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Abstract

Railway scheduling problems are quite popular schedulitbogtimization prob-
lems which are treated in a large variety of papers and pmjddany special and
even quite general situations have been investigateddhealty and also a variety
of applied approaches tested on real-world instances hasdeveloped.

This thesis mainly deals with the problem of schedulingnsan railway net-
works with respect to given routings, fixed minimal travedjitimes, and other con-
straints like time-windows. It combines the theory of somalsknown scheduling
models with its applications in railway scheduling. Thdwaly scheduling prob-
lems considered in this work are closely related to job-skdpeduling problems
with blocking and some additional constraints. Therefoagt pf this research is
related to these shop scheduling problems. Theoretic&dsdimg models are ex-
tended, complexity results are derived and solution metren@ proposed. Most
results are applied to the considered railway schedulioglpms. In addition to ap-
proaches which treat railway problems as a whole also deositign methods for
these problems and corresponding solution methods arergezs These solution
methods are tested and compared with simple greedy praesdur
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1 Introduction

Railway scheduling problems are the topic of a large varméfyublications in the fields
of applied mathematics, computer science and technicaheaegng. Quite abstract ap-
proaches treating special cases and also more generakprslgan be found as well as
applied approaches solving real-world problems.

This thesis traces the idea to build abstract models of agilscheduling problems using
graph models known from the classical scheduling liteeand solve them with differ-
ent approaches. Both railway scheduling problems as wetheasinderlying classical
scheduling problems, namely job shop scheduling probleitis blocking, are treated.
This thesis is mainly based on two publications from MasosRacciarelli [45],[44] and
the EU-project COMBINE IF [26]. It supplements and continues the work done there.

The railway scheduling problems considered in this thesisist of the problem to build
schedules for a given set of trains moving in a railway nekwdme network is divided
into block sections, which are small parts of the networl, a.certain segment of a track
may define a block section. More precise descriptions anchpbes will be given later.
Mainly two different types of block sections based on d#f&rsafety systems are used
by rail companies and thus are modelled here. Fixed blodkogeccan contain only one
train at a time, whereas in moving block sections trains nadipW each other within
the same section when keeping a certain safety distanceraillreetwork may contain
block sections of both types. For each train moving throughrtetwork a route, i.e. a
physically feasible sequence of block sections, wherertiia has to move through, is
given. The difficulty now is to solve conflicts between traimdich use the same block
sections, i.e. to choose feasible sequences for such.tréms problem is modelled in
terms of a special graph model, namely the alternative gnapttel. Different additional
constraints and objective functions are integrated.

In this thesis different approaches are presented in oodslve the considered problems.
On one hand methods which treat the problems as a whole gpeged. These methods
are formulated quite general, such that the methods theassel their main basic ideas
may be used for a variety of similar scheduling problems.

On the other hand also decomposition methods are proposeskeTdecomposition ap-
proaches are implemented specifically for railway schedutiroblems and are based on
a physical decomposition of the railway network, i.e. asimn of the large railway net-
work into smaller local networks. Such physical decomposg of railway network are
practiced in real-world systems for example by the Germéwags.

IChristian Strotmann took part in this project as scientistell as his supervisor Prof. Dr. Peter
Brucker.
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Some of the ideas and modelling details may be used to tatkér problems like for
example supply chain scheduling or any kind of job-shop-pkoblems whose structure
allows some physical decomposition.

As stated above for this thesis it is assumed that fixed r@uegiven for all trains moving

in a railway network. Of course, also problems where routiegisions have to be made
are worth considering. But strategies to integrate routiegisions into the proposed
models and solution methods are postponed to further rgsedn this thesis it also

is assumed that all data (minimal travelling times, etc¢ fated. This is a good first

approximation. By integrating a quite small amount of exinae into these travelling

times, trains should be able to abide these times even ifliheg to brake or accelerate
in between. This first approximation should be good enoughuit train schedules.

If more precise travelling times are needed which may alquedd on the sequencing
of trains at meeting points a travelling time calculatiom(glation) could be integrated.
Even this topic must be postponed to further research asnipha&sis of this thesis lies
on the scheduling aspect of railway problems.

This thesis is organized as follows. Problems and notatiwesescribed in Section 2.
Both, shop scheduling as well as railway scheduling problame introduced. Section 3
gives a survey on important existing literature concerrghgp scheduling problems with
blocking (and other constraints) and railway schedulingbpgms. In Section 4 graph
models for shop scheduling and railway scheduling probleresdescribed. Complex-
ity results for both, shop scheduling problems as well alsveai scheduling problems
are given in Section 5. After that different solutions a@rioes like greedy heuristics,
enumerative methods and local search heuristics are pgessenSection 6. Existing ap-
proaches are described and ideas for new approaches alemkriie A decomposition

approach and corresponding solution methods are treat8ddation 7. In Section 8 im-

plementation details and computational results are gimelndéscussed. Finally Section 9
contains some concluding remarks.
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2 Problem description

In this section a description of the problems treated inttiésis is given. In the first part
(2.1) different (job-)shop scheduling problems are foratedl. In the second part (2.2) a
detailed description of the considered railway schedubiraplems is given.

2.1 Shop scheduling problems

Part of this thesis is dedicated to shop scheduling probieahsding blocking restrictions
which are closely related to railway scheduling problemghis section the classical job-
shop scheduling problem and a variety of generalizatioasrroduced.

2.1.1 The classical job-shop problem

The classical job-shop problem may be formulated as folloWsere arem machines
M, ..., M,, andn jobs.j,. .., J,. Ajob J; consists of,; operationg);;(i = 1,...,n;)
which have to be processed in the orday, — O,; — ... — O,,,;. OperationO;; has
to be processed on a dedicated machinec {Af, ..., M,,} without preemption for
pi; > 0 time units. Each machine can process only one job at a timghémmore it may
be assumed;; # ;41 forallj =1,...,nandi =1,...,n;—1, i.e. machine repetition
is forbidden. If not stated differently all data are assuneeble integer in this thesis.

In case of the classical job-shop problem sufficient bufberce is assumed to be available
between the machines, i.e. a job can always wait in a buffevd®n the processing on
two different machines.

To simplify the notation the operations are identified by bens1, ..., N, where N =
2?21 nj. The processing time of operatiens denoted by,, the machine on which it
must be processed hyv), and the job it belongs to by(v). It is convenient to introduce
two artificial operation$ and« = N + 1 with processing time 0. These operations are
called source and sink and model the start and the end of algleheFor an operation

v = O, its successor is defined ly(v) = O, ;. If v is the last operation of a job its
successor (v) is defined to be = N+1. Symmetrically the predecessor for an operation
v = Oy; is defined byy(v) = O,_; ;. If v is the first operation of a job its predecessor
¥ (v) is defined to be the sourée

A schedule for the problem is denoted $y= (s,) wheres, is the starting time associ-
ated to operation. The objective is now to determine a feasible schedule withinal
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makespanC;,,, = max’._, C;, whereC} is the completion time of),, ;, i.e. the comple-
tion time of job J;.

A special case of the JSP is the flow-shop problem (FSP). InRag&8h job consists of
exactlym operations, and for any operatian; of a job J; the associated machine is
defined to bgu;; = M;.

The classical JSP is known to BéP-hard as it generalizes the classical flow-shop prob-
lem (see Brucker [9]). Many papers have been written on Japsscheduling and a
variety of algorithms in order to compute 'good’ or even opai solutions has been pro-
posed (e.g. see DellAmico and Trubian [21], Aarts et al, Blucker et al. [11], Nowicki
and Smutnicki [53]).

To model additional constraints, such as release-datesddtes, deadlines, transporta-
tion delays, perishability constraints, etc., arbitrargd-lags may be introduced in con-
nection with the JSP.

In a JSP with arbitrary time-lags additional restrictiorigtee forms, + [, < s, with
arbitrary (integer),, are added. This problem covers the following special cases:

e arelease-date, for the start of operation,
e adeadlinel, for the start (or end) of operatian

e no-wait constraints for operations. (A no-wait constraim¢ans that an operation
has to start immediately when its job predecessor has fidishe

e problems with objective function,,, .

For problems with no-wait constraints the concepnofwait operations is introduced.
A no-wait operation has to start immediately after the caatiph of its job predecessor.
Let u be an arbitrary operation but the first of a job and:) its job predecessor. if is a
no-wait operation thes, = s, +py ) Musthold, i.e. in addition to the usual constraint
Su 2 Sy(u) T Py(u) alsos, < Sy(u) T Pyu) & Sy(u) = Su — Dayp(u) MUSL hold. A job-shop
problem where all operations (but the first of a job) are na-ajperations is abbreviated
by NWJSP (no-wait job-shop problem).

A variety of other restrictions are also special cases afray time lags. In the next part
problems with another type of constraint, namely blockiestrictions, are described.
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2.1.2 Job-shop problems with blocking

In this section job-shop problems with blocking constraiate introduced. A blocking
constraint means that a job which has been completed on aimeacannot leave this
machine until the next machine is free and thus blocks it. hNSusituation occurs for
example if no buffer space between the machines is available

For problems with blocking constraints it is distinguishHeetween two types of opera-
tions. Ablocking operation blocks its machine even after its completionl utstjobsuc-
cesor starts on the associated machineid&al operation leaves its machine immediately
after completion. This situation is known from the claskjob-shop problem.

Using the notation introduced above for example the follaysituations occurs if two
blocking operations. and v, which are not the last of their jobs, have to use the same
machinel/;. If v precedes on My, s, > s,(,) Must hold as has to wait untik. leaves

My, i.e. untilo(u) starts. If otherwise precedesi, s, > s,(,y must hold as: has to wait
until v leaves the machine.

A job-shop problem where all operations are blocking exdkptlast operation of each
job is called blocking job-shop problem and abbreviated BB Of course an equivalent
problem where all operations are blocking can be formul&gdhtroducing at the end
of each job an artificial operation, which has length zero laasi to be processed on an
always available machine.

Dealing with problems with blocking restrictions the questif so-calledswapping of
blocking operations is allowed or not arises. Swapping @rapons may occur if a set of
blocking operations exists where each one is waiting for ahime occupied by another
operation in the set. Thus, the sole solution to this situatnote the blocking restriction -
is that all operations of the set switch (swap) to their neathine simultaneously, i.e. the
corresponding successor operations start simultaneottsity so-called swapping may be
allowed or not.

If for an operation a swap is allowed this operation is calle@p operationotherwise

it is calledno-swap operation A scheduling problem where all blocking operations are
swap (no-swap) operations is called swap (no-swap) praoliate that in a BJSP the last
operations of all jobs are ideal. Moreover swapping makesemse for the last operations
of jobs as they leave the system after their completion.

In the further sections the abbreviations IJSP for the ak¢ideal) JSP, BWSJSP for
the blocking JSP with swap allowed, and BNSJSP for the biackbb-shop problem
with no-swap allowed are used.
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2.2 Railway scheduling problems

In this section the railway scheduling problems treatedhis thesis are described. Firstly
a basic problem is introduced. After that this basic probilsrextended by a variety of
additional constraints.

2.2.1 The basic railway scheduling problem

There is a close similarity between railway scheduling pgots and job-shop scheduling
problems with blocking and no-swap allowed. Usually, awvail network is divided into
block sections. Block sections correspond with machinethénjob-shop problem. A
train going on a fixed route from some origin to some destimatiorresponds with a job.
A route is a sequence of block sections and passing a blotiosés an operation of
the train. The minimal travel time needed to pass a block@ecs$ the processing time
of the operation. Depending on the applied safety systentiaddl constraints, such as
blocking constraints, must be satisfied.

Railway companies apply different safety concepts. Sonpoitant concepts which will
be discussed in this work, are:

(1) fixed block safety systems (with fast and slow trains),
(2) moving block safety systems,

(3) a combination of these two safety systems.

In a fixed block safety system a train cannot enter a block@edtthis block section is
still occupied by another train. Note, that in this thesis iissumed, that any train fits in
every fixed block section, where it has to move through. Thes ieasonable assumption
as it holds in most real-world systems, too. (Of course, aegdization where trains
occupy two or more block sections could be modelled by anfjgstlightly the models
and techniques presented later. But such consideratiensoasubject of this thesis.)

When a train leaves a fixed block section this takes a smaluatzo> 0 of time, i.e.

e > 0 is the time period in which the train is present in two blockt&ns. Thus, a
subsequent train can enter the block section enty0 after the entrance of the previous
train in its next block section. This constraint covers theswap constraint, as then trains
cannot swap because of these temporal constraints. Theaeonstraint is particularly
important for two trains going in opposite direction on tlaene line, as they cannot swap
for physical reasons.

10
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In order to create a more detailed model different weights 0 for different trains or
evene;; > 0 for different train operations may be introduced. This dnesmodify the
argumentation considerably. (As in this thesis it is assintigat any train fits in every
fixed block section, where it has to move through, it also aagsumed that the exit time
of a train from a certain fixed block section is smaller tha@ thinimum travelling time
in its next fixed block section.)

Besides the described (slow) trains alast trains can move through a rail network with
fixed block safety system. In this thesis a fast train is atnich is only allowed to enter

the next block section if the next two block sections are moupied by other trains. The
definition of fast trains in this thesis is based on a railwigyalling system with signals

which may be green, yellow or red. A red signal indicates #ien behind the signal

to be occupied. A yellow signal means that the next blockiceds free, but the second
section behind the signal is occupied. A green signal indgctne next two block sections
to be free.

Of course, other types of fast trains, which need more thanfteae block sections could
be considered. Such trains could be integrated by modifiagnodel presented in Sec-
tion 4.2 slightly.

Another safety system is the moving block safety system.ebt-world rail networks
this safety system is based on satellite control or on digadio transmission. In such a
system trains can follow each other within the same (moviohggk section if they keep
a sufficient safety distance.

Like for fixed block sections it can be assumed that any trasniri every moving block
section, i.e. any block section is long enough for each tradditionally in this thesis itis
assumed that all moving block sections are one-way simglésections, i.e. no switches
are present in such sections and trains are only allowed te@ntwough the sections in
one predefined direction. More general models can be impiededy dividing moving
block sections into different parts, i.e. sections for &rmes, switches, etc., and building
a route for each train through these sections.

The problem is now to determine sequences for trains whielthus same block sections
such that a corresponding schedule is feasible. This proldealled feasibility-problem.
If additionally an objective function is given, the problerhdetermining a feasible solu-
tion with minimal objective value is an optimization-prebt.

2.2.2 Additional constraints and objective functions

Railway problems may include a large variety of additior@aistraints, such as:

11
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(1) (lower and) upper bounds for travelling times of trains,
(2) release-dates and deadlines for trains,

(3) starting and ending constraints for trains,

(4) connection constraints between trains, and

(5) out-of-service intervals for certain block sections.

Lower bounds for travelling times of trains are the minintavelling times already de-
scribed above. An upper bound for the travelling time of anttArough a certain block
section may result from a corresponding minimal speediotisin.

Release-dates and deadlines may be given for the entrahtesns in certain block
sections. These may for example result from restrictionaraxing or departure times of
trains at stations.

A starting constraint for a train in the first block sectionitsroute means that this train
must be the first one in this block section. Such a constraay rasult from a situation

where the train is physically already present in this blaastt®n at the start of a schedule.
Symmetrically an ending constraint for a train in the lasidil section on its route means
that this train must be the last one in this block section hSuconstraint may result from

a situation where the train must physically stay in this klsection until the end of a

schedule. Of course, even sequences for sets of trainsgtartending in certain block

sections may be predefined.

Connection constraints between trains may for examplerdEpassengers of one train
should be able to catch another at a station. Then one traitohaait for the arrival of
another before leaving the station.

An out-of-service interval for a block section may resutirfr restoration activities and
means that this block section is out of service, i.e. is nables for a certain time period.

Of course, other constraints could be included in railwaybpgms but are not considered
in this thesis.

Again both the feasibility- and the optimization-problenayrbe treated. In case of the
optimization-problem additionally different objectiverfctions like for examplé’,.., and
L,.x may be considered.

12
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3 Literature review

In the literature a large variety of papers dealing eithéhwainy kind of job-shop schedul-
ing problems or with railway scheduling problems can be thuBut the combination

of job-shop scheduling theory and its application in raivgaheduling, like investigated
in this present thesis, is considered only in a few papere ddmtent of this section is
twofold. The first part of this section summarizes literatdealing with shop schedul-
ing problems and especially those with blocking constgirih the second part some
important papers and results concerning railway scheduie reported.

3.1 Shop scheduling (with blocking or no-wait constraints)

The classical job shop scheduling problem is subject ofgelaumber of scientific pa-
pers. Many extensions, modifications, and also speciasa#ghis problem are treated in
literature. Both, complexity results as well as solutioagadures are derived. In this the-
sis only an overview on some important milestones in theareseof job-shop scheduling
and especially on problems with blocking constraints i®giv

In the last decades the model which was most frequently eghplihen considering the
classical job-shop and related problems wasdisginctive graph modewhich was pro-
posed by Roy and Sussmann in 1964 [62]. Based on this anddejeaph models some
famous solution procedures have been developed like thelrand bound procedures
by Carlier and Pinson [17] and Brucker et al. [11] and the tabarch approaches by
Dell’Amico and Trubian [21] and Nowicki and Smutnicki [523p

Generalizations of the classical job-shop problem likéopgrms with transport robots have
been studied for example in Knust [36] and Strotmann [65]cdl@earch heuristics for
problems with multi-purpose machines can be found for exammgVastrolilliand Gam-
bardella [46] and Hurink et al. [30]. A survey on a large vayrief shop scheduling prob-
lems including extensions and special cases of job-shoplgnms and also complexity
results can for example be found in Brucker and Knust [12]e Web-pages of the OR-
group from the University of Osnabrueck [57] summarize titest complexity results for
flow-shop and job-shop problems with or without preemptiod ather constraints.

Another class of extensions of shop problems are problertts Mmited buffer space.
Note, that these problems may contain blocking problemgasial cases, as in most
considerations even problems with zero buffer capacityirmskided. Papadimitriou and
Kannelakis [55] investigate flow-shop problems with lindiietermediate buffers, which
are of first-in-first-out type and cannot be bypassed. Thelye&eomplexity results and

13
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develop a heuristic for the two machine problem with a sirggpacity-buffer between
the machines. Brucker et al. [10] provide solution procedudor both, flow shop and job
shop problems and even for different buffer models. Nieljg€ develops local search
heuristics for flow-shop and job-shop problems with paieMmiffers, i.e. a buffer for
each ordered pair of machines. In all these publicationswagpping of jobs (operations)

is allowed. Swapping occurs if a set of jolds, . . ., J;, is processed on a set of machines
My, , ..., My, and the next machines where the jobs have to be processad,are for
jobsJ;,, i=1,...,k—1andM,, forjob J;, . Thus, the sole solution to this situation

- note the blocking restriction - is that all jobs of the setitstv to their next machine
simultaneously. This so-called swapping may be allowedbr Note, that for problems
with limited buffer space the buffers may also be involvegduch swapping situations.

In case of no-wait problems a variety of complexity resuéts be found in the literature.
Rock [58, 59, 60] derived complexity results for no-waitdlshop problems with differ-
ent objective functions, like e.g"}.2, Lmaz, @nd other constraints like unit processing
times and different resource constraint environments. ddmplexity of 2-machine and
3-machine no-wait job-shops was for example investigate&dhni and Cho [63] and
Sriskandarajah and Ladet [64]. A comprehensive summarypoiptexity results in this
field can be found in Hall and Sriskandarajah [28].

Important for this thesis are publications on job-shop d@od ¢omplexity issues) flow-
shop problems with blocking constraints. For such problemly a few publications
can be found. Kamoun and Sriskandarajah [34] show NP-cdenmss for a two-stage
flow-shop problem with two machines at the second stagekbilgcand minimum cycle
time objective function. Complexity results for 2-machit@v-shops with blocking and
setup times are presented by Logendran and Sriskandarahlp their publication a
machine requires a setup time before processing a job. Thp 8mes can be performed
in anticipation of an arriving job, called anticipatory gpt Martinez et al. [43] study the
complexity of flow-shop problems including another type lofdiking constraint. There an
operation blocks its machine until the successor operdgiaves its machine. Of course,
the complexity of some job-shop problems with blocking cardbrived from the results
above by simple special case reduction.

Looking for solution procedures only a few papers can be dofor shop-scheduling
problems with no-wait or blocking restrictions. Gilmoredaomory [27] present a
polynomial algorithm for the problent2 | no — wait | C,... Kravchenko [38] de-

velops a polynomial algorithm for a specific two-machinewsit job-shop scheduling
problem. A flow-shop problem with blocking arising in an irstiial context is studied
by Mc Cormick et al. [49]. Mascis and Pacciarelli [45] deyelgreedy heuristics and
branch&bound methods for job-shop problems with blocking@-wait constraints. As
a basis of their considerations they introduceadtiernative graph modelThis model is

14
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a generalization of the disjunctive graph model (see abdMeg alternative graph model
also builds the basis for the following considerations is firesent thesis. In [44] Mascis
and Pacciarelli model a variety of problems by means of @dtéve graphs. They model
for example problems arising in steel works and even railseheduling problems can be
found.

Mati et al. [47] present a special tabu search procedurdéibkocking job-shop problem.
A main part of their paper is based on the geometric approacthé job-shop problem
with two jobs which was developed by Brucker [8]. This geomeeapproach itself is

based on a publication from Akers and Friedman [5]. Mati etiaé a version of the geo-
metric approach to repair an unfeasible solution resulbiyn@ modification of a feasible
solution.

Summarizing the state of the research done in the field of pholplems with blocking
or no-wait constraints, the following can be stated. A lotvofrk was done in the field of
no-wait problems, most of it dedicated to complexity issioedlow-shops. Only a few
publications deal with blocking job-shops and correspogdiolution procedures.

3.2 Railway scheduling

Many papers and also research projects deal with questionstd schedule trains in

rail networks. The variety of problems considered in therliture contains quite special
applications as well as very complex problems dealing watigé networks and many
different constraints. In this thesis only a small surveyhwispect to some important
papers and projects can be given.

Most of the publications dealing with railway problems trepecial problems arising in
the context of large railway networks. Especially variasaf the problem of schedul-
ing trains on a single-line track are investigated in manggoa. For example Higgins
et al. [29] develop branch&bound methods for railway protgewith a single track
and some sidings, where trains can pass each other. Cai amdiGpconsider sin-
gle track problems including sidings (here called passoaps$), too. They develop a
fast heuristic based on an integer-programming formutatidhey also provide a proof
for N P-completeness of the considered problem. In Brannlund. ef7a single track
problems with sidings are modelled as integer programmioglpms and based on this
Lagrangian relaxation solution approaches are develdged [51] considers such single
track problems, too, and provides heuristics based on loggga relaxation. For one-way
single track problems Caprara et al. [14] suggest heurdgiorithms which are based on
multigraph-formulation and Lagrangian relaxation. Caeey Lockwood [16] provide

15
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solutions methods for single track lines including stasiodBased on a mixed integer pro-
gramming formulation they apply heuristic decompositios, trains are dispatched one
by one and then are redispatched in order to improve solsition

Another subproblem of complex railway problems is treate@waneveld et al. [67].
In their publication models and algorithms for routing treithrough railway stations are
given. Other publications dealing with railway problems s$tations are from Carey and
Carville [15]. Here, the problem of choosing platforms andtes for trains in stations is
treated.

In the scheduling literature the problem of schedulingnsan a large railway network

with respect to some additional constraints and espediadiyproblem of finding feasible

solutions for some of these problems is treated only in a fablipations. Of course a

variety of quite applied publications deals with problenks Ihow to operate a complex
railway network, how to re-schedule trains, etc., but mdshem propose models de-
signed to support human dispachters (see e.g. Jovanaviéarker [32, 33], Kraay and

Harker [37]). Models and approaches for real-time schedutif trains can be found in

Rodriguez [61]. Fully automated systems and also the basdefs are treated less fre-
quently. A branch&bound method for the problem of dispatgtrains in a large network
according to a given timetable is presented in Dessouky §22). Another approach for

scheduling trains in rail networks is developed in Dorfmad #Medanic [23]. Some pub-
lications treat the problem of re-scheduling trains wheriysbations occur. An heuristic

approach for such problems can be found in Tornquist [66k&ent publication based on
the alternative graph model is the paper from D’Ariano ef20)]. There a branch&bound

procedure for scheduling trains is presented.

A survey of a large variety of publications treating railwapblems and developing cor-
responding optimization methods is given in Cordeau etl#l].[Some latest results con-
cerning a large variety of problem types arising in the crnté railways can be found
in[1] and [2], where for example topics as planning problemgeneral, decision support
systems, safety aspects, passenger interface systeraghimg problems, power supply,
etc. are treated.

The author of this thesis took part in the EU-project COMBINEvhich is a follow-up
project of the EU-project COMBINE. COMBINE Il deals with haiay problems and also
decomposition approaches for railway scheduling problelngrovides an approach in
order to support human dispatchers operating a complexagihetwork. Additionally
basic models and concepts also suitable for designing atezhsystems are developed.
The considerations of the project are based on the altgengtaph model from Mascis
and Pacciarelli [44, 45] (see above). These authors todkip#ne project, too. Details
of the EU-project COMBINE Il can be found in [26]. More detl information on

16



3.2 Railway scheduling 17

the COMBINE Il TMS (Traffic Management System) can be foundiazzarello and
Ottaviani [48].

As stated above the models in this thesis are based on tmeadite graph model from
Mascis and Pacciarelli [44, 45]. Some of the basic ideasefldtomposition approaches
presented here were also used in the COMBINE Il project, leati&n 7 of the present
thesis goes one further step. Here basic models and soluigbhods for a completely
automated system are developed.

17



4. Graph models 18

4 Graph models

In this section both job-shop as well as railway schedulimdpfems are modelled in terms
of graphs. In the first part the disjunctive graph model far thassical job-shop problem
is introduced and extended to more general problems inaofuoliocking restrictions. The
second part describes a graph model for the railway scheglplioblems introduced in
Section 2.2.

4.1 Modelling job-shop scheduling problems

In this section an introduction to graph models for shop dahieg is given. These models
are the basis for the following considerations about bathyteon methods for some shop
scheduling problems and models and solution methods flovagischeduling problems.
Firstly the classical job-shop problem (IJSP) and the \wetwn disjunctive graph model
are introduced. After that the basic model is generalizethbypducing arbitrary time-
lags. Based on this the alternative graph model is descabddob-shop problems with
blocking constraints are modelled in terms of the alteugagiraph model.

4.1.1 The disjunctive graph model

The classical job-shop problem can be formulated in terntiseoflisjunctive graph model,
which was developed by Roy & Sussman [62] and later sucdgssioplied to the job-
shop problem and its extensions (see also Brucker [9]).

A disjunctive graphG consists of a sét’ of nodes, a set’ of directed arcs (conjunctions),
and a setD of undirected arcs (disjunctions). Considering the JSPctireesponding
disjunctive graphG = (V, C, D) is defined as follows:

e The setV of nodes represents the set of all operations. For the tvikiceat op-
erations) andx two artificial nodes, the source nodeepresenting the start of a
schedule and the sink node= N + 1 representing its end, are introduced. Thus,
V=40,1,...,N,N+1}.

e The setC of conjunctions represents the set of precedence constriagiween
consecutive operations of the same job. For each operataoonjunctionv —
o(v) is introduced. This conjunction is weighted py. (Note that conjunctions of
the formv — x are included.) Additionally conjunctiorts— v are introduced for
each operation which is the first of its jobj(v). These conjunctions are weighted

18



4.1 Modelling job-shop scheduling problems 19

by 0. A conjunctionu — v with weight p, means that in a feasible schedule
S = (s,) the conditions,, + p, < s, must be satisfied.

e The setD of disjunctions represents the different orders in whidtsjon the same
machine may be scheduled. It consists of undirected aregeketall pairs of op-
erations which have to be processed on the same machin®yrieach pain, v of
operations with:(u) = u(v) (andj(u) # j(v)) D contains an undirected aic— v
weighted by the paifp,, p,) indicating that eithes, + p, < s, or s, + p, < s,
must be satisfied.

With this graph model the problem of finding a feasible schedor the job-shop prob-
lem is equivalent to the problem of fixing a direction for eatijunction such that the
corresponding graph contains no cycles of positive lengththis work a positive cycle
means a directed cycle with the sum of all its arc lengthsdpositive. When fixing the
direction of arcu — v tou — v (v — u) the weightp, (p,) becomes relevant. A set
S of fixed disjunctions is calledelection The corresponding selection is calledm-
plete, iff for each disjunction a direction has been fixed. lc@nsistent iff the graph
G(S) = (V,C U S) corresponding to a selectighcontains no positive cycle. . is a
complete consistent selection withc S., S, is called anextensionof S. An optimal
extensionof S is an extension with minimal objective function value. Giweselection
S the length of a longest (directed) path between nadesd;j in G(.S) (the sum of all
arc weights on such a path) is denoted by, ;).

On one hand each complete consistent selectiaepresents a feasible schedule. A
feasible starting time; for an operation then can be given by the length(0, ) of a
longest0 — i-path inG(S). (W.l.o.g. the starting time, of the source operatioth may
assumed to be.) A path from0 to x in G(S) with lengths,, i.e. a longest — x-path, is
calledcritical path, . It determines the makespéh,., of the solution.

The starting times for a corresponding earliest-stareddie (ESS) can be calculated by
longest-path calculation in the graph.S), e.g. by a longest-path-version of the Floyd-
Warshall algorithm (see Ahuja et al. [4]). Note that for riagwobjective functions, like
Cner andL,,,, an ESS is an optimal one among all schedules respecting tseich
constraints.

On the other hand for each feasible schedijla complete selection can be constructed
by choosing for each disjunction a direction, which is retseé in the schedule (as one
direction of each disjunction must be respected). Of cquisg complete selection must
be consistent. Otherwise the resulting graph would cordgiositive cycle, and thus, a
feasible schedule could not fulfill all chosen constraimtkjch is a contradiction. The
ESS corresponding to this complete consistent selectioatig/orse thar$ and therefore
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4.1 Modelling job-shop scheduling problems 20

a complete consistent selection representing an optirhakkde (namely the correspond-
ing ESS) always exists.

Thus, the problem of finding an optimal solution for the peohlis equivalent to the
problem of finding a complete consistent selectiofor the corresponding graph which
minimizes the starting time, of the sink.

Note that for the classical job-shop problem a consistdettien S means tha&;(S) is
acyclic, i.e. contains no directed cycle, as any cycle waea@ positive one.

Additional constraints, such as release-dates, dueddgas)ines, transportation delays,
perishability constraints, no-wait constraints etc. camimdelled by introducing arbitrary
time-lags of the forms, + [, < s, with arbitrary (integer).,,. They are represented by
arcsu — v with weightsl,,, (precendence constraints including the start or end dpesat
0 andx = N + 1 are also possible).

As already mentioned above (Section 2.1.1) this probleneisoa variety of special cases,
e.g.:

e Arelease-date, can be modelled by a precedence constf@aiat v with [y, = r,.

e A deadlined, for the start (end) of operation can be modelled by a precedence
constrainty — 0 with l,g = —d, (Lo = —d, + py).

¢ A no-wait constraint for an operatian{with job predecessap(i)) can be modelled
by introducing a precedence constraint: (i) with weight —p,;. This models
Sy(i) = Si — Py(i) and thus together witkh; > s,;) + py ;) it models the no-wait
constraints; = sy + Dy(i)-

e Problems with objective functioh,,., can be formulated similar t0,,,..-Problems
by modifying the weights of arcs from the last operationslbjodos to the sink. If
v is the last operation of a job the weight of are~ x is set to omp, — ¢,, whereg,
is a due-date for the completion time of operationThen, minimizing the length
of a critical path (or the starting time @) in the corresponding graph is equivalent
to minimizing L, ...

The introduction of arbitrary time-lags and some other rezruents leads to a more gen-
eral graph model, namely the alternative graph model.

20



4.1 Modelling job-shop scheduling problems 21

4.1.2 The alternative graph model - Modelling job-shop prollems with blocking

As mentioned above many applications of the JSP require @ gemeral and variable
modelling. For example blocking constraints (see Sectidn22 cannot be modelled in
terms of the disjunctive graph model. A graph model of a siturewhere two blocking

operations: andv have to be processed on the same machipés depicted in Figure 1.

W .7

vd RN

Figure 1: Two blocking operations to be processed on the saaohine

If u precedes on My, s, > s,(,) must hold as has to wait untik. leavesM,, i.e. until
o(u) starts. If otherwises precedes., s, > s,y must hold. Thus, these constraints
can be modelled as the pair of dashed arcs depicted in Figuvbelre one arc has to be
chosen in order to fix a certain processing sequence.

In order to formulate a more general graph model which cotrexse kinds of constraints
the so-calledhlternative graph modelis introduced. The alternative graph model is a
generalization of the disjunctive graph model and was agpex by Mascis and Paccia-
relli [44]. An alternative grapld: = (V, C, A) consists of a sét’ of nodes, a set' of fixed
arcs (conjunctions) — v with arbitrary weightd,,,, and a setd of pairs of alternative
arcs (alternative pairu — v, h — k} with arbitrary weightsu,,, andayy.

Similar to the case of a disjunctive graph a Sewhich contains at most one arc of each
alternative pair is called selection A selection is calledompleteiff it contains exactly
one arc out of each alternative pair. Given a selectitet G(S5) = (V, CUS). A selection

S is calledconsistentiff the corresponding grapt¥(.S) contains no positive cycle. The
definitions of extension and optimal extension are applietth¢ alternative graph model
simultaneously.

Obviously the alternative graph model covers the disjweairaph model as a disjunction
u — v can be modelled as a pdit — v,v — u} of alternative arcs. Especially arbitrary
time-lags are included in the alternative graph model ararip arc weights are allowed.
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4.1 Modelling job-shop scheduling problems 22

The alternative graph model is quite general. It can be usedddel a large variety of
scheduling problems including blocking restrictions, vy time-lags and other con-
straints (see also Mascis & Pacciarelli [44]). A generdiamaof the alternative graph
model described above is introduced by Kampmeyer [35]. & pairs of alternative sets
of arcs are considered instead of pairs of arcs. Then siustan be modelled where a
machine is blocked by an operation until a set of successm®ben started. Such con-
straints arise for example in problems where statementsropater programs have to be
scheduled on different units of a computer processor. Toerain data has to be stored
in a register unit (and thus blocks it) until all statemerdig this data have been started.

The alternative graph model can especially be used to motleshhop problems with
blocking constraints (see also Mascis & Pacciarelli [45s for the classical job-shop
problem and the disjunctive graph model for each operationdge is introduced in the
alternative graph and nodésind« = N + 1 are added. The set of fixed arcs for the alter-
native graph equals the set of conjunctions of the disjuagraph for the corresponding
classical JSP. In contrast to disjunctive arcs now prongssequences on machines are
modelled by alternative pairs. Different types of openasigblocking or ideal) require
different pairs of alternative arcs. The alternative pairtivo blocking operations to be
processed on the same machine was already introduced ireFigurhe corresponding
situation where one of the operations is ideal is shown iuf@@. The situation where
both operations are ideal is known from the classical jofypsh

Pu
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v
2
2
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- - - -
\

)

Figure 2: Pair of alternative arcs for a blocking operatioand an ideal operation

In general the alternative gragh= (V, C, A) for a JSP with blocking is as follows:

e The setl of nodes represents the set of all operations (i.e. theirggaiitnes of
operations). For the two artificial operatiohgnd:x two artificial nodes, the source
node0 representing the start of a schedule and the sink redeV + 1 representing
its end, are introduced. Thds={0,1,..., N, N + 1}.
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4.1 Modelling job-shop scheduling problems 23

e The setC of conjunctions represents the set of precedence constia@iween
consecutive operations of the same job. For each operateoonjunctionv —
o(v) is introduced. This conjunction is weighted py. (Note that conjunctions
of the formv — N + 1 are included.) Additionally conjunction$ — v are
introduced for each operatiarwhich is the first of its joly(v). These conjunctions
are weighted by.

e The setA of pairs of alternative arcs represents the different ardewhich jobs on
the same machine may be scheduled. It consists of pairseshattve arcs for all
pairsu andv of operations (withj(u) # j(v)) which have to be processed on the
same machine. If both operationsandv are blocking the pair of arcs from Figure
1 is introduced. If onlyu is blocking the pair of arcs from Figure 2 is introduced.
The pair(u — v, v — u) with weightsp, andp, belongs taA if v andv are ideal.

As for the classical JSP each complete consistent seleidiadhe proposed alternative
graph is associated with a feasible schedule for the carrelpg job shop problem with
blocking and vice versa.

Thus the problem of finding a feasible solution is equivatenthe problem of finding
a complete consistent selection. Again finding an optiméltem for the C,,,, and
the L,,..-problem corresponds to the problem of finding a completesisbent selection
which minimizess,.

The data for an example of a blocking job-shop problem (JS&Biven in Table 1. The
corresponding alternative graph modelling this examptiejgicted in Figure 3. Note that
due to more clarity not all alternative arcs are shown.

J1 Ja J3
Operation 1 2 34 5|6 7 8
Machine 1 2 3]1 23 1 2
Processingtme2 2 2|1 2|1 1 2
Table 1: Example of a job-shop problem with blocking.

In Figure 4 this graph together with a corresponding coneptEinsistent selection is
shown. A critical path determining the makespan of an assedischedule is drawn in
bold arrows.

Figure 5 depicts the ESS associated with the selection iar&ig. Here a hatched area
represents the time period where a blocking operatiosislys on maching(v) after its
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4.1 Modelling job-shop scheduling problems 24

M, M, M;

Figure 4: A feasible solution (complete consistent sebejtcorresponding to Figure 3.

completion. Operatiom blocks this machine while waiting for the next machine of the
corresponding jolj(v) to become available for its successor operatiGn).

As mentioned above dealing with problems with blockingnieBbns the question if the
swapping of blocking operations is allowed or not arises.

A swapping situation results in a cycle of alternative arcshie corresponding solution
graph. These alternative arcs represent blocking andftrerbave weight. Thus, the
situation results in a zero length cycle, which is allowddwapping of certain blocking
operations is forbidden (no-swap operations) an (arlyiframall weighte > 0 is put on
the corresponding alternative arcs (instead of zero ws)ghtorder to make the above
mentioned cycle positive and thus the corresponding swoiutifeasible. Note, that still
all data may be assumed to be integer as all data could beptradtby a suitably large

24



4.1 Modelling job-shop scheduling problems 25
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Figure 5: Gantt-Chart for the solution depicted in Figure 4.

positive integerV and the smalt > 0 could be replaced by.

In a no-swap problem all alternative arcs of blocking operat get an (arbitrary) small
weighte > 0, whereas in swap problems these weights are zero. Notertlaal$PB the

last operations of all jobs are ideal and thus no weights okesponding alternative arcs
have to be modified.

A situation where two operations swap is depicted in Figur®®course, such a swap is
prevented by introducing > 0 as the zero-length-cycle then becomes positive and thus,
a selection including such a situation is inconsistent.

)
H M, u o(v)

0 10

.
O R Et
2 My Swap

Figure 6: Situation where two operations swap.

For the problem instance introduced above (Table 1, etcghadule where a swap of
operations arises at timeis depicted in Figure 7. Here operations 2,4, and 6 swap at
time 4 and thus operations 3, 5 and 7 have to start simultaheai this time. The
corresponding graph is shown in Figure 8. The zero lengthtedyclicating the swap is
drawn in bold arcs.
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Figure 7: Schedule for example from Table 1. Swap at time
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Figure 8: Graph corresponding to schedule in Figure 7.

A main difference between the two models - alternative arsjudctive graphs - is the
following. Considering the disjunctive graph for a classijpb-shop problem for any
consistent selection an extension always exists wherégagthot the case for a general
alternative graph and even not for the blocking job-shoplenms BNSP and BWSP (see
also Mascis and Pacciarelli [44]). An example of a consistelection for a blocking job-
shop problem having no extension is depicted in Figure 9. jblvs have to be processed
on three machines in the same order. The dashed arcs aréaimatiVe arcs chosen in the
given consistent selection. As any choice of the remainltegraative pair (dotted arcs)
leads to a positive cycle, no extension exists.

A more detailed discussion on the complexity of a variety mibfems which can be
modeled by alternative graphs will follow later in Section 5
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Figure 9: Blocking JSP where consistent selection (dastes) has no extension.

4.2 Modelling railway scheduling problems

In this section the alternative graph model for railway sthimg problems is described.
Firstly the basic problem is modelled in Section 4.2.1. lcta 4.2.2 the model for
different additional constraints and different objectfuactions is discussed. The basic
model and also some of the additional constraints weredjrgdroduced by Mascis and
Pacciarelli [44] and applied to the EU-projects COMBINE &@MBINE II.

4.2.1 The basic model

In an alternative graph model for a railway scheduling peoblthe nodes correspond to
train operations (entry time of a train in a specific blocktgeg. As in the job-shop
case two dummy noddsand x are introduced. For some of the additional constraints
explained later artificial nodes must be introduced. As far $hop problems proposed
above the set of all these nodes is denoted by

Fixed arcs (conjunctions) are defined as follows. Each niode {0, «} has a unique
successor (i) corresponding to the operation which follows operatiam the route of
the associated train. If operatiors the last operation of the traini) = * is set. Besides
the arcsi — o (i) which are labeled with the minimal timeg for performing operation

(i.e. for passing the corresponding block sections) @res: for all operations which are

the first operations of trains (jobs) are introduced. Thedkfweights for these arcs are
0. Later the possibility of modeling earliest starting tin{eslease dates) by introducing
arcs0 — j with non-negative labels; is discussed and can especially be applied to the
first operations of trains.

For completing the basic model the introduction of suitgidés of alternative arcs in
order to model sequencings of trains (at block sections &kenflicts could occur) is
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4.2 Modelling railway scheduling problems 28

needed. As already described in Section 2.2.1 railway compapply different safety
concepts which can be modelled by alternative arcs.

In a fixed block safety system a (regular slow) train canndérea block section if this
block section is still occupied by another train.il&nd; are train operations using the
same fixed block section, then either;) + ¢ < s; Or s,(;) + ¢ < s; must hold. As
mentioned above > 0 is a small number which can be interpreted as time needed for
a train to leave the corresponding fixed block section (éxie}, i.e. the time period in
which the train is present in two block sections. The sitwatf two trains using the same
fixed block section then is represented by the gaifi) — 7, o(j) — ¢} of alternative
arcs withl,;); = lo(j;; = €. A corresponding situation is shown in Figure 10. Note that
this is a blocking job-shop situation with no swap allowed.

@\ i = (i)

@/ 2, Jo())

Figure 10: Two train operationsand; using the same block section.

Remember that the number- 0 can be interpreted as the time needed for a train to leave
a certain block section. Introducing different weighfs> 0 for different trains or even

e;; > 0 for different train operations does not modify the argura¢ioh considerably. As

in this thesis it is assumed, that any train fits in every fixextk section, where it has

to move through, it also can be assumed that the exit time i@ from a certain fixed
block section is smaller than the minimum travelling timetgnext fixed block section.

In this thesis the case of an unique number 0 is treated if not stated different.

As described before, assigning a small weight 0 (¢; > 0, ¢;; > 0) to the alternative
arcs also models the no-swap constraint which is very inaooih the case of two trains
going in opposite direction on the same track. Of course $wchtrains cannot swap
for physical reasons and by weights> 0 (¢; > 0, ¢;; > 0) this is prevented in feasible
solutions (complete consistent selections). As for pcatteasons all data could be given
in seconds or even smaller units, also in this case all datdbeaassumed to be integer.
Of course, also situations where a train is at the end of iiteroan be modelled. Then a
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pair of the type already depicted in Figure 2 must be intredudf both trains are at the
end of their route a pair of the tygeg — i,7 — j} is introduced (see also Section 4.1.2).

So far the situation of slow trains moving in a railway netiws modelled. For fast trains
the model is slightly different. Remember that in a fixed Blsafety system a fast train
is only allowed to enter a block section if the next two bloektsoons are not occupied
by other trains. This case is modelled by pairs of altermativcs which are different
from the situation above. In the case of a fast trdiand a slow trainB moving in the
same direction through a sequence of block sections thesymnding alternative arcs
are shown in Figure 11.

@O
‘\\§§ /z

~ -’

Figure 11: Fast train operatian(belonging to train4) and slow train operation (be-
longing to trainB) using the same block section.

For the situation in Figure 11 it is assumed, thandj are neither the first nor the last
operations of the associated trains. For situations inrglthe first or last operations
of trains (trains at the beginning or end of their routes)lagiae alternative pairs can
be introduced. Situations with two fast trains, situation®lving track switches, trains
going in opposite direction, etc. are modeled analogougly. example with a slow
and a fast train going in opposite direction is depicted iguFé 12. Both trains travel
through block sectiod/;. This leads for example to the corresponding alternative pa

{o(u) = ¥(v),0(v) = uj}.

The moving block safety system described in Section 2.hbeamplemented as shown
in Figure 13, where two trains have the same route. In thisdigu— j,o(j) — (i)}
and{j — i,0(i) — o(j)} are pairs of alternative arcs which are labeled by positive
safety distances (hered, e and f), i.e. minimal amounts of time between trains entering
or leaving the corresponding moving block sectioni. 4 j is chosen from the first pair
then; — i cannot be chosen from the second pair (otherwise there igdsigive cycle

i — j — 1) ando(i) — o(j) has to be selected, which is compatible with- j. Thus, in
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Figure 12: Two trains in a situation where a track switch isiued.

a complete consistent selection either j ando (i) — o(j) orj — ¢ ando(j) — o(i)
have to be selected.
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Figure 13: Model of two trains using the same moving blockisec

In this thesis it is assumed that all moving block sectiomsare-way single-track sec-
tions. More general models can be implemented by dividingingpblock sections into
different parts, i.e. sections for single lines, switchets,, and building a route for each
train through these sections. Then suitable pairs of ate/marcs modelling the different
sequences of trains can be introduced.

The moving block system may be combined with the fixed blockesy then modelling
complex railway systems with different safety systems byigue graph formulation.
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Note that in both cases, fixed block and moving block sectithrescorresponding alter-
native pairs are not incident with the nodeand.

4.2.2 Modelling additional constraints and objective funtions

In this section the additional constraints introduced iot®a 2.2.2 are modelled in terms
of the alternative graph model. It will be introduced how t@del constraints (1) to

(5) and some objective functions. Most of these additiowmalstraints only require to

introduce suitable additional fixed arcs.

A lower bound for the travelling time of a train through a kosection was already
introduced for the basic model. It corresponds to the prsiogstime of the associated
operation: and thus is modelled by the weightfor the arci — o(i). An upper bound
k > 0 for this travelling time may be set by introducing the fixed afi) — i with
weight —k. This models the constraint > s,;) — k < s, — s; < k and thus the
travelling time for the corresponding train and block sewtto be less or equal than
Obviouslyk > p must hold since otherwise a positive cycle occurs. Comdsaif Type
(1) are depicted in Figure 14 (a).

A release-date; and/or a deadliné; for the entrance of a train in a certain block section
can be modelled by introducing abc— ¢ with weightr; and/or arci — 0 with weight
—d;, wherei is the corresponding operation representing the entrahitesatrain in this
block section. Release-date and deadline constraintearetdd in Figure 14 (b) and (c).

o HO O
N4
D—=t ()

—k C)
Figure 14: Different additional constraints modelled imie of the alternative graph.

a)

Starting and ending constraints for trains in fixed blockiisexs are modelled by fixing
alternative pairs. If for example a train starts on a cerfixied block section and is present
there already at the start of a plan, it must be the first traithis block section and the
corresponding alternative pairs are fixed accordingly. sSEhaternative pairs are deleted
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from the set of all alternative pairs and the chosen arcsduledhto the set of fixed arcs.
On the other hand if a train ends on a certain fixed block secia remains there until
the end of a plan, it has to be the last train on that block seahnd again alternative
pairs are fixed accordingly. Again these alternative paiesceleted from the set of all
alternative pairs and the chosen arcs are added to the sgedfdics. An example of a
starting constraint is depicted in Figure 15.
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Figure 15: Starting and ending constraints modelled in seofrthe alternative graph.

Starting and ending constraints for sets of trains alreaggent or ending in moving
block sections can be modelled analogously by fixing alteregairs.

Also several connection constraints may be modelled bydhicing fixed arcs. If for
example a trainB3 has to wait at a station platform for another traira fixed arci — j

is introduced where represents the entrance of tradnin the station block section aryd
represents the exit of traiB from its station block section (more precisely the entrance
of train B in the following block section). The weight of the arc is setut modeling
the minimal timeB has to wait before leaving its block section after the atrofad in

its block section, i.ew is a suitable number modelling a minimal time which has to be
between the arrival ofl at the platform and the exit 8 from the platform. An example
for a constraint of Type (4) is depicted in Figure 16.

Modelling out-of-service intervals for certain block secis is different from the situa-
tions above, as not only additional fixed arcs but also amiiti nodes and alternative
pairs have to be introduced. Details of the model for an dt#tenvice interval situation
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Figure 16: Connection constraints modelled in terms of ttexraative graph.

are depicted in Figure 17. There the situation is modelledrevla slow train has to travel
through a block section which is out of service for a certairetperiod. Situations for fast
trains or moving block sections are modelled analogouslyhé case depicted in Figure
17 for the out-of-service interval = [b, b + [ of a certain block sectiom two artificial
nodesh,, ande,, are introduced. Additionally there are fixed afts— b,,, by, — €4z,
ese. — 0 ande,, — x with weightsb, [, —b — [ and0, whereb is the beginning of the
out-of-service interval andlits length. All these fixed arcs together model the constrain
that block section: is out-of-service exactly frorhto b + [. The alternative pair drawn in
dashed lines then models the two possibilities either tedule the train before or after
the out-of-service interval in the corresponding blocktser It can easily be seen that
introducing an out-of-service interval for a certain blag#ction is similar to the intro-
duction of an additional train moving through this sectica@ly within the time period
s =[bb+1].

The railway scheduling problem (with or without additioainstraints) now can be for-
mulated as follows. Find a complete consistent selecfioof alternative arcs for the
corresponding alternative graggh = (V,C, A). Such a complete consistent selectfn
again defines an earliest start schedule;c, where the starting time of operatians
equal to the length of a longest path fronto i in G(S) = (V,C U S).!I!

Besides the task to compute feasible solutions one can tjeefuand try to find good
or optimal solutions. Given a certain objective functioe tfoal is to compute solutions
which minimize this function.
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Block sectionz

train moving through BS:

Figure 17: An out-of-service interval modelled in termsloé @lternative graph.

In addition to the large variety of different constraints@different objective functions
can be suitably integrated in the alternative graph modddvi@usly the makespan ob-
jectiveC,,.... as well as the maximum lateness objective,. can be modelled as shown
above in the case of blocking job-shop problems. Also géizetaons such as maximum
lateness of starting and ending times of arbitrary openat{e.g. entrances/exits of trains
in block sections) can be implemented in an easy way. Thideatone by setting due-
dates for these operations in terms of fixed arcs. For example x with weight —¢;
(p; — ¢;) would modelg; as the due-date for the start (completion).ofNote that mod-
elling problems with due-dates and a corresponding olmedtinction, all arcs of type
v — * must represent such due-date constraints. Such arcs wigihiveat the end of
jobs must be deleted or modified in order to represent duesdat

For the objective functions proposed above the goal is todiodmplete consistent selec-
tion S for a given alternative grapty = (V, C, A) which minimizes the starting time,
of the sink.

Based on the starting times in a scheduile: (s;);cy optimal speeds for all train opera-
tions can be calculated. For example consider a train whastttwait in a block section
before entering the next because that one is occupied bamioain. Then its speed in
the section can be adjusted to the total time it has to stayeiblock section.

In the next section complexity results for different shopestuling and railway problems
are presented.
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5 Complexity Results

In this section complexity results for shop scheduling peots with blocking and espe-
cially for railway scheduling problems are presented.

Two different types of problems are considered concerneg tomplexity, namely de-
cision problems on one hand and optimization problems orother hand. For an in-
troduction to the theory of complexity and a summary of intpot results the reader is
referred to Garey & Johnson [24]. In this thesis a selectiaegision problems is shown
to be NP-complete and some optimization problems are showa NP-hard. The differ-
ent types of complexity are closely related. An optimizatpyoblem is called NP-hard
if the corresponding decision problem is NP-complete. Ifrabfem is shown to be
NP-complete or NP-hard this means that is is very unlikelsdive it in polynomial time
(unlessP = N P).

Before starting with presenting complexity results, a tiotais introduced which is based
on the well-knownw|3|y-scheme (see Brucker [9]) but adjusted in order to desclibe t
problems discussed in this thesis. New values for the maamrironment, and objective
functions are described in Table 2.

Field | Value Meaning

! Railway railway scheduling problem from Section 2.2.1
Railway, F B, slow | railway scheduling problems with only fixed block
sections and slow trains

y f<UB problem of deciding whether a feasible solution with
objective value at mogf B exists or not
feas problem of deciding whether a feasible solution

which respects all constraints exists or not

Table 2: New values in the- and~-field.

Table 3 summarizes new values for thdield. The new field3, describes blocking
restrictions and the field, contains new types of precedence constraints which are im-
portant in the context of railway scheduling problems. Tinecture of a railway network
and corresponding routes of trains are characterized bietltes,, .

With the notations above the elementary reductions dapict&igure 18 and 19 can be
made. An arcP — (@ in the reduction graph means that probléhreduces to problem

0.
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Field | Value Meaning
By ° all operations are ideal
blocking all operations are blocking except the last of a job

blocking — op each operation is defined to be ideal or blocking|by
the problem instance

blocking(e) each machine is available again oaly 0 after a job
starts on the next machine (has left the machine)
blocking — op(e) | describes the combination of th&cking — op case
and thec-constraint

Bs ° no additional precedence constraints are given
start each job/train may be determined to be the first pne
on its first machine (starting constraints)
end each job/train may be determined to be the last ong on
its last machine (ending constraints)
prec arbitrary precedence constraints may be given
O single — line trains move on a single line in both directions
grid the railway network has gridlike structure
° the railway network has arbitrary structure

Table 3: New values in thg-field.

Obviously a flow-shop problem reduces to a correspondingsfuip problem, as it is a
special case (Figure 18 (a)). For problems with blocking aoegswap constraints the
Railway problem with fixed block sections and slow trains letween flow-shop and
job-shop problems (see Figure 18 (b)).

The elementary reductions for different blocking consttadepicted in Figure 19 can be
derived by special case reductions.

Graphs describing elementary reductions for other proltbaaracteristics can be found
in Brucker [9]. The corresponding reduction graph for olbijex functions even holds
when considering feasibility instead of optimization peohs.

In the following complexity results for both machine schieaig and railway scheduling
problems are discussed. In the first part the complexity ofesdeasibility problems

for flow-shops and job-shops is analyzed. The complexityssfoaiated optimization
problems is deduced afterwards. The second part deals metikamplexity of railway

scheduling problems. Finally in the third part all comptgxiesults are summarized. In
particular borders between polynomially solvable and MRplete (NP-hard) problems
are identified.
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(a) (b)
J Railway J|blocking(e)
Railway, F'B, slow
F F|blocking(e)
Figure 18: Elementary reductions for shop scheduling ariwag problems.
blocking — op(€) blocking — op
blocking(e) ideal blocking

Figure 19: Elementary reductions for different blockingdcteristics.

5.1 Shop scheduling problems with blocking

This subsection deals with complexity results for shop daheg problems. On one hand
these results will build a basis for considerations aboivey scheduling and related
problems. On the other hand they will be used to identify bosdetween polynomially
solvable and NP-complete (NP-hard) problems.

Some decision problems in the field of shop scheduling probleith blocking are shown
to be NP-complete. That means it is unlikely to decide witlolympomial effort of com-
putation time whether a feasible solution exists or notéasP = N P).

Papadimitriou & Kanellakis [55] consider flow-shop probkewith FIFO-buffers between
consecutive machines. A FIFO-buffer of capadityan contain at mostjobs at a time.
The jobs must leave the buffer in the same order as they ehteréhis is the FIFO
property. Moreover no job is allowed to bypass a buffer. Trardy permutation plans
are feasible solutions to these problems. A basic resullighdd by Papadimitriou &
Kanellakis [55] is
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Proposition 5.1 Problem F2|FIFO-buffer, b=1C,,.. < UB is NP-complete (in the
strong sense).

Proof:

The following proof is a version of the original proof fromgadimitiriou and Kanellakis
but partially adjusted to the notations in this work.

For showing/NV P-completeness a reduction from problem 3MI (3-dimensiomatiching
of integers) is made. For problem 3MI a setofpositive) integerst = {a4,...,a,} and
a set of2n (positive) integersB = {by,..., by, } are given. The question is: Is there a
partition of B inton pairs (p;, ¢;),7 = 1, ...,nsuch thatforalk; a;+p;+¢; = c withc =
(B, ai+ S72" b;)? This problem is known to b¥ P-complete (in the strong sense)

(see Garey and Johnson [24]).

Now starting from an instance of 3MIl an instance for problem
F2|FIFO-buffer, b=1C,,.. < UB is constructed. It can be assumed that a;,b; < §
and that alla;, b; are multiples ofin. This can be achieved by adding a sufficiently large
integer to alla; and b; and then multiplying all integers byn. If an integerZ > 0 is
added to alle; andb; then< increases by Z and £ increases by Z. Thus, the values;
andb; increase faster thafj and slower tharf, when increasingZ. Eventually for some
large Z the relations above are fulfilled.

Note, that the problem stays the same when modifying theadad@scribed above. The
transformation does not affect the existence of a solutornhfe 3MI problem and thus
leads to an equivalent problem. Note, that 8 holds, as; > a; > 4.

Constructing an instance for the flow-shop problem out of3iuk instancedn + 1 jobs
with execution time§p,;, py;) are introduced as follows:
(i) n—1jobsKy,..., K,_ywith (pix,, p2r,) = (3, 2) and ajobKy with (pix,, par,) =
(0,2) and a job K, with (pix,,, pax,.) = (5, 0),

(i) ajob B; with processing time§ s, p25,) = (1,b;) for eachl < i < 2n,

(i) ajob A; with processing time§i 4,, p24,) = (5, a; + ¢) foreachl <i < n.
The upper bound’ B is defined to bei(2¢ + 2). This construction of an instance for
problemF2|FIFO-buffer, b=1C,,.. < UB is obviously of polynomial effort.

It has to be shown that for the flow-shop problem a schedulemwékespan at mostB
exists if and only if the 3MI problem has a solution. (A8 is the sum of alp,; and also
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the sum of all,;, the makespan’ of a plan is less or equal t6' B iff C = UB. Thus,
there cannot be any idle time in such a plan for one of the nmeshi As a consequence
K, must be scheduled first arid, last. Otherwise there would be idle time on the second
machine at the beginning of a schedule or on the first machiti@eeend, respectively.

First it is shown that any feasible schedule for the flow-spagblem defines a partition

of B into n pairs {b;,,b;,} such thate; + b;, + b;, = c. Every feasible schedule for
the flow-shop instance has to consistiodegments (see Figure 20). This can be shown
by induction on the number of segments. It will now be shownttie first part of the
schedule in0, 2¢ + 2] must look like in Figure 20. From an identical argument thba t
induction step fofi(2¢ + 2), (i + 1)(2¢ + 2)] follows.

BilBig Aig Ki4 lesz Ajs Kn

11| 3 \ 3tC 1] a] e 1[1] s \ ste
2 biy ‘ bi, ‘ aiz +¢ Q| 2 bj, ‘ bj, ‘ aj +c
Ko B;, B;, Ay K, K, Bj, B;j, Ajy

Figure 20: Job patterns for a feasible schedule

In any feasible schedule for the flow-shop problem two jBhsB;, have to follow the
first job K. Otherwise there would be an idle time on the second mackiee Figure
21). (If an A; follows K| this is obvious, as > 8. If a job B; and anA; follow K, then
b; < 5 — 1 holds since: andb; are multiples ofin andb; < §. Thus, idle time on the
second machine occurs. Scheduling a fopinstead ofA; would also lead to idle time

on the second machine, as its processing time on the firstimaisheven longer.)

(@ Aj (b) B; Aj (© K;
C C C
3 1| 3 3 te
9 — aj +c¢ ‘ 2 ‘ b; aj tc¢ ‘ 2 g/% 2 ‘
Ko Aj Ko B; Aj Ko K;

Figure 21: Job patterns, which do not provide a feasiblecidee

The next job then must be ah, (see Figure 22). Otherwise, choosing a jBh, a buffer
overflow (idle time on the first machine, respectively) waaddur. Choosing a jol#;,
an idle time on the second machine (as+ b;, < ¢ < ) would arise.

Similar arguments as used above provide a joh to be the next one.K;, must be
chosen since a no joB;, can be used. A jol;, followed by a jobB;, or A,, cannot be
used, too. All these choices would cause a buffer overfldertfide on the first machine,
respectively) a$;, + b, + a;; + ¢ > % > ¢ + 1 (see Figure 23 (a), (b)). Using a
job A;, followed by a jobk;, would also lead to contradiction when looking at the next
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(@) B;,B;Bi, (b) Bi, Bi, K,
1 ‘1 1 ‘ buffer overflow! 1 ‘1 cic
2
2 bi, ‘ bi, ‘ 2 bi, ‘ bi, 9 ‘
Ko Ba Bi Ko By By, Ki,

Figure 22: Job patterns, which do not provide a feasiblecidlee

possible job. Theh;, + b;, + a;, + ¢+ a;, + ¢ < 4c — 2 holds, so that scheduling a job
K;, would cause an idle time on the second machine (see Figure)23Kurthermore

bi, + b, + a;, +c+a;, +c > 3c holds, which leads to buffer overflow (idle time on the first
machine, respectively) when scheduling a jop or B;, next. Thus, jol;, completes
the segment and the next segment starts withon the second machine.

@ BiBi, Ay Bis (b) Bi,Bi,  Au Ai, Asy
L ‘ 1] 3 ‘ L ‘ buffer overflow! 1 ‘ 1] ¢ ‘ £ £ ‘ buffer overflow!
2 bs, ‘ b, ‘ a3 +c¢ ‘ 2 bi, ‘ biy ‘ ais +c ‘
Ko Bil Bi2 Aig Ko Bil Biz Aig
(¢) BiyBi, Ay Aiy K K,
L] g s | g+ [ g+ |
2 bin [ by [ aigte [ aute [ o T idle time!
Ko Bl‘1 Bi2 Ais Al‘4 Ki5

Figure 23: Job patterns, which do not provide a feasiblecidee

Additionally it is shown thaty;, finishes on the first machine exactly whén finishes on
the second. Therefore it has to be shown that b;, +a,, +c = 2c. In the caseé;, +b;, +

a;, +c¢ < 2c there must be idle time on the second machine. In taseb;, +a;, +¢ > 2¢

it is clear thatb;, + b;, + a;, + ¢ — 2¢ = b;, + b;, + a;, — ¢ is a multiple of4n and no
job can follow K, (a job B; because of buffer overflow (idle time on the first machine,
respectively) and jobs!; and K; becausé,, + b;, + a;; + ¢+ 2 < % +c =3+ 2
which means idle time on the second machine). Thus; b;, + a;, + ¢ = 2¢ holds and

a partition for the 3MI problem can be constructed from thasible flow-shop schedule.

Conversely, given a partition for the 3MI problem a feasibdtedule without idle times
for the flow-shop problem can be constructed using the patiem Figure 20. This
completes the proof and problef2|FIFO-buffer, b=1C,,.. < UB is shown to beV P-
complete (in the strong sense). 0

Note, that in the proof above zero processing times are alfitand thus, NP-completeness
for problems including those is shown. But zero processimgs can be disallowed by
multiplying all processing times by a large positive integed replacing zero times by 1.
This does not modify the argumentation.
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From the complexity result above other complexity resutsfvariety of shop scheduling
problems with blocking can be derived step by step. In a fiegi the following result for
blocking flow-shop problems can be stated.

Proposition 5.2 ProblemF'3|blockingC,,... < UB is NP-complete (in the strong sense).

Proof: ProblemF'3|blocking ps; = 0|C,., < UB is equivalent to the 2-machine flow-
shop problem with a FIFO-buffer of capacity= 1 between the machines (see Hall &
Sriskandarajah [28]), as the buffer can be interpreted asdditional machine with zero
processing times. Thus, the problem of deciding whetheasilike solution with at most
makesparU B exists is NP-complete (in the strong sense). Therefore tve general
problem with arbitrary processing times on the second meefiie. F'3|blockingC,,,.. <

UB) is NP-complete (in the strong sense), too. (If zero prangssmes are wanted

to be disallowed this can obviously be done by multiplyingpoabcessing times by a
sufficiently large numbelN and setting zero processing times to 1. This does not modify
the argumentation.) 0

Setting time-windows0, U B] for the completion time of all operations for the prob-
lem F'3|blocking ... and asking for a solution respecting these time-windowddda
an equivalent formulation of the decision problém|blockingC,,.. < UB. Thus, the
more general problem with arbitrary time-windows is NP-gdete (in the strong sense),
too. This leads to

Proposition 5.3 Problem£'3|blocking r;;, d;;|feas is NP-complete (in the strong sense).

From the results above some results for job-shop problertismocking can be derived
by simple special case reduction.

Proposition 5.4 (a) Problem.J|blockingC,,.. < UB is NP-complete (in the strong
sense).
(b) ProblemJ|blocking r;;, d;;|feas is NP-complete (in the strong sense).

Note that all considerations so far do only hold in the casgarfidard blocking problems
and thus with swap allowed in the case of job-shop problems.

For no-swap problems a more complex argumentation is needamhsider problem
F3|blocking(e)|Cyue: < UB, namely the 3-machine flow-shop problem with blocking,
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where each machine is available again onty 0 after a job starts on the next machine
(has left the machine). This means, that added to the weight of every alternative arc.
In Figure 24 the Problem'3|blocking.. is modeled in terms of an alternative graph. The
blocking restrictions allow only permutation solutionga® feasible, as they disallow the
overtaking of jobs. Consider the situation depicted in Fégeb in terms of an alternative
graph. There the sequence of two jabandj is chosen different on the machings
and M, 1, as the corresponding alternative arcs are chosen in éliftatirections. This
choice is infeasible as a positive cycle occurs. By indurctite permutation property is
proved. For a complete consistent selection this meanstieahas parallel alternative
arcs between each pair of jobs (see Figure 26).

o—o—s

Figure 24: Alternative graph for problei#i3|blocking.. .

M; M;q

~. osifiv L
.. pCyc}e e
. L
() . O
M; M;q

Figure 25: Jobs which are sequenced differently on consecaiachines.
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Figure 26: Solution graph for problei#i3|blocking.. .

Obviously replacing the zero weights of alternative arcsalgmall numbee > 0 does
not modify the argumentation considerably. This leads to

Proposition 5.5 Problem F'3|blocking¢)|C., < UB is NP-complete (in the strong
sense).

With the same argumentation as for the case withousetting time-windows0, U B]

for the completion time of all operations for the probléeris|blocking(¢)| and asking
for a solution respecting these time-windows - an equivdl@mulation of the decision
problem F'3|blocking(€)|Ce < UB is given. Thus, the more general problem with
arbitrary time-windows is NP-complete, too.

Proposition 5.6 Problem/'3|blockinge), r;;, d;;|feas is NP-complete (in the strong sense).

For job-shop problems with blocking and theonstraint one can prove NP-completeness
by simple special case reduction. Theonstraint covers the case©f 0 being arbitrary
small and thus the no-swap problem (see above). As the problth thee-constraint is
NP-complete (in the strong sense) for any- 0 especially the problem with swap not
allowed € > 0 arbitrary small) is NP-complete (in the strong sense). iftilowing it

is not distinguished between problems with theonstraint and no-swap problems. The
results for job-shop problems with blocking are summarired

43



5.2 Railway scheduling problems 44

Proposition 5.7 (a) ProblemJ|blockinge)|C,,.. < UB is NP-complete (in the strong
sense).

(b) ProblemJ|blockinge), r;;, d;;|feas is NP-complete (in the strong sense).

For job-shop problems with blocking and no swap allowed NsagcPacciarelli [44]
derived a different type of complexity result, which is bas# the representation of the
problem in terms of alternative graphs. Using the notatintreduced above they proved
the following

Proposition 5.8 Consider a blocking job-shop problem with no swap allowedtcivis
given in terms of an alternative graph. Furthermoredabe a partial consistent selection
for this graph. Then the problem of deciding whether an esttanof S exists or not is
NP-complete (in the strong sense).

Note that this proposition cannot be proved for a generabsion in the case swap is
allowed. A more detailed description of those results cafobad in [44].

Leading over from feasibility to optimization problems tfedlowing two results which
can be derived directly from the above results are important

Conclusion 5.1 (i) ProblemF'3|blockindC,,.. is NP-hard.
(if) Problem F'3|blocking €)|C,,.. is NP-hard.

Even for problems with no-wait constraints such /a3|no-wai{C,,,., NP-hardness is
proved (see Rock [60]). For the objective functiap,,, the no-wait flow-shop prob-
lem is already NP-hard for two machines (see Rock [59]). @irse then the corre-
sponding job-shop problems are also NP-hard. But even irerspecial cases like unit
processing times, these job-shop problems remain NP-battiree machines and pseu-
dopolynomially solvable for two machines, i.el3|no-wait p;; = 1|C,,., is NP-hard
and J2[no-wait p;; = 1|C,,., is NP-hard in the weak sense. It is pseudopolynomially
solvable (see Sriskandarajah & Ladet [64] and Kubiak [39]).

5.2 Railway scheduling problems

The complexity results derived above imply some railwayestthing problems intro-
duced in Section 2.2 to be NP-complete.
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ProblemF'3|blocking(¢)|C,... < UB can be viewed as a special railway problem or as
a specific part of a railway problem with fixed block signadjisystem. In particular this
shop scheduling problem corresponds to the problem of stimgoa set of slow trains all
travelling in the same direction through three fixed blocgt®as with respect to a given
global time-window. Thus, this leads to a more general tesul

Proposition 5.9 Let be given a rail network with fixed block signalling, a setains with
given routes and the corresponding travelling times forpalirs { train, block sectiory.
Then the problem of finding a feasible solution with respeatgiven global time-window
(upper bound for the makespan) is NP-complete (in the stsenge).

Of course, the case of mixed signalling systems is NP-cadi@o. Another complexity
result, which is relevant for railway scheduling problem®roposition 5.8. Let be given a
rail network with fixed block signalling, a set of trains wiiked routes and the travelling
times for all pairs (train, block section). Then the problefaeciding whether a feasible
solution with respect to some starting and ending congtahtrains corresponds to a
special job-shop problem where a special partial selediagiven and an extension is
asked for. Then Proposition 5.8 already indicates that eséway problems without
time-windows may be very hard to solve.

A formal reduction - strongly oriented towards a similaruetion from Arbib et al. [6] -
can be made from problem 3-SAT. This leads to the followingppsition.

Proposition 5.10 Given a railway network with fixed block safety system and slains
with given fixed routes and initial positions (starting ctrasts) the problem of deciding
whether a feasible solution (complete consistent seledtiothe corresponding alterna-
tive graph) exists or not is NP-complete (in the strong sense

Proof: It is clear, that the given problem is itvP. One can guess a complete selec-
tion and prove its consistency in polynomial time by lookimiga positive cycle in the
corresponding graph.

In order to showV P-completeness 3-SAT will be reduced to a special case oailveay
problem. This proof is strongly oriented towards a similaogf from Arbib et al. [6].
Arbib et al. showV P-completeness for a problem where packets have to movegtheou
so-called packet switching network. Here trains moving raiaway network are consid-
ered instead of packets. An instance of 3-SAT is given bgetdy A F; A ... F,, with
variableszy, 1, ..., z,, whereF; = (1,1 V 12 V l;3).
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Now a railway network and trains moving on given routes i tietwork are associated
to this instance of 3-SAT. The railway network is composedbapecial rudimentary
elements (fixed block sections) which are shown in Figurel@7he railway network

shown in Figure 28 these fixed block sections appear in diftssrientations. For exam-
ple the fixed block section of type (b) appears at all four boscbf the rectangle in the
corresponding four different orientations.

(@) (b) (c)

Figure 27: Different layouts for fixed block sections.

With each clausé’; a subnet of the whole railway network is associated. Moreipety
with F; the railway subnefVy, is associated with rudimentary elements

u;, a;; andb,;, wherej € {1,2,3}.
These rudimentary elements have connections
{(aij, aijir), (bijy bijan) | 7= 1,25 U{(ay, bij) | = 1,2,3} U {(bi2, us)}-
Additionally with each paitX, = (v, 1) is associated a subnéf,, with elements

{@k, Ok, Tn}
and connections
{(zr, vk), (vk, Tp) }-
These subnetworks are embedded in a rectangular gridlikear& of sufficient size. Of
course the minimal size is bounded by a polynomial in thediziee instance of 3-SAT.

This ensures the correctness of the transformation. Howntbesl the subnetworks is
defined by specifying coordinates in the grid.

Embedding the sections of the subnetworks in the grid th@Afivlg coordinates are cho-
sen for theNg,:

e a;; gets the coordinate®i + j,5), 0 <i<m, 1 <j <3,
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e b;; gets the coordinate@i + j,4), 0 <1

IN

m, 1 <7 <3,

e u; gets the coordinate®i + 2, 3), 0 < i < m.
For the sections oiV,, the following coordinates are chosen:

e 1, gets the coordinate&k + 1,1), 0 < k < n,
e v, gets the coordinate®k +2,1), 0 < k < n,

e 1, gets the coordinate®k + 3,1), 0 < k < n,

In order to have a more comfortable description of the routesains additional names
for special sections in the network are introduced.

e The sectiong3i + 2,2), 0 < i < m are denotedu; ('beloww;"),

e the sections$3k + 2,0), < n are denotedwv, (‘belowuv;"),

0

0<k
e the sections$3k + 1,2), 0 < k < n are denotediz;, (abovez,’), and
e the sections3k + 3,2), 0 < k < n are denotediz;, ('abovezy’).

Withp = max{3m +1,3n+ 1} + 1 all sections are contained in the rectangular network
with corners(0, 0), (p, 0), (p,6),and(0, 6). This is a polynomially large railway network.
Skipping some details, a sketch of the railway network isvdren Figure 28.

Now (slow) trains are introduced. Firstly trainst,,..., ¢, are defined. The idea is
to have enough traing to occupy all block sections on a common part of their routes.
Therefore the routes of the trainshave to be defined first andwill be defined later.

Train t; starts in a section located at coordinatgs —i), 1 < ¢ < L and has to be the
first train there, i.e. it blocks this section from the begnghof any plan. The route of
t; is composed out of three parts. Firstlypasses all sections along the following route,
which is specified by turning points only:

(0, =), (0,0), (p, 0), (p, 2), (1,2), (1,4).
After thatt; travels along the following path:

(1,4),(1,5),(3,5),(3,4),...,
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(0,6) (p.6)
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Figure 28: Sketch of the gridlike railway network.

(37 +1,4),(35 +1,5),(35 +3,5), (35 + 3,4),...,
(3m 4+ 1,4),(3m+1,5), (3m + 3,5), (3m + 3,4).
The last part ot;’s route is:

(3m + 3,4), (p,4), (p,6),(0,6), (0,1).

Thus, (0, 1) is the final destination of all thesg trains. NowL is defined to be the
number of sections along any route of these trains betwegh and (0,2), extremes
included. Note, that this number is well-defined as any ofrthias passes a finite number
of sections betweefi, 0) and (0, 2). This number is bounded Byp + 1) as any section
is visited by any train at most once. The route of a trqiis depicted in Figure 29.

Next3(m + 1) trains p;;, where0 < i < m,1 < j < 3, are placed at their initial block
sections at;;. Their routes depend on the instance of 3-SAT in the follgwiay:

e If I;; = 13, thenp;; travels the routeu,;, b;1, by, bu;, axy, x;, otherwise ifl;; = 7, it
travels routeu;, b1, bya, bu,, axy, T,
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Figure 29: Routes of trains.

e if [, = x;, thenp;, travels the routew,,, bu;, axy, x;, otherwise ifl;, = ,, it travels
routea;s, bu;, axy, Ty,

e if ;3 = xy, thenp;s travels the routey;s, b;3, bo, bu;, axy, x;, otherwise ifl;3 = 7, it
travels routeu;s, b3, bys, bu,, axy, Tp.

Additionally2(n + 1) trains ¢, and g, where0 < k < n are placed at their initial block
sections atr;, andz; respectively. The route of a traip is

Lk Uk, bvk’v (07 0)7 (07 _L)v

whereas the route af;, is
fk’a Uk, bvk’v (07 0)7 (07 _L)

The routes of traing;;, ¢x, andg;, are depicted in Figure 30.

The last train introduced is a special trainwhich starts in the section located at co-
ordinates(0, 1). It travels straight on to its destination if0, —L). This train plays an
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Figure 30: Routes of trains;, ¢;, andgy.

important role as it obviously has to wait for completingjaarney until all trainst; have
left the sections on the-axis. Note that each block section, where trains end, ipssged
to have some sidings, were only these ending trains can begar

The travelling time of any of the trains is setlto for any block section and the the exit-
timee is set tol. The resulting instance of a railway scheduling problembsiously
polynomial in the size of the 3-SAT instance.

In order to complete this proof it has to be shown, that théasinse of the 3-SAT problem
is satisfiable if and only if a feasible solution for the radlyproblem exists.

Let u be a satisfying assignment for the 3-SAT problem. Accorttingtrains have to
be driven in a way that they can reach their destinations.stiyrtrains g, travels into
sectionuy, if u(xy) = TRUE. Otherwise (((x,) = FALSFE) g travels into sectiony,.
By construction of the railway network and singes a satisfying assignment, for each
subnetNy, at least one trairp;; can reach its destination. All other trains; are parked
in the two 'parking sectiond);, andw;. Next all trainst; can leave the-axis and occupy
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block sections on their route between coordingtie®) and(0, 2). Now the special trainh
can reach its destination and consequently all other tra@gspecially the; can complete
their journey. This completes one direction of the proof.

Starting with a feasible solution for the railway schedgliproblem, now a satisfying
assignment for the 3-SAT problem is constructed. The desidre railway network and
the routes of trains allows special trairto reach its destination only if all traing have

left they-axis. By the choice af and since occupies the destination of all trairig all
trains p;; have either to travel to their destinations,(or z;) or to be parked irb;, or ;.
Each subnetVy, provides two parking sections only. Thus, at least one tpgihas to be
driven to its final destination for eacNy,. This implies, that for each pairy, zx) one of

the trains has to move into sectiop This provides a satisfying assignment for the 3-SAT
problem, which completes the proof.

O

A railway problem which is obviously polynomially solvables the problem
Railway, F' B, slow|single — line, start|feas. If there are starting constraints for trains
at both ends of the single line the problem is infeasible e@tise a feasible schedule can
be computed by planning trains one by one respecting thengaonstraints.

5.3 Classification of complexity results

In this section the complexity results derived above arersanzed and supplemented by
additional results from the literature. Especially thedest problems which are known to
be polynomially solvable and the easiest problems whichshasvn to be NP-complete
or NP-hard are identified. Scheduling problems with differelocking restrictions are
considered first. After that, railway problems are analyaéere starting restrictions are
given.

For shop scheduling problems the classical flow-shop problgth two machines
(F2||Ciae) is known to be polynomially solvable (see Johnson [31]).t Biready the
problem with three machines can be proved to be NP-hard (sestia et al. [41]), i.e.
the corresponding decision problem is NP-complete. Thgsteduction graph in Figure
19 provides such problems with, € {ideal,blocking — op, blocking — op(e)} to be
NP-complete (NP-hard).

For blocking problems the 2-machine flow-shop with makespgjective is polynomi-
ally solvable (see Gilmore and Gomory [27]). The correspogd@-machine flow-shop
problem with, € {blocking,blocking(e)} is NP-complete (NP-hard) (see Proposition
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5.2 and 5.5). Even with the no-swap restriction, which bee®mmportant for job-shop
problems, the problem is NP-complete.

Thus, for blocking problems with makespan objective thadbobetween polynomially

solvable and NP-complete (NP-hard) problems lies betwesraéhine and 3-machine
flow-shop problems. Minimal and maximal open problems cardéeéved using the

CLASS-program from Plaggenborg [56]. In addition to theuetibn graphs from Fig-

ure 18 (a) and 19 also the reduction graph for the number ohimas and for objective

functions (see Brucker [9]) is used. The results for macktteeduling problems can be
summarized as follows:

e maximal polynomially solvable:

F2|blocking(€)|Crae  €quiv. problem in Gilmore & Gomory [27]
F2||Caz Johnson [31]
F2|blocking|Cax equiv. problem in Gilmore & Gomory [27]

e minimal NP-hard:

F2[1>°C; Garey et al. [25]

J2||Crnax Lenstra & Rinnooy Kan [40]
F3|blocking|Cas Proposition 5.2

F3||Cnaz Garey et al. [25]
F3|blocking(€)|Cpnae  Proposition 5.2

F2|| Loz Lenstra et al. [41]

e minimal open:

J2|blocking|Caz
F2|blocking — op|Ciax
F2|blocking| Lz
F2|blocking(e)| > C;
F2|blocking| Y C;
F2|blocking(€)| Linaax
F2|blocking — op(€)|Craz
J2|blocking(€)|Crazx
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e maximal open:

F2|blocking — op|Ciax
F2|blocking — op(€)|Cinax
J|blocking(e)| > w;C;
J|blocking| > w;C;
J2|blocking(e)| > w;T;
J2|blocking(e)| > w;U;
J2|blocking| >~ w;T;
J2|blocking| > w;U;

The feasibility problem for a flow-shop with blocking, theonstraint and starting con-
straints ¢'|blocking(€), start| feas) is obviously polynomially solvable. It can be inter-
preted as a railway problem where slow trains move on a silitgtein the same direc-
tion. As stated above the railway problé®ailway, F'B, slow|single — line, start| feas

is polynomially solvable. However, the more general rajvpaoblem with fixed block
safety system and slow trainB¢ilway, F' B, slow|start| feas) is NP-complete, as shown
in Proposition 5.10. A closer look on the associated proaiwshalready problem
Railway, F B, slow|grid, start| feas to be NP-complete. Thus, for Railway schedul-
ing problems the border between polynomially solvable aRdddmplete problems lies
between problems with only a single line and problems withidlige railway network.
However, there is a large gap between railway problems wétisg constraints which
are known to be polynomially solvable and NP-complete, @etypely.

In the next section different solution procedures, exadhiodds and heuristic approaches,
are presented.
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6 Solution methods

In this section a summary of different approaches to getitiemand/or good solutions
for railway scheduling and related problems is presentedstiag techniques appearing
in the literature as well as new ideas are described. Whesidering optimization prob-
lems the approaches are mainly developed for the objeatinvetion C,,,.. (and L,,,..)
but can be easily adapted to other objectives like maximuwem&ss of an arbitrary set of
operations (see above). All methods are based on the repatisa of these problems in
terms of the alternative graph model. Thus, most of the megdalgorithms can also be
used to solve other problems if formulated by means of adt@ra graphs.

6.1 Greedy heuristics

In this section some simple heuristics in order to compuésifde solutions (complete
consistent selections) for problems formulated by mearaltefnative graphs are pre-
sented. Most of these heuristics were developed by Masdig?anciarelli [44, 45] and
are based on a generic greedy strategy combined with ditf@réority rules. In addition
to the priority rules presented in [44, 45] a new rule is dexsa.

The main idea of the generic greedy approach is to fix sucedgsarcs of alternative

pairs according to some priority rule. In between alterreatrcs which are induced by
others are fixed. The algorithm ends with a complete contistection or stops if for

an alternative pair no choice is possible, i.e. if both afdb® pair would create a positive
length cycle in the graph.

The generic algorithm is as follows:

1 begin

2 S :=10;

s Preprocess graph, i.e. choose all alternative arcs, which
are inplied by the probleminstance itself;

swhile A#0 do

5 begi n

6 Sel ect an alternative pair ((h k), (i,7)) € A;

7 Sel ect arc (i,7), i.e. S:=SU{(i,j)};A:=A—{((h,k),(i,9))};

8 whi | e 3((u,v),(p,q)) € A:l(v,u)+ a,, >0 do

9 begi n

10 if l(¢,p)+a, >0 then
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STOP, the procedure failed in finding a feasible
sol uti on;
el se
Sel ect arc (p,q),

|.e.
S=SU{lp,g}A:=A—{((u,v),(p,q)};

end
end
end

Listing 1: Generic greedy algorithm

The preprocessing algorithm in Step 3 fixes arcs which ardiéty the problem in-
stance itself. It mainly applies the inner loop (Step 8) @& Lreuristic to the alternative
graph. In Step 6 and 7 different priority rules are used tooslecalternative arcs which
are fixed next. Mascis and Pacciarelli ([44]) proposed fafieent rules.

e AMCC (Avoid Maximum CurrentC,,,,.) selects the paif(h, k), (i, j)) € A; such
that

10,h) + apg + Uk, *) = (mz)xxA{l(O, W) + Ayp + (v, %) }.
u,v)E

The alternative ar¢h, k) would increase the makespan®@tS) most, if selected.
Hence AMCC chooseg, j).

e SMCP (Select Most Critical Pair) selects the gair, k), (i, j)) € A; such that
min{l(0, ) + apr + U(k, *),1(0,7) + a;; + 1(j, %)}

is maximized. Then the afg, j) with [(0, h) + ap, +1(k,*) > 1(0,7) +a;; +1(J, *)
is chosen.

e SMBP (Select Most Balanced Pair) selects the f@irk), (i, j)) € A; such that
| {1(0, h) + ank + U(k, *) — 1(0,7) — ai; — U(j, %)} |

is minimized. Then the ar@, j) with 1(0, k) + ap, + 1(k, %) > 1(0, ) + a;; +1(J, *)
is chosen.

e SMSP (Select Max Sum Pair) selects the pgir, k), (i, 7)) € A; such that
| {10, h) + an + 1(k, %) +1(0,7) + ai; + (7, %)} |

is maximized. Then the afg, j) with [(0, h) + apr +1(k, *) > 1(0,7) +a;; +1(J, *)
is chosen.
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In this thesis an additional rule is used, namely:

e FCFS (First Come First Serve) selects the péir k), (i, j)) € A; such that
min{l(0, h),1(0,4)}

is minimized. Then the ar@, j) with [(0, ~) > (0, 7) is chosen.

In the case of the absence of a path froto ; its length is set td(i, j) = —oo. In
the implementations for this thesis it is set to a large rnegatumber, respectively. It
will be seen later, that all five rules can also be used as hmagaules for enumerative
algorithms.

As can be seen from the given algorithm a very simple comgtpabpagation technique
is included. Alternative arcs which are implied by others ba found by simple longest-
path-considerations. That means, if for an alternative arcj with weighta a path from

j to ¢ with weightb > —a already exists the choice of— j would lead to a positive

cycle and thus, its alternative arc is implied. For someggsiinple examples like flow-

shop problems with blocking the algorithm always finds a cletgpconsistent selection.
Examples, where during the algorithm a consistent seleaiaeached, which has no
extension, but where all alternative arcs seem to be sélegt@re more complex. In this
context arcs are said to seem selectable if they do not causenaediate contradiction if

chosen.

In the next section more sophisticated constraint propag&tchniques are developed.

6.2 Constraint propagation techniques

In this Section constraint propagation techniques for ttegraative graph model and es-
pecially for job-shop problems with blocking and for thelway scheduling problems
described above are presented.

The constraints in job-shop problems with blocking are nresgrictive than in a corre-
sponding classical job-shop. Feasible solutions for thgsital job-shop in general do not
stay feasible for the blocking problem. Moreover no-swagtrietions reduce the number
of feasible solutions additionally. On one hand this cocgiks the problem of finding
feasible solutions. On the other hand it may be a chance tly affiectively constraint
propagation methods.

Especially in railway problems situations occur where theice of an alternative arc
or a set of alternative arcs implies many other alternaties o be chosen in a feasible
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solution. Consider the situation depicted in Figure 31 whwio trains travel on a single
track in the same direction without any possibilities to iake. Then the choice of one
alternativer (u) — v arc representing the train sequence in a block secdtipimplies all
other arcs to be chosen in the same direction.

L M M; L, My Miys

'L+1 'L+2

QH@HHQHQ
QH@HQHQH

M; 1 Mit1 Mit2

Figure 31: Two trains travelling on a single track.

These ideas are now generalized and described in a formal @awysider two pairs of
alternative arc§i — j,h — k) and(s — t,p — [). Moreover letM,_.; and M,_, be

the sets of alternative arcs which are impliediby> j ands — t. By definition let be
7 H] € Mi—»j ands —t € M,_,.

As a first step obviously the following can be stated:

Remark 6.1 LetS be a partial consistent selection for the alternative grépk- (V, C, A)
and(i — j,h — k) be an additional alternative pair. (S U {i — j}) contains a posi-
tive cycle then eithet — £ is implied byS or S has no extension (if even(SU{h — k}
contains a positive cycle).

Remark 6.1 leads to a very simple methods to enlargelgets. All alternative arcs have

to be checked whether they lead to a positive cycle with thieeatisetM,_.;. If an arc
produces a positive cycle, its alternative is added#o.; and so on. If at a point/,_.,

has no extension, the initial asc— ¢ cannot be chosen in a complete consistent selection.
Otherwise it is known that whenever asc— t is chosen in a selection then all arcs of
M,_,, have to be chosen in order to stay feasible. This techniggsealw@ady integrated in
the greedy algorithms from Section 6.1 and can obviouslyriemented in polynomial
time.

By the strategy described above sets of implied dtgs ; can be initialized. In order to
enlarge these sets or to fill them more effectively the follmywemarks can be stated.
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Remark 6.2 If s — t € M;_;, thenM,_, C M,_.;.
A direct consequence is:
Remark 6.3 If s — t € M,_; andi — j € M,_, thenM,_, = M,_.;.

Notice thats — ¢ € M,;_,; means, that the choice ef — ¢ is implied by the choice of
1 — j. Reversing this argument leads to

Remark 6.4 Let (i — j,h — k) and(s — t,p — [) be two alternative pairs. If
s—1€ Mi—>j thenh — kf € Mp—>l-

Proof: Letp — [ be chosen in a complete consistent selection. Supposevirat € j
is chosen. Thes — ¢t € M,_,; impliess — ¢ to be chosen, which is a contradiction, as
only one arc of the paifs — ¢,p — [) can be fixed. Thug, — k£ must be fixed. O

Furthermore it can be proven

Conclusion 6.1Let (i — j,h — k) and(s — t,p — [) and(a — b,c — d) be
alternative pairs withu — b € M,;_,; andc — d € M,_,.
Thenals@w — [l € M,_;andh — k € M,_,

Proof: From Remark 6.2 it follows that/,_., ¢ M,_.; (M., C M,_,;) and Remark 6.4
providesh — k€ M., (p — 1€ M,_) .
Thusp — 1 € M;,_;andh — k € M,_,. O

Summarizing the main considerations above three progeofi¢he sets of implied arcs
can be identified, which are:

(1) Reflexivity:: — j € M,_,; for all alternative arcs — ;.

(2) Set-Transitivity:s — t € M,_.; = M,_, C M,;_, for all all alternative arcg — j
ands — t.

(3) Alternative-Symmetrys — ¢t € M,_.; = h — k € M,_,, for all alternative pairs
(1t —j,h— k)yand(s — t,p — ).
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These properties may help to effectively enlarge the seitsplied arcs. They may even
be used to propagate constraints, which were already sek&mple in a branch&bound
procedure. For all algorithms which are based on the alteagraph model the choice
of alternative arcs may be replaced by the choice of the sparding sets. This leads to

Notation 6.1 For an alternative pair(i — j,h — k) the pair of set§M,_.;, M) is
calledpair of alternative sets

For special cases of problems probably additional properiay be identified.

Next lower bounds and constraint propagation techniquéschwwill be helpful espe-
cially for enumerative algorithms, will be described. Tkehlniques are mainly designed
for exploiting the existence of a given upper boun@® for the objective function value
in C,,..-problems. They were developed for the classical job-stroplpm and already
transferred to blocking problems by Mascis and Paccigei].

A lower bound presented by Mascis and Pacciarelli [45] isedasn the concept of
cliques. A clique of operations is a sét of operations where no two of them can be
processed simultaneously, i.e. foj € K one has eithes; > s, + p; ors; > s; + p;.
This is for example the case for a set of operations to be psstkon the same machine.

For blocking problems the time when a machine becomes &laikgain after the pro-
cessing of an operatianpossibly does not only depend pnbut also on the constraints
on s,;. Thus, the processing time may be dynamically replaced by larger values in
optimization procedures for such problems.

For a cliqgueK an operatiorv € K is calledinput of K, if in all feasible solutions
is processed before all other operationgiof It is calledoutput of K if in all feasible
solutions it is processed after all other operation&of

Given a consistent selectigha release time; can be associated with each operatioA
lower bound forr; is the lengthi® (0, /) of a longesb — i-path inG(.S). Thus, a possible
choice forr; is 15(0, ).

Similarly a flow timep; for i can be identified as a lower bound for the time period be-
tween the starting time afand and the time whej{i) leavesu () in an optimal extension
of S. A possible choice ig; = p;, asp; > p; holds.

At last a delivery timej; can be associated folt is defined ag; = 1°(i, *) — p;, i.e. itis
a lower bound for the time period between the time when leaves its machine and the
makespan of an extension 8f
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For blocking operations the values can be modifie te max{/°(0,),1%(0, o (i)) —p;},
pi =1°(i,0(i)) andg; = max{I%(o(i), ), 1°(i, x) — p; — 7 + 19(0,4) }.

If 7; = 1°(0,0(7)) — p, this implies, that is shifted right. But i may be the successor of
another operation and thus, this right-shift could incesthe makespan. Thug,could be
too large. The choice af; compensates too large values which may be chosen.fof

7; = 19(0,4), then one hag; = max{l°(a (i), *),°(i, *) — p;}, Which is obviously okay.
Otherwise one hag = max{l*(c(i), *),1%(i,*) — p; — 1°(0,0(7)) + p; + 1°(0,4)} =
max{l%(c(i), *),1%(i,x) — (1°(0,0(i)) — 1°(0,4))}. Here the termi®(0, o (i)) — 1°(0,4)
compensates the fact, thatmay be too large.

A lower bound for the makespan of an optimal extensiofi odn be computed by consid-
ering the corresponding single machine problem with reletetes; and delivery times
q; for each cliquei. A lower bound for such a problem is derived by building Jacks
preemptive schedule (see Carlier & Pinson [18]). Such adideecan be computed with
effort O(| K| log | K|) and has makespan

max(minr,; + E S+ ming,).
JCK(jeJ J _ejpj jed %)
J

Thus, this is a suitable technique to compute lower boundsdample in branch&bound
procedures.

The propagation technique presented by Mascis and Paltid4® is based on the in-
vestigation ofascendantanddescendantsets.

Given a selectiort let now ber; = 1°(0,4) andg; = 1°(i, *) — p;. Then given a bound
U B for the makespan a sétC N of operations is called ascendant set dfc ¢ J and
min r; + Z Dj +rj11€1?qj > UB.

jeJUu{c} jeTote)

In this case: is the output of the cliqu&” = J U {c¢}. Then one can forbid all unselected
alternative arcg — j with weighta;; which fulfill

lS(C, 7,) + a;; + rilé&}({ls(j, ]{7)} > 0.

This result can be derived by employing ideas from Carlieri&sBn [18] to alternative
graphs. Asc has to be processed after all operations/ithe inequality above would
indicate a positive cycle. For an ideal operatioall arcsc — j and for a blocking
operatiorc all arcso(c) — j with j € J are forbidden.
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The definition of a descendant set and the consequencesdetegted alternative arcs
can be derived symmetrically. C N is called descendant setoif ¢ ¢ .J and

minr; + s+ min ¢g; > UB.
jes 7 Z P jeJule) 9
jeJUu{c}

Thenc is the input of the cliquéd = JU{c} and one can forbid all unselected alternative
arcs: — j with
Iiléi}{ls(k, i)} +ai; +1°(j,¢) > 0.

The use of the constraint propagation techniques descaibedk is twofold. On one hand
they can be used to reduce the search space when lookingibliesolutions. Instead of
selecting one arc out of an alternative pair, a set of im@ied can be chosen for example
in greedy heuristics. On the other hand the techniques camséeé to compute lower
bounds or to cut branches in branch&bound procedures. Sataglsiof enumerative
algorithms and branch&bound procedures are treated ingkesection.

6.3 Enumeration techniques

In this Section enumeration techniques in order to find f@assolutions for job-shop
scheduling problems with blocking and for railway schedglproblems or to prove that
no such solution exists are presented. Based on this a B&Bdund procedure to find
good/optimal solutions is presented. Some versions of #seribed techniques can be
found in the publication from Mascis and Pacciarelli [45].

A general sketch of an enumeration procedure for problemmadtated by means of the
alternative graph model is depicted in Listing Z is a list of incomplete selections.
Starting from an empty selection in each step of the main loplement of. (i.e. an
incomplete selection) is chosen. For this selection twidodmn are generated by selecting
an unselected alternative pair and fixing the first or the seéarc. For the choice of
a parent selection fromh different strategies are possible. The choice of an untslec
alternative pair can be done due to the rules described itidee6.1 (AMCC, SMCP,
etc.).

begi n

L= {0};

while Stop criterionis not fulfilled do
begi n
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Choose parent S e L;
L=L—-{S};
Sel ect an alternative pair ((h,k),(i,j)) € A which is
unsel ected in S;
Generate children S;=SU{(h,k)} and Sy =SU{(4,7)};
for i=1,2 do
begi n
i f G(S;) contains no positive cycle then
begi n
Eval uate S; and
possibly L=LU{S;}
end
end
end
end

Listing 2: Enumerative algorithm

Steps 5 and 7 define the branching scheme of the procedurenBieg on the choice of a
parent solutiort' € L in Step 5 different strategies like depth-first or breadtbtfsearch
can be realized. For example choosing in every step a pardntive maximal number of
fixed alternative pairs leads to a depth-first-search. Whrelmches of the search tree are
analyzed first depends on the priority rules used in Step 7.

The functionEvaluateS; investigates if a solutios; should be added té or not. For
example in a situation where it can be seen tbiahas no extension it should not be
added toL. By this function even a Branch&Bound procedure can bezedli In this
case the functiokvaluateS; computes a lower bounfiB for the objective value of any
extension ofS;. This can be done using the techniques described in SeckonétU B
be the objective value of the best feasible solution contpsitefar. Thert; is added tad.
onlyif LB < UB.

The search can for example be stopped (Step 3) if a feasihlé®ois reached or if all
feasible solutions have been investigated and an optinhai@o has been found.

A specific Branch&Bound procedure for re-scheduling dethirains in a railway net-
work can be found in D’Ariano et al. [20].
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6.4 Local search

In this Section local search heuristics like tabu search®hn railway scheduling and job-
shop problems are presented. Some similar ideas can be fiotatciarelli and Pranzo
[54]. The idea of local search is to explore the search spaceahe space of all solutions,
by moving from one solution to another. These moves are dooerding to so-called
neighbourhoods, which define a set of neighbour solutionarig solution in the search
space. Note that the noti@olutionin this work does not necessarily mean a feasible
solution but a complete selection, which may be consisteimoonsistent.

The intention of this Section is threefold. In the first pagtghbourhoods for local search
procedures and an underlying basic theory are describetrwdrds in the second part
special repair procedures needed as subroutines for sothe akighbourhoods are dis-
cussed. Repair procedures are applied to infeasible esnkiippearing during a search.
They modify such infeasible solutions in order to restomsfbility. Finally in the third
subsection details of the local search procedures suclbadisastrategies, etc. are pre-
sented.

6.4.1 Neighbourhood structures

The following considerations are related to problems with,.-objective, but can easily
be extended td,,,, and other objectives. Before introducing different neigiihood
structures the following definition is made.

Definition 6.1 LetS be the search space of an optimization or decision/featilptob-
lem and letV : S — P(S) be a neighbourhood structure.

(i) N is calledconnectedif any solutions € S can be reached from any other solution
s € S by doing a finite number of steps accordingo

(i) Dealing with an optimization problenV is calledopt-connectedif from any solu-
tion s € S a feasible optimal solutios* € S (if existent) can be reached by doing
a finite number of steps according 6.

(i) Dealing with a decision/feasibility problen¥ is called feasibility-connected if
from any solutions € S a feasible solution/ ¢ S (if existent) can be reached by
doing a finite number of steps accordingo

The proposed approaches and neighbourhoods are basedfoladweng theorem which
is a direct consequence of a similar theorem for the clak38R (see Brucker [9]).

63



6.4 Local search 64

Theorem 6.1 Let S be a complete selection for a given alternative gréph

(i): If S is consistent, let” be a critical path inG(S). If S is a complete consistent
selection with makespan smaller théipat least one alternative arc df does not belong
to S.

(i): If S'is not consistent, let’ be a positive cycle iG/(5). Ifﬂ is a complete consistent
selection at least one alternative arc@fdoes not belong t6'.

Proof: Both, (i) and (ii) are obviously true.
O

Using Theorem 6.1 we may think of two different approaches,tiwo different types of
neighbourhoods to be used during local search.

\@

@
Figure 32: No replacement of a chosen alternative arc (bastheld arcs) possible.

The first approach is based on the idea of moving from oneliasblution to another
by applying a suitable neighbourhood. But for some compdetesistent selections each
replacement of an alternative arc leads to an infeasiblatsitn (see Figure 32), i.e. to a
positive cycle in the resulting graph. Therefore a neightboad must be able to replace
more than one alternative arc at the same time, i.e. it muablgeto repair such situations
if possible. A generic formulation of this type of neighbbaod is the following.

Neighbourhood N;: Let S be a complete consistent selection for a given alternative
graph G and P be a critical path inG(.S). Then the neighbourhoal; (5) is the set of

all complete consistent selections which are obtained bydhowing two steps:

(i) (At least) one alternative arc of an arbitrary criticalgph P is replaced by its alterna-
tive. (If P contains no alternative arcsj is optimal and one can stop.)

(i) If the corresponding new selection is inconsistenis #election is repaired by replac-
ing other alternative arcs suitably.

In general - for an arbitrary repair procedurd’; is neither opt-connected nor feasibility-
connected.

Note that the basis for usingy; is a given complete consistent selection and thus it is
only eligible for optimization procedures. The problem ofding a complete consistent
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selection is NP-complete for the problem with time-windcavel even for the problem
where a partial selection is given. Of course, for probled®P, BWSJSP and BNSJSP a
feasible (but possibly very bad) starting solution can gbvae found, as all jobs can be
scheduled one by one from the beginning to the end.

One special case a¥; is a neighbourhood, where the first step allows only to replac
exactly one alternative arc of a critical path. For probleMSSP Mati et al. [47] devel-
oped a tabu search procedure. They use a specific implenoentditthe described type
of a N; neighbourhood. In their paper an extension of a geometpccgech developed
by Brucker [8] for the problem/ | n = 2 | (.. IS used in order to repair infeasible
solutions (inconsistent selections) in the second stegortimately Mati et al. provide
only very few computational results.

Before describing different approaches to repair incaanisselections in the next section
(second step of neighbourhodd) and discussing the relevant underlying theory another
type of neighbourhood is proposed. This second approadahitis different. The second
neighbourhood does not provide an approach to repair instems selections after having
replaced alternative arcs. Thus, it must be allowed to movéand even start from)
inconsistent complete selections. Case (ii) of the the@keave gives a hint how to come
(back) to feasible solutions (complete consistent salas)i A generic formulation of
this type of neighbourhoods is the following.

Neighbourhood V,: LetS be a complete selection for a given alternative gréph

(i): If S is consistent, lef’ be an arbitrary critical path inG(S). The neighbourhood
N, (S) is the set of all complete selections derived by replacing @nmore alternative
arc of an arbitrary critical pathP by its alternative. (If? contains no alternative arcsy

is optimal and the search process can be stopped.)

(i): If S is not consistent, lef’ be a positive cycle i7(S). Then the neighbourhood
N»(5) is the set of all complete selections derived by replacing @nmore alternative
arc of an arbitrary positive cycl€’ by its alternative. (IfG(S) has a positive cyclé’
containing no alternative arcs, the problem is unfeasibie $he search process can be
stopped.)

NeighbourhoodV, can also be used when not having an initial complete comsiste
lection and especially when looking only for a feasible ol In this case only step
(i) of the neighbourhhod is used and the search processppeatl when having found a
feasible solution, i.e. a complete consistent selectiafoA/V; one special case oY, is

a neighbourhood where in both cases, (i) and (ii), only rd@ptaexactly one alternative
arc is allowed.

Obviously, N, has the following
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Property 6.1 The neighbourhood/; is both opt-connected and feasibility-connected.

6.4.2 Repair procedures for inconsistent selections

In order to apply neighbourhoods of thé -type methods to repair infeasible solutions
(inconsistent complete selection) resulting from stepf(the neighbourhood are needed.
A special approach for the BNSP can be found in Mati et al..[#8| already mentioned
above they use an extension of a geometric approach dewkelpp8rucker et al. [8]
for the problemJ | n = 2 | C,... in order to repair infeasible solutions (inconsistent
complete selections) in the second step.

Now another repair procedure is described by defining a fipeciplementation of the
neighbourhoodV;. This implementation ofV; for the blocking job-shop problem with
no swap allowed (BNSP) is defined as follows:

Neighbourhood N, 4: LetG be the alternative graph corresponding to a blocking job-
shop problem with no swap allowed (BNSP). Edte a complete consistent selection and
P be an arbitrary critical path inG(S). Then the neighbourhoall; 4(S) is the set of all
complete consistent selections which are obtained by tlenviog two steps:

(i) One alternative ar@ — j of an arbitrary critical pathP is replaced by its alternative
h — k.

(ii) If the corresponding new selection is inconsisteng, éimtire jobj (k) of operationk is
shifted to the end of a schedule by replacing all correspogditernative arcs. Obviously
this leads to a new complete consistent selection, as thi&gapachedule containing all
jobs butj (k) stays feasible. Schedulingk) after all jobs cannot create a positive cycle,
as then there are no arcs going back frg() to any other job.

In Figure 33, 34, 35 and 36 an example is depicted which provas\V, 4 is not opt-
connected. For the complete consistent selection depictédjure 33 only one alterna-
tive arc (the dashed one) is located on a critical path. Repathis alternative arc and
repairing the new selection accordingitg 4 leads to the schedule depicted in Figure 34.
The alternative graph with the corresponding complete isterst selection is depicted
in Figure 35. Applying/V, 4 to this solution leads back to the initial solution. A better
solution and thus, an optimal one as given in Figure 36 canaotached.
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Figure 34: Schedule for Example from Figure 33 after one sfegeighbourhoodV, 4.

Figure 35: Complete consistent selection correspondiriggore 34.
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Figure 36: An optimal schedule for Example from Figure 33.
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6.4.3 Local search strategies

Based on the proposed neighbourhoods different local seaethods and especially dif-
ferent strategies for applying tabu search to the problembzadeveloped. In this sec-
tion different ideas for approaches to get feasible or gabdt®ns are described. These
approaches include both, search methods which visit orgilide solutions (complete

consistent selections) and those which allow to move to émedh start from) infeasible

solutions (complete but inconsistent selections).

Firstly some basics of local search procedures are intredlugEspecially the structure of
so-called tabu search methods is presented. The genesabidecal search is to move
from one solution to another by following a neighbourhoodicture. A generic local
search procedure is depicted in Listing 3.

begin

Conpute an initial solution seS,

best sol ution s*:=s;

while Stop criterionis not fulfilled do

begi n
det ermi ne a nei ghbour s € N(s);
s:=5;
if c(s) <c(s*) then s =5
end
end

Listing 3: Generic local search

Tabu search is a special local search strategy which wasedpypéry successfully to

different job-shop problems in the past. Tabu search apglecial strategies in order to
avoid going back to solutions which have already been wsit&ing the search process,
i.e. to avoid following circuits during the search. This isn& by storing attributes of

already visited solutions in a list called tabu list. Goirerhk to solutions with the same
attributes as stored in the list is forbidden, those sohgiaretabu.

A sketch of a general tabu search algorithm is drawn in Listin HereC'and(s) is the
set of all neighbours of which are not tabu. In Step& ¢ 7" means, that the attributes
of s" are not contained in the tabu list
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1 begin

» Conpute an initial solution seS;

s best solution s*:=s;

stabu list T :=(;

swhile Stop criterionis not fulfilled do
6 begi n

7 determ ne Cand(s) :={s € N(s)|s' ¢ T},

8 i f Cand(s)#0 then

9 determ ne s € Cand(s)
10 S = Sl;

11 T:=TU {S};

12 i f C(S) < C(S*) t hen

13 s* = s;

14 end

s end

Listing 4: Generic tabu search

When using neighbourhoadl;, and thus only visiting feasible solutions (complete con-
sistent selections) tabu strategies similar to stratdgiesvn from the classical job-shop
(see Nowicki and Smutnicki [52]) can be used. One possibéegy is the following.
For any solution already visited a 4-tupel containing thikofeing data is stored in the
tabulist:

e the alternative arc which was reversed in order to get a teighof this solution,
¢ the alternative arcs preceding this arc on the considergdatipath,
e the alternative arcs succeeding this arc on the consideitezhtpath, and

¢ the corresponding value of the objective function.

A solution istabu, if one of the 4-tupels in the tabulist is reconstructed. Obsly these
criteria define more solutions to be tabu than the ones alrgeited. In order not to
set solutions tabu which improve the currently best soluia aspiration criterion is
introduced. It guarantees that solutions with objectiMeedetter than the currently best
one are not tabu. A closer look shows that an aspirationrigitds already included.
Solutions which are better than the best solution alreasiyed cannot reconstruct one of
these 4-tuples, as at least their objective value must berelift (better).
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Using neighbourhoodV,, different tabu criteria are needed in order to describsifda
and especially infeasible solutions which have alreadynhesited. Which criteria are
suitable could be analyzed by developing and testing @iffeapproaches.

In the next section a decomposition approach for railwayedahng problems is pre-
sented.
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7 Problem decomposition

So far this thesis was dedicated to models and algorithmeaflway and also job-shop
scheduling problems as a whole. This section deals with ardposition approach for
specific railway scheduling problems. The approach is basedeas which were already
developed in cooperation with Dario Pacciarelli from theivénsita '/Roma Tre’ within
the EU-project COMBINE 1I? [26]. There a basic model as well as some ideas for
solution methods were introduced. In this thesis the modélcarresponding approaches
are elaborated in detail and supplemented. Practical dstm®well as theoretical aspects
are presented. The main accent is put on the goal to commasgibfe solutions for railway
networks which are decomposed into different local network

7.1 A decomposition model

In this subsection the decomposition model which is appbetie railway problem intro-

duced above is described. Based on a geographical decdmopadithe physical railway

network in local networks the problem is divided into locablplems corresponding to
these local networks. These local problems are then soluddtse whole process is
coordinated at a higher level in order to produce a globa§sible solution.

Some additional assumptions on the structure of the givebhlpms are made. Starting
from the basic model also upper bounds for travelling tintese-window constraints
(release-dates and deadlines), starting and ending agnrtstrand connection constraints
between trains are allowed. The last two constraints aumnasg to arise only inside local
networks and not at borders between different local netaiof&eneral time constraints
as well as out-of-service intervals are assumed to be abaerthey would complicate
the decomposition model. Nevertheless even these camstreduld be integrated by
generalizing the model slightly. Some additional assuamgiwill be stated later when
needed.

Describing the decomposition of the physical railway netwbe following notation is
used. Aclearing point is a point between two different block sections of a railway-n
work, i.e. a point between different safety segments of gtevark. Each clearing point
between two block sections corresponds to nodes in thenatiee graph, which represent
crossing times of trains at this physical point.

A geographical decomposition of a physical railway netwcak be defined by identify-
ing borders and border sections (block sections) betwegcek local networks. By this

2Christian Strotmann took part in this project as scientstell as his supervisor Prof. Dr. Peter
Brucker.
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the whole physical railway network is divided into local wetks. Especially the set of
all clearing points is divided into disjoint sets belongiiogthe different local networks.
An example with two local railway networks is shown in Fig®®. This network is di-

vided into two local networks. Additionally the routes ofdwslow) trains A and B are
depicted.

Figure 37: A railway network divided in two local networks.

In order to decompose the problem of scheduling traffic innthele railway network into

smaller problems corresponding to the local networks ttexr@étive graph for the whole
problem is divided into different local graphs. Note thatlkeaode of the alternative
graph but the source and the sink is associated with exaa#ycertain clearing point in
the physical network as it represents a crossing time ofia &tahis clearing point.

Based on the division of all clearing points the set of all e®df the large alternative
graphG = (V, C, A) but the source and the sink is divided into disjoint setsesponding
to the local networks. So-calldshsic local graphscorresponding to the physical local
networks are defined. Summarizing the considerations aboweeach node belongs to
a basic local graph iff its clearing point belongs to the esponding local network. By
construction the node sets belonging to the basic localhgrégpyether with nodes/sdis
andsx build a disjoint decomposition df .

If all corresponding arcs and alternative pairs are addesith a basic local graph, this
graph represents the problem of scheduling traffic withendbrresponding local network.
But by considering only basic local graphs the schedulingadfic at borders is missing.
Therefore the local areas have to be enlarged by so-chbtieder elementswhich are
defined next. An arc is callelborder crossingif it connects nodes belonging to differ-
ent basic local graphs, i.e. if it represents a constraitwé&en events occurring within
different local networks.

Each border element is a subgraph of the alternative grapthéowhole problem. It cor-
responds to a single border, i.e. a block section lying onrddrdbetween two adjacent
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local networks. It optionally includes parts of the graphresponding to some neigh-
boured block sections. More precisely the border elemanafoorder is an alternative
subgraph consisting of:

¢ All fixed arcs crossing this border.

All pairs of alternative arcs where two of the four end nodéthe pair belong to
different basic local graphs at this border.

The setV of all nodes which are incident with these arcs and alteraatics.

All fixed arcs connecting nodes iN.

All pairs of alternative arcs where all nodes which are iecitto this pair belong
to V.

Border elements represent traffic at the correspondingdrsretween different local
networks. The idea of this definition is to include all fixedsaand alternative arcs/pairs
which are incident with nodes belonging to different basial graphs. Note, thator x
never belong to a border element.

In Figure 38 to 44 different situations arising at borderd #me corresponding types of
border elements are depicted. For the sake of clarity eadh (representing the entrance
of atrain in a block section/;) is placed beneath its associated clearing point and dénote
by the block sectiord/;.

border element

Figure 38: A border situation with two slow trains travediim the same direction.
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border element

Figure 39: A border situation with two slow trains travediim opposite direction.

M;_1 \Mz / . My Mo

\ \ 1/ \\ \

border element
Figure 40: A border situation with a slow and a fast train éléixig in the same direction.
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\ \ 1/ \\ \ \

border element

Figure 41: A border situation with two fast trains travegim the same direction.
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border element

Figure 42: A border situation with a slow and a fast train éléimg in opposite direction.

border element

Figure 43: A border situation with two fast trains travegjim opposite direction.
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Figure 44: A border situation with two moving block trains.
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The following assumptions on the considered physical elwetworks and the corre-
sponding graphs can be made, as they can be fulfilled in malsivarld problems easily.

Assumption 7.1 1. Each border element contains no nodes (and no arcs) belgng
to a junction, i.e. borders are not located at junctions.

2. Border elements of different borders are disjoint.

Nodes belonging to a border element are cabledder nodes Additionally the source
0 and the sink« belong to the set of border nodes. In Figure 45 the alteraaraph
corresponding to the example above (Figure 37) is depitkedsource and the sink node
are not depicted). The border element which models the palybbrder contains four
nodes of the graph.

g e A
e P
B------ border

—O—0O0O—0O0—0O—0—0O
border element

Figure 45: The alternative graph corresponding to the gmoldfrom Figure 37.

Based on the structure of the considered (railway) probl#radollowing property can
be stated.

Property 7.1 Each fixed arc or alternative pair which is incident with ngd# different
basic local graphs belongs to (exactly) one border elemlemparticular all nodes of the
arc or pair are border nodes of the same border element. (beaaf an alternative arc
the whole pair belongs to the border element.)

In the next Step of the decomposition approach border elesaea integrated in the basic
local graphs.

A local graph G, = (V,,,Cp, AL) represents traffic in a corresponding local netwérk
(and at its adjacent borders) and is defined as follows:
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e V/; contains all nodes belonging to the corresponding basal graph and all bor-
der nodes belonging to border elements which are incidetit this graph. (A
border element isncident with a basic local graph iff it contains at least one node
of this basic local graph.) Additionally;, contains the source and the sink.

e (', contains all fixed arcs connecting nodes/pf

e A; contains all pairs of alternative arcs where both arcs conmedes of/;..

Note that each border element is duplicated as is belondretiotal graphs of both local
networks which are incident with this border. The two locedghs and border elements
corresponding to Figure 45 are shown in Figure 46.

Q Q . duplicated border element

,
-

OO0~

O

Area 2
v -, /,/"‘/

OGRS
OO 00— 00— 00— 0—0

Figure 46: The graph from Figure 45 divided into two localgra.

Having defined the local graphs above it is clear, that angnfixed arc, and alternative
pair of the graph for the whole problem is contained in atiea® of the local graphs.

Now local solutions can be computed for all local graphs @@#od for all local networks)
independently using the techniques described in Sectidnlécal feasible solution cor-
responds to a complete consistent selection for the carebpg local alternative graph
(see 4.1.2). The grapti, = (V,C, U Sy), whereS; is a complete consistent selection,
is called docal solution graph for the local networkl..

In Figure 47 local solution graphs corresponding to the llggaphs in Figure 46 are
depicted. Now the source and the sink are depicted for fudtwesiderations.

In order to check whether local feasibility provides gloteasibility acoordinator graph
induced by the local feasible solutions (local solutionpdps) is defined. The idea is to
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Figure 47: Feasible solutions for the local graphs from Fegl6.

have a condensed graph where paths between border nodesilirsdtution graphs are
represented by fixed arcs. Later it will be shown that thisdemsed information is suffi-
cient for an coordinator to control and force global fedgipi Starting from local feasible
solutions (local complete consistent selections) foradll graphs the coordinator graph
Gp = (Vp, Ap) is defined as follows:

e Vis the set of all border nodes (nodes which belong to bor@enehts and nodes
0 andx).

e Apisthe set of so-calledorder arcs. The set of border arcs is defined as follows.
Let i, j be two different border nodes (having a local graph in commdime arc
1 — j belongs toAg iff in at least one of the local solution graphs a directechpat
fromi to j exists. Then the weight 6f— j in the coordinator graph is the length of
a corresponding longest directed path among all such éudotcal paths. (There
may be two or more local solution graphs including such aesponding directed
path).

Which directed paths are present between border nodes in¢hesolution graphs and
(if present) the lengths’ of corresponding longest dirdgtaths can be investigated by
longest path calculations. Those can be done for examplgplyiag a longest-path-
version of the Floyd-Warshall algorithm (see Ahuja et al]) [ each local solution
graph.
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U= LU
Tole

Figure 48: Coordinator graph corresponding to local sotlutn Figure 47.

The coordinator graph associated with the local solutioaplgs in Figure 47 is depicted
in Figure 48. Note, that due to more clarity not all bordersamad no weights are shown.

Especially the fixed arcs of border elements, locally ch@denative arcs between bor-
der nodes and accompanying transitively induced arcs betwthe coordinator graph as
they are special directed paths between border nodes ihdokdion graphs. Note, that
possibly many arcs which are transitively induced by otlmeay belong to the coordina-
tor graph. In order to check local solutions for global fédgy the following theorem
can be used.

Theorem 7.1 Let be given a feasible local solution for each local netw@ek a complete

consistent selection for each local graph). Then thesd feeeible solutions are feasible
on a global level (globally feasible) if and only if the casponding coordinator graph

contains no positive cycle.

Before proving Theorem 7.1, some lemmata are givef. denotes the union of all local
solution graphs, i.e. it is the union of all nodes and all figeds of the local graphs and
all alternative arcs which are contained in one of the loocahplete consistent selections.

Lemma 7.1 Let(u; — uy — ... — u,) Withn > 3 be a directed path ir7,; andu,
andu,, be the only border nodes of this path. Then there exists lgx@aut local solution
graph where all nodes and arcs (and thus the whole path) azeqnrt.

Proof: Asu, is a non-border-node it is contained in exactly one localson) graph.
Thus, even the arcg; — u, andus — wus can only be contained in the same local
solution graph. Fom = 3, this proves the lemma. #f > 3, then the non-border-node
is only contained in exactly one local solution graph and tmust be the same as foy,
as the arcu, — w3 can only exist there. Repeating this argument proves theneem O

In this thesis a cycle which contains no subcycles is caitéimal cycle. Obviously
a graph contains a positive cycle if it contains a minimalifpgs cycle. The opposite
direction is stated by
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Lemma 7.2 If a graph contains a positive cycle, it contains a minimasip@e cycle.

Proof: A minimal positive cycle can be found by iteratively lookimgminimal subcycles
of a positive cycle and deleting them if they have non-p@siéngth. This method always
terminates with a minimal positive cycle either when a malisubcycle with positive
length is found or when no more (minimal) subcycles existadindeleted subcycles had
non-positive length. Then the minimal cycle at the end magt positive length. O

Lemma 7.3 Let C' be a minimal positive cycle ir,;. ThenC' contains at least two
border nodes.

Proof: If C'would contain at most one border node it would be a local cydiéch fol-
lows from the same argumentation as in the proof of Lemmarhén the corresponding
local solution graph would contain this positive cyclewhich contradicts the feasibility
of all local solutions. 0

Note, that especially in the case in which an arc of a bordameht is included in such
a positive cycle, this cycle contains two border nodes (aararof an border element
connects two border nodes).

Now the proof of Theorem 7.1 is given.

Proof: It is assumed that local feasible solutions (feasible Iaaltion graphs) are
given for all local networks.

Consider the grapltz,;, which is derived by sewing together all local solution dgnap
(see above).

If G, contains no positive cycle it represents a globally feasdmlution. Note, that

any node, fixed arc, and alternative pair of the graph for thel& problem is contained

in at least one local graph and each alternative pair is choge at least one of the

local selections. From each alternative pair exactly one & chosen, and thus, the
global selection is complete. Otherwise an alternative pdiich is chosen differently in

different local selections results in a positive cyclé&p,. This global complete selection
IS consistent as no positive cycle occursip;.

Thus, if the given local feasible solutions are infeasilbileagylobal level, the graply,;
must contain a positive cycle. Such a positive cycle may erhand be caused by alter-
native pairs which exist in different local alternative gites but are not chosen equally
there. On the other hand inconsistencies in the temporasttaimts may lead to such a
positive cycle.
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W.l.0.g the cycle may be assumed to be a minimal one, as sustirmahone then must
exist and can be computed from a given positive cycle (seenben2). In any case a
positive cycle” in GG,; must consist of parts located in different local solutionss.
Otherwise the conflict would be a local one, which contragltbe premises of the theo-
rem. From Lemma 7.3 it follows th&t must contain at least two border nodes.

Now let the positive cycle & = (uq, ..., us,...,...,u, = uy), where(uy, us, ..., u, =
uy) is the sequence of all its border nodes. For each paiandu; ., (i = 1,...,n — 1)
two cases can be identified:

Case 1l:u; — u;.q1 is an arc ofC. Thenu; — ;. IS contained in at least one local
solution graph. This follows directly from the definition®f;.

Case 2: There is a path from to u; 1. Then there exists exactly one local solution graph
where all nodes and arcs (and thus the whole path) are pre¢se¢ Lemma 7.1).

For both cases it is known that the coordinator gra@p contains an ara,; — u;. 1, Since
a corresponding local directed path exists. The length chsan arc in the coordinator
graph is at least the length of the corresponding arc or patkii(in the corresponding
local solution graph).

It follows that(u; — uy — ... — u,, = uy) iS a cycle inGz with at least the length of
C. Thus,G g contains a positive cycle!

Now consider the coordinator graphiz derived from the local feasible solution graphs.
LetC = (uq,us,...,u, = up) be a positive cycle il z.

Each arcu; — w;,1 in C corresponds to a directed path of the same length in one of the
local solution graphs.

Therefore each ara; — u;,; corresponds to a directed path of the same lengtfd jn.

and the paths; — ... - uy — ...,... — u, = uy build a cycle inG,; with the length
of C.
Thus,u; — ... —us — ...,... — u, = uy IS a positive cycle irz;.

Then by definition of7,,;; the local solutions are globally infeasible.
Summarizing the results above the following has been shown:

Local solutions are globally infeasible if and only if theocdinator graphG s contains a
positive cycle.

This is equivalent to the statement of Theorem 7.1.
0

Using a longest-path-version of the Floyd-Warshall aldmon (see Ahuja et al. [4]) the
coordinator graph can be checked for the existence of pesifycles with polynomial
effort and even positive cycles can be identified.
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For the example above a positive cycle can be identified ircttoedinator graph from
Figure 48. Thus, the local solutions are unfeasible on aajlievel.

With a similar argumentation as used in the proof of Theorelra/statement concerning
an optimal globally feasible solution can be proved. Morecisely one can show

Theorem 7.2 Let be given a globally feasible solution composed fromlléeasible so-
lutions for all local graphs and letGz be the corresponding coordinator graph. If this
global solution is not optimal, then in an optimal solutianith coordinator graphG%")
one of the following conditions is satisfied:

(i) Atleast one border arc on a critical path i is shorter intgpt.

(i) Atleast one border arc on a critical path i¥ 5 does not exist ir@%”t.

The next section describes methods in order to get globallfeasolutions for the de-
composed problem.

7.2 Methods to solve the decomposed problem

Having introduced a suitable decomposition model, now outhn order to deal with
conflicts on a global level are presented. At first differgmuets of conflicts on a global
level are classified and basic methods in order to solve tbesticts are presented. In
a second part strategies in order to control a global seammtegdure for finding global
feasible solutions are developed.

7.2.1 Solving global conflicts - general techniques

Before starting with the detailed description a sketch efdbneral approach for comput-
ing a global feasible solution is drawn. The idea of this poare is the following. In
each step local feasible solutions (if existent) are corgb@dr all local problems. Then
the coordinator graph is build and checked for global falisiblf the local solutions pro-
vide a global infeasible solution artificial constrainte anposed to the local problems in
order to lead them to global feasibility. If for some locabplems local feasible solutions
cannot be found or do not exist one may modify or relax thdieidl constraints. The
process is repeated until a globally feasible solution &ined or a stopping criterion is
fulfilled. As a possible stopping criterion a maximal numbércoordination steps may
be used.
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w71 f G Feas == 0 then

38 UNSUCCESS (no gl obal feasible solution is found);
el se

40 SUCCESS (gl obal feasible solution is found);

4 end

Listing 5: Sketch of coordination procedure

In the following techniques in order to impose artificial stnaints to local alternative
graphs are developed. Different strategies how to choassethrtificial constraints are
presented in the next subsection.

As mentioned above conflicts between solutions for diffelecal areas result in positive
(directed) cycles in the coordinator graph. In the follogvione may always assume that
positive (global) cycles are minimal, i.e. they do not cam&node more than once and
thus do not contain subcycles. This is no restriction as asjtipe cycle must contain a
minimal positive cycle. Such a minimal positive cycle canfinend by iteratively look-
ing for minimal subcycles of a positive cycle and deletingrthif they have non-positive
length. This method always terminates with a minimal pesitiycle either when a mini-
mal subcycle with positive length is found or when no suclcygale exists and all deleted
subcycles had non-positive length. Then the minimal cyctbeend must have positive
length. Obviously a minimal positive cycle can be computedifa general positive cycle
with polynomial computational effort.

If a positive cycle is detected in the coordinator graph sactens in order to eliminate
this cycle have to be undertaken. As the coordination lesaslo detailed information

about local solutions, it has to use information about thecstire of paths in local areas
which are represented by border arcs in the coordinatorigrapr example a border arc
in a cycle may represent a path (in a local area graph) whiokists only of fixed arcs.

Then the coordination level knows that it is not possiblelimi@ate this part of the cycle.

On the other hand a border arc representing a path with aligenarcs may be forced to
become shorter or to disappear.

The question now is, what the coordination level can do ireotd force some local areas
to produce shorter longest paths in the next round. The &léado this by introducing
new (constraining) arcs with suitable weights. Detailezhteques are described later.

Firstly different types of global conflicts resulting fromfférent types of border arcs
are described. In order to classify different types of bo@es firstly a graplG.,,.;, is
introduced.G,,.;,, is the graph for the whole railway network which containsyoimted
arcs. If now all longest paths between border nodes are ctadjruthe restrictions of this
graph to the corresponding local networks, i.e. in the lat@rnative graphs with only
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fixed arcs, a set of necessary conditions for the startingdiof all pairs (i,j) of border
nodes is generated.

Let /;; be the length of border arc — j resulting from a solution for the local graphs
andl;’;m be the length of a corresponding longest path in the remstof G,,,;, to the
local networks, if such paths exist there. It is distingeisgivetween the following types
of border arcs — j:

e | — jisrelaxable, iff there is no directed path fromto ; in the restriction of+,,,;,,
to the corresponding local areas.

e i — jisnon-relaxable iff there is a directed path fromto j in the restrictions of
G'min 10 the corresponding local areas dpd= l;’;m. (The length of the paths from
1 to j represented by the border are~ j cannot be decreased as it is independent
from the choice of a specific solution.)

e i — j istime-relaxable, iff there is a directed path fromto j in the restrictions

of G to the corresponding local areas ahd > [77"". (The lengths of paths
corresponding té — j in the considered solution may be decreased.)

Note, that even for relaxable arcs it may not be possibleitoieate them. For example
in a local area graph two arcs of the same alternative pairnesuit in the same longest
path between two border nodésind ;. If no other alternative arcs are located on this
longest path, the corresponding relaxable bordei arc;j cannot be eliminated.

Clearly, the structure of a global conflict depends on thesygf border arcs in the corre-
sponding positive cyclé' in the coordinator graph. Let

e N be the set of all non-relaxable arcsah
e T be the set of all time-relaxable arcsdh and

e R: be the set of all relaxable arcs(n

The following types of global conflicts indicated by a pogttycleC' in the coordinator
graph may occur:

1. If Tz = 0, andR¢ # ) there is a possibly relaxable conflict.

2. If Rc = 0, andT¢ # () there is a possibly time-relaxable conflict.
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3. A Combination of Type 1 and 2 is the general case of a pgssitivable global
conflict.

4. If T = (), andR- = () there is a non-relaxable conflict. All border arcs represent
paths which are already present when only considering fixed &hus, the positive
cycle is contained in any solution and no global feasibletsmh exists.

In the following it is discussed in detail which new constiag arcs may be introduced
by the coordinator in order to force some local areas to nydtiiir solutions in a suitable
way. Knowing different types of conflicts different techa@s to eliminate them may be
proposed, i.e. different constraining arcs which are uhii@ed by the coordination level to
the local areas (local alternative graphs). Generally ldpgahe coordination level may
impose new arcs between the end-node and the start-nodedcdlgplath corresponding
to an arc in the coordinator graph. Note, that two border spddich are connected by
a border arc in the coordinator graph, must have at leastawa §raph in common, as a
corresponding directed path in one of the local solutiomplsaexists.

Firstly techniques in order to solve conflicts of Type 1 arepgmsed, i.e. when having
detected a positive cycl€ in the coordinator graph witlk. # (. Leti — j be in R¢
with lengthe. The idea is to introduce a constraining gre— ¢ with weightz in one
or even all corresponding local graphs, such that e > 0. When introducing this arc
(j — i with weightx > —e) a corresponding local area is forced to make j shorter or
even to disappear in the next round. Otherwise a positiveeayould occur in the local
graph. This type of constraint imposed to a local graph iedal'S(i, 7). An example of
this technique is drawn in Figure 49.

zWithz +e > O,x‘//@% @
II, e
! b
'@/ W
O
Figure 49: Introducing a constraining arc of Typ& (i, j).

Another technique closely related@ (i, j) is to impose more than one constraint of this
type at the same time. Coming back to the example of Figurenécould additionally
imposeC'S(h, k), if h — k is relaxable.
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A constraint of typeC'S(i, j) is quite general as it does not specify the length of the
imposed constraining arc in detail. In order to specify tbisgth one may choose the
length of the path from to 7 in the considered cycle. L&t = (j = vg, v1, ..., 0, =4, 7)

be a positive cycle in the border graph apd., be the length of are;, — v;1;. An arc

j — 1 with length L = ZZ;é lix,+1 May be introduced in one or even all local graphs
where corresponding paths are present. This type of cansisaalledC'S,,,;,. (i, j). The
length of a path corresponding to— j cannot exceed-L. = — Zz;é li k41 1N the next
round of computing local solutions, if such a path is stikgent there. If such paths
have disappeared, then (with regard to the involved locaplgs) the positive cycle is
eliminated in any case.

Otherwise withC'S,,,;, (i, 7) cycle C' is obviously eliminated in the next round if the
lengths of all other border arcs i do not increase. Additionally all other arcs may
be imposed not to increase in the next round by introduciog@ar.; — v, with length
—lkr+1 forallk = 1,...,n — 1 in all areas where corresponding paths are present. This
type of constraint is calle@' Syouna(vk, Vkt1)-

In Figure 50 an example of a positive cycle in the coordingtraph with two relaxable
arcsi — j andh — k is depicted. The constraints,,;, (i, ) together with the additional
ConStraintgsbound(ja l), CSbound(l7 h)7 CSbound(ha k) andCSbound(kv Z) is imposed'

-

Za
P OREN0
a+b+c+d,
‘e

‘\
’1 / \b I'I - b

Figure 50: Introducing constraining arcs of TY0&,,,;,, (i, 7) andC Spouna(Vk, Vkt1)-

Clearly it may happen that the local areas whét€,.;,, (i, j) was imposed cannot fulfill
this new constraint. In this case one must try to impose atbestraints in the next round.
In the given example (Figure 50) one could try to impose thé.ar k to become shorter,
i.e. toimpose’ S, in(h, k).

In Table 4 the proposed constraints are summarized whichomayposed to local graphs
in order to eliminate a global positive cycté = (; = vg, v1,...,v, = 4,7) of Type 1.
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(Ix x+1 are the lengths of aras, — v,1 ande is the length of — j).

Constraint Idea Constr. arc
CS(i,7) force arci — j to

become shorter j — i with weightz > —e
C'Spmin(i, ) force arci — j to

become short enough to

avoid the pos. cycle | j — i with Weightzz;é e k1
C' Spound(Vk, Vg+1) force arcuv, — v
not to become longer| v — vy with length—1j, 4.1

Table 4: Different types of constraining arcs.

If Rc contains more than one border arc one may apply another chethtore than
one local graph may be involved to produce shorter pathsthe task of shortening or
destroying paths which result in global positive cyclesivsdid to different local graphs.
Coming back to the example from Figure 50 one could try to isgooth ar¢ — j and
arch — k to become shorter (or to disappear) by introducing arcs posjte direction
with weightsa + b + ¢ +d — A and—c + A, whereA is positive. This technique is
illustrated in Figure 51.

-7 a
atb+c+d—A,-"" @\’@\

II € “‘
f by

Figure 51: Dividing the task of eliminating a global posgieycle.

The described techniques may also be applied to conflictgpd Z. Then time-relaxable
arcs are imposed to become shorter in the next round with gasistrategy in order to
eliminate a positive cycle. Of course, the weight of a caising arc should not exceed
the negative of the length of a corresponding path in theictisins of G,,;,, to the local
graphs. This would obviously lead to a local conflict imméelya
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In the general situation a global conflict is a combinatiothefdescribed situations (Type
3). Thus, one may apply a combination of the described tectesi. Constraints'S(i, j)

or C'Syin(i, j) for border arcs — j € Re U T and constraint€' Sbound(i, j) for all
border arcs — j may be imposed.

Obviously constraining arcs may lead to infeasibility focl areas (local alternative
graphs). Some of these infeasibilities may be anticipayeid\estigating the restrictions
of G, 10 the local areas.

If for a local problem no feasible solution can be found somtiéi@al constraints could
be relaxed or modified by the coordination level.

Note, that constraining arcs are only introduced in ordéottoe the local areas to compute
different local solutions. Thus, they are not considere@nvbhecking new local feasible
solutions for global feasibility, i.e. they are deletedrfréhe local solution graphs before
computing longest paths for building the corresponding newrdinator graph.

Using the criteria from Theorem 7.2 one could introduce t@msing arcs even to shorten
border arcs (local paths) lying on a critical path in the caeator graph. Thus, these
techniques theoretically can also be used to optimize gfelbaible solutions.

Generally the introduction of constraining arcs can berpreted as the definition of
allowed moves in a neighbourhood for a global (not necdgsfasible) solution. For
such a global solution composed from local feasible sahstiane can define

Neighbourhood Ng,: For a decomposed railway problem as introduced above let be
given a global (not necessarily feasible) solutiSrcomposed from local feasible solu-
tions. Additionally let the corresponding coordinator girabe given.

The neighbourhood,(S) is defined to be the set of all global solutions derived by the
following steps:

(i) A set of constraining arcs is introduced (in order to inggocertain constraints to
local areas).

(i) Local feasible solutions respecting all constrainiages exist and are computed.
Then the new global solution is composed from those.

Of course, this neighbourhood is of exponential size and thainly of theoretical inter-
est.

Having described general strategies and techniques im todget rid of global conflicts
(or certain local paths), next detailed information on thetmods applied in this work is
given. This is done in the next section.
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7.2.2 Choosing constraining arcs

In this section it is described how the general techniquas f6ection 7.2.1 are applied in
order to solve global conflicts (positive cycles in the caoatior graph) occurring within
the coordination procedure.

An idea of designing a coordination procedure is to build redkodf a greedy algorithm
for the decomposed problem. As long as no global feasiblgtisol is found or another
stopping criterion is fulfilled new constraining arcs ar&ranluced in each coordination
round of the procedure. If for a local problem no feasibleusoh can be found the
procedure is stopped.

Priority rules in order to introduce constraining arcs tedbgraphs are needed. For
describing more details l&t (lengthL > 0) be a positive cycle found in the coordinator
graph after having computed local feasible solutions fotagal graphs. The priority
rules for the coordination step are the following:

e C'FRTS(9) constrains the first relaxable or time-relaxable border:are ; with
weight/ in C slightly, i.e. it introduces the constraining ajc— ¢ with weight
—[ + ¢ in the corresponding local graph. Here> 0 is a parameter of the priority
rule. Thus, the technique used is a versiowsf(i, 7). In the next round the length
of the local path from to j cannot exceed — 6 < [, since otherwise a positive
cycle occurs in the corresponding local graph.

e CIFRTM sets the maximal suitable constraint for the first relaxable
time-relaxable border arc — j with weight/ in C'. That means it introduces
the constraining ar¢g — 4 with weightk = min{L — I, —[7»*"}. This technique is
a version ofC'S,.;, (i, 7) which takes care of the minimal length of time-relaxable
arcs. For relaxable ards = L — [ holds, as for such ard%?i” is set to a large
negative value. In the next round the length of the local et i to j cannot
exceed— min{L — I, ="} = max{l — L, 17/} < I, since otherwise a positive
cycle occurs in the corresponding local graph.

e CLRTM sets the maximal suitable constraint to the longest relaxab time-
relaxable border ar¢é — j with weight!/ in C. That means it introduces the
constraining argy — i with weightk = min{L — [, —li’?i” . In the next round
the length of the local path fromto j cannot exceed- min{L — [, —l;’;m =
max{l — L, l;;f”'"} < [, since otherwise a positive cycle occurs in the correspuandi
local graph.

e C'SRTM sets the maximal suitable constraint to the shortest rblaxar time-
relaxable border ar¢ — j with weight/ in C. That means it introduces the
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7.3 Reachability of global feasible solutions 92

constraining argj — ¢ with weightk = min{L — [, =77""}. In the next round
the length of the local path fromto j cannot exceed- min{L — I, —l;’;m =
max{l — L, [[;"} < [, since otherwise a positive cycle occurs in the correspandi
local graph.

e CLDRTM sets the maximal suitable constraint for a border arc, téa’ ton-
tains no relaxable arcs, it sets the maximal suitable camstio that time-relaxable
border arci — j with weight! in C, wherel — li’?m is maximal. Otherwise the
maximal suitable constraint is set to the first relaxableiar€. In the next round
the length of the local path fromto j cannot exceed- min{L — I, —l;’;m =
max{l — L, l;;?m} < [, since otherwise a positive cycle occurs in the correspundi
local graph.

e CLSRT M sets the maximal suitable constraint for a border arc, to6.dontains
time-relaxable arcs, it sets the maximal suitable consttai that time-relaxable
border arci — j with weight! in C, wherel — 77" is minimal. Otherwise the
maximal suitable constraint is set to the last relaxablararc. In the next round
the length of the local path fromto j cannot exceed- min{L — [, —l;’;m =
max{l — L, """} <, since otherwise a positive cycle occurs in the correspundi

9 zj
local graph.

A direct generalization of the first two rules are the follogyi

e CnRTS(9) applies the first rule to the-th arc ofC.
e CnRT M applies the second rule to theth arc ofC.

If a constraining arc, which is chosen by a priority rule,eally exists, the associated
weight is updated to the new value. The proposed prioritggulan be applied in both
simple heuristics and more sophisticated procedures.

Of course, other types of constraining arcs are possiblenThany other techniques of
introducing constraining arcs may be applied, too. Evergdares, which allow already
introduced constraining arcs to be modified or deleted cbaldeveloped. For all types
of problems and conflicts arising computational tests havehbw which are suitable
strategies in order to derive global feasible solutions.

7.3 Reachability of global feasible solutions

In this section it will be proved that for any problem insteraf a decomposed railway
problem (see Section 7.1) having a global feasible soluimncan force the local areas
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to compute such a global feasible solution using the teclesglescribed above, namely
by applying the coordination procedure and introducingedalé constraining arcs of type
C'S(i, 7) within the procedure. Based on a corresponding theorerhgméxt section an
enumeration approach is proposed which terminates witblzadjfeasible solution if one
exists.

Theorem 7.3 Let be given an instance of a decomposed railway problemhnligs a
global feasible solution. Le$ be a global solution to the problem which may be un-
feasible but is derived from local feasible solutions foe tbhcal areas. Then a set of
constraining arcs of Typ€'S(i, j) exists which leads froifi to a global feasible solution.

Proof: Let SY be a global feasible solution of a given problem instance.l.¢Vg. S9
may be assumed to be given in terms of an ESS.) A set of comsfrarcs which leads
to SY or another global feasible solution is constructed itevaty. Lets; be the starting
time associated to border nodén SY.

The global solutionS may be unfeasible but is derived from local feasible sohgifor
the local areas. By Theorem 7.1 this global solution is fielasiff the coordinator graph
contains no positive cycle. F is feasible no further action is required. Otherwise the
coordinator graph must contain a positive cy€le= (uy, ..., u, = u;) with arc lengths

l Vi=1,...,n—1.

Ug Ui+ 1

The following operation is applied to the global unfeasigddution.S.

1. Asuitable constraining arc is chosen and inserted in tiressponding local graphs.

2. New local feasible solutions are computed. (The constigiarcs are chosen in a
way that such local feasible solutions always exist and ttarsbe found at least
by complete enumeration.)

3. Atthe end the corresponding new global solutiris checked for feasibility.
If S" is unfeasible, the operation is repeated until feasibikityeached. All constraining

arcs chosen within the procedure stay in the local solutigraph. As explained above
they are not considered when checking for global feasybilit

Next it is described how constraining arcs have to be cho3éen it is proved that the
procedure above terminates.
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A constraining arc in Step 1 is chosen with respect to thergglebal feasible solution
S9. For the starting times in the global feasible solutishone has:

—_

n—1

(Sui+1 - Sui> =0< Zlumuiﬂ

1 i=1

n—

2

and thus

Sujp1r — Su; < luiqu»l

for atleastone. Thus,s,,,, = su, + lu;uss — A < 54, + Ly 0y, With A > 0 for at least
onei.

If no path corresponding ta; — w;; is present in the restrictions @f,,;, to the local
areas thernu; — wu;,1 IS a relaxable border arc. Otherwise (if a path corresporglio
u; — u;y1 €Xists in the restrictions of7,,;,, to the local areask,,,, — s,, > l$f3i+1
must hold, aslg;%fzm represents a necessary condition even for the startingstimeé?.
Together withs,, , — sy, < Ly, u,,, ON€ had,, ., > 17" and thus, the arc must be

time-relaxable.

Wi41

In this situation a constraining arc of TygeS(i, j) is introduced, namely the aig,; —

u; WithweightL.,, . | w, = Su;, —5u,.1 > —lu,u;,, INthe corresponding local graphs. (Thus,
in the next round the lengthof a border arcu; — u;,, derived from these local graphs
cannot exceed-Ly, | v, < ly;u,,,- Otherwisel + Ly, ., > —Ly, 0 + Ly = 0
would be the (positive) length of a local cycle.) The chosemstraining arc cannot
be already present in the corresponding local graphs, agmwisel,, ..., < —Luy,.
would already hold inS or no such corresponding path would be present there.

If the constraining arcs described above are introducedtfug all local graphs always
local feasible solutions exist (local complete consissatéctions) satisfying the imposed
constraints, since the global feasible solutiéh already satisfies thens(, > s,,,, +
Ly, iy = Sugyy + Su; — Su,., = Su, 1S ObViously true). Such local complete consistent
selections can be found in any case by using complete entiorefar the local problems
(see Section 6.3).

Finally it has to be shown that the procedure terminates aitjfiobal feasible solution.
Letn be the number of border nodes. One can introduce at mgst(nz — 1) different
constraining arcs of the type described above. More préciee can introduce at most
two constraining arcs of this type for every pair of borderdes in each local graph
where both nodes are present (,since local paths and threrbfirder arcs between pairs
of border nodes can only appear in local graphs which conbath nodes).

Possibly a global feasible solution is reached before hgunmiroduced all suitable con-
straining arcs. Otherwise suppose all these constrainieg Aave been introduced. Then
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the local feasible solutions induced by the constrainirgsaare feasible on a global level
since for any cycl&” = (u4,...,u, = uy) in the coordinator graph with arc lengths
lujuin Y@ = 1,...,n — 1 one has the following. As all constraining arcs have been
introduced the relation

lui7ui+1 < —Lui+lyui = Suipr T Sy

holds for all:. Then

n—1

n—1
§ :luiyui+l < § :(SuiJrl - Sui) =0
i=1 =1

holds, indicating that the length of the cycle must be nositp@. Thus, the coordina-
tor graph does not contain a positive cycle and the inducetal solution is globally
feasible. 0

For the neighbourhood/;;, (see Section 7.2.1) Theorem 7.3 especially leads to

Property 7.2 Consider neighbourhood;, where only constraining arcs of the type
from the proof above are introduced iteratively in order torgnate positive cycles. Let
ALG be an arbitrary algorithm which leads to a feasible localwwbn for a local prob-
lem if it exists in a finite number of computational steps.nTthe neighbourhoodZL¢,
which applies the strategy from above for introducing caaistng arcs and applies al-
gorithm ALG in step (i), is feasibility-connected.

Now let N[, be an extension a¥ 4/, where for a global feasible solution constraining
arcs can be introduced in order to shorten global criticti@arhis is done with regard to
a given optimal global solution analogously to the way pnése in the proof of Theorem
7.3. Then a similar argumentation leads to

Property 7.3 NeighbourhoodV(//, is opt-connected.

As in the case of the neighbourhoods in Section 6 even Piepét2 and 7.3 are mainly
of theoretical interest. The next section exploits Theore&with regard to enumerative
procedures.
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7.4 Enumeration techniques for decomposed problems

Based on the considerations for Theorem 7.3 an enumerégiwatam on the coordinator
level can be constructed. As already stated above it mayswaresd that all relevant data
- and thus all arc weights - are integer. In case of rationatlmers one can easily satisfy
this assumption by multiplying all data by a suitable numbee N.

The idea of the procedure is to enumerate all suitable set®mdtraining arcs. The
number of these sets has shown to be finite. Then for problewiadna global feasible
solution Theorem 7.3 ensures that such a solution is found.

Let C' = max{|c;;| } be the maximal absolute arc weight for a given problem ircetamd
m the number of all arcs in the graph. Then the length of a longjescted path between
two arbitrary nodes in the graph corresponding to a globasifde solution (a global
complete consistent selection) is bounded-byC' andmC. W.l.o.g. one may assume
that a global solution is given by an ESS (Earliest start dale), since otherwise such
an ESS can be derived from the solution by a left-shift oftstgrtimes in the schedule.
Thus, the maximal difference between the starting timesvofdifferent operations in a
global feasible solution is also boundedby:C andmC' since starting times in an ESS
are associated with longest paths in the correspondindisoligraph.

Then for constraining arcs weights are only useful in themvdl from —mC to mC.
Since one can only decide between introducing a constigaiaio with one of the useful
weights in{—mC, —mC +1,...,0,...,mC?} or notintroducing it, there arg{(mC + 1)
possibilities for each possible constraining arc (as alvaeights are integer). Possible
constraining arcs are arcs between two border nodes whigh dtdeast one local graph
in common. Thus, there are at mosgt(np — 1) possible constraining arcs, wheig is
the number of border nodes. The number of local alternatiaplts where a constraining
arc can be introduced is obviously bounded, too.

Using Theorem 7.3 (Reachability theorem) leads to the Walig: If a global feasible
solution exists also a set of constraining arcs exists, vlgiads to a global feasible solu-
tion. Of course, this depends on the use of suitable metlwsislve the local problems.
One can apply complete enumeration to each of the local @nadl Then it is possible
either to find a local complete consistent selection for allatternative graph or to prove
that no such local complete consistent selection exises$setion 6.3).

By enumerating all sets of suitable constraining arcs amajpeaing corresponding (local
complete) selections there are two possible results:

1. for some set a global complete consistent selection isdf@ocal complete consis-
tent selections for all local problems are found and no pasdycle is contained in
the coordinator graph), or
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2. for each such set one either does not have local complatastent selections for
some of the local problems or the local feasible solutioashat feasible on a global
level. Then no global feasible solution exists.

Obviously this algorithm is only of theoretical interestiesscomplexity might be quite
bad. Nevertheless it demonstrates the ability of the pregpaecomposition approach to
compute a global feasible solution if one exists.

7.5 The influence of the decomposition on computation times

The decomposition of railway scheduling problems as pregasbove provides an ad-
vantage in computation times. For example the effort for gotimg a globally feasible

solution by the proposed coordination procedure is smikan for the greedy algorithms
treating the problem as a whole.

For a more detailed discussion letbe the number of nodes and be the number of
alternative arcs of the alternative graph for the whole fob Now let this graph be
divided intok local graphs of identical size, i.e. each of the local gragdrgtains about
7 hodes andy alternative pairs. (For the sake of clarity it is assumed thandn are
multiples ofk.) Of course, the precise numbers are slightly greater agswdes and
alternative arcs are located in more than one local graphveftleeless this is a good
approximation for large numbersandm.

The main effort in both, the coordination procedure and tteedy algorithms, is spend
on the computation of longest paths. If the Floyd-WarshAddlerithm is used each of

these computations needs an efforOgf:?), wherez is the number of nodes of the corre-
sponding graph. A longest-path-calculation is done mdmiyeach alternative arc once.
Thus, the computational effort for the greedy algorithmgjohn treat the problem as a
whole, isO(m - n?).

In the coordination procedure in each coordination rourgdltital problems have to be
solved by the greedy algorithm. This requires an efforOof: - Z—i) for each local graph.
Additionally a longest-path calculation for the coordimagraph has to be carried out.
Suppose that the coordinator graph is at most as large asedmph ¢ nodes). Then
the computational effort for one round of the coordinatisngedure is led by the term
O((m+1)- Z—j). This effort is significantly smaller than the effort for takgorithm treating
the problem as a whole (fact@g). If only a few rounds of coordination are needed the

coordination procedure should be significantly faster ttiengreedy algorithm.

If other solution procedures with exponential computagiogffort are used then the ad-
vantage of the coordination approach may be even greater.
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8 Implementation and results

In this section computational results for some of the sotupirocedures described above
are presented. The main focus lies on the decompositioroappes. It will be shown
that by the methods developed in Section 7.2 feasible soisifior small instances can be
derived with an acceptable effort of computation time.

In the first part of this section some implementation detaflshe tested methods are
described. Different classes of test instances for (decsenh) railway problems are pre-
sented in the second part. Finally in the third part companal results are presented,
analyzed, and compared.

8.1 Implementation details

The decomposition approach analyzed in this thesis is adiiadgreedy procedure. Lo-
cal solutions are computed by the greedy algorithm fromiSed.1 with the different
priority rules discussed there. If a priority rule for thecd problems cannot choose a
pair (e.g. because of local paths which do not exist), thearhitrary pair is chosen. Of
course, a local solution has to be re-computed during thedaaattion procedure, only if
the local problem has changed, i.e. if a new constrainindgnascbeen introduced.

The coordination step itself uses the priority rules fronctia 7.2.2 in order to intro-
duce suitable constraining arcs. The algorithm either iteaies after a maximal number
of coordination steps with or without having found a gloleddible solution. Or it termi-
nates either if one of the local problems cannot be solvedauitable constraining arc
can be introduced. All longest-path-calculations are qrened by the Floyd-Warshall-
Algorithm, which is simultaneously used to identify poggicycles if they exist.

The decomposition approach is compared with the greedyegdwoes from Section 6.1,
which are used to solve the test instances as a whole. Evaisindse the longest-path-
calculations are performed by the Floyd-Warshall-Alguomit

The procedures were implemented in C. The tests were run @ @l Celeron with
1.8 GHz and 640 MB memory) with operating system Fedora 5.

8.2 Testdata

The algorithms proposed above are tested on a variety @fross for the railway schedul-
ing problem. In this thesis artificial instances are usedtdube lack of small real-world
instances for (decomposed) railway problems.
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Figure 52: Example for railway network with four local areas

The instances tested here are based on three differentwarnetworks containing up to
73 fixed block sections. One of them is depicted in Figure 5Be design of the test
networks was led by the idea of including a variety of diffgrsituations which could
complicate scheduling trains. A large number of instancas ereated by introducing
up to 16 trains moving with different travelling times on fdifent routes through the
networks. The travelling times of the trains vary in the rarfigpm 1 to 7. The crossing
time ¢ is set to a small positive value. Each instance is createthéoproblem with and
without decomposition. The decomposition of the physi@ivork is already depicted
in Figure 52 by dashed lines. Two of the networks are decosgposthree and the third
in four local networks.

After preliminary tests the most interesting instanceseangrosen. Different classes of
instances were designed. For the first class TS of instaraaslditional constraints are
allowed. This class contains 34 instances. The second TBSC allows also starting
constraints, i.e. for a subset of trains a starting condtriai given. The class TSC
contains 29 instances.

For all problems the makespan objective is considered. Agthin focus lies on generat-
ing feasible solutions this choice is quite unimportanagtele solutions for the makespan
problem stay feasible evenif,,,, or other regular objective functions are considered.

99



8.3 Computational results 100

8.3 Computational results

In this section computational results for the greedy pracesl from Section 6.1 and the
decomposition procedures from Section 7.2 are presentbdselapproaches are tested
on the instances described above.

8.3.1 Greedy procedures

In this section computational results for the greedy procesl from Section 6.1 are de-
scribed.

The first observation is that for each of the test instancegtbedy procedures provide
feasible solutions. In fact, creating test instances wbainot be solved seems to be very
hard. For this work a large variety of different instancesweeated. Different ideas to
derive 'hard’ instances did not work. Of course ideas from ¢bmplexity proofs would
lead to hard problems. But those instances would be too targelve them in reasonable
time.

Having a look at the computational results from Mascis & Raetli [45] encourages
the claim that creating 'hard’ instances is very difficuluzea for job-shop problems with
blocking and no-swap allowed feasible solutions for mosthef instances are derived
by the greedy procedures. It is clear that job-shop problerag include a variety of
complex situations which are unnatural when transferrechilavay problems. In job-
shop problems a job can move from any machine to any otheraaken railway problems
such moves are limited by the structure of the physical n&kwdhus, even the 'harder’
job-shop problems are solved by greedy procedures quitdazbry.

Additionally the constraint propagation techniques ided in the greedy procedures
seem to be very powerful for railway problems. If for examalain moving on a single
line is chosen to be the first one in a certain block sectiadhoice is propagated for the
whole line.

Detailed results for the greedy procedures are presentdteifables 5 and 6. Table 5
contains information on results for instances withouttstgrconstraints (TS). The sec-
ond column contains for each priority rule the average nedateviation from the average
values (Dev. from Avg.), i.e. the mean value of all valu@s<==—AY where AV is
the average objective value over all priority rules for tloeresponding problem instance.
The third column contains for each priority rule the averagjative deviation from the
best values (Dev. from Best), i.e. the mean value of all \53106%%3, whereB is the
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best objective value over all priority rules for the corresding problem instance. Addi-
tionally the average computation time needed for the differules is given in seconds in
the fourth column.

Priority rule || Dev. from Avg. | Dev. from Best.| Avg. Time
AMCC 0.73 17,50 116,7
SMCP 13,06 31,42 121,4
SMBP 2,77 19,55 125,1
SMSP -5,83 8,09 120,6
FCFS -10,73 2,84 111,7

Table 5: Results for instances from TS.

Table 6 contains the corresponding information on resoltéfstances with starting con-

straints (TSSC).
Priority rule || Dev. from Avg. | Dev. from Best.| Avg. Time
AMCC -0,06 18,32 1246
SMCP 14,29 34,88 131,3
SMBP 3,98 22,47 133,6
SMSP -3,94 12,44 132,3
FCFS -14,27 0,20 116,9

Table 6: Results for instances from ISC.

It can be seen that the computation times for the differeiotipy rules are quite similar.
This is clear because all alternative pairs have to be chasértorresponding updates of
longest-path-lengths’ have to be made. The effort for tleseputations is the same for
all rules. Only the effort for choosing a pair is different.

For both classes of instances, problems with or withoutistaconstraints, the FCFS-rule
provides the best results, also in terms of computationasi The rules which lead to
the worst results are SMCP and SMBP for both classes of iostanThe corresponding
results are worse than the mean value over all tests.

Summarizing these observations and considerations it eatabed, that small instances
for railway problems can be solved by greedy proceduresfsatory. The question is
now, if this statement does also hold in case of decomposdrgims. This question will
be answered in the next section.
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8.3.2 Coordination procedures for decomposed problems

In this section results for the (greedy) coordination prhoes are reported. It will be
shown that using the techniques from Section 7.2 railwapleros can be solved effec-
tively even if they have been decomposed.

Preliminary tests showed, that performing at most 20 coattitbn steps during the coordi-
nation procedure already provides good results. The coatidin procedure was applied
to the test data using 50 different combinations of prianifes. For the greedy procedure
for solving the local problems five different priority rulé8MCC, SMCP, SMBP, SMSP,
FCFS were used. For the coordination step ten differentipricules, namely CFRT(1),
CFRT(10), CFRTM, C2RT(1), C2RT(10), C2RTM, CLRTM, CSRTM|BRTM, and
CLSRTM were used. For a detailed description of these rules¢ader is referred to
Section 7.2.2. In each step of the coordination proceduescmmstraining arc is intro-
duced in one local graph.

The coordination procedure was tested on the 34 instanceS ifwithout starting con-
straints) and the 29 instances in B& (with starting constraints). Table 7 contains for
each combination of priority rules the average relativeiagn from average and best
objective values (see also the explanation for Table 5)clwinere found by the coor-
dination procedures. These average values were calcufatkedling all results where a
feasible solution could be found.

AMCC SMCP SMBP SMSP FCFS

CFRT(1) || 14.4 (53.7)| 3.2(35.4) | -2.7 (30.8)| 6.1 (43.6) | 12.4 (50.2)
CFRT(10)|[ 14.5 (53.5)| 3.7 (36.2) | -2.9 (28.5) 10.2 (46.3)| 11.4 (48.6)
CFRTM || 13.8(51.6)| 3.8(37.4) | -2.8 (28.6)] 9.1 (44.8) | 11.3 (48.4)
C2RT(1) || -12.3 (14.8)] -2.9(26.5) | 3.6 (36.7)| -10.4 (20.0)| -8.5 (23.8)
C2RT(10)| -9.9 (20.7) | -3.8 (25.4) | 3.5(35.6)| -9.4 (19.7) | -7.7 (23.6)
C2RTM | -10.1 (19.8)] -4.3 (24.8) | 3.2 (35.3)] -10.3 (18.6)| -7.5 (22.7)
CLRTM || -0.9(32.9)| -2.3(27.9)| -1.6 (32.2)] -2.5(32.6) | -2.7 (32.7)
CSRTM || 1.5(37.1) | -0.9(28.3) | -4.2 (28.0)| -10.9 (18.8)] -1.4 (32.1)
CLDRTM || 13.8 (51.6)| 3.8(37.4) | -2.8 (28.6)] 9.1 (44.8) | 11.3 (48.4)
CLSRTM || -7.7 (22.7) | -12.8 (13.7)| -3.9 (26.0)| -8.2 (21.3) | -4.97 (25.9)

Table 7: Relative deviation from average (best) valuesrfstances in TS.

The best values (in bold print) are derived by the combima8MCP-CLSRTM. Com-
paring the results (rows) for CFRT(1), CFRT(10), and CFRTEIN be seen that setting
constraining arcs with the maximal possible weights (CRFT&dds to better results than
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the other rules. The same observation can be made, when dcaghn@2RT(1),C2RT(10),

and C2RTM. Thus, setting quite restrictive constraintsalas done by the priority rules
CLRTM, CSRTM, and CLSRTM, leads to better results than sgtiwveak constraints.
Only rule CLDRTM does not provide such good results.

In Table 8 the numbers of best (feasible) solutions deriwedifferent combinations of
priority rules are depicted for the instances in TS. A colwontains these numbers for a
single priority rule used in the greedy procedure for thealgaroblems. A row contains
the data for a single priority rule used in the coordinationgedure.

CoordPrio/Prio]| AMCC | SMCP| SMBP | SMSP| FCFS
CFRT(1) 0(28) | 1(32) | 1(30) | 1(29) | 0 (33)
CFRT(10) || 0(29) | 1(32) | 1(33)| 0(34) | 0 (34)
CFRTM 034 | 134 | 1(33)] 1(34) | 139
C2RT(1) 8(25) | 434 | 1(32)] 7(30)| 3(25)
C2RT(10) | 9(32) | 434 | 1 (34 | 7 (34 | 6 (32)
C2RTM 12(33) | 734 | 1 (34 | 7 (34 | 9(39
CLRTM 2(25) | 3(25) | 0(29) | 1 (29) | 2 (24)
CSRTM 0(26) | 6(23) | 6(27) | 1(21) | 1 (30)
CLDRTM || 0(34) | 1(34) | 1(33) | 1(34) | 1 (34)
CLSRTM 3(33) | 734 | 134 | 134 | 0(39

Table 8: Number of best (feasible) solution found for insesin TS.

The results from Table 7 are confirmed by Table 8. Setting mes#ictive constraining
arcs provides more best solutions. The number of feasilblgisns increases with more
restrictive constraining arcs, too. The best results avergin bold print. Many com-
binations of priority rules lead to feasible solutions fdir3 instances. The most best
solutions are found by the combinations AMCC-C2RT(10) aG#&-C2RTM.

The average computation times (in seconds) for the 50 difftscombinations of priority
rules are given in Table 9. Additionally the average numidemexessary coordination
steps is given. This mean value is build including all inst&s) where a feasible solution
could be found with the associated combination of prionties.

The average computation times for instances in TS lie betvi@and 94 seconds. For
some instances and combinations of priority rules the doatan procedure needs more
than 1000 seconds of computation time. This shows that sdrtfeeanstances can be
solved very quickly, as the average values are much smallee average numbers of
necessary coordination steps lie between 2 and 11 (see 9ablegether with the num-
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AMCC SMCP SMBP SMSP FCFS
CFRT(1) | 86.69 (8.82)| 93.58 (8.28)| 61.21 (4.17)| 63.99 (8.24) 82.71 (8.15)
CFRT(10)|[ 83.86 (8.10)| 88.48 (5.94)| 49.58 (4.64) 37.21 (6.12)] 54.27 (6.29)
CFRTM || 47.76 (6.29)| 57.83 (4.91)| 33.81 (3.82) 24.14 (4.09)] 44.33 (4.62)
C2RT(1) || 80.58 (9.92)| 43.79 (7.15)| 68.37 (5.47) 89.17 (8.20) 69.74 (10.44)
C2RT(10)|[ 66.26 (10.28) 36.97 (6.59)| 57.85 (5.00)] 60.10 (6.82) 59.58 (9.81)
C2RTM || 62.91(9.82)| 33.11 (6.15)| 47.40 (4.59)| 46.19 (5.47) 56.36 (8.88)
CLRTM || 39.99 (6.24) | 26.12 (4.32)| 34.34 (2.76)| 18.71 (2.86) 47.16 (5.54)
CSRTM || 44.97 (6.31)| 25.73 (4.09)| 34.18 (2.85)| 25.77 (3.62)| 41.42 (4.57)
CLDRTM || 51.94 (6.29)| 57.74 (4.91)| 32.79 (3.82)] 22.70 (4.09)] 45.72 (4.62)
CLSRTM || 61.08 (9.79) | 33.93 (6.65)| 46.09 (4.24)] 41.21 (4.91) 56.11 (9.06)

Table 9: Computation times (coordination steps) for ins¢&in TS.

ber of feasible solutions derived by the different proceduiTable 8) this shows, that a
maximal number of 20 coordination steps is sufficient to getdyresults.

For problem instances including starting constraints therdination procedure behaves
slightly different. The corresponding results for instasén TSSC (instances with start-
ing constraints) are contained in the Tables 10, 11, and 1@aimthe first table (10)
contains deviations from average and best results. Thendgable (11) contains num-
bers of best (feasible) solutions found by the procedurethedhird table (12) contains
average computation times and average numbers of necessagination steps.

AMCC SMCP | SMBP SMSP FCFS
CFRT(1) || 15.2 (45.9) 2.0 (25.9)| -3.2 (23.9)] 7.0(38.2) | 8.5 (35.7)
CFRT(10)[ 10.8 (38.3)] 2.0 (25.9)| -3.5 (22.8)| 11.5 (41.2)] 8.5 (35.7)
CFRTM | 13.3 (41.5) 2.0 (25.9) | -3.6 (22.6)| 9.9 (39.9) | 14.6 (46.0)
C2RT(1) | -12.9 (7.1)| 5.8(33.6)| 6.8 (31.0)| -11.1 (7.9)| -7.7 (12.6)
C2RT(10)| -11.3(9.2)| 4.3(31.8)| 7.0 (31.1)| -9.4(9.9) | -7.3 (13.2)
C2RTM || -10.3(9.9)| 5.0 (32.7)] 6.7 (30.7)| -10.0 (9.2)] -8.3 (12.3)
CLRTM | -8.6 (12.1)| 4.8 (29.4)| -5.7 (18.9)] -0.9 (27.1)| -17.4 (1.8)
CSRTM || 6.7 (37.0)| 4.3 (32.4)] -2.5(23.9)| -4.4 (16.3)| 7.2 (40.9)
CLDRTM | 13.3 (41.5)| 2.0 (25.9)| -3.6 (22.6)| 9.9 (39.9) | 14.6 (46.0)
CLSRTM || -7.2 (14.4)| -1.2 (25.0)| 3.7 (27.2)| -9.2 (10.9)| -3.9 (18.5)

Table 10: Relative deviation from average (best) valuegistances in TSSC.
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For problems with starting constraints the combination B&E&R_RTM provides the best
results in average (see Table 10). In contrast to the refrligroblems without start-
ing constraints here more restrictive constraining arcsxdbalways provide better so-
lutions. For example the combination AMCC-C2RT(1) in agerdéeads to better results
than AMCC-C2RT(10) and AMCC-C2RTM. A reason for this beloavhay be, that more
restrictive constraining arcs together with starting ¢oaiats do not leave enough space
for solving local problems effectively.

CoordPrio/Prio|| AMCC | SMCP | SMBP | SMSP| FCFS
CFRT(1) 0(7) 0(6) | 5(26)| 1(23)| 0(4)
CFRT(10) 0 (8) 0(6) | 5(28)| 1(27)| 0(4)
CFRTM 0 (8) 0(®©) | 6(28)| 2(29 | 0(7)
C2RT(1) 8(16) | 1 (29 | 0(17)| 6(14) | 6 (16)
C2RT(10) 9(19) | 2(29 | 0(18) | 6(16) | 7 (18)
C2RTM 9(22) | 3(29 | 0(18)| 6(16) | 9(23)
CLRTM 1(5) 0(6) | 4(25)| 2(26) | 0(3)
CSRTM 1(6) 19 | 6(22)|1(11)| 0(4
CLDRTM 0 (8) 0(®©) | 6(28)| 2(29 | 0(7)
CLSRTM 2(24) | 4(29) | 0(18) | 3(18) | 2 (25)

Table 11: Number of best (feasible) solution found for insts in TSSC.

For the 29 instances in TSC (problems with starting constraints) the numbers ofifdas
solutions and best solutions derived by the different corations of priority rules (Table
11) are similar to the numbers for the instances in TS. Agatting more restrictive con-
straining arcs leads to more best solutions found by theriéifige. The number of feasible
solutions increases with more restrictive constrainirggatoo. A closer look shows, that
the quota of feasible solutions found by the procedures @lsnfor instances in TSC
than for instances in TS. Thus, also in practice the ins&ndth starting constraints seem
to be harder to solve than instances without starting caimgs:.

The average computation times for instances inSGlie between 10 and 79 seconds.
As for the problems without starting constraints for somsamces and combinations of
priority rules the coordination procedures needs more ft@00 seconds of computation
time. The computation times are slightly smaller than ferithstances in TS. The reason
is, that the procedures fail in finding feasible solutiongnare cases than for instances
in TS. These infeasibilities occur quite early during theqadures, such that the average
computation times are smaller. The average numbers of sa&gesoordination steps
to find feasible solutions lie between 2 and 11 (see Table TRBus, there is nearly no
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AMCC

SMCP

SMBP

SMSP

FCFS

CFRT(2)

12.31 (8.57)

10.93 (4.83)

56.34 (4.77)

57.67 (8.22)

10.50 (8.25)

CFRT(10)

13.19 (9.00)

10.47 (3.17)

4538 (4.93)

242.18 (6.30)

10.28 (7.25)

CFRTM

11.03 (5.75)

10.19 (2.50)

37.80 (4.32)

24.04 (4.41)

10.69 (6.14)

C2RT(1)

78.63 (7.50)

49.62 (6.48)

76.68 (6.53)

74.91 (6.71)

69.06 (10.88)

C2RT(10)

72.74 (8.16)

41.39 (5.86)

57.94 (5.61)

50.79 (6.00)

58.59 (9.06)

C2RTM

71.79 (9.32)

37.28 (5.59)

49.45 (5.11)

50.78 (5.12)

62.14 (8.74)

CLRTM

12.06 (5.60)

10.28 (3.00)

40.52 (3.68)

31.32 (3.54)

11.80 (5.33)

CSRTM

13.52 (5.00)

21.34 (3.89)

29.66 (2.77)

30.22 (2.55)

11.95 (4.50)

CLDRTM

11.22 (5.75)

10.32 (2.50)

37.47 (4.32)

24.05 (4.41)

10.76 (6.14)

CLSRTM

68.99 (9.46)

37.57 (5.72)

47.64 (4.39)

47.44 (5.17)

59.29 (9.44)

Table 12: Computation times (coordination steps) for insés in TSSC.

difference between TS and TSC for this criteria.

In contrast to the strategies above one may introduce eawdtraming arc in all possible
local graphs at the same time. Thus, in each coordinatigrestenstraining arc is chosen
according to one of the rules above and is then introduced jpoasible local graphs.
In this case the priority rules for the coordination step asened Allin-rules. Tables
describing the results for these procedures can be foungpeAdix A (Tables 14 to 19).

Having a closer look on the results for the Allin-rules thddaing main observations
can be made. Some of the combinations with the Allin-rulad & better some to worse
results than the rules above. Less feasible solutions thrathé rules above can be com-
puted. Especially for the instances with starting constsaf TSSC) some rules do only
lead to very few feasible solutions. The procedure usingAii@-combination SMCP-
CFRT(1) does not find any feasible solution. The average ctatipn times are higher
for the Allin-rules (between 11 and 159 seconds).

Thus, the procedures where only one constraining arc isdatred per coordination step
seem to work better and faster than the procedures usingltimerales.

Summarizing the main observations about the performantteafoordination procedures
the following can be stated:

e Forallinstances in TS and TSC feasible solutions can be found by the coordina-
tion procedure.

e A maximal number of 20 coordination steps leads to good tesuith an acceptable
effort of computation time.
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e Even in practice the instances with starting constrain& $TC) are harder to solve
than the instances without (TS).

e Procedures where only one constraining arc is introducedcperdination step
seem to work better and faster than the procedures usingltimerales.

e Coordination priority rules which set more restrictive straining arcs lead to more
feasible solutions than others.

e In average more restrictive constraining arcs lead to betéutions for the in-
stancesin TS.

8.3.3 Comparison

In this section the results for the greedy procedures anddbedination procedures are
compared. For the coordination procedures the resultgubaAllin-rules are not taken
into account.

Comparing the results presented in the last two sectionstaie experience is made. All
problem instances can be solved by both the greedy procedume: the decomposition
approach. The quality of the best solutions derived by tiger&ghms is better for the
greedy procedures from Section 6.1.

Significant information for both the greedy algorithms ahe toordination procedures is
contained in Table 13. The second column contains the agetagation from the best

results derived by one of the procedures for the instanc&SiThe average computation
times (in seconds) for instances in TS are contained in ting tolumn. Columns 4 and

5 contain the corresponding information for instances sitrting constraints (T.SC).

Dev. for TS| Time for TS| Dev. for TSSC | Time for TSSC
Greedy alg. 16,04% 119.11 sec 17,66% 127,73 sec
Coord. proc.| 97,02% 51,51 sec 97,37% 36,64 sec

Table 13: Comparison of greedy algorithms and coordingtimcedures.

In average the coordination procedures are much fastertttgagreedy algorithms. But
the quality of the solutions derived by the greedy algorghsimuch better than the qual-
ity of the solutions derived by the coordination procedu@bviously, computing local

solutions independently leads to higher objective valudss is clear as the local pro-
cedures have no information about the global situationtgfpam the constraining arcs
which are only introduced to achieve global feasibility.
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Consider for example a quite good solution derived by thedyelgorithm. Then chang-
ing only one train sequence - such that a train must wait wéttiag its journey until an-
other arrives - may nearly double the objective value. Miasiy such “bad” choices are
made by the local algorithms within the coordination praged and thus, the objective
values are much higher than for the greedy algorithms.

Nevertheless, in average the coordination procedures aoh faster than the greedy al-
gorithms. This is an effect of the decomposition, as thellpoablems are much smaller
than the global problem (see also Section 7.5). Thus, fomeka longest-path proce-
dures are much faster for the local problems. Even the coatdi graph is quite small
compared to the alternative graph for the whole problem.

Summarizing the analysis above, one can state the follovBoth, greedy algorithms as
well as coordination procedures are able to get feasiblgisols for all test instances. The
greedy algorithm always finds feasible solutions whereaseseersions of the coordina-
tion procedure (using certain combinations of priorityes) fail. The greedy procedures
provide solutions of much higher quality whereas the cawation procedure is more than
twice faster in average.
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9 Concluding remarks

In this thesis an overview on different aspects of a classibiiay scheduling problems

was presented. Railway scheduling problems and relatgqustieeduling problems were
modeled in terms of alternative graphs. Existing solutiprecedures as well as some
new ideas were presented.

Additionally the complexity of railway scheduling and redd shop scheduling prob-
lems was analyzed. The railway problem with starting camsts was shown to be NP-
complete by adjusting a complexity proof from Arbib et al.].[@Railway scheduling
problems and related shop scheduling problems with blgc&onstraints were classified
in terms of the well-known|3|y-scheme.

The main part of this thesis was dedicated to the decompasit railway scheduling
problems and corresponding solution procedures. Base@moaches developed within
the EU-project COMBINE Il a decomposition model was progbsEhe decomposition
model is based on a physical decomposition of a railway nétwbhe scheduling prob-
lem then is decomposed into local problems and a coordimgtioblem. Coordination
procedures were developed in order to compute feasibldisotufor the decomposed
problem. The procedures were tested on a variety of inssaacd compared to simple
greedy procedures, which treat the problem as a whole. ietliout that the procedures
for the decomposed problem are faster than the greedy #igwibut provide solutions
of worse quality.

The purpose of this thesis is to set a basis for further cenatobns in the field of de-
composition of railway scheduling problems. Of courserdtaee still many topics where
further research could focus on. As seen above, the qudlitiyeosolutions derived by
the coordination procedures is quite bad. Thus, approachegprove the quality of such
solutions might be developed. On one hand this could be dpm&itoducing new coor-

dination techniques. On the other hand one could try to useraéchniques for solving
the local problems. Such techniques could be developedigixgl the ideas in Section 6.
A diploma thesis will focus on this topic in the next months.

Another research topic could be the integration of the sclvegl techniques from this
thesis with variable routings and simulation techniques.lfasic versions of the decom-
position approach this has already been done within the ijégt COMBINE II. But in
contrast to the fully automated algorithms in this thesis, procedures in COMBINE I
were developed for real-time planning systems, which sttgponan dispatchers.

A further topic for future research could be the exploitatad the coordination techniques
presented in this thesis for other types of scheduling gkl For example some supply-
chain problems could be decomposed in a similar way as pregédrere. Furthermore
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general decomposition approaches and correspondingicatiah techniques based on
physical decompositions of scheduling problems could veldped.
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List of abbreviations

AMCC
BNSJSP
BWSJSP
CFRTS(9)
CFRTM
CnRTS(9)
CnRTM
CLRTM
CSRTM
CLDRTM
CLSRTM
FCFS
SMBP
SMCP

SMSP

priority rule Avoid Maximum Current’,,..

blocking job-shop problem with no swap allowed

blocking job-shop problem with swap allowed
priority rule Constrain first relaxable or time-relaxable slightly
priority rule Constrain first relaxable or time-relaxable maximally
priority rule Constrain n-th relaxable or time-relaxable slightly
priority rule Constrain n-th relaxable or time-relaxable maximally
priority rule (for details see Section 7.2.2)
priority rule (for details see Section 7.2.2)
priority rule (for details see Section 7.2.2)
priority rule (for details see Section 7.2.2)

priority ruleFirst Come First Serve
priority ruleSelect Most Balanced Pair

priority ruleSelect Most Critical Pair

priority ruleSelect Max Sum Pair
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Lmaxa 19

3-SAT problem, 45
3MI problem, 38

acyclic, 20

alternative graph, 21
alternative pair, 21
aspiration criterion, 70

basic local graph, 73

block section, 10

blocking constraint, 9
blocking job-shop problem, 9
blocking operation, 9

border, 72

border arc, 79

border element, 73

border node, 77

Branch & Bound, 61

clearing point, 72
connected, 63

connection constraint, 12
constraining arc, 85
constraint propagation, 56
coordinator graph, 78
critical path, 19

deadline, 12
decomposition model, 72
disjunctive graph, 18

earliest-start-schedule, 19
ending constraint, 12
enumeration, 61
extension, 21

feasibility-connected, 63
fixed block safety system, 10
flow-shop problem, 8
Floyd-Warshall algorithm, 19

global conflict, 85
greedy algorithm, 55

ideal operation, 9
job-shop problem, 7

local graph, 77
local search, 63

makespan, 8, 19
maximum lateness, 8

moving block safety system, 10

neighbourhood connectitvity
connected, 63
feasibility-connected, 63
opt-connected, 63

neighbourhood structure, 63

no-wait constraint, 8

non-relaxable, 86

NP-complete, 35

NP-hard, 35

objective function

Crrazy 19

Lz, 19

makespan, 8, 19

maximum lateness, 8
opt-connected, 63
out-of-service interval, 12

positive cycle, 19
priority rules, 55
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railway scheduling problem, 10
reachability, 92

relaxable, 86

release-date, 12

repair procedure, 66

selection, 19, 21
complete, 19
consistent, 19
extension of, 19

starting constraint, 12

swap of operations, 9

tabu list, 69
tabu search, 63, 69
time-relaxable, 86
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A Appendix: Tables
AMCC SMCP SMBP SMSP FCFS

CFRT(1) || 3.4(21.9)| 4.4(18.9) | 0.3(26.6)| -6.7(7.4) | 1.2(21.7)
CFRT(10)|| 4.5(31.8)| 5.1(38.0) | -0.2(26.0)| -3.5(23.7) | 1.4 (31.2)
CFRTM | 15.7 (54.7)] 4.7 (39.3) | -4.9(26.5)| 10.8 (47.7)| 13.2 (51.5)
C2RT(1) | -14.1(7.0)| -1.9(26.0) | 11.0 (43.0)| -5.9(15.2) | -11.3 (6.1)
C2RT(10)| -14.0 (9.0)| -0.6 (28.9) | 7.0(39.6) | -11.2 (13.5)| -14.4 (8.8)
C2RTM | -8.8(22.1)] -2.9(28.0) | 4.6 (38.2) | -9.0 (21.4) | -6.2 (25.4)
CLRTM | -3.1(29.2)| -0.8(31.3)| 0.1(33.4)| -0.9(33.2)| -2.3(31.2)
CSRTM || 4.6 (39.9) | -4.8(26.0) | -2.5(28.9)| -6.9 (25.1) | 1.2 (35.4)
CLDRTM || 15.7 (54.7)| 4.7 (39.3) | -4.9 (26.5)| 10.8 (47.7)| 13.2 (51.5)
CLSRTM || -6.4 (25.0)| -11.4 (16.9)| -2.5(28.9)| -6.8 (24.1) | -3.6 (28.6)

Table 14: Relative deviation from average (best) valuegfstiances in TS.

CoordPrio/Prio|| AMCC | SMCP | SMBP | SMSP| FCFS
CFRT(1) 0 (6) 1(4) | 1(18)| 1(5) | 0(9
CFRT(10) 0(14) | 1(18)| 1(18)| 0(14)| 0(15)
CFRTM 0(34) | 1(34)| 6(34)| 1(34)| 1(34)
C2RT(1) 6(12) | 3(24) | 1(14)| 3(8) | 3(H)
C2RT(10) 6(15) | 3(29)| 1(28) | 5(23) | 3(13)
C2RTM 7(33) | 5@B4)| 1(34)| 5(34) | 7(34)
CLRTM 1(30) | 2(30) | 0(31) | 1(29) | 2 (26)
CSRTM 0(33) | 8(31)| 5(29)| 1(25)| 1(34)
CLDRTM 0(34) | 1(34)| 6(34)| 1(34)| 1(34)
CLSRTM 0(33) | 5(34)| 1(34)| 1(34)|0(34)

120
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AMCC

SMCP

SMBP

SMSP

FCFS

CFRT(2)

26.33 (2.50)

25.04 (1.50)

22.74 (2.44)

20.95 (1.40)

23.35 (1.67)

CFRT(10)

30.80 (4.36)

27.41 (4.67)

22.80 (2.44)

21.72 (3.07)

26.57 (2.53)

CFRTM

76.69 (6.29)

76.75 (4.91)

4550 (3.56)

47.66 (4.53)

64.47 (4.62)

C2RT(1)

30.79 (4.75)

82.18 (5.58)

20.96 (2.00)

32.44 (3.38)

26.13 (3.00)

C2RT(10)

32.05 (5.47)

95.79 (6.00)

60.98 (3.96)

34.25 (5.22)

31.06 (4.62)

C2RTM

116.40 (9.09)

91.92 (6.03)

61.98 (4.35)

49.85 (4.82)

91.83 (7.53)

CLRTM

85.43 (6.17)

77.41 (4.73)

45.14 (2.81)

27.13 (2.86)

74.22 (4.73)

CSRTM

80.10 (6.21)

68.13 (4.52)

55.70 (3.21)

52.84 (3.84)

74.77 (5.00)

CLDRTM

76.83 (6.29)

76.30 (4.91)

4555 (3.56)

47.49 (4.53)

64.26 (4.62)

CLSRTM

115.06 (8.94)

92.60 (6.41)

61.30 (4.15)

45.14 (4.44)

91.29 (7.47)

Table 16: Computation times (coordination steps) for ineés in TS.

AMCC

SMCP

SMBP

SMSP

FCEFS

CFRT(2)

31.3 (80.5)

-

3.8(17.0)

5.6 (11.6)

12.4 (41.0)

CFRT(10)

9.7 (35.4)

1.3 (23.6)

2.4 (19.7)

-2.4(20.8)

12.4 (41.0)

CFRTM

14.3 (39.6)

1.9 (22.2)

6.2 (18.4)

10.3 (39.7)

15.6 (43.7)

C2RT(1)

-11.0 (7.6)

9.0 (34.9)

13.1 (35.5)

115 (3.9)

-8.3(7.0)

C2RT(10)

-11.4 (8.0)

6.0 (33.9)

9.8 (34.3)

-13.7 (3.6)

-9.5 (6.9)

C2RTM

-9.8(10.8)

5.8 (33.1)

7.4(32.7)

-9.3(11.2)

7.6 (13.9)

CLRTM

8.0 (12.9)

4.7 (25.7)

55 (18.1)

-0.2 (26.4)

-16.7 (3.1)

CSRTM

7.5(31.8)

6.5 (33.4)

0.5 (25.6)

0.8 (28.6)

7.3(32.2)

CLDRTM

14.3 (39.6)

1.9 (22.2)

6.2 (18.4)

10.3 (39.7)

15.6 (43.7)

CLSRTM

6.7 (15.2)

-0.5 (25.4)

4.4 (29.1)

-8.6 (12.6)

-3.2(19.9)

Table 17: Relative deviation from average (best) valuegistances in TSSC.
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CoordPrio/Prio|| AMCC | SMCP | SMBP | SMSP| FCFS

CFRT(1) 0@ | 0(0) |3(@5 | 12(7) | 0(2

CFRT(10) 0@4) | 0(3) |3(18)|1(13)| 0(2)

CFRTM 0@) | 0(6) | 7(29)| 3(29)| 0(7)

C2RT(1) 6(10) | 0(21) | 0(8) | 3(7) | 4(6)

C2RT(10) 6(12) | 0(25) | 0(13) | 6(12) | 4(7)

C2RTM 9(22) | 1(29) | 0(18) | 6(16) | 9 (23)

CLRTM 1(5) | 0(6) | 4(27)| 2(26)| 0(3)

CSRTM 1(7) |1(10)| 4(24)| 1(21)| 0(5)

CLDRTM 0@) | 0(6) | 7(29)| 3(29)| 0(7)

CLSRTM 2(24) | 2(29) | 0(18) | 4(18) | 2 (25)

Table 18: Number of best (feasible) solution found for insts in TSSC.
AMCC SMCP SMBP SMSP FCFS

CFRT(1) || 12.49(5.00)| 11.87(-) | 22.79(2.53)| 23.16 (1.57)| 12.38 (3.00)
CFRT(10)|| 13.43(3.25)| 12.30(2.33)| 24.27 (2.78) 29.88 (2.85) 12.98 (2.50)
CFRTM || 17.21 (5.75)| 12.85(2.50) | 57.30 (4.17)| 57.56 (5.17)| 17.73 (6.14)
C2RT(1) || 32.37 (4.40)| 65.19(3.86) | 39.15 (2.25) 40.83 (3.43) 32.84 (3.17)
C2RT(10)| 36.60(4.83)| 103.04 (5.08) 61.44 (4.00) 41.17 (4.92) 35.50 (3.86)
C2RTM |[ 124.17 (8.68) 97.05 (5.41) | 61.24 (4.72)| 55.62 (4.75)| 94.15 (8.04)
CLRTM 16.53 (4.60) | 12.91 (2.50) | 51.55 (3.67)| 39.20 (3.54) 15.80 (4.67)
CSRTM || 18.01 (5.43)| 24.97 (4.00) | 55.60 (3.29) 52.03 (3.95) 17.27 (5.20)
CLDRTM || 17.23 (5.75)| 12.90 (2.50) | 57.50 (4.17)| 65.59 (5.17)| 17.71 (6.14)
CLSRTM || 158.76 (8.62) 97.09 (5.55) | 60.27 (4.17)| 52.50 (4.61)| 94.97 (8.36)

Table 19: Computation times (coordination steps) for insts in TSSC.
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