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Abstract

Railway scheduling problems are quite popular scheduling and optimization prob-
lems which are treated in a large variety of papers and projects. Many special and
even quite general situations have been investigated theoretically and also a variety
of applied approaches tested on real-world instances has been developed.

This thesis mainly deals with the problem of scheduling trains in railway net-
works with respect to given routings, fixed minimal travelling times, and other con-
straints like time-windows. It combines the theory of some well-known scheduling
models with its applications in railway scheduling. The railway scheduling prob-
lems considered in this work are closely related to job-shopscheduling problems
with blocking and some additional constraints. Therefore part of this research is
related to these shop scheduling problems. Theoretical scheduling models are ex-
tended, complexity results are derived and solution methods are proposed. Most
results are applied to the considered railway scheduling problems. In addition to ap-
proaches which treat railway problems as a whole also decomposition methods for
these problems and corresponding solution methods are presented. These solution
methods are tested and compared with simple greedy procedures.
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1. Introduction 5

1 Introduction

Railway scheduling problems are the topic of a large varietyof publications in the fields
of applied mathematics, computer science and technical engineering. Quite abstract ap-
proaches treating special cases and also more general problems can be found as well as
applied approaches solving real-world problems.

This thesis traces the idea to build abstract models of railway scheduling problems using
graph models known from the classical scheduling literature and solve them with differ-
ent approaches. Both railway scheduling problems as well asthe underlying classical
scheduling problems, namely job shop scheduling problems with blocking, are treated.
This thesis is mainly based on two publications from Mascis and Pacciarelli [45],[44] and
the EU-project COMBINE II1 [26]. It supplements and continues the work done there.

The railway scheduling problems considered in this thesis consist of the problem to build
schedules for a given set of trains moving in a railway network. The network is divided
into block sections, which are small parts of the network, e.g. a certain segment of a track
may define a block section. More precise descriptions and examples will be given later.
Mainly two different types of block sections based on different safety systems are used
by rail companies and thus are modelled here. Fixed block sections can contain only one
train at a time, whereas in moving block sections trains may follow each other within
the same section when keeping a certain safety distance. Therail network may contain
block sections of both types. For each train moving through the network a route, i.e. a
physically feasible sequence of block sections, where the train has to move through, is
given. The difficulty now is to solve conflicts between trains, which use the same block
sections, i.e. to choose feasible sequences for such trains. This problem is modelled in
terms of a special graph model, namely the alternative graphmodel. Different additional
constraints and objective functions are integrated.

In this thesis different approaches are presented in order to solve the considered problems.
On one hand methods which treat the problems as a whole are proposed. These methods
are formulated quite general, such that the methods themselves or their main basic ideas
may be used for a variety of similar scheduling problems.

On the other hand also decomposition methods are proposed. These decomposition ap-
proaches are implemented specifically for railway scheduling problems and are based on
a physical decomposition of the railway network, i.e. a division of the large railway net-
work into smaller local networks. Such physical decompositions of railway network are
practiced in real-world systems for example by the German railways.

1Christian Strotmann took part in this project as scientist as well as his supervisor Prof. Dr. Peter
Brucker.
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1. Introduction 6

Some of the ideas and modelling details may be used to tackle other problems like for
example supply chain scheduling or any kind of job-shop-like problems whose structure
allows some physical decomposition.

As stated above for this thesis it is assumed that fixed routesare given for all trains moving
in a railway network. Of course, also problems where routingdecisions have to be made
are worth considering. But strategies to integrate routingdecisions into the proposed
models and solution methods are postponed to further research. In this thesis it also
is assumed that all data (minimal travelling times, etc.) are fixed. This is a good first
approximation. By integrating a quite small amount of extratime into these travelling
times, trains should be able to abide these times even if theyhave to brake or accelerate
in between. This first approximation should be good enough tobuild train schedules.
If more precise travelling times are needed which may also depend on the sequencing
of trains at meeting points a travelling time calculation (simulation) could be integrated.
Even this topic must be postponed to further research as the emphasis of this thesis lies
on the scheduling aspect of railway problems.

This thesis is organized as follows. Problems and notationsare described in Section 2.
Both, shop scheduling as well as railway scheduling problems are introduced. Section 3
gives a survey on important existing literature concerningshop scheduling problems with
blocking (and other constraints) and railway scheduling problems. In Section 4 graph
models for shop scheduling and railway scheduling problemsare described. Complex-
ity results for both, shop scheduling problems as well as railway scheduling problems
are given in Section 5. After that different solutions approaches like greedy heuristics,
enumerative methods and local search heuristics are presented in Section 6. Existing ap-
proaches are described and ideas for new approaches are developed. A decomposition
approach and corresponding solution methods are treated inSection 7. In Section 8 im-
plementation details and computational results are given and discussed. Finally Section 9
contains some concluding remarks.

6



2. Problem description 7

2 Problem description

In this section a description of the problems treated in thisthesis is given. In the first part
(2.1) different (job-)shop scheduling problems are formulated. In the second part (2.2) a
detailed description of the considered railway schedulingproblems is given.

2.1 Shop scheduling problems

Part of this thesis is dedicated to shop scheduling problemsincluding blocking restrictions
which are closely related to railway scheduling problems. In this section the classical job-
shop scheduling problem and a variety of generalizations are introduced.

2.1.1 The classical job-shop problem

The classical job-shop problem may be formulated as follows. There arem machines
M1, . . . ,Mm andn jobsJ1, . . . , Jn. A job Jj consists ofnj operationsOij(i = 1, . . . , nj)
which have to be processed in the orderO1j → O2j → . . . → Onjj. OperationOij has
to be processed on a dedicated machineµij ∈ {M1, . . . ,Mm} without preemption for
pij > 0 time units. Each machine can process only one job at a time. Furthermore it may
be assumedµij 6= µi+1,j for all j = 1, . . . , n andi = 1, . . . , nj−1, i.e. machine repetition
is forbidden. If not stated differently all data are assumedto be integer in this thesis.

In case of the classical job-shop problem sufficient buffer space is assumed to be available
between the machines, i.e. a job can always wait in a buffer between the processing on
two different machines.

To simplify the notation the operations are identified by numbers1, . . . , N , whereN =∑n

j=1 nj. The processing time of operationv is denoted bypv, the machine on which it
must be processed byµ(v), and the job it belongs to byj(v). It is convenient to introduce
two artificial operations0 and∗ = N + 1 with processing time 0. These operations are
called source and sink and model the start and the end of a schedule. For an operation
v = Oij its successor is defined byσ(v) = Oi+1,j. If v is the last operation of a job its
successorσ(v) is defined to be∗ = N+1. Symmetrically the predecessor for an operation
v = Oij is defined byψ(v) = Oi−1,j. If v is the first operation of a job its predecessor
ψ(v) is defined to be the source0.

A schedule for the problem is denoted byS = (sv) wheresv is the starting time associ-
ated to operationv. The objective is now to determine a feasible schedule with minimal

7



2.1 Shop scheduling problems 8

makespanCmax = maxnj=1Cj, whereCj is the completion time ofOnjj, i.e. the comple-
tion time of jobJj .

A special case of the JSP is the flow-shop problem (FSP). In a FSP each job consists of
exactlym operations, and for any operationOij of a job Jj the associated machine is
defined to beµij = Mi.

The classical JSP is known to beNP-hard as it generalizes the classical flow-shop prob-
lem (see Brucker [9]). Many papers have been written on job-shop scheduling and a
variety of algorithms in order to compute ’good’ or even optimal solutions has been pro-
posed (e.g. see Dell’Amico and Trubian [21], Aarts et al. [3], Brucker et al. [11], Nowicki
and Smutnicki [53]).

To model additional constraints, such as release-dates, due-dates, deadlines, transporta-
tion delays, perishability constraints, etc., arbitrary time-lags may be introduced in con-
nection with the JSP.

In a JSP with arbitrary time-lags additional restrictions of the form su + luv ≤ sv with
arbitrary (integer)luv are added. This problem covers the following special cases:

• a release-daterv for the start of operationv,

• a deadlinedv for the start (or end) of operationv,

• no-wait constraints for operations. (A no-wait constraintmeans that an operation
has to start immediately when its job predecessor has finished.)

• problems with objective functionLmax.

For problems with no-wait constraints the concept ofno-wait operations is introduced.
A no-wait operation has to start immediately after the completion of its job predecessor.
Let u be an arbitrary operation but the first of a job andψ(u) its job predecessor. Ifu is a
no-wait operation thensu = sψ(u)+pψ(u) must hold, i.e. in addition to the usual constraint
su ≥ sψ(u) + pψ(u) alsosu ≤ sψ(u) + pψ(u) ⇔ sψ(u) ≥ su − pψ(u) must hold. A job-shop
problem where all operations (but the first of a job) are no-wait operations is abbreviated
by NWJSP (no-wait job-shop problem).

A variety of other restrictions are also special cases of arbitrary time lags. In the next part
problems with another type of constraint, namely blocking restrictions, are described.

8
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2.1.2 Job-shop problems with blocking

In this section job-shop problems with blocking constraints are introduced. A blocking
constraint means that a job which has been completed on a machine cannot leave this
machine until the next machine is free and thus blocks it. Such a situation occurs for
example if no buffer space between the machines is available.

For problems with blocking constraints it is distinguishedbetween two types of opera-
tions. Ablocking operation blocks its machine even after its completion until its jobsuc-
cesor starts on the associated machine. Anideal operation leaves its machine immediately
after completion. This situation is known from the classical job-shop problem.

Using the notation introduced above for example the following situations occurs if two
blocking operationsu andv, which are not the last of their jobs, have to use the same
machineMk. If u precedesv onMk, sv ≥ sσ(u) must hold asv has to wait untilu leaves
Mk, i.e. untilσ(u) starts. If otherwisev precedesu, su ≥ sσ(v) must hold asu has to wait
until v leaves the machine.

A job-shop problem where all operations are blocking exceptthe last operation of each
job is called blocking job-shop problem and abbreviated by BJSP. Of course an equivalent
problem where all operations are blocking can be formulatedby introducing at the end
of each job an artificial operation, which has length zero andhas to be processed on an
always available machine.

Dealing with problems with blocking restrictions the question if so-calledswapping of
blocking operations is allowed or not arises. Swapping of operations may occur if a set of
blocking operations exists where each one is waiting for a machine occupied by another
operation in the set. Thus, the sole solution to this situation - note the blocking restriction -
is that all operations of the set switch (swap) to their next machine simultaneously, i.e. the
corresponding successor operations start simultaneously. This so-called swapping may be
allowed or not.

If for an operation a swap is allowed this operation is calledswap operationotherwise
it is calledno-swap operation. A scheduling problem where all blocking operations are
swap (no-swap) operations is called swap (no-swap) problem. Note that in a BJSP the last
operations of all jobs are ideal. Moreover swapping makes nosense for the last operations
of jobs as they leave the system after their completion.

In the further sections the abbreviations IJSP for the classical (ideal) JSP, BWSJSP for
the blocking JSP with swap allowed, and BNSJSP for the blocking job-shop problem
with no-swap allowed are used.

9
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2.2 Railway scheduling problems

In this section the railway scheduling problems treated in this thesis are described. Firstly
a basic problem is introduced. After that this basic problemis extended by a variety of
additional constraints.

2.2.1 The basic railway scheduling problem

There is a close similarity between railway scheduling problems and job-shop scheduling
problems with blocking and no-swap allowed. Usually, a railway network is divided into
block sections. Block sections correspond with machines inthe job-shop problem. A
train going on a fixed route from some origin to some destination corresponds with a job.
A route is a sequence of block sections and passing a block section is an operation of
the train. The minimal travel time needed to pass a block section is the processing time
of the operation. Depending on the applied safety system additional constraints, such as
blocking constraints, must be satisfied.

Railway companies apply different safety concepts. Some important concepts which will
be discussed in this work, are:

(1) fixed block safety systems (with fast and slow trains),

(2) moving block safety systems,

(3) a combination of these two safety systems.

In a fixed block safety system a train cannot enter a block section if this block section is
still occupied by another train. Note, that in this thesis itis assumed, that any train fits in
every fixed block section, where it has to move through. This is a reasonable assumption
as it holds in most real-world systems, too. (Of course, a generalization where trains
occupy two or more block sections could be modelled by adjusting slightly the models
and techniques presented later. But such considerations are not subject of this thesis.)

When a train leaves a fixed block section this takes a small amount ε > 0 of time, i.e.
ε > 0 is the time period in which the train is present in two block sections. Thus, a
subsequent train can enter the block section onlyε > 0 after the entrance of the previous
train in its next block section. This constraint covers the no-swap constraint, as then trains
cannot swap because of these temporal constraints. The no-swap constraint is particularly
important for two trains going in opposite direction on the same line, as they cannot swap
for physical reasons.

10
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In order to create a more detailed model different weightsǫi > 0 for different trains or
evenǫij > 0 for different train operations may be introduced. This doesnot modify the
argumentation considerably. (As in this thesis it is assumed, that any train fits in every
fixed block section, where it has to move through, it also can be assumed that the exit time
of a train from a certain fixed block section is smaller than the minimum travelling time
in its next fixed block section.)

Besides the described (slow) trains alsofast trains can move through a rail network with
fixed block safety system. In this thesis a fast train is a train which is only allowed to enter
the next block section if the next two block sections are not occupied by other trains. The
definition of fast trains in this thesis is based on a railway signalling system with signals
which may be green, yellow or red. A red signal indicates the section behind the signal
to be occupied. A yellow signal means that the next block section is free, but the second
section behind the signal is occupied. A green signal indicates the next two block sections
to be free.

Of course, other types of fast trains, which need more than two free block sections could
be considered. Such trains could be integrated by modifyingthe model presented in Sec-
tion 4.2 slightly.

Another safety system is the moving block safety system. In real-world rail networks
this safety system is based on satellite control or on digital radio transmission. In such a
system trains can follow each other within the same (moving)block section if they keep
a sufficient safety distance.

Like for fixed block sections it can be assumed that any train fits in every moving block
section, i.e. any block section is long enough for each train. Additionally in this thesis it is
assumed that all moving block sections are one-way single-track sections, i.e. no switches
are present in such sections and trains are only allowed to move through the sections in
one predefined direction. More general models can be implemented by dividing moving
block sections into different parts, i.e. sections for single lines, switches, etc., and building
a route for each train through these sections.

The problem is now to determine sequences for trains which use the same block sections
such that a corresponding schedule is feasible. This problem is called feasibility-problem.
If additionally an objective function is given, the problemof determining a feasible solu-
tion with minimal objective value is an optimization-problem.

2.2.2 Additional constraints and objective functions

Railway problems may include a large variety of additional constraints, such as:

11
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(1) (lower and) upper bounds for travelling times of trains,

(2) release-dates and deadlines for trains,

(3) starting and ending constraints for trains,

(4) connection constraints between trains, and

(5) out-of-service intervals for certain block sections.

Lower bounds for travelling times of trains are the minimal travelling times already de-
scribed above. An upper bound for the travelling time of a train through a certain block
section may result from a corresponding minimal speed restriction.

Release-dates and deadlines may be given for the entrances of trains in certain block
sections. These may for example result from restrictions onarriving or departure times of
trains at stations.

A starting constraint for a train in the first block section onits route means that this train
must be the first one in this block section. Such a constraint may result from a situation
where the train is physically already present in this block section at the start of a schedule.
Symmetrically an ending constraint for a train in the last block section on its route means
that this train must be the last one in this block section. Such a constraint may result from
a situation where the train must physically stay in this block section until the end of a
schedule. Of course, even sequences for sets of trains starting or ending in certain block
sections may be predefined.

Connection constraints between trains may for example occur if passengers of one train
should be able to catch another at a station. Then one train has to wait for the arrival of
another before leaving the station.

An out-of-service interval for a block section may result from restoration activities and
means that this block section is out of service, i.e. is not usable, for a certain time period.

Of course, other constraints could be included in railway problems but are not considered
in this thesis.

Again both the feasibility- and the optimization-problem may be treated. In case of the
optimization-problem additionally different objective functions like for exampleCmax and
Lmax may be considered.

12



3. Literature review 13

3 Literature review

In the literature a large variety of papers dealing either with any kind of job-shop schedul-
ing problems or with railway scheduling problems can be found. But the combination
of job-shop scheduling theory and its application in railway scheduling, like investigated
in this present thesis, is considered only in a few papers. The content of this section is
twofold. The first part of this section summarizes literature dealing with shop schedul-
ing problems and especially those with blocking constraints. In the second part some
important papers and results concerning railway scheduling are reported.

3.1 Shop scheduling (with blocking or no-wait constraints)

The classical job shop scheduling problem is subject of a large number of scientific pa-
pers. Many extensions, modifications, and also special cases of this problem are treated in
literature. Both, complexity results as well as solution procedures are derived. In this the-
sis only an overview on some important milestones in the research of job-shop scheduling
and especially on problems with blocking constraints is given.

In the last decades the model which was most frequently applied when considering the
classical job-shop and related problems was thedisjunctive graph model, which was pro-
posed by Roy and Sussmann in 1964 [62]. Based on this and related graph models some
famous solution procedures have been developed like the branch and bound procedures
by Carlier and Pinson [17] and Brucker et al. [11] and the tabusearch approaches by
Dell’Amico and Trubian [21] and Nowicki and Smutnicki [52, 53].

Generalizations of the classical job-shop problem like problems with transport robots have
been studied for example in Knust [36] and Strotmann [65]. Local search heuristics for
problems with multi-purpose machines can be found for example in Mastrolilli and Gam-
bardella [46] and Hurink et al. [30]. A survey on a large variety of shop scheduling prob-
lems including extensions and special cases of job-shop problems and also complexity
results can for example be found in Brucker and Knust [12]. The web-pages of the OR-
group from the University of Osnabrueck [57] summarize the latest complexity results for
flow-shop and job-shop problems with or without preemption and other constraints.

Another class of extensions of shop problems are problems with limited buffer space.
Note, that these problems may contain blocking problems as special cases, as in most
considerations even problems with zero buffer capacity areincluded. Papadimitriou and
Kannelakis [55] investigate flow-shop problems with limited intermediate buffers, which
are of first-in-first-out type and cannot be bypassed. They derive complexity results and

13
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develop a heuristic for the two machine problem with a single-capacity-buffer between
the machines. Brucker et al. [10] provide solution procedures for both, flow shop and job
shop problems and even for different buffer models. Nieberg[50] develops local search
heuristics for flow-shop and job-shop problems with pairwise buffers, i.e. a buffer for
each ordered pair of machines. In all these publications theswapping of jobs (operations)
is allowed. Swapping occurs if a set of jobsJj1, . . . , Jjk is processed on a set of machines
Mm1

, . . . ,Mmk
and the next machines where the jobs have to be processed areMmi+1

for
jobsJji, i = 1, . . . , k − 1 andMm1

for job Jjk. Thus, the sole solution to this situation
- note the blocking restriction - is that all jobs of the set switch to their next machine
simultaneously. This so-called swapping may be allowed or not. Note, that for problems
with limited buffer space the buffers may also be involved insuch swapping situations.

In case of no-wait problems a variety of complexity results can be found in the literature.
Röck [58, 59, 60] derived complexity results for no-wait flow-shop problems with differ-
ent objective functions, like e.g.Cmax, Lmax, and other constraints like unit processing
times and different resource constraint environments. Thecomplexity of 2-machine and
3-machine no-wait job-shops was for example investigated by Sahni and Cho [63] and
Sriskandarajah and Ladet [64]. A comprehensive summary of complexity results in this
field can be found in Hall and Sriskandarajah [28].

Important for this thesis are publications on job-shop and (for complexity issues) flow-
shop problems with blocking constraints. For such problemsonly a few publications
can be found. Kamoun and Sriskandarajah [34] show NP-completeness for a two-stage
flow-shop problem with two machines at the second stage, blocking, and minimum cycle
time objective function. Complexity results for 2-machineflow-shops with blocking and
setup times are presented by Logendran and Sriskandarajah [42]. In their publication a
machine requires a setup time before processing a job. The setup times can be performed
in anticipation of an arriving job, called anticipatory setup. Martinez et al. [43] study the
complexity of flow-shop problems including another type of blocking constraint. There an
operation blocks its machine until the successor operationleaves its machine. Of course,
the complexity of some job-shop problems with blocking can be derived from the results
above by simple special case reduction.

Looking for solution procedures only a few papers can be found for shop-scheduling
problems with no-wait or blocking restrictions. Gilmore and Gomory [27] present a
polynomial algorithm for the problemF2 | no − wait | Cmax. Kravchenko [38] de-
velops a polynomial algorithm for a specific two-machine no-wait job-shop scheduling
problem. A flow-shop problem with blocking arising in an industrial context is studied
by Mc Cormick et al. [49]. Mascis and Pacciarelli [45] develop greedy heuristics and
branch&bound methods for job-shop problems with blocking or no-wait constraints. As
a basis of their considerations they introduce thealternative graph model. This model is

14



3.2 Railway scheduling 15

a generalization of the disjunctive graph model (see above). The alternative graph model
also builds the basis for the following considerations in this present thesis. In [44] Mascis
and Pacciarelli model a variety of problems by means of alternative graphs. They model
for example problems arising in steel works and even railwayscheduling problems can be
found.

Mati et al. [47] present a special tabu search procedure for the blocking job-shop problem.
A main part of their paper is based on the geometric approach for the job-shop problem
with two jobs which was developed by Brucker [8]. This geometric approach itself is
based on a publication from Akers and Friedman [5]. Mati et al. use a version of the geo-
metric approach to repair an unfeasible solution resultingby a modification of a feasible
solution.

Summarizing the state of the research done in the field of shopproblems with blocking
or no-wait constraints, the following can be stated. A lot ofwork was done in the field of
no-wait problems, most of it dedicated to complexity issuesfor flow-shops. Only a few
publications deal with blocking job-shops and corresponding solution procedures.

3.2 Railway scheduling

Many papers and also research projects deal with questions how to schedule trains in
rail networks. The variety of problems considered in the literature contains quite special
applications as well as very complex problems dealing with large networks and many
different constraints. In this thesis only a small survey with respect to some important
papers and projects can be given.

Most of the publications dealing with railway problems treat special problems arising in
the context of large railway networks. Especially variations of the problem of schedul-
ing trains on a single-line track are investigated in many papers. For example Higgins
et al. [29] develop branch&bound methods for railway problems with a single track
and some sidings, where trains can pass each other. Cai and Goh [13] consider sin-
gle track problems including sidings (here called passing loops), too. They develop a
fast heuristic based on an integer-programming formulation. They also provide a proof
for NP -completeness of the considered problem. In Brännlund et al. [7] single track
problems with sidings are modelled as integer programming problems and based on this
Lagrangian relaxation solution approaches are developed.Nou [51] considers such single
track problems, too, and provides heuristics based on Lagrangian relaxation. For one-way
single track problems Caprara et al. [14] suggest heuristicalgorithms which are based on
multigraph-formulation and Lagrangian relaxation. Careyand Lockwood [16] provide

15
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solutions methods for single track lines including stations. Based on a mixed integer pro-
gramming formulation they apply heuristic decomposition,i.e. trains are dispatched one
by one and then are redispatched in order to improve solutions.

Another subproblem of complex railway problems is treated in Zwaneveld et al. [67].
In their publication models and algorithms for routing trains through railway stations are
given. Other publications dealing with railway problems for stations are from Carey and
Carville [15]. Here, the problem of choosing platforms and routes for trains in stations is
treated.

In the scheduling literature the problem of scheduling trains in a large railway network
with respect to some additional constraints and especiallythe problem of finding feasible
solutions for some of these problems is treated only in a few publications. Of course a
variety of quite applied publications deals with problems like how to operate a complex
railway network, how to re-schedule trains, etc., but most of them propose models de-
signed to support human dispachters (see e.g. Jovanović and Harker [32, 33], Kraay and
Harker [37]). Models and approaches for real-time scheduling of trains can be found in
Rodriguez [61]. Fully automated systems and also the basic models are treated less fre-
quently. A branch&bound method for the problem of dispatching trains in a large network
according to a given timetable is presented in Dessouky et al. [22]. Another approach for
scheduling trains in rail networks is developed in Dorfman and Medanic [23]. Some pub-
lications treat the problem of re-scheduling trains when perturbations occur. An heuristic
approach for such problems can be found in Törnquist [66]. Arecent publication based on
the alternative graph model is the paper from D’Ariano et al.[20]. There a branch&bound
procedure for scheduling trains is presented.

A survey of a large variety of publications treating railwayproblems and developing cor-
responding optimization methods is given in Cordeau et al. [19]. Some latest results con-
cerning a large variety of problem types arising in the context of railways can be found
in[1] and [2], where for example topics as planning problemsin general, decision support
systems, safety aspects, passenger interface systems, timetabling problems, power supply,
etc. are treated.

The author of this thesis took part in the EU-project COMBINEII, which is a follow-up
project of the EU-project COMBINE. COMBINE II deals with railway problems and also
decomposition approaches for railway scheduling problems. It provides an approach in
order to support human dispatchers operating a complex railway network. Additionally
basic models and concepts also suitable for designing automated systems are developed.
The considerations of the project are based on the alternative graph model from Mascis
and Pacciarelli [44, 45] (see above). These authors took part in the project, too. Details
of the EU-project COMBINE II can be found in [26]. More detailed information on
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3.2 Railway scheduling 17

the COMBINE II TMS (Traffic Management System) can be found inMazzarello and
Ottaviani [48].

As stated above the models in this thesis are based on the alternative graph model from
Mascis and Pacciarelli [44, 45]. Some of the basic ideas of the decomposition approaches
presented here were also used in the COMBINE II project, but Section 7 of the present
thesis goes one further step. Here basic models and solutionmethods for a completely
automated system are developed.

17



4. Graph models 18

4 Graph models

In this section both job-shop as well as railway scheduling problems are modelled in terms
of graphs. In the first part the disjunctive graph model for the classical job-shop problem
is introduced and extended to more general problems including blocking restrictions. The
second part describes a graph model for the railway scheduling problems introduced in
Section 2.2.

4.1 Modelling job-shop scheduling problems

In this section an introduction to graph models for shop scheduling is given. These models
are the basis for the following considerations about both, solution methods for some shop
scheduling problems and models and solution methods for railway scheduling problems.
Firstly the classical job-shop problem (IJSP) and the well-known disjunctive graph model
are introduced. After that the basic model is generalized byintroducing arbitrary time-
lags. Based on this the alternative graph model is describedand job-shop problems with
blocking constraints are modelled in terms of the alternative graph model.

4.1.1 The disjunctive graph model

The classical job-shop problem can be formulated in terms ofthe disjunctive graph model,
which was developed by Roy & Sussman [62] and later successfully applied to the job-
shop problem and its extensions (see also Brucker [9]).

A disjunctive graphG consists of a setV of nodes, a setC of directed arcs (conjunctions),
and a setD of undirected arcs (disjunctions). Considering the JSP thecorresponding
disjunctive graphG = (V, C,D) is defined as follows:

• The setV of nodes represents the set of all operations. For the two artificial op-
erations0 and∗ two artificial nodes, the source node0 representing the start of a
schedule and the sink node∗ = N + 1 representing its end, are introduced. Thus,
V = {0, 1, . . . , N,N + 1}.

• The setC of conjunctions represents the set of precedence constraints between
consecutive operations of the same job. For each operationv a conjunctionv →
σ(v) is introduced. This conjunction is weighted bypv. (Note that conjunctions of
the formv → ∗ are included.) Additionally conjunctions0 → v are introduced for
each operationv which is the first of its jobj(v). These conjunctions are weighted
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4.1 Modelling job-shop scheduling problems 19

by 0. A conjunctionu → v with weight pu means that in a feasible schedule
S = (sν) the conditionsu + pu ≤ sv must be satisfied.

• The setD of disjunctions represents the different orders in which jobs on the same
machine may be scheduled. It consists of undirected arcs between all pairs of op-
erations which have to be processed on the same machine, i.e.for each pairu, v of
operations withµ(u) = µ(v) (andj(u) 6= j(v)) D contains an undirected arcu− v
weighted by the pair(pu, pv) indicating that eithersu + pu ≤ sv or sv + pv ≤ su
must be satisfied.

With this graph model the problem of finding a feasible schedule for the job-shop prob-
lem is equivalent to the problem of fixing a direction for eachdisjunction such that the
corresponding graph contains no cycles of positive length.In this work a positive cycle
means a directed cycle with the sum of all its arc lengths being positive. When fixing the
direction of arcu − v to u → v (v → u) the weightpu (pv) becomes relevant. A set
S of fixed disjunctions is calledselection. The corresponding selection is calledcom-
plete, iff for each disjunction a direction has been fixed. It isconsistent, iff the graph
G(S) = (V, C ∪ S) corresponding to a selectionS contains no positive cycle. IfSe is a
complete consistent selection withS ⊂ Se, Se is called anextensionof S. An optimal
extensionof S is an extension with minimal objective function value. Given a selection
S the length of a longest (directed) path between nodesi andj in G(S) (the sum of all
arc weights on such a path) is denoted bylS(i, j).

On one hand each complete consistent selectionS represents a feasible schedule. A
feasible starting timesi for an operationi then can be given by the lengthlS(0, i) of a
longest0 − i-path inG(S). (W.l.o.g. the starting times0 of the source operation0 may
assumed to be0.) A path from0 to ∗ in G(S) with lengths∗, i.e. a longest0 − ∗-path, is
calledcritical path , . It determines the makespanCmax of the solution.

The starting times for a corresponding earliest-start-schedule (ESS) can be calculated by
longest-path calculation in the graphG(S), e.g. by a longest-path-version of the Floyd-
Warshall algorithm (see Ahuja et al. [4]). Note that for regular objective functions, like
Cmax andLmax an ESS is an optimal one among all schedules respecting the chosen
constraints.

On the other hand for each feasible scheduleS, a complete selection can be constructed
by choosing for each disjunction a direction, which is respected in the schedule (as one
direction of each disjunction must be respected). Of course, this complete selection must
be consistent. Otherwise the resulting graph would containa positive cycle, and thus, a
feasible schedule could not fulfill all chosen constraints,which is a contradiction. The
ESS corresponding to this complete consistent selection isnot worse thanS and therefore
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4.1 Modelling job-shop scheduling problems 20

a complete consistent selection representing an optimal schedule (namely the correspond-
ing ESS) always exists.

Thus, the problem of finding an optimal solution for the problem is equivalent to the
problem of finding a complete consistent selectionS for the corresponding graph which
minimizes the starting times∗ of the sink.

Note that for the classical job-shop problem a consistent selectionS means thatG(S) is
acyclic, i.e. contains no directed cycle, as any cycle wouldbe a positive one.

Additional constraints, such as release-dates, duedates,deadlines, transportation delays,
perishability constraints, no-wait constraints etc. can be modelled by introducing arbitrary
time-lags of the formsu + luv ≤ sv with arbitrary (integer)luv. They are represented by
arcsu→ v with weightsluv (precendence constraints including the start or end operations
0 and∗ = N + 1 are also possible).

As already mentioned above (Section 2.1.1) this problem covers a variety of special cases,
e.g.:

• A release-daterv can be modelled by a precedence constraint0 → v with l0v = rv.

• A deadlinedv for the start (end) of operationv can be modelled by a precedence
constraintv → 0 with lv0 = −dv (lv0 = −dv + pv).

• A no-wait constraint for an operationi (with job predecessorψ(i)) can be modelled
by introducing a precedence constrainti → ψ(i) with weight−pψ(i). This models
sψ(i) ≥ si − pψ(i) and thus together withsi ≥ sψ(i) + pψ(i) it models the no-wait
constraintsi = sψ(i) + pψ(i).

• Problems with objective functionLmax can be formulated similar toCmax-Problems
by modifying the weights of arcs from the last operations of all jobs to the sink. If
v is the last operation of a job the weight of arcv → ∗ is set to orpv − qv, whereqv
is a due-date for the completion time of operationv. Then, minimizing the length
of a critical path (or the starting time of∗) in the corresponding graph is equivalent
to minimizingLmax.

The introduction of arbitrary time-lags and some other requirements leads to a more gen-
eral graph model, namely the alternative graph model.
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4.1 Modelling job-shop scheduling problems 21

4.1.2 The alternative graph model - Modelling job-shop problems with blocking

As mentioned above many applications of the JSP require a more general and variable
modelling. For example blocking constraints (see Section 2.1.2) cannot be modelled in
terms of the disjunctive graph model. A graph model of a situation where two blocking
operationsu andv have to be processed on the same machineMk is depicted in Figure 1.

pu

0

0

pv

u

v

σ(u)

σ(v)

Figure 1: Two blocking operations to be processed on the samemachine

If u precedesv onMk, sv ≥ sσ(u) must hold asv has to wait untilu leavesMk, i.e. until
σ(u) starts. If otherwisev precedesu, su ≥ sσ(v) must hold. Thus, these constraints
can be modelled as the pair of dashed arcs depicted in Figure 1, where one arc has to be
chosen in order to fix a certain processing sequence.

In order to formulate a more general graph model which coversthese kinds of constraints
the so-calledalternative graph model is introduced. The alternative graph model is a
generalization of the disjunctive graph model and was developed by Mascis and Paccia-
relli [44]. An alternative graphG = (V, C,A) consists of a setV of nodes, a setC of fixed
arcs (conjunctions)u → v with arbitrary weightsluv, and a setA of pairs of alternative
arcs (alternative pairs){u→ v, h→ k} with arbitrary weightsauv andahk.

Similar to the case of a disjunctive graph a setS which contains at most one arc of each
alternative pair is called aselection. A selection is calledcompleteiff it contains exactly
one arc out of each alternative pair. Given a selectionS letG(S) = (V, C∪S). A selection
S is calledconsistentiff the corresponding graphG(S) contains no positive cycle. The
definitions of extension and optimal extension are applied to the alternative graph model
simultaneously.

Obviously the alternative graph model covers the disjunctive graph model as a disjunction
u− v can be modelled as a pair{u → v, v → u} of alternative arcs. Especially arbitrary
time-lags are included in the alternative graph model as arbitrary arc weights are allowed.
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4.1 Modelling job-shop scheduling problems 22

The alternative graph model is quite general. It can be used to model a large variety of
scheduling problems including blocking restrictions, arbitrary time-lags and other con-
straints (see also Mascis & Pacciarelli [44]). A generalization of the alternative graph
model described above is introduced by Kampmeyer [35]. There pairs of alternative sets
of arcs are considered instead of pairs of arcs. Then situations can be modelled where a
machine is blocked by an operation until a set of successors has been started. Such con-
straints arise for example in problems where statements of computer programs have to be
scheduled on different units of a computer processor. Therecertain data has to be stored
in a register unit (and thus blocks it) until all statements using this data have been started.

The alternative graph model can especially be used to model job-shop problems with
blocking constraints (see also Mascis & Pacciarelli [45]).As for the classical job-shop
problem and the disjunctive graph model for each operation anode is introduced in the
alternative graph and nodes0 and∗ = N +1 are added. The set of fixed arcs for the alter-
native graph equals the set of conjunctions of the disjunctive graph for the corresponding
classical JSP. In contrast to disjunctive arcs now processing sequences on machines are
modelled by alternative pairs. Different types of operations (blocking or ideal) require
different pairs of alternative arcs. The alternative pair for two blocking operations to be
processed on the same machine was already introduced in Figure 1. The corresponding
situation where one of the operations is ideal is shown in Figure 2. The situation where
both operations are ideal is known from the classical job-shop.

pu

0

v

u σ(u)

pv

Figure 2: Pair of alternative arcs for a blocking operationu and an ideal operationv.

In general the alternative graphG = (V, C,A) for a JSP with blocking is as follows:

• The setV of nodes represents the set of all operations (i.e. the starting times of
operations). For the two artificial operations0 and∗ two artificial nodes, the source
node0 representing the start of a schedule and the sink node∗ = N+1 representing
its end, are introduced. ThusV = {0, 1, . . . , N,N + 1}.
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• The setC of conjunctions represents the set of precedence constraints between
consecutive operations of the same job. For each operationv a conjunctionv →
σ(v) is introduced. This conjunction is weighted bypv. (Note that conjunctions
of the form v → N + 1 are included.) Additionally conjunctions0 → v are
introduced for each operationv which is the first of its jobj(v). These conjunctions
are weighted by0.

• The setA of pairs of alternative arcs represents the different orders in which jobs on
the same machine may be scheduled. It consists of pairs of alternative arcs for all
pairsu andv of operations (withj(u) 6= j(v)) which have to be processed on the
same machine. If both operationsu andv are blocking the pair of arcs from Figure
1 is introduced. If onlyu is blocking the pair of arcs from Figure 2 is introduced.
The pair(u→ v, v → u) with weightspu andpv belongs toA if u andv are ideal.

As for the classical JSP each complete consistent selectionfor the proposed alternative
graph is associated with a feasible schedule for the corresponding job shop problem with
blocking and vice versa.

Thus the problem of finding a feasible solution is equivalentto the problem of finding
a complete consistent selection. Again finding an optimal solution for theCmax and
theLmax-problem corresponds to the problem of finding a complete consistent selection
which minimizess∗.

The data for an example of a blocking job-shop problem (JSPB)is given in Table 1. The
corresponding alternative graph modelling this example isdepicted in Figure 3. Note that
due to more clarity not all alternative arcs are shown.

J1 J2 J3

Operation 1 2 3 4 5 6 7 8
Machine 1 2 3 1 2 3 1 2
Processing time 2 2 2 1 2 1 1 2

Table 1: Example of a job-shop problem with blocking.

In Figure 4 this graph together with a corresponding complete consistent selection is
shown. A critical path determining the makespan of an associated schedule is drawn in
bold arrows.

Figure 5 depicts the ESS associated with the selection in Figure 4. Here a hatched area
represents the time period where a blocking operationsv stays on machineµ(v) after its
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Figure 3: Alternative graph for the example from Table 1.
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Figure 4: A feasible solution (complete consistent selection) corresponding to Figure 3.

completion. Operationv blocks this machine while waiting for the next machine of the
corresponding jobj(v) to become available for its successor operationσ(v).

As mentioned above dealing with problems with blocking restrictions the question if the
swapping of blocking operations is allowed or not arises.

A swapping situation results in a cycle of alternative arcs in the corresponding solution
graph. These alternative arcs represent blocking and therefore have weight0. Thus, the
situation results in a zero length cycle, which is allowed. If swapping of certain blocking
operations is forbidden (no-swap operations) an (arbitrary) small weightǫ > 0 is put on
the corresponding alternative arcs (instead of zero weights) in order to make the above
mentioned cycle positive and thus the corresponding solution infeasible. Note, that still
all data may be assumed to be integer as all data could be multiplied by a suitably large
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Figure 5: Gantt-Chart for the solution depicted in Figure 4.

positive integerN and the smallǫ > 0 could be replaced by1.

In a no-swap problem all alternative arcs of blocking operations get an (arbitrary) small
weightǫ > 0, whereas in swap problems these weights are zero. Note that in a JSPB the
last operations of all jobs are ideal and thus no weights of corresponding alternative arcs
have to be modified.

A situation where two operations swap is depicted in Figure 6. Of course, such a swap is
prevented by introducingǫ > 0 as the zero-length-cycle then becomes positive and thus,
a selection including such a situation is inconsistent.

��
��
��
��
��
��

��
��
��
��
��
��

u

v

σ(v)

σ(u)

Swap

00

M1 M2

M2 M1

v

u

σ(v)

σ(u)

M1

M2

Figure 6: Situation where two operations swap.

For the problem instance introduced above (Table 1, etc.) a schedule where a swap of
operations arises at time4 is depicted in Figure 7. Here operations 2,4, and 6 swap at
time 4 and thus operations 3, 5 and 7 have to start simultaneously at this time. The
corresponding graph is shown in Figure 8. The zero length cycle indicating the swap is
drawn in bold arcs.
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Figure 7: Schedule for example from Table 1. Swap at time4.
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Figure 8: Graph corresponding to schedule in Figure 7.

A main difference between the two models - alternative and disjunctive graphs - is the
following. Considering the disjunctive graph for a classical job-shop problem for any
consistent selection an extension always exists whereas this is not the case for a general
alternative graph and even not for the blocking job-shop problems BNSP and BWSP (see
also Mascis and Pacciarelli [44]). An example of a consistent selection for a blocking job-
shop problem having no extension is depicted in Figure 9. Twojobs have to be processed
on three machines in the same order. The dashed arcs are the alternative arcs chosen in the
given consistent selection. As any choice of the remaining alternative pair (dotted arcs)
leads to a positive cycle, no extension exists.

A more detailed discussion on the complexity of a variety of problems which can be
modeled by alternative graphs will follow later in Section 5.
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Figure 9: Blocking JSP where consistent selection (dashed arcs) has no extension.

4.2 Modelling railway scheduling problems

In this section the alternative graph model for railway scheduling problems is described.
Firstly the basic problem is modelled in Section 4.2.1. In Section 4.2.2 the model for
different additional constraints and different objectivefunctions is discussed. The basic
model and also some of the additional constraints were already introduced by Mascis and
Pacciarelli [44] and applied to the EU-projects COMBINE andCOMBINE II.

4.2.1 The basic model

In an alternative graph model for a railway scheduling problem the nodes correspond to
train operations (entry time of a train in a specific block section). As in the job-shop
case two dummy nodes0 and∗ are introduced. For some of the additional constraints
explained later artificial nodes must be introduced. As for the shop problems proposed
above the set of all these nodes is denoted byV .

Fixed arcs (conjunctions) are defined as follows. Each nodei /∈ {0, ∗} has a unique
successorσ(i) corresponding to the operation which follows operationi on the route of
the associated train. If operationi is the last operation of the trainσ(i) = ∗ is set. Besides
the arcsi → σ(i) which are labeled with the minimal timepi for performing operationi
(i.e. for passing the corresponding block sections) arcs0 → i for all operationsiwhich are
the first operations of trains (jobs) are introduced. The default weights for these arcs are
0. Later the possibility of modeling earliest starting times(release dates) by introducing
arcs0 → j with non-negative labelsl0j is discussed and can especially be applied to the
first operations of trains.

For completing the basic model the introduction of suitablepairs of alternative arcs in
order to model sequencings of trains (at block sections where conflicts could occur) is
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needed. As already described in Section 2.2.1 railway companies apply different safety
concepts which can be modelled by alternative arcs.

In a fixed block safety system a (regular slow) train cannot enter a block section if this
block section is still occupied by another train. Ifi andj are train operations using the
same fixed block section, then eithersσ(i) + ε ≤ sj or sσ(j) + ε ≤ si must hold. As
mentioned aboveε > 0 is a small number which can be interpreted as time needed for
a train to leave the corresponding fixed block section (exit time), i.e. the time period in
which the train is present in two block sections. The situation of two trains using the same
fixed block section then is represented by the pair{σ(i) → j, σ(j) → i} of alternative
arcs withlσ(i)j = lσ(j)i = ε. A corresponding situation is shown in Figure 10. Note that
this is a blocking job-shop situation with no swap allowed.

ǫ

ǫ

i σ(i)
pi

pj
σ(j)j

Figure 10: Two train operationsi andj using the same block section.

Remember that the numberǫ > 0 can be interpreted as the time needed for a train to leave
a certain block section. Introducing different weightsǫj > 0 for different trains or even
ǫij > 0 for different train operations does not modify the argumentation considerably. As
in this thesis it is assumed, that any train fits in every fixed block section, where it has
to move through, it also can be assumed that the exit time of a train from a certain fixed
block section is smaller than the minimum travelling time inits next fixed block section.
In this thesis the case of an unique numberǫ > 0 is treated if not stated different.

As described before, assigning a small weightǫ > 0 (ǫj > 0, ǫij > 0) to the alternative
arcs also models the no-swap constraint which is very important in the case of two trains
going in opposite direction on the same track. Of course suchtwo trains cannot swap
for physical reasons and by weightsǫ > 0 (ǫj > 0, ǫij > 0) this is prevented in feasible
solutions (complete consistent selections). As for practical reasons all data could be given
in seconds or even smaller units, also in this case all data can be assumed to be integer.
Of course, also situations where a train is at the end of its route can be modelled. Then a
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pair of the type already depicted in Figure 2 must be introduced. If both trains are at the
end of their route a pair of the type{j → i, i→ j} is introduced (see also Section 4.1.2).

So far the situation of slow trains moving in a railway network is modelled. For fast trains
the model is slightly different. Remember that in a fixed block safety system a fast train
is only allowed to enter a block section if the next two block sections are not occupied
by other trains. This case is modelled by pairs of alternative arcs which are different
from the situation above. In the case of a fast trainA and a slow trainB moving in the
same direction through a sequence of block sections the corresponding alternative arcs
are shown in Figure 11.

A σ(i)i
pi

σ(j)j
pj

B

pψ(i)

pψ(j)

ψ(i)

ψ(j)

ǫ ǫ

Figure 11: Fast train operationi (belonging to trainA) and slow train operationj (be-
longing to trainB) using the same block section.

For the situation in Figure 11 it is assumed, thati andj are neither the first nor the last
operations of the associated trains. For situations involving the first or last operations
of trains (trains at the beginning or end of their routes) analogue alternative pairs can
be introduced. Situations with two fast trains, situationsinvolving track switches, trains
going in opposite direction, etc. are modeled analogously.An example with a slow
and a fast train going in opposite direction is depicted in Figure 12. Both trains travel
through block sectionMi. This leads for example to the corresponding alternative pair
{σ(u) → ψ(v), σ(v) → u}.

The moving block safety system described in Section 2.2.1 can be implemented as shown
in Figure 13, where two trains have the same route. In this figure {i → j, σ(j) → σ(i)}
and{j → i, σ(i) → σ(j)} are pairs of alternative arcs which are labeled by positive
safety distances (herec, d, e andf ), i.e. minimal amounts of time between trains entering
or leaving the corresponding moving block section. Ifi → j is chosen from the first pair
thenj → i cannot be chosen from the second pair (otherwise there is thepositive cycle
i→ j → i) andσ(i) → σ(j) has to be selected, which is compatible withi→ j. Thus, in
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Figure 12: Two trains in a situation where a track switch is involved.

a complete consistent selection eitheri → j andσ(i) → σ(j) or j → i andσ(j) → σ(i)
have to be selected.

d c ef

i σ(i)

j σ(j)

pi

pj

Figure 13: Model of two trains using the same moving block section.

In this thesis it is assumed that all moving block sections are one-way single-track sec-
tions. More general models can be implemented by dividing moving block sections into
different parts, i.e. sections for single lines, switches,etc., and building a route for each
train through these sections. Then suitable pairs of alternative arcs modelling the different
sequences of trains can be introduced.

The moving block system may be combined with the fixed block system then modelling
complex railway systems with different safety systems by a unique graph formulation.
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Note that in both cases, fixed block and moving block sections, the corresponding alter-
native pairs are not incident with the nodes0 and∗.

4.2.2 Modelling additional constraints and objective functions

In this section the additional constraints introduced in Section 2.2.2 are modelled in terms
of the alternative graph model. It will be introduced how to model constraints (1) to
(5) and some objective functions. Most of these additional constraints only require to
introduce suitable additional fixed arcs.

A lower bound for the travelling time of a train through a block section was already
introduced for the basic model. It corresponds to the processing time of the associated
operationi and thus is modelled by the weightpi for the arci → σ(i). An upper bound
k ≥ 0 for this travelling time may be set by introducing the fixed arc σ(i) → i with
weight−k. This models the constraintsi ≥ sσ(i) − k ⇔ sσ(i) − si ≤ k and thus the
travelling time for the corresponding train and block section to be less or equal thank.
Obviouslyk ≥ p must hold since otherwise a positive cycle occurs. Constraints of Type
(1) are depicted in Figure 14 (a).

A release-dateri and/or a deadlinedi for the entrance of a train in a certain block section
can be modelled by introducing arc0 → i with weightri and/or arci → 0 with weight
−di, wherei is the corresponding operation representing the entrance of this train in this
block section. Release-date and deadline constraints are depicted in Figure 14 (b) and (c).

−k

pii σ(i) i
ri

i0
−di

0
a) b)

c)

Figure 14: Different additional constraints modelled in terms of the alternative graph.

Starting and ending constraints for trains in fixed block sections are modelled by fixing
alternative pairs. If for example a train starts on a certainfixed block section and is present
there already at the start of a plan, it must be the first train on this block section and the
corresponding alternative pairs are fixed accordingly. These alternative pairs are deleted
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from the set of all alternative pairs and the chosen arcs are added to the set of fixed arcs.
On the other hand if a train ends on a certain fixed block section and remains there until
the end of a plan, it has to be the last train on that block section and again alternative
pairs are fixed accordingly. Again these alternative pairs are deleted from the set of all
alternative pairs and the chosen arcs are added to the set of fixed arcs. An example of a
starting constraint is depicted in Figure 15.

Block sectionx

0 ∗

train starting on BSx

train moving through BSx

ǫ

Figure 15: Starting and ending constraints modelled in terms of the alternative graph.

Starting and ending constraints for sets of trains already present or ending in moving
block sections can be modelled analogously by fixing alternative pairs.

Also several connection constraints may be modelled by introducing fixed arcs. If for
example a trainB has to wait at a station platform for another trainA a fixed arci → j
is introduced wherei represents the entrance of trainA in the station block section andj
represents the exit of trainB from its station block section (more precisely the entrance
of train B in the following block section). The weight of the arc is set to w modeling
the minimal timeB has to wait before leaving its block section after the arrival of A in
its block section, i.e.w is a suitable number modelling a minimal time which has to be
between the arrival ofA at the platform and the exit ofB from the platform. An example
for a constraint of Type (4) is depicted in Figure 16.

Modelling out-of-service intervals for certain block sections is different from the situa-
tions above, as not only additional fixed arcs but also additional nodes and alternative
pairs have to be introduced. Details of the model for an out-of-service interval situation
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platform
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train B

Fixed block sectiony

Fixed block sectionx

train A

train A

train B

w

i

j

Figure 16: Connection constraints modelled in terms of the alternative graph.

are depicted in Figure 17. There the situation is modelled where a slow train has to travel
through a block section which is out of service for a certain time period. Situations for fast
trains or moving block sections are modelled analogously. In the case depicted in Figure
17 for the out-of-service intervals = [b, b + l] of a certain block sectionx two artificial
nodesbsx andesx are introduced. Additionally there are fixed arcs0 → bsx, bsx → esx,
esx → 0 andesx → ∗ with weightsb, l,−b − l and0, whereb is the beginning of the
out-of-service interval andl its length. All these fixed arcs together model the constraint
that block sectionx is out-of-service exactly fromb to b+ l. The alternative pair drawn in
dashed lines then models the two possibilities either to schedule the train before or after
the out-of-service interval in the corresponding block section. It can easily be seen that
introducing an out-of-service interval for a certain blocksection is similar to the intro-
duction of an additional train moving through this section exactly within the time period
s = [b, b+ l].

The railway scheduling problem (with or without additionalconstraints) now can be for-
mulated as follows. Find a complete consistent selectionS of alternative arcs for the
corresponding alternative graphG = (V, C,A). Such a complete consistent selectionS
again defines an earliest start schedule(si)i∈V where the starting time of operationi is
equal to the length of a longest path from0 to i in G(S) = (V, C ∪ S).!!!

Besides the task to compute feasible solutions one can go further and try to find good
or optimal solutions. Given a certain objective function the goal is to compute solutions
which minimize this function.
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0

i σ(i)

∗
0

Figure 17: An out-of-service interval modelled in terms of the alternative graph.

In addition to the large variety of different constraints also different objective functions
can be suitably integrated in the alternative graph model. Obviously the makespan ob-
jectiveCmax as well as the maximum lateness objectiveLmax can be modelled as shown
above in the case of blocking job-shop problems. Also generalizations such as maximum
lateness of starting and ending times of arbitrary operations (e.g. entrances/exits of trains
in block sections) can be implemented in an easy way. This canbe done by setting due-
dates for these operations in terms of fixed arcs. For examplei → ∗ with weight−qi
(pi − qi) would modelqi as the due-date for the start (completion) ofi. Note that mod-
elling problems with due-dates and a corresponding objective function, all arcs of type
v → ∗ must represent such due-date constraints. Such arcs with weight 0 at the end of
jobs must be deleted or modified in order to represent due-dates.

For the objective functions proposed above the goal is to finda complete consistent selec-
tion S for a given alternative graphG = (V, C,A) which minimizes the starting times∗
of the sink.

Based on the starting times in a scheduleS = (si)i∈V optimal speeds for all train opera-
tions can be calculated. For example consider a train which has to wait in a block section
before entering the next because that one is occupied by another train. Then its speed in
the section can be adjusted to the total time it has to stay in the block section.

In the next section complexity results for different shop scheduling and railway problems
are presented.
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5 Complexity Results

In this section complexity results for shop scheduling problems with blocking and espe-
cially for railway scheduling problems are presented.

Two different types of problems are considered concerning their complexity, namely de-
cision problems on one hand and optimization problems on theother hand. For an in-
troduction to the theory of complexity and a summary of important results the reader is
referred to Garey & Johnson [24]. In this thesis a selection of decision problems is shown
to be NP-complete and some optimization problems are shown to be NP-hard. The differ-
ent types of complexity are closely related. An optimization problem is called NP-hard
if the corresponding decision problem is NP-complete. If a problem is shown to be
NP-complete or NP-hard this means that is is very unlikely tosolve it in polynomial time
(unlessP = NP ).

Before starting with presenting complexity results, a notation is introduced which is based
on the well-knownα|β|γ-scheme (see Brucker [9]) but adjusted in order to describe the
problems discussed in this thesis. New values for the machine environment, and objective
functions are described in Table 2.

Field Value Meaning
α Railway railway scheduling problem from Section 2.2.1

Railway, FB, slow railway scheduling problems with only fixed block
sections and slow trains

γ f ≤ UB problem of deciding whether a feasible solution with
objective value at mostUB exists or not

feas problem of deciding whether a feasible solution
which respects all constraints exists or not

Table 2: New values in theα- andγ-field.

Table 3 summarizes new values for theβ-field. The new fieldβb describes blocking
restrictions and the fieldβs contains new types of precedence constraints which are im-
portant in the context of railway scheduling problems. The structure of a railway network
and corresponding routes of trains are characterized by thefield βn.

With the notations above the elementary reductions depicted in Figure 18 and 19 can be
made. An arcP → Q in the reduction graph means that problemP reduces to problem
Q.
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Field Value Meaning
βb • all operations are ideal

blocking all operations are blocking except the last of a job
blocking − op each operation is defined to be ideal or blocking by

the problem instance
blocking(ǫ) each machine is available again onlyǫ > 0 after a job

starts on the next machine (has left the machine)
blocking − op(ǫ) describes the combination of theblocking − op case

and theǫ-constraint
βs • no additional precedence constraints are given

start each job/train may be determined to be the first one
on its first machine (starting constraints)

end each job/train may be determined to be the last one on
its last machine (ending constraints)

prec arbitrary precedence constraints may be given
βn single− line trains move on a single line in both directions

grid the railway network has gridlike structure
• the railway network has arbitrary structure

Table 3: New values in theβ-field.

Obviously a flow-shop problem reduces to a corresponding job-shop problem, as it is a
special case (Figure 18 (a)). For problems with blocking andno-swap constraints the
Railway problem with fixed block sections and slow trains lies between flow-shop and
job-shop problems (see Figure 18 (b)).

The elementary reductions for different blocking constraints depicted in Figure 19 can be
derived by special case reductions.

Graphs describing elementary reductions for other problemcharacteristics can be found
in Brucker [9]. The corresponding reduction graph for objective functions even holds
when considering feasibility instead of optimization problems.

In the following complexity results for both machine scheduling and railway scheduling
problems are discussed. In the first part the complexity of some feasibility problems
for flow-shops and job-shops is analyzed. The complexity of associated optimization
problems is deduced afterwards. The second part deals with the complexity of railway
scheduling problems. Finally in the third part all complexity results are summarized. In
particular borders between polynomially solvable and NP-complete (NP-hard) problems
are identified.
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(a) (b)

Railway

F |blocking(ǫ)

J |blocking(ǫ)

Railway, FB, slow

Figure 18: Elementary reductions for shop scheduling and railway problems.

ideal blockingblocking(ǫ)

blocking − op(ǫ) blocking − op

Figure 19: Elementary reductions for different blocking characteristics.

5.1 Shop scheduling problems with blocking

This subsection deals with complexity results for shop scheduling problems. On one hand
these results will build a basis for considerations about railway scheduling and related
problems. On the other hand they will be used to identify borders between polynomially
solvable and NP-complete (NP-hard) problems.

Some decision problems in the field of shop scheduling problems with blocking are shown
to be NP-complete. That means it is unlikely to decide with a polynomial effort of com-
putation time whether a feasible solution exists or not (unlessP = NP ).

Papadimitriou & Kanellakis [55] consider flow-shop problems with FIFO-buffers between
consecutive machines. A FIFO-buffer of capacityb can contain at mostb jobs at a time.
The jobs must leave the buffer in the same order as they entered it, this is the FIFO
property. Moreover no job is allowed to bypass a buffer. Thus, only permutation plans
are feasible solutions to these problems. A basic result published by Papadimitriou &
Kanellakis [55] is
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Proposition 5.1 ProblemF2|FIFO-buffer, b=1|Cmax ≤ UB is NP-complete (in the
strong sense).

Proof:

The following proof is a version of the original proof from Papadimitiriou and Kanellakis
but partially adjusted to the notations in this work.

For showingNP -completeness a reduction from problem 3MI (3-dimensionalmatching
of integers) is made. For problem 3MI a set ofn (positive) integersA = {a1, . . . , an} and
a set of2n (positive) integersB = {b1, . . . , b2n} are given. The question is: Is there a
partition ofB inton pairs(pi, qi), i = 1, . . . , n such that for alli; ai+pi+qi = c with c =
( 1
n
)(

∑n

i=1 ai+
∑2n

i=1 bi)? This problem is known to beNP -complete (in the strong sense)
(see Garey and Johnson [24]).

Now starting from an instance of 3MI an instance for problem
F2|FIFO-buffer, b=1|Cmax ≤ UB is constructed. It can be assumed thatc

4
< ai, bi <

c
2

and that allai, bi are multiples of4n. This can be achieved by adding a sufficiently large
integer to allai and bi and then multiplying all integers by4n. If an integerZ > 0 is
added to allai andbi then c

4
increases by3

4
Z and c

2
increases by3

2
Z. Thus, the valuesai

andbi increase faster thanc
4

and slower thanc
2

when increasingZ. Eventually for some
largeZ the relations above are fulfilled.

Note, that the problem stays the same when modifying the dataas described above. The
transformation does not affect the existence of a solution for the 3MI problem and thus
leads to an equivalent problem. Note, thatc > 8 holds, asc

2
> ai ≥ 4.

Constructing an instance for the flow-shop problem out of the3MI instance4n + 1 jobs
with execution times(p1i, p2i) are introduced as follows:

(i) n−1 jobsK1, . . . , Kn−1 with (p1Ki
, p2Ki

) = (3c
2
, 2) and a jobK0 with (p1K0

, p2K0
) =

(0, 2) and a jobKn with (p1Kn
, p2Kn

) = (3c
2
, 0),

(ii) a job Bi with processing times(p1Bi
, p2Bi

) = (1, bi) for each1 ≤ i ≤ 2n,

(iii) a job Ai with processing times(p1Ai
, p2Ai

) = ( c
2
, ai + c) for each1 ≤ i ≤ n.

The upper boundUB is defined to ben(2c + 2). This construction of an instance for
problemF2|FIFO-buffer, b=1|Cmax ≤ UB is obviously of polynomial effort.

It has to be shown that for the flow-shop problem a schedule with makespan at mostUB
exists if and only if the 3MI problem has a solution. AsUB is the sum of allp1j and also
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the sum of allp2j, the makespanC of a plan is less or equal toUB iff C = UB. Thus,
there cannot be any idle time in such a plan for one of the machines. As a consequence
K0 must be scheduled first andKn last. Otherwise there would be idle time on the second
machine at the beginning of a schedule or on the first machine at the end, respectively.

First it is shown that any feasible schedule for the flow-shopproblem defines a partition
of B into n pairs {bi1 , bi2} such thatai + bi1 + bi2 = c. Every feasible schedule for
the flow-shop instance has to consist ofn segments (see Figure 20). This can be shown
by induction on the number of segments. It will now be shown that the first part of the
schedule in[0, 2c + 2] must look like in Figure 20. From an identical argument then the
induction step for[i(2c+ 2), (i+ 1)(2c+ 2)] follows.

1 1 1 1

2 2

K0 Bi1 Bi2 Ai3 Ki4

1 1

2

Bi1 Ai3Bi2 Ki4

c

2

c

2
+ c

c

2

c

2
+ c

bj2bj1bi2bi1 aj + c

Kn

Bj1 Bj2

Bj2 Aj3Bj1

Aj3Kj1

ai3 + c

Figure 20: Job patterns for a feasible schedule

In any feasible schedule for the flow-shop problem two jobsBi1 , Bi2 have to follow the
first jobK0. Otherwise there would be an idle time on the second machine (see Figure
21). (If anAj followsK0 this is obvious, asc > 8. If a jobBi and anAj followK0 then
bi <

c
2
− 1 holds sincec and bi are multiples of4n and bi < c

2
. Thus, idle time on the

second machine occurs. Scheduling a jobKj instead ofAj would also lead to idle time
on the second machine, as its processing time on the first machine is even longer.)
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Figure 21: Job patterns, which do not provide a feasible schedule.

The next job then must be anAi3 (see Figure 22). Otherwise, choosing a jobBi3 , a buffer
overflow (idle time on the first machine, respectively) wouldoccur. Choosing a jobKi3

an idle time on the second machine (asbi1 + bi2 < c < 3c
2

) would arise.

Similar arguments as used above provide a jobKi4 to be the next one.Ki4 must be
chosen since a no jobBi4 can be used. A jobAi4 followed by a jobBi5 or Ai5 cannot be
used, too. All these choices would cause a buffer overflow (idle time on the first machine,
respectively) asbi1 + bi2 + ai3 + c > 3c

2
> c + 1 (see Figure 23 (a), (b)). Using a

job Ai4 followed by a jobKi5 would also lead to contradiction when looking at the next
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Figure 22: Job patterns, which do not provide a feasible schedule.

possible job. Thenbi1 + bi2 + ai3 + c + ai4 + c < 4c− 2 holds, so that scheduling a job
Ki6 would cause an idle time on the second machine (see Figure 23 (c)). Furthermore
bi1 +bi2 +ai3 +c+ai4 +c > 3c holds, which leads to buffer overflow (idle time on the first
machine, respectively) when scheduling a jobAi6 or Bi6 next. Thus, jobKi4 completes
the segment and the next segment starts withKi4 on the second machine.
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Figure 23: Job patterns, which do not provide a feasible schedule.

Additionally it is shown thatKi4 finishes on the first machine exactly whenAi3 finishes on
the second. Therefore it has to be shown thatbi1 +bi2 +ai3 +c = 2c. In the casebi1 +bi2 +
ai3 +c < 2c there must be idle time on the second machine. In casebi1 +bi2 +ai3 +c > 2c
it is clear thatbi1 + bi2 + ai3 + c − 2c = bi1 + bi2 + ai3 − c is a multiple of4n and no
job can followKi4 (a jobBi because of buffer overflow (idle time on the first machine,
respectively) and jobsAi andKi becausebi1 + bi2 + ai3 + c + 2 < 3c

2
+ c = c

2
+ 2c,

which means idle time on the second machine). Thus,bi1 + bi2 + ai3 + c = 2c holds and
a partition for the 3MI problem can be constructed from the feasible flow-shop schedule.

Conversely, given a partition for the 3MI problem a feasibleschedule without idle times
for the flow-shop problem can be constructed using the pattern from Figure 20. This
completes the proof and problemF2|FIFO-buffer, b=1|Cmax ≤ UB is shown to beNP -
complete (in the strong sense). 2

Note, that in the proof above zero processing times are allowed and thus, NP-completeness
for problems including those is shown. But zero processing times can be disallowed by
multiplying all processing times by a large positive integer and replacing zero times by 1.
This does not modify the argumentation.
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From the complexity result above other complexity results for a variety of shop scheduling
problems with blocking can be derived step by step. In a first step the following result for
blocking flow-shop problems can be stated.

Proposition 5.2 ProblemF3|blocking|Cmax ≤ UB is NP-complete (in the strong sense).

Proof: ProblemF3|blocking, p2j = 0|Cmax ≤ UB is equivalent to the 2-machine flow-
shop problem with a FIFO-buffer of capacityb = 1 between the machines (see Hall &
Sriskandarajah [28]), as the buffer can be interpreted as anadditional machine with zero
processing times. Thus, the problem of deciding whether a feasible solution with at most
makespanUB exists is NP-complete (in the strong sense). Therefore the more general
problem with arbitrary processing times on the second machine (i.e.F3|blocking|Cmax ≤
UB) is NP-complete (in the strong sense), too. (If zero processing times are wanted
to be disallowed this can obviously be done by multiplying all processing times by a
sufficiently large numberN and setting zero processing times to 1. This does not modify
the argumentation.) 2

Setting time-windows[0, UB] for the completion time of all operations for the prob-
lem F3|blocking| . . . and asking for a solution respecting these time-windows leads to
an equivalent formulation of the decision problemF3|blocking|Cmax ≤ UB. Thus, the
more general problem with arbitrary time-windows is NP-complete (in the strong sense),
too. This leads to

Proposition 5.3 ProblemF3|blocking, rij, dij|feas is NP-complete (in the strong sense).

From the results above some results for job-shop problems with blocking can be derived
by simple special case reduction.

Proposition 5.4 (a) ProblemJ |blocking|Cmax ≤ UB is NP-complete (in the strong
sense).

(b) ProblemJ |blocking, rij , dij|feas is NP-complete (in the strong sense).

Note that all considerations so far do only hold in the case ofstandard blocking problems
and thus with swap allowed in the case of job-shop problems.

For no-swap problems a more complex argumentation is needed. Consider problem
F3|blocking(ǫ)|Cmax ≤ UB, namely the 3-machine flow-shop problem with blocking,
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where each machine is available again onlyǫ > 0 after a job starts on the next machine
(has left the machine). This means, thatǫ is added to the weight of every alternative arc.
In Figure 24 the ProblemF3|blocking|.. is modeled in terms of an alternative graph. The
blocking restrictions allow only permutation solutions tobe feasible, as they disallow the
overtaking of jobs. Consider the situation depicted in Figure 25 in terms of an alternative
graph. There the sequence of two jobsi andj is chosen different on the machinesMi

andMi+1, as the corresponding alternative arcs are chosen in different directions. This
choice is infeasible as a positive cycle occurs. By induction the permutation property is
proved. For a complete consistent selection this means thatone has parallel alternative
arcs between each pair of jobs (see Figure 26).

0 ∗

N-2 N-1 N

1 2

4 5 6

3

987

M1 M2 M3

Figure 24: Alternative graph for problemF3|blocking|.. .
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Figure 25: Jobs which are sequenced differently on consecutive machines.
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Figure 26: Solution graph for problemF3|blocking|.. .

Obviously replacing the zero weights of alternative arcs bya small numberǫ > 0 does
not modify the argumentation considerably. This leads to

Proposition 5.5 ProblemF3|blocking(ǫ)|Cmax ≤ UB is NP-complete (in the strong
sense).

With the same argumentation as for the case withoutǫ - setting time-windows[0, UB]
for the completion time of all operations for the problemF3|blocking(ǫ)| and asking
for a solution respecting these time-windows - an equivalent formulation of the decision
problemF3|blocking(ǫ)|Cmax ≤ UB is given. Thus, the more general problem with
arbitrary time-windows is NP-complete, too.

Proposition 5.6 ProblemF3|blocking(ǫ), rij, dij|feas is NP-complete (in the strong sense).

For job-shop problems with blocking and theǫ-constraint one can prove NP-completeness
by simple special case reduction. Theǫ-constraint covers the case ofǫ > 0 being arbitrary
small and thus the no-swap problem (see above). As the problem with theǫ-constraint is
NP-complete (in the strong sense) for anyǫ > 0 especially the problem with swap not
allowed (ǫ > 0 arbitrary small) is NP-complete (in the strong sense). In the following it
is not distinguished between problems with theǫ-constraint and no-swap problems. The
results for job-shop problems with blocking are summarizedin
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Proposition 5.7 (a) ProblemJ |blocking(ǫ)|Cmax ≤ UB is NP-complete (in the strong
sense).

(b) ProblemJ |blocking(ǫ), rij , dij|feas is NP-complete (in the strong sense).

For job-shop problems with blocking and no swap allowed Mascis & Pacciarelli [44]
derived a different type of complexity result, which is based on the representation of the
problem in terms of alternative graphs. Using the notationsintroduced above they proved
the following

Proposition 5.8 Consider a blocking job-shop problem with no swap allowed which is
given in terms of an alternative graph. Furthermore letS be a partial consistent selection
for this graph. Then the problem of deciding whether an extension ofS exists or not is
NP-complete (in the strong sense).

Note that this proposition cannot be proved for a general situation in the case swap is
allowed. A more detailed description of those results can befound in [44].

Leading over from feasibility to optimization problems thefollowing two results which
can be derived directly from the above results are important.

Conclusion 5.1 (i) ProblemF3|blocking|Cmax is NP-hard.

(ii) ProblemF3|blocking(ǫ)|Cmax is NP-hard.

Even for problems with no-wait constraints such asF3|no-wait|Cmax NP-hardness is
proved (see Röck [60]). For the objective functionLmax the no-wait flow-shop prob-
lem is already NP-hard for two machines (see Röck [59]). Of course then the corre-
sponding job-shop problems are also NP-hard. But even in more special cases like unit
processing times, these job-shop problems remain NP-hard for three machines and pseu-
dopolynomially solvable for two machines, i.e.J3|no-wait, pij = 1|Cmax is NP-hard
andJ2|no-wait, pij = 1|Cmax is NP-hard in the weak sense. It is pseudopolynomially
solvable (see Sriskandarajah & Ladet [64] and Kubiak [39]).

5.2 Railway scheduling problems

The complexity results derived above imply some railway scheduling problems intro-
duced in Section 2.2 to be NP-complete.
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ProblemF3|blocking(ǫ)|Cmax ≤ UB can be viewed as a special railway problem or as
a specific part of a railway problem with fixed block signalling system. In particular this
shop scheduling problem corresponds to the problem of scheduling a set of slow trains all
travelling in the same direction through three fixed block sections with respect to a given
global time-window. Thus, this leads to a more general result.

Proposition 5.9 Let be given a rail network with fixed block signalling, a set of trains with
given routes and the corresponding travelling times for allpairs{ train, block section}.
Then the problem of finding a feasible solution with respect to a given global time-window
(upper bound for the makespan) is NP-complete (in the strongsense).

Of course, the case of mixed signalling systems is NP-complete, too. Another complexity
result, which is relevant for railway scheduling problems is Proposition 5.8. Let be given a
rail network with fixed block signalling, a set of trains withfixed routes and the travelling
times for all pairs (train, block section). Then the problemof deciding whether a feasible
solution with respect to some starting and ending constraints of trains corresponds to a
special job-shop problem where a special partial selectionis given and an extension is
asked for. Then Proposition 5.8 already indicates that evenrailway problems without
time-windows may be very hard to solve.

A formal reduction - strongly oriented towards a similar reduction from Arbib et al. [6] -
can be made from problem 3-SAT. This leads to the following proposition.

Proposition 5.10 Given a railway network with fixed block safety system and slow trains
with given fixed routes and initial positions (starting constraints) the problem of deciding
whether a feasible solution (complete consistent selection for the corresponding alterna-
tive graph) exists or not is NP-complete (in the strong sense).

Proof: It is clear, that the given problem is inNP . One can guess a complete selec-
tion and prove its consistency in polynomial time by lookingfor a positive cycle in the
corresponding graph.

In order to showNP -completeness 3-SAT will be reduced to a special case of the railway
problem. This proof is strongly oriented towards a similar proof from Arbib et al. [6].
Arbib et al. showNP -completeness for a problem where packets have to move through a
so-called packet switching network. Here trains moving in arailway network are consid-
ered instead of packets. An instance of 3-SAT is given by clausesF0 ∧ F1 ∧ . . . Fm with
variablesx0, x1, . . . , xn, whereFj = (lj1 ∨ lj2 ∨ lj3).
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Now a railway network and trains moving on given routes in this network are associated
to this instance of 3-SAT. The railway network is composed out of special rudimentary
elements (fixed block sections) which are shown in Figure 27.In the railway network
shown in Figure 28 these fixed block sections appear in different orientations. For exam-
ple the fixed block section of type (b) appears at all four borders of the rectangle in the
corresponding four different orientations.

(a) (b) (c)

Figure 27: Different layouts for fixed block sections.

With each clauseFi a subnet of the whole railway network is associated. More precisely
with Fi the railway subnetNFi

is associated with rudimentary elements

ui, aij andbij , wherej ∈ {1, 2, 3}.

These rudimentary elements have connections

{(aij, ai,j+1), (bij , bi,j+1) | j = 1, 2} ∪ {(aij , bij) | j = 1, 2, 3} ∪ {(bi2, ui)}.

Additionally with each pairXk = (xk, x̄k) is associated a subnetNxk
with elements

{xk, vk, x̄k}

and connections
{(xk, vk), (vk, x̄k)}.

These subnetworks are embedded in a rectangular gridlike network of sufficient size. Of
course the minimal size is bounded by a polynomial in the sizeof the instance of 3-SAT.
This ensures the correctness of the transformation. How to embed the subnetworks is
defined by specifying coordinates in the grid.

Embedding the sections of the subnetworks in the grid the following coordinates are cho-
sen for theNFi

:

• aij gets the coordinates(3i+ j, 5), 0 ≤ i ≤ m, 1 ≤ j ≤ 3,
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• bij gets the coordinates(3i+ j, 4), 0 ≤ i ≤ m, 1 ≤ j ≤ 3,

• ui gets the coordinates(3i+ 2, 3), 0 ≤ i ≤ m.

For the sections ofNxk
the following coordinates are chosen:

• xk gets the coordinates(3k + 1, 1), 0 ≤ k ≤ n,

• vk gets the coordinates(3k + 2, 1), 0 ≤ k ≤ n,

• x̄k gets the coordinates(3k + 3, 1), 0 ≤ k ≤ n,

In order to have a more comfortable description of the routesof trains additional names
for special sections in the network are introduced.

• The sections(3i+ 2, 2), 0 ≤ i ≤ m are denotedbui (’belowui’),

• the sections(3k + 2, 0), 0 ≤ k ≤ n are denotedbvk (’below vk’),

• the sections(3k + 1, 2), 0 ≤ k ≤ n are denotedaxk (’abovexk’), and

• the sections(3k + 3, 2), 0 ≤ k ≤ n are denotedāxk (’abovex̄k’).

Withp = max{3m+1, 3n+1}+1 all sections are contained in the rectangular network
with corners(0, 0), (p, 0), (p, 6), and(0, 6). This is a polynomially large railway network.
Skipping some details, a sketch of the railway network is drawn in Figure 28.

Now (slow) trains are introduced. FirstlyL trains t1, . . . , tL are defined. The idea is
to have enough trainsti to occupy all block sections on a common part of their routes.
Therefore the routes of the trainsti have to be defined first andL will be defined later.

Train ti starts in a section located at coordinates(0,−i), 1 ≤ i ≤ L and has to be the
first train there, i.e. it blocks this section from the beginning of any plan. The route of
ti is composed out of three parts. Firstlyti passes all sections along the following route,
which is specified by turning points only:

(0,−i), (0, 0), (p, 0), (p, 2), (1, 2), (1, 4).

After thatti travels along the following path:

(1, 4), (1, 5), (3, 5), (3, 4), . . . ,
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(p,6)

(0,0) (p,0)

(0,-L)

(0,1)

a11 a12 a13

b13b12b11

ax1 bu1

x1

u1

v1 x̄1

āx1

(0,6)

Figure 28: Sketch of the gridlike railway network.

(3j + 1, 4), (3j + 1, 5), (3j + 3, 5), (3j + 3, 4), . . . ,

(3m+ 1, 4), (3m+ 1, 5), (3m+ 3, 5), (3m+ 3, 4).

The last part ofti’s route is:

(3m+ 3, 4), (p, 4), (p, 6), (0, 6), (0, 1).

Thus, (0, 1) is the final destination of all theseL trains. NowL is defined to be the
number of sections along any route of these trains between(1, 0) and (0, 2), extremes
included. Note, that this number is well-defined as any of thetrains passes a finite number
of sections between(1, 0) and(0, 2). This number is bounded by7(p+ 1) as any section
is visited by any train at most once. The route of a trainti is depicted in Figure 29.

Next3(m + 1) trains pij, where0 ≤ i ≤ m, 1 ≤ j ≤ 3, are placed at their initial block
sections ataij . Their routes depend on the instance of 3-SAT in the following way:

• If li1 = xk, thenpi1 travels the routeai1, bi1, bi2, bui, axk, xk otherwise ifli1 = x̄k it
travels routeai1, bi1, bi2, bui, āxk, x̄k,
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Figure 29: Routes of trainsti.

• if li2 = xk, thenpi2 travels the routeai2, bui, axk, xk otherwise ifli2 = x̄k it travels
routeai2, bui, āxk, x̄k,

• if li3 = xk, thenpi3 travels the routeai3, bi3, bi2, bui, axk, xk otherwise ifli3 = x̄k it
travels routeai3, bi3, bi2, bui, āxk, x̄k.

Additionally2(n + 1) trains qk and q̄k where0 ≤ k ≤ n are placed at their initial block
sections atxk and x̄k respectively. The route of a trainqk is

xk, vk, bvk, (0, 0), (0,−L),

whereas the route of̄qk is
x̄k, vk, bvk, (0, 0), (0,−L).

The routes of trainspij , qk, andq̄k are depicted in Figure 30.

The last train introduced is a special trainl which starts in the section located at co-
ordinates(0, 1). It travels straight on to its destination in(0,−L). This train plays an
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Figure 30: Routes of trainspij, qk, andq̄k.

important role as it obviously has to wait for completing itsjourney until all trainsti have
left the sections on they-axis. Note that each block section, where trains end, is supposed
to have some sidings, were only these ending trains can be parked.

The travelling time of any of the trains is set to10 for any block section and the the exit-
time ǫ is set to1. The resulting instance of a railway scheduling problem is obviously
polynomial in the size of the 3-SAT instance.

In order to complete this proof it has to be shown, that the instance of the 3-SAT problem
is satisfiable if and only if a feasible solution for the railway problem exists.

Let µ be a satisfying assignment for the 3-SAT problem. Accordingto µ trains have to
be driven in a way that they can reach their destinations. Firstly trainsqk travels into
sectionvk, if µ(xk) = TRUE. Otherwise (µ(xk) = FALSE) q̄k travels into sectionvk.
By construction of the railway network and sinceµ is a satisfying assignment, for each
subnetNFi

at least one trainpij can reach its destination. All other trainspij are parked
in the two ’parking sections’bi2 andui. Next all trainsti can leave they-axis and occupy
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block sections on their route between coordinates(1, 0) and(0, 2). Now the special trainl
can reach its destination and consequently all other trains, especially theti can complete
their journey. This completes one direction of the proof.

Starting with a feasible solution for the railway scheduling problem, now a satisfying
assignment for the 3-SAT problem is constructed. The designof the railway network and
the routes of trains allows special trainl to reach its destination only if all trainsti have
left they-axis. By the choice ofL and sincel occupies the destination of all trainsti, all
trainspij have either to travel to their destinations (xk or x̄k) or to be parked inbi2 or ui.
Each subnetNFi

provides two parking sections only. Thus, at least one trainpij has to be
driven to its final destination for eachNFi

. This implies, that for each pair(xk, x̄k) one of
the trains has to move into sectionvk. This provides a satisfying assignment for the 3-SAT
problem, which completes the proof.

2

A railway problem which is obviously polynomially solvableis the problem
Railway, FB, slow|single− line, start|feas. If there are starting constraints for trains
at both ends of the single line the problem is infeasible. Otherwise a feasible schedule can
be computed by planning trains one by one respecting the starting constraints.

5.3 Classification of complexity results

In this section the complexity results derived above are summarized and supplemented by
additional results from the literature. Especially the hardest problems which are known to
be polynomially solvable and the easiest problems which areshown to be NP-complete
or NP-hard are identified. Scheduling problems with different blocking restrictions are
considered first. After that, railway problems are analyzedwhere starting restrictions are
given.

For shop scheduling problems the classical flow-shop problem with two machines
(F2||Cmax) is known to be polynomially solvable (see Johnson [31]). But already the
problem with three machines can be proved to be NP-hard (see Lenstra et al. [41]), i.e.
the corresponding decision problem is NP-complete. Thus, the reduction graph in Figure
19 provides such problems withβb ∈ {ideal, blocking − op, blocking − op(ǫ)} to be
NP-complete (NP-hard).

For blocking problems the 2-machine flow-shop with makespanobjective is polynomi-
ally solvable (see Gilmore and Gomory [27]). The corresponding 3-machine flow-shop
problem withβb ∈ {blocking, blocking(ǫ)} is NP-complete (NP-hard) (see Proposition
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5.2 and 5.5). Even with the no-swap restriction, which becomes important for job-shop
problems, the problem is NP-complete.

Thus, for blocking problems with makespan objective the border between polynomially
solvable and NP-complete (NP-hard) problems lies between 2-machine and 3-machine
flow-shop problems. Minimal and maximal open problems can bederived using the
CLASS-program from Plaggenborg [56]. In addition to the reduction graphs from Fig-
ure 18 (a) and 19 also the reduction graph for the number of machines and for objective
functions (see Brucker [9]) is used. The results for machinescheduling problems can be
summarized as follows:

• maximal polynomially solvable:

F2|blocking(ǫ)|Cmax equiv. problem in Gilmore & Gomory [27]
F2||Cmax Johnson [31]
F2|blocking|Cmax equiv. problem in Gilmore & Gomory [27]

• minimal NP-hard:
F2||

∑
Ci Garey et al. [25]

J2||Cmax Lenstra & Rinnooy Kan [40]
F3|blocking|Cmax Proposition 5.2
F3||Cmax Garey et al. [25]
F3|blocking(ǫ)|Cmax Proposition 5.2
F2||Lmax Lenstra et al. [41]

• minimal open:

J2|blocking|Cmax
F2|blocking − op|Cmax
F2|blocking|Lmax
F2|blocking(ǫ)|

∑
Ci

F2|blocking|
∑
Ci

F2|blocking(ǫ)|Lmax
F2|blocking − op(ǫ)|Cmax
J2|blocking(ǫ)|Cmax
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• maximal open:

F2|blocking − op|Cmax
F2|blocking − op(ǫ)|Cmax
J |blocking(ǫ)|

∑
wiCi

J |blocking|
∑
wiCi

J2|blocking(ǫ)|
∑
wiTi

J2|blocking(ǫ)|
∑
wiUi

J2|blocking|
∑
wiTi

J2|blocking|
∑
wiUi

The feasibility problem for a flow-shop with blocking, theǫ-constraint and starting con-
straints (F |blocking(ǫ), start|feas) is obviously polynomially solvable. It can be inter-
preted as a railway problem where slow trains move on a singleline in the same direc-
tion. As stated above the railway problemRailway, FB, slow|single− line, start|feas
is polynomially solvable. However, the more general railway problem with fixed block
safety system and slow trains (Railway, FB, slow|start|feas) is NP-complete, as shown
in Proposition 5.10. A closer look on the associated proof shows already problem
Railway, FB, slow|grid, start|feas to be NP-complete. Thus, for Railway schedul-
ing problems the border between polynomially solvable and NP-complete problems lies
between problems with only a single line and problems with a gridlike railway network.
However, there is a large gap between railway problems with starting constraints which
are known to be polynomially solvable and NP-complete, respectively.

In the next section different solution procedures, exact methods and heuristic approaches,
are presented.
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6 Solution methods

In this section a summary of different approaches to get feasible and/or good solutions
for railway scheduling and related problems is presented. Existing techniques appearing
in the literature as well as new ideas are described. When considering optimization prob-
lems the approaches are mainly developed for the objective functionCmax (andLmax)
but can be easily adapted to other objectives like maximum lateness of an arbitrary set of
operations (see above). All methods are based on the representation of these problems in
terms of the alternative graph model. Thus, most of the proposed algorithms can also be
used to solve other problems if formulated by means of alternative graphs.

6.1 Greedy heuristics

In this section some simple heuristics in order to compute feasible solutions (complete
consistent selections) for problems formulated by means ofalternative graphs are pre-
sented. Most of these heuristics were developed by Mascis and Pacciarelli [44, 45] and
are based on a generic greedy strategy combined with different priority rules. In addition
to the priority rules presented in [44, 45] a new rule is described.

The main idea of the generic greedy approach is to fix successively arcs of alternative
pairs according to some priority rule. In between alternative arcs which are induced by
others are fixed. The algorithm ends with a complete consistent selection or stops if for
an alternative pair no choice is possible, i.e. if both arcs of the pair would create a positive
length cycle in the graph.

The generic algorithm is as follows:

1 begin
2 S := ∅;
3 Preprocess graph, i.e. choose all alternative arcs, which

are implied by the problem instance itself;
4 while A 6= ∅ do
5 begin
6 Select an alternative pair ((h, k), (i, j)) ∈ A;
7 Select arc (i, j), i.e. S := S ∪ {(i, j)};A := A− {((h, k), (i, j))};
8 while ∃((u, v), (p, q)) ∈ A : l(v, u) + auv > 0 do
9 begin

10 if l(q, p) + apq > 0 then
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11 STOP, the procedure failed in finding a feasible
solution;

12 else
13 Select arc (p, q), i.e.

S := S ∪ {(p, q)};A := A− {((u, v), (p, q))};
14 end
15 end
16 end

Listing 1: Generic greedy algorithm

The preprocessing algorithm in Step 3 fixes arcs which are implied by the problem in-
stance itself. It mainly applies the inner loop (Step 8) of the heuristic to the alternative
graph. In Step 6 and 7 different priority rules are used to choose alternative arcs which
are fixed next. Mascis and Pacciarelli ([44]) proposed four different rules.

• AMCC (Avoid Maximum CurrentCmax) selects the pair((h, k), (i, j)) ∈ A; such
that

l(0, h) + ahk + l(k, ∗) = max
(u,v)∈A

{l(0, u) + auv + l(v, ∗)}.

The alternative arc(h, k) would increase the makespan ofG(S) most, if selected.
Hence AMCC chooses(i, j).

• SMCP (Select Most Critical Pair) selects the pair((h, k), (i, j)) ∈ A; such that

min{l(0, h) + ahk + l(k, ∗), l(0, i) + aij + l(j, ∗)}

is maximized. Then the arc(i, j) with l(0, h)+ahk+ l(k, ∗) ≥ l(0, i)+aij + l(j, ∗)
is chosen.

• SMBP (Select Most Balanced Pair) selects the pair((h, k), (i, j)) ∈ A; such that

| {l(0, h) + ahk + l(k, ∗) − l(0, i) − aij − l(j, ∗)} |

is minimized. Then the arc(i, j) with l(0, h)+ahk + l(k, ∗) ≥ l(0, i)+aij + l(j, ∗)
is chosen.

• SMSP (Select Max Sum Pair) selects the pair((h, k), (i, j)) ∈ A; such that

| {l(0, h) + ahk + l(k, ∗) + l(0, i) + aij + l(j, ∗)} |

is maximized. Then the arc(i, j) with l(0, h)+ahk+ l(k, ∗) ≥ l(0, i)+aij + l(j, ∗)
is chosen.
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In this thesis an additional rule is used, namely:

• FCFS (First Come First Serve) selects the pair((h, k), (i, j)) ∈ A; such that

min{l(0, h), l(0, i)}

is minimized. Then the arc(i, j) with l(0, h) ≥ l(0, i) is chosen.

In the case of the absence of a path fromi to j its length is set tol(i, j) = −∞. In
the implementations for this thesis it is set to a large negative number, respectively. It
will be seen later, that all five rules can also be used as branching rules for enumerative
algorithms.

As can be seen from the given algorithm a very simple constraint propagation technique
is included. Alternative arcs which are implied by others can be found by simple longest-
path-considerations. That means, if for an alternative arci→ j with weighta a path from
j to i with weight b > −a already exists the choice ofi → j would lead to a positive
cycle and thus, its alternative arc is implied. For some quite simple examples like flow-
shop problems with blocking the algorithm always finds a complete consistent selection.
Examples, where during the algorithm a consistent selection is reached, which has no
extension, but where all alternative arcs seem to be selectable, are more complex. In this
context arcs are said to seem selectable if they do not cause an immediate contradiction if
chosen.

In the next section more sophisticated constraint propagation techniques are developed.

6.2 Constraint propagation techniques

In this Section constraint propagation techniques for the alternative graph model and es-
pecially for job-shop problems with blocking and for the railway scheduling problems
described above are presented.

The constraints in job-shop problems with blocking are morerestrictive than in a corre-
sponding classical job-shop. Feasible solutions for the classical job-shop in general do not
stay feasible for the blocking problem. Moreover no-swap restrictions reduce the number
of feasible solutions additionally. On one hand this complicates the problem of finding
feasible solutions. On the other hand it may be a chance to apply effectively constraint
propagation methods.

Especially in railway problems situations occur where the choice of an alternative arc
or a set of alternative arcs implies many other alternative arcs to be chosen in a feasible
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solution. Consider the situation depicted in Figure 31 where two trains travel on a single
track in the same direction without any possibilities to overtake. Then the choice of one
alternativeσ(u) → v arc representing the train sequence in a block sectionMi implies all
other arcs to be chosen in the same direction.

Mi

Mi

Mi+1

Mi+1

MiMi−1 Mi+1

Mi−1

Mi−1

u

Mi+2

Mi+2

Mi+2

v σ(v)

σ(u)

Figure 31: Two trains travelling on a single track.

These ideas are now generalized and described in a formal way. Consider two pairs of
alternative arcs(i → j, h → k) and(s → t, p → l). Moreover letMi→j andMs→t be
the sets of alternative arcs which are implied byi → j ands → t. By definition let be
i→ j ∈Mi→j ands→ t ∈Ms→t.

As a first step obviously the following can be stated:

Remark 6.1 LetS be a partial consistent selection for the alternative graphG = (V, C,A)
and(i→ j, h→ k) be an additional alternative pair. IfG(S ∪ {i→ j}) contains a posi-
tive cycle then eitherh→ k is implied byS or S has no extension (if evenG(S∪{h→ k}
contains a positive cycle).

Remark 6.1 leads to a very simple methods to enlarge setsMs→t. All alternative arcs have
to be checked whether they lead to a positive cycle with the current setMs→t. If an arc
produces a positive cycle, its alternative is added toMs→t and so on. If at a pointMs→t

has no extension, the initial arcs→ t cannot be chosen in a complete consistent selection.
Otherwise it is known that whenever arcs → t is chosen in a selection then all arcs of
Ms→t have to be chosen in order to stay feasible. This technique was already integrated in
the greedy algorithms from Section 6.1 and can obviously be implemented in polynomial
time.

By the strategy described above sets of implied arcsMi→j can be initialized. In order to
enlarge these sets or to fill them more effectively the following remarks can be stated.
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Remark 6.2 If s→ t ∈Mi→j, thenMs→t ⊂Mi→j .

A direct consequence is:

Remark 6.3 If s→ t ∈Mi→j andi→ j ∈Ms→t, thenMs→t = Mi→j .

Notice thats → t ∈ Mi→j means, that the choice ofs → t is implied by the choice of
i→ j. Reversing this argument leads to

Remark 6.4 Let (i → j, h → k) and (s → t, p → l) be two alternative pairs. If
s→ t ∈Mi→j thenh→ k ∈Mp→l.

Proof: Letp→ l be chosen in a complete consistent selection. Suppose that eveni → j
is chosen. Thens → t ∈ Mi→j impliess → t to be chosen, which is a contradiction, as
only one arc of the pair(s→ t, p→ l) can be fixed. Thus,h→ k must be fixed. 2

Furthermore it can be proven

Conclusion 6.1 Let (i → j, h → k) and (s → t, p → l) and (a → b, c → d) be
alternative pairs witha→ b ∈Mi→j andc→ d ∈ Ms→t.
Then alsop→ l ∈Mi→j andh→ k ∈Ms→t

Proof: From Remark 6.2 it follows thatMa→b ⊂Mi→j (Mc→d ⊂ Ms→t) and Remark 6.4
providesh→ k ∈Mc→d (p→ l ∈Ma→b) .
Thus,p→ l ∈Mi→j andh→ k ∈Ms→t. 2

Summarizing the main considerations above three properties of the sets of implied arcs
can be identified, which are:

(1) Reflexivity: i→ j ∈Mi→j for all alternative arcsi→ j.

(2) Set-Transitivity:s → t ∈ Mi→j ⇒ Ms→t ⊂ Mi→j for all all alternative arcsi → j
ands→ t.

(3) Alternative-Symmetry:s → t ∈ Mi→j ⇒ h → k ∈ Mp→l for all alternative pairs
(i→ j, h→ k) and(s→ t, p→ l).
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These properties may help to effectively enlarge the sets ofimplied arcs. They may even
be used to propagate constraints, which were already set forexample in a branch&bound
procedure. For all algorithms which are based on the alternative graph model the choice
of alternative arcs may be replaced by the choice of the corresponding sets. This leads to

Notation 6.1 For an alternative pair(i → j, h → k) the pair of sets(Mi→j,Mh→k) is
calledpair of alternative sets.

For special cases of problems probably additional properties may be identified.

Next lower bounds and constraint propagation techniques, which will be helpful espe-
cially for enumerative algorithms, will be described. The techniques are mainly designed
for exploiting the existence of a given upper boundUB for the objective function value
in Cmax-problems. They were developed for the classical job-shop problem and already
transferred to blocking problems by Mascis and Pacciarelli[45].

A lower bound presented by Mascis and Pacciarelli [45] is based on the concept of
cliques. A clique of operations is a setK of operations where no two of them can be
processed simultaneously, i.e. fori, j ∈ K one has eithersj ≥ si + pi or si ≥ sj + pj .
This is for example the case for a set of operations to be processed on the same machine.

For blocking problems the time when a machine becomes available again after the pro-
cessing of an operationi possibly does not only depend onpi but also on the constraints
on sσ(i). Thus, the processing timepi may be dynamically replaced by larger values in
optimization procedures for such problems.

For a cliqueK an operationv ∈ K is calledinput of K, if in all feasible solutionsv
is processed before all other operations ofK. It is calledoutput of K if in all feasible
solutions it is processed after all other operations ofK.

Given a consistent selectionS a release timēri can be associated with each operationi. A
lower bound for̄ri is the lengthlS(0, i) of a longest0 − i-path inG(S). Thus, a possible
choice forr̄i is lS(0, i).

Similarly a flow timep̄i for i can be identified as a lower bound for the time period be-
tween the starting time ofi and and the time whenj(i) leavesµ(i) in an optimal extension
of S. A possible choice is̄pi = pi, asp̄i ≥ pi holds.

At last a delivery timēqi can be associated toi. It is defined as̄qi = lS(i, ∗) − p̄i, i.e. it is
a lower bound for the time period between the time whenj(i) leaves its machine and the
makespan of an extension ofS.
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For blocking operations the values can be modified tor̄i = max{lS(0, i), lS(0, σ(i))−p̄i},
p̄i = lS(i, σ(i)) andq̄i = max{lS(σ(i), ∗), lS(i, ∗) − p̄i − r̄i + lS(0, i)}.

If r̄i = lS(0, σ(i)) − p̄i this implies, thati is shifted right. But i may be the successor of
another operation and thus, this right-shift could increase the makespan. Thus,r̄i could be
too large. The choice of̄qi compensates too large values which may be chosen forr̄i. If
r̄i = lS(0, i), then one has̄qi = max{lS(σ(i), ∗), lS(i, ∗) − p̄i}, which is obviously okay.
Otherwise one has̄qi = max{lS(σ(i), ∗), lS(i, ∗) − p̄i − lS(0, σ(i)) + p̄i + lS(0, i)} =
max{lS(σ(i), ∗), lS(i, ∗) − (lS(0, σ(i)) − lS(0, i))}. Here the termlS(0, σ(i)) − lS(0, i)
compensates the fact, thatr̄i may be too large.

A lower bound for the makespan of an optimal extension ofS can be computed by consid-
ering the corresponding single machine problem with release datesri and delivery times
qi for each cliqueK. A lower bound for such a problem is derived by building Jackson’s
preemptive schedule (see Carlier & Pinson [18]). Such a schedule can be computed with
effortO(|K| log |K|) and has makespan

max
J⊂K

(min
j∈J

rj +
∑

j∈J

pj + min
j∈J

qj).

Thus, this is a suitable technique to compute lower bounds for example in branch&bound
procedures.

The propagation technique presented by Mascis and Pacciarelli [45] is based on the in-
vestigation ofascendantanddescendantsets.

Given a selectionS let now beri = lS(0, i) andqi = lS(i, ∗) − pi. Then given a bound
UB for the makespan a setJ ⊂ N of operations is called ascendant set ofc if c /∈ J and

min
j∈J∪{c}

rj +
∑

j∈J∪{c}

pj + min
j∈J

qj > UB.

In this casec is the output of the cliqueK = J ∪ {c}. Then one can forbid all unselected
alternative arcsi→ j with weightaij which fulfill

lS(c, i) + aij + max
k∈J

{lS(j, k)} > 0.

This result can be derived by employing ideas from Carlier & Pinson [18] to alternative
graphs. Asc has to be processed after all operations inJ the inequality above would
indicate a positive cycle. For an ideal operationc all arcsc → j and for a blocking
operationc all arcsσ(c) → j with j ∈ J are forbidden.

60



6.3 Enumeration techniques 61

The definition of a descendant set and the consequences for unselected alternative arcs
can be derived symmetrically.J ⊂ N is called descendant set ofc if c /∈ J and

min
j∈J

rj +
∑

j∈J∪{c}

pj + min
j∈J∪{c}

qj > UB.

Thenc is the input of the cliqueK = J ∪{c} and one can forbid all unselected alternative
arcsi→ j with

max
k∈J

{lS(k, i)} + aij + lS(j, c) > 0.

The use of the constraint propagation techniques describedabove is twofold. On one hand
they can be used to reduce the search space when looking for feasible solutions. Instead of
selecting one arc out of an alternative pair, a set of impliedarcs can be chosen for example
in greedy heuristics. On the other hand the techniques can beused to compute lower
bounds or to cut branches in branch&bound procedures. Some details of enumerative
algorithms and branch&bound procedures are treated in the next section.

6.3 Enumeration techniques

In this Section enumeration techniques in order to find feasible solutions for job-shop
scheduling problems with blocking and for railway scheduling problems or to prove that
no such solution exists are presented. Based on this a Branch& Bound procedure to find
good/optimal solutions is presented. Some versions of the described techniques can be
found in the publication from Mascis and Pacciarelli [45].

A general sketch of an enumeration procedure for problems formulated by means of the
alternative graph model is depicted in Listing 2.L is a list of incomplete selections.
Starting from an empty selection in each step of the main loopan element ofL (i.e. an
incomplete selection) is chosen. For this selection two children are generated by selecting
an unselected alternative pair and fixing the first or the second arc. For the choice of
a parent selection fromL different strategies are possible. The choice of an unselected
alternative pair can be done due to the rules described in Section 6.1 (AMCC, SMCP,
etc.).

1 begin
2 L := {∅};
3 while Stop criterion is not fulfilled do
4 begin

61



6.3 Enumeration techniques 62

5 Choose parent S ∈ L;
6 L = L− {S};
7 Select an alternative pair ((h, k), (i, j)) ∈ A which is

unselected in S;
8 Generate children S1 = S ∪ {(h, k)} and S2 = S ∪ {(i, j)};
9 for i=1,2 do

10 begin
11 if G(Si) contains no positive cycle then
12 begin
13 Evaluate Si and
14 possibly L = L ∪ {Si};
15 end
16 end
17 end
18 end

Listing 2: Enumerative algorithm

Steps 5 and 7 define the branching scheme of the procedure. Depending on the choice of a
parent solutionS ∈ L in Step 5 different strategies like depth-first or breadth-first-search
can be realized. For example choosing in every step a parent with the maximal number of
fixed alternative pairs leads to a depth-first-search. Whichbranches of the search tree are
analyzed first depends on the priority rules used in Step 7.

The functionEvaluateSi investigates if a solutionSi should be added toL or not. For
example in a situation where it can be seen thatSi has no extension it should not be
added toL. By this function even a Branch&Bound procedure can be realized. In this
case the functionEvaluateSi computes a lower boundLB for the objective value of any
extension ofSi. This can be done using the techniques described in Section 6.2. LetUB
be the objective value of the best feasible solution computed so far. ThenSi is added toL
only if LB < UB.

The search can for example be stopped (Step 3) if a feasible solution is reached or if all
feasible solutions have been investigated and an optimal solution has been found.

A specific Branch&Bound procedure for re-scheduling delayed trains in a railway net-
work can be found in D’Ariano et al. [20].
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6.4 Local search

In this Section local search heuristics like tabu search forboth railway scheduling and job-
shop problems are presented. Some similar ideas can be foundin Pacciarelli and Pranzo
[54]. The idea of local search is to explore the search space,i.e. the space of all solutions,
by moving from one solution to another. These moves are done according to so-called
neighbourhoods, which define a set of neighbour solutions for any solution in the search
space. Note that the notionsolution in this work does not necessarily mean a feasible
solution but a complete selection, which may be consistent or inconsistent.

The intention of this Section is threefold. In the first part neighbourhoods for local search
procedures and an underlying basic theory are described. Afterwards in the second part
special repair procedures needed as subroutines for some ofthe neighbourhoods are dis-
cussed. Repair procedures are applied to infeasible solutions appearing during a search.
They modify such infeasible solutions in order to restore feasibility. Finally in the third
subsection details of the local search procedures such as tabu list strategies, etc. are pre-
sented.

6.4.1 Neighbourhood structures

The following considerations are related to problems withCmax-objective, but can easily
be extended toLmax and other objectives. Before introducing different neighbourhood
structures the following definition is made.

Definition 6.1 LetS be the search space of an optimization or decision/feasibility prob-
lem and letN : S → P(S) be a neighbourhood structure.

(i) N is calledconnectedif any solutions ∈ S can be reached from any other solution
s
′

∈ S by doing a finite number of steps according toN .

(ii) Dealing with an optimization problemN is calledopt-connectedif from any solu-
tion s ∈ S a feasible optimal solutions∗ ∈ S (if existent) can be reached by doing
a finite number of steps according toN .

(iii) Dealing with a decision/feasibility problemN is called feasibility-connected if
from any solutions ∈ S a feasible solutionsf ∈ S (if existent) can be reached by
doing a finite number of steps according toN .

The proposed approaches and neighbourhoods are based on thefollowing theorem which
is a direct consequence of a similar theorem for the classical JSP (see Brucker [9]).
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Theorem 6.1 LetS be a complete selection for a given alternative graphG.
(i): If S is consistent, letP be a critical path inG(S). If S̃ is a complete consistent
selection with makespan smaller thanS, at least one alternative arc ofP does not belong
to S̃.
(ii): If S is not consistent, letC be a positive cycle inG(S). If S̃ is a complete consistent
selection at least one alternative arc ofC does not belong tõS.

Proof: Both, (i) and (ii) are obviously true.

2

Using Theorem 6.1 we may think of two different approaches, i.e. two different types of
neighbourhoods to be used during local search.

1 2 3

0 ∗

4 5 6

Figure 32: No replacement of a chosen alternative arc (bold dashed arcs) possible.

The first approach is based on the idea of moving from one feasible solution to another
by applying a suitable neighbourhood. But for some completeconsistent selections each
replacement of an alternative arc leads to an infeasible situation (see Figure 32), i.e. to a
positive cycle in the resulting graph. Therefore a neighbourhood must be able to replace
more than one alternative arc at the same time, i.e. it must beable to repair such situations
if possible. A generic formulation of this type of neighbourhood is the following.

NeighbourhoodN1: Let S be a complete consistent selection for a given alternative
graphG andP be a critical path inG(S). Then the neighbourhoodN1(S) is the set of
all complete consistent selections which are obtained by the following two steps:
(i) (At least) one alternative arc of an arbitrary critical pathP is replaced by its alterna-
tive. (IfP contains no alternative arcs,S is optimal and one can stop.)
(ii) If the corresponding new selection is inconsistent, this selection is repaired by replac-
ing other alternative arcs suitably.

In general - for an arbitrary repair procedure -N1 is neither opt-connected nor feasibility-
connected.

Note that the basis for usingN1 is a given complete consistent selection and thus it is
only eligible for optimization procedures. The problem of finding a complete consistent
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selection is NP-complete for the problem with time-windowsand even for the problem
where a partial selection is given. Of course, for problems IJSP, BWSJSP and BNSJSP a
feasible (but possibly very bad) starting solution can always be found, as all jobs can be
scheduled one by one from the beginning to the end.

One special case ofN1 is a neighbourhood, where the first step allows only to replace
exactly one alternative arc of a critical path. For problem BNSJSP Mati et al. [47] devel-
oped a tabu search procedure. They use a specific implementation of the described type
of aN1 neighbourhood. In their paper an extension of a geometric approach developed
by Brucker [8] for the problemJ | n = 2 | Cmax is used in order to repair infeasible
solutions (inconsistent selections) in the second step. Unfortunately Mati et al. provide
only very few computational results.

Before describing different approaches to repair inconsistent selections in the next section
(second step of neighbourhoodN1) and discussing the relevant underlying theory another
type of neighbourhood is proposed. This second approach is quite different. The second
neighbourhood does not provide an approach to repair inconsistent selections after having
replaced alternative arcs. Thus, it must be allowed to move to (and even start from)
inconsistent complete selections. Case (ii) of the theoremabove gives a hint how to come
(back) to feasible solutions (complete consistent selections). A generic formulation of
this type of neighbourhoods is the following.

NeighbourhoodN2: LetS be a complete selection for a given alternative graphG.
(i): If S is consistent, letP be an arbitrary critical path inG(S). The neighbourhood
N2(S) is the set of all complete selections derived by replacing one or more alternative
arc of an arbitrary critical pathP by its alternative. (IfP contains no alternative arcs,S
is optimal and the search process can be stopped.)
(ii): If S is not consistent, letC be a positive cycle inG(S). Then the neighbourhood
N2(S) is the set of all complete selections derived by replacing one or more alternative
arc of an arbitrary positive cycleC by its alternative. (IfG(S) has a positive cycleC
containing no alternative arcs, the problem is unfeasible and the search process can be
stopped.)

NeighbourhoodN2 can also be used when not having an initial complete consistent se-
lection and especially when looking only for a feasible solution. In this case only step
(ii) of the neighbourhhod is used and the search process is stopped when having found a
feasible solution, i.e. a complete consistent selection. As forN1 one special case ofN2 is
a neighbourhood where in both cases, (i) and (ii), only replacing exactly one alternative
arc is allowed.

Obviously,N2 has the following
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Property 6.1 The neighbourhoodN2 is both opt-connected and feasibility-connected.

6.4.2 Repair procedures for inconsistent selections

In order to apply neighbourhoods of theN1-type methods to repair infeasible solutions
(inconsistent complete selection) resulting from step (i)of the neighbourhood are needed.
A special approach for the BNSP can be found in Mati et al. [47]. As already mentioned
above they use an extension of a geometric approach developed by Brucker et al. [8]
for the problemJ | n = 2 | Cmax in order to repair infeasible solutions (inconsistent
complete selections) in the second step.

Now another repair procedure is described by defining a specific implementation of the
neighbourhoodN1. This implementation ofN1 for the blocking job-shop problem with
no swap allowed (BNSP) is defined as follows:

NeighbourhoodN1A: LetG be the alternative graph corresponding to a blocking job-
shop problem with no swap allowed (BNSP). LetS be a complete consistent selection and
P be an arbitrary critical path inG(S). Then the neighbourhoodN1A(S) is the set of all
complete consistent selections which are obtained by the following two steps:
(i) One alternative arci→ j of an arbitrary critical pathP is replaced by its alternative
h→ k.
(ii) If the corresponding new selection is inconsistent, the entire jobj(k) of operationk is
shifted to the end of a schedule by replacing all corresponding alternative arcs. Obviously
this leads to a new complete consistent selection, as the partial schedule containing all
jobs butj(k) stays feasible. Schedulingj(k) after all jobs cannot create a positive cycle,
as then there are no arcs going back fromj(k) to any other job.

In Figure 33, 34, 35 and 36 an example is depicted which provesthatN1A is not opt-
connected. For the complete consistent selection depictedin Figure 33 only one alterna-
tive arc (the dashed one) is located on a critical path. Replacing this alternative arc and
repairing the new selection according toN1A leads to the schedule depicted in Figure 34.
The alternative graph with the corresponding complete consistent selection is depicted
in Figure 35. ApplyingN1A to this solution leads back to the initial solution. A better
solution and thus, an optimal one as given in Figure 36 cannotbe reached.
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Figure 33: Complete consistent selection for a blocking JSP.
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Figure 34: Schedule for Example from Figure 33 after one stepof neighbourhoodN1A.
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Figure 35: Complete consistent selection corresponding toFigure 34.
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Figure 36: An optimal schedule for Example from Figure 33.
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6.4.3 Local search strategies

Based on the proposed neighbourhoods different local search methods and especially dif-
ferent strategies for applying tabu search to the problem can be developed. In this sec-
tion different ideas for approaches to get feasible or good solutions are described. These
approaches include both, search methods which visit only feasible solutions (complete
consistent selections) and those which allow to move to (andeven start from) infeasible
solutions (complete but inconsistent selections).

Firstly some basics of local search procedures are introduced. Especially the structure of
so-called tabu search methods is presented. The general idea of local search is to move
from one solution to another by following a neighbourhood structure. A generic local
search procedure is depicted in Listing 3.

1 begin
2 Compute an initial solution s ∈ S;
3 best solution s∗ := s;
4 while Stop criterion is not fulfilled do
5 begin
6 determine a neighbour s

′

∈ N(s);
7 s := s

′

;
8 if c(s

′

) < c(s∗) then s∗ := s
′

;
9 end

10 end

Listing 3: Generic local search

Tabu search is a special local search strategy which was applied very successfully to
different job-shop problems in the past. Tabu search applies special strategies in order to
avoid going back to solutions which have already been visited during the search process,
i.e. to avoid following circuits during the search. This is done by storing attributes of
already visited solutions in a list called tabu list. Going back to solutions with the same
attributes as stored in the list is forbidden, those solutions aretabu.

A sketch of a general tabu search algorithm is drawn in Listing 4. HereCand(s) is the
set of all neighbours ofs which are not tabu. In Step 7s

′

/∈ T means, that the attributes
of s

′

are not contained in the tabu listT .
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1 begin
2 Compute an initial solution s ∈ S;
3 best solution s∗ := s;
4 tabu list T := ∅;
5 while Stop criterion is not fulfilled do
6 begin
7 determine Cand(s) := {s

′

∈ N(s)|s
′

/∈ T};
8 if Cand(s) 6= ∅ then
9 determine s

′

∈ Cand(s)
10 s := s

′

;
11 T := T ∪ {s};
12 if c(s) < c(s∗) then
13 s∗ := s;
14 end
15 end

Listing 4: Generic tabu search

When using neighbourhoodN1, and thus only visiting feasible solutions (complete con-
sistent selections) tabu strategies similar to strategiesknown from the classical job-shop
(see Nowicki and Smutnicki [52]) can be used. One possible strategy is the following.
For any solution already visited a 4-tupel containing the following data is stored in the
tabulist:

• the alternative arc which was reversed in order to get a neighbour of this solution,

• the alternative arcs preceding this arc on the considered critical path,

• the alternative arcs succeeding this arc on the considered critical path, and

• the corresponding value of the objective function.

A solution istabu, if one of the 4-tupels in the tabulist is reconstructed. Obviously these
criteria define more solutions to be tabu than the ones already visited. In order not to
set solutions tabu which improve the currently best solution anaspiration criterion is
introduced. It guarantees that solutions with objective value better than the currently best
one are not tabu. A closer look shows that an aspiration criterion is already included.
Solutions which are better than the best solution already visited cannot reconstruct one of
these 4-tuples, as at least their objective value must be different (better).
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Using neighbourhoodN2, different tabu criteria are needed in order to describe feasible
and especially infeasible solutions which have already been visited. Which criteria are
suitable could be analyzed by developing and testing different approaches.

In the next section a decomposition approach for railway scheduling problems is pre-
sented.
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7 Problem decomposition

So far this thesis was dedicated to models and algorithms forrailway and also job-shop
scheduling problems as a whole. This section deals with a decomposition approach for
specific railway scheduling problems. The approach is basedon ideas which were already
developed in cooperation with Dario Pacciarelli from the Universita ’Roma Tre’ within
the EU-project COMBINE II2 [26]. There a basic model as well as some ideas for
solution methods were introduced. In this thesis the model and corresponding approaches
are elaborated in detail and supplemented. Practical methods as well as theoretical aspects
are presented. The main accent is put on the goal to compute feasible solutions for railway
networks which are decomposed into different local networks.

7.1 A decomposition model

In this subsection the decomposition model which is appliedto the railway problem intro-
duced above is described. Based on a geographical decomposition of the physical railway
network in local networks the problem is divided into local problems corresponding to
these local networks. These local problems are then solved and the whole process is
coordinated at a higher level in order to produce a globally feasible solution.

Some additional assumptions on the structure of the given problems are made. Starting
from the basic model also upper bounds for travelling times,time-window constraints
(release-dates and deadlines), starting and ending constraints, and connection constraints
between trains are allowed. The last two constraints are assumed to arise only inside local
networks and not at borders between different local networks. General time constraints
as well as out-of-service intervals are assumed to be absent, as they would complicate
the decomposition model. Nevertheless even these constraints could be integrated by
generalizing the model slightly. Some additional assumptions will be stated later when
needed.

Describing the decomposition of the physical railway network the following notation is
used. Aclearing point is a point between two different block sections of a railway net-
work, i.e. a point between different safety segments of the network. Each clearing point
between two block sections corresponds to nodes in the alternative graph, which represent
crossing times of trains at this physical point.

A geographical decomposition of a physical railway networkcan be defined by identify-
ing borders and border sections (block sections) between adjacent local networks. By this

2Christian Strotmann took part in this project as scientist as well as his supervisor Prof. Dr. Peter
Brucker.
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the whole physical railway network is divided into local networks. Especially the set of
all clearing points is divided into disjoint sets belongingto the different local networks.
An example with two local railway networks is shown in Figure37. This network is di-
vided into two local networks. Additionally the routes of two (slow) trains A and B are
depicted.

Area 1 Area 2

B

A

Figure 37: A railway network divided in two local networks.

In order to decompose the problem of scheduling traffic in thewhole railway network into
smaller problems corresponding to the local networks the alternative graph for the whole
problem is divided into different local graphs. Note that each node of the alternative
graph but the source and the sink is associated with exactly one certain clearing point in
the physical network as it represents a crossing time of a train at this clearing point.

Based on the division of all clearing points the set of all nodes of the large alternative
graphG = (V, C,A) but the source and the sink is divided into disjoint sets corresponding
to the local networks. So-calledbasic local graphscorresponding to the physical local
networks are defined. Summarizing the considerations abovenow each node belongs to
a basic local graph iff its clearing point belongs to the corresponding local network. By
construction the node sets belonging to the basic local graphs together with nodes/sets0
and∗ build a disjoint decomposition ofV .

If all corresponding arcs and alternative pairs are added tosuch a basic local graph, this
graph represents the problem of scheduling traffic within the corresponding local network.
But by considering only basic local graphs the scheduling oftraffic at borders is missing.
Therefore the local areas have to be enlarged by so-calledborder elementswhich are
defined next. An arc is calledborder crossing if it connects nodes belonging to differ-
ent basic local graphs, i.e. if it represents a constraint between events occurring within
different local networks.

Each border element is a subgraph of the alternative graph for the whole problem. It cor-
responds to a single border, i.e. a block section lying on a border between two adjacent
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local networks. It optionally includes parts of the graph corresponding to some neigh-
boured block sections. More precisely the border element for a border is an alternative
subgraph consisting of:

• All fixed arcs crossing this border.

• All pairs of alternative arcs where two of the four end nodes of the pair belong to
different basic local graphs at this border.

• The setN of all nodes which are incident with these arcs and alternative arcs.

• All fixed arcs connecting nodes inN .

• All pairs of alternative arcs where all nodes which are incident to this pair belong
toN .

Border elements represent traffic at the corresponding borders between different local
networks. The idea of this definition is to include all fixed arcs and alternative arcs/pairs
which are incident with nodes belonging to different basic local graphs. Note, that0 or ∗
never belong to a border element.

In Figure 38 to 44 different situations arising at borders and the corresponding types of
border elements are depicted. For the sake of clarity each node (representing the entrance
of a train in a block sectionMi) is placed beneath its associated clearing point and denoted
by the block sectionMi.

border element

Mi

Mi

Mi+1

Mi+1

MiMi−1 Mi+1

Figure 38: A border situation with two slow trains travelling in the same direction.
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border element

Mi

Mi

Mi

Mi−1

Mi+1

Mi+1Mi−1

Figure 39: A border situation with two slow trains travelling in opposite direction.

border element

Mi Mi+1

Mi+1Mi

Mi−1

Mi−1Mi−2 Mi Mi+1 Mi+2

fast

slow

Figure 40: A border situation with a slow and a fast train travelling in the same direction.

border element

Mi
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Mi+1
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Mi−1Mi−2 Mi+1 Mi+2Mi

Figure 41: A border situation with two fast trains travelling in the same direction.
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border element
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Figure 42: A border situation with a slow and a fast train travelling in opposite direction.

border element

Mi−2 Mi+1 Mi+2Mi−1

Mi−1Mi−2

MiMi−1 Mi+2Mi+1

Mi+2Mi+1Mi

Mi−2

Mi

Figure 43: A border situation with two fast trains travelling in opposite direction.

border element

moving block section

Figure 44: A border situation with two moving block trains.
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The following assumptions on the considered physical railway networks and the corre-
sponding graphs can be made, as they can be fulfilled in most real-world problems easily.

Assumption 7.1 1. Each border element contains no nodes (and no arcs) belonging
to a junction, i.e. borders are not located at junctions.

2. Border elements of different borders are disjoint.

Nodes belonging to a border element are calledborder nodes. Additionally the source
0 and the sink∗ belong to the set of border nodes. In Figure 45 the alternative graph
corresponding to the example above (Figure 37) is depicted (the source and the sink node
are not depicted). The border element which models the physical border contains four
nodes of the graph.

border

B

A

A

B

border element

Figure 45: The alternative graph corresponding to the problem from Figure 37.

Based on the structure of the considered (railway) problemsthe following property can
be stated.

Property 7.1 Each fixed arc or alternative pair which is incident with nodes of different
basic local graphs belongs to (exactly) one border element.In particular all nodes of the
arc or pair are border nodes of the same border element. (In case of an alternative arc
the whole pair belongs to the border element.)

In the next Step of the decomposition approach border elements are integrated in the basic
local graphs.

A local graphGL = (VL, CL, AL) represents traffic in a corresponding local networkL
(and at its adjacent borders) and is defined as follows:
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• VL contains all nodes belonging to the corresponding basic local graph and all bor-
der nodes belonging to border elements which are incident with this graph. (A
border element isincident with a basic local graph iff it contains at least one node
of this basic local graph.) AdditionallyVL contains the source and the sink.

• CL contains all fixed arcs connecting nodes ofVL.

• AL contains all pairs of alternative arcs where both arcs connect nodes ofVL.

Note that each border element is duplicated as is belongs to the local graphs of both local
networks which are incident with this border. The two local graphs and border elements
corresponding to Figure 45 are shown in Figure 46.

Area 2
Area 1

duplicated border element

Figure 46: The graph from Figure 45 divided into two local graphs.

Having defined the local graphs above it is clear, that any node, fixed arc, and alternative
pair of the graph for the whole problem is contained in at least one of the local graphs.

Now local solutions can be computed for all local graphs (andthus for all local networks)
independently using the techniques described in Section 6.A local feasible solution cor-
responds to a complete consistent selection for the corresponding local alternative graph
(see 4.1.2). The graphGL = (VL, CL ∪ SL), whereSL is a complete consistent selection,
is called alocal solution graph for the local networkL.

In Figure 47 local solution graphs corresponding to the local graphs in Figure 46 are
depicted. Now the source and the sink are depicted for further considerations.

In order to check whether local feasibility provides globalfeasibility acoordinator graph
induced by the local feasible solutions (local solution graphs) is defined. The idea is to
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Area 1

Area 2

j

iσ(i)

σ(j)

∗

0

i

j

σ(i)

σ(j) ∗

0

Figure 47: Feasible solutions for the local graphs from Figure 46.

have a condensed graph where paths between border nodes in local solution graphs are
represented by fixed arcs. Later it will be shown that this condensed information is suffi-
cient for an coordinator to control and force global feasibility. Starting from local feasible
solutions (local complete consistent selections) for all local graphs the coordinator graph
GB = (VB, AB) is defined as follows:

• VB is the set of all border nodes (nodes which belong to border elements and nodes
0 and∗).

• AB is the set of so-calledborder arcs. The set of border arcs is defined as follows.
Let i, j be two different border nodes (having a local graph in common). The arc
i → j belongs toAB iff in at least one of the local solution graphs a directed path
from i to j exists. Then the weight ofi→ j in the coordinator graph is the length of
a corresponding longest directed path among all such directed local paths. (There
may be two or more local solution graphs including such a corresponding directed
path).

Which directed paths are present between border nodes in thelocal solution graphs and
(if present) the lengths’ of corresponding longest directed paths can be investigated by
longest path calculations. Those can be done for example by applying a longest-path-
version of the Floyd-Warshall algorithm (see Ahuja et al. [4]) to each local solution
graph.
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0 ∗

iσ(i)

j σ(j)

positive
cycle

Figure 48: Coordinator graph corresponding to local solution in Figure 47.

The coordinator graph associated with the local solutions graphs in Figure 47 is depicted
in Figure 48. Note, that due to more clarity not all border arcs and no weights are shown.

Especially the fixed arcs of border elements, locally chosenalternative arcs between bor-
der nodes and accompanying transitively induced arcs belong to the coordinator graph as
they are special directed paths between border nodes in local solution graphs. Note, that
possibly many arcs which are transitively induced by othersmay belong to the coordina-
tor graph. In order to check local solutions for global feasibility the following theorem
can be used.

Theorem 7.1 Let be given a feasible local solution for each local network(i.e. a complete
consistent selection for each local graph). Then these local feasible solutions are feasible
on a global level (globally feasible) if and only if the corresponding coordinator graph
contains no positive cycle.

Before proving Theorem 7.1, some lemmata are given.Gall denotes the union of all local
solution graphs, i.e. it is the union of all nodes and all fixedarcs of the local graphs and
all alternative arcs which are contained in one of the local complete consistent selections.

Lemma 7.1 Let (u1 → u2 → . . . → un) with n ≥ 3 be a directed path inGall andu1

andun be the only border nodes of this path. Then there exists exactly one local solution
graph where all nodes and arcs (and thus the whole path) are present.

Proof: Asu2 is a non-border-node it is contained in exactly one local (solution) graph.
Thus, even the arcsu1 → u2 and u2 → u3 can only be contained in the same local
solution graph. Forn = 3, this proves the lemma. Ifn > 3, then the non-border-nodeu3

is only contained in exactly one local solution graph and this must be the same as foru2,
as the arcu2 → u3 can only exist there. Repeating this argument proves the lemma. 2

In this thesis a cycle which contains no subcycles is calledminimal cycle. Obviously
a graph contains a positive cycle if it contains a minimal positive cycle. The opposite
direction is stated by
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Lemma 7.2 If a graph contains a positive cycle, it contains a minimal positive cycle.

Proof: A minimal positive cycle can be found by iteratively lookingfor minimal subcycles
of a positive cycle and deleting them if they have non-positive length. This method always
terminates with a minimal positive cycle either when a minimal subcycle with positive
length is found or when no more (minimal) subcycles exist andall deleted subcycles had
non-positive length. Then the minimal cycle at the end must have positive length. 2

Lemma 7.3 Let C be a minimal positive cycle inGall. ThenC contains at least two
border nodes.

Proof: If C would contain at most one border node it would be a local cyclewhich fol-
lows from the same argumentation as in the proof of Lemma 7.1.Then the corresponding
local solution graph would contain this positive cycleC which contradicts the feasibility
of all local solutions. 2

Note, that especially in the case in which an arc of a border element is included in such
a positive cycle, this cycle contains two border nodes (as anarc of an border element
connects two border nodes).

Now the proof of Theorem 7.1 is given.

Proof: It is assumed that local feasible solutions (feasible localsolution graphs) are
given for all local networks.

Consider the graphGall, which is derived by sewing together all local solution graphs
(see above).

If Gall contains no positive cycle it represents a globally feasible solution. Note, that
any node, fixed arc, and alternative pair of the graph for the whole problem is contained
in at least one local graph and each alternative pair is chosen in at least one of the
local selections. From each alternative pair exactly one arc is chosen, and thus, the
global selection is complete. Otherwise an alternative pair which is chosen differently in
different local selections results in a positive cycle inGall. This global complete selection
is consistent as no positive cycle occurs inGall.

Thus, if the given local feasible solutions are infeasible on a global level, the graphGall

must contain a positive cycle. Such a positive cycle may on one hand be caused by alter-
native pairs which exist in different local alternative graphs but are not chosen equally
there. On the other hand inconsistencies in the temporal constraints may lead to such a
positive cycle.
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W.l.o.g the cycle may be assumed to be a minimal one, as such a minimal one then must
exist and can be computed from a given positive cycle (see Lemma 7.2). In any case a
positive cycleC in Gall must consist of parts located in different local solutions graphs.
Otherwise the conflict would be a local one, which contradicts the premises of the theo-
rem. From Lemma 7.3 it follows thatC must contain at least two border nodes.

Now let the positive cycle beC = (u1, . . . , u2, . . . , . . . , un = u1), where(u1, u2, . . . , un =
u1) is the sequence of all its border nodes. For each pairui andui+1 (i = 1, . . . , n − 1)
two cases can be identified:
Case 1:ui → ui+1 is an arc ofC. Thenui → ui+1 is contained in at least one local
solution graph. This follows directly from the definition ofGall.
Case 2: There is a path fromui toui+1. Then there exists exactly one local solution graph
where all nodes and arcs (and thus the whole path) are present. (see Lemma 7.1).
For both cases it is known that the coordinator graphGB contains an arcui → ui+1, since
a corresponding local directed path exists. The length of such an arc in the coordinator
graph is at least the length of the corresponding arc or path in C (in the corresponding
local solution graph).
It follows that(u1 → u2 → . . . → un = u1) is a cycle inGB with at least the length of
C. Thus,GB contains a positive cycle!

Now consider the coordinator graphGB derived from the local feasible solution graphs.
LetC = (u1, u2, . . . , un = u1) be a positive cycle inGB.
Each arcui → ui+1 in C corresponds to a directed path of the same length in one of the
local solution graphs.
Therefore each arcui → ui+1 corresponds to a directed path of the same length inGall.
and the pathsu1 → . . .→ u2 → . . . , . . .→ un = u1 build a cycle inGall with the length
ofC.
Thus,u1 → . . .→ u2 → . . . , . . .→ un = u1 is a positive cycle inGall.
Then by definition ofGall the local solutions are globally infeasible.

Summarizing the results above the following has been shown:

Local solutions are globally infeasible if and only if the coordinator graphGB contains a
positive cycle.

This is equivalent to the statement of Theorem 7.1.

2

Using a longest-path-version of the Floyd-Warshall algorithm (see Ahuja et al. [4]) the
coordinator graph can be checked for the existence of positive cycles with polynomial
effort and even positive cycles can be identified.
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For the example above a positive cycle can be identified in thecoordinator graph from
Figure 48. Thus, the local solutions are unfeasible on a global level.

With a similar argumentation as used in the proof of Theorem 7.1 a statement concerning
an optimal globally feasible solution can be proved. More precisely one can show

Theorem 7.2 Let be given a globally feasible solution composed from local feasible so-
lutions for all local graphs and letGB be the corresponding coordinator graph. If this
global solution is not optimal, then in an optimal solution (with coordinator graphGopt

B )
one of the following conditions is satisfied:

(i) At least one border arc on a critical path inGB is shorter inGopt
B .

(ii) At least one border arc on a critical path inGB does not exist inGopt
B .

The next section describes methods in order to get global feasible solutions for the de-
composed problem.

7.2 Methods to solve the decomposed problem

Having introduced a suitable decomposition model, now methods in order to deal with
conflicts on a global level are presented. At first different types of conflicts on a global
level are classified and basic methods in order to solve theseconflicts are presented. In
a second part strategies in order to control a global search procedure for finding global
feasible solutions are developed.

7.2.1 Solving global conflicts - general techniques

Before starting with the detailed description a sketch of the general approach for comput-
ing a global feasible solution is drawn. The idea of this procedure is the following. In
each step local feasible solutions (if existent) are computed for all local problems. Then
the coordinator graph is build and checked for global feasibility. If the local solutions pro-
vide a global infeasible solution artificial constraints are imposed to the local problems in
order to lead them to global feasibility. If for some local problems local feasible solutions
cannot be found or do not exist one may modify or relax the artificial constraints. The
process is repeated until a globally feasible solution is reached or a stopping criterion is
fulfilled. As a possible stopping criterion a maximal numberof coordination steps may
be used.
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1 begin
2 for all local alt. graphs do
3 Compute local solutions;
4 if a local solution is unfeasible then
5 stop;
6 L_Feas = 1;
7 Build the coordinator graph Gb;
8 if Gb contains a pos. cycle then
9 G_Feas = 0;

10 else G_Feas = 1;
11 while G_Feas == 0 and Stopcriterion is not fulfilled do
12 begin
13 Impose artificial constraints to loc. alt. graphs;
14 for all local alt. graphs do
15 Compute (new) local solutions;
16 if a local solution is unfeasible then
17 L_Feas = 0;
18 else L_Feas = 1;
19 while L_Feas == 0 and Stopcriterion is not fulfilled do
20 begin
21 Relax/Modify some artificial constraints;
22 for all local alt. graphs do
23 Compute (new) local solutions;
24 if a local solutions is unfeasible then
25 L_Feas = 0;
26 else L_Feas = 1;
27 end
28 if L_Feas == 0 then
29 stop;
30 Eliminate the artificial constraints from the local

solution graphs;
31 Rebuild the coordinator graph Gb;
32 if Gb contains a pos. cycle then
33 G_Feas = 0;
34 Reinsert the artificial constraints to the local

graphs;
35 else G_Feas = 1;
36 end
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37 if G_Feas == 0 then
38 UNSUCCESS (no global feasible solution is found);
39 else
40 SUCCESS (global feasible solution is found);
41 end

Listing 5: Sketch of coordination procedure

In the following techniques in order to impose artificial constraints to local alternative
graphs are developed. Different strategies how to choose these artificial constraints are
presented in the next subsection.

As mentioned above conflicts between solutions for different local areas result in positive
(directed) cycles in the coordinator graph. In the following one may always assume that
positive (global) cycles are minimal, i.e. they do not contain a node more than once and
thus do not contain subcycles. This is no restriction as any positive cycle must contain a
minimal positive cycle. Such a minimal positive cycle can befound by iteratively look-
ing for minimal subcycles of a positive cycle and deleting them if they have non-positive
length. This method always terminates with a minimal positive cycle either when a mini-
mal subcycle with positive length is found or when no such subcycle exists and all deleted
subcycles had non-positive length. Then the minimal cycle at the end must have positive
length. Obviously a minimal positive cycle can be computed from a general positive cycle
with polynomial computational effort.

If a positive cycle is detected in the coordinator graph someactions in order to eliminate
this cycle have to be undertaken. As the coordination level has no detailed information
about local solutions, it has to use information about the structure of paths in local areas
which are represented by border arcs in the coordinator graph. For example a border arc
in a cycle may represent a path (in a local area graph) which consists only of fixed arcs.
Then the coordination level knows that it is not possible to eliminate this part of the cycle.
On the other hand a border arc representing a path with alternative arcs may be forced to
become shorter or to disappear.

The question now is, what the coordination level can do in order to force some local areas
to produce shorter longest paths in the next round. The idea is to do this by introducing
new (constraining) arcs with suitable weights. Detailed techniques are described later.

Firstly different types of global conflicts resulting from different types of border arcs
are described. In order to classify different types of border arcs firstly a graphGmin is
introduced.Gmin is the graph for the whole railway network which contains only fixed
arcs. If now all longest paths between border nodes are computed in the restrictions of this
graph to the corresponding local networks, i.e. in the localalternative graphs with only
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fixed arcs, a set of necessary conditions for the starting times of all pairs (i,j) of border
nodes is generated.

Let lij be the length of border arci → j resulting from a solution for the local graphs
andlminij be the length of a corresponding longest path in the restrictions ofGmin to the
local networks, if such paths exist there. It is distinguished between the following types
of border arcsi→ j:

• i→ j is relaxable, iff there is no directed path fromi to j in the restriction ofGmin

to the corresponding local areas.

• i → j is non-relaxable, iff there is a directed path fromi to j in the restrictions of
Gmin to the corresponding local areas andlij = lminij . (The length of the paths from
i to j represented by the border arci → j cannot be decreased as it is independent
from the choice of a specific solution.)

• i → j is time-relaxable, iff there is a directed path fromi to j in the restrictions
of Gmin to the corresponding local areas andlij > lminij . (The lengths of paths
corresponding toi→ j in the considered solution may be decreased.)

Note, that even for relaxable arcs it may not be possible to eliminate them. For example
in a local area graph two arcs of the same alternative pair mayresult in the same longest
path between two border nodesi andj. If no other alternative arcs are located on this
longest path, the corresponding relaxable border arci→ j cannot be eliminated.

Clearly, the structure of a global conflict depends on the types of border arcs in the corre-
sponding positive cycleC in the coordinator graph. Let

• NC be the set of all non-relaxable arcs inC,

• TC be the set of all time-relaxable arcs inC, and

• RC be the set of all relaxable arcs inC.

The following types of global conflicts indicated by a positive cycleC in the coordinator
graph may occur:

1. If TC = ∅, andRC 6= ∅ there is a possibly relaxable conflict.

2. If RC = ∅, andTC 6= ∅ there is a possibly time-relaxable conflict.
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3. A Combination of Type 1 and 2 is the general case of a possibly solvable global
conflict.

4. If TC = ∅, andRC = ∅ there is a non-relaxable conflict. All border arcs represent
paths which are already present when only considering fixed arcs. Thus, the positive
cycle is contained in any solution and no global feasible solution exists.

In the following it is discussed in detail which new constraining arcs may be introduced
by the coordinator in order to force some local areas to modify their solutions in a suitable
way. Knowing different types of conflicts different techniques to eliminate them may be
proposed, i.e. different constraining arcs which are introduced by the coordination level to
the local areas (local alternative graphs). Generally speaking the coordination level may
impose new arcs between the end-node and the start-node of a local path corresponding
to an arc in the coordinator graph. Note, that two border nodes, which are connected by
a border arc in the coordinator graph, must have at least one local graph in common, as a
corresponding directed path in one of the local solution graphs exists.

Firstly techniques in order to solve conflicts of Type 1 are proposed, i.e. when having
detected a positive cycleC in the coordinator graph withRC 6= ∅. Let i → j be inRC

with lengthe. The idea is to introduce a constraining arcj → i with weightx in one
or even all corresponding local graphs, such thatx + e > 0. When introducing this arc
(j → i with weightx > −e) a corresponding local area is forced to makei→ j shorter or
even to disappear in the next round. Otherwise a positive cycle would occur in the local
graph. This type of constraint imposed to a local graph is calledCS(i, j). An example of
this technique is drawn in Figure 49.
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Figure 49: Introducing a constraining arc of TypeCS(i, j).

Another technique closely related toCS(i, j) is to impose more than one constraint of this
type at the same time. Coming back to the example of Figure 49 one could additionally
imposeCS(h, k), if h→ k is relaxable.
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A constraint of typeCS(i, j) is quite general as it does not specify the length of the
imposed constraining arc in detail. In order to specify thislength one may choose the
length of the path fromj to i in the considered cycle. LetC = (j = v0, v1, ..., vn = i, j)
be a positive cycle in the border graph andlk,k+1 be the length of arcvk → vk+1. An arc
j → i with lengthL =

∑n−1
k=0 lk,k+1 may be introduced in one or even all local graphs

where corresponding paths are present. This type of constraint is calledCSmin(i, j). The
length of a path corresponding toi → j cannot exceed−L = −

∑n−1
k=0 lk,k+1 in the next

round of computing local solutions, if such a path is still present there. If such paths
have disappeared, then (with regard to the involved local graphs) the positive cycle is
eliminated in any case.

Otherwise withCSmin(i, j) cycle C is obviously eliminated in the next round if the
lengths of all other border arcs inC do not increase. Additionally all other arcs may
be imposed not to increase in the next round by introducing arcsvk+1 → vk with length
−lk,k+1 for all k = 1, ..., n − 1 in all areas where corresponding paths are present. This
type of constraint is calledCSbound(vk, vk+1).

In Figure 50 an example of a positive cycle in the coordinatorgraph with two relaxable
arcsi→ j andh→ k is depicted. The constraintCSmin(i, j) together with the additional
constraintsCSbound(j, l), CSbound(l, h), CSbound(h, k) andCSbound(k, i) is imposed.
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Figure 50: Introducing constraining arcs of TypeCSmin(i, j) andCSbound(vk, vk+1).

Clearly it may happen that the local areas whereCSmin(i, j) was imposed cannot fulfill
this new constraint. In this case one must try to impose otherconstraints in the next round.
In the given example (Figure 50) one could try to impose the arch→ k to become shorter,
i.e. to imposeCSmin(h, k).

In Table 4 the proposed constraints are summarized which maybe imposed to local graphs
in order to eliminate a global positive cycleC = (j = v0, v1, ..., vn = i, j) of Type 1.
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(lk,k+1 are the lengths of arcsvk → vk+1 ande is the length ofi→ j).

Constraint Idea Constr. arc
CS(i, j) force arci→ j to

become shorter j → i with weightx > −e
CSmin(i, j) force arci→ j to

become short enough to
avoid the pos. cycle j → i with weight

∑n−1
k=0 lk,k+1

CSbound(vk, vk+1) force arcvk → vk+1

not to become longer vk+1 → vk with length−lk,k+1

Table 4: Different types of constraining arcs.

If RC contains more than one border arc one may apply another method. More than
one local graph may be involved to produce shorter paths, i.e. the task of shortening or
destroying paths which result in global positive cycles is divided to different local graphs.
Coming back to the example from Figure 50 one could try to impose both arci → j and
arch → k to become shorter (or to disappear) by introducing arcs in opposite direction
with weightsa + b + c + d − ∆ and−c + ∆, where∆ is positive. This technique is
illustrated in Figure 51.
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Figure 51: Dividing the task of eliminating a global positive cycle.

The described techniques may also be applied to conflicts of Type 2. Then time-relaxable
arcs are imposed to become shorter in the next round with a similar strategy in order to
eliminate a positive cycle. Of course, the weight of a constraining arc should not exceed
the negative of the length of a corresponding path in the restrictions ofGmin to the local
graphs. This would obviously lead to a local conflict immediately.
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In the general situation a global conflict is a combination ofthe described situations (Type
3). Thus, one may apply a combination of the described techniques. ConstraintsCS(i, j)
or CSmin(i, j) for border arcsi → j ∈ RC ∪ TC and constraintsCSbound(i, j) for all
border arcsi→ j may be imposed.

Obviously constraining arcs may lead to infeasibility for local areas (local alternative
graphs). Some of these infeasibilities may be anticipated by investigating the restrictions
of Gmin to the local areas.

If for a local problem no feasible solution can be found some artificial constraints could
be relaxed or modified by the coordination level.

Note, that constraining arcs are only introduced in order toforce the local areas to compute
different local solutions. Thus, they are not considered when checking new local feasible
solutions for global feasibility, i.e. they are deleted from the local solution graphs before
computing longest paths for building the corresponding newcoordinator graph.

Using the criteria from Theorem 7.2 one could introduce constraining arcs even to shorten
border arcs (local paths) lying on a critical path in the coordinator graph. Thus, these
techniques theoretically can also be used to optimize global feasible solutions.

Generally the introduction of constraining arcs can be interpreted as the definition of
allowed moves in a neighbourhood for a global (not necessarily feasible) solution. For
such a global solution composed from local feasible solutions one can define

NeighbourhoodNGL: For a decomposed railway problem as introduced above let be
given a global (not necessarily feasible) solutionS composed from local feasible solu-
tions. Additionally let the corresponding coordinator graph be given.
The neighbourhoodNGL(S) is defined to be the set of all global solutions derived by the
following steps:

(i) A set of constraining arcs is introduced (in order to impose certain constraints to
local areas).

(ii) Local feasible solutions respecting all constrainingarcs exist and are computed.
Then the new global solution is composed from those.

Of course, this neighbourhood is of exponential size and thus mainly of theoretical inter-
est.

Having described general strategies and techniques in order to get rid of global conflicts
(or certain local paths), next detailed information on the methods applied in this work is
given. This is done in the next section.
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7.2.2 Choosing constraining arcs

In this section it is described how the general techniques from Section 7.2.1 are applied in
order to solve global conflicts (positive cycles in the coordinator graph) occurring within
the coordination procedure.

An idea of designing a coordination procedure is to build a kind of a greedy algorithm
for the decomposed problem. As long as no global feasible solution is found or another
stopping criterion is fulfilled new constraining arcs are introduced in each coordination
round of the procedure. If for a local problem no feasible solution can be found the
procedure is stopped.

Priority rules in order to introduce constraining arcs to local graphs are needed. For
describing more details letC (lengthL > 0) be a positive cycle found in the coordinator
graph after having computed local feasible solutions for all local graphs. The priority
rules for the coordination step are the following:

• CFRTS(δ) constrains the first relaxable or time-relaxable border arci → j with
weight l in C slightly, i.e. it introduces the constraining arcj → i with weight
−l + δ in the corresponding local graph. Hereδ > 0 is a parameter of the priority
rule. Thus, the technique used is a version ofCS(i, j). In the next round the length
of the local path fromi to j cannot exceedl − δ < l, since otherwise a positive
cycle occurs in the corresponding local graph.

• CFRTM sets the maximal suitable constraint for the first relaxableor
time-relaxable border arci → j with weight l in C. That means it introduces
the constraining arcj → i with weightk = min{L − l,−lminij }. This technique is
a version ofCSmin(i, j) which takes care of the minimal length of time-relaxable
arcs. For relaxable arcsk = L − l holds, as for such arcslminij is set to a large
negative value. In the next round the length of the local pathfrom i to j cannot
exceed−min{L − l,−lminij } = max{l − L, lminij } < l, since otherwise a positive
cycle occurs in the corresponding local graph.

• CLRTM sets the maximal suitable constraint to the longest relaxable or time-
relaxable border arci → j with weight l in C. That means it introduces the
constraining arcj → i with weight k = min{L − l,−lminij }. In the next round
the length of the local path fromi to j cannot exceed−min{L − l,−lminij } =
max{l− L, lminij } < l, since otherwise a positive cycle occurs in the corresponding
local graph.

• CSRTM sets the maximal suitable constraint to the shortest relaxable or time-
relaxable border arci → j with weight l in C. That means it introduces the
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constraining arcj → i with weight k = min{L − l,−lminij }. In the next round
the length of the local path fromi to j cannot exceed−min{L − l,−lminij } =
max{l− L, lminij } < l, since otherwise a positive cycle occurs in the corresponding
local graph.

• CLDRTM sets the maximal suitable constraint for a border arc, too. If C con-
tains no relaxable arcs, it sets the maximal suitable constraint to that time-relaxable
border arci → j with weight l in C, wherel − lminij is maximal. Otherwise the
maximal suitable constraint is set to the first relaxable arcin C. In the next round
the length of the local path fromi to j cannot exceed−min{L − l,−lminij } =
max{l− L, lminij } < l, since otherwise a positive cycle occurs in the corresponding
local graph.

• CLSRTM sets the maximal suitable constraint for a border arc, too. If C contains
time-relaxable arcs, it sets the maximal suitable constraint to that time-relaxable
border arci → j with weight l in C, wherel − lminij is minimal. Otherwise the
maximal suitable constraint is set to the last relaxable arcin C. In the next round
the length of the local path fromi to j cannot exceed−min{L − l,−lminij } =
max{l− L, lminij } < l, since otherwise a positive cycle occurs in the corresponding
local graph.

A direct generalization of the first two rules are the following.

• CnRTS(δ) applies the first rule to then-th arc ofC.

• CnRTM applies the second rule to then-th arc ofC.

If a constraining arc, which is chosen by a priority rule, already exists, the associated
weight is updated to the new value. The proposed priority rules can be applied in both
simple heuristics and more sophisticated procedures.

Of course, other types of constraining arcs are possible. Then many other techniques of
introducing constraining arcs may be applied, too. Even procedures, which allow already
introduced constraining arcs to be modified or deleted couldbe developed. For all types
of problems and conflicts arising computational tests have to show which are suitable
strategies in order to derive global feasible solutions.

7.3 Reachability of global feasible solutions

In this section it will be proved that for any problem instance of a decomposed railway
problem (see Section 7.1) having a global feasible solutionone can force the local areas
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to compute such a global feasible solution using the techniques described above, namely
by applying the coordination procedure and introducing suitable constraining arcs of type
CS(i, j) within the procedure. Based on a corresponding theorem, in the next section an
enumeration approach is proposed which terminates with a global feasible solution if one
exists.

Theorem 7.3 Let be given an instance of a decomposed railway problem which has a
global feasible solution. LetS be a global solution to the problem which may be un-
feasible but is derived from local feasible solutions for the local areas. Then a set of
constraining arcs of TypeCS(i, j) exists which leads fromS to a global feasible solution.

Proof: Let Sg be a global feasible solution of a given problem instance. (W.l.o.g. Sg

may be assumed to be given in terms of an ESS.) A set of constraining arcs which leads
to Sg or another global feasible solution is constructed iteratively. Letsi be the starting
time associated to border nodei in Sg.

The global solutionS may be unfeasible but is derived from local feasible solutions for
the local areas. By Theorem 7.1 this global solution is feasible iff the coordinator graph
contains no positive cycle. IfS is feasible no further action is required. Otherwise the
coordinator graph must contain a positive cycleC = (u1, . . . , un = u1) with arc lengths
lui,ui+1

∀ i = 1, . . . , n− 1.

The following operation is applied to the global unfeasiblesolutionS.

1. A suitable constraining arc is chosen and inserted in the corresponding local graphs.

2. New local feasible solutions are computed. (The constraining arcs are chosen in a
way that such local feasible solutions always exist and thuscan be found at least
by complete enumeration.)

3. At the end the corresponding new global solutionS
′

is checked for feasibility.

If S
′

is unfeasible, the operation is repeated until feasibilityis reached. All constraining
arcs chosen within the procedure stay in the local solutionsgraph. As explained above
they are not considered when checking for global feasibility.

Next it is described how constraining arcs have to be chosen.Then it is proved that the
procedure above terminates.
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A constraining arc in Step 1 is chosen with respect to the given global feasible solution
Sg. For the starting times in the global feasible solutionSg one has:

n−1∑

i=1

(sui+1
− sui

) = 0 <
n−1∑

i=1

lui,ui+1

and thus
sui+1

− sui
< lui,ui+1

for at least onei. Thus,sui+1
= sui

+ lui,ui+1
−∆ < sui

+ lui,ui+1
with ∆ > 0 for at least

onei.

If no path corresponding toui → ui+1 is present in the restrictions ofGmin to the local
areas thenui → ui+1 is a relaxable border arc. Otherwise (if a path corresponding to
ui → ui+1 exists in the restrictions ofGmin to the local areas)sui+1

− sui
≥ lminui,ui+1

must hold, aslminui,ui+1
represents a necessary condition even for the starting times in Sg.

Together withsui+1
− sui

< lui,ui+1
one haslui,ui+1

> lminui,ui+1
and thus, the arc must be

time-relaxable.

In this situation a constraining arc of TypeCS(i, j) is introduced, namely the arcui+1 →
ui with weightLui+1,ui

= sui
−sui+1

> −lui,ui+1
in the corresponding local graphs. (Thus,

in the next round the lengthl of a border arcui → ui+1 derived from these local graphs
cannot exceed−Lui+1,ui

< lui,ui+1
. Otherwisel + Lui+1,ui

> −Lui+1,ui
+ Lui+1,ui

= 0
would be the (positive) length of a local cycle.) The chosen constraining arc cannot
be already present in the corresponding local graphs, as otherwiselui,ui+1

≤ −Lui+1,ui

would already hold inS or no such corresponding path would be present there.

If the constraining arcs described above are introduced then for all local graphs always
local feasible solutions exist (local complete consistentselections) satisfying the imposed
constraints, since the global feasible solutionSg already satisfies them (sui

≥ sui+1
+

Lui+1,ui
= sui+1

+ sui
− sui+1

= sui
is obviously true). Such local complete consistent

selections can be found in any case by using complete enumeration for the local problems
(see Section 6.3).

Finally it has to be shown that the procedure terminates witha global feasible solution.
LetnB be the number of border nodes. One can introduce at mostnB ∗ (nB − 1) different
constraining arcs of the type described above. More precisely one can introduce at most
two constraining arcs of this type for every pair of border nodes in each local graph
where both nodes are present (,since local paths and therefore border arcs between pairs
of border nodes can only appear in local graphs which containboth nodes).

Possibly a global feasible solution is reached before having introduced all suitable con-
straining arcs. Otherwise suppose all these constraining arcs have been introduced. Then
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the local feasible solutions induced by the constraining arcs are feasible on a global level
since for any cycleC = (u1, . . . , un = u1) in the coordinator graph with arc lengths
lui,ui+1

∀ i = 1, . . . , n − 1 one has the following. As all constraining arcs have been
introduced the relation

lui,ui+1
≤ −Lui+1,ui

= sui+1
− sui

holds for alli. Then
n−1∑

i=1

lui,ui+1
≤

n−1∑

i=1

(sui+1
− sui

) = 0

holds, indicating that the length of the cycle must be non-positive. Thus, the coordina-
tor graph does not contain a positive cycle and the induced global solution is globally
feasible. 2

For the neighbourhoodNGL (see Section 7.2.1) Theorem 7.3 especially leads to

Property 7.2 Consider neighbourhoodNGL, where only constraining arcs of the type
from the proof above are introduced iteratively in order to eliminate positive cycles. Let
ALG be an arbitrary algorithm which leads to a feasible local solution for a local prob-
lem if it exists in a finite number of computational steps. Then the neighbourhoodNALG

GL ,
which applies the strategy from above for introducing constraining arcs and applies al-
gorithmALG in step (ii), is feasibility-connected.

Now letNALG
GL,O be an extension ofNALG

GL , where for a global feasible solution constraining
arcs can be introduced in order to shorten global critical paths. This is done with regard to
a given optimal global solution analogously to the way presented in the proof of Theorem
7.3. Then a similar argumentation leads to

Property 7.3 NeighbourhoodNAlg
GL,O is opt-connected.

As in the case of the neighbourhoods in Section 6 even Properties 7.2 and 7.3 are mainly
of theoretical interest. The next section exploits Theorem7.3 with regard to enumerative
procedures.
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7.4 Enumeration techniques for decomposed problems

Based on the considerations for Theorem 7.3 an enumerative algorithm on the coordinator
level can be constructed. As already stated above it may be assumed that all relevant data
- and thus all arc weights - are integer. In case of rational numbers one can easily satisfy
this assumption by multiplying all data by a suitable numberM ∈ N.

The idea of the procedure is to enumerate all suitable sets ofconstraining arcs. The
number of these sets has shown to be finite. Then for problems having a global feasible
solution Theorem 7.3 ensures that such a solution is found.

LetC = max{|cij|} be the maximal absolute arc weight for a given problem instance and
m the number of all arcs in the graph. Then the length of a longest directed path between
two arbitrary nodes in the graph corresponding to a global feasible solution (a global
complete consistent selection) is bounded by−mC andmC. W.l.o.g. one may assume
that a global solution is given by an ESS (Earliest start schedule), since otherwise such
an ESS can be derived from the solution by a left-shift of starting times in the schedule.
Thus, the maximal difference between the starting times of two different operations in a
global feasible solution is also bounded by−mC andmC since starting times in an ESS
are associated with longest paths in the corresponding solution graph.

Then for constraining arcs weights are only useful in the interval from−mC to mC.
Since one can only decide between introducing a constraining arc with one of the useful
weights in{−mC,−mC + 1, . . . , 0, . . . , mC} or not introducing it, there are2(mC + 1)
possibilities for each possible constraining arc (as all arc weights are integer). Possible
constraining arcs are arcs between two border nodes which have at least one local graph
in common. Thus, there are at mostnB(nB − 1) possible constraining arcs, wherenB is
the number of border nodes. The number of local alternative graphs where a constraining
arc can be introduced is obviously bounded, too.

Using Theorem 7.3 (Reachability theorem) leads to the following: If a global feasible
solution exists also a set of constraining arcs exists, which leads to a global feasible solu-
tion. Of course, this depends on the use of suitable methods to solve the local problems.
One can apply complete enumeration to each of the local problems. Then it is possible
either to find a local complete consistent selection for a local alternative graph or to prove
that no such local complete consistent selection exists (see Section 6.3).

By enumerating all sets of suitable constraining arcs and computing corresponding (local
complete) selections there are two possible results:

1. for some set a global complete consistent selection is found (local complete consis-
tent selections for all local problems are found and no positive cycle is contained in
the coordinator graph), or
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2. for each such set one either does not have local complete consistent selections for
some of the local problems or the local feasible solutions are not feasible on a global
level. Then no global feasible solution exists.

Obviously this algorithm is only of theoretical interest asits complexity might be quite
bad. Nevertheless it demonstrates the ability of the proposed decomposition approach to
compute a global feasible solution if one exists.

7.5 The influence of the decomposition on computation times

The decomposition of railway scheduling problems as proposed above provides an ad-
vantage in computation times. For example the effort for computing a globally feasible
solution by the proposed coordination procedure is smallerthan for the greedy algorithms
treating the problem as a whole.

For a more detailed discussion letn be the number of nodes andm be the number of
alternative arcs of the alternative graph for the whole problem. Now let this graph be
divided intok local graphs of identical size, i.e. each of the local graphscontains about
n
k

nodes andm
k

alternative pairs. (For the sake of clarity it is assumed that m andn are
multiples ofk.) Of course, the precise numbers are slightly greater as some nodes and
alternative arcs are located in more than one local graph. Nevertheless this is a good
approximation for large numbersn andm.

The main effort in both, the coordination procedure and the greedy algorithms, is spend
on the computation of longest paths. If the Floyd-Warshall-Algorithm is used each of
these computations needs an effort ofO(z3), wherez is the number of nodes of the corre-
sponding graph. A longest-path-calculation is done mainlyfor each alternative arc once.
Thus, the computational effort for the greedy algorithms, which treat the problem as a
whole, isO(m · n3).

In the coordination procedure in each coordination round the local problems have to be
solved by the greedy algorithm. This requires an effort ofO(m

k
· n

3

k3 ) for each local graph.
Additionally a longest-path calculation for the coordinator graph has to be carried out.
Suppose that the coordinator graph is at most as large as a local graph (n

k
nodes). Then

the computational effort for one round of the coordination procedure is led by the term
O((m+1)· n

3

k3 ). This effort is significantly smaller than the effort for thealgorithm treating
the problem as a whole (factor1

k3 ). If only a few rounds of coordination are needed the
coordination procedure should be significantly faster thanthe greedy algorithm.

If other solution procedures with exponential computational effort are used then the ad-
vantage of the coordination approach may be even greater.
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8 Implementation and results

In this section computational results for some of the solution procedures described above
are presented. The main focus lies on the decomposition approaches. It will be shown
that by the methods developed in Section 7.2 feasible solutions for small instances can be
derived with an acceptable effort of computation time.

In the first part of this section some implementation detailsof the tested methods are
described. Different classes of test instances for (decomposed) railway problems are pre-
sented in the second part. Finally in the third part computational results are presented,
analyzed, and compared.

8.1 Implementation details

The decomposition approach analyzed in this thesis is a kindof a greedy procedure. Lo-
cal solutions are computed by the greedy algorithm from Section 6.1 with the different
priority rules discussed there. If a priority rule for the local problems cannot choose a
pair (e.g. because of local paths which do not exist), then anarbitrary pair is chosen. Of
course, a local solution has to be re-computed during the coordination procedure, only if
the local problem has changed, i.e. if a new constraining archas been introduced.

The coordination step itself uses the priority rules from Section 7.2.2 in order to intro-
duce suitable constraining arcs. The algorithm either terminates after a maximal number
of coordination steps with or without having found a global feasible solution. Or it termi-
nates either if one of the local problems cannot be solved or no suitable constraining arc
can be introduced. All longest-path-calculations are performed by the Floyd-Warshall-
Algorithm, which is simultaneously used to identify positive cycles if they exist.

The decomposition approach is compared with the greedy procedures from Section 6.1,
which are used to solve the test instances as a whole. Even in this case the longest-path-
calculations are performed by the Floyd-Warshall-Algorithm.

The procedures were implemented in C. The tests were run on a PC (Intel Celeron with
1.8 GHz and 640 MB memory) with operating system Fedora 5.

8.2 Test data

The algorithms proposed above are tested on a variety of instances for the railway schedul-
ing problem. In this thesis artificial instances are used dueto the lack of small real-world
instances for (decomposed) railway problems.
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Figure 52: Example for railway network with four local areas.

The instances tested here are based on three different railway networks containing up to
73 fixed block sections. One of them is depicted in Figure 52. The design of the test
networks was led by the idea of including a variety of different situations which could
complicate scheduling trains. A large number of instances was created by introducing
up to 16 trains moving with different travelling times on different routes through the
networks. The travelling times of the trains vary in the range from 1 to 7. The crossing
time ǫ is set to a small positive value. Each instance is created forthe problem with and
without decomposition. The decomposition of the physical network is already depicted
in Figure 52 by dashed lines. Two of the networks are decomposed in three and the third
in four local networks.

After preliminary tests the most interesting instances were chosen. Different classes of
instances were designed. For the first class TS of instances no additional constraints are
allowed. This class contains 34 instances. The second classTS SC allows also starting
constraints, i.e. for a subset of trains a starting constraint is given. The class TSSC
contains 29 instances.

For all problems the makespan objective is considered. As the main focus lies on generat-
ing feasible solutions this choice is quite unimportant. Feasible solutions for the makespan
problem stay feasible even ifLmax or other regular objective functions are considered.
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8.3 Computational results

In this section computational results for the greedy procedures from Section 6.1 and the
decomposition procedures from Section 7.2 are presented. These approaches are tested
on the instances described above.

8.3.1 Greedy procedures

In this section computational results for the greedy procedures from Section 6.1 are de-
scribed.

The first observation is that for each of the test instances the greedy procedures provide
feasible solutions. In fact, creating test instances whichcannot be solved seems to be very
hard. For this work a large variety of different instances was created. Different ideas to
derive ’hard’ instances did not work. Of course ideas from the complexity proofs would
lead to hard problems. But those instances would be too largeto solve them in reasonable
time.

Having a look at the computational results from Mascis & Pacciarelli [45] encourages
the claim that creating ’hard’ instances is very difficult. Even for job-shop problems with
blocking and no-swap allowed feasible solutions for most ofthe instances are derived
by the greedy procedures. It is clear that job-shop problemsmay include a variety of
complex situations which are unnatural when transferred torailway problems. In job-
shop problems a job can move from any machine to any other whereas in railway problems
such moves are limited by the structure of the physical network. Thus, even the ’harder’
job-shop problems are solved by greedy procedures quite satisfactory.

Additionally the constraint propagation techniques included in the greedy procedures
seem to be very powerful for railway problems. If for examplea train moving on a single
line is chosen to be the first one in a certain block section this choice is propagated for the
whole line.

Detailed results for the greedy procedures are presented inthe Tables 5 and 6. Table 5
contains information on results for instances without starting constraints (TS). The sec-
ond column contains for each priority rule the average relative deviation from the average
values (Dev. from Avg.), i.e. the mean value of all values100Cmax−AV

AV
, whereAV is

the average objective value over all priority rules for the corresponding problem instance.
The third column contains for each priority rule the averagerelative deviation from the
best values (Dev. from Best), i.e. the mean value of all values100Cmax−B

B
, whereB is the
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best objective value over all priority rules for the corresponding problem instance. Addi-
tionally the average computation time needed for the different rules is given in seconds in
the fourth column.

Priority rule Dev. from Avg. Dev. from Best. Avg. Time
AMCC 0.73 17,50 116,7
SMCP 13,06 31,42 121,4
SMBP 2,77 19,55 125,1
SMSP -5,83 8,09 120,6
FCFS -10,73 2,84 111,7

Table 5: Results for instances from TS.

Table 6 contains the corresponding information on results for instances with starting con-
straints (TSSC).

Priority rule Dev. from Avg. Dev. from Best. Avg. Time
AMCC -0,06 18,32 124,6
SMCP 14,29 34,88 131,3
SMBP 3,98 22,47 133,6
SMSP -3,94 12,44 132,3
FCFS -14,27 0,20 116,9

Table 6: Results for instances from TSSC.

It can be seen that the computation times for the different priority rules are quite similar.
This is clear because all alternative pairs have to be chosenand corresponding updates of
longest-path-lengths’ have to be made. The effort for thesecomputations is the same for
all rules. Only the effort for choosing a pair is different.

For both classes of instances, problems with or without starting constraints, the FCFS-rule
provides the best results, also in terms of computational times. The rules which lead to
the worst results are SMCP and SMBP for both classes of instances. The corresponding
results are worse than the mean value over all tests.

Summarizing these observations and considerations it can be stated, that small instances
for railway problems can be solved by greedy procedures satisfactory. The question is
now, if this statement does also hold in case of decomposed problems. This question will
be answered in the next section.
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8.3.2 Coordination procedures for decomposed problems

In this section results for the (greedy) coordination procedures are reported. It will be
shown that using the techniques from Section 7.2 railway problems can be solved effec-
tively even if they have been decomposed.

Preliminary tests showed, that performing at most 20 coordination steps during the coordi-
nation procedure already provides good results. The coordination procedure was applied
to the test data using 50 different combinations of priorityrules. For the greedy procedure
for solving the local problems five different priority rulesAMCC, SMCP, SMBP, SMSP,
FCFS were used. For the coordination step ten different priority rules, namely CFRT(1),
CFRT(10), CFRTM, C2RT(1), C2RT(10), C2RTM, CLRTM, CSRTM, CLDRTM, and
CLSRTM were used. For a detailed description of these rules the reader is referred to
Section 7.2.2. In each step of the coordination procedure one constraining arc is intro-
duced in one local graph.

The coordination procedure was tested on the 34 instances inTS (without starting con-
straints) and the 29 instances in TSSC (with starting constraints). Table 7 contains for
each combination of priority rules the average relative deviation from average and best
objective values (see also the explanation for Table 5), which were found by the coor-
dination procedures. These average values were calculatedincluding all results where a
feasible solution could be found.

AMCC SMCP SMBP SMSP FCFS
CFRT(1) 14.4 (53.7) 3.2 (35.4) -2.7 (30.8) 6.1 (43.6) 12.4 (50.2)
CFRT(10) 14.5 (53.5) 3.7 (36.2) -2.9 (28.5) 10.2 (46.3) 11.4 (48.6)
CFRTM 13.8 (51.6) 3.8 (37.4) -2.8 (28.6) 9.1 (44.8) 11.3 (48.4)
C2RT(1) -12.3 (14.8) -2.9 (26.5) 3.6 (36.7) -10.4 (20.0) -8.5 (23.8)
C2RT(10) -9.9 (20.7) -3.8 (25.4) 3.5 (35.6) -9.4 (19.7) -7.7 (23.6)
C2RTM -10.1 (19.8) -4.3 (24.8) 3.2 (35.3) -10.3 (18.6) -7.5 (22.7)
CLRTM -0.9 (32.9) -2.3 (27.9) -1.6 (32.2) -2.5 (32.6) -2.7 (32.7)
CSRTM 1.5 (37.1) -0.9 (28.3) -4.2 (28.0) -10.9 (18.8) -1.4 (32.1)
CLDRTM 13.8 (51.6) 3.8 (37.4) -2.8 (28.6) 9.1 (44.8) 11.3 (48.4)
CLSRTM -7.7 (22.7) -12.8 (13.7) -3.9 (26.0) -8.2 (21.3) -4.97 (25.9)

Table 7: Relative deviation from average (best) values for instances in TS.

The best values (in bold print) are derived by the combination SMCP-CLSRTM. Com-
paring the results (rows) for CFRT(1), CFRT(10), and CFRTM it can be seen that setting
constraining arcs with the maximal possible weights (CRFTM) leads to better results than
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the other rules. The same observation can be made, when comparing C2RT(1),C2RT(10),
and C2RTM. Thus, setting quite restrictive constraints, asalso done by the priority rules
CLRTM, CSRTM, and CLSRTM, leads to better results than setting weak constraints.
Only rule CLDRTM does not provide such good results.

In Table 8 the numbers of best (feasible) solutions derived by different combinations of
priority rules are depicted for the instances in TS. A columncontains these numbers for a
single priority rule used in the greedy procedure for the local problems. A row contains
the data for a single priority rule used in the coordination procedure.

CoordPrio/Prio AMCC SMCP SMBP SMSP FCFS
CFRT(1) 0 (28) 1 (32) 1 (30) 1 (29) 0 (33)
CFRT(10) 0 (29) 1 (32) 1 (33) 0 (34) 0 (34)
CFRTM 0 (34) 1 (34) 1 (33) 1 (34) 1 (34)
C2RT(1) 8 (25) 4 (34) 1 (32) 7 (30) 3 (25)
C2RT(10) 9 (32) 4 (34) 1 (34) 7 (34) 6 (32)
C2RTM 12 (33) 7 (34) 1 (34) 7 (34) 9 (34)
CLRTM 2 (25) 3 (25) 0 (29) 1 (29) 2 (24)
CSRTM 0 (26) 6 (23) 6 (27) 1 (21) 1 (30)

CLDRTM 0 (34) 1 (34) 1 (33) 1 (34) 1 (34)
CLSRTM 3 (33) 7 (34) 1 (34) 1 (34) 0 (34)

Table 8: Number of best (feasible) solution found for instances in TS.

The results from Table 7 are confirmed by Table 8. Setting morerestrictive constraining
arcs provides more best solutions. The number of feasible solutions increases with more
restrictive constraining arcs, too. The best results are given in bold print. Many com-
binations of priority rules lead to feasible solutions for all 34 instances. The most best
solutions are found by the combinations AMCC-C2RT(10) and FCFS-C2RTM.

The average computation times (in seconds) for the 50 different combinations of priority
rules are given in Table 9. Additionally the average number of necessary coordination
steps is given. This mean value is build including all instances, where a feasible solution
could be found with the associated combination of priority rules.

The average computation times for instances in TS lie between 18 and 94 seconds. For
some instances and combinations of priority rules the coordination procedure needs more
than 1000 seconds of computation time. This shows that some of the instances can be
solved very quickly, as the average values are much smaller.The average numbers of
necessary coordination steps lie between 2 and 11 (see Table9). Together with the num-
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AMCC SMCP SMBP SMSP FCFS
CFRT(1) 86.69 (8.82) 93.58 (8.28) 61.21 (4.17) 63.99 (8.24) 82.71 (8.15)
CFRT(10) 83.86 (8.10) 88.48 (5.94) 49.58 (4.64) 37.21 (6.12) 54.27 (6.29)
CFRTM 47.76 (6.29) 57.83 (4.91) 33.81 (3.82) 24.14 (4.09) 44.33 (4.62)
C2RT(1) 80.58 (9.92) 43.79 (7.15) 68.37 (5.47) 89.17 (8.20) 69.74 (10.44)
C2RT(10) 66.26 (10.28) 36.97 (6.59) 57.85 (5.00) 60.10 (6.82) 59.58 (9.81)
C2RTM 62.91 (9.82) 33.11 (6.15) 47.40 (4.59) 46.19 (5.47) 56.36 (8.88)
CLRTM 39.99 (6.24) 26.12 (4.32) 34.34 (2.76) 18.71 (2.86) 47.16 (5.54)
CSRTM 44.97 (6.31) 25.73 (4.09) 34.18 (2.85) 25.77 (3.62) 41.42 (4.57)
CLDRTM 51.94 (6.29) 57.74 (4.91) 32.79 (3.82) 22.70 (4.09) 45.72 (4.62)
CLSRTM 61.08 (9.79) 33.93 (6.65) 46.09 (4.24) 41.21 (4.91) 56.11 (9.06)

Table 9: Computation times (coordination steps) for instances in TS.

ber of feasible solutions derived by the different procedures (Table 8) this shows, that a
maximal number of 20 coordination steps is sufficient to get good results.

For problem instances including starting constraints the coordination procedure behaves
slightly different. The corresponding results for instances in TSSC (instances with start-
ing constraints) are contained in the Tables 10, 11, and 12. Again the first table (10)
contains deviations from average and best results. The second table (11) contains num-
bers of best (feasible) solutions found by the procedure andthe third table (12) contains
average computation times and average numbers of necessarycoordination steps.

AMCC SMCP SMBP SMSP FCFS
CFRT(1) 15.2 (45.9) 2.0 (25.9) -3.2 (23.9) 7.0 (38.2) 8.5 (35.7)
CFRT(10) 10.8 (38.3) 2.0 (25.9) -3.5 (22.8) 11.5 (41.2) 8.5 (35.7)
CFRTM 13.3 (41.5) 2.0 (25.9) -3.6 (22.6) 9.9 (39.9) 14.6 (46.0)
C2RT(1) -12.9 (7.1) 5.8 (33.6) 6.8 (31.0) -11.1 (7.9) -7.7 (12.6)
C2RT(10) -11.3 (9.2) 4.3 (31.8) 7.0 (31.1) -9.4 (9.9) -7.3 (13.2)
C2RTM -10.3 (9.9) 5.0 (32.7) 6.7 (30.7) -10.0 (9.2) -8.3 (12.3)
CLRTM -8.6 (12.1) 4.8 (29.4) -5.7 (18.9) -0.9 (27.1) -17.4 (1.8)
CSRTM 6.7 (37.0) 4.3 (32.4) -2.5 (23.9) -4.4 (16.3) 7.2 (40.9)

CLDRTM 13.3 (41.5) 2.0 (25.9) -3.6 (22.6) 9.9 (39.9) 14.6 (46.0)
CLSRTM -7.2 (14.4) -1.2 (25.0) 3.7 (27.2) -9.2 (10.9) -3.9 (18.5)

Table 10: Relative deviation from average (best) values forinstances in TSSC.
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For problems with starting constraints the combination FCFS-CLRTM provides the best
results in average (see Table 10). In contrast to the resultsfor problems without start-
ing constraints here more restrictive constraining arcs donot always provide better so-
lutions. For example the combination AMCC-C2RT(1) in average leads to better results
than AMCC-C2RT(10) and AMCC-C2RTM. A reason for this behavior may be, that more
restrictive constraining arcs together with starting constraints do not leave enough space
for solving local problems effectively.

CoordPrio/Prio AMCC SMCP SMBP SMSP FCFS
CFRT(1) 0 (7) 0 (6) 5 (26) 1 (23) 0 (4)
CFRT(10) 0 (8) 0 (6) 5 (28) 1 (27) 0 (4)
CFRTM 0 (8) 0 (6) 6 (28) 2 (29) 0 (7)
C2RT(1) 8 (16) 1 (29) 0 (17) 6 (14) 6 (16)
C2RT(10) 9 (19) 2 (29) 0 (18) 6 (16) 7 (18)
C2RTM 9 (22) 3 (29) 0 (18) 6 (16) 9 (23)
CLRTM 1 (5) 0 (6) 4 (25) 2 (26) 0 (3)
CSRTM 1 (6) 1 (9) 6 (22) 1 (11) 0 (4)

CLDRTM 0 (8) 0 (6) 6 (28) 2 (29) 0 (7)
CLSRTM 2 (24) 4 (29) 0 (18) 3 (18) 2 (25)

Table 11: Number of best (feasible) solution found for instances in TSSC.

For the 29 instances in TSSC (problems with starting constraints) the numbers of feasible
solutions and best solutions derived by the different combinations of priority rules (Table
11) are similar to the numbers for the instances in TS. Again,setting more restrictive con-
straining arcs leads to more best solutions found by the algorithm. The number of feasible
solutions increases with more restrictive constraining arcs, too. A closer look shows, that
the quota of feasible solutions found by the procedures is smaller for instances in TSSC
than for instances in TS. Thus, also in practice the instances with starting constraints seem
to be harder to solve than instances without starting constraints.

The average computation times for instances in TSSC lie between 10 and 79 seconds.
As for the problems without starting constraints for some instances and combinations of
priority rules the coordination procedures needs more than1000 seconds of computation
time. The computation times are slightly smaller than for the instances in TS. The reason
is, that the procedures fail in finding feasible solutions inmore cases than for instances
in TS. These infeasibilities occur quite early during the procedures, such that the average
computation times are smaller. The average numbers of necessary coordination steps
to find feasible solutions lie between 2 and 11 (see Table 12).Thus, there is nearly no
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AMCC SMCP SMBP SMSP FCFS
CFRT(1) 12.31 (8.57) 10.93 (4.83) 56.34 (4.77) 57.67 (8.22) 10.50 (8.25)
CFRT(10) 13.19 (9.00) 10.47 (3.17) 45.38 (4.93) 42.18 (6.30) 10.28 (7.25)
CFRTM 11.03 (5.75) 10.19 (2.50) 37.80 (4.32) 24.04 (4.41) 10.69 (6.14)
C2RT(1) 78.63 (7.50) 49.62 (6.48) 76.68 (6.53) 74.91 (6.71) 69.06 (10.88)
C2RT(10) 72.74 (8.16) 41.39 (5.86) 57.94 (5.61) 50.79 (6.00) 58.59 (9.06)
C2RTM 71.79 (9.32) 37.28 (5.59) 49.45 (5.11) 50.78 (5.12) 62.14 (8.74)
CLRTM 12.06 (5.60) 10.28 (3.00) 40.52 (3.68) 31.32 (3.54) 11.80 (5.33)
CSRTM 13.52 (5.00) 21.34 (3.89) 29.66 (2.77) 30.22 (2.55) 11.95 (4.50)

CLDRTM 11.22 (5.75) 10.32 (2.50) 37.47 (4.32) 24.05 (4.41) 10.76 (6.14)
CLSRTM 68.99 (9.46) 37.57 (5.72) 47.64 (4.39) 47.44 (5.17) 59.29 (9.44)

Table 12: Computation times (coordination steps) for instances in TSSC.

difference between TS and TSSC for this criteria.

In contrast to the strategies above one may introduce each constraining arc in all possible
local graphs at the same time. Thus, in each coordination step a constraining arc is chosen
according to one of the rules above and is then introduced in all possible local graphs.
In this case the priority rules for the coordination step arenamed AllIn-rules. Tables
describing the results for these procedures can be found in Appendix A (Tables 14 to 19).

Having a closer look on the results for the AllIn-rules the following main observations
can be made. Some of the combinations with the AllIn-rules lead to better some to worse
results than the rules above. Less feasible solutions than for the rules above can be com-
puted. Especially for the instances with starting constraints (TSSC) some rules do only
lead to very few feasible solutions. The procedure using theAllIn-combination SMCP-
CFRT(1) does not find any feasible solution. The average computation times are higher
for the AllIn-rules (between 11 and 159 seconds).

Thus, the procedures where only one constraining arc is introduced per coordination step
seem to work better and faster than the procedures using the AllIn-rules.

Summarizing the main observations about the performance ofthe coordination procedures
the following can be stated:

• For all instances in TS and TSSC feasible solutions can be found by the coordina-
tion procedure.

• A maximal number of 20 coordination steps leads to good results with an acceptable
effort of computation time.
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• Even in practice the instances with starting constraints (TS SC) are harder to solve
than the instances without (TS).

• Procedures where only one constraining arc is introduced per coordination step
seem to work better and faster than the procedures using the AllIn-rules.

• Coordination priority rules which set more restrictive constraining arcs lead to more
feasible solutions than others.

• In average more restrictive constraining arcs lead to better solutions for the in-
stances in TS.

8.3.3 Comparison

In this section the results for the greedy procedures and thecoordination procedures are
compared. For the coordination procedures the results using the AllIn-rules are not taken
into account.

Comparing the results presented in the last two sections onemain experience is made. All
problem instances can be solved by both the greedy procedures and the decomposition
approach. The quality of the best solutions derived by the algorithms is better for the
greedy procedures from Section 6.1.

Significant information for both the greedy algorithms and the coordination procedures is
contained in Table 13. The second column contains the average deviation from the best
results derived by one of the procedures for the instances inTS. The average computation
times (in seconds) for instances in TS are contained in the third column. Columns 4 and
5 contain the corresponding information for instances withstarting constraints (TSSC).

Dev. for TS Time for TS Dev. for TSSC Time for TS SC
Greedy alg. 16,04% 119.11 sec 17,66% 127,73 sec
Coord. proc. 97,02% 51,51 sec 97,37% 36,64 sec

Table 13: Comparison of greedy algorithms and coordinationprocedures.

In average the coordination procedures are much faster thanthe greedy algorithms. But
the quality of the solutions derived by the greedy algorithms is much better than the qual-
ity of the solutions derived by the coordination procedure.Obviously, computing local
solutions independently leads to higher objective values.This is clear as the local pro-
cedures have no information about the global situation apart from the constraining arcs
which are only introduced to achieve global feasibility.
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Consider for example a quite good solution derived by the greedy algorithm. Then chang-
ing only one train sequence - such that a train must wait with starting its journey until an-
other arrives - may nearly double the objective value. Most likely such “bad” choices are
made by the local algorithms within the coordination procedures and thus, the objective
values are much higher than for the greedy algorithms.

Nevertheless, in average the coordination procedures are much faster than the greedy al-
gorithms. This is an effect of the decomposition, as the local problems are much smaller
than the global problem (see also Section 7.5). Thus, for example longest-path proce-
dures are much faster for the local problems. Even the coordinator graph is quite small
compared to the alternative graph for the whole problem.

Summarizing the analysis above, one can state the following. Both, greedy algorithms as
well as coordination procedures are able to get feasible solutions for all test instances. The
greedy algorithm always finds feasible solutions whereas some versions of the coordina-
tion procedure (using certain combinations of priority rules) fail. The greedy procedures
provide solutions of much higher quality whereas the coordination procedure is more than
twice faster in average.
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9 Concluding remarks

In this thesis an overview on different aspects of a class of railway scheduling problems
was presented. Railway scheduling problems and related shop scheduling problems were
modeled in terms of alternative graphs. Existing solutionsprocedures as well as some
new ideas were presented.

Additionally the complexity of railway scheduling and related shop scheduling prob-
lems was analyzed. The railway problem with starting constraints was shown to be NP-
complete by adjusting a complexity proof from Arbib et al. [6]. Railway scheduling
problems and related shop scheduling problems with blocking constraints were classified
in terms of the well-knownα|β|γ-scheme.

The main part of this thesis was dedicated to the decomposition of railway scheduling
problems and corresponding solution procedures. Based on approaches developed within
the EU-project COMBINE II a decomposition model was proposed. The decomposition
model is based on a physical decomposition of a railway network. The scheduling prob-
lem then is decomposed into local problems and a coordination problem. Coordination
procedures were developed in order to compute feasible solutions for the decomposed
problem. The procedures were tested on a variety of instances and compared to simple
greedy procedures, which treat the problem as a whole. It turned out that the procedures
for the decomposed problem are faster than the greedy algorithms but provide solutions
of worse quality.

The purpose of this thesis is to set a basis for further considerations in the field of de-
composition of railway scheduling problems. Of course, there are still many topics where
further research could focus on. As seen above, the quality of the solutions derived by
the coordination procedures is quite bad. Thus, approachesto improve the quality of such
solutions might be developed. On one hand this could be done by introducing new coor-
dination techniques. On the other hand one could try to use other techniques for solving
the local problems. Such techniques could be developed exploiting the ideas in Section 6.
A diploma thesis will focus on this topic in the next months.

Another research topic could be the integration of the scheduling techniques from this
thesis with variable routings and simulation techniques. For basic versions of the decom-
position approach this has already been done within the EU-project COMBINE II. But in
contrast to the fully automated algorithms in this thesis, the procedures in COMBINE II
were developed for real-time planning systems, which support human dispatchers.

A further topic for future research could be the exploitation of the coordination techniques
presented in this thesis for other types of scheduling problems. For example some supply-
chain problems could be decomposed in a similar way as presented here. Furthermore
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general decomposition approaches and corresponding coordination techniques based on
physical decompositions of scheduling problems could be developed.
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List of abbreviations

AMCC priority rule Avoid Maximum CurrentCmax

BNSJSP blocking job-shop problem with no swap allowed

BWSJSP blocking job-shop problem with swap allowed

CFRTS(δ) priority rule Constrain first relaxable or time-relaxable slightly

CFRTM priority rule Constrain first relaxable or time-relaxable maximally

CnRTS(δ) priority rule Constrain n-th relaxable or time-relaxable slightly

CnRTM priority rule Constrain n-th relaxable or time-relaxable maximally

CLRTM priority rule (for details see Section 7.2.2)

CSRTM priority rule (for details see Section 7.2.2)

CLDRTM priority rule (for details see Section 7.2.2)

CLSRTM priority rule (for details see Section 7.2.2)

FCFS priority ruleFirst Come First Serve

SMBP priority ruleSelect Most Balanced Pair

SMCP priority ruleSelect Most Critical Pair

SMSP priority ruleSelect Max Sum Pair
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Cmax, 19
Gmin, 85
Lmax, 19
3-SAT problem, 45
3MI problem, 38

acyclic, 20
alternative graph, 21
alternative pair, 21
aspiration criterion, 70

basic local graph, 73
block section, 10
blocking constraint, 9
blocking job-shop problem, 9
blocking operation, 9
border, 72
border arc, 79
border element, 73
border node, 77
Branch & Bound, 61

clearing point, 72
connected, 63
connection constraint, 12
constraining arc, 85
constraint propagation, 56
coordinator graph, 78
critical path, 19

deadline, 12
decomposition model, 72
disjunctive graph, 18

earliest-start-schedule, 19
ending constraint, 12
enumeration, 61
extension, 21

feasibility-connected, 63
fixed block safety system, 10
flow-shop problem, 8
Floyd-Warshall algorithm, 19

global conflict, 85
greedy algorithm, 55

ideal operation, 9

job-shop problem, 7

local graph, 77
local search, 63

makespan, 8, 19
maximum lateness, 8
moving block safety system, 10

neighbourhood connectitvity
connected, 63
feasibility-connected, 63
opt-connected, 63

neighbourhood structure, 63
no-wait constraint, 8
non-relaxable, 86
NP-complete, 35
NP-hard, 35

objective function
Cmax, 19
Lmax, 19
makespan, 8, 19
maximum lateness, 8

opt-connected, 63
out-of-service interval, 12

positive cycle, 19
priority rules, 55
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railway scheduling problem, 10
reachability, 92
relaxable, 86
release-date, 12
repair procedure, 66

selection, 19, 21
complete, 19
consistent, 19
extension of, 19

starting constraint, 12
swap of operations, 9

tabu list, 69
tabu search, 63, 69
time-relaxable, 86
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A Appendix: Tables

AMCC SMCP SMBP SMSP FCFS
CFRT(1) 3.4 (21.9) 4.4 (18.9) 0.3 (26.6) -6.7 (7.4) 1.2 (21.7)
CFRT(10) 4.5 (31.8) 5.1 (38.0) -0.2 (26.0) -3.5 (23.7) 1.4 (31.2)
CFRTM 15.7 (54.7) 4.7 (39.3) -4.9 (26.5) 10.8 (47.7) 13.2 (51.5)
C2RT(1) -14.1 (7.0) -1.9 (26.0) 11.0 (43.0) -5.9 (15.2) -11.3 (6.1)
C2RT(10) -14.0 (9.0) -0.6 (28.9) 7.0 (39.6) -11.2 (13.5) -14.4 (8.8)
C2RTM -8.8 (22.1) -2.9 (28.0) 4.6 (38.2) -9.0 (21.4) -6.2 (25.4)
CLRTM -3.1 (29.2) -0.8 (31.3) 0.1 (33.4) -0.9 (33.2) -2.3 (31.2)
CSRTM 4.6 (39.9) -4.8 (26.0) -2.5 (28.9) -6.9 (25.1) 1.2 (35.4)

CLDRTM 15.7 (54.7) 4.7 (39.3) -4.9 (26.5) 10.8 (47.7) 13.2 (51.5)
CLSRTM -6.4 (25.0) -11.4 (16.9) -2.5 (28.9) -6.8 (24.1) -3.6 (28.6)

Table 14: Relative deviation from average (best) values forinstances in TS.

CoordPrio/Prio AMCC SMCP SMBP SMSP FCFS
CFRT(1) 0 (6) 1 (4) 1 (18) 1 (5) 0 (9)
CFRT(10) 0 (14) 1 (18) 1 (18) 0 (14) 0 (15)
CFRTM 0 (34) 1 (34) 6 (34) 1 (34) 1 (34)
C2RT(1) 6 (12) 3 (24) 1 (14) 3 (8) 3 (5)
C2RT(10) 6 (15) 3 (29) 1 (28) 5 (23) 3 (13)
C2RTM 7 (33) 5 (34) 1 (34) 5 (34) 7 (34)
CLRTM 1 (30) 2 (30) 0 (31) 1 (29) 2 (26)
CSRTM 0 (33) 8 (31) 5 (29) 1 (25) 1 (34)

CLDRTM 0 (34) 1 (34) 6 (34) 1 (34) 1 (34)
CLSRTM 0 (33) 5 (34) 1 (34) 1 (34) 0 (34)

Table 15: Number of best (feasible) solution found for instances in TS.
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AMCC SMCP SMBP SMSP FCFS
CFRT(1) 26.33 (2.50) 25.04 (1.50) 22.74 (2.44) 20.95 (1.40) 23.35 (1.67)
CFRT(10) 30.80 (4.36) 27.41 (4.67) 22.80 (2.44) 21.72 (3.07) 26.57 (2.53)
CFRTM 76.69 (6.29) 76.75 (4.91) 45.50 (3.56) 47.66 (4.53) 64.47 (4.62)
C2RT(1) 30.79 (4.75) 82.18 (5.58) 40.96 (2.00) 32.44 (3.38) 26.13 (3.00)
C2RT(10) 32.05 (5.47) 95.79 (6.00) 60.98 (3.96) 34.25 (5.22) 31.06 (4.62)
C2RTM 116.40 (9.09) 91.92 (6.03) 61.98 (4.35) 49.85 (4.82) 91.83 (7.53)
CLRTM 85.43 (6.17) 77.41 (4.73) 45.14 (2.81) 27.13 (2.86) 74.22 (4.73)
CSRTM 80.10 (6.21) 68.13 (4.52) 55.70 (3.21) 52.84 (3.84) 74.77 (5.00)

CLDRTM 76.83 (6.29) 76.30 (4.91) 45.55 (3.56) 47.49 (4.53) 64.26 (4.62)
CLSRTM 115.06 (8.94) 92.60 (6.41) 61.30 (4.15) 45.14 (4.44) 91.29 (7.47)

Table 16: Computation times (coordination steps) for instances in TS.

AMCC SMCP SMBP SMSP FCFS
CFRT(1) 31.3 (80.5) – (–) -3.8 (17.0) -5.6 (11.6) 12.4 (41.0)
CFRT(10) 9.7 (35.4) 1.3 (23.6) -2.4 (19.7) -2.4 (20.8) 12.4 (41.0)
CFRTM 14.3 (39.6) 1.9 (22.2) -6.2 (18.4) 10.3 (39.7) 15.6 (43.7)
C2RT(1) -11.0 (7.6) 9.0 (34.9) 13.1 (35.5) -11.5 (3.9) -8.3 (7.0)
C2RT(10) -11.4 (8.0) 6.0 (33.9) 9.8 (34.3) -13.7 (3.6) -9.5 (6.9)
C2RTM -9.8 (10.8) 5.8 (33.1) 7.4 (32.7) -9.3 (11.2) -7.6 (13.9)
CLRTM -8.0 (12.9) 4.7 (25.7) -5.5 (18.1) -0.2 (26.4) -16.7 (3.1)
CSRTM 7.5 (31.8) 6.5 (33.4) -0.5 (25.6) 0.8 (28.6) 7.3 (32.2)

CLDRTM 14.3 (39.6) 1.9 (22.2) -6.2 (18.4) 10.3 (39.7) 15.6 (43.7)
CLSRTM -6.7 (15.2) -0.5 (25.4) 4.4 (29.1) -8.6 (12.6) -3.2 (19.9)

Table 17: Relative deviation from average (best) values forinstances in TSSC.
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CoordPrio/Prio AMCC SMCP SMBP SMSP FCFS
CFRT(1) 0 (1) 0 (0) 3 (15) 1 (7) 0 (2)
CFRT(10) 0 (4) 0 (3) 3 (18) 1 (13) 0 (2)
CFRTM 0 (8) 0 (6) 7 (29) 3 (29) 0 (7)
C2RT(1) 6 (10) 0 (21) 0 (8) 3 (7) 4 (6)
C2RT(10) 6 (12) 0 (25) 0 (13) 6 (12) 4 (7)
C2RTM 9 (22) 1 (29) 0 (18) 6 (16) 9 (23)
CLRTM 1 (5) 0 (6) 4 (27) 2 (26) 0 (3)
CSRTM 1 (7) 1 (10) 4 (24) 1 (21) 0 (5)

CLDRTM 0 (8) 0 (6) 7 (29) 3 (29) 0 (7)
CLSRTM 2 (24) 2 (29) 0 (18) 4 (18) 2 (25)

Table 18: Number of best (feasible) solution found for instances in TSSC.

AMCC SMCP SMBP SMSP FCFS
CFRT(1) 12.49 (5.00) 11.87 (–) 22.79 (2.53) 23.16 (1.57) 12.38 (3.00)
CFRT(10) 13.43 (3.25) 12.30 (2.33) 24.27 (2.78) 29.88 (2.85) 12.98 (2.50)
CFRTM 17.21 (5.75) 12.85 (2.50) 57.30 (4.17) 57.56 (5.17) 17.73 (6.14)
C2RT(1) 32.37 (4.40) 65.19 (3.86) 39.15 (2.25) 40.83 (3.43) 32.84 (3.17)
C2RT(10) 36.60 (4.83) 103.04 (5.08) 61.44 (4.00) 41.17 (4.92) 35.50 (3.86)
C2RTM 124.17 (8.68) 97.05 (5.41) 61.24 (4.72) 55.62 (4.75) 94.15 (8.04)
CLRTM 16.53 (4.60) 12.91 (2.50) 51.55 (3.67) 39.20 (3.54) 15.80 (4.67)
CSRTM 18.01 (5.43) 24.97 (4.00) 55.60 (3.29) 52.03 (3.95) 17.27 (5.20)

CLDRTM 17.23 (5.75) 12.90 (2.50) 57.50 (4.17) 65.59 (5.17) 17.71 (6.14)
CLSRTM 158.76 (8.62) 97.09 (5.55) 60.27 (4.17) 52.50 (4.61) 94.97 (8.36)

Table 19: Computation times (coordination steps) for instances in TSSC.

122



Danksagung

Ich bedanke mich bei Herrn Prof. Dr. Peter Brucker. Er gab mirnach meinem bestande-
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