s̄τ represents as hitherto the internal state
of the RNN determining the target, i.e., the observations, xτ . This results in the
following optimisation problem:

s̄τ+1 = f(IJ̄ ŝτ + Duτ − θ)

x̄τ = C s̄τ

with ŝτ =

{
As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+∑
t=m−

t+m+∑
τ=t−m−

‖x̄τ − xτ‖2 → min
A,B,C,D,θ

(4.3)

Here, analogue to equation 3.5, the state transition equation s̄τ+1 ∈ RJ̄ is a non-
linear transformation of the previous approximately Markovian state ŝτ ∈ RJ̄ , the
actions uτ ∈ RK using weight matrix D ∈ RK×J̄ , a fixed identity matrix IJ̄ of
dimension J̄ , and a bias θ ∈ RJ̄ . As pointed out, the approximately Markovian
state ŝτ aggregates the information from the internal state s̄τ and respectively the
external observation, xτ ∈ RI , or the network’s own prediction for it, x̄τ ∈ RI ,
applying weight matrices A ∈ RJ̄×J̄ and B ∈ RI×J̄ . The expected next obser-
vation of the POMDP, x̄τ+1 ∈ RI , is computed from the previous internal state
s̄τ+1 employing matrix C ∈ RJ̄×I . As hitherto, f denotes an arbitrary non-linear
activation function. Analogue to the basic hybrid RNN approach (sec. 4.1), the
actions uτ are also given to the RNN as future inputs (τ > t) because they directly
influence the POMDP’s dynamics but cannot or should not be learnt by the net-
work. Besides, the approximated state space of the RNN (eq. 4.3) in general does
not have the same dimensionality as the one of the original POMDP (sec. 2.2).
It basically depends on the order and complexity of the respective POMDP as
well as the desired accuracy. Again, the RNN is trained with the shared weights
extension of the backpropagation algorithm (sec. 3.4.1) and a suitable learning
algorithm (sec. 3.4.2). Figure 4.6 depicts the resulting RNN architecture.

As shown in section 3.3, RNN are able to approximate any deterministic open
dynamical system arbitrarily precisely. Although this does not necessarily apply

4.3 Markovian State Space Reconstruction by RNN 63

xt
ut+1ut

st
^ st+1

^

xt−2

c

ut−2

st−2 st−1

xt−1

c
st−1
^

ut−1

I J I J I J I J

C

t
x

st st+1

c
st+2

B
C

t+2x

c

C

t+1x

B DDB D

^ _
C

t−1
x

B

_ _ __

D

A A A_ _ _

Figure 4.6: RNN architecture for modelling POMDP: Observations xτ and actions
uτ are modelled as separate inputs. The additional state ŝτ adapts the
role of an approximately Markovian state. It allows to explicitly recon-
struct the RL problem’s state sτ out of the observables xτ (respectively
x̄τ) and the networks inner state s̄τ . Thus, regarding the hybrid RNN ap-
proach ŝt (shaded) can be used in second step as a basis for an arbitrary
RL method.

for stochastic systems, there is no true restriction. The construction of the state ŝτ

can just be seen as the transformation into an appropriate Markovian feature space,
which is built from past and present observations. In the deterministic case, the
feature space is identical to the perfect description of all information determining
the future, while in the general stochastic case the state ŝτ has to be designed in
order to forecast the expected future. Additionally, it has been shown that under
slightly restrictive conditions the Markov property can indeed be reconstructed by
knowing the expected future states while the state space is observed partially [82].

Summarising, the RNN (eq. 4.3) is used to identify the system’s (minimal)
approximately Markovian state space out of the observed data. For this, the di-
mension of the Markovian state ŝτ of the RNN can be set to a desired value,
which is minimal but sufficient to learn the problem’s dynamics. In doing so, one
can compress the observables’ system information to the problem’s essential state
space. The dimension of ŝτ just has to be large enough to evolve the original
system development.

Analogue to the description in section 4.1 in a second step then any stan-
dard RL method (sec. 2.4) can be applied. However, those are now based on the
Markovian state ŝt, which has been especially inserted for the reconstruction of
the POMDP’s state space. An application of this approach to gas turbine control
is given in chapter 5.

64 Recurrent Neural Reinforcement Learning

4.4 The Recurrent Control Neural Network
The recurrent control neural network (RCNN) has been developed for the pur-
pose to identify and control the dynamics of an RL or optimal control problem
(sec. 1.1) directly within one integrated network. Thus, it rounds off the hybrid
RNN approach (sec. 4.1) in the sense that the RL problem (steps (i)+(ii)) can now
be completely solved by a recurrent neural network.

The principal architecture of the RCNN is based on the RNN for the Marko-
vian state space reconstruction (sec. 4.3). It is extended by an additional control
network and an output layer, which incorporates the reward function. Overall
its integrated structure follows the idea of solving the complete optimal control
problem within one network, i.e., the system identification (step (i)) as described
in section 3.2 (and respectively section 4.3) and learning the optimal policy (step
(ii)). Here, the policy is determined directly by a maximisation of the finite sum
of expected future rewards without calculating any value function. In this regard
the RCNN also has some similarity to policy gradient methods (sec. 2.4.5).

The additional and integrated control network has the form of a three-layered
FFNN (sec. 3.1). Despite other (more extensive) topologies would be possible,
this already allows to model any arbitrary control function (sec. 3.3.1). As one
wants to predict the optimal (future) actions uτ ∈ RK , the control network is
only applied in the present and overshooting part of the RCNN (τ ≥ t) (fig. 4.7,
dashed part). In the past unfolding (τ < t) the RCNN is provided with the last ac-
tions taken. The control network uses the values of the determined approximately
Markovian state ŝτ , which combines the information of the inner state s̄τ and the
environmental observables xτ (or respectively x̄τ) as inputs. As an output it deter-
mines the next action or control variables ūτ (τ ≥ t). Putting this into equations
the control network has the form (∀τ ≥ t)

ūτ = fu(Ffc(Eŝτ − b)) (4.4)

where E ∈ RH×J̄ and F ∈ RK×H , with H ∈ N as the number of hidden neurons
of the control network, are weight matrices, b ∈ RH is a bias and fc an arbitrary
activation function. Additionally, fu denotes a problem-specific, component-wise
applied activation function, which can be used to scale or limit the network’s
action space. The hidden state (fig. 4.7) of the control network is denoted by
hτ ∈ RH .

The RCNN has to fulfil two different tasks (sec. 1.1), the identification of the
problem’s dynamics (step (i)) and the optimal control (step (ii)), and is hence
trained in two successive steps. For both steps the training is done offline on the
basis of previous observations. This again distinguishes the approach from other
work on RL and recurrent neural networks, e.g. [3], where one usually tries a
combined learning of both tasks in one step.

4.4 The Recurrent Control Neural Network 65

b
ht+1

xt

b
ht

st+1
^st

^st−2

xt−1

st−1
^

ut−2

tu t+1u

ut−1

I J I J I J I J
st+2st+1st

A

B
C

G

R
t+2

θ

E

FG

C

t+1x

R
t+1

B

F

E

B

A

D

^ _

xt−2

B

A

θ θ θ

D D

D

_ _

__
xt+2

st−1

Figure 4.7: Recurrent Control Neural Network Architecture of step two: The control
network (dashed) determines the policy by adjusting the weight matrices
E, F and the bias b according to the gradient flow from the reward
cluster Rτ (τ > t). Matrices A,B, C, and D, and the bias θ, which code
the dynamics, are fixed.

In the first step the RCNN is limited to the identification and modelling of
the dynamics of the underlying POMDP. It is consequently reduced to an RNN
reconstructing a Markovian state space (sec. 4.3). Hence, the optimisation task of
step one takes on the following form with the variables defined as in equation 4.3:

s̄τ+1 = f(IJ̄ ŝτ + Duτ − θ)

x̄τ = C s̄τ

with ŝτ =

{
As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+∑
t=m−

t+m+∑
τ=t−m−

‖x̄τ − xτ‖2 → min
A,B,C,D,θ

(4.5)

In the second step all connections coding the dynamics and learnt in the first
step, in particular matrices A, B, C, and D and the bias θ, get fixed, while the
integrated control network with the matrices E and F and the bias b is activated
(fig. 4.7, dashed part). These are also the only tunable parameters in this training
step. Besides that, as the RCNN’s task is now to learn the optimal policy it does
not get the future actions as external inputs in this step (fig. 4.7). Still, in the past
unfolding (τ < t) the RCNN is, as in step one, still provided with the actions
uτ of the observed training data. Furthermore, in the past unfolding (τ < t) the

66 Recurrent Neural Reinforcement Learning

output-clusters are deactivated, because they are only needed for the identification
of the system dynamics. However, in the present and future part (τ ≥ t) of
the network the error-function (eq. 4.5) of the output clusters gets replaced by
the reward function. Architecturally this is realised by additional reward clusters
Rτ , which are connected to the output cluster by a problem specific, on the reward
function R (sec. 1.1) dependent, and fixed matrix G as well as a possible activation
function fr within the output clusters x̄τ (fig. 4.7). In other words the RCNN
maps the reward function R of the underlying RL problem by coding it in a neural
architecture, which, as in the case of gas turbine control (chap. 5), often also
requires some additional, fixed connected, clusters. Here, also a discount factor γ
(eq. 1.2) could be incorporated but is generally omitted due to the finiteness of the
future unfolding, i.e., the calculation of a finite sum of future rewards. It is further
possible to learn the reward function from the observations, which is especially of
interest in cases where R is not known or incompletely specified in the problem
setting. This can be realised by an additional three-layered FFNN.1

The weights of the control network are only adapted according to the back-
propagated error from the reward clusters Rτ (τ > t). This follows the idea that
in the second step one wants to learn a policy that maximises the finite sum of ex-
pected future rewards given the system dynamics modelled in step one (eq. 4.5).
Note that in doing so the learning algorithm changes from a descriptive to a nor-
mative error function.

Summarising, step two can be represented by the following set of equations
(eq. 4.6). Here, bold capital letters stand for fixed matrices, which are not learnt
in this step.

s̄τ+1 =

{
f(IJ ŝτ + Duτ − θ) ∀τ < t
f(IJ ŝτ + Dūτ − θ) ∀τ ≥ t

Rτ = Gfr(Cs̄τ), ∀τ > t

with ūτ = fu(Ffc(Eŝτ − b)) ∀τ ≥ t

and ŝτ =

{
As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+∑
t=m−

t+m+∑
τ>t

Rτ → max
E,F,b

(4.6)

The architecture of the RCNN in the second step, i.e. during learning of the
optimal control, is depicted in figure 4.7.

1By an additional connector from uτ to Rτ+1 one can also easily incorporate the applied action
into the reward function (sec. 2.1).

4.4 The Recurrent Control Neural Network 67

Recurrent control neural network
Technology Neural networks
Problem class High-dimensionality, partial observability,

continuous state and action space, data-efficiency
Philosophy Identification of system dynamics and

optimal policy by an integrated RNN
Data-efficiency Through batch approximation of dynamics and

analytical incorporation of a reward function
Prior knowledge Reward function and influences of actions

on a subset of the state space
Biasedness Through system identification
Task of RNN Identification of the system dynamics
Task of control network Maximising sum of future rewards

by virtual Monte-Carlo policy gradient

Table 4.1: Summarised features of the recurrent control neural network.

In both steps the RCNN is trained on the identical set of training patterns T
and with the shared weight extended backpropagation (sec. 3.4.1). Concerning
the second step this means in a metaphoric sense that by backpropagating the loss
of the reward function Rτ the algorithm fulfils the task of transferring the reward
back to the agent. In either case, an optimal system identification is an essential
part of the RCNN as it forms the basis for learning the optimal policy in the second
step. Consequently, in both steps the RCNN must be operated until a sufficient
generalisation performance is achieved.

As already pointed out, the second step has some connection to policy gra-
dient methods (sec. 2.4.5). Analogue to those the RCNN makes no use of the
value function. It rather searches directly within in the policy space and uses the
reward’s gradient for its policy improvement. In fact, the RCNN can be seen as a
virtual Monte-Carlo policy gradient approach as the value of the current policy is
determined virtually within the unfolded network and improved according to the
gradient of the reward function. On this basis an explicit Monte-Carlo estimation
[52], which would require a generation of new data-samples, is avoided. This
increases the RCNN’s data-efficiency.

Table 4.1 outlines the main characteristics and features of the RCNN.
Summarising, the RCNN ideally combines the advantages of an RNN with dy-
namically consistent overshooting for identifying the problem’s dynamics and an
FFNN for learning the optimal policy. In doing so, one can benefit from a high
approximation accuracy and therefore control extensive dynamics in a very data-
efficient way. Besides that, one can easily scale into high dimensions or recon-

68 Recurrent Neural Reinforcement Learning

struct a partially observable environment (sec. 4.3). Furthermore, by construction
of the RCNN it can well handle continuous state and action spaces.

A further advantage of the RCNN is the inherent embedding of an analytically
given reward function. This allows in the second step to maximise the sum of
expected future rewards without any statistical bias. However, a statistical bias
might be brought into the network by learning the dynamics in the first step. For
the same reason it is structurally difficult to solve stochastic problems. Still, the
RCNN has the possibility to deal with stochasticity by using a higher-dimensional
and more extensive deterministic dynamics.

4.5 The Data-Efficient Cart-Pole Problem
The problem setting has already been described in section 4.2. As pointed out,
in its classical form it has been completely solved in the past, e.g. [89]. Still all
successful methods need quite a large number of training patterns to find a solu-
tion. In contrast, as described in section 2.5, for real-world applications training
data is in general very limited. Consequently, methods that require less training
data to solve the problem, i.e., which are more data-efficient, are preferable. In
the following experiment therefore a special focus is put on data-efficiency and
it is shown that the RCNN achieves outstanding results. However, in contrast to
the experiment in section 4.2 the system is now fully observable. Similar tests
have been reported in [68], but with a slightly different dynamics and an extended
action space.

4.5.1 Model Description
An RCNN as described in section 4.4 was used with an unfolding of 10 steps into
the past and 30 into the future. This gave the network both, a memory length,
which was sufficient to identify the dynamics, and an overshooting length, which
enabled it to predict the consequences of its chosen actions. To make the network
independent from the last unfolded state, start noise (sec. 3.5) was used as start
initialisation. The internal state dimension, dim(s), was set to 20 and the hidden
state of the control network, dim(h), to 40 neurons. These dimensions were ef-
fectual to generate stable results in terms of system identification and learning the
optimal policy. Larger networks in general only require more computational time.
Furthermore, the hyperbolic tangent was implemented as activation functions f ,
fc and fu. The latter limits the action space of the RCNN to (−1, 1) (eq. 4.4).

For training the RCNN, data of different set sizes was generated where the
actions were chosen randomly. Here, it was varied from the standard setting as
the originally episodic task was transformed into a continuous one by keeping the

4.5 The Data-Efficient Cart-Pole Problem 69

pole or cart at their limits instead of starting a new episode when the pole falls or
the cart hits one of the boundaries. Hence, a reward function of the form

R = −
T−m+∑
t=m−

t+m+∑
τ≥t

[
(gχτ)

2 + (ατ)
2
]

(4.7)

was used, where g is a scaling factor, which balances the error values of the two
variables. In the experiment g was set to 0.1. According to this and recalling that
the (predicted) observations are of the form x̄τ = [χτ χ̇τατ α̇τ]

T , matrix G takes
on the form

G =

[
0.1 0 0 0
0 0 1 0

]
,

the activation function fr in the outputs x̄τ is set to identity, and the clusters Rτ

get a squared error function with constant targets of zero.
The adaption made the time series more applicable for the RCNN, in particu-

lar learning with backpropagation (sec. 3.4.1), but did not simplify the problem;
especially as the generated data was only used for training. The learnt policy was
later tested on the original system and consequently had to cope with the slightly
different setting. Here also the continuous action space of the network got re-
discretised to −1 and 1.

4.5.2 Results
The RCNN was trained with different amounts of training data. The learnt pol-
icy was then tested on the original dynamics of the cart-pole problem where the
number of steps N ∈ N, which it was able to balance the pole, was measured.
Respectively three data sets were used with 300, 1000, 3000, 10000, 30000, and
100000 training patterns. For each set the median of the performance over 100
different random start initialisations of the cart and pole was taken during testing.
The results are given for each set size as the median and average over the values of
the respectively three different training data sets (tab. 4.2). The maximum number
of steps balanced was set to max = 100000, which was considered as sufficient
to demonstrate that the policy has solved the problem.

The results were compared to the adaptive heuristic critic (AHC) algorithm
(sec. 2.4.3), which shows competitive results on the cart-pole problem. As a sec-
ond benchmark served (table-based) Q-learning (sec. 2.4.2), which is one of the
commonly used RL methods (sec. 2.4). In contrast to the RCNN for both al-
gorithms the standard setting of the cart-pole problem was used, because their
application to the modified one (eq. 4.7) produced inferior results.

The results (tab. 4.2) clearly indicate that the RCNN can solve the cart-pole
problem very data-efficiently. With only 1000 training patterns the average num-

70 Recurrent Neural Reinforcement Learning

of RCNN AHC Q-learning
obs median average median average median average
300 61 100 74 56 61 52
1000 387 33573 124 150 121 121
3000 max 66912 334 312 111 116
10000 max max 1033 1554 148 163
30000 max max 2988 9546 193 501
100000 max max max 75393 503 624

Table 4.2: Median and average number of steps the pole was balanced by the RCNN,
the AHC, and the Q-learning policy given different numbers of observa-
tions (obs).

ber of steps balanced is very high. On one of the tested training data sets with 1000
observations even an optimal policy was learnt. With already 10000 observations
the maximum number of steps balanced was achieved on the basis of all tested
three data sets. In comparison, the AHC needed at least a 100000 observations for
finding a satisfying solution. Q-learning required even more observations, as it
still failed to balance the pole with the maximum number of observations tested.
Figures 4.8(a) and 4.8(b) illustrate the results for the median and average number
of steps balanced.

Number of observations

N
um

be
r

of
 s

te
ps

 b
al

an
ce

d

10 2

10 3

10 4

10 5

10
3

10
4

10
5

(a) Median

Number of observations

N
um

be
r

of
 s

te
ps

 b
al

an
ce

d

10 2

10 3

10 4

10 5

10
3

10
4

10
5

(b) Average

Figure 4.8: Numbers of steps balanced with respect to the number of observations
taken the median over the different tested data sets. The RCNN (solid)
clearly outperformed the AHC (dotted) and Q-learning (dashed).

4.5 The Data-Efficient Cart-Pole Problem 71

To examine the stability of the RCNN policy a uniform noise was put on the
force F of the action (sec. 4.2). The task was particularly difficult because the
network had not seen any noise during training but its policy had to cope with it
during the test on the original dynamics. The median and average of the perfor-
mance over a hundred different random start initialisations of the cart and pole
were taken. Table 4.3 shows the results for different noise levels on an RCNN
policy trained with 10000 observations. It demonstrates that even with a noise
level of a 100% the RCNN policy balanced the pole in median for the maximum
number of steps. Note that a noise level of more than 100% means that the cart
can be pushed into the reverse direction of the one, intended by the policy. This
also explains the sharp decrease in performance after increasing the noise to more
than 100%. Figure 4.9 illustrates the robust performance of the RCNN policy.

noise level # of steps balanced
on F median average
10% max max
20% max max
30% max 99953
40% max 97337
50% max 98019
60% max 96937
70% max 92886
80% max 88181
90% max 84191
100% max 74554
110% 55154 53775
120% 16519 27730
130% 8238 12476
140% 2961 5294
150% 1865 2863
160% 1008 1503
170% 557 939
180% 173 555
190% 76 344
200% 83 242

Table 4.3: Median and average number of steps balanced with different noise levels
on the force F by an RCNN trained with 10000 observations. Even with
a noise of a 100% the RCNN was able to balance the pole the maximum
number of time steps.

72 Recurrent Neural Reinforcement Learning

Noise level in %

N
um

be
r

of
 s

te
ps

 b
al

an
ce

d

10 2

10 3

10 4

10 5

0 20 40 60 80 100 120 140 160 180 200

Figure 4.9: Median (solid) and average (dotted) number of steps balanced with dif-
ferent noise levels on the force F by an RCNN trained with 10000 ob-
servations.

4.6 The Mountain Car Problem
The application of the RCNN to the cart-pole problem (sec. 4.5) showed its data-
efficiency. To demonstrate that the RCNN is able to achieve an optimal policy it
is further tested on the mountain car problem, which is fully described in [89]. Its
objective is to reach the top of a hill with an underpowered car by gaining kinetic
energy through driving forward and backward . The car’s continuous state consists
of a position p ∈ R and a velocity v ∈ R. There are three possible actions: wait,
full power forward and backward, which is equivalent to the application of zero,
a fixed positive or negative force F ∈ R. The system dynamics of the problem is
given by the following set of equations

pt+1 = pt + vt

vt+1 = vt + 0.001F − 0.0025 cos(3pt)

whereby in the used setting pt ∈ [−1.2, 0.5], vt ∈ [−0.07, 0.07] ∀t and F :=
{−1, 0, 1}. In the case pt and vt hit one of their boundaries, their values remain
unchanged within their domain. The reward is one when the car has reached the
top of the right hill (pt = 0.5) and zero otherwise [89]. A trivial near-optimal
policy, as reported in [87], is to drive the car always full power in the direction of
the car’s current velocity vt. The system is illustrated in figure 4.10.

Two different settings of the outlined problem were regarded, the standard
[89] and a slightly simplified one. In the latter so-called meta-actions or options

4.6 The Mountain Car Problem 73

v

p

Goal

Figure 4.10: The mountain car problem.

[61] were used, which let the agent only take a decision in every fifth time step.
This allows the car to travel longer distances in between taking actions. Conse-
quently the car can reach the top of the hill with less decision steps than in the
standard setting. For each setting 100000 observations were allowed for training
and the learnt policy was afterwards tested on the respective simulated dynamics.
Note that, like on the cart-pole problem (sec. 4.5), for the latter the continuous
actions determined by the RCNN had to be re-discretised, which can be seen as
an additional difficulty. In the simplified setting the training set for the RCNN
was created with random actions. For the standard version ε-greedy prioritised
sweeping [89] (with ε = 0.5) was pre-applied to obtain a representative training
set because random actions never reached the top of the hill.

4.6.1 Model Description
The used RCNN was similar to the one applied to the data-efficient cart-pole prob-
lem (sec. 4.5). It is ten time steps unfolded into the past. For the standard setting
the future unfolding counted 300 and for the simplified one 50 time steps, which
allowed the network to see at least one goal state within its (finite) future horizon.
Again, start noise (sec. 3.5.2) was used to make the network independent from the
initial unfolded state. Furthermore, it was again dim(s) = 20 and dim(h) = 40.
The problem was supposed to be fully observable, which implied that the environ-
mental state information pτ and vτ were given to the network as inputs and targets
xτ . Anew, the hyperbolic tangent was implemented as activation functions f , fc

and fu, which also limited the RCNN’s action space to (−1, 1) (eq. 4.4).
According to the problem setting the following reward function was used:

R =

T−m+∑
t=m−

t+m+∑
τ≥t

logistic10(pτ − 0.5)

where logistic10(x) = 1
1+e−10x is a steep logistic function, which is close to a

threshold-function but still differentiable. This implies that it approximately is

74 Recurrent Neural Reinforcement Learning

one for pτ > 0.5 and zero otherwise. Due to that, in the equations of the RCNN
(eq. 4.6) matrix G was set to G := [1 0] and the activation function fr within
the outputs corresponded to the described logistic function. Besides, a bias of
the value −0.5 was added within the reward clusters Rτ , where further an error
function, which maximises the output, was implemented.

4.6.2 Results
The results were compared to the described trivial near-optimal policy [87], stan-
dard PS (sec. 2.4.4) and the minimum number of decision steps determined by
manual tuning. Table 4.4 summarises the results for the two settings. It shows
that the RCNN is able to learn a potentially optimal policy as it was even as good
as the manually tuned one. It also outperformed the best results on the problem
reported in [1].

RCNN PS Trivial Near-Optimal Potentially Optimal
Standard 104 144 125 104

Simplified 21 27 26 21

Table 4.4: Number of decision steps needed by the RCNN, the PS, the trivial near-
optimal [87], and the manually tuned potentially optimal policy to drive
the car up the hill.

4.7 Extended Recurrent Control Neural Network
In the course of its application to gas turbine control (chap. 5) the RCNN (sec. 4.4)
got extended by a couple of important features. The main structure and idea re-
mained unchanged but modifications to equations and architecture were made.
This again underlines the advantage of RNN to be easily extendable and to be
able to integrate prior knowledge. Thus, it is also possible to adapt the network to
a certain application or problem class.

Two major changes were undertaken: First, instead of using the control net-
work to choose the new actions, only the changes of certain control parameters
are determined. More important, the idea of identifying the essential Markovian
state space (sec. 4.3) is further incorporated into the network by adding a bot-
tleneck structure. Therefore, in contrast to the standard RCNN (sec. 4.4), the
internal state s̄τ and the approximately Markovian state ŝτ now have different di-
mensions. Generally, one sets dim(̄s) > dim(̂s), but also the opposite direction
is thinkable. However, this implies that the identity matrix between those two
layers is now replaced by an additional matrix Â, which is also learnt during the

4.7 Extended Recurrent Control Neural Network 75

first step. The resulting bottleneck structure forces the network to put more em-
phasis on the relevant, autonomous dynamics of the RL system (eq. 1.1). It even
improves the universal approximation ability (sec. 3.3) of the RCNN, as the state
transition s̄τ+1 now forms a three-layered FFNN, which is itself a universal ap-
proximator (sec. 3.3.1). The required internal dimension to model the system’s
dynamics may therefore be reduced. By this means, also the reconstruction of
the relevant Markovian state space is enforced. Besides, the improved dynamics
also enhances the action selection, as it is now based on a better mapping of the
dynamics. Moreover, the bottleneck structure increases the influence of the con-
trol parameters on the development of the dynamics, which supports solving the
underlying credit-assignment problem. Especially short-term influences can now
be better taken into account.

Analogue to equation 4.5 the optimisation task to model the dynamics (step
(i)) can be represented by the following set of equations:

s̄τ+1 = f(Âŝτ + Duτ − θ)

x̄τ = C s̄τ

with ŝτ =

{
As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+∑
t=m−

t+m+∑
τ=t−m−

‖x̄τ − xτ‖2 → min
A,Â,B,C,D,θ

(4.8)

For the second step, the control network is altered as follows. Analogue to
the standard RCNN (eq. 4.4) it uses the Markovian state ŝτ , which combines the
information of the inner state s̄τ and the environmental observables xτ , respec-
tively its predictions x̄τ , as inputs. However, it now determines the next change
of control variables ∆ūτ ∈ RK as an output instead of a full new action ūτ . This
results in the following equation:

∆ūτ = fu(Ffc(Eŝτ − b)) ∀τ ≥ t (4.9)

where, as before, E ∈ RH×J̄ and F ∈ RK×H , b ∈ RH is a bias, fc an arbitrary and
fu a problem specific activation function, which can be used to scale or limit the
network’s action space. The calculation of ∆ūτ instead of ūτ allows for a limited
increase or decrease of the control variables and therefore avoids the learning of
impossible or non-permitted changes in control. The latter is especially important
with regard to gas turbine control, where the control variables can generally only
be varied within a bounded interval at each time step.

As the control network now only determines the change of parameters ∆ūτ ,
an identity connector IK of dimension K is added, which maintains the previous

76 Recurrent Neural Reinforcement Learning

control ūτ−1 (respectively uτ−1 for τ = t). The sum of both form the new control
ūτ . Note that hereby the change in control can be further scaled or bounded by a
fixed and problem-dependent diagonal matrix L ∈ RK×K (fig. 4.11).

Summarising, learning the optimal control (step (ii)) in the extended RCNN
can be represented by the following set of equations (eq. 4.10). Anew, bold capital
letters stand for fixed matrices, which are not learnt in this step.

s̄τ+1 =

{
f(Âŝτ + Duτ − θ) ∀τ < t

f(Âŝτ + Dūτ − θ) ∀τ ≥ t

Rτ = Gfr(Cs̄τ), ∀τ > t

with ūτ = ūτ−1 + Lfu(Ffc(Eŝτ − b)) ∀τ ≥ t

and ŝτ =

{
As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+∑
t=m−

t+m+∑
τ>t

Rτ → max
E,F,b

(4.10)

Its architecture is depicted in figure 4.11:

b
ht+1

xt
ut+1ut

b
ht

st+1
^st

^st−2 st1

xt−1

st−1
^Â Â ÂÂ

ut−2 ut−1

tu t+1u

_ _

KI KI

st st+2st+1

_ A

B
C

t+2x

G

R
t+2

θ

E

FG

C

t+1x

R
t+1

B DD

F

E

L L

B

A

D

^ _

xt−2

B

A

_ _

θ θ θ

D

∆ ∆
_ _

_ _

Figure 4.11: Extended recurrent control neural network architecture of step two. The
control network (dashed) now determines the next change of control
variable ∆ūτ by adjusting the weight matrices E, F and the bias b. Its
sum with the previous action, which is maintained by the fixed identity
matrix IK , forms the new action ūτ (τ ≥ t). Matrix L allows to further
limit the change of the control parameters.

In chapter 5 the newly developed recurrent neural RL approaches are applied
to a real-world problem, the control of three different gas turbine simulations.

”Any sufficiently advanced technology is
indistinguishable from magic.”

Sir Arthur C. Clarke, 1917-2008, (”Profiles of
The Future”, 1961 (Clarke’s third law))

CHAPTER 5

Real-World Application: Control of
Gas Turbine Simulations

Gas turbines are, in contrast to burning lignite or coal, an environmental friendly
way to produce electrical energy. In addition, the efficiency of gas turbines is
significantly higher compared to coal-fired power plants. In combined cycle oper-
ation efficiencies of more than 60% have been achieved. Based on the short start
up time and the capability of fast load changes, gas turbines are well suited to com-
plement the fluctuating energy production from wind turbines and solar sources.
They can operate on gas and oil of various qualities, while producing few emis-
sions that can be further reduced with affordable effort. As a consequence gas
turbines are, due to their good ecological properties in comparison with coal-fired
power plants, increasingly deployed. Because of their high operational flexibility,
they also serve as a compensation for the less predictable energy production of
alternative energy sources [66].

Goals of the current developments are low emissions of NOx, CO, and un-
burned hydrocarbons, while maintaining a highly efficient and smooth operation.
To provide this, several parameters of gas turbines such as fuel flows, tempera-
tures and air related settings need to be chosen optimally for the different ambient
conditions and fuel properties. Furthermore, besides the instantaneous reaction of
the gas turbine to parameter modifications also medium-term dynamical effects
have an influence.

With the focus on controlling a gas turbine, there have already been a few
attempts with feedforward neural networks [13, 14, 56, 84]. However, so far no
recurrent approach has been applied. Besides, no application of reinforcement
learning to gas turbine control has been reported.

77

78 Control of Gas Turbine Simulations

5.1 Problem Description
The data was taken from industrial gas turbines as used for electrical power gen-
eration. A general schematic representation of those is depicted in figure 5.1. The
amount of available real data samples ranged from sixty thousand to about one
million. However, also in the case of one million samples only a selection of about
seventy thousand could be used. The remaining data was recorded during static
operation with very little variation of the control parameters and consequently did
not provide any system development information. The time spans covered by the
data sets, it was finally worked on, ranged from multiple hours, spread over a cou-
ple of days, to several months. They all contained different operating points of the
turbines. Three different problem settings were examined:

(i) Combustion tuning (CT): Here the overall objective was to optimise the re-
garded turbine’s operation for stable combustion at high load.

(ii) Emission tuning (ET): In addition to (i) also an ecological aspect, the re-
duction of NOx, had to be taken into account. Moreover, further pressure
intensities in the combustion chamber were considered.

(iii) Extended Emission tuning (EET): In addition to (ii) a different turbine with a
more difficult dynamics was regarded. Furthermore, also a reduction of CO
had to be achieved and again further pressure intensities were incorporated.

Out of the available data sets simulation models were developed as direct ex-
periments on the gas turbines were too expensive. The simulations operate in set-
ting (i) on 20, in (ii) on 28 and in (iii) on 40 different parameters such as electrical
load (Load), exhaust temperature, temperature and pressure behind the compres-
sor, fuel fractions, acceleration and pressure intensities in the combustion chamber
(RMS). Regarded actions were in the CT setting limited modifications of pilot gas
and inlet guide vane (IGV), which are two master control parameters of such tur-
bines. In the ET setting the action space was extended to four and in the EET
setting even to five different control parameters, which for both mainly consisted
of the adaption of fuel fractions. Furthermore, by construction in these two set-
tings seven and respectively four further controls were regarded in the past but
assumed to be fixed in the future development of the turbine. In other words, their
influence was taken into account but no changes were determined. The time grid
was set to five seconds each, i.e., the simulation models were used to predict the
states of the turbines five seconds ahead.

The three simulations served as a basis for testing the recurrent neural RL
approaches (chap. 4). In order to guarantee the quality of the experiments first
the simulations’ accuracy was checked by comparing the predictions for all data

5.1 Problem Description 79

Figure 5.1: Schematic illustration of a gas turbine.

points with the true behaviour of the respective gas turbine. Furthermore, the in-
fluence of the control parameters was tested and their physical plausibility was
verified. The experiments have shown that the simulations well capture the im-
portant aspects of the gas turbines’ dynamics as relative one-step approximation
errors of less than 3% were achieved. Moreover, the closed loop iteration over
longer time periods showed a stable behaviour that kept the parameters in the
valid range.

Although the problem has been already made more tractable by working on
simulations, a direct application of discrete and localised RL methods, such as
Q-learning or PS (sec. 2.4) on local basis functions, showed to be infeasible as the
state space is still of high dimensionality, continuous, and non-Markovian. For
that reason the presented recurrent neural RL approaches (chap. 4) were applied.
A number of 100.000 observations each were allowed for training. With the time
grid of five seconds this covers about a week of data, which is sufficient to train
and update the applied methods on a regular basis. The learnt policies were tested
afterwards on the respective simulation.

The reward functions used in the different settings are as follows, whereby
the exact parameters p1, . . . , pn with pi ∈ R (i = 1, . . . , n) are withheld due to
confidentiality reasons. Here, Load ∈ R+ denotes the electrical load, RefLoad
∈ R+ a reference load of a certain data stream, RMSi ∈ R+ with i ∈ N pressure
intensities in the combustion chamber, and NOx ∈ R+ and CO ∈ R+ the regarded
emissions of the respective turbine. 1A stands for the indicator function of a subset
A of an arbitrary set X , which is formally defined as

1A(x) =

{
1 if x ∈ A
0 if x /∈ A

(5.1)

Further it is logistic(x) = 1
1+e−4x . The reward functions were motivated by the

different problem settings. They basically resulted from the respective objective

80 Control of Gas Turbine Simulations

and the considered parameters.

(i) Combustion tuning:

RCT := p1Load− p2 − p3(RMS1 − p4)
2 · 1(RMS1>p4)

Here, only one pressure intensity in the combustion chamber, RMS1, is con-
sidered and has to be minimised to achieve an optimal reward.

(ii) Emission tuning:

RET := Load −
4∑

i=1

pi+4(RMSi − pi)
2 · 1(RMSi>pi)

− p9 · NOx − p10 · logistic (p11(NOx − p12))

In this setting already four different RMS are considered. Furthermore, the
amount of NOx has to be minimised.

(iii) Extended Emission tuning:

REET := 1 − p9|Load− RefLoad| · 1(RefLoad>Load)

−
6∑

i=1

p7logistic (piRMSi − p8)

− p10 tanh
(
p11(NOx)

2 + p12(CO)2
)

Here, the reward function is normalised to one. For this reason also the
difference between the current Load and a reference load (RefLoad) are
considered. Furthermore, six different RMS are taken into account and in
addition to (ii) also CO emissions have to be minimised.

5.2 Model Description
The new developed recurrent neural RL approaches as described in chapter 4 were
applied to control the different gas turbine simulations. For each, the underlying
RNN was provided with the respective number of observables of the simulations
as inputs and targets xτ and the number of control parameters as actions uτ .

First, the extended RNN (sec. 4.3) was used within the hybrid RNN approach
(sec. 4.1) to reduce the high-dimensional state spaces of the turbine simulations

5.3 Results 81

and hence make the task applicable for standard table-based RL methods on a
sufficiently fine-gridded discretisation. The RNN was unfolded ten time steps
into past and future. It was started with a twenty dimensional state space ŝτ of
the RNN and incrementally applied node pruning [12, 47] to it. As described in
section 4.3, the idea is to condense the state description into a lower dimensional,
but approximately Markovian state, on which table-based RL algorithms can be
deployed. In doing so the best compromise between generalisation performance
and internal dimensionality of the state space was achieved with an only four
dimensional state space. This reduced state space then served as a basis for Q-
learning (RQ) (sec. 2.4.2) and prioritised sweeping (RPS) (sec. 2.4.4) to determine
the optimal policy.

Second, forms of the extended RCNN (sec. 4.7) were used, as due to the
problem setting, in particular the requirement to determine changes in the con-
trol parameters, the standard architecture was not applicable. The internal state
dimension was set to J̄ = 100. For the combustion tuning (i) and the emission
tuning (ii) setting no bottleneck structure was implemented, which means that
dim(̂s) = dim(̄s) and Â := IJ̄ . In contrast, for the extended emission tuning
setting the inclusion of the essential Markovian state space reconstruction turned
out to be essential. Here, the dimension of the Markovian state ŝτ was set to
Ĵ = 10, which led to the desired bottleneck structure. The hidden state hτ of
the control network was set to H = 20 neurons. Further, matrix L was imple-
mented appropriately to keep the changes of the actions ∆ūτ within the allowed
limits. The chosen dimensions were effectual to generate stable results in terms
of system identification and learning the optimal policy. The reward function was
respectively (hard) coded into the neural architecture, which means that fr and G
were set accordingly and if needed additional clusters were implemented. As a
preprocessing the parameters were scaled to the interval [−1, 1]. The RCNN was
unfolded eight steps into the past and 24 into the future. This gave the network
both, a memory length that was sufficient to identify the dynamics, and an over-
shooting length that enabled it to predict the consequences of its chosen actions
and to calculate the desired finite sum of expected future rewards. For the same
reasons as hitherto, in all networks start noise was used to handle the uncertainty
of the initial state (sec. 3.5.2) and the hyperbolic tangent was implemented as
activation functions f and, in the case of the RCNN, also fc, and fu.

5.3 Results
Table 5.1 depicts the results for the three different problem settings. Here, Ref-
Con denotes the reference controller, whose behaviour is reflected by the original
turbine data.

82 Control of Gas Turbine Simulations

In all three settings the applied RCNN achieved the highest average and final
reward. Also the two applied hybrid RNN approaches, RQ and RPS, showed re-
markable results. In the first two settings, combustion and emission tuning, they
outperformed the reference controller. Especially in the combustion tuning set-
ting the simple RPS approach performed remarkably well. Only in the extended
emission tuning setting, the hybrid RNN approach produced inferior results. Ob-
viously, even with a reconstructed state space, the standard RL methods were not
able to develop a satisfying policy. In contrast, here the extended RCNN reveals
its advantage. The integrated approach allows the determination of a policy, which
is superior to the reference controller. Figure 5.2 depicts the development of the
achieved reward for the three different settings.

Method Combustion tuning setting
average final

RefCon 0.53 ± 0.01 0.53 ± 0.01
RQ 0.72 ± 0.01 0.73 ± 0.01
RPS 0.84 ± 0.005 0.84 ± 0.005
RCNN 0.86 ± 0.004 0.85 ± 0.005

Method Emission tuning setting
average final

RefCon 0.23 ± 0.02 0.23 ± 0.02
RQ 0.29 ± 0.04 0.29 ± 0.04
RPS 0.45 ± 0.03 0.51 ± 0.04
RCNN 0.59 ± 0.03 0.74 ± 0.03

Method Extended emission tuning setting
average final

RefCon 0.79 ± 0.02 0.79 ± 0.02
RQ 0.63 ± 0.02 0.57 ± 0.03
RPS 0.71 ± 0.02 0.68 ± 0.02
RCNN 0.92 ± 0.01 0.92 ± 0.02

Table 5.1: Average over 1000 trials and final reward after 1000 time steps achieved
by the respective methods for the three regarded problem settings. Note
that in each setting a different reward function was used, which implies
that the results are incomparable between the three settings.

For the combustion tuning setting further the developed policies of the four
regarded methods were analysed. Figure 5.3 illustrates their performance be-
haviours after reaching a stable operating point. Figure 5.3(a) compares the re-
spective mean setting of the control parameters, pilot gas and IGV. It shows that

5.3 Results 83

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time (steps, each 5 s)

A
ve

ra
ge

 R
ew

ar
d

RCNN
RPS
RQ
RefCon

(a) Combustion tuning setting

0 200 400 600 800 1000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (steps, each 5 s)

A
ve

ra
ge

 R
ew

ar
d

RCNN
RPS
RQ
RefCon

(b) Emission tuning setting

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (steps each 5 s)

A
ve

ra
ge

 R
ew

ar
d

RCNN
RefCon
RQ
RPS

(c) Extended emission tuning setting

Figure 5.2: Evaluation of the reward development for the different controllers for (a)
the combustion tuning and (b) the emission tuning setting. The reward
is plotted for the reference controller (RefCon), RNN based Q-learning
(RQ), RNN based prioritised sweeping (RPS), and the extended RCNN
averaged over 1000 trials with different starting points.

84 Control of Gas Turbine Simulations

the presented recurrent neural RL controllers developed the most stable policies
as their standard deviation is low. Notably, these four methods approach very sim-
ilar operating points. Figure 5.3(b) depicts the two major performance indicators,
Load and RMS. It confirms the good results of the novel methods as they reach
the highest Load level with only a minor increase in RMS. To ease interpreta-
tion ”iso-reward” curves are plotted, which indicate identical reward for different
combinations of the performance indicators.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Inlet Guide Vane Position

N
or

m
al

is
ed

 P
ilo

t G
as

 In
te

ns
ity

RefCon
RQ
RPS
RCNN

(a) Control Parameters pilot gas and IGV

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.90.80.70.60.5Reward:

Normalised Load

N
or

m
al

is
ed

 R
M

S

RefCon
RQ
RPS
RCNN

(b) Performance Indicators Load and RMS

Figure 5.3: Comparison of the final operation points reached by different controllers
in the combustion tuning setting. The plots show the mean value and
standard deviation in (a) the space of the control parameters and (b) the
space of the performance indicators. In the latter ”iso-reward” curves
indicate identical reward in this space.

”Science, never solves a problem without
creating ten more.”

Georg Bernhard Shaw, 1856-1950

CHAPTER 6

Conclusion

In this thesis a novel connection between reinforcement learning and recurrent
neural networks is presented. Its practicality to solve high-dimensional and
partially observable RL problems with continuous state and action spaces
data-efficiently has been shown on several benchmarks and an application to
gas turbine simulations. As a preposition theoretical results on RNN have been
developed. The thesis therefore contributes valuable results for both research
fields, reinforcement learning and recurrent neural networks.

In summary the following contributions have been made:

(i) A proof for the universal approximation ability of RNN: It has been proven
that RNN in state space model form can approximate any open dynamical
system with an arbitrary accuracy. The result is of great importance as it
forms a theoretical basis for recurrent neural network research in general,
but also for the application of RNN to reinforcement learning.

(ii) A demonstration of RNN’s ability to learn long-term dependencies: It has
been shown that RNN unfolded in time and trained with a shared weight
extension of the backpropagation algorithm are, in opposition to an often
stated opinion, well able to learn long-term dependencies. Using shared
weights in combination with a reasonable learning algorithm like pattern-
by-pattern learning and a proper weight initialisation the problem of a van-
ishing gradient becomes a minor issue. Due to shared weights RNN even
possess an internal regularisation mechanism, which keeps the error flow up
and allows for an information transport over at least a hundred time steps.
The analysis confirms that RNN are valuable in system identification and
forecasting. However, it is of particular importance for reinforcement learn-
ing where a long horizon is necessary to evaluate the policies.

85

86 Conclusion

(iii) Practical details on an improved model-building with RNN: A couple of
approaches in RNN model-building were presented, which have shown to
be very useful in practical applications. Hereby, methods to deal with uncer-
tainty in the data as well as in the initial state of the finitely unfolded RNN
were described. Additionally, ways for an optimal weight initialisation were
discussed. These aspects are of importance for an optimal system identifi-
cation and also positively influenced the performance of RNN applied to
RL problems.

(iv) An RNN based method for an optimal state-space reconstruction as well
as minimisation: A novel RNN based method to reconstruct or minimise
the state space of a partially observable system was introduced. RNN were
used to reconstruct or minimise a system’s state space within their inner
state. In doing so a problem can be made more tractable. The method
served as a basis for recurrent neural reinforcement learning. Still, it is
itself valuable as it allows a kind of feature selection, where in contrast to
classical approaches, the features provide across-the-time information.

(v) A hybrid RNN approach to solve RL problems with a combination of
RNN and standard RL algorithms: The hybrid RNN approach represents
a combination of state space reconstruction and respectively minimisation
with RNN (iv) and RL. It is a two step method. In the first step the RNN
is used to create a suitable state space, which standard RL methods can
deal with. In the second step the internal state of the RNN then serves as a
basis for those RL methods, which are applied to learn the optimal policy.
The approach is quite simple, but has shown remarkable results. For the
first time the cart-pole problem could be solved with only one observable
variable.

(vi) An RNN to explicitly model POMDP: A special RNN architecture was de-
veloped for the mapping of POMDP and the reconstruction of a (minimal)
approximately Markovian state space. Its structure is adapted to POMDP.
So it considers actions as separate inputs and allows to explicitly recon-
struct the RL system’s state out of the observables and the networks inner
state. The network can be used to enhance the hybrid RNN approach (v).
This has shown to be particularly of advantage for RL algorithms, which
are by construction unable to deal with partially observable environments.
Their application range can be enlarged through a preprocessing of the RL
system’s state space with the described RNN.

87

(vii) The recurrent control neural network in its standard and its extended
form: The RCNN forms the desired connection between RL and RNN. It
combines system identification and learning of the policy of an RL problem
within one integrated recurrent neural network. The approach is model-
based and by construction able to solve high-dimensional and partially ob-
servable RL problems with continuous state and action spaces in a data-
efficient manner. On this note it also offers a good approach to break Bell-
man’s curse of dimensionality [7]. In contrast to most RL methods it makes
no use of a value function. Its learning of a policy can rather be referred to
as virtual Monte-Carlo policy gradient method.
The application to the classical cart-pole problem demonstrated the capa-
bilities of the RCNN, especially in terms of data-efficiency and robustness.
The results on the mountain car problem further showed that the RCNN is
able to learn a potentially optimal policy.
In an extended version the RCNN further incorporates the idea of a mini-
mal Markovian state space reconstruction and allows for the calculation of
changes in the control parameters instead of absolute values only. This has
shown to be a clear advantage for real-world applications.

(viii) An application to gas turbine control: The application on gas-turbine
control was motivated by a research project at Siemens AG. Within the lim-
its of confidentiality the problem setting was described and its particular
difficulties were pointed out. For a solution the novel recurrent neural RL
methods were applied. Overall, the results were remarkable as in compar-
ison to the given reference controller a substantial performance gain could
be achieved. Furthermore, the methods have been shown to significantly
improve the turbines stability and its lifetime by guaranteeing the accus-
tomed high performance. However, in the application to the three different
simulations of gas turbines it became also evident that the integrated RCNN
approach is more powerful than the hybrid one. Nevertheless, despite its
simplicity the latter showed a remarkable performance.

Future research can be done in several directions. On the one hand the theory
of RNN can be further developed. Thereby proofs for numerous assumptions, like
the details on improved model-building, would be desirable. Besides, a compari-
son between the multiple recurrent neural network types might be of interest. On
the other hand one might further enhance the novel neural RL approaches. Here
a combination with the theory on sparse matrices, which have shown very good
results on long-term learning [78], large neural networks [106] or also safe explo-
ration [31] would be thinkable. In addition, an application to real gas turbines and
similar real-world applications is aspired. Coming along with that is a constant
improvement and adaptation of the networks to each respective problem setting.

88 Conclusion

Bibliography

[1] M. Abramson, P. Pachowicz, H. Wechsler, Competitive reinforcement
learning in continuous control tasks, in: Proceedings of the International
Joint Conference on Neural Networks (IJCNN), Portland, OR, 2003.

[2] B. Bakker, Reinforcement learning with long short-term memory, in: T. G.
Dietterich, S. Becker, Z. Ghahramani (eds.), Advances in Neural Informa-
tion Processing Systems, No. 14, MIT Press, Cambridge, MA, pp. 1475–
1482, 2002.

[3] B. Bakker, The state of mind: Reinforcement learning with recurrent neural
networks, Ph.D. thesis, Leiden University, 2004.

[4] B. Bakker, Reinforcement learning by backpropagation through an LSTM
model/critic, in: Proceedings of the IEEE International Symposium on Ap-
proximate Dynamic Programming and Reinforcement Learning (ADPRL),
Honolulu, HI, pp. 127–134, 2007.

[5] A. Barto, R. S. Sutton, C. Anderson, Neuron-like adaptive elements that can
solve difficult learning control problems, IEEE Transactions on Systems,
Man, and Cybernetics (13), pp. 834–846, 1983.

[6] R. E. Bellman, Dynamic Programming and Stochastic Control Processes,
Rand Corporation, 1957.

[7] R. E. Bellman, Adaptive Control Processes: A Guided Tour, Princeton Uni-
versity Press, Princton, NJ, 1961.

[8] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with
gradient descent is difficult, IEEE Transactions on Neural Networks 5 (2),
pp. 157–166, 1994.

[9] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic
Models, Prentice Hall, Englewood Cliffs, NJ, 1987.

[10] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1-2,
Athena Scientific, Belmont, MA, 1995.

90 BIBLIOGRAPHY

[11] D. P. Bertsekas, J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Sci-
entific, Belmont, MA, 1996.

[12] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press,
Oxford, 1995.

[13] N. W. Chbat, et.al., Estimating gas turbine internal cycle parameters using
a neural network, International Gas Turbine and Aeroegine Congress and
Exhibition, 1996.

[14] N. Chiras, C. Evans, D. Rees, Nonlinear gas turbine modelling using feed-
forward neural networks, in: Proceedings of ASME Turbo Expo Congress,
Amsterdam, 2002.

[15] G. Cybenko, Approximation by superpositions of a sigmoidal function,
in: Mathematics of Control, Signals and Systems, Springer, New York,
pp. 303–314, 1989.

[16] K.-L. Du, M. N. S. Swamy, Neural Networks in a softcomputing frame-
work, Springer, London, 2006.

[17] J. L. Elman, Finding structure in time, Cognitive Science 14, pp. 179–211,
1990.

[18] E. A. Feinberg, A. Shwartz, Handbook of Markov Decision Processes,
Kluwer, 2002.

[19] K. I. Funahashi, On the approximate realization of continuous mappings by
neural networks, Neural Networks 2, pp. 183–192, 1989.

[20] A. R. Gallant, H. White, There exists a neural network that does not make
avoidable mistables, in: Proceedings of the Second Annual IEEE Confer-
ence on Neural Networks, vol. 1, IEEE Press, pp. 657–664, 1988.

[21] H. Gatignon, Statistical Analysis of Management Data, Springer US, 2003.

[22] F. Gers, N. Schraudolph, J. Schmidhuber, Learning precise timing with
LSTM recurrent networks, Journal of Machine Learning Research 3,
pp. 115–143, 2002.

[23] C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, Y. C. Lee, Ex-
tracting and learning an unknown grammar with recurrent neural networks,
in: J. E. Moody, S. J. Hanson, R. P. Lippmann (eds.), Advances in Neu-
ral Information Processing Systems, vol. 4, Morgan Kaufmann Publishers,
pp. 317–324, 1992.

BIBLIOGRAPHY 91

[24] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization, Academic
Press, London, 1981.

[25] F. Gomez, Robust non-linear control through neuroevolution, Ph.D. thesis,
University of Texas, Austin, 2003.

[26] F. Gomez, R. Miikkulainen, 2-D balancing with recurrent evolutionary net-
works, in: Proceedings of the International Conference on Artificial Neural
Networks (ICANN-98), Springer, Skovde, pp. 425–430, 1998.

[27] M. Gopal, Modern Control System Theory, Wiles Eastern Limited, 1984.

[28] R. Grothmann, Multi-agent market modeling based on neural networks,
Ph.D. thesis, University of Bremen, Bremen, 2002.

[29] R. Grothmann, A. M. Schaefer, S. Clarke, A. Zaeh, Telepresent production:
Overcoming the network problem with error correction neural networks, in:
Proceedings of the International Conference on Changeable, Agile, Recon-
figurable and Virtual Production (CARV), Munich, 2005.

[30] B. Hammer, On the approximation capability of recurrent neural networks,
in: International Symposium on Neural Computation, 1998.

[31] A. Hans, D. Schneegass, A. M. Schaefer, S. Udluft, Safe exploration for
reinforcement learning, in: Proceedings of the European Symposium on
Artificial Neural Networks (ESANN), Bruges, 2008.

[32] M. Harmon, S. Harmon, Reinforcement learning: A tutorial, 1996.

[33] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan,
New York, 1994.

[34] S. Haykin, J. Principe, T. Sejnowski, J. McWhirter, New Directions in Sta-
tistical Signal Processing: From Systems to Brain, MIT Press, Cambridge,
MA, 2006.

[35] S. Hochreiter, The vanishing gradient problem during learning recurrent
neural nets and problem solutions, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6 (2), pp. 107–116, 1998.

[36] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, Gradient flow in
recurrent nets: The difficulty of learning long-term dependencies, in: J. F.
Kolen, S. Kremer (eds.), A Field Guide to Dynamical Recurrent Networks,
IEEE Press, pp. 237–243, 2001.

92 BIBLIOGRAPHY

[37] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computa-
tion 9 (8), pp. 1735–1780, 1997.

[38] K. Hornik, M. Stinchcombe, H. White, Multi-layer feedforward networks
are universal approximators, Neural Networks 2, pp. 359–366, 1989.

[39] H. Jaeger, Adaptive nonlinear system identification with echo state net-
works, in: S. Becker, S. Thrun, K. Obermayer (eds.), Advances in Neural
Information Processing Systems, vol. 15, MIT Press, Cambridge, pp. 593–
600, 2003.

[40] H. Jaeger, W. Maass, J. Principe, Special issue on echo state networks and
liquid state machines, vol. 20 (3) of Neural Networks, 2007.

[41] L. P. Kaelbling, M. L. Littman, A. R. Cassandra, Planning and acting in
partially observable stochastic domains, Journal of Artificial Intelligence
101 (1-2), pp. 99–134, 1998.

[42] L. P. Kaelbling, M. L. Littman, A. P. Moore, Reinforcement learning: A
survey, Journal of Artificial Intelligence 4, pp. 237–285, 1994.

[43] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated an-
nealing, Science 220 (4598), pp. 671–680, 1983.

[44] J. F. Kolen, S. C. Kremer, A Field Guide to Dynamical Recurrent Networks,
IEEE Press, 2001.

[45] V. R. Konda, J. N. Tsitsikilis, On actor-critic algorithms, SIAM Journal on
Control and Optimization 42(4), pp. 1143–1166, 2003.

[46] M. G. Lagoudakis, R. Parr, Least-squares policy iteration, Journal of Ma-
chine Learning Research, pp. 1107–1149, 2003.

[47] Y. LeCun, J. S. Denker, S. A. Solla, Optimal brain damage, in: D. Touretzky
(ed.), Advances in Neural Information Processing Systems 2, pp. 598–605,
1990.

[48] D. G. Luenberger, Introduction to linear and nonlinear Programming,
Addison-Wesley, Reading, 1973.

[49] D. P. Mandic, J. A. Chambers, Recurrent neural networks for prediction:
Learning algorithms, architectures and stability, in: S. Haykin (ed.), Adap-
tive and Learning Systems for Signal Processing, Communications and
Control, John Wiley & Sons, Chichester, 2001.

BIBLIOGRAPHY 93

[50] A. A. Markov, Markov Chains, chap. Appendix B: Extension of the limit
theorems of probability theory to a sum of variables connected in a chain,
John Wiley & Sons, reprint 1971.

[51] L. R. Medsker, L. C. Jain, Recurrent neural networks: Design and applica-
tion, vol. 1 of comp. intelligence, CRC Press international, 1999.

[52] N. Metropolis, S. Ulam, The Monte Carlo method, Journal of the American
Statistical Association 44, pp. 335–341, 1949.

[53] N. Meuleau, L. Peshkin, K. Kee-Eung, L. P. Kaebling, Learning finite-state
controllers for partially observable environments, in: Proceedings of the
Fifteenth International Conference on Uncertainty in Artificial Intelligence
(UAI-99), Morgan Kaufmann, San Francisco, CA, pp. 427-436, 1999.

[54] M. Minsky, Steps towards artificial intelligence, in: Proceedings of the In-
stitute of Radio Engineers, pp. 8–30, 1961.

[55] A. W. Moore, C. G. Atkeson, Prioritized sweeping: Reinforcement learning
with less data and less time, Machine Learning 13, pp. 103–130, 1993.

[56] I. T. Nabney, D. C. Cressy, Neural network control of a gas turbine, Neural
Computing and Applications 4 (4), pp. 198–208, 1996.

[57] R. Neuneier, H. G. Zimmermann, How to train neural networks, in: G. B.
Orr, K.-R. Mueller (eds.), Neural Networks: Tricks of the Trade, Springer
Verlag, Berlin, pp. 373–423, 1998.

[58] B. Pearlmutter, Gradient calculations for dynamic recurrent neural net-
works: A survey, IEEE Transactions on Neural Networks 6 (5), pp. 1212–
1228, 1995.

[59] J. Peters, E. Theodorou, S. Schaal, Policy gradient methods for machine
learning, in: Proceedings of INFORMS Conference of the Applied Proba-
bility Society, 2007.

[60] J. Peters, S. Vijayakumar, S. Schaal, Natural actor-critic, in: J. Gama, et al.
(eds.), Machine Learning: ECML 2005, No. 3720 in Lecture Notes in Ar-
tificial Intelligence, Springer, pp. 280–291, 2005.

[61] D. Precup, R. Sutton, S. Singh, Theoretical results on reinforcement learn-
ing with temporally abstract behaviors, in: Proceedings of the 10th Euro-
pean Conference on Machine Learning (ECML), pp. 382–393, 1998.

94 BIBLIOGRAPHY

[62] D. Prokhorov, Toward effective combination of off-line and on-line train-
ing in ADP framework, in: Proceedings of the IEEE International Sympo-
sium on Approximate Dynamic Programming and Reinforcement Learning
(ADPRL), Honolulu, HI, pp. 268–271, 2007.

[63] D. Prokhorov, Toyota Prius HEV neurocontrol, in: Proceedings of the In-
ternational Joint Conference on Neural Networks (IJCNN), MIT Press, Or-
lando, pp. 2129–2134, 2007.

[64] D. Prokhorov, D. C. Wunsch, Adaptive critic designs, IEEE Transactions
on Neural Networks 8 (5), pp. 997–1007, 1997.

[65] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, Wiles Series in Probability and Statistics, John Wiley &
Sons, 2005.

[66] P. Ratliff, P. Garbett, W. Fischer, The new Siemens gas turbine SGT5-
8000H for more costumer benefit, VGB PowerTech, 2007.

[67] M. Riedmiller, Supervised learning in multilayer perceptrons - from back-
propagation to adaptive learning techniques, International Journal of Com-
puter Standards and Interfaces 16 (5), pp. 265–278, 1994.

[68] M. Riedmiller, Neural fitted Q iteration - first experiences with a data ef-
ficient neural reinforcement learning method, in: J. Gama, et al. (eds.),
Machine Learning: ECML 2005, No. 3720 in Lecture Notes in Artificial
Intelligence, Springer, pp. 317–328, 2005.

[69] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropaga-
tion learning: The Rprop algorithm, in: Proceedings of the IEEE Interna-
tional Conference on Neural Networks, IEE Press, pp. 586–591, 1993.

[70] M. Riedmiller, J. Peters, S. Schaal, Evaluation of policy gradient meth-
ods and variants on the cart-pole benchmark, in: Proceedings of the IEEE
International Symposium on Approximate Dynamic Programming and Re-
inforcement Learning (ADPRL), Honolulu, HI, pp. 254–261, 2007.

[71] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning internal represen-
tations by error propagation, in: D. E. Rumelhart, J. L. McClelland, et al.
(eds.), Parallel Distributed Processing: Explorations in The Microstructure
of Cognition, vol. 1, MIT Press, Cambridge, MA, pp. 318–362, 1986.

[72] A. L. Samuel, Some studies in machine learning using the game checkers,
IBM Journal on Research and Developement (3), pp. 210–229, 1959.

BIBLIOGRAPHY 95

[73] A. M. Schaefer, D. Schneegass, V. Sterzing, S. Udluft, A neural reinforce-
ment learning approach to gas turbine control, in: Proceedings of the In-
ternational Joint Conference on Neural Networks (IJCNN), MIT Press, Or-
lando, pp. 1691-1696, 2007.

[74] A. M. Schaefer, D. Schneegass, V. Sterzing, S. Udluft, Data-efficient re-
current neural reinforcement learning for gas turbine control, Tech. rep.,
Siemens AG, 2008.

[75] A. M. Schaefer, S. Udluft, Solving partially observable reinforcement
learning problems with recurrent neural networks, in: A. Nowe, et al. (eds.),
Reinforcement Learning in Non-Stationary Environments, Workshop Pro-
ceedings of the European Conference on Machine Learning (ECML),
pp. 71-81, 2005.

[76] A. M. Schaefer, S. Udluft, H. G. Zimmermann, The recurrent control neural
network, in: Proceedings of the European Symposium on Artificial Neural
Networks (ESANN), Bruges, pp. 319–324, 2007.

[77] A. M. Schaefer, S. Udluft, H. G. Zimmermann, A recurrent control neural
network for data efficient reinforcement learning, in: Proceedings of the
IEEE International Symposium on Approximate Dynamic Programming
and Reinforcement Learning (ADPRL), Honolulu, HI, pp. 151–157, 2007.

[78] A. M. Schaefer, S. Udluft, H. G. Zimmermann, Learning long term de-
pendencies with recurrent neural networks, NeuroComputing 71 (13-15),
pp. 2481–2488, 2008.

[79] A. M. Schaefer, H. G. Zimmermann, Recurrent neural networks are univer-
sal approximators, International Journal of Neural Systems 17 (4), pp. 253–
263, 2007.

[80] J. Schmidhuber, Reinforcement learning in markovian and non-markovian
environments, in: D. S. Lippman, J. E. Moody, D. S. Touretzky (eds.),
Advances in Neural Information Processing Systems, vol. 3, Morgan Kauf-
mann, San Mateo, CA, pp. 500–506, 1991.

[81] J. Schmidhuber, F. Gers, D. Eck, Learning nonregular languages: A com-
parison of simple recurrent networks and LSTM, Neural Computation
14 (9), pp. 2039–2041, 2002.

[82] D. Schneegass, S. Udluft, T. Martinetz, Neural rewards regression for near-
optimal policy identification in markovian and partial observable environ-
ments, in: M. Verleysen (ed.), Proceedings of the European Symposium on
Artificial Neural Networks (ESANN), pp. 301–306, 2007.

96 BIBLIOGRAPHY

[83] N. Schraudolph, Rapid stochastic gradient descent: Accelerating machine
learning, slides of a lecture on stochastic meta-descent, 2007.

[84] Q. Song, et. al., An integrated robust/neural controller with gas turbine
applications, in: IEEE Conference on Control Applications, pp. 411-415,
1994.

[85] A. Soofi, L. Cao, Modeling and Forecasting Financial Data, Techniques of
Nonlinear Dynamics, Kluwer Academic Publishers, 2002.

[86] M. H. Stone, The generalized weierstrass approximation theorem, Mathe-
matics Magazine 21, 1948.

[87] M. J. A. Strens, A. W. Moore, Direct policy search using paired statistical
tests, in: Proceedings of the Eighteenth International Conference on Ma-
chine Learning (ICML), Williams College, MA, 2001.

[88] R. S. Sutton, Learning to predict by the methods of temporal differences,
Machine Learning 3, pp. 9–44, 1988.

[89] R. S. Sutton, A. Barto, Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning), MIT Press, Cambridge, MA, 1998.

[90] R. S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods
for reinforcement learning with function approximation, in: Advances in
Neural Information Processing Systems 12, 2000.

[91] G. J. Tesauro, TD-gammon, a self-teaching backgammon program,
achieves master-level play, Neural Computation 6(2), pp. 215–219, 1994.

[92] J. N. Tsitsikilis, B. Van Roy, An analysis of temporal difference learn-
ing with function approximation, IEEE Transactions on Automatic Control
42(5), pp. 674–690, 1997.

[93] C. Watkins, Learning from delayed rewards, Ph.D. thesis, University of
Cambridge, 1989.

[94] K. Weierstrass, Über die analytische Darstellbarkeit sogenannter
willkürlicher Functionen einer reellen Veränderlichen, Tech. Rep. II,
Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften
zu Berlin, 1885.

[95] P. J. Werbos, Beyond regression: New tools for prediction and analysis in
the behavioral sciences, Ph.D. thesis, Harvard University, 1974.

BIBLIOGRAPHY 97

[96] P. J. Werbos, Neural networks & the human mind: New mathematics fits
humanistic insight, in: Proceedings of IEEE International Conference on
Systems, Man and Cybernetics, IEEE, Chicago, 1992.

[97] P. J. Werbos, The Roots of Backpropagation. From Ordered Derivatives to
Neural Networks and Political Forecasting, John Wiley & Sons, New York,
1994.

[98] D. A. White, D. A. Sofge, Handbook of Intelligent Control: Neural, Fuzzy
and Adaptive Approaches, Van Nostrand Reinhold, New York, 1992.

[99] A. Wieland, Evolving neural network controllers for unstable systems,
in: Proceedings of the International Joint Conference on Neural Networks
(IJCNN), vol. II, Piscataway, NJ, pp. 667-673, 1991.

[100] R. J. Williams, L. C. Baird, Analysis of some incremental variants of policy
iteration: First steps toward understanding actor-critic learning systems,
Tech. Rep. NU-CCS-93-11, Northeastern Universty, College of Computer
Science, Boston, MA, 1993.

[101] R. J. Williams, D. Zipser, A learning algorithm for continually running
fully recurrent neural networks, Neural Computation, 1989.

[102] R. J. Williams, D. Zipser, Gradient-based learning algorithms for recurrent
connectionist networks, in: Y. Chauvin, D. E. Rumelhart (eds.), Backprop-
agation: Theory, Architectures, and Applications, Erlbaum, Hillsdale, NJ,
1990.

[103] H. G. Zimmermann, Neuronale Netze als Entscheidungskalkül, in:
H. Rehkugler, H. G. Zimmermann (eds.), Neuronale Netze in der
Ökonomie: Grundlagen und ihre finanzwirtschafliche Anwendung, Vahlen,
Munich, pp. 1–88, 1994.

[104] H. G. Zimmermann, L. Bertolini, R. Grothmann, A. M. Schaefer, C. Ti-
etz, A technical trading indicator based on dynamical consistent neural net-
works, in: Proceedings of the International Conference on Artificial Neural
Networks (ICANN), vol. 2, Springer, Athens, pp. 654-663, 2006.

[105] H. G. Zimmermann, R. Grothmann, A. M. Schaefer, C. Tietz, Dynamical
consistent recurrent neural networks, in: D. Prokhorov (ed.), Proceedings
of the International Joint Conference on Neural Networks (IJCNN), MIT
Press, Montreal, pp. 1537–1541, 2005.

98 BIBLIOGRAPHY

[106] H. G. Zimmermann, R. Grothmann, A. M. Schaefer, C. Tietz, Identification
and forecasting of large dynamical systems by dynamical consistent neural
networks, in: S. Haykin, J. Principe, T. Sejnowski, J. McWhirter (eds.),
New Directions in Statistical Signal Processing: From Systems to Brain,
MIT Press, pp. 203–242, 2006.

[107] H. G. Zimmermann, R. Grothmann, A. M. Schaefer, C. Tietz, Energy future
price forecasting by dynamical consistent neural networks, working paper,
Siemens AG, Munich, 2007.

[108] H. G. Zimmermann, R. Neuneier, The observer-observation dilemma in
neuro-forecasting, Advances in Neural Information Processing Systems 10,
pp. 179–206, 1998.

[109] H. G. Zimmermann, R. Neuneier, Neural network architectures for the
modeling of dynamical systems, in: J. F. Kolen, S. Kremer (eds.), A Field
Guide to Dynamical Recurrent Networks, IEEE Press, pp. 311–350, 2001.

[110] H. G. Zimmermann, R. Neuneier, R. Grothmann, An approach of multi-
agent FX-market modeling based on cognitive systems, in: Proceedings
of the International Conference on Artificial Neural Networks (ICANN),
Springer, pp. 767–774, 2001.

[111] H. G. Zimmermann, R. Neuneier, R. Grothmann, Modeling of dynamical
systems by error correction neural networks, in: A. Soofi, L. Cao (eds.),
Modeling and Forecasting Financial Data, Techniques of Nonlinear Dy-
namics, Kluwer Academic Publishers, pp. 237–263, 2002.

	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Reinforcement Learning Problems
	Main Focus of the Thesis
	Structure of the Thesis

	Reinforcement Learning
	Markov Decision Process
	Partially Observable Markov Decision Process
	Dynamic Programming
	Reinforcement Learning Methods
	Temporal Difference Learning
	Q-Learning
	Adaptive Heuristic Critic
	Prioritised Sweeping
	Policy Gradient Methods

	Classification of the Regarded RL Problems
	High-Dimensionality
	Partial-Observability
	Continuous State and Action Spaces
	Data-Efficiency

	System Identification with RNN
	Feedforward Neural Networks
	Recurrent Neural Networks
	Finite Unfolding in Time
	Overshooting
	Dynamical Consistency

	Universal Approximation
	Approximation by FFNN
	Approximation by RNN

	Training of RNN
	Shared Weight Extended Backpropagation
	Learning Methods
	Learning Long-Term Dependencies

	Improved Model-Building with RNN
	Handling Data Noise
	Handling the Uncertainty of the Initial State
	Optimal Weight Initialisation

	Recurrent Neural Reinforcement Learning
	The Hybrid RNN Approach
	The Partially Observable Cart-Pole Problem
	Model Description
	Results

	Markovian State Space Reconstruction by RNN
	The Recurrent Control Neural Network
	The Data-Efficient Cart-Pole Problem
	Model Description
	Results

	The Mountain Car Problem
	Model Description
	Results

	Extended Recurrent Control Neural Network

	Control of Gas Turbine Simulations
	Problem Description
	Model Description
	Results

	Conclusion

