
Cyclic Scheduling Problems

Dissertation
von

Thomas Kampmeyer

März 2006

Fachbereich Mathematik/Informatik
Universität Osnabrück

Danksagung

Diese letzten Zeilen meiner Dissertation, die ich nun schreibe, möchte ich nun nutzen,
um denjenigen zu danken, die mich in den letzten drei Jahren begleitet, unterstützt und
gefördert haben.

Besonders bedanken möchte ich mich bei meinem Betreuer Prof. Dr. Peter Brucker, ohne
ihn wäre diese Arbeit wohl nie zustande gekommen. Für seine Impulse und Gedanken,
die gemeinsamen Artikel und die Zeit, die er immer für mich hatte, Vielen Dank! Eben-
falls gilt Prof. Ph.D. Eugene Levner Dank für die engagierten Ideen, die zur besseren
Verständlichkeit dieser Arbeit beitrugen.

Weiterhin sei das Cusanuswerk genannt, das mit seiner finanziellen Förderung mir diese
Dissertation ermöglichte. Ebenfalls trug diese Förderung viel dazu bei mir einen Aus-
landsaufenthalt und den Besuch verschiedener Kongresse zu ermöglichen. Mich wird es
freuen einen Teil dieser Unterstützung als Altcusaner zurückzugeben.

Außerdem bedanke ich mich bei allen Mitarbeitern im Institut für Mathematik, besonders
bei Silvia Heitmann und Christian Strotmann, mit denen ich viele anregende Gespräche,
spannende Kongresse und informelle Zeiten teilen konnte. Weiter möchte ich mich auch
bei Tim Nieberg bedanken, der mir bei einigen sprachlichen Problemen immer helfen
konnte.

Ein großes Dankeschön richtet sich auch an meine Familie. Mit ihrem Zuspruch trugen
sie maßgeblich zu dem Entschluß bei, diese Dissertation zu realisieren.

Zum Schluß möchte ich meiner Freundin Kerstin Polster herzlich danken für ihre Un-
terstützung und ihren Zuspruch während der Zeit dieser Arbeit. Dank ihr fiel es mir
manchmal leichter, diese Arbeit zu vollenden.

Contents 2

Contents

1 Introduction 4

2 The General Basic Cyclic Scheduling Problem 7

2.1 The Problem Definition . 7

2.2 Algorithm to Solve the GBCSP . 14

2.3 Several Strongly Connected Components 24

2.4 The K-periodic Cyclic Scheduling Problem 25

3 The General Cyclic Machine Scheduling Problem 35

3.1 The Basic Cyclic Machine Scheduling Problem 35

3.2 Cyclic K-periodic Scheduling Problems 38

3.3 Some Extensions . 40

3.4 Some Complexity Results . 44

4 The Cyclic Job Shop Scheduling Problem With Blocking 46

5 Cyclic Scheduling Problem With Linear Precedence Constraints 52

5.1 Basic Cyclic Scheduling Problems With Linear Precedence Constraints . 52

5.2 A Cyclic Scheduling Problem With Linear Precedence Constraints and
Resource Constraints (CLSP) . 55

6 Applications 62

6.1 Cyclic Job Shop . 62

6.2 Cyclic Job Shop With Transportation Robots 71

6.3 Software Pipelining . 89

Contents 3

7 Solution Methods 96

7.1 Solving the Problem With MILP Solver 96

7.2 Solving the Problem With a Meta-Heuristic 97

7.3 The Search Space . 97

7.4 Neighborhoods . 99

7.4.1 Basic Properties for the Local Search Methods 99

7.4.2 Neighborhoods for Cyclic Job Shop Problems Without Blocking . 100

7.4.3 Neighborhoods for Cyclic Job Shop Problems With Blocking . . 105

7.4.4 Neighborhoods for Robotic Cell Problems 137

7.5 Start heuristics . 140

8 Implementation and Computational Results 144

8.1 Test Data . 144

8.2 Experiments Setup . 146

8.3 Computational Results . 147

9 Concluding remarks 156

10 Bibliography 157

1. Introduction 4

1 Introduction

For classical non-cyclic scheduling problems, we are given a set of operations, each of
which has to be processed exactly once. The aim is to minimize or maximize a given
objective function such as makespan or sum of all (weighted) completion times for a
given set of constraints.

The set of constraints is usually given by precedence constraints between the operations.
In contrast to these problems, for cyclic scheduling problems we are given a set of op-
erations, each of which has to be processed infinitely often. Such types of scheduling
problems arise in different application areas like compiler design, manufacturing, digital
signal processing, railway scheduling, timetabling, etc.

The problem is to find a periodic schedule which minimizes a given objective function.
There exist two objective functions which are important in this area of cyclic scheduling.
The objective which is considered throughout this work is to minimize the time difference
between two succeeding occurrences of one operation for a given set of constraints. This
time difference is called cycle time. This objective can be generalized to K-periodic
problems. Here the new objective is to minimize the time difference between the l-th
occurrence and the (l + K)-th occurrence of an operation, where K occurrences instead
of one occurrence of an operation are now processed in one period. The other objective,
which is not considered in this work, is to minimize the flow time of a job (see Roundy
[62]). The flow time describes the time which is needed to produce one occurrence of one
job that consists of several operations.

The main applications which are considered in the cyclic scheduling literature are robotic
cell problems (see e.g. Crama et al. [20], Kats and Levner [39], Matsuo et al. [51]). Here a
robot transports the jobs from one machine to another machine. Lee and Posner [43] and
Hall et al. [29] investigate complexity issues for cyclic job-shop problems with machine
chains repetition. Another area in which cyclic scheduling plays an important rule is
computer pipelining (see e.g. [3, 59]).

In this thesis, we develop a general framework to model and to describe cyclic scheduling
problems with resource constraints. The basis for this thesis is done by Hanen [30].
The underlying subproblem is called Basic Cyclic Scheduling Problem (BCSP) and it is
polynomial solvable. We generalize the BCSP and propose a fast algorithm in practise to
solve the generalized problem. This algorithm is based on Howard s Algorithm (see e.g.
Dasdan et al. [23]). We also present a linear programming formulation for the K-periodic
problems. Furthermore, we extend the model by Hanen by adapting the alternative graph
model developed by Mascis and Pacciarelli [50] to model blocking constraints for cyclic

1. Introduction 5

scheduling problems. Afterwards, we generalize the new blocking model to describe
more general blocking situations. These arise, e.g., in the area of software pipelining.

In order to show that we can formulate a great variety of different cyclic scheduling prob-
lems with our framework, we analyse different models from the literature and show how
to model these problems within our proposed framework. We present applications both
with and without blocking, and both with and without transportation robots. With our
proposed model, we can thus gain new insights into the structural properties of each of
these applications.

Since we derive a corresponding mixed integer linear programming (MILP) formulation
for each application, we also present a way to solve these problems. Unfortunately, this
approach can solve problems with only a few operations and machines. In order to deal
with this problem, we develop a local search approach that is based on this MILP formu-
lation. This local search approach is the first, and quite promising solution method for
solving cyclic scheduling problems.

In Section 2, we present the General Basic Cyclic Scheduling Problem (GBCSP) which
generalizes the Basic Cyclic Scheduling Problem. We also adapt an algorithm to solve
the GBCSP. The algorithm is a generalization of Howard’s Algorithm which is proposed
to solve the BCSP.

In Section 3, we present the model proposed by Hanen [30] together with some extensions
which are needed to describe the several applications considered later on.

In Section 4, we extend the model proposed in Section 3 by blocking constraints. This
is done by adapting the alternative graph model for the non-cyclic scheduling problem
of Mascis and Pacciarelli [50]. We also develop a mixed integer linear programming
formulation. This formulation is quite similar to the formulation presented in the previous
section.

In Section 5, we consider a different type of precedence constraint for cyclic scheduling
problems, namely linear precedence constraints. We develop a new mixed integer linear
programming formulation for the cyclic problem with linear precedence constraints and
resource constraints. This formulation is based on a result by Hanen and Munier-Kordon
[32] for the problem without resource constraints.

In Section 6, we present several different cyclic scheduling problems which are proposed
in the cyclic scheduling literature. For all these applications, we describe how to model
these within our framework. We also consider problems from the area of software pipelin-
ing. To model a special problem in this area, the so-called register allocation problem, we
extend the alternative arc model described in Section 4 to an alternative arc set model.

1. Introduction 6

In Section 7, two methods for solving some of the considered applications are presented.
First, we solve the problems with a mixed integer linear programming solver. As these
results are not very promising, we develop a local search approach. We derive several
new neighborhoods for cyclic scheduling problems with blocking.

In Section 8, implementation details and computational results for our local search ap-
proach are presented.

Finally, we conclude this thesis with some remarks and directions for possible further
research in 9.

2. The General Basic Cyclic Scheduling Problem 7

2 The General Basic Cyclic Scheduling Problem

In this section, we present the General Basic Cyclic Scheduling Problem, or short GBCSP,
which is an extension of the Basic Cyclic Scheduling Problem (BCSP). It has been studied
by many different scientists (see e.g. [12, 16, 19, 31, 60, 61]).

This section consists of four parts. In the first part we describe the problem definition for
the GBCSP and derive conditions under we can find a periodic schedule. In the second
part we present an in practice very fast algorithm which can be applied first to check
conditions for the existence of a periodic schedule and second to compute the optimal
cycle time if the graph described by the precedence constraints is a strongly connected
graph. In the third part we consider a general graph, which consists of several strongly
connected components, and propose a way to compute the cycle time for this general
graph. In the last part we consider K-periodic problems and show that the 1-periodic
problems provide better solutions than K-periodic problems.

2.1 The Problem Definition

As already explained in the introduction, the GBCSP is the basis for solving the general
cyclic machine scheduling problem and its extensions, which are presented in Sections 3
and 4.

The GBCSP can be described as follows: Let T = {1, . . . , n} be a set of generic opera-
tions. Operation i has a processing time pi > 0 and must be performed infinitely often.
We denote by < i; k > the k-th occurrence of the generic operation i. A schedule assigns
a starting time t(i; k) to each occurrence < i; k >. A schedule is called periodic with
cycle time α if

t(i; k) = t(i; 0) + αk for all i ∈ T, k ∈ Z. (2.1)

We define ti := t(i; 0) ≥ 0 for all i ∈ T . A periodic schedule is defined by the vector
(ti)i∈T and the cycle time α ≥ 0. We also postulate that the k + 1-th occurrence of
operation i can only start if the k-th occurrence is finished. Thus, we get the following
constraint

t(i; k + 1) ≥ t(i; k) + pi.

Furthermore, there is given a graph G = (T, E) with vertex set T and arc set E. Each arc
(i, j) ∈ E is supplied by two values Lij and Hij . Lij is called (start-start) delay and Hij

2.1 The Problem Definition 8

is called the height (or distance). The delays are assumed to be rational numbers and the
heights are assumed to be arbitrary integers.

This graph leads to the following uniform precedence constraints

t(i; k) + Lij ≤ t(j; k + Hij).

The basic cyclic scheduling problem (BCSP) is the special case of the GBCSP in which
the delays are restricted to be nonnegative rational numbers.

Thus, the problem can be formulated as

min α (2.2)
s.t.

t(i; k) = t(i; 0) + kα i ∈ T, k ∈ Z (2.3)
t(i; k) + Lij ≤ t(j; k + Hij) (i, j) ∈ E, k ∈ Z (2.4)
t(i; k) + pi ≤ t(i; k + 1) i ∈ T, k ∈ Z (2.5)

By substituting equation (2.1) into (2.4) and (2.5) we get

min α (2.6)
s.t.

ti + Lij − αHij ≤ tj (i, j) ∈ E (2.7)
ti + pi ≤ ti + α i ∈ T (2.8)

In the following we assume that the constraints (2.8) are included in (2.7) by adding loops
(i, i) with Lii = pi and Hii = 1 to E.

The problem given by (2.6) to (2.8) is a special case of the maximum cost-to-time ratio
problem. In the general maximum cost-to-time ratio problem the delays and heights
are assumed to be real numbers. An easy way to solve the cost-to-time ratio problem
is to use the simplex method. This way of solving the problem is first mentioned by
Dantzig et al. [22]. However, it turns out that using specialised algorithms would solve
the problem (2.6) to (2.8) much faster. Chen et al. [15] developed an algorithm for the
problem with complexity O(n6). A faster algorithm is introduced in Levner and Kats
[47]. This algorithm has a complexity of O(n4).

In the remaining part of this subsection, we present the necessary and sufficient conditions
for the existence of a periodic schedule. We also show that the optimal cycle time can be
computed by analysing the circuits in the graph G.

2.1 The Problem Definition 9

Let µ be a circuit in E. Then we denote

L(µ) :=
∑

(i,j)∈µ

Lij

and
H(µ) :=

∑
(i,j)∈µ

Hij

the delay and the height of µ, respectively.

The following theorem describes the conditions under we can find a solution for the prob-
lem (2.6) to (2.8). Note, a very similar theorem is given in e.g. Hanen and Munier [31]
and Dasdan et al. [23] for positive delays and heights.

Theorem 2.1 The GBCSP has a feasible periodic solution with cycle time α > 0 if and
only if each circuit µ fulfills one of the following three conditions

1. The circuit µ has a positive height and arbitrary delay,

2. The circuit µ has a negative height and a negative delay,

3. The circuit µ has height zero and a non-positive delay,

and additionally to the three conditions the following inequalities

min

{
L(µ)

H(µ)
|µ is a circuit with H(µ) < 0

}
≥ α ≥

max

{
L(µ)

H(µ)
|µ is a circuit with H(µ) > 0

}
(2.9)

hold.

Note that if no circuit µ with H(µ) < 0 exists, then
min

{
L(µ)
H(µ)

|µ is a circuit with H(µ) < 0
}

is set to∞. By the inclusion of loop constraints
(2.8) into the set E, there always exist circuits with positive delay and height. Thus,
max

{
L(µ)
H(µ)

|µ is a circuit with H(µ) > 0
}

> 0 holds.

2.1 The Problem Definition 10

Proof: First we show that if there exists a feasible solution, then Conditions 1 to 3 and
the inequalities (2.9) hold. As there exists a feasible solution with cycle time α > 0, the
inequality

L(µ)− αH(µ) ≤ 0 (2.10)

holds which we get by adding the inequalities (2.7) along the circuit µ for every circuit
µ from i to i (i ∈ T). Thus, inequalities (2.9) are fulfilled. Now we show that for each
circuit µ in graph G one of the Conditions 1 to 3 hold.

If H(µ) > 0, there is nothing to prove.
If H(µ) < 0, then from equation (2.9) we get L(µ)

H(µ)
≥ α > 0. Therefore, L(µ) < 0 and

thus Condition 2 is fulfilled.
If H(µ) = 0, then from equation (2.10) we get L(µ) ≤ 0. Thus, Condition 3 is fulfilled.

Now we show that if one of the conditions 1 to 3 and the inequality (2.9) are fulfilled,
then there exists a feasible schedule with α > 0. We choose an arbitrary α from the
interval which is described by the inequalities (2.9). Based on the conditions 1 to 3 and
inequalities (2.9), we have L(µ) − αH(µ) ≤ 0 for all circuits µ in G. Thus, we can
compute the starting times ti for all i ∈ T satisfying (2.7) for the chosen cycle time α by
longest path calculations. 2

A direct conclusion is the following lemma.

Lemma 2.2 The GBCSP has no feasible periodic solution if one circuit µ fulfills one of
the following two conditions

1. The circuit µ has a negative height and non-negative delay,

2. The circuit µ has height zero and positive delay,

or the inequalities (2.9) do not hold.

Theorem 2.1 leads to the following definition:

Definition 2.3 A graph G is called consistent if each circuit in G fulfills one of the Con-
ditions (1) to (3) of Theorem 2.1 and the interval described by (2.9) is not empty.

The next theorem describes how to compute the optimal cycle time α. Consider a circuit
µ. Then V (µ) := L(µ)/H(µ) is called the value of µ. The circuits with the maximum
value and positive height are called critical circuits.

2.1 The Problem Definition 11

Theorem 2.4 Assume that the GBCSP has a feasible periodic solution. Then the optimal
cycle time is equal to the value of a critical circuit.

Proof: The GBCSP can be described by the following linear program.

zP = min α (2.11)
s.t.

tj − ti + αHij ≥ Lij (i, j) ∈ E (2.12)

The dual of this linear program is

zDP = max
∑

(i,j)∈E

Lijyij (2.13)

s.t. ∑
(j,i)∈E

yji −
∑

(i,j)∈E

yij = 0 i ∈ T (2.14)

∑
(i,j)∈E

Hijyij = 1 (2.15)

yij ≥ 0 (i, j) ∈ E (2.16)

Due to the Duality Theorem in Chvatal [17, Theorem 5.1] the optimal value of the linear
program (2.11) to (2.12) is equal to the value of the linear program (2.13) to (2.16). Now
we show that every circuit provides a feasible solution for (2.13) to (2.16).

Let µ be a circuit in G with
∑

(i,j)∈µ Lij = L(µ) and
∑

(i,j)∈µ Hij = H(µ). There are m

arcs in the graph G. If an arc (i, j) ∈ E lies in the circuit µ, then we set yij to 1/H(µ),
otherwise yij is set to 0. We can easily see that the vector yij is a feasible solution for
(2.13) to (2.16). The objective value is L(µ)

H(µ)
.

Now we show that a solution of the dual problem with the objective value zDP leads to
one or more circuits with the value zDP .

The dual problem can be seen as a circulation problem with the additional constraint
(2.15). Let y be an optimal circulation for the problem (2.13) to (2.16) with the objec-
tive value zDP . In Ahuja et al. [2, Theorem 3.5] it is shown that a circulation y can be
decomposed into flows along at most m directed circuits. Consider now a decomposition
µ1 . . . , µr with cycle flows f(µ1), . . . , f(µr) > 0 of the optimal circulation y with r ≤ m.
We may assume that H(µj) > 0 for at least one index j because otherwise the addi-
tional constraint (2.15) is violated. For an index i with i 6= j we replace the flow f(µi)
by f(µi) + ε and the flow f(µj) by f(µj) + x. To keep the additional constraint (2.15)

2.1 The Problem Definition 12

satisfied, H(µi)ε + xH(µj) = 0 or x = −H(µi)
H(µj)

ε must hold. Thus, if we replace f(µi)

by f(µi) + ε and f(µj) by f(µj) − H(µi)
H(µj)

ε with |ε| small such that f(µi) + ε > 0 and

f(µj) − H(µi)
H(µj)

ε > 0 hold, we get another feasible solution and the objective function
changes by

εL(µi)−
H(µi)

H(µj)
εL(µj)

or

ε(L(µi)−
L(µj)

H(µj)
H(µi))

which implies that

L(µi)−
L(µj)

H(µj)
H(µi) = 0 (2.17)

for all i = 1, . . . , r. Otherwise we could increase the objective function by choosing ε
either positive or negative and with small |ε|-value. Thus, the value of each circuit with
positive flow is the same.

Equation (2.17) is equivalent to

L(µi)f(µi) =
L(µj)

H(µj)
H(µi)f(µi) (2.18)

for all i = 1, . . . , r.

If we add the equations (2.18) for all i = 1, . . . , r, we have
r∑

i=1

L(µi)f(µi) =
L(µj)

H(µj)

r∑
i=1

H(µi)f(µi) =
L(µj)

H(µj)

because
∑r

i=1 H(µi)f(µi) = 1 due to the additional constraint (2.15).

Thus, the optimal solution value of (2.13) to (2.16) has the desired form and the value of
the optimal solution is equal to the value of a circuit with positive length and height. 2

Now we present an example for a GBCSP.

Example 2.5 The data for the problem is given in Table 2.1.

Operation 0 1 2 3 4 5
Processing time 0 2 3 1 1 0

Table 2.1: Data for the example 2.5

2.1 The Problem Definition 13

The graph with the precedence constraints is given in Figure 2.1.

i j
(Lij, Hij)

(0, 0)

1 2

43

0 5

(0, 1)

(2, 1) (3, 1)

(0, 1)

(1, 1)(1, 1)

(2, 0)

(0, 0) (3, 0)

(0, 1)

(1, 0)

(1, 0)

Figure 2.1: The graph G for the example 2.5

We can easily see that the graph is consistent because each circuit in the graph G has a
positive delay and positive height. The critical circuit is (0, 1, 2, 5, 0). The value of this
circuit is α = 0+2+3+0

0+0+0+1
= 5.

In the Examples 3.4 and 6.8 there exist circuits with negative delay and negative height
and circuits with negative delay and zero height.

In this subsection, we described the GBCSP and provided a linear programming formu-
lation. Furthermore, we derived conditions under we can show that there exists a feasible
periodic solution. Finally, we showed that the value of the optimal solution is equal to the
value of a critical circuit.

The next step is now to describe an algorithm which is capable of first to check for the
existence of a periodic solution and second to compute the optimal cycle time α. This is
done in the next subsection.

2.2 Algorithm to Solve the GBCSP 14

2.2 Algorithm to Solve the GBCSP

In this subsection, we present an algorithm to solve the problem (2.6) to (2.8). There exist
several algorithms to solve the maximum cost-to-time ratio problem. A good overview
on these algorithms can be found in Dasdan et al. [23].

As we want to develop a local search approach for solving cyclic scheduling problems,
we need a very fast algorithm to evaluate a solution because in a local search approach
many different solutions are considered and must be evaluated. Dasdan et al. [23] com-
pared the running time of several algorithms for the problem in which the height of each
arc is fixed to 1. It turns out that the fastest algorithm to solve these kinds of problems is
Howard’s Algorithm. Howard’s Algorithm introduced in Howard [34] is first adapted to
these kind of problems in Cochet-Terrasson et al. [18]. Therefore, we choose Howard’s
Algorithm for evaluating the solutions in our local search approach. Another reason for
using Howard’s Algorithm in our local search approach is that if the algorithm termi-
nates, the algorithm has found a critical circuit or a circuit that violates the conditions of
Theorem 2.1.

In [23] and [18] the height of all circuits has a positive value. As we consider problems in
which the height of the circuits can be any arbitrary integer number, we need to generalize
Howard’s Algorithm. This is done in this subsection. The running time of the generalized
algorithm is pseudo-polynomial. The pseudocode of Howard’s Algorithm is given in
Listing 1.

1 for each node u ∈ T do
2 d(u) := pu;
3 π(u) := u;
4 improved:=TRUE;
5 while (improved==TRUE) do
6 Eπ := {(u, π(u)|u ∈ T};
7 Examine all circuits in Gπ = (T, Eπ);
8 if there exists a circuit µ with H(µ) < 0 and L(µ) > 0 or

H(µ) == 0 or H(µ) < 0 and L(µ) < 0 then
9 return INFEASIBLE;

10 Let µ be the circuit with maximum cost-to-time ratio in
Gπ with H(µ) > 0;

11 α := L(µ)/H(µ);
12 Select the node s ∈ µ with the smallest index;
13 Tµ := {u ∈ T |there exists a path from u to s in Gπ};
14 while (Tµ 6= T) do

2.2 Algorithm to Solve the GBCSP 15

15 Find node u ∈ T \ Tµ such that there is a v ∈ Tµ and
(u, v) ∈ E;

16 π(u) := v;
17 Tµ := Tµ + {u};
18 \muompute the longest path d(u) from all u ∈ T to s in Gπ;
19 improved=FALSE;
20 for each arc (u, v) ∈ E do
21 δ(u) := d(u)− (d(v) + Luv − αHuv);
22 if (δ(u) < 0) then
23 if (δ(u) < −ε) then
24 improved=TRUE;
25 d(u) := d(v) + Luv − αHuv;
26 π(u) := v;
27 return α;

Listing 1: Howard’s algorithm

The general idea of Howard’s Algorithm is the same as for all other algorithms which are
based on the algorithm by Karp and Orlin [38] (see e.g. Ichimori and Soumis [36], Levner
and Kats [47], Young et al. [72]): The algorithm starts with a small α and increases, in a
very special way, α until some conditions for the optimality are fulfilled.

First, we discuss the structure of Howard’s Algorithm. Then we consider an example to
show how the algorithm works. Finally, we show that the algorithm finds in finite time
either a critical circuit or a circuit that violates the conditions of Theorem 2.1.

The algorithm is divided into three parts. In the first part (line 1 to 4) the initialization of
a special subgraph Gπ of G given by Gπ = (T, Eπ) with Eπ = {u, π(u)|u ∈ T} is done.
During the runtime of the algorithm Gπ is updated by updating π. Gπ is called policy
graph. Gπ has the same node set as G. However, in Gπ each node u has exactly one
successor π(u). After the initialization Gπ consists of several disjunctive circuits.

The while-loop (line 5 to 26) can be divided into two parts. When the while-loop starts,
the graph Gπ always contains of several disjunctive circuits and for all nodes which are
not in a circuit there exists a path to a node in a circuit. Then in the first part of the
while-loop all disjunctive circuits are examined and it is checked whether the conditions
of Theorem 2.1 are fulfilled. If these conditions are fulfilled, the algorithm can determine
the circuit µ with the maximum value in Gπ. Afterwards (line 14 to 17) the graph Gπ is
changed in such a way that the circuit µ is the only circuit in Gπ and for all other nodes
which are not in this circuit there exists a path to a node on the circuit µ. Note, if we
delete one arc of the circuit µ, the graph Gπ is a tree. Afterwards, labels d(u) in the graph
Gπ are computed.

2.2 Algorithm to Solve the GBCSP 16

In the last part of the while loop the algorithm checks whether we can improve the labels
d(u) by changing the arcs in the graph Gπ. We show:

• If the labels cannot be improved, then the algorithm leaves the loop and has found
the minimal cycle time.

• If the labels are improved, then the changed graph Gπ consists again of several
disjunctive circuits and for all nodes which are not in a circuit there exists again a
path to a node in a circuit.

Then the while-loop starts again with examining all circuits in the graph Gπ.

In the algorithm labels d(u) for all u ∈ T are computed. The labels are an estimation of
the value of a longest path from u to a chosen node s (line 12) on a circuit with maximal
value in the policy graph.

During the initialization of the algorithm the first policy graph is computed and the labels
d(u) for all u ∈ T are initialized. The loops created during the initialization belong to the
graph G and are defined by constraints (2.8). Thus, all circuits in the first policy graph
have a positive delay and positive height.

In the second part, all circuits of the policy graph are examined. As after the initializa-
tion all circuits have a positive delay and positive height, the algorithm can find a circuit
with the maximum value in the policy graph. If the algorithm finds a circuit with zero
height (negative height and negative delay), then the Condition 3 (Inequalities (2.9)) of
Theorem 2.1 is (are) violated. The reason for this is given after example.

After all circuits in Gπ are examined, the circuit µ with the maximal value is chosen and
the cycle time α is set to L(µ)

H(µ)
. Note, as the policy graph is a graph in which each node

has out-degree one, all circuits in Gπ can be examined in linear time. The complexity of
this step is O(m). Afterwards, the policy graph is changed so that the circuit µ is the only
circuit in the policy graph Gπ (line 13 to 17) and for all other nodes which are not in the
circuit µ there exists a path to a node of the circuit µ. The complexity of these steps is
O(nm).

The third part of the algorithm starts with computing the longest paths from all nodes
u ∈ T to s. During this step the labels d(u) are updated (line 18). Note that if we delete
the outgoing arc of the node s in Gπ, we get an intree with root s. Thus, we can apply
any longest path algorithm to compute the labels d(u) for all u ∈ T . The weight of each
arc (u, π(u)) ∈ Gπ in the longest path computation is defined by Lu π(u) − αHu π(u). The
complexity of these steps is O(m).

2.2 Algorithm to Solve the GBCSP 17

After this computation, we check whether the labels d(u) can be increased by inserting
an arc (u, v) ∈ E of the graph G with π(u) 6= v into the arc set Eπ. This can be done in
O(m). Let v be the node for which the equation

d(v) + Luv − αHuv = max(u,v)∈E{d(v) + Luv − αHuv} (2.19)

holds. Then d(u) is updated to d(u) = d(v)+Luv−αHuv and π(u) is updated to π(u) = v
if d(u) < d(v) + Luv − αHuv − ε holds with ε > 0. Thus, during the update procedure
the labels d(u) for all u ∈ T cannot decrease.

Before analysing what happens if the policy graph does not change during the update
procedure, we want to show by an example how the algorithm works.

Example 2.6 We reuse the example 2.5. Thus, the data is given in Table 2.1 and the
precedence graph is given in Figure 2.1.

In Figure 2.2 the first policy graph G1
π after the initialization is shown.

i j
(Lij, Hij)

1 2

43

0 5

(0, 1)

(2, 1) (3, 1)

(0, 1)

(1, 1)(1, 1)

Figure 2.2: The policy graph G1
π

The circuit µ with the maximum value in the graph G1
π is (2, 2). The value of this circuit

is α = 3
1

= 3. In all figures of this example the arcs of the chosen circuit µ with maximal

2.2 Algorithm to Solve the GBCSP 18

value are printed bold. In line 14 to 17 the policy graph is changed. The new policy graph
G2

π is shown in Figure 2.3.

i j
(Lij, Hij)

1 2

43

0 5

(3, 1)

(2, 0)

(0, 0)

(0, 1)

(1, 0)

(1, 0)

Figure 2.3: The policy graph G2
π

Then the labels d(u) are computed. These values are given in Table 2.2.

Node 0 1 2 3 4 5
Label 2 2 0 1 0 -1

Table 2.2: The labels d(u) for G2
π

Finally, in line 18 to 26 the policy graph is updated based on the computed labels. The
new policy graph is given in Figure 2.4. This concludes the first iteration of Howard’s
algorithm.

2.2 Algorithm to Solve the GBCSP 19

i j
(Lij, Hij)

1 2

43

0 5

(2, 0)

(0, 0) (3, 0)

(0, 1)

(1, 0)

(1, 0)

Figure 2.4: The policy graph G3
π

Now the second iteration of Howard’s algorithm starts. Again all circuits in the policy
graph are analysed. The circuit µ with the maximum value is (0, 1, 2, 5, 0). The value of
this circuit is α = 5. As there exists only one circuit and for all nodes which are not in the
circuit µ there exists a path to a node in µ, the graph G3

π is not changed in line 14 to 17.

Finally, the labels d(u) are updated. The new labels are given in Table 2.3.

Node 0 1 2 3 4 5
Label 0 0 -2 -3 -4 -5

Table 2.3: The labels d(u) for G3
π

In line 18 to 26 the algorithm checks if the labels can be increased, but we cannot find
an arc which can increase the label d(u) for a node. Thus, the algorithm has found the
critical circuit (0, 1, 2, 5, 0) and the optimal cycle time is α = 5.

Now we consider the case that the policy graph is not changed after the update procedure.
Then the equation

d(u) = max(u,v)∈E{d(v) + Luv − αHuv} (2.20)

2.2 Algorithm to Solve the GBCSP 20

holds for all nodes in G. Thus, there exists no circuit µ′ with

L(µ′)

H(µ′)
> α +

ε

H(µ′)
and H(µ′) > 0 (2.21)

because this is equivalent to
L(µ′)− αH(µ′) > ε

or ∑
(u,v)∈µ′

(Luv − αHuv) > ε

or ∑
(u,v)∈µ′

(d(u)− d(v)− Luv + αHuv) < −ε.

So, if there exists a circuit µ′ with L(µ′)
H(µ′)

> α + ε
H(µ′)

and H(µ′) > 0, then there exists at
least one arc (u, v) ∈ E which violates the equation (2.20).

With the same argument we can show that if there exists a circuit µ′ with L(µ′)
H(µ′)

< α+ ε
H(µ′)

and H(µ′) < 0, there exists at least one arc in G for which equation (2.20) is not fulfilled.

Summarizing, the complexity of one iteration of the while-loop (line 5 to 26) is O(nm).

These observations lead to the following lemma

Lemma 2.7 If Howard’s Algorithm terminates with a feasible solution, then α is the
value of a critical circuit and the chosen circuit µ (line 10 in Listing 1) is a critical
circuit.

Furthermore, if during the third step a new arc is inserted into the policy graph and this
arc creates a new circuit with positive height, then the cycle time α increases. This can
be seen as follows. As a new arc (u, v) is inserted into the policy graph, the inequality
d(u) − d(v) − Luv + αHuv < −ε holds. If this new arc creates a new circuit µ′ with
positive height, we get ∑

(u,v)∈µ′

(d(u)− d(v)− Luv + αHuv) < −ε

or
L(µ′)

H(µ′)
> α +

ε

H(µ′)
,

because for all other arcs (u′, v′) in Gπ the equation d(u)−d(v)−Luv +αHuv = 0 holds.

This leads to the following lemma

2.2 Algorithm to Solve the GBCSP 21

Lemma 2.8 If in the third step of the algorithm a new circuit with positive height is
created, then the cycle time α increases by at least ε

H(µ+)
, where H(µ+) is the maximum

height of all simple circuits in the graph G.

Note that we call a circuit simple if no node is repeated in the circuit.

Now we can discuss the reasons why the algorithm terminates with an infeasible solution
if a circuit µ′ with height zero or negative height and negative delay exists. There exists
at least one new arc (u, v) ∈ µ′ which is inserted into the policy graph during the third
part of the algorithm because after the initialization there exist only circuits with positive
height and positive delay. Thus, d(u) − d(v) − Luv + αHuv < −ε holds for at least
one arc (u, v) of the detected circuit µ′ during the third part of the algorithm. Otherwise,
the algorithm would terminate. So, during the third part of the algorithm the inequality∑

(u,v)∈µ′(d(u)−d(v)−Luv +αHuv) < −ε holds for the circuit µ′ which is equivalent to

L(µ′)− αH(µ′) > ε

or
L(µ′) > ε + αH(µ′) (2.22)

Therefore, if a circuit µ′ with H(µ′) = 0 is found, then due to inequality (2.22)

L(µ′) > ε > 0

holds. Thus, the circuit µ′ has a positive delay and zero height. Otherwise, if a circuit µ′

with H(µ′) < 0 is found, then, due to inequality (2.22),

L(µ′)

H(µ′)
< α +

ε

H(µ′)

holds. Thus, the circuit µ′ has a lower value than α because ε
H(µ′)

< 0 and inequality (2.9)
of Theorem 2.1 are violated. So there exists no feasible solution.

These observations lead to the following lemma

Lemma 2.9 If Howard’s Algorithm terminates, then either a feasible solution is found or
a circuit which violates the conditions of Theorem 2.1 is found.

Note that if Howard’s Algorithm terminates with an infeasible solution, then the computed
circuit µ (see line 8 in Listing 1) is one of the circuits which violates the conditions of
Theorem 2.1.

2.2 Algorithm to Solve the GBCSP 22

The main advantages of using this algorithm to compute the optimal cycle time α com-
pared to other algorithms are on the one hand the speed of the algorithm and on the other
hand the returned circuit is either a critical or a forbidden circuit.

Now the only open question is whether the algorithm terminates in finite time. As we
explained in the previous paragraphs, the value α increases or there exists no feasible
solution, if a new arc creates a new circuit in the third part of the algorithm. Now the
only open question is after how many iterations of the while-loop a new arc creates a new
circuit. We show that after at most n− 1 iterations a new circuit is created. This proof is
taken from Dasdan et al. [23].

We have to consider the case where there are inserted new arcs into Gπ but these arcs
create no new circuit. We show that this can happen only n − 1 times in a row. Let
G1

π, . . . , Gx
π be the sequence of policy graphs in which there is no new circuit with a new

arc. All these graphs have exactly one circuit and in every graph, this is the same circuit.
This also implies that the chosen node s in Line 12 to which the longest path is computed
is always the same. The labels which are computed in the graph Gj

π are denoted with dj .
Each graph Gj

π, j = 1, . . . , x, has exactly one circuit and for every node u there exists
exactly one path to s.

We claim that each new path in Gk
π contains of at least k arcs. This implies that after

computing Gn
π, either there is not any new arc in Gn

π, in this case the algorithm stops or
there is a new arc in Gn

π, which leads to a path with at least n arcs. Thus, as the number
of the nodes in the graph Gπ equals to n, this path leads to a circuit with a new arc.

We prove our claim by contradiction. Therefore, we assign a number n(u) to each node
u ∈ T , which is the number of arcs in the path from u to s.

During the computation of Gj
π it happens the first time that for an arbitrary node y the

successor π(y) is reassigned from x to z with n(z) < j − 1. Thus, we get a new path
from y to s with n(y) < j. Let dj(y) and dj(z) be the labels for y and z at the time of the
reassignment. We know due to the reassignment that

dj(y) < dj(z)− αHyz + Lyz (2.23)

holds. Let dj−1(y) and dj−1(z) be the labels for y and z at the time when the arc (y, z) is
considered during the computation of Gj−1

π . As our claim is violated during the compu-
tation of Gj

π the first time, the path from z to s cannot change during the computation of
Gj−1

π because n(z) < j − 1 holds and a new path in Gj−1
π must have at least j − 1 arcs

due to our claim.

Thus,
dj−1(z) = dj(z). (2.24)

2.2 Algorithm to Solve the GBCSP 23

We also know that
dj−1(y) ≤ dj(y) (2.25)

since the labels cannot decrease during the algorithm. Substituting equation (2.24) into
(2.23), we get

dj−1(z)− αHyz + Lyz > dj(y)

and with (2.25) we get

dj−1(z)− αHyz + Lyz > dj(y) ≥ dj−1(y),

which implies that during the computation of Gj−1
π the value π(y) would be assigned to z

and dj−1(y) would have been assigned to dj−1(z)− αHyz + Lyz which is strictly greater
than dj(y). As the labels cannot decrease, this leads to a contradiction.

So now, we can present the main result of this section.

Theorem 2.10 If there exists no feasible solution, then Howard’s Algorithm finds one
circuit in the graph G which does not fulfill the conditions of the Theorem 2.1. If there
exists a feasible solution, then Howard’s Algorithm computes the optimal cycle time α.
Furthermore, the cycle time α increases by ε

H(µ+)
at least every n iterations of the while

loop of Howard’s Algorithm, where H(µ+) := max{H(µ)|µ is a simple circuit in G}.

In Cochet-Terrasson et al. [18] it is proved for a special type of a GBCSP in which the
height of all arcs equals to one, that the algorithm does not compute a policy graph
once again. Therefore, the algorithm terminates in finite time and the running time is
bounded by the number of different policy graphs. Thus, the complexity of the algorithm
is O(Nm), where N is the number of different policy graphs. Due to Theorem 2.10 we
can derive the following two complexity results.

The complexity of one iteration of the while-loop is O(nm). As the algorithm finds
after at most n iterations of the while loop a new circuit, the while-loop is performed at
most O(nC) times, where C describes the number of simple circuits in the graph G. As
the cycle time increases by ε

H(µ+)
at most after n iterations, the while loop is performed

at most O(nαopt H(µ+)
ε

). Thus, these results lead to the running time of O(n2mC) or
O(n2mαopt H(µ+)

ε
) to compute the optimal cycle time with Howard’s Algorithm.

After computing the optimal cycle time αopt, the only open question is how to compute
the starting time of each occurrence of operation i for all i ∈ T . As the starting time of
the k-th occurrence depends only on the starting time of the 0-th occurrence of operation
i (see equation (2.1)), it is sufficient to compute the starting time ti = t(i; 0) ∀ i ∈ T .

2.3 Several Strongly Connected Components 24

This is done in the following way. The starting time of the operation s is set to zero.
Operation s is the chosen node in Howard’s algorithm (see Listing 1 line 12). Then we
compute the longest path from s to all other operations. This computation is performed
in the graph Gαopt . The weight of an arc (i, j) ∈ E in the graph Gα := (T, E) is defined
by aα := Lij − αHij . The arc weight aα is called amplitude. The value of the longest
path from s to node i equals to the starting time of the 0-th occurrence of operation i.

Example 2.11 Now we can compute the starting time for the operation in Example 2.5.
The starting times are given in Table 2.4.

Operation 0 1 2 3 4 5
Starting time 0 0 2 0 1 5

Table 2.4: The starting times for the operations

The schedule for this problem is given in Figure 2.5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(5; 0)

(0; 1)

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(5; 1)

(0; 2)

(1; 2)

(2; 2)

(3; 2)

(4; 2)

(5; 2)

(0; 3)

(1; 3)

(2; 3)

(3; 3)

(4; 3)

(5; 3)

(0; 4)

(1; 4)

(2; 4)

(3; 4)

(4; 4)

(5; 4)

(0; 5)

(1; 5)

(2; 5)

(3; 5)

(4; 5)

(5; 5)

(0; 6)

(1; 6)

(2; 6)

(3; 6)

(4; 6)

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2.5: Optimal schedule for Example 2.11

In this subsection, we described Howard’s Algorithm. As the algorithm can only be ap-
plied on strongly connected graphs, we show in the next section how to compute the
optimal cycle time for an arbitrary graph G.

2.3 Several Strongly Connected Components

In this subsection, we consider an instance of the GBCSP, where the precedence con-
straints are given by an arbitrary graph G. Since Howard’s algorithm can only be applied

2.4 The K-periodic Cyclic Scheduling Problem 25

to strongly connected graphs, we need to compute all strongly connected components
G1, . . . , Gn of the graph G.

If the graph has no strongly connected components, then the graph is acyclic and the
cycle time has to be computed in a different way. This can still be done in polynomial
time even if there exist resource constraints. Therefore, we assume that there exists at
least one strongly connected component.

The computation of the components G1, . . . , Gn can be done in O(V + E). An algorithm
with this running time is proposed by Tarjan [70].

After this computation we apply Howard’s Algorithm on each strongly connected com-
ponent Gj , j = 1, . . . , n and checks whether all conditions of Theorem 2.1 are fulfilled.

If the algorithm finds the optimal cycle time αj for each component Gj , then, as the last
step, we must compute the maximal cycle time αmax = maxn

j=1α
j and check whether

the cycle time αmax is still valid for all strongly connected components Gj , j = 1, . . . , n
because now it can happen that the first inequality in (2.9) is violated.

In the remaining work we assume that the graph G is strongly connected.

2.4 The K-periodic Cyclic Scheduling Problem

In the cyclic scheduling literature we distinguish between the 1-periodic or periodic sched-
ules and K-periodic schedules with K > 1 and K ∈ N. In periodic schedules the dif-
ference between the starting time of two succeeding occurrences of operation i equals to
the cycle time α. Thus, in any time interval with length α each operation is processed
exactly once. In contrast to this, in a K-periodic schedule the difference between the
starting times of the l-th occurrence and the l + K-th occurrence of operation i equals
to the cycle time αK . Therefore, in any time interval with length αK each operation is
processed exactly K times.

Closely related to K-periodic schedules are K-degree or K-part schedules. These kinds
of schedules are usually considered in cyclic scheduling problems with one transportation
robot (see e.g. Che et al. [14]). A K-degree schedule can be defined as follows: We must
process one job j, which consists of several operations and K occurrences of the job j
must start its processing and K occurrences of the job j must be finished in a time interval
with length αK . So, in each time interval each operation of the job j must be processed
K times. Thus, if we consider all operations of a GBCSP as one job, the corresponding
K-degree and K-periodic schedules describe the same schedule.

2.4 The K-periodic Cyclic Scheduling Problem 26

If we now compare the value of the objective function αK

K
for K-periodic schedules for all

K ∈ N (including the value of the objective function α
1

for all 1-periodic schedules), we
can ask for which value of K ′ ∈ N the objective function αK′

K′ is minimal. The schedule
for which the value is minimal is called a dominant schedule. It is known that the periodic
schedules are the dominant schedules for a given instance of the BCSP.

In the following we present a very natural way to transform the uniform precedence con-
straints for the 1-periodic problem into constraints for the K-periodic problem. Further-
more, we show that if we compare the value α and αK

K
, α ≤ αK

K
holds for all K ∈ N\{1}

and for any problem instance of the GBCSP. Therefore, the periodic schedules are the
dominant schedules for any problem instance of the GBCSP.

Now we present a linear program for computing an optimal K-periodic schedule for a
given graph G. In each time interval of length αK each operation i ∈ T has to be pro-
cessed K times. Therefore, the operations i0, . . . , iK−1 with pil = pi, l = 0, . . . , K − 1
must be processed once and the starting times of all operations must fulfill the following
two constraints:

t(il+1; k) ≥ t(il; k) ∀ k ∈ Z, l = 0, . . . , K − 2

and
t(i0; k + 1) ≥ t(iK−1; k) ∀ k ∈ Z.

These two constraints can be summarized by one constraint

t(iq; k + p) ≥ t(il; k) ∀ k ∈ Z, l = 0, . . . , K − 1,

where the values p and q are defined by the equation l + 1 = pK + q with p ∈ Z and
q ∈ {0, . . . , K − 1} for all l = 0, . . . , K − 1. Thus, p :=

⌊
l+1
K

⌋
and q := (l + 1) mod K.

Now consider the following precedence constraint between the operations i and j formu-
lated for the 1-periodic case:

t(j; k + Hij) ≥ t(i; k) + Lij ∀ k ∈ Z (2.26)

As these constraints describe a relation between the different occurrences of the opera-
tions i and j, we have to adapt these constraints for the K-periodic problem because in
any time interval with length αK we process K different occurrences of each operation.

For the K-periodic problem we define the following constraints:

t(jq; k + p) ≥ t(il; k) + Lij ∀ k ∈ Z and l ∈ {0, . . . , K − 1}, (2.27)

where the values p and q are defined by the equation l + Hij = pK + q with p ∈ Z and

q ∈ {0, . . . , K − 1} for all l = 0, . . . , K − 1 or p :=
⌊

l+Hij

K

⌋
and q := (l + Hij) mod K.

2.4 The K-periodic Cyclic Scheduling Problem 27

Note, if we set K = 1, we have only l = 0, and in this case we get p = Hij and q = 0.
Thus, we have the original precedence constraints.

The linear program for computing the optimal K-periodic problem can be written as:

min αK (2.28)
s.t.

t(il; k) = t(il; 0) + kαK i ∈ T, l = 0, . . . , K − 1, k ∈ Z (2.29)
t(il; k + 1) ≥ t(il; k) + pi i ∈ T, l = 0, . . . , K − 1, k ∈ Z (2.30)
t(iq; k + p) ≥ t(il; k) i ∈ T, l = 0, . . . , K − 1, k ∈ Z,

l + 1 = pK + q, p ∈ Z,

q ∈ {0, . . . , K − 1} (2.31)
t(jq; k + p) ≥ t(il; k) + Lij (i, j) ∈ E, l = 0, . . . , K − 1, k ∈ Z,

l + Hij = pK + q, p ∈ Z,

q ∈ {0, . . . , K − 1} (2.32)

Now we describe the transformation of the precedence constraints additionally by an ex-
ample.

Example 2.12 Consider three operations i, j and k. The precedence constraints are
given by a graph G which is shown in Figure 2.6.

k i j

(1, 2)

(2; 1)(2, 2)

(1, 0)

Figure 2.6: The graph G for Example 2.12

Now we want to derive the precedence constraints for a 4-periodic schedule. So we have
to process in one period four occurrences of i, i.e. i0, i1, i2 and i3, four occurrences of j,
i.e. j0, j1, j2 and j3, and four occurrences of k, i.e. k0, k1, k2 and k3.

Due to the first arc (i, j) with Lij = 2 and Hij = 1, the 0-th occurrence of operation i must
start before the 0 + 1-th occurrence of operation j. However, as there are processed four
different occurrences of operation 2 in one period, it is clear that we get an arc between
i0 and j1 with length 2 and height 0. This can also be seen together with Figure 2.7.

2.4 The K-periodic Cyclic Scheduling Problem 28

j0

j2

j1j3

Figure 2.7: Duplications of operation j in a K-periodic schedule

We start at operation j0 and go 1 step clockwise through the cycle. Thus, we stop at
operation j1. Thus, q = 1 and p = 0 hold because we do not pass the operation j0. If we
pass the operation j0, we must increase the value p by one.

Consider now the 3-rd occurrence of operation i. The 3-rd occurrence of operation i must
start before the 1+3-th occurrence of operation j. So we start at operation j3 in the cycle
of Figure 2.7 and go again one step through the cycle. Thus, we stop at operation j0.
Therefore, q = 0 and p = 1 hold because we pass the operation j0 once.

Summarizing we get the following arcs:

• (i0, j1) with Li0 j2 = 2 and Hi0 j2 = 0 because of p =
⌊

1
4

⌋
= 0 and q = 1 mod 4 =

1,

• (i1, j2) with Li1 j0 = 2 and Hi1 j0 = 0 because of p =
⌊

1+1
4

⌋
= 0 and q = (1 +

1) mod 4 = 2,

• (i2, j3) with Li2 j1 = 2 and Hi2 j1 = 0 because of p =
⌊

2+1
4

⌋
= 0 and q = (2 +

1) mod 4 = 3,

• (i3, j0) with Li2 j1 = 2 and Hi2 j1 = 1 because of p =
⌊

3+1
4

⌋
= 1 and q = (3 +

1) mod 4 = 0,

• etc.

2.4 The K-periodic Cyclic Scheduling Problem 29

The corresponding graph G4 is shown in Figure 2.8. Note only the height values greater
than zero are shown in the graph G4.

i0 i3 i2 i1

j1 j0 j3 j2

k2 k1 k0 k3

1

1

1 1

1

Figure 2.8: The graph G4 for Example 2.12

Now we analyse the circuits in the graph G4. There exist three simple circuits. The circuit
(i0, j1, i3, j0, i2, j3, i1, j2, i0) is derived from the circuit (i, j, i) in G. The value of this
circuit is 4∗L(µ)

H(µ)
. The circuit (i0, k2, i2, k0, i0) and (i1, k3, i3, k1, i1) are derived from the

circuit (i, k, i). The value of this circuit is 2∗L(µ)
H(µ)/2

.

If we compare the value α and α4/4, we get

max{3/3, 3/2} = α = α4/4 = max{12/3, 6/1}/4 = max{12/12, 6/4}.

In the following we show that each simple circuit in the precedence graph for the 1-
periodic problem has a direct counterpart in the graph for the K-periodic problem. We
denoted the graph of the K-periodic problem with GK , the length of a circuit µ in GK

with LK(µ) and the height of a circuit µ in GK with HK(µ).

First, we recall some results for the floor and the modulo function.

2.4 The K-periodic Cyclic Scheduling Problem 30

Lemma 2.13 For x ∈ R and k ∈ Z the equation

bx± kc = bxc ± bkc

holds with bxc ∈ Z.

Definition 2.14 The modulo function is defined as follows

a mod m = a−
⌊ a

m

⌋
m.

Now we can show the following result:

Lemma 2.15 For a given integer number n ≥ 1 the equation

((. . . (((((a1 mod m) + a2) mod m) + a3) mod m) + . . . + an) mod m)

= (a1 + a2 + . . . + an) mod m

holds for all a1, . . . , an ∈ R and m ∈ N, m > 1.

Proof: In the following we show that the equation holds for n = 2.

((a1 mod m) + a2) mod m = a1 mod m + a2 −
⌊

a1 mod m + a2

m

⌋
m

= a1 −
⌊a1

m

⌋
m + a2 −

⌊
a1 + a2 −

⌊
a1

m

⌋
m

m

⌋
m

= a1 + a2 −
⌊a1

m

⌋
m−

⌊
a1 + a2

m

⌋
m +

⌊a1

m

⌋
m

= (a1 + a2) mod m

With induction we can easily show that the equation also holds for any integer number n.
2

Now we show that each simple circuit µ in G with height H(µ) = mK with m ∈ Z, and
length L(µ) creates K simple circuits in GK with height m and length L(µ).

Lemma 2.16 If there exists a simple circuit µ = (i0, . . . , in, i0) in G with L(µ) =∑
(i,j)∈µ Lij and H(µ) =

∑
(i,j)∈µ Hij = mK with m ∈ Z, then there exist K simple

circuits µl = (i0l , i
1
q1

, . . . , inqn
, i0q0

= i0l) with LK(µ) = L(µ) in GK and HK(µ) = m for
l = 0, . . . , K − 1.

2.4 The K-periodic Cyclic Scheduling Problem 31

Proof: The circuit µl consists of the nodes (i0l , i
1
q1

, . . . , inqn
, i0l) with the arcs

(i0l , i
1
q1

) with q1 = (l + Hi0i1) mod K and height p0 =
⌊

l+Hi0i1

K

⌋
,

(i1q1
, i2q2

) with q2 = (q1 + Hi1i2) mod K and height p1 =
⌊

q1+Hi1i2

K

⌋
,

. . .
and
(inqn

, i0q0
) with q0 = (qn + Hini0) mod K and height pn =

⌊
qn+Hini0

K

⌋
.

If now q0 = l holds, we find a circuit µl in GK with LK(µ) = L(µ) and HK(µ) =∑n
t=0 pt.

As qt = (qt−1 + Hit−1it) mod K for t = 1, . . . , n holds, the equation

q0 = (qn + Hini0) mod K

can be rewritten to

q0 = (((. . . (((l+Hi0i1) mod K)+Hi1i2) mod K+. . .+Hin−1in) mod K)+Hini0) mod K

or
q0 = (l + Hi0i1 + Hi1i2 + . . . + Hin−1in + Hini0) mod K

because of Lemma 2.15. Because of Definition 2.14 and H(µ) = mK, this is equivalent
to

q0 = (l + H(µ)) mod K = l + H(µ)−
⌊

l + H(µ)

K

⌋
K = l + H(µ)−mK = l

for each l = 0, . . . , K − 1. Thus, we found K circuits in GK .

As qt = (qt−1 + Hit−1it) mod K for t = 1, . . . , n holds, we can rewrite

ps =

⌊
qs + Hisis+1

K

⌋
for s = 1, . . . , n with in+1 = i0 to

ps =

⌊
((qs−1 + His−1is) mod K) + Hisis+1

K

⌋

=

⌊
((. . . (((l + Hi0i1) mod K) + Hi1i2) + . . . + His−1is) mod K) + Hisis+1

K

⌋
.

2.4 The K-periodic Cyclic Scheduling Problem 32

With Lemma 2.15 and Definition 2.14 this equation is equivalent to

ps =

⌊
(l + Hi0i1 + Hi1i2 + . . . + His−1is) mod K + Hisis+1

K

⌋

=

 l + Hi0i1 + . . . + Hisis+1 −
⌊

l+Hi0i1+...+His−1is

K

⌋
K

K


=

⌊
l + Hi0i1 + . . . + Hisis+1

K

⌋
−

⌊
l + Hi0i1 + . . . + His−1is

K

⌋
Thus,

HK(µ) =
n∑

t=0

pt

= p0 + p1 + . . . + pn

=

⌊
l + Hi0i1

K

⌋
+

⌊
l + Hi0i1 + Hi1i2

K

⌋
−

⌊
l + Hi0i1

K

⌋
+ . . .

+

⌊
l + Hi0i1 + . . . + Hini0

K

⌋
−

⌊
l + Hi0i1 + . . . + Hin−1in

K

⌋
=

⌊
l + Hi0i1 + . . . + Hini0

K

⌋
=

⌊
l + H(µ)

K

⌋
=

H(µ)

K
= m

As the properties hold for all circuits µl, l = 0, . . . , K− 1, we have shown that there exist
K circuits in GK with LK(µ) = L(µ) and HK(µ) = m. 2

Now we show that all other simple circuits µ in G with height H(µ) and length L(µ)

create GCD(|H(µ)|, K) simple circuits in GK with height H(µ)
GCD(|H(µ)|,K)

and length L(µ)·
K

GCD(|H(µ)|,K)
.

Lemma 2.17 If there exists a simple circuit µ = (i0, . . . , in, i0) in G with the following
properties

1. L(µ) =
∑

(i,j)∈µ Lij and

2.4 The K-periodic Cyclic Scheduling Problem 33

2. there exists no m ∈ Z with H(µ) =
∑

(i,j)∈µ Hij = mK,

then there exists a simple circuit µ0 = (i00 = i0
q0
0
, i1

q0
1
, . . . , inq0

n
, i0

q1
0
, i1

q1
1
, . . . , in

qg−1
n

, i0
qg
0

= i00)

with g = K
GCD(|H(µ)|,K)

. The length of µ0 is L(µ0) = K
GCD(|H(µ)|,K)

· L(µ) and the height

is H(µ0) = H(µ)
GCD(|H(µ)|,K)

.

Furthermore, we can find GCD(|H(µ)|, K)−1 other simple circuits with the same length
and height.

Proof: Due to the computation of the q-values in the proof of Lemma 2.16, we can
conclude that

q1
0 = (Hi0i1 + . . . Hini0) mod K = H(µ) mod K

holds. As there exists no m ∈ Z with H(µ) = mK, q1
0 6= 0 holds. This result holds for

the values qr
0, r = 0, . . . , g − 1, where g = K

GCD(|H(µ)|,K)
.

If r = g, we get

qr
0 = qg

0 =
K

GCD(|H(µ)|, K)
·H(µ) mod K

or

qg
0 =

K

GCD(|H(µ)|, K)
·H(µ)−

⌊
K ·H(µ)

GCD(|H(µ)|, K) ·K

⌋
K = 0.

Thus, we found a circuit in GK . The height of the circuit µ0 is

H(µ0) =

⌊
K

GCD(|H(µ)|,K)
·H(µ)

K

⌋
=

H(µ)

GCD(|H(µ)|, K)
.

Each arc (i, j) in G creates K arcs with the same length in GK . As qg
0 = holds, in

the circuit µ0 there are g different copies of the node i0. This result holds also for the
other nodes in µ. Thus, g different copies of all arcs in µ are visited in µ0. Therefore,
L(µ0) = gL(µ) = K

GCD(|H(µ)|,K)
L(µ) holds.

If K
GCD(|H(µ)|,K)

6= K holds, then not all copies of the node i0 are in the circuit µ0. Thus,
we can find a copy i0l of the node i0 which is not in µ0. So starting with i0l we can
find another circuit µ1 with L(µ1) = K

GCD(|H(µ)|,K)
L(µ) and H(µ0) = H(µ)

GCD(|H(µ)|,K)
. If

2 K
GCD(|H(µ)|,K)

6= K holds, then we can find again a copy of i0 which is not in the circuit
µ0 and µ1. This copy creates again a circuit etc. Thus, we can find GCD(|H(µ)|, K)

2.4 The K-periodic Cyclic Scheduling Problem 34

different circuits µl with L(µl) = K
GCD(|H(µ)|,K)

L(µ) and H(µl) = H(µ)
GCD(|H(µ)|,K)

for all
l = 0, . . . , GCD(|H(µ)|, K)− 1. 2

Now we can present the main result of this section.

Theorem 2.18 A critical circuit µ in G with value L(µ)
H(µ)

= α leads to GCD(|H(µ)|, K)

circuits µl with value αK = K·L(µ)
H(µ)

for all l = 0, . . . , GCD(|H(µ)|, K)− 1 .

Thus,
α ≤ αK

K
.

Proof: If H(µ) = mK with m ∈ Z holds, we can apply Lemma 2.16. Thus, the circuit µ
creates K = GCD(|H(µ)|, K) circuits with length L(µ) = K

GCD(|H(µ)|,K)
L(µ) and height

m = H(µ)
GCD(|H(µ)|,K)

.

If there exists no m ∈ Z with H(µ) = mK, we can apply Lemma 2.17. Thus, we
get GCD(|H(µ)|, K) circuits with length K

GCD(|H(µ)|,K)
L(µ) and height H(µ)

GCD(|H(µ)|,K)
.

Therefore, the value of the critical circuit αK in GK must be greater or equal to

αK ≥
(

K

GCD(|H(µ)|, K)
L(µ)

) /(
H(µ)

GCD(|H(µ)|, K)

)
=

K · L(µ)

H(µ)
.

Thus,
α ≤ αK

K

holds. 2

To sum up, in the section we proved that for the GBCSP the periodic schedules are the
dominant schedules.

3. The General Cyclic Machine Scheduling Problem 35

3 The General Cyclic Machine Scheduling Problem

In this section, first we extend the GBCSP of Section 2 with disjunctive resource con-
straints. This extension is due to Hanen [30]. This idea generalizes the approach to model
classical non-cyclic scheduling problems with disjunctive constraints (see e.g. Balas [4]).
In the second part, we briefly discuss cyclic K-periodic scheduling problems with dis-
junctive resource constraints. This discussion is also due to Hanen [30]. In the third part
of this section, we propose several different extensions. In the last part, we present a new
complexity result.

3.1 The Basic Cyclic Machine Scheduling Problem

The basic cyclic machine scheduling problem (BCMSP) is an extension of the GBCSP.
We get this problem by adding resource constraints. We introduce disjunctive resource
constraints as follows:

Associated with each operation i ∈ T , there is a dedicated machine M(i) ∈ M =
{1, . . . ,m}, on which each occurrence < i; k > of i must be processed. Occurrences
of different operations to be processed on the same machine cannot overlap. The set of
operations which are processed on machine m is denoted by Tm ⊂ T .

Therefore, for all occurrences k and l with k, l ∈ Z of pairs of operations i and j which
are processed on the same machine, we have to add the following constraints:

t(i; k) + pi ≤ t(j; l) ∨ t(j : l) + pj ≤ t(i; k). (3.1)

Due to this constraint, we have to define an order between the k-th occurrence of operation
i and the l-th occurrence of operation j.

Thus, after extending the linear program for the GBCSP (2.6) to (2.8) by the constraints
(3.1) the basic cyclic machine scheduling problem can be written as:

min α (3.2)
s.t.

t(i; k) = t(i; 0) + αk i ∈ T, k ∈ Z (3.3)
t(i; k + 1) ≤ t(i; k) + pi i ∈ T, k ∈ Z (3.4)

t(i; k) + Lij ≤ t(j; k + Hij) (i, j) ∈ E, k ∈ Z (3.5)
t(i; k) + pi ≤ t(j; l) ∨ t(j; l) + pj ≤ t(i; k) i, j ∈ T with i 6= j and

M(i) = M(j), k, l ∈ Z (3.6)

3.1 The Basic Cyclic Machine Scheduling Problem 36

Hanen [30] showed the following theorem.

Theorem 3.1 The problem (3.2) to (3.6) is equivalent to the following mixed integer lin-
ear program (3.7) to (3.12).

min α (3.7)
s.t.

tj − ti ≥ Lij − αHij (i, j) ∈ E (3.8)
tj − ti ≥ pi − αHXij i, j ∈ T with i 6= j and M(i) = M(j) (3.9)

HXij + HXji = 1 i, j ∈ T with i 6= j and M(i) = M(j) (3.10)
HXij ∈ Z i, j ∈ T with i 6= j and M(i) = M(j) (3.11)

pi ≤ α i ∈ T (3.12)

If we compare the mixed integer linear program (3.7) to (3.12) with the linear program
for the GBCSP (2.6) to (2.8) we can easily see that if we fixe the HX-variables, then
the problem to compute the optimal cycle time is reduced to the problem of solving the
corresponding instance of the GBCSP.

Furthermore, we can easily derive two lower bounds for this problem. We get the first
lower bound α−

GBCSP by relaxing the resource constraints, therefore, the first lower bound
equals to the optimal solution of the corresponding GBCSP. The second lower bound
α−

Mach is defined by α−
Mach = maxm∈M

∑
i∈Tm

pi. Thus, this bound gives the time which
is needed to process all operations once on the bottleneck machine.
Thus, α− = max{α−

GBCSP , α−
Mach} is a lower bound, too.

Now we want to extend the Example 2.11 with resource constraints.

Example 3.2 The assignment of the operations to the machines is given in Table 3.1.

Operation 0 1 2 3 4 5
Machine 0 1 2 1 2 3

Table 3.1: The assignment of the operations to the machines

The graph with the disjunctive and conjunctive arcs is given in Figure 3.1.

3.1 The Basic Cyclic Machine Scheduling Problem 37

50

43

i j
(Lij, Hij)

conjunctive arc

i j
(Lij, Hij)

disjunctive arc

1 2

(2, 1) (3, 1)

(2, 0)

(0, 1)

(3, 0)

(0, 1)

(1, 0)

(1, 0)

(1, 1)
(0, 1)

(0, 0)

(0, 0)

(1, 1)

(1, 0)(2, 1)

(3, 1) (1, 0)

Figure 3.1: The graph G for Example 3.2

The optimal solution with cycle time α = 6 is given in Figure 3.2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

M4 (5; 0)

(0; 1)

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(5; 1)

(0; 2)

(1; 2)

(2; 2)

(3; 2)

(4; 2)

(5; 2)

(0; 3)

(1; 3)

(2; 3)

(3; 3)

(4; 3)

(5; 3)

(0; 4)

(1; 4)

(2; 4)

(3; 4)

(4; 4)

(5; 4)

(0; 5)

(1; 5)

(2; 5)

(3; 5)

(4; 5)

. . .

. . .

. . .

. . .

Figure 3.2: Optimal schedule for Example 3.2

3.2 Cyclic K-periodic Scheduling Problems 38

3.2 Cyclic K-periodic Scheduling Problems

In Section 2.4 we show that for the GBCSP the periodic schedules are the dominant
schedules. The same result cannot be shown for the BCMSP and therefore, for all its
extension as the following example shows, which is taken from Hanen [30].

Example 3.3 Consider the following instance of a BCMSP problem. The instance con-
sists of 4 operations and 3 machines. The data of this problem is given in Table 3.2.
The graph with the uniform precedence constraints for the 1-periodic schedule is given in
Figure 3.3.

Operation 1 2 3 4
Processing time 2 3 2 2

Machine 1 2 1 3

Table 3.2: Data for the 1-periodic schedule in Example 3.3

ji
(Lij, Hij)

34
(2, 1)

2
(2, 1)

1

(3, 0)(2, 0)

Figure 3.3: Precedence constraints for the Example 3.3

To find the optimal 2-periodic schedule, we have to solve the following periodic problem.
The data is given in Table 3.3 and the graph with the precedence constraints is given in
Figure 3.4.

3.2 Cyclic K-periodic Scheduling Problems 39

Operation 11 12 21 22 31 32 41 42

Processing time 2 2 3 3 2 2 2 2
Machine 1 1 2 2 1 1 3 3

Table 3.3: Data for the 2-periodic schedule in Example 3.3

ji
(Lij, Hij)

(3, 0)(2, 0)

12 22

3242

11

41 31

21

(2, 1)
(2, 0) (2, 1)

(2, 0)

(2, 0)

(2, 1) (3, 1)

(3, 0)

(2, 0)(2, 1)

(2, 0) (3, 0)

(2, 0) (2, 1)

Figure 3.4: Precedence constraints for the Example 3.3

The graph in Figure 3.4 is derived from the graph in Figure 3.3 as follows: First, all
operations are duplicated as the graph in Figure 3.4 describes the precedence constraints
for a 2-periodic problem. Second, the given precedence constraints are adapted to the
2-periodic schedule as it is described in Section 2.4. For example in a 2-periodic problem
the precedence constraint t(2; k + 1) ≥ t(1; k) + p1 for the periodic problem leads to
the following precedence constraints: For l = 0 we get 0 + H12 = 1 = 2p + q with
p := b1

2
c = 0 and q := 1 mod 2 = 1. Therefore, we get the precedence constraint

t(2q; k + p) = t(21; k) ≥ t(1; k) + p1. This constraint leads to the following arc (10, 21)

3.3 Some Extensions 40

with L10 21 = 2 and H10 21 = 0. If we consider l = 1, we get the following arc (11, 20)
with L11 20 = 2 and H11 20 = 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(1; 0) (3; 0) (1; 1)

(2; 1)

(3; 1)

(4; 1)

(1; 2)

(2; 2)

(3; 2)

(4; 2)

(1; 3)

(2; 3)

(3; 3)

(4; 3)

(1; 4)

(2; 4)

(3; 4)

(4; 4)

(2; 5)

(4; 5) . . .

. . .

. . .

Figure 3.5: Optimal Schedule for the 1-periodic problem with α = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(21; 0) (41; 0) (22; 0)

(32; 0)

(42; 0)

(12; 0)

(21; 1)

(31; 1)

(41; 1)

(11; 1)

(22; 1)

(32; 1)

(42; 1)

(12; 1)

(21; 2)

(31; 2)

(41; 2)

(11; 2)

(22; 2)

(32; 2)

(42; 2)

(12; 2)

(31; 3)

(11; 3) . . .

. . .

. . .

Figure 3.6: Optimal Schedule for the 2-periodic problem with α
2

= 10
2

= 5

The optimal schedule for the 1-periodic problem is given in Figure 3.5. The optimal
schedule for the 2-periodic schedule is given in Figure 3.6. As we can see, the 2-periodic
schedule leads to a better schedule because 10

2
< 6

1
.

Thus, the K-periodic schedules can lead to better solutions.

In the rest of this work we consider only periodic problems because any K-periodic prob-
lem can be reformulated to a periodic problem as described in Example 3.3 and Sec-
tion 2.4. All proposed solution methods could also be applied to the reformulated periodic
problem. The only disadvantage of this reformulation is that the problem size increases
by the factor of K.

3.3 Some Extensions

Now we present some minor extensions of the basic cyclic machine scheduling problem.

The first extension concerns the delay between two operations i and j. With the con-
straints

t(j; k + Hij) ≥ t(i; k) + Lij or t(j; k + Hij)− t(i; k) ≥ Lij

with Lij ∈ Q, Hij ∈ Z we define a minimal delay of Lij between the starting time of
the k-th occurrence of operation i and the k + Hij-th occurrence of operation j. Now we

3.3 Some Extensions 41

want to present a way to define a maximal delay Lmax
ij with Lmax

ij − Lij ≥ 0 between the
k-th occurrence of operation i and the k + Hij-th occurrence of operation j. So we get

Lmax
ij ≥ t(j; k + Hij)− t(i; k) = t(j; k)− t(i; k −Hij)

or
t(i; k −Hij)− t(j; k) ≥ −Lmax

ij .

With Hji := −Hij and Lji := −Lmax
ij we get

t(i; k + Hji)− t(j; k) ≥ Lji.

Thus, we need to introduce a directed arc between j and i with Lji = −Lmax
ij ≤ −Lij

and Hji = −Hij . Note that these arcs (i, j) and (j, i) create a circuit with zero height
(Hji+Hij = −Hij+Hij = 0) and non-positive delay (Lji+Lij ≤ 0). Due to Theorem 2.1,
this circuit is an allowed circuit. Therefore, if we add these constraints to a feasible
solution of a general basic cyclic scheduling problem, we can still compute a feasible
solution, perhaps with another optimal cycle time α.

The second extension concerns a restriction on the latest starting time of an operation in
a period. This can be achieved by using similar constraints as in the first extension. To
define the starting time of an operation in a period, we need to define the start and the end
of a period. This can be done by introducing two dummy nodes, the source node 0 and
the sink node ?, which are both processed alone on a dummy machine. The source node
is connected with each operation i ∈ T with some delay and zero height. Furthermore,
each operation i ∈ T is connected with the sink node with height zero. The delay of these
arcs is equal to the processing time of the considered operation i. To get again a strongly
connected graph, we must connect the sink node with the source node with delay 0 and
height n, where n is the number of nodes in the graph. As we show in Section 3.4, this
additional arc does not add any new restriction to the problem. Thus, each occurrence of
a source node defines the start of a new period, and the end of a period is defined by an
occurrence of the sink node. With these two nodes, we can now restrict the starting time
of an operation in a period. Assume the minimal starting time of an operation i in a period
is ri, then we must create an arc from the source node 0 to i with delay ri and height zero
because the following constraint must be fulfilled:

t(i; k)− t(0; k) ≥ ri.

Symmetrically, if the latest starting time of an operation i in a period is di with di ≥ ri,
then the constraint

t(0; k) + di ≥ t(i; k) or t(0; k)− t(i; k) ≥ −di

3.3 Some Extensions 42

must be fulfilled. Thus, this constraint leads to an arc between i and 0 with delay −di

and height zero. Note that these arcs (0, i) and (i, 0) also create an allowed circuit. In
the non-cyclic scheduling the minimal starting time ri describes a release date and the
maximal starting time di + pi describes a due date. Therefore, these concepts from the
non-cyclic scheduling can be easily generalized for cyclic scheduling problems.

With the third extension we can model an upper bound α+ ≥ α on the optimal cycle time
α. As each operation is repeated every α time units, we can introduce a directed arc from
an arbitrary operation i to itself with height Hii = −1 and delay Lii = −α+, which leads
to

t(i; k − 1) ≥ t(i; k)− α+ or α+ ≥ t(i; k)− t(i; k − 1) = α.

In the following we consider again the Example 3.2.

Example 3.4 We want to restrict the time between the start of the processing of the k-
th occurrence of operation 1 and the end of the processing of the k-th occurrence of
operation 2 to 14. Thus,

t(i; k) + 14 ≥ t(2; k) + 3

or
t(i; k) ≥ t(2; k)− 11

must hold. Note, if we consider operations 1 and 2 as a job, then this constraint can be
seen as a restriction on the total processing time of the job. Therefore, we add an arc
(2, 1) with L21 = −11 and H21 = 0 to the graph. The new graph is given in Figure 3.7.
Additionally to introducing the arc (2, 1), the height of the arc (5, 0) is increased to 2.

3.3 Some Extensions 43

50

43

i j
(Lij, Hij)

conjunctive arc

i j
(Lij, Hij)

disjunctive arc

1 2

(2, 1) (3, 1)

(2, 0)

(0, 1)

(3, 0)

(0, 1)

(1, 0)

(1, 0)

(1, 1)
(0, 2)

(0, 0)

(0, 0)

(1, 1)

(1, 2)(2,−1)

(3, 1) (1, 0)

(−11, 0)

Figure 3.7: Precedence constraints for Example 3.4

We can easily see that all circuits fulfill the conditions of Theorem 2.1. The circuit
(2, 1, 3, 4, 2) has a negative delay and negative height. The circuit (1, 2, 1) has a neg-
ative delay and zero height. All other circuits have a positive delay and positive height.
The critical circuit is (1, 3, 4, 2, 5, 0, 1). The cycle time is α = 7.

The last extension, which we want to present in this subsection, is the introduction of
multiprocessor tasks, or short MPT for cyclic scheduling problems. Up to now we only
allow that operations are processed on a dedicated machine.

This restriction is now generalized. We consider a cyclic machine scheduling problem
with m machines and n operations. Each operation i requires during its processing time
pi all machines belonging to a predefined subset µi ⊆ {M1, . . . ,Mm}. If two operations i

3.4 Some Complexity Results 44

and j require the same machine, then two operations cannot be processed simultaneously.
Thus, if the intersection of the machine sets µi, µj for two operations i and j is non-empty,
µi∩µj 6= ∅, then both operations cannot be processed simultaneously. So, we can rewrite
the disjunctive resource constraint (3.1) to

t(i; k) + pi ≤ t(j; k) ∨ t(j; l) + pj ≤ t(i; k) (3.13)

for all i, j ∈ T with µi ∩ µj 6= ∅ and k, l ∈ Z.

We can easily verify that Theorem 3.1 still holds, if we replace (3.6) by (3.13).

In this subsection, we presented some easy extensions, which are needed to model various
applications from the literature, which are presented in Section 6.

3.4 Some Complexity Results

In this subsection, we give first a new complexity results for a special case of the general
basic cyclic machine scheduling problem and finally, we present a complexity result by
Hanen [30] for the general basic cyclic machine scheduling problem.

We can show for an instance of a BCMSP that if the graph G described by the precedence
constraints consists only of one circuit µ with H(µ) ≥ n, where n is the number of
operations in the instance, then the optimal cycle time α is

αopt =
m

max
j=1

∑
i∈M(j)

pj, (3.14)

if Lij = pi for all (i, j) ∈ E. The graph G is given in Figure 3.8.

2

n

j

i

1
(p1, H12)

(pi, Hij)

(pn, Hn1)

Figure 3.8: The graph G with one circuit µ with H(µ) ≥ n

3.4 Some Complexity Results 45

This can be seen in the following way. As αopt equals to the lower bound αMach of the
problem, the solution would be optimal if all precedence constraints are fulfilled. We
can assume that the starting time of the 0-th occurrence of operation 1 on machine M(1)
equals to 0. All other operations are scheduled once in an arbitrary order on their machines
without creating any idle time between the operations. So, we fixed the starting time for
one occurrence of each operation. Therefore, the starting time of the other occurrences of
each operation can be computed easily.

Now the only open question is if all precedence constraints are fulfilled. To check this, we
have to assign to each occurrence an occurrence number. The only operation which has
already an occurrence number is operation 1. Furthermore, each occurrence of operation 1
defines the start of a new period with length α. In each period, all operations are processed
once. Thus, the start of period Pl equals to t(1; l). Due to the described scheduling of
the operations, each operation which is started in period Pl is also finished in period Pl.
Therefore, the succeeding operation 2 of operation 1 which is started in period P1 gets
the occurrence number 0 + H12. With this occurrence number the precedence constraint
between both operations is fulfilled. The occurrence number of the succeeding operation
3 of operation 2, which is processed in period P2, is 0 +H12 +H23. Thus, the precedence
constraint between 2 and 3 is also fulfilled. This assignment is repeated until we reaches
the predecessor operation n of 1.

The occurrence number of operation n which is performed in the period Pn−1 is H(τ),
where H(τ) is the height of the path from 1 to n. So, we have to check if the precedence
constraint between n and 1 is fulfilled. The occurrence number of operation 1 in period
Pn is n. Thus,

t(1; n) ≥ t(n; H(τ)) + pn

holds. As the height of the circuit µ is greater or equal to n, we get

t(1; H(µ)) ≥ t(1; n) ≥ t(n; H(τ)) + pn.

So, all precedence constraints between all operations are fulfilled. Thus, we have con-
structed a feasible schedule with cycle time αopt.

Summarizing, we can say that introducing an arc with height greater or equal to the num-
ber of operations leads to no new restriction on the problem.

The following complexity result is shown by Hanen [30].

Theorem 3.5 If the graph consists of one circuit with arbitrary height h, then the decision
problem finding a feasible periodic schedule with cycle time α ≤ α+ where α+ is a given
rational number, is NP-complete.

4. The Cyclic Job Shop Scheduling Problem With Blocking 46

4 The Cyclic Job Shop Scheduling Problem With Block-
ing

In this section, we first model the cyclic job shop problem with blocking. This is done by
adapting the alternative graph model by Mascis and Pacciarelli [50]. Another approach
to model blocking is given in Levner [49] and Pinedo [58]. Afterwards we establish a
mixed integer linear program which is similar to the mixed integer linear program (3.7)
to (3.12).

In accordance with the definitions in Section 2.1 the cyclic job shop problem can be
defined as follows.

Let J = {1, . . . , n} be a set of jobs. Each job j ∈ J consists of nj operations O1j, O2j,. . . ,
Onj j . For l = 1, . . . , nj − 1 operation Ol+1 j is called the successor of operation Olj . O1j

and Onj j are the first and last operations of job j, respectively. The set of all operations is
denoted by T . Each operation i ∈ T has a processing time pi > 0 and belongs to the job
j(i). The set of all operations of job j is denoted by O(j). s(i) denotes the succeeding
operation of i, if it exists. All operations i ∈ T must be performed infinitely often.

We denoted by < i; k > the k-th occurrence of operation i. A schedule assigns a starting
time t(i; k) to each occurrence < i; k >. It is called periodic with cycle time α if

t(i; k) = t(i; 0) + αk for all i ∈ T, k ∈ Z.

We define ti := t(i; 0) ≥ 0 for all i ∈ T . Then a periodic schedule is defined by the vector
(ti)i∈T and the cycle time α ≥ 0.

Additionally, we assume that there exist uniform precedence constraints of the form

t(i; k) + Li s(i) ≤ t(s(i); k + Hi s(i))

between operation i and the succeeding operation s(i) of i, if a succeeding operation
exists. The delay Li s(i) is set to Li s(i) = pi. The height is set to Hi s(i) = 0.

Furthermore, we introduce a source node 0 and a sink node ?. We also introduce uniform
precedence constraints between 0 and the first operations of all jobs j ∈ J . The delay
and the height of these constraints starting at the source node 0 is zero. Additionally,
we introduce uniform precedence constraints between the last operations i of all jobs and
?. The delay of these arcs is pi and the height is zero. We add a precedence constraint
between ? and 0 with delay 0 and height H?0.

These uniform precedence constraints define the arc set of the directed graph G = (T, E).

4. The Cyclic Job Shop Scheduling Problem With Blocking 47

We again postulate that t(i; k) + pi ≤ t(i; k + 1) is satisfied for all i ∈ T , k ∈ Z and
these constraints are also added to the graph G. So, the length of these loops is pi and the
height is 1.

Associated with each operation i there is a dedicated machine M(i) ∈ M = {1, . . . ,m},
on which each occurrence < i; k > of operation i must be processed. The set of operations
which are processed on machine m is denoted by Tm ⊂ T .

Occurrences of different operations to be processed on the same machine cannot overlap.
In the presence of blocking restrictions, two blocking operations i and i′ which are both
processed on machine m = M(i) = M(i′), must stay on machine m until the succeeding
operation s(i) and s(i′) can start on the machines M(s(i)) and M(s(i′)), respectively.
Assume that the l-th occurrence of operation i is scheduled before the k-th occurrence
of operation i′ on machine M(i′). Then, the k-th occurrence of operation i′ can start
processing on machine M(i′) if the l-th occurrence of the succeeding operation s(i) is
started on its machine. So, we get the following inequalities:

t(i; l) + pi ≤ t(s(i); l) ≤ t(i′; k) (4.1)

If the k-th occurrence of operation i′ is scheduled before the l-th occurrence of i, we get:

t(i′; k) + pi′ ≤ t(s(i′); k) ≤ t(i; l) (4.2)

Therefore, we have the following disjunctive constraints:

t(s(i); l) ≤ t(i′; k) ∨ t(s(i′); k) ≤ t(i; l) (4.3)

Not all operations must be blocking operations. Therefore, we distinguish between three
different cases. In the first case both operations i and i′ are blocking operations, then we
get the disjunctive constraint (4.3). In the second case only one operation is a blocking
operation, assume operation i is this operation, then we have the following disjunctive
constraints:

t(s(i); l) ≤ t(i′; k) ∨ t(i′; k) + pi′ ≤ t(i; l) (4.4)

In the last case both operations are non-blocking operations, then we have the disjunctive
constraints

t(i; l) + pi ≤ t(i′; k) ∨ t(i′; k) + pi′ ≤ t(i; l) (4.5)

The last operations of jobs, i.e. operations i with s(i) = ? are never blocking operations.
We can define the following two variables

4. The Cyclic Job Shop Scheduling Problem With Blocking 48

b(i) :=

{
s(i) if i is a blocking operation and s(i) 6= ?

i otherwise

and

pb
i :=

{
0 if i is a blocking operation and s(i) 6= ?

pi otherwise.

With these variables we can summarize the disjunctive constraints (4.3), (4.4) and (4.5)
to

t(b(i); l) + pb
i ≤ t(i′; k) ∨ t(b(i′); k) + pb

i′ ≤ t(i; l) (4.6)

for all k, l ∈ Z and for all operation i, i′ with M(i) = M(i′).

Notice that by definition of b(i) and pb
i we have

t(i; k) + pi ≤ t(b(i); k) + pb
i . (4.7)

Furthermore, if operation i is a blocking operation, then the next occurrence of operation
i can only start if the succeeding operation s(i) of operation i is started. If i is a non-
blocking operation, then due to the introduced loops the k + 1-th occurrence of operation
i can start right after the k-th occurrence of operation i is finished. Thus, we get

t(b(i); k) + pb
i ≤ t(i; k + 1) (4.8)

for all i ∈ T and k ∈ Z.

The cycle time minimization problem for cyclic job shop problems with blocking con-
straints can be written as:

min α (4.9)
s.t.

t(i; k) = t(i; 0) + αk i ∈ T, k ∈ Z (4.10)
t(i; k) + pi ≤ t(i′; k + Hii′) (i, i′) ∈ E, k ∈ Z (4.11)

t(b(i); k) + pb
i ≤ t(i; k + 1) i ∈ T, k ∈ Z (4.12)

t(b(i); l) + pb
i ≤ t(i′; k) k, l ∈ Z, i, i′ ∈ T, i 6= i′,

∨ t(b(i′); k) + pb
i′ ≤ t(i; l) with M(i) = M(i′) (4.13)

4. The Cyclic Job Shop Scheduling Problem With Blocking 49

Theorem 4.1 The following mixed integer linear program

min α (4.14)
s.t.

ti′ − ti ≥ pi − αHii′ (i, i′) ∈ E (4.15)
ti′ − tb(i) ≥ pb

i − αKb(i)i′ i, i′ ∈ T, i 6= i′, M(i) = M(i′) (4.16)
Kb(i)i′ + Kb(i′)i = 1 i, i′ ∈ T, i 6= i′, M(i) = M(i′) (4.17)

Kb(i)i′ , Kb(i′)i ∈ Z i, i′ ∈ T, i 6= i′, M(i) = M(i′) (4.18)

is equivalent to (4.9) to (4.13)

Proof: First, we show that the constraints (4.13) are equivalent to constraints (4.16)-
(4.18). By substituting (4.10) into (4.13) we get

tb(i) + pb
i ≤ ti′ + α(k − l) ∨ tb(i′) + pb

i′ ≤ ti + α(l − k).

As

ti + pi ≤ tb(i) ≤ tb(i) + pb
i

and

ti′ + pi′ ≤ tb(i′) ≤ tb(i′) + pb
i′

we get

ti + pi ≤ tb(i) + pb
i ≤ ti′ + α(k − l) ∨ (4.19)

ti′ + pi′ ≤ tb(i′) + pb
i′ ≤ ti + α(l − k) (4.20)

If we multiply the inequalities (4.19) by −1, we have the inequalities

−ti − pi ≥ −tb(i) − pb
i ≥ −ti′ − α(k − l) ∨

ti′ + pi′ ≤ tb(i′) + pb
i′ ≤ ti + α(l − k)

which are equivalent to

ti′ − ti ≥ ti′ − tb(i) − pb
i + pi ≥ pi − α(k − l) ∨ (4.21)

ti′ − ti ≤ tb(i′) − ti + pb
i′ − pi′ ≤ −pi′ + α(l − k) (4.22)

Thus, the difference between ti′ and ti does not lie in the following intervals

...,]− pi′ − αm, pi − αm[,]− pi′ − α(m− 1), pi − α(m− 1)[, ...,

4. The Cyclic Job Shop Scheduling Problem With Blocking 50

where m := k − l. So ti′ − ti lies in the following intervals

..., [pi − αm,−pi′ − α(m− 1)], ... (4.23)

Note that this interval is not empty because α > α− = max{α−
GBCSP , α−

Mach}. Thus, we
get

pi − αm ≤ ti′ − ti ≤ −pi′ − α(m− 1).

Due to (4.19) and (4.20) we have

ti′ − tb(i) ≥ pb
i − αm

and ti − tb(i′) ≥ pb
i′ + αm ≥ pb

i′ − α(1−m).

With Kb(i)i′ := m and Kb(i′)i := 1−Kb(i)i′ we get

ti′ − tb(i) ≥ pb
i − αKb(i)i′

and ti − tb(i′) ≥ pb
i′ − αKb(i′)i

Finally, we show that constraints (4.11) are equivalent to constraints (4.15). By substitut-
ing (4.10) into (4.11) we get

ti′ + αHii′ ≥ ti + pi or
ti′ − ti ≥ pi − αHii′

2

If there exists a pair of disjunctive arcs between (b(i), i′) and (b(i′), i), then we call
(b(i′), i) the alternative arc of (b(i), i′) and vice versa.

Again, we want to illustrate the blocking situation with an example.

Example 4.2 We consider again the Example 3.2. The first job consists of the operations
1 and 2 and the second job consists of the operations 3 and 4.

The first operations of each job are blocking operations. The graph for the optimal solu-
tion is given in Figure 4.1.

4. The Cyclic Job Shop Scheduling Problem With Blocking 51

50

43

i j
(Lij, Hij)

conjunctive arc

i j
(Lij, Hij)

disjunctive arc

1 2

(2, 1) (3, 1)

(2, 0)

(0, 1)

(3, 0)

(0, 1)

(1, 0)

(1, 0)

(1, 1)
(0, 1)

(0, 0)

(0, 0)

(1, 1)

(0, 1)

(0, 0)

(3, 0) (1, 1)

Figure 4.1: The graph for Example 4.2

The optimal solution with cycle time α = 6 is given in Figure 4.2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

M4 (5; 0)

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(0; 1)

(5; 1)

(1; 2)

(2; 2)

(3; 2)

(4; 2)

(0; 2)

(5; 2)

(1; 3)

(2; 3)

(3; 3)

(4; 3)

(0; 3)

(5; 3)

(1; 4)

(2; 4)

(3; 4)

(4; 4)

(0; 4)

(5; 4)

(1; 5)

(2; 5)

(3; 5)

(4; 5)

(0; 5)

. . .

. . .

. . .

. . .

Figure 4.2: Optimal schedule for Example 4.2

5. Cyclic Scheduling Problem With Linear Precedence Constraints 52

5 Cyclic Scheduling Problem With Linear Precedence
Constraints

In this section, we introduce a different concept of periodic schedules. Up to now each
operation has the same cycle time α. This constraint is now generalized. This concept is
first introduced by Munier [54]. This section is divided into two parts. In the first sub-
section, we describe the linear precedence constraints for problems without any resource
constraints. In the second subsection, we extend the results of the first section to problems
with resource constraints.

5.1 Basic Cyclic Scheduling Problems With Linear Precedence Con-
straints

We denote the cycle time of operation i by wi. We call a schedule periodic if

t(i; k) = t(i; 0) + kwi (5.1)

for all i ∈ T and all k ∈ Z.

In the first part of this section, we introduce the problem and show that we can reuse the
algorithms for solving the GBCSP (see Section 2) to solve this problem. In the second
part, we introduce disjunctive resource constraints and show that we can also derive a
mixed integer linear program, which is quite similar to the program (3.7) to (3.12). We
also develop a new lower bound for this problem.

Linear precedence constraints of the form

t(i; pijk + qij) + Lij ≤ t(j; p′ijk + q′ij) (5.2)

for all k ∈ Z may be given for all arcs (i, j) ∈ E of a directed graph G = (T, E) with
vertex set T . Lij is again called (start-start) delay and is again a rational number. In
addition, the following properties are satisfied: pij, p

′
ij are positive integers and qij, q

′
ij are

integer values.

Note that the linear precedence constraints are a generalization of the uniform precedence
constraints because by setting pij and p′ij to one, we get the uniform precedence con-
straints introduced in Section 2.

We also assume that the precedence constraints are unitary. This means that the graph G
is strongly connected and all cycles c of G have the weight π(c) = 1, whereas the weight
of an arc (i, j) is πij =

p′ij
pij

and the weight of a path µ is π(µ) = Π(i,j)∈µπij .

5.1 Basic Cyclic Scheduling Problems With Linear Precedence Constraints 53

The aim is to minimize simultaneously the cycle time wi for all operations i ∈ T .

In the first part, we show that

wi = αWi with α =
w1

β

for i ∈ T with constants Wi and β depending on the values π1i hold, and that (5.2) can be
written in the form

tj − ti ≥ Lij − αHij

where the values Hij are integer constants depending on the values π1i.

Thus, the problem of finding a periodic schedule that minimizes the wi-values subject
to the constraints (5.2) can be reduced to the following problem which is called General
Basic Cyclic Scheduling Problem (GBCSP)

min α (5.3)
s.t.

tj − ti ≥ Lij − αHij ∀ (i, j) ∈ E (5.4)

The reduction to the GBCSP is due to [32]. Here we recall the main results of this paper.

As we are looking for a periodic schedule, we can show the following Lemma.

Lemma 5.1 A periodic schedule meets the linear precedence constraints, if and only if
the following inequality holds for any arc (i, j) ∈ E:

tj − ti ≥ Lij + (wipij − wjp
′
ij)k + wiqij − wjq

′
ij ∀ k ∈ Z. (5.5)

Proof: A schedule fulfills the linear precedence constraints (5.2) if and only if

t(i; 0) + (pijk + qij)wi + Lij ≤ t(j; 0) + (p′ijk + q′ij)wj or

tj − ti ≥ Lij + (wipij − wjp
′
ij)k + wiqij − wjq

′
ij (5.6)

2

A direct conclusion of this Lemma is that wipij − wjp
′
ij = 0 because the inequality (5.5)

must be true for all k ∈ Z. Thus, condition (5.5) is equivalent to the following two
conditions

tj − ti ≥ Lij + wiqij − wjq
′
ij (5.7)

5.1 Basic Cyclic Scheduling Problems With Linear Precedence Constraints 54

and
wipij − wjp

′
ij = 0. (5.8)

Note, that (5.8) is equivalent to

πij :=
wi

wj

=
p′ij
pij

. (5.9)

Lemma 5.2 The linear precedence constraints

tj − ti ≥ Lij + wiqij − wjq
′
ij

for any arc (i, j) ∈ E can be rewritten to

tj − ti ≥ Lij − αHij

with integer Hij . Hij is called height of the arc (i, j).

Proof: As G is unitary, all paths µ : 1 =: i1, i2, . . . , ir := i from 1 to i have the same
weight ρi = Πr−1

l=1 πilil+1
= Πr−1

l=1

wil

wil+1
= w1

wi
=

p′1i

p1i
.

Now we can rewrite inequality (5.7) for any arc (i, j) ∈ E to

tj − ti ≥ Lij + wiqij − wjq
′
ij (5.10)

= Lij +
1

ρi

w1qij −
1

ρj

w1q
′
ij (5.11)

= Lij − w1(
1

ρj

q′ij −
1

ρi

qij) (5.12)

If we rewrite the rational numbers ρi = w1

wi
=

p′1i

p1i
as ρi = βi

γi
with GCD(βi, γi) = 1 and

define β := LCM(β1, . . . , βn), then

w1(
1

ρj

q′ij −
1

ρi

qij) =
w1

β
β(

γj

βj

q′ij −
γi

βi

qij) = αHij

with α := w1

β
and Hij := β(

γj

βj
q′ij −

γi

βi
qij) ∈ Z. 2

A consequence of the proof of Lemma 5.2 is that we can rewrite the cycle time wi for all
operations i ∈ T by

wi =
w1

ρi

= α
β

ρi

= αWi

5.2 A Cyclic Scheduling Problem With Linear Precedence Constraints and Resource
Constraints (CLSP) 55

with Wi := β
ρi
∈ N.

So, we get the following value for the height of an arc (i, j):

Hij = Wjq
′
ij −Wiqij (5.13)

Therefore, we can consider only problems with Wi ∈ N ∀ i ∈ T .

Furthermore, by minimizing α we minimize simultaneously the cycle time for all opera-
tions i ∈ T because the values Wi depend on the values p1i and p′1i only.

The BLCP, which is described by (5.3) to (5.4), can be solved by using the same methods
that can be used for solving the GBCSP. Furthermore, there exists only a solution for the
problem if the graph G is consistent.

5.2 A Cyclic Scheduling Problem With Linear Precedence
Constraints and Resource Constraints (CLSP)

In this part of the section, the BLCP is extended by disjunctive resource constraints.

Associated with each operation i there is a dedicated machine M(i) ∈ M = {1, . . . ,m},
on which each occurrence < i; k > of i must be processed. Occurrences of different
operations to be processed on the same machine cannot overlap.

Therefore, for all occurrences of pairs of operations i and j which are processed on the
same machine we have to add the constraints

t(i; k) + pi ≤ t(j; l) ∨ t(j : l) + pj ≤ t(i; k) (5.14)

for all k, l ∈ Z.

Thus, the general cycle time minimization problem for linear precedence constraints can
be written as:

min α (5.15)
s.t.

t(i; k) = t(i; 0) + αkWi i ∈ T, k ∈ Z (5.16)
t(i; pijk + qij) + Lij ≤ t(j; p′ijk + q′ij) (i, j) ∈ E, k ∈ Z (5.17)
t(i; k) + pi ≤ t(j; l) ∨ t(j; l) + pj ≤ t(i; k) i, j ∈ T with i 6= j and

M(i) = M(j), k, l ∈ Z (5.18)

5.2 A Cyclic Scheduling Problem With Linear Precedence Constraints and Resource
Constraints (CLSP) 56

Now we want to show that this problem is equivalent to a mixed integer linear program. In
the proof of this equivalence, we use results which are based on the Extended Euclidean
Algorithm. The Extended Euclidean Algorithm is presented in Theorem 5.3. A proof can
be found e.g. in [64].

Theorem 5.3 Extended Euclidean Algorithm Let a ∈ N0, b ∈ N. The greatest common
divisor GCD(a, b) can be written as linear combination of a and b.

GCD(a, b) = u · a + v · b, with u, v ∈ Z

Now we describe the main result of the second part:

Theorem 5.4 The problem (5.15) to (5.18) is equivalent to the following mixed integer
linear program (5.19) to (5.23).

min α (5.19)
s.t.

tj − ti ≥ Lij − αHij (i, j) ∈ E (5.20)
tj − ti ≥ pi − αKij ·GCD(Wi, Wj) i, j ∈ T with i 6= j

and M(i) = M(j) (5.21)
Kij + Kji = 1 i, j ∈ T with i 6= j

and M(i) = M(j) (5.22)
Kij ∈ Z i, j ∈ T with i 6= j

and M(i) = M(j) (5.23)

Proof: By substituting (5.16) into (5.17) we get

ti + αWi(pijk + qij) + Lij ≤ tj + αWj(p
′
ijk + q′ij)

⇔ tj − ti ≥ Lij + k(pijαWi − p′ijαWj) + α(Wiqij −Wjq
′
ij).

With αWi = wi = wjπij = wj
p′ij
pij

and αWj = wj we have pijαWi − p′ijαWj = 0 and
thus, with (5.13)

tj − ti ≥ Lij + α(Wiqij −Wjq
′
ij) = Lij − αHij.

Now consider two tasks < i; k > and < j; l > to be processed on the same machine.
Again (5.18) with (5.16) is equivalent to

ti + αkWi + pi ≤ tj + αlWj ∨ tj + αlWj + pj ≤ ti + αkWi

5.2 A Cyclic Scheduling Problem With Linear Precedence Constraints and Resource
Constraints (CLSP) 57

or
pi + α(kWi − lWj) ≤ tj − ti ∨ tj − ti ≤ −pj + α(kWi − lWj).

We have {−Wik + Wjl|k, l ∈ Z} = {m ∗ GCD(Wi, Wj)|m ∈ Z} because of Theorem
5.3. So, we get

pi − αm ∗GCD(Wi, Wj) ≤ tj − ti ∨ tj − ti ≤ −pj − αm ∗GCD(Wi, Wj)

Therefore, the numbers tj − ti cannot be contained in the intervals

. . . ,]− pj − αm ∗GCD(Wi, Wj), pi − αm ∗GCD(Wi, Wj)[,

]− pj − α(m− 1) ∗GCD(Wi, Wj), pi − α(m− 1) ∗GCD(Wi, Wj)[, . . .

Thus, tj − ti must be contained in one of the intervals

. . . , [pi − αm ∗GCD(Wi, Wj),−pj − α(m− 1) ∗GCD(Wi, Wj)], . . . (5.24)

which implies that for some integer Kij we must have

pi − αKij ∗GCD(Wi, Wj) ≤ tj − ti ≤ −pj + α(1−Kij) ∗GCD(Wi, Wj)

With Kji := 1−Kij conditions (5.21) to (5.23) are satisfied. On the other hand, if (5.20)
to (5.23) are satisfied, then conditions (5.16) to (5.18) hold if we set t(i; k) := ti + αkWi

for i ∈ T and k ∈ Z. 2

The next theorem shows that the intervals (5.24) cannot be empty.

For the proof of this theorem we need the following lemma, which describes the possi-
ble positions of the occurrences of operation i and j in a feasible periodic schedule, if
GCD(Wi, Wj) = 1. In connection with this lemma intervals Ih are defined as follows.
Consider a feasible schedule for a given instance of a CLSP. We choose an operation i.
Then

Ih := [t(i; 0) + hα, t(i; 0) + (h + 1)α]

for each h ∈ Z.

Lemma 5.5 Let z ∈ Z and i, j ∈ T with GCD(Wi, Wj) = 1. Then there exist k, l ∈ Z
with k − l = z such that an occurrence of operation i starts in the interval Ik and an
occurrence of j starts in the interval Il.

Proof: Due to the defined labelling of the intervals in a feasible schedule and according
to (5.16), the different occurrences of operation i start at the beginning of each intervals

5.2 A Cyclic Scheduling Problem With Linear Precedence Constraints and Resource
Constraints (CLSP) 58

IWi·a∀ a ∈ Z. If an occurrence of operation j starts in the c-th interval, then the different
occurrences of operation j start in the intervals Ic+Wj ·b ∀ b ∈ Z.

Now we need to find integer numbers a′ and b′ such that Ik = IWi·a′ and Il = Ic+Wj ·b′

with k − l = z. We have

k − l = z

⇔ Wi · a′ − c−Wj · b′ = z

⇔ (−c− z) · 1 = −Wi · a′ + Wj · b′

⇔ (−c− z)GCD(Wi, Wj) = −Wi · a′ + Wj · b′

Due to Theorem 5.3, the last equation is equivalent to

−Wi(−(−c− z))u + Wj(−c− z)v = −Wi · a′ + Wj · b′ (5.25)

with u, v ∈ Z. Thus, for a′ and b′ we have to choose the values a′ = −(−c − z)u and
b′ = (−c− z)v. 2

With the previous lemma, we can now show the following theorem, which shows that the
intervals (5.24) cannot be empty.

Theorem 5.6 Given is a feasible instance of a cyclic machine scheduling problem with
linear precedence constraints. Then

α ≥ pi + pj

GCD(Wi, Wj)
(5.26)

holds for every α ≥ α∗ and i, j ∈ T with i 6= j and M(i) = M(j), whereas α∗ is the
optimal cycle time for the given instance.

Proof: Without loss of generality we can assume that GCD(Wi, Wj) = 1. Otherwise, we
can change all computed Wk-values for all k ∈ T and the cycle time α in the following
way:

W ′
k :=

Wk

GCD(Wi, Wj)
∀ k ∈ T

and
α′ := α ·GCD(Wi, Wj).

Then we get W ′
k ∈ Q+ ∀ k ∈ T \{i, j} and W ′

i , W
′
j ∈ N+ and GCD(W ′

i , W
′
j) = 1. Note,

that the schedule with the new values has the same properties as the original schedule.
Therefore, we can assume that GCD(Wi, Wj) = 1 holds.

5.2 A Cyclic Scheduling Problem With Linear Precedence Constraints and Resource
Constraints (CLSP) 59

Due to Lemma 5.5, we can find an interval Iν in which both operations i and j are started.
Furthermore, due to the definition of the intervals Ih, job i is started at the beginning of
Iν .

We can also find two succeeding intervals Iµ and Iµ+1 such that j is started in Iµ and i is
started (again at the beginning) in Iµ+1. This implies that j must be completely processed
within Iµ (see Figure 5.1b). Because we have a periodic schedule with period length α,
both i and j must be completely processed in Iν (see Figure 5.1a), i.e. pi + pj ≤ α. 2

i j ij

α α α

Iµ

(a) (b)

Iν Iµ+1

Figure 5.1: Different positions of i and j in a feasible schedule

Now we want to given an example with linear precedence constraints.

Example 5.7 The graph with the linear precedence constraints is given in Figure 5.2.
The computed W -values are given in Table 5.1. As we can see the operations 1,2,3, and
4 have a W -value of 2 and therefore these operations are only processed in every two
periods, whereas the begin of a period is defined by the operation 0. In Figure 5.3 the
optimal schedule is given. The computed height values for the arcs is given in Table 5.2.

5.2 A Cyclic Scheduling Problem With Linear Precedence Constraints and Resource
Constraints (CLSP) 60

4

ji
(Lij, pij, p

′
ij, qij, q

′
ij)

conjunctive arc

1 2

5

3

0

(0, 1, 1, 0, 1)

(1, 1, 1, 0, 1)(1, 1, 1, 0, 1)

(2, 1, 1, 0, 1) (3, 1, 1, 0, 1)

(0, 1, 1, 0, 1)

(0, 1, 1, 0, 1)
(0, 2, 1, 0, 0)

(2, 1, 1, 0, 0)

(0, 2, 1,−1, 0) (1, 1, 2, 0, 0)

(3, 1, 2, 0, 0)

(1, 1, 1, 0, 0)

Figure 5.2: Precedence constraints for Example 5.7

Operation 0 1 2 3 4 5
W -value 1 2 2 2 2 1

Table 5.1: The computed W -values

5.2 A Cyclic Scheduling Problem With Linear Precedence Constraints and Resource
Constraints (CLSP) 61

Arc (0, 1) (0, 3) (1, 2) (2, 5) (3, 4) (4, 5) (5, 0)
Delay 0 0 2 3 1 1 0
Height 0 1 0 0 0 0 1

Arc (0, 0) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5)
Delay 0 2 3 1 1 0
Height 1 2 2 2 2 1

Table 5.2: The heights of the conjunctive arcs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

M4 (5; 0)

(0; 1)

(1; 1)

(2; 1)

(5; 1)

(0; 2)

(1; 2)

(2; 2)

(3; 2)

(4; 2)

(5; 2)

(0; 3)

(1; 3)

(2; 3)

(3; 3)

(4; 3)

(5; 3)

(0; 4)

(3; 4)

(4; 4)

(5; 4)

(0; 5)

(5; 5)

(0; 6)

. . .

. . .

. . .

. . .

Figure 5.3: The optimal schedule for Example 5.7

In this section, we presented a different view on periodic schedules, in which all opera-
tions can have a different cycle time.

6. Applications 62

6 Applications

In this section, we present important cyclic scheduling problems which are mentioned in
the literature and which can be modelled by our framework.

There exists up to now no such general model which can be used for solving all these
different cyclic scheduling problems. This is the main advantage of our framework.

This section is structured as follows. For each application, we describe first the constraints
and how these constraints fit into our model. Then we give some references to the litera-
ture and finally, we present for each application a short example, which includes the graph
G described by the precedence constraints and a gantt chart for an optimal solution. Note
that all optimal solutions are computed by solving the corresponding mixed integer linear
program. As a MIP solver, we used Cplex 8.1 (see [1]).

The type of applications can be distinguished into three different types. As first type,
cyclic scheduling problems are considered which are all based on the classical job shop
problem. As second type, these applications are extended by transportations robots. The
third type describes some problems that are not directly linked to machine scheduling
problems. These problems are derived from the area of Software Pipelining.

6.1 Cyclic Job Shop

In this subsection again we describe the cyclic job shop problem, which is already men-
tioned in Section 4, and also several other extensions of this cyclic job shop problem. The
basis for these types of problems is the classical job shop problem.

The classical job shop problem may be defined as follows: We have n jobs (J = 1, . . . , n).
Each job j ∈ J consists of nj operations O1j, . . . , Onj j . For l = 1, . . . , nj − 1 we call
operation Ol+1 j the succeeding operation of Olj . In a similar way for l = 2, . . . , nj we
call operation Ol−1 j the preceding operation of Olj . O1j and Onj j are the first and last
operations of job j, respectively. The set of all operations of all jobs is denoted by T .
Each operation i ∈ T has a processing time pi and belongs to a job j(i). The set of all
operations of job j is denoted with O(j). s(i) denotes the succeeding operation of i, if it
exists and p(i) denotes the preceding operation of i, if it exists.

Furthermore, we have precedence constraints of the form ts(i) ≥ ti + Lij between two
succeeding operations i and s(i) of the job j(i) with delay Lij = pi, where ti defines the
starting time of operation i in a schedule.

6.1 Cyclic Job Shop 63

Each operation i has to be processed on a dedicated machine M(i) ∈ M = {1, . . . ,m}.
Each machine can only process one operation at a time. If several operations are processed
on the same machine m, we need to fix an order between all operations that are processed
on this machine.

Example 6.1 In this example we give an instance of a classical job-shop scheduling prob-
lem which is extended in the following example in several different ways leading to dif-
ferent cyclic job shop scheduling problems. The example consists of three jobs. Each job
has three different operations. The data for this instance is given in Table 6.1. The graph
given by the precedence constraint is given in Figure 6.1.

Job 1 2 3
Operation 1 2 3 4 5 6 7 8 9

Processing time 1 2 2 2 1 1 2 2 2
Machine 1 2 3 3 2 1 3 2 1

Table 6.1: Data for job-shop instance given in Example 6.1

i j

1

2

2

2

1

2

Lij

1

4

7

2

5

8

3

6

9

Figure 6.1: Precedence Constraints for the instance in Example 6.1

This classical job shop problem can be generalized to cyclic job shop problems in three

6.1 Cyclic Job Shop 64

different ways, which are all considered in the literature. What all models have in common
is that the height Hi s(i) of the precedence constraints between the operation i and its
succeeding operation s(i), if it exists, is set to Hi s(i) = 0.

The first model is directly derived from the noncyclic job shop problems. In the second
model, the job chains described by the precedence constraints between the operations of
the same job are repeated. In contrast to this, the machine chains are repeated in the third
model.

In the following, we discuss how to model these problems within our framework.

We start with the first model. These types of problems are called cyclic job shop prob-
lems. We introduce a source node 0 and a sink node ?. The source node is connected to
the first operation of all jobs j ∈ J . These arcs have both length and height 0. The last
operations i of all jobs j are connected to the sink node which has length pi and height 0.
The sink and the source node are connected by an arc with length 0 and variable height
H?0. If the height H?0 is set equal to 1, then the optimal cycle time of this problem is equal
to the optimal makespan of the classical job-shop problem. Note that the only difference
between the cyclic job shop problem and the classical job shop is the directed arc in the
cyclic job shop between the sink and the source node. This model is used in Hanen [30]
and Brucker and Kampmeyer [8].

In the following we present an example for the cyclic job shop problem and also describe
the influence of the height H?0 of the arc (?, 0).

Example 6.2 The Example 6.1 is changed so that we get a cyclic job shop problem. The
new graph defining the precedence constraints is given in Figure 6.2.

6.1 Cyclic Job Shop 65

1

4

7

2

5

8

3

6

9

(0, 0)

(0, 0)
0

(0, 0) (2, 0)

(1, 0)
?

(2, 0)

(0, H?0)

i j
(Lij, Hij)

(1, 0) (2, 0)

(2, 0) (1, 0)

(2, 0) (2, 0)

Figure 6.2: Precedence Constraints for the cyclic job shop instance for Example 6.2

If we fix the height of the arc (?, 0) to H?0 = 1, we get an optimal schedule with cycle
time α = 8. The gantt chart for the optimal schedule is given in Figure 6.3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(1; 1)

(2; 1)

(3; 1)(4; 1)

(5; 1)

(6; 1)

(7; 1)

(8; 1)

(9; 1) (1; 2)

(2; 2)

(3; 2)(4; 2)

(5; 2)

(6; 2)

(7; 2)

(8; 2)

(9; 2) (1; 3)

(2; 3)

(3; 3)(4; 3)

(5; 3)

(6; 3)

(7; 3)

(8; 3)

(9; 3) (1; 4)

(2; 4)

(4; 4)(7; 4)

(8; 4)

(9; 4)

. . .

. . .

. . .

Figure 6.3: Optimal schedule for the Example 6.2 with H?0 = 1

If we increase the height of the arc (?, 0) to H?0 = 2, the optimal cycle time decreases to
α = 6. The corresponding schedule can be found in Figure 6.4.

Due to increasing the height of H?0 to 2, it is now feasible that operations with different
occurrence numbers are processed at the same time. This leads to a decrease of the
optimal cycle time.

6.1 Cyclic Job Shop 66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(1; 0)

(2; 0)

(3; 0)

(5; 0)

(6; 0)

(8; 0)

(9; 0) (1; 1)

(2; 1)

(3; 1)(4; 1)

(5; 1)

(6; 1)

(7; 1)

(8; 1)

(9; 1) (1; 2)

(2; 2)

(3; 2)(4; 2)

(5; 2)

(6; 2)

(7; 2)

(8; 2)

(9; 2) (1; 3)

(2; 3)

(3; 3)(4; 3)

(5; 3)

(6; 3)

(7; 3)

(8; 3)

(9; 3) (1; 4)

(2; 4)

(3; 4)(4; 4)

(5; 4)

(6; 4)

(7; 4)

(8; 4)

(9; 4)

(4; 5)(7; 5)

(8; 5)

. . .

. . .

. . .

Figure 6.4: Optimal schedule for the Example 6.2 with H?0 = 2

The second model is not widely used. It is introduced in [8] and is called cyclic job shop
problems with job repetition. To model the job chain repetition, we introduce arcs from
the last operations l to the first operation i with length pl and height HJob for all jobs
j ∈ J . These arcs mean that after the k-th occurrence of the last operation of a job j is
finished the k + HJob-th occurrence of first operation of the same job can start again. In
the following we reuse Example 6.1 to get a problem with job chain repetition.

Example 6.3 The graph given by the precedence constraints for the extended example
for the cyclic job shop problem with job repetition is given in Figure 6.5.

(2, HJob)

(1, HJob)

(2, HJob)

1

4

7

2

5

8

3

6

9

i j
(Lij, Hij)

(1, 0) (2, 0)

(2, 0) (1, 0)

(2, 0) (2, 0)

Figure 6.5: Precedence constraints for the cyclic job shop with job repetition instance for
Example 6.3

If we set HJob to 1, we get the following optimal schedule with cycle time α = 7 which is
given in the gantt chart in Figure 6.6.

6.1 Cyclic Job Shop 67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(6; 1)

(7; 1)

(8; 1)

(9; 1)(1; 2)

(2; 2)

(3; 2)(4; 2)

(5; 2)

(6; 2)

(7; 2)

(8; 2)

(9; 2)(1; 3)

(2; 3)

(3; 3)(4; 3)

(5; 3)

(6; 3)

(7; 3)

(8; 3)

(9; 3)(1; 4)

(2; 4)

(3; 4)(4; 4)

(5; 4)

(6; 4)

(7; 4)

(8; 4)

(9; 4)(1; 5)

(2; 5)

(3; 5)(4; 5)

(5; 5)

(6; 5)

(7; 5)

(1; 6)

(2; 6)

. . .

. . .

. . .

Figure 6.6: Optimal schedule for the Example 6.3 with HJob = 1

If we increase the height HJob by one, the optimal cycle time reduces to α = 6. The
optimal gantt chart can be found in Figure 6.7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(1; 0)

(2; 0)

(3; 0)

(5; 0)

(6; 0)

(8; 0)

(9; 0) (1; 1)

(2; 1)

(3; 1)(4; 1)

(5; 1)

(6; 1)

(7; 1)

(8; 1)

(9; 1) (1; 2)

(2; 2)

(3; 2)(4; 2)

(5; 2)

(6; 2)

(7; 2)

(8; 2)

(9; 2) (1; 3)

(2; 3)

(3; 3)(4; 3)

(5; 3)

(6; 3)

(7; 3)

(8; 3)

(9; 3) (1; 4)

(2; 4)

(3; 4)(4; 4)

(5; 4)

(6; 4)

(7; 4)

(8; 4)

(9; 4)

(4; 5)(7; 5)

(8; 5)

. . .

. . .

. . .

Figure 6.7: Optimal schedule for the Example 6.3 with HJob = 2

If HJob = 1 holds, the k + 1-th occurrence of operations of a job can only start if the k-th
occurrence of all operations of the same job are finished. However, if we increase HJob to
2, the k + 1-th occurrence of an operation can already start although the k-th occurrence
of the operation is not yet finished. This can be seen in Figure 6.7. In this figure the
k + 1-th occurrence of the first operation of job 3 is already started although the k-th
occurrence of the second and third operation of job 3 are still processed by its machines.
Thus, the increase of HJob leads to a better utilization of the machine and therefore, to a
decrease of the optimal cycle time.

Note that the graph which models the cyclic job shop problem with job chains repetition
is not strongly connected. Therefore, we introduce two dummy nodes, the source 0 and
the sink ? node. The source node is connected with all first operations of a job with zero
length and zero height. All last operations i of a job are connected with the sink node
with length pi and height zero. Finally, the sink node is connected to the source node
with zero length and the height is equal to the number of operations. As we showed in
Section 3.4, this arc does not lead to a restriction on the problem. It is easy to see that
with this extension the graph is strongly connected. This idea is also used to get a strongly
connected graph for the following applications.

The third model is widely used in the literature. We call this type of problems cyclic
job shop problems with machine repetition. It is introduced first by Hitz [33]. He
defines a minimal part set (MPS) which must be repeated a certain number of times. As
an example, assume we want to produce 100 units of job A, 200 of job B, and 200 of job

6.1 Cyclic Job Shop 68

C. Then the question is how to set up a MPS. There are various ways to choose a MPS.
Normally, selecting the makeup of a MPS is done in advance [43]. If the MPS is fixed to
(1A, 2B, 2C), then it has to be produced 100 times to meet the production requirements.
Furthermore, the machine processing order in each produced MPS is the same. The aim
is, as before, to find a periodic schedule with minimal cycle time.

Lee and Posner [43] extended the disjunctive graph model, developed by Roy and Suss-
mann [63], to describe solutions for this problem. In the following, we describe how to
model these problems in our framework. If we analyse the proposed extension of the
disjunctive graph model by Lee and Posner [43], we can easily see that the only differ-
ence to the application described before is that the chains on each machine have to be
repeated. To model this, we introduce two additional nodes a source node 0m and a sink
node ?m for each machine m ∈ M . Then each source node 0m is connected to all op-
erations which are processed on machine m with length and height 0 and all operations
i ∈ T with M(i) = m are connected to the sink node ?m with length pi and height 0.
Furthermore, each sink node ?m is connected with the corresponding source node 0m with
delay 0 and height HMPS . Usually in the literature in which this model is discussed the
height HMPS is equal to 1. In Seo and Lee [65] the height is set to 2 and they call this
problem ‘cyclic job shop with overtaking’. In Hall et al. [29] several complexity results
for the problem with HMPS = 1 are derived. One important result is that if each job has
at least three operations, then the problem whether there exists a periodic schedule with
cycle time α ≤ α+, where α+ is a given rational number, is NP-complete.

The main difference between these two different heights can be seen easily in the follow-
ing example.

Example 6.4 The Example 6.1 is changed so that we get a cyclic job shop problem with
machine chains repetition. The graph given by the precedence constraints is shown in
Figure 6.8.

6.1 Cyclic Job Shop 69

2 5 8

1 6 9

3 4 7

?1

?202

03 ?3

i j
(Lij, Hij)

01

(2, 0)
(1, 0)(1, 0)

(1, 0)

(2, 0)

(1, 0) (2, 0)

(2, 0)

(2, 0) (1, 0)
(2, 0)

(2, 0)
(2, 0)

(0, HMPS)

(0, HMPS)

(0, HMPS)(2, 0)

(2, 0)

Figure 6.8: Precedence constraints for the cyclic job shop with machine chains repetition
instance for Example 6.4

The optimal gantt chart with cycle time α = 7 and HMPS = 1 is given in Figure 6.9. The
optimal gantt chart with HMPS = 2 is shown in Figure 6.10. Here the optimal cycle time
decreases to α = 6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(9; 1) (1; 2)

(2; 2)

(3; 2)(4; 2)

(5; 2)

(6; 2)

(7; 2)

(8; 2)

(9; 2) (1; 3)

(2; 3)

(3; 3)(4; 3)

(5; 3)

(6; 3)

(7; 3)

(8; 3)

(9; 3) (1; 4)

(2; 4)

(3; 4)(4; 4)

(5; 4)

(6; 4)

(7; 4)

(8; 4)

(9; 4) (1; 5)

(2; 5)

(3; 5)(4; 5)

(5; 5)

(6; 5)

(7; 5)

(8; 5)

(9; 5)

(4; 6) . . .

. . .

. . .

Figure 6.9: Optimal schedule for the Example 6.4 with HMPS = 1

If we compare the gantt chart of Figure 6.9 with the gantt chart in Figure 6.10, we can
see that in the Figure 6.9 the k-th occurrences of all operations which are processed on
the machine must be finished until the next occurrence can start. Due to the increase of

6.1 Cyclic Job Shop 70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(9; 0)

(2; 1)

(3; 1)

(5; 1)

(6; 1)

(8; 1)

(9; 1)(1; 2)

(2; 2)

(3; 2)(4; 2)

(5; 2)

(6; 2)

(7; 2)

(8; 2)

(9; 2)(1; 3)

(2; 3)

(3; 3)(4; 3)

(5; 3)

(6; 3)

(7; 3)

(8; 3)

(9; 3)(1; 4)

(2; 4)

(3; 4)(4; 4)

(5; 4)

(6; 4)

(7; 4)

(8; 4)

(9; 4)(1; 5)

(2; 5)

(3; 5)(4; 5)

(5; 5)

(6; 5)

(7; 5)

(8; 5)

(1; 6)

(4; 6) (7; 6) . . .

. . .

. . .

Figure 6.10: Optimal schedule for the Example 6.4 with HMPS = 2

the height HMPS , this restriction is relaxed and a new occurrence of an operation can
already start although not all operations of the previous occurrences are finished.

Note that all these types of problems can be easily extended to the presence of blocking.
The cyclic job shop problem extended by blocking is considered in Brucker and Kamp-
meyer [9]. McCormick et al. [52] and Song and Lee [68] consider the cyclic job shop
problem with machine repetition extended by blocking.

In the following, we present an example for cyclic job shop problem with machine repe-
tition and blocking.

Example 6.5 The Example 6.4 is changed so that we get a cyclic job shop problem with
machine chains repetition and blocking.

The optimal gantt chart with cycle time α = 7 and HMPS = 1 is given in Figure 6.11.
The optimal gantt chart with HMPS = 2 is given in Figure 6.12. Here the optimal cycle
time is also α = 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(1; 1)

(2; 1)

(3; 1)

(5; 1)

(6; 1)

(7; 1)

(8; 1)

(9; 1) (1; 2)

(2; 2)

(3; 2)(4; 2)

(5; 2)

(6; 2)

(7; 2)

(8; 2)

(9; 2) (1; 3)

(2; 3)

(3; 3)(4; 3)

(5; 3)

(6; 3)

(7; 3)

(8; 3)

(9; 3) (1; 4)

(2; 4)

(3; 4)(4; 4)

(5; 4)

(6; 4)

(7; 4)

(8; 4)

(9; 4) (1; 5)

(2; 5)

(4; 5)

(5; 5)

(6; 5)

(7; 5) . . .

. . .

. . .

Figure 6.11: Optimal schedule for the Example 6.5 with HMPS = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3 (7; 0)

(8; 0)

(9; 0)(1; 1)

(2; 1)

(3; 1)

(5; 1)

(6; 1)

(7; 1)

(8; 1)

(9; 1)(1; 2)

(2; 2)

(3; 2)(4; 2)

(5; 2)

(6; 2)

(7; 2)

(8; 2)

(9; 2)(1; 3)

(2; 3)

(3; 3)(4; 3)

(5; 3)

(6; 3)

(7; 3)

(8; 3)

(9; 3)(1; 4)

(2; 4)

(3; 4)(4; 4)

(5; 4)

(6; 4)

(7; 4)

(1; 5)

(2; 5)

(4; 5)

(5; 5)

(6; 5)

. . .

. . .

. . .

Figure 6.12: Optimal schedule for the Example 6.5 with HMPS = 2

In both problems the only time where blocking occurs is after the processing of each
occurrence of operation 7 is finished.

6.2 Cyclic Job Shop With Transportation Robots 71

6.2 Cyclic Job Shop With Transportation Robots

In this section we describe how to model cyclic scheduling problems in the presence of
one transportation robot. Here we distinguish between two cases.

In the first case, we describe a problem in which the robot carries special tools to the
machines which are needed for processing operations at this machine. In the second
case, the robot carries the different operations from one machine to another. These types
of problems are a direct generalization of the classical non-cyclic shop problem with
transportation (see e.g. Knust [40]).

Now we start with the first case and show how to model these problems within our frame-
work.

The first problem is discussed in Kuijpers [42] and is called cyclic machine scheduling
with tool transportation. The problem can be described as follows:

There are given M identical jobs (j = 1, . . . ,M) and M identical machines (1, . . . ,M).
Each job j ∈ {1, . . . ,M} consists of N operations (1, . . . , N) with processing time pi >
0 (i = 1, . . . , N). All operations of job j must be processed on the machine j. The
succeeding operation of operation i is denoted again by s(i).

There are given N tools (i = 1, . . . , N). For processing operation i of job j(i) tool i
must be present at machine j(i). These tools are transported from one machine m to
the next machine m + 1 cyclically by a robot. The robot can transport only one tool
at a time. The tool i for the processing of operation i of job j(i) is taken by the robot
from machine j(i) − 1 to machine j(i). This transport operation is denoted by Ti j(i).
The corresponding travelling time is denoted by dj(i)−1 j(i) which also equals to the time
to move the robot from machine j(i) back to j(i) − 1. Thus, dj(i)−1 j(i) = dj(i) j(i)−1

holds. For this application we identify machine M with machine 0. Thus, d01 denotes the
travelling time from machine M to 1.

The starting time of the k-th occurrence of operation i of job j(i) on machine j(i) is
denoted by t(i; k). The starting time of the k-th occurrence of the transport operation Ti j(i)

is denoted by t(Ti j(i); k). The set of operations which are performed on the machines is
denoted by T , whereas the set of transport operations is denoted by T robot.

Furthermore, the following different types of conjunctions are given:

Type I. Each machine can process only one operation at a time. Therefore, operation i
must be finished before the succeeding operation s(i) can start. Thus, the following

6.2 Cyclic Job Shop With Transportation Robots 72

inequality must hold
t(s(i); k) ≥ t(i; k) + pi

for all operation i ∈ T which has a succeeding operation s(i).

Furthermore, the k-th occurrence of the last operation N of job j(N) (which has no
succeeding operation) must be finished before the k + 1-th occurrence of the first
operation of the same job can start. Let s(i) be the first operation of j(i) if i is the
last operation of j(i). Thus, we get the following inequality

t(s(i); k + 1) ≥ t(i; k) + pi

which must hold for the last operations of all jobs.

Type II. As the k-th occurrence of operation i needs the tool i for the start of the processing,
the k-th occurrence of the transport of tool i to machine j(i) must be finished. Thus,

t(i; k) ≥ t(Ti j(i); k) + dj(i)−1 j(i)

for all operations i ∈ T .

Type III. After finishing the k-th occurrence of operation i of job j(i), the tool i can be
transported to the next machine j(i) + 1. So the following inequality must hold for
all operations i with M(i) ∈ {1, . . . ,M − 1}

t(Ti j(i)+1; k) ≥ t(i; k) + pi.

As the tools are transported cyclically through the machines, the robot carries the
tool i to machine 1 after the k-th occurrence of operation i on the last machine M is
finished so that the k +1-th occurrence of operation i can start on machine 1. Thus,

t(Ti1; k + 1) ≥ t(i; k) + pi

must hold for all operations with M(i) = M .

Type IV. If the robot performs two succeeding transport operations Ti j(i) and Ts(i) j(i) which
both start at the same machine j(i)−1, the time difference between the starting time
of these two transport operations must be 2dj(i)−1 j(i) because after finishing the k-
th occurrence of transport operation Ti j(i), which takes dj(i)−1 j(i), the robot has to
move back empty to machine j(i) − 1, which takes dj(i) j(i)−1, to perform the k-th
occurrence of transport operation Ts(i) j(i). So, the difference between these two suc-
ceeding transport operations must be at least dj(i)−1 j(i) + dj(i) j(i)−1 = 2dj(i)−1 j(i).
So we get

t(Ts(i) j(i); k) ≥ t(Ti j(i); k) + 2dj(i)−1 j(i)

6.2 Cyclic Job Shop With Transportation Robots 73

for all operations i ∈ T for which a succeeding operation exists.

If the robot finishes the k-th occurrence of transport operation TN j(N), where N is
the last operation of the job j(N) (N has no succeeding operation), then the k+1-th
occurrence of transport operation T1 j(N) can start after the robot has moved back to
machine j(N)− 1. Thus,

t(T1 j(N); k + 1) ≥ t(TN j(N); k) + 2dj(N)−1 j(N)

must hold for the last operations of all jobs.

As the robot can perform only one transport at a time, we have to fix an order between the
different transport operations. The robot has to finish one transport operation Ti j(i) until
a new transport operation Ti′ j(i′) can start. To start the new transport operation Ti′ j(i′), the
robot has to arrive empty at the machine j(i′)− 1 to pick up tool i′. Therefore, we get the
following disjunctive constraints between the transport operations

t(Ti j(i); k) + dj(i)−1 j(i) + dj(i) j(i′)−1 ≤ t(Ti′ j(i′); l)∨

t(Ti′ j(i′); l) + dj(i′)−1 j(i′) + dj(i′) j(i)−1 ≤ t(Ti j(i); k)

for all i, i′ ∈ T with i 6= i′ and k, l ∈ Z.

It is still an open question whether this problem is NP-hard or not.

For this application we also present an example.

Example 6.6 An instance for the cyclic machine scheduling with tool transportation
problem is given in Table 6.2. The instance consists of three jobs each with four oper-
ations 1, 2, 3 and 4.

Operation 1 2 3 4
Processing time 2 1 2 1

Table 6.2: Data for the instance given in Example 6.6

The time it takes the robot to move from one machine m1 to m2 equals 1 if m2 6= m1, for
all machines m1, m2 ∈ {1, 2, 3}. If m1 = m2, then dm1 m2 = dm1 m1 equals to 0. The
graph given by the precedence constraints is given in Figure 6.13. The gantt chart with

6.2 Cyclic Job Shop With Transportation Robots 74

optimal cycle time α = 12 is given in Figure 6.14. Note that all transport operations
Ti j(i) ∈ T robot are done by one robot, although all transport operations that arrive at
machine m are drawn in the gantt chart as an additional machine.

6.2 Cyclic Job Shop With Transportation Robots 75

(2; 0)
T11

Conjunctions Type III

Conjunctions Type IV

(2; 0) (1; 0) (2; 0)

(1; 0)

(2; 0) (1; 0) (2; 0)

(2; 0) (1; 0) (2; 0)

(2; 0) (2; 0) (1; 0)(1; 0)

T23 T24T21 T22

(2; 0) (2; 0) (2; 0)

(1; 0) (1; 0) (1; 0)

(2; 0) (2; 0) (1; 0)(1; 0)

T33 T34T31 T32

(2; 0)

(2; 1) (2; 1) (1; 1)(1; 1)

(2; 0) (2; 0)

(1; 0) (1; 0) (1; 0)

M3:

M2:

M1:

T13 T14T12

(2; 0) (2; 0)

(1; 0)

(1; 0) (1; 0) (1; 0) (1; 0)

Conjunctions Type I

(2; 1)

(1; 1)

(2; 1)

(1; 1)

(2; 1)

(1; 1)

1 2 3 4

1 2 3 4

1 2 3 4

T3→1:

T1→2:

T2→3:

Conjunctions Type II

Figure 6.13: Precedence constraints for the Example 6.6

6.2 Cyclic Job Shop With Transportation Robots 76

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T3→1

M1

T1→2

M2

T2→3

M3

4

3 4

T33 T43

1 2 3 4

1 2 3 4

1 2 3 4

T21 T31 T41

T12 T22 T32 T42

T13 T23 T33 T43

1 2 3 4

1 2 3 4

1 2 3 4

T11 T21 T31 T41

T12 T22 T32 T42

T13 T23 T33 T43

1 2 3

1

T11 T21 T31

T12 T22

. . .

. . .

. . .

. . .

. . .

. . .

Figure 6.14: Optimal schedule for the Example 6.6

In the gantt chart, we can see that the robot always transports a tool from one machine
to another. This is a very special case. In most problems the robot has to perform some
empty move, this means that the robot moves empty to a machine to pick up a tool.

This is shown in the gantt chart in Figure 6.15. For example after performing the transport
T21 the robot moves back empty to machine M3 to perform the transport T31.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T3→1

M1

T1→2

M2

T2→3

M3

4

2 3 4

T42

T43

1 2 3 4

1 2 3 4

1 2 3 4

T21 T31 T41

T12 T22 T32 T42

T13 T23 T33 T43

1 2 3

1 2

T11 T21 T31

T12 T22 T32

T13

. . .

. . .

. . .

. . .

. . .

. . .

Figure 6.15: Schedule with empty robot moves

Now we consider the second case in which the robot carries instead of tools jobs from
one machine to another. This problem is based on the Cyclic Job Shop Problem with
machine chain repetition. Thus, there exists unlimited storage at each machine. Between
two operations p(i) and i of a job j(i) a transport operation Ti occurs, if operation i has a
preceding operation, which is denoted by p(i). This transport operation is done by a robot,
which takes the job j(i) from machine M(p(i)) and brings the job to machine M(i) so
that the processing of operation i of j(i) can start. Note that the processing of job j(i) at
machine M(i) can only start if the machine M(i) is available.

The transport robot can only perform one transport operation at a time and a job can only
picked up by a robot if the robot is empty. The time it takes to bring job j(i) from machine
M(p(i)) to machine M(i) is denoted by dM(p(i)) M(i), and the time to load or unload a job
from the machine m is denoted by εm. Thus, the processing time of the transport operation

6.2 Cyclic Job Shop With Transportation Robots 77

Ti is defined as pTi
:= εM(p(i)) + dM(p(i)) M(i) + εM(i). The first operation of each job is

always available at its machine.

So we have the following precedence constraints:

Type I. The k-th occurrence of operation i can only start if the k-th occurrence of transport
operation Ti is finished. Thus,

t(i; k) ≥ t(Ti; k) + pTi

must hold for all operations i ∈ T for which a preceding operation exists. (The first
operation of each job is always available at its machine.)

Furthermore, we postulate that the k + 1-th occurrence of operation i can only start
if the k-th occurrence is finished. Therefore, the following inequality must hold for
all operation i ∈ T :

t(i; k + 1) ≥ t(i; k) + pi.

Type II. The k-th occurrence of transport operation Ti can only start if the k-th occurrence
of p(i) is finished. Thus,

t(Ti; k) ≥ t(p(i); k) + pp(i)

must hold for all operations i ∈ T . Note that for each transport operation Ti there
exists a preceding operation p(i).

Additionally, we postulate that the k+1-th occurrence of transport operation Ti can
only start if the k-th occurrence is finished and the robot arrives empty at machine
M(p(i)). Therefore, we get

t(Ti; k + 1) ≥ t(Ti; k) + pTi
+ dM(i) M(p(i))

for all transport operations Ti ∈ T robot.

Additionally, we get two types of disjunctive constraints, the disjunctive constraints be-
tween the operations which are processed on the same machine and the disjunctive con-
straints between all transport operations.

As each machine can perform only one operation at a time, we get:

t(i; k) + pi ≤ t(i′; l) ∨ t(i′; l) + pi′ ≤ t(i; k) (6.1)

for all i, i′ ∈ T with i 6= i′ and M(i) = M(i′) and k, l ∈ Z.

6.2 Cyclic Job Shop With Transportation Robots 78

Now we consider two different transport operations Ti and Ti′ . As we have only one
robot to perform the transport operations, we must fix an order between the different
occurrences of both transport operations. Assume that the k-th occurrence of transport
operation Ti is performed before the l-th occurrence of Ti′ . As the robot can transport
only one operation at a time, the robot must first finish the k-th occurrence of transport
operation Ti, which takes pTi

time units. Then, the robot can directly unloaded job j(i) at
machine M(i). Afterwards, the robot must move empty to machine M(p(i′)), which takes
dM(i) M(p(i′)) time units, to start the l-th occurrence of transport operation Ti′ . Therefore,
we get the following disjunctive constraints:

t(Ti; k) + pTi
+ dM(i) M(p(i′)) ≤ t(Ti′ ; l)∨

t(Ti′ ; l) + pTi′
+ dM(i′) M(p(i)) ≤ t(Ti; k) (6.2)

for all transport operations Ti and Ti′ with Ti 6= Ti′ and for all k, l ∈ Z.

The situation which is described in the previous paragraphs is a very general situation.
Most of the work in the area of cyclic job problems with one transportation robot is
focused on the blocking situation, which is described in the following paragraphs. We
show that several constraints which are developed before must be adjusted to the new
blocking situation. Due to the blocking constraints, each job must be either on a machine
or on the robot. Therefore, the following equation holds for all operations i ∈ T :

t(i; k) = t(Ti; k) + pTi
. (6.3)

Assume that this equation does not hold. This means that operation i cannot be started at
machine M(i) right after the job is unloaded. The only reason is that there is another job
being processed on machine M(i). Thus, this would lead to a deadlock situation because
the robot cannot unload the job at machine M(i) because first there exists no buffer at the
machine and second the other operation which is processed on M(i) cannot be unloaded
by the robot because the robot is not empty. Therefore, equation (6.3) must hold.

The conjunctive and disjunctive constraints must be adjusted to the new blocking situa-
tion. The reformulated conjunctive constraints are:

Type I. As there exists no storage at machine M(i), the processing of the k-th occurrence
of operation i starts directly after the k-th occurrence of transport operation Ti is
finished. Thus, the following equality must hold

t(i; k) = t(Ti; k) + pTi

which is equivalent to the following inequalities:

t(i; k) ≥ t(Ti; k) + pTi
∧ (6.4)

6.2 Cyclic Job Shop With Transportation Robots 79

t(Ti; k) ≥ t(i; k)− pTi
. (6.5)

Furthermore, the k + 1-th occurrence of operation i can only start if the k-th oc-
currence of operation i is finished and is transported to machine M(s(i)) by the
robot, and if the operation i is not the last operation of the job j(i). After the robot
has unloaded the job j(i) at machine M(s(i)), the robot has to move empty from
machine M(s(i)) to machine M(p(i)) if operation i is not the first operation of job
j(i). Then the robot has to load the job j(i), to travel to machine M(i) and finally
to unload job j(i) at machine M(i). The time for all these robot moves is

pTs(i)
+ dM(s(i)) M(p(i)) + pTi

if we assume that dM(s(i)) M(i′) + dM(i′) M(p(i)) ≥ dM(s(i)) M(p(i)) holds. Thus, we get
the following inequality

t(i; k + 1) ≥ t(Ts(i); k) + pTs(i)
+ dM(s(i)) M(p(i)) + pTi

. (6.6)

If operation i has no preceding operation p(i) but a succeeding operation s(i), then
the k + 1-th occurrence of operation i can start directly after the k-th occurrence of
operation i is unloaded from machine M(i). Thus, we get

t(i; k + 1) ≥ t(Ts(i); k) + εM(i). (6.7)

If i is the first and last operation of the job j(i), then the k + 1-th occurrence of
operation i can start directly after the k-th occurrence of operation i is finished.
Thus, we get

t(i; k + 1) ≥ t(i; k) + pi. (6.8)

If there exists a preceding operation p(i), then inequality (6.8) can be reformulated
due to equation (6.3) to

t(i; k + 1) ≥ t(Ti; k) + pTi
+ max{pi, dM(i) M(p(i)) + pTi

} (6.9)

because the k + 1-th occurrence can only start if the k-th occurrence is finished and
the robot arrives empty at the machine M(p(i)).

Summarizing, we get for the k + 1-th occurrence of operation i the following in-
equalities:

6.2 Cyclic Job Shop With Transportation Robots 80

t(i; k+1) ≥



t(Ts(i); k) + pTs(i)
+ dM(s(i)) M(p(i)) + pTi

if p(i) and s(i) exist,
t(Ts(i); k) + εM(i) if s(i) exists and

p(i) does not exist,
t(Ti; k) + pTi

+ max{pi, dM(i) M(p(i)) + pTi
} if p(i) exists and

s(i) does not exist
t(i; k) + pi otherwise

Type II. The transport operation Ti can only start if the processing of operation p(i) is fin-
ished. Thus,

t(Ti; k) ≥ t(p(i); k) + pp(i) (6.10)

must hold.

As there exists no storage at machine M(i), the robot can perform the k + 1-th
occurrence of Ti only if the k-th occurrence of transport operation Ts(i) is finished
and the robot arrives empty at machine M(p(i)). So the following inequality must
hold

t(Ti; k + 1) ≥ t(Ts(i); k) + pTs(i)
+ dM(s(i)) M(p(i)) (6.11)

for all transport operations Ti for which a succeeding transport operation Ts(i) exists.

If there exists no succeeding transport operation Ts(i), then the k + 1-th occurrence
of Ti can start directly after the k-th occurrence of Ti is finished and the robot has
arrived empty at the machine M(p(i)). Thus, we get

t(Ti; k + 1) ≥ t(Ti; k) + pTi
+ dM(i) M(p(i)) (6.12)

for all transport operations Ti, where i is the last operation of the job j(i).

Summarizing, for the transport operation Ti we get the following inequalities:

t(Ti; k + 1) ≥

{
t(Ts(i); k) + pTs(i)

+ dM(s(i)) M(p(i)) if Ts(i) exists,
t(Ti; k) + pTi

+ dM(i) M(p(i)) otherwise.

The disjunctive constraint (6.1) between operations which are processed on the same ma-
chine must also be adjusted to the blocking situation. As this situation is the same as for
the blocking case described in Section 4, we can reuse the disjunctive constraints (4.6) of
this section. So we get:

t(b(i); l) + pb
i ≤ t(i′; k) ∨ t(b(i′); k) + pb

i′ ≤ t(i; l) (6.13)

6.2 Cyclic Job Shop With Transportation Robots 81

for all operations i, i′ with M(i) = M(i′), where pb
i and b(i) are defined as follows:

b(i) :=

{
s(i) if i is not the last operation of job j(i)

i otherwise

and

pb
i :=

{
0 if i is not the last operation of job j(i)

pi otherwise.

Using the fact that the operations are transported by one robot and the constraint (6.3)
holds, the disjunctive constraints (6.13) can be reformulated to:

t(b(i); l) + pb
i ≤ t(i′; k) ∨ t(b(i′); k) + pb

i′ ≤ t(i; l) (6.14)

with

b(i) :=



Ts(i) if s(i) and p(i′) exist, (6.15a)
Ts(i) if s(i) exists, p(i′) does not exist, (6.15b)
Ti if p(i) and p(i′) exist and s(i) does not exist, (6.15c)
Ti if p(i) exists and p(i′) and s(i) do not exist, (6.15d)
i if p(i′) exists and p(i) and s(i) do not exist (6.15e)
i if p(i′), p(i) and s(i) do not exist (6.15f)

and

pb
i :=



pTs(i)
+ dM(s(i)) M(p(i′)) + pTi′

if s(i) and p(i′) exist, (6.16a)
εM(i) if s(i) exists and

p(i′) does not exist (6.16b)
pTi

+ max{pi, dM(i) M(p(i′)) + pTi′
} if p(i) and p(i′) exist,

s(i) does not exist, (6.16c)
pTi

+ pi if p(i) exists and p(i′)

and s(i) do not exist, (6.16d)
pi if p(i′) exists and p(i)

and s(i) do not exist (6.16e)
pi if p(i′), p(i)

and s(i) do not exist (6.16f)

6.2 Cyclic Job Shop With Transportation Robots 82

Note that the disjunctive constraint (6.14) together with (6.15a) and (6.16a) can be refor-
mulated to

t(Ts(i); l) + pTs(i)
+ dM(s(i)) M(p(i′)) ≤ t(i′; k)− pTi′

or
t(Ts(i); l) + pTs(i)

+ dM(s(i)) M(p(i′)) ≤ t(Ti′ ; k) (6.17)

as t(Ti′ ; k) = t(i′; k) − pTi′
because of equality (6.3). If in case (6.16c) dM(i) M(p(i′)) +

pTi′
> pi holds, then the constraint can also be reformulated to

t(Ti; l) + dM(i) M(p(i′)) ≤ t(Ti′ ; k) (6.18)

Now we discuss these constraints. For this explanation, we assume that the k-th occur-
rence of operation i is processed before the l-th occurrence of operation i′. First, we con-
sider the case (6.16a). As the succeeding operation s(i) of operation i exists, the robot has
to pick up the job j(i) at machine M(i) and has to transport it to machine M(s(i)). This
takes pTs(i)

time units. As the preceding operation p(i′) of i′ exists, the robot has to move
empty to machine M(p(i′)) to pick up job j(i′). This empty move takes dM(s(i)) M(p(i))

time units. Finally, the robot can pick up job j(i′) at machine M(p(i)) and can transport
it to machine M(i′), which takes pTi′

time units.

Now consider the case (6.16b). As there exists no preceding operation of i′, the processing
of operation i′ at machine M(i′) can start right after the job j(i) is unloaded from machine
M(i) by the robot. The unloading is done in εM(i) time units.

Now we consider the case (6.16c). As there exists no succeeding operation s(i) of op-
eration i, the processing of i′ can start right after the processing of job j(i) at machine
M(i) is finished and the robot arrives at machine M(i′) with the job j(i′). Due to the
constraints (6.3), the robot is at machine M(i) at the time the processing of job j(i) starts.
Therefore, the robot has to move empty to machine M(p(i′)) to pick up job j(i′) and has
to transport it to machine M(i′). This move is done in dM(i) M(p(i′)) + pTi′

time units.

If there exists no succeeding operation s(i) and no preceding operation p(i′), as in the
case (6.16d), then the processing of operation i′ can start directly after the processing of
operation i is finished. Due to the constraints (6.3), the finishing time of the processing
of operation i is equal to the start of the transport Ti plus its processing time pTi

and the
processing time of operation i.

Finally, in the cases (6.16e) and (6.16f) operation i has no preceding and no succeeding
operation, this means that the job j(i) consists only of one operation, then the processing
of operation i′ can start directly after the processing of operation i is finished.

6.2 Cyclic Job Shop With Transportation Robots 83

Due to this reformulation, we can conclude that if each job consists at least of two op-
erations, it is sufficient to fix the order between the transport operations because in this
case the order on the robot also describes the order of the operations on the corresponding
machines.

The disjunctive constraints (6.2) hold also for the blocking case. This can be seen eas-
ily. Consider two occurrences of different transport operations (Ti; k) and (Ti′ ; l). Due to
constraint (6.14), the k-th occurrence of transport operation Ti can only start if the ma-
chine M(i) is empty. Therefore, after the robot has arrived with job j(i) at machine M(i)
the job can be directly loaded onto the machine. After this, the robot can move empty
to machine M(p(i′)) to pick up the job j(i′). Thus, the disjunctive constraints (6.2) hold
also for the blocking case. Note that this developed model only holds if dik + dkj ≥ dij

for all i, j, k ∈ M .

This proposed approach to model cyclic job shop scheduling problems with one trans-
portation robot and with or without buffers at the machines is very general. Most research
is focused on two special problems. The first problem is the robotic flow shop problem
with no buffers at the machines or robotic cells. The second problem is the reentrant
robotic cells problem.

As the second case is a generalisation of the first case, we give in the following a short
overview on robotic cell problems. Afterwards, we present an example for a special
robotic cell problem. Finally, we describe the reentrant robotic cell problems.

There are several survey papers on robotic cells (see e.g. Hall et al. [27, 28], Sethi et al.
[67]). The following classification is based on the survey article by Crama et al. [20].

A robotic flow shop or robotic cell consists of m machines M1, . . . ,Mm, an input station
M0 and an output station Mm+1. Additional to these machines, there exists one robot. All
jobs j ∈ J are initially available at the input station. The job j consists of m operations.
Each operation must be processed on a machine, the first operation must be performed on
M1, the second operation on the M2 and so on. The robot must pick up job j at the input
station M0 and must bring the job to the first machine M1, so that the processing of the
first operation of job j can start. After the last operation is finished on machine Mm the
robot has to pick up the job and has to bring it to the output station Mm+1. Note that in
this case every non-transport operation of job j has a preceding and succeeding transport
operation. Thus, the only disjunctive constraints are given by the constraints (6.2) and
(6.17).

For each operation i there is a given processing window [p−i , p+
i]. This means that the

operation i must spend at least p−i time units and at most p+
i time units at machine M(i).

Note that this processing window can be modelled within our framework by using the
concepts which are introduced in Section 3.3.

6.2 Cyclic Job Shop With Transportation Robots 84

In the literature it is often assumed that the travel speeds are symmetric, which means that
dij = dji holds for all machines i, j and that the triangle inequality, dij + djk ≥ dik for all
machines i, j, k, holds.

The aim is to find a periodic schedule with minimal cycle time. There are two important
problems in the area of robotic cell scheduling, which are both NP-hard. The first prob-
lem is called robotic flow shop scheduling with identical jobs in which each operation
has a processing window [p−i , p+

i] with p+
i > p−i and p+

i 6= ∞. The complexity proof can
be found in Lei and Wang [44]. The problem is normally called single product - single
hoist scheduling problem. Note if p+

i = p−i holds, then the problems of finding an op-
timal periodic schedule with minimal cycle time can be solved in polynomial time (see
Levner et al. [48]). This restriction is called no-wait restriction. For the case p+

i = ∞,
which means that the processing window is unbounded, the problem can be solved in
polynomial time (see Crama and van de Klundert [21]). Brauner et al. [6] showed that the
problem becomes strongly NP-hard if the triangle equality is not satisfied.

If we now consider a robotic cell problem with different jobs, in which each operation of a
job has an unbounded processing window, p+

i = ∞, then the problem becomes NP-hard
if the number of machine m is greater or equal to 3 (see Hall et al. [28]).

If for robotic cell problems the robot moves are fixed in advance, several scientists use
the BCSP to compute the optimal cycle time (see e.g Chen et al. [15], Ioachim et al.
[37], Levner and Kats [47]).

In the following, we present two examples. The first example is a Robotic Flow Shop
Scheduling Problem with two jobs. The second example is a single product - single hoist
scheduling problem with one job.

Example 6.7 Robotic Flow Shop Scheduling Problem

The instance consists of two jobs each with two operations.

The data is given in Table 6.3. The time to move the robot from any machine i to any
machine j, i 6= j, i, j ∈ {0, 1, 2, 3} equals dij = 1. The time for loading and unloading
also equals εm = 1 for all machines m ∈ {0, 1, 2, 3}.

6.2 Cyclic Job Shop With Transportation Robots 85

Job 1 2
Operation 1 2 4 5

Processing time 2 3 3 1
Machine 1 2 1 2

Table 6.3: Data for the instance given in Example 6.7

4 5T5 T6T4

1 2T2 T3T1

(3, 0) (3, 0) (3, 0) (1, 0)

(−3, 0) (−3, 0)

(4, 1) (4, 1)

(3, 0) (2, 0) (3, 0) (3, 0)

(−3, 0) (−3, 0)

?1 ?2

0201

(0, 1) (0, 1)

(0, 0)

(3, 0)

(4, 1) (4, 1)

(0, 0) (0, 0)

(0, 0)

(2, 0) (3, 0)

Figure 6.16: Precedence constraints for the Example 6.7

6.2 Cyclic Job Shop With Transportation Robots 86

The graph described by the precedence constraints is given in Figure 6.16. Note that in
the graph only the necessary constraints are shown. For example, the arcs given by (6.6)
are not drawn in the figure because these constraints are also modeled by the arcs given
by the constraints (6.11) and (6.4).

Furthermore, the disjunctive arcs which are introduced by the constraint (6.2) are not
shown in the figure.

As the robotic cell problems are based on the cyclic job shop problems with machine
chains repetition, we must introduce the constraints between the dummy nodes 0m, ?m for
m = 1, 2. In the Figure 6.16 these constraints are shown in dotted lines.

The dashed lines between the transport operations of the job 1 and the job 2 model the
disjunctive constraints between the corresponding operations 1, 5 and 2, 6. These con-
straints are derived from the reformulated constraints (6.17) and (6.18). The reason for
these constraints is the following. Assume the operation (1; k) is the first operation which
is scheduled on machine 1. As there exists no buffer at machine 1, the next operation (5; l)
can only start on machine 1, if the robot takes the job 1 to the second machine and takes
job 2 from the input machine to machine 1.

The following Table 6.4 shows the constraints leading to the arcs, which are drawn with
a solid line in Figure 6.16.

Constraints Arcs
Constraint (6.4) (T1, 1), (T2, 2), (T4, 4), (T5, 5)
Constraint (6.5) (1, T1), (2, T2), (4, T4), (5, T5)

Constraint (6.10) (1, T2), (2, T3), (4, T5), (5, T6)
Constraint (6.11) (T2, T1), (T3, T2), (T5, T4), (T6, T5)

Table 6.4: Constraint-arc assignment

The gantt chart with the optimal cycle time α = 24 is given in Figure 6.17.

6.2 Cyclic Job Shop With Transportation Robots 87

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

Robot (T1; 1)

(1; 1)

(T2; 1)

(2; 1)

(T3; 1)(T6; 1) (T1; 2)

(1; 2)

(T4; 2)

(4; 2)

(T5; 2)

(5; 2)

(T6; 2) . . .

. . .

. . .

Figure 6.17: Optimal schedule for Example 6.7

Example 6.8 Hoist Scheduling Problem

The instance consists of one job with three operations. Each operation of a job has to
be processed on a machine m = {1, 2, 3}. The data is given in Table 6.5. The time to
move the hoist from any machine i to any machine j, i 6= j, i, j ∈ {0, 1, 2, 3, 4} equals
dij = 1. The time for loading and unloading also equals εm = 1 for all machines
m ∈ {0, 1, 2, 3, 4}.

Job 1
Operation 1 2 3

Minimal processing time 2 10 8
Maximal processing time 3 12 10

Table 6.5: Data for the instance given in Example 6.8

The graph given by the precedence constraints is given in Figure 6.18. The following
Table 6.6 shows which constraints leads to which arcs.

Constraints Arcs
Constraint (6.4) (T1, 1), (T2, 2), (T3, 3)
Constraint (6.5) (1, T1), (2, T2), (3, T3)

Constraint (6.10) (1, T2), (2, T3), (3, T4)
Constraint (6.11) (T2, T1), (T3, T2), (T4, T3)

Time window constraint (T2, 1), (T3, 2), (T4, 3)

Table 6.6: Constraint-arc assignment

6.2 Cyclic Job Shop With Transportation Robots 88

The optimal schedule is given in the gantt chart in Figure 6.19. The optimal cycle time is
α = 22. The corresponding height of the disjunctive arcs is given in Table 6.7. Note that
the disjunctive arcs create together with conjunctive arcs several circuits with negative
height and negative delay, e.g. one circuit is (T1, T4, 3, T3, 2, T2, 1, T1) with delay −30
and height −1.

1 T2 2 T3 T43T1
(3, 0) (3, 0) (3, 0)

(−3, 0) (−3, 0) (−3, 0)

(4, 1) (4, 1)

(2, 0) (10, 0) (8, 0)

(4, 1)

(−3, 0) (−12, 0) (−10, 0)

Figure 6.18: Precedence constraints for the Example 6.8

Arc (T1, T3) (T1, T4) (T2, T4)
Height 0 -1 -1
Delay 4 4 4

Alternative Arc (T3, T1) (T4, T1) (T4, T2)
Height 1 2 2
Delay 4 4 4

Table 6.7: Height of the disjunctive arcs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

Hoist

(3; 0)

(T4; 0)(T1; 1)

(1; 1)

(T2; 1)

(2; 1)

(T3; 1)

(3; 1)

(T1; 2)

(1; 2)

(T2; 2) . . .

. . .

. . .

. . .

Figure 6.19: Optimal schedule for the Example 6.8

In robotic cell problems, the jobs are processed on machines as in a flow shop. In reentrant
robotic cells, this is done in different ways. There exist several different kinds of reentrant
shop problems without any transportation, which are mentioned in the literature. Lev and
Adiri [46] considered a V-shop. This means that operations of a job are processed on the

6.3 Software Pipelining 89

machines in the following order: M1 → M2 → . . . → Mm−1 → Mm → Mm−1 . . . →
M2 → M1. Another possibility is to change the order to M1 → M2 → . . . → Mm → M1.
This problem is called chain-reentrant shop (see Wang et al. [71]) or loop-reentrant shop
(see Middendorf and Timkovsky [53]). Another variation is considered in Kubiak et al.
[41]. This problem is called hub-reentrant shop and the operations of a job are processed
on the machines in the following order M1 → M2 → M1 → M3 → . . . → M1 → Mm →
M1. In Steiner and Xue [69] a loop-reentrant robotic cell is considered. They show that
the problem of finding an optimal periodic schedule for a given instance with three or
more machines is NP-hard. Furthermore, they derive a polynomial algorithm for the
two-machine case.

6.3 Software Pipelining

Another application of our framework can be found in the area of Software Pipelining
(SP). SP is an excellent way to improve parallelism in loops on Very-Long Instruction
Word (VLIW) processors [3]. This improvement is done during the compilation of a
program. Here it often occurs that loops, especially for-loops, have to be repeated very
often. Now the idea is to reschedule the instruction of the loop in such a way that the time
of scheduling the loop body is minimized. The loop body is the part of a loop which has
to be repeated very often. In the following we restrict this overview to single loops.

To get an idea of the problems in this area we start with an example taken from Fimmel
and Müller [24].

Example 6.9 There are given 8 different tasks S1, . . . , S8. Each task has a processing
time pi and must be performed on a processor. In the area of SP we usually talk about
processors instead of machines and of tasks instead of operations. The considered loop
can be found in Listing 2. The initialization before the loop body or the kernel (line 4 to
11) is called prolog (line 1 and 2). The instructions after the loop are called epilog. In
this example the epilog is empty.

6.3 Software Pipelining 90

1 S5[0] = a;
2 S7[0] = b;
3 for i=1 to N do
4 S1[i] = X[i] + S5[i− 1];
5 S2[i] = S1[i]− S7[i− 1];
6 S4[i] = γ1 ∗ S2[i];
7 S5[i] = S4[i] + S5[i− 1];
8 S3[i] = S2[i] + S5[i];
9 S6[i] = γ2 ∗ S2[i];

10 S7[i] = S6[i] + S7[i− 1];
11 S8[i] = S3[i]− S7[i];

Listing 2: Listing for Example 6.9

Tasks S1, S2, S3, S5, S7 and S8 need to perform on the adder processor. Therefore, the
processing time of these tasks is 1. S4 and S6 need to be performed on the multiplication
processor. The processing time of these operations is 3.

The schedule for Listing 2 is given in Figure 6.20. The cycle time is α = 11.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Add

Mult

(S 7; 0) (S 8; 0) (S 1; 1) (S 2; 1) (S 3; 1)

(S 4; 1)

(S 5; 1)

(S 6; 1)

(S 7; 1) (S 8; 1) (S 1; 2) (S 2; 2) (S 3; 2)

(S 4; 2)

(S 5; 2)

(S 6; 2)

(S 7; 2) (S 8; 2)

. . .

. . .

Figure 6.20: Schedule for Listing 2

Now we have to derive the precedence constraints from the described loop. Let us for
example consider the tasks S5. To perform the k-th occurrence of task S5, we need the
k-th occurrence of S4 and the k−1-th occurrence of S5. Therefore, we get an arc between
S4 and S5 with delay 3 and height 0 and another arc from S5 to itself with delay 1 and
height 1. The other precedence constraints can be derived in a similar way. Thus, we
get the graph given in Figure 6.21 which describes the precedence constraints given in
Listing 2. The optimal solution of the problem is given in Figure 6.22. The optimal cycle
time is 8.

6.3 Software Pipelining 91

S5

(1, 0)
S1 S2 S3

S8S4 S7

S6

(1, 0)

(1, 0)(3, 0)

(1, 0)

(1, 0)
(1, 1)

(3, 0)
(1, 0)

(1, 0)

(1, 1)

(1, 1)
(1, 1)

Figure 6.21: Precedence constraints for the Example 6.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Add

Mult

(S 3; 0)(S 7; 0) (S 8; 0)(S 2; 1) (S 3; 1)

(S 4; 1)

(S 5; 1)

(S 6; 1)

(S 7; 1) (S 8; 1)(S 1; 2) (S 2; 2) (S 3; 2)

(S 4; 2)

(S 5; 2)

(S 6; 2)

(S 7; 2) (S 8; 2)(S 1; 3) (S 2; 3)

(S 4; 3)

(S 5; 3)

(S 6; 3)

(S 1; 4)

. . .

. . .

Figure 6.22: Optimal Schedule for Example 6.9

So we can rewrite the loop in Listing 2 to the new loop in Listing 3. As we can see, the
prolog and epilog are longer than the prolog and epilog in the original listing. Also the
cycle time reduces from α = 11 to α = 8.

6.3 Software Pipelining 92

1 S5[0] = a;
2 S7[0] = b;
3 S1[1] = X[1] + S5[0];
4 S2[1] = S1[1]− S7[0];
5 S6[1] = γ2 ∗ S2[1];
6 S4[1] = γ1 ∗ S2[1];
7 S5[1] = S4[1] + S5[0];
8 S1[2] = X[2] + S5[1];
9 for i=1 to N-2 do

10 S7[i] = S6[i] + S7[i− 1];
11 S2[i + 1] = S1[i + 1]− S7[i];
12 S3[i] = S2[i] + S5[i];
13 S4[i + 1] = γ1 ∗ S2[i + 1];
14 S8[i] = S3[i]− S7[i];
15 S5[i + 1] = S4[i + 1] + S5[i];
16 S6[i + 1] = γ2 ∗ S2[i + 1];
17 S1[i + 2] = X[i + 2] + S5[i + 1];
18 S7[N − 1] = S6[N − 1] + S7[N − 2];
19 S2[N] = S1[N]− S7[N − 1];
20 S3[N − 1] = S2[N − 1] + S5[N − 1];
21 S4[N] = γ1 ∗ S2[N];
22 S8[N − 1] = S3[N − 1]− S7[N − 1];
23 S5[N] = S4[N] + S5[N − 1];
24 S6[N] = γ2 ∗ S2[N];
25 S7[N] = S6[N] + S7[N − 1];
26 S3[N] = S2[N] + S5[N];
27 S8[N] = S3[N]− S7[N];

Listing 3: Reformulated Listing for Example 6.9

The considered example describes a very special case of a software pipelining problem
because usually each task needs several processors for its execution or there exist several
processors which all can perform the same tasks. The first case can be easily integrated
by using the concepts introduced in Section 3.3. So we can consider each task as a mul-
tiprocessor task. The second case can also be integrated in our framework by introducing
the concept of parallel machines. The only problem is that the idea of parallel machine
does not fit directly into our framework. However, if we use a two-stage approach, we
can still use our framework. In a first step, we assign to each task a processor. After

6.3 Software Pipelining 93

this assignment, we have again a problem with dedicated processors. Therefore, in the
following we do not consider problems with parallel processors.

So summarizing, problems in the area of software pipelining can be easily integrated into
our framework.

Another important problem is register allocation in combination with software pipelining
techniques. In the area of SP registers are used to store results of already performed
operations. The main advantage of using registers to store the results instead of using the
normal memory is the fast writing and reading access of the information in the registers.
The concept of writing and reading results from and to the memory instead of using the
register is called spilling. To perform spilling, additional instructions need to be created.
Therefore, using the register instead of perform spilling is valuable.

Finding an optimal register allocation which uses only k registers for given dependencies
between the operations is a NP-hard problem (Sethi [66]). Normally, this assignment
is done by using some heuristic based on graph coloring methods (Chaitin et al. [13]).
The idea for the heuristic is to consider an undirected graph, where the node set consists
of all tasks. If we should not assign a result of an instruction to the same register as the
result of another instruction, because both results must be accessible at the same time,
then we have to introduce an undirected arc between both instructions. To get a feasible
and optimal assignment of the instructions to the registers, we assign to each node in the
graph a color so that two nodes which are connected by an arc have a different color.
Additionally, the number of colors are limited by k, the number of the registers.

In the following, we propose a way to cover the register requirement within our frame-
work. This is done in a two stage approach because we can consider a register as a parallel
machine and therefore, as we only consider problems with dedicated machines, we need
in a first step to assign the tasks to a register. During the assignment, we have to consider
the number of the registers we can use. This first assignment is done by a heuristic. In
a second step, we need to compute the optimal schedule based on the previous register
allocation and on the precedence constraints which are derived from the listing of a loop.

Now the only question is how to include the register allocation into the graph of the
precedence constraints. Consider the following situation. The two tasks i and i′ need to
write their result to the same register r. Furthermore, the tasks i1, . . . , in (i′1, . . . , i

′
n) need

to read the result of task i (i′) from the register r.

We can model this situation within our framework as follows: We create two additional
tasks s(i) and s(i′) which need to be processed on the register r. These tasks represent
the writing to the register. The processing time of both tasks is zero and the task i (i′) is
connected with s(i) (s(i′)) with length pi (pi′) and height 0. Furthermore, the task s(i)

6.3 Software Pipelining 94

(s(i′)) is connected with the task ia (i′a) for all a = 1, . . . , n with length 0 and height Hi ia

(Hi′ i′a). Additionally, as the task i (i′) needs to write the result directly to the register
r after the processing on the processor M(i) (M(i′)) is finished, the task s(i) (s(i′)) is
connected to i (i′) with length −pi (−pi′) and height 0.

If the result of the task i is written first to the register r, then the result of task i′ can
be written to register r as soon as all succeeding operations i1, . . . , in of s(i) are started,
which means that these tasks have read the result of task i from the register. Thus, this
situation describes a general blocking situation. So, we get the following constraints

t(s(i); l) ≥ max{t(i′a′ ; k + Hs(i′) i′
a′
)|a′ = 1, . . . , n}

∨ t(s(i′); k) ≥ max{t(ia; l + Hs(i) ia)|a = 1, . . . , n} (6.19)

for all tasks s(i), s(i′) with M(s(i)) = M(s(i′)) and k, l ∈ Z.

This is equivalent to

t(s(i); l) ≥ t(i′a′ ; k + Hs(i′) i′
a′
) for all a′ = 1, . . . , n

∨ t(s(i′); k) ≥ t(ia; l + Hs(i) ia) for all a = 1, . . . , n

for all s(i), s(i′) with M(s(i)) = M(s(i′)), k, l ∈ Z.

Note that in the proposed case the writing operation starts right after the preceding op-
eration is finished. By changing the length, we can also model more general situations.
As the writing operations are blocking operations, we also connect all succeeding oper-
ations ia, a = 1, . . . , n of s(i) with the writing operation s(i) with length pia and height
1 because the next occurrence of the writing operation can only start if all succeeding
operations are finished.

Therefore, by using the concepts of Section 4 we can include the register allocation prob-
lem into our framework. By solving the described problem, we can get two results. First,
we can find out that the previous register assignment which is done in the first stage leads
to an infeasible schedule or second, we can find a feasible schedule which satisfies all the
given constraints.

In the following, we present an example.

Example 6.10 We extend the Example 6.9 by introducing five different registers. As the
k + 1-th occurrence of the operations S5 and S7 need the result of their k-th occurrence,
the writing operation s(S5) and s(S7) must be assigned to a register so that each writing
operation is the only writing operation which writes into this register. The assignment of
the writing operations to the register is shown in Table 6.8.

6.3 Software Pipelining 95

The optimal solution with cycle time α = 9 is given in Figure 6.23.

Register 1 s(S1), s(S4)
Register 2 s(S5)
Register 3 s(S6), s(S3), s(S8)
Register 4 s(S7)
Register 5 s(S2)

Table 6.8: Assignment to the register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Add

Mult

R1

R2

R3

R4

R5

s(S 4; 1)

(S 5; 1)

s(S 5; 1)

(S 6; 1)

s(S 6; 1)

(S 7; 1)

s(S 7; 1)

(S 3; 1)

s(S 3; 1)

(S 8; 1)

s(S 8; 1)

(S 1; 2)

s(S 1; 2)

(S 2; 2)

s(S 2; 2)

(S 4; 2)

s(S 4; 2)

(S 5; 2)

s(S 5; 2)

(S 6; 2)

s(S 6; 2)

(S 7; 2)

s(S 7; 2)

(S 3; 2)

s(S 3; 2)

(S 8; 2)

s(S 8; 2)

(S 1; 3)

s(S 1; 3)

(S 2; 3)

s(S 2; 3)

(S 4; 3)

s(S 4; 3)

(S 5; 3)

s(S 5; 3)

(S 6; 3)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 6.23: Optimal schedule for the problem 6.10

7. Solution Methods 96

7 Solution Methods

In this section, we present two different approaches to solve the applications which are
described in Section 6.

7.1 Solving the Problem With MILP Solver

As we developed for each application a corresponding mixed integer linear program
(MILP), it is a straightforward idea to solve the MILP by Cplex (see [1]), which is a
MILP solver. Cplex is one of the leading and well-known products to solve MILP in the
scheduling community (see e.g. Brucker and Knust [10, 11]). In our experiments, it turns
out that Cplex is unable to solve larger instances (more than 10 jobs and 5 machines) in a
reasonable time. The only application which can be solved by Cplex is the single hoist-
single-product problem. Here it turns out that with our new mixed integer formulation the
problem can be solved much faster compared to the formulation which is developed by
Phillips and Unger [57] and which is still used to describe the problem in recent papers
(see Leung et al. [45]).

Using the two different formulations, we applied Cplex to solve benchmark problems
listed in Leung et al. [45]. The tests were performed on a Celeron 1.8GHz computer with
operating system Linux and 256MB memory. Table 7.1 summarizes the results of these
tests.

Formulation of [57] New Formulation
Instances CPU time in sec Number of nodes CPU time in sec Number of nodes

P& U 116.911 59816 9.17 789
Cu 1.096 29 0.03 0

Zinc 4.936 1455 0.14 0
Mini 1.266 538 0.41 54
BO1 5.7 2922 3.37 316
BO2 5.968 3286 2.14 398

Table 7.1: Comparison of the different formulation for the single product-single hoist
problem

The main result is that the new mixed integer formulation outperforms the previous known
formulation.

7.2 Solving the Problem With a Meta-Heuristic 97

As the single product-single hoist problem is the only problem which can be solved by
Cplex also for larger instances, we need to develop a different approach to solve cyclic
machine scheduling problems.

7.2 Solving the Problem With a Meta-Heuristic

To solve the remaining applications like the different cyclic job shop problems, the cyclic
job shop problem with blocking and with and without transportation robots, we apply
the tabu search method, which was already applied successfully to various non-cyclic
scheduling problems (see e.g. Hurink and Knust [35], Nowicki and Smutnicki [56]).

The tabu search method is a metaheuristic, which was designed by Glover [25, 26]. In
each iteration of this local search method, the current solution is usually replaced by a
solution in its neighborhood. The neighborhood of a solution s describes the solutions
which can be reached in one step from s. A neighborhood is called opt-connected if we
can get from any feasible solution to the optimal solution by a finite number of steps.

Contrary to the iterative improvement method, also non-improving solutions are accepted
during the search process. Thus, it is possible to leave local minima, but it is also possible
to visit a solution once again. Therefore, to avoid this kind of cycling, a tabu list TL
is used which typically stores easy attributes characterizing solutions that should not be
considered again for a certain length of time. Here it is important to mention that not a
complete description of a solution is stored in the tabu list.

A disadvantage of this procedure is that solutions which have never been visited may
also be forbidden by the tabu list. To cancel the tabu status, an aspiration criterion is
introduced. This criterion allows the acceptance of a neighbor even if it is forbidden due
to the tabu list.

The whole tabu search method stops when a given time limit is exceeded, a maximum
number of non-improving solutions are considered or a solution is found which has the
same cycle time as the computed lower bound.

In Section 7.4 we discuss the different neighborhoods which we applied to solve the pre-
sented problems. Before the description of the neighborhoods, we describe the underlying
search space in the following section.

7.3 The Search Space

In the following, we describe the search space for our local search approach. The most
general problem we solve is a cyclic job shop problem with blocking and time-window

7.3 The Search Space 98

constraints. If there exists also a transport robot, then the transport operations can be
regarded as additional operations, which must be performed on a special machine, namely
the transport robot. Therefore, we describe the search space for cyclic job shop problems
with blocking and time-window constraints.

Let α together with a vector HX = (HXb(i) i′) be an optimal solution for a cyclic problem
with blocking (4.14) to (4.18). Then α is the minimal solution value of the following
GBCSP induced by the HXb(i) i′-values.

min α (7.1)
s.t.

ti + pi − αHXii′ ≤ ti′ (i, i′) ∈ E (7.2)
tb(i) + pb

i − αHXb(i) i′ ≤ ti′ (b(i), i′) ∈ D (7.3)

with

b(i) :=

{
s(i) if i is a blocking operation and s(i) 6= ?

i otherwise

and

pb
i :=

{
0 if i is a blocking operation and s(i) 6= ?

pi otherwise.

The set D consists of arcs between operations b(i) and i′, where i and i′ are processed on
the same machine M(i).

D is called the set of disjunctions while the arcs in E are called conjunctions. So, a
solution of the problem can be described by a graph G = (T, E ∪D).

Definition 7.1 A height function HX : E ∪ D → Z is called relevant if the following
condition is fulfilled:
HXii′ = Hii′ for all (i, j) ∈ E and
HXb(i) i′ + HXb(i′) i = 1 for the pairs {(b(i), i′), (b(i′), i)} ∈ D.

We define a consistent height function in the following way:

Definition 7.2 A height function HX : E∪D → Z is called consistent if for each circuit
µ one of the following conditions is fulfilled:

i. The circuit µ has positive height and arbitrary delay.

ii. The circuit µ has zero height and non-positive delay.

7.4 Neighborhoods 99

iii. The circuit µ has negative height and negative delay.

Furthermore, the height function is called feasible (for a given value α) if additionally,
the following inequality

min{ L(µ)

HX(µ)
|µ is a circuit with HX(µ) < 0} ≥

α ≥ max{ L(µ)

HX(µ)
|µ is a circuit with HX(µ) > 0} (7.4)

holds.

Now we introduce the upper bound for the height of an arc (b(i), i′) ∈ D.

Assumption 7.3 There exists a finite value HX+
b(i) i′ for each arc (b(i), i′) ∈ D with the

following property: If we increase the height of an arc (b(i), i′) ∈ D to a value not
greater than HX+

b(i) i′ and therefore, decreases the height of the alternative arc (b(i′), i)

by the same amount, then the height function HX is kept consistent. We call HX+
b(i) i′ the

upper bound for the height of the arc (b(i), i′) ∈ D.

In the following sections, we show that the upper bound is a finite value.

7.4 Neighborhoods

This section is divided into several parts. In the first very short part, some basic properties
for the local search approach are mentioned. Then we develop and describe the neighbor-
hoods for the different applications. We start with the different cyclic job shop problems
without blocking. These concepts are then reformulated for problems with blocking. Af-
terwards, we adjust the neighborhoods which we develop for the previous two problems
to the problem with one transportation robot and blocking. Finally, we consider problems
with blocking, one transportation robot, and time-window constraints.

7.4.1 Basic Properties for the Local Search Methods

Let HX : E∪D → Z be some height function which is feasible for some optimal solution
value α for the corresponding GBCSP. Due to Theorem 2.4 there exists at least one circuit
µ with value α = L(µ)

HX(µ)
. As mentioned in Section 2 we call this circuit critical.

7.4 Neighborhoods 100

Assume that the height function keeps to be consistent if we decrease HXij for some
disjunctive arc (i, j) ∈ D by some positive integer value x. Then the corresponding value
of µ increases, which can be seen as follows:

Let µ1 be the sub-path of µ connecting j with i. Then we get

L(µ)

HX(µ)
=

L(µ)

HX(µ1) + HXij

<
L(µ)

HX(µ1) + HXij − x
.

Thus, we get the following theorem:

Theorem 7.4 Let HX be a feasible height function and µ be a critical circuit. Then the
value of the critical circuit can decrease only if we increase the height of a disjunctive arc
(i, j) ∈ D at least by one.

In the following we first discuss the neighborhoods for the the different cyclic job shop
problems without blocking.

7.4.2 Neighborhoods for Cyclic Job Shop Problems Without Blocking

Notice that for cyclic job shop problems without blocking Lij = pi ∀ (i, j) ∈ E ∪ D
and pi > 0 for all operations i ∈ T hold. As we mentioned in Definition 7.3, the height
function keeps to be consistent when increasing HXij for a disjunctive arc (i, j) only if
HXij < HX+

ij holds.

We now give some conditions under which HXij < HX+
ij holds.

Theorem 7.5 Let HX be a feasible height function and a be a disjunctive arc from i to j
on a corresponding critical circuit in (T, E ∪D). Assume that the conditions

pi = La < min{L(µ)|µ is a path from i to j with at least two arcs} (7.5)

and
Lij ≥ pi ∀ (i, j) ∈ E (7.6)

hold. Then HXa < HX+
a .

Proof: Consider a critical circuit µ. If in µ a disjunctive arc a exists which has the
same length and height as a parallel conjunctive arc a′, we replace a by a′ in the critical
circuit. Now assume that in µ a disjunctive arc a = (i, j) exists, otherwise the schedule is

7.4 Neighborhoods 101

optimal. The sub-path µ1 of µ from j to i and the arc a form together the critical cycle µ.
The corresponding back-going arc from j to i is denoted by b. Thus, HXa + HXb = 1.
As HX is consistent and L(µ) > 0, we also have HX(µ) ≥ 1.

Let τ1 be an arbitrary path from i to j which does not contain the arc a and let τ be the
circuit consisting of τ1 and b. This situation is shown in Figure 7.1.

i j
a

b

µ1

τ1

µ

τ

Figure 7.1: Part of the circuits µ and τ

We have to show that HX(τ1) + HXb > 1 holds for any arbitrary path from i to j which
does not contain the arc a. Then we can reduce the height of the arc b by at least one,
and therefore, increase the height of the arc a by at least one. After this change the height
function is kept consistent because HX(τ1) + HXb − 1 ≥ 1 holds. Thus, HXa < HX+

a .

Because HX is consistent we must have

HX(τ) = HX(τ1) + HXb ≥ 1

which is equivalent to HX(τ1) ≥ HXa = 1−HXb. Now assume that HX(τ1) = HXa.
We distinguish between two different cases. In the first case the path τ1 consists of at least
two arcs and in the second case the path τ1 is a single conjunctive arc c from i to j.

Let us consider the first case. Then

L(µ)

HX(µ)
=

La + L(µ1)

HX(µ1) + HXa

≥ L(τ1) + L(µ1)

HX(µ1) + HX(τ1)
=

L(τ1) + L(µ1)

HX(µ1) + HXa

(7.7)

holds, because the composition of τ1 and µ1 defines a circuit and µ is a critical circuit. The
denominator HX(µ) = HX(µ1) + HXa is greater than one. Thus, (7.7) is equivalent to
La + L(µ1) ≥ L(τ1) + L(µ1) or La ≥ L(τ1) contradicting the assumption.

7.4 Neighborhoods 102

Now let us consider the second case. The path τ1 is a single conjunctive arc c. As we
assumed that HXτ1 = HXa, we have HXc = HXa and due to condition (7.6) Lc ≥ pi.
Therefore, we would have chosen the arc c instead of the arc a in the critical cycle µ. 2

The conditions (7.5) and (7.6) of Theorem 7.5 are satisfied if Lij = pi for all (i, j) ∈ E∪D
and pi > 0 ∀i ∈ T hold, which is the case for all considered application without blocking.
Thus, based on Theorem 7.5 we can now increase every height of a disjunctive arc at least
by one and at most by HX+

ij −HXij and the new height function is still consistent.

Based on this observation we can define our first neighborhood N1. N1 assigns to each
feasible height function HX the set N1(HX) of all height functions derived from HX
by choosing an arc (i, j) ∈ D on a critical circuit and replace the corresponding height
HXij by HXij + x where x is a positive integer value with 1 ≤ x ≤ HX+

ij −HXij .

Now we show that the neighborhood N1 is opt-connected.

Theorem 7.6 The neighborhood N1 is opt-connected.

Proof: We have to show that we can get from any feasible height function HX to an
optimal height function HX∗ by a finite sequence of moves. This is accomplished by the
following procedure. Assume that HX is the currently reached height function. Then we
choose an arc (i, j) ∈ D on a critical circuit with respect to HX such that HXij < HX∗

ij

and replace HXij by HX ij = HXij + x and HXji by HXji = HXji − x with 1 ≤ x ≤
min{HX∗

ij, HX+
ij}. HX is feasible and consistent because of Theorem 7.5. If no such

arc exists, then for all arcs (i, j) on a critical circuit µ we have HXij ≥ HX∗
ij . Thus,∑

(i,j)∈µ Lij∑
(i,j)∈µ HXij

≤
∑

(i,j)∈µ Lij∑
(i,j)∈µ HX∗

ij

which implies that HX must be optimal as well because µ is critical.

Otherwise, due to HX ij = HXij + x ≤ HX∗
ij and

HXji = HXji − x = 1−HXij − x = 1−HX ij ≥ 1−HX∗
ij = HX∗

ji

the distance ∑
(i,j)∈D

|HXij −HX∗
ij|

decreases by 2x ≥ 2. Therefore, the procedure must reach an optimal solution after a
finite number of steps. 2

7.4 Neighborhoods 103

Furthermore, we derive further neighborhoods based on a block theorem which general-
izes a corresponding block theorem for the classical job-shop problem (see Brucker [7],
Theorem 6.18).

Let HX be a feasible height function and let µ be a critical circuit with respect to HX .
A sub-path of µ containing at least one arc is called block, if it is a maximal sub-path
containing only disjunctive arcs.

Theorem 7.7 Let µ be a critical circuit for a feasible height function HX and let (j, k)
be an arc of a block B in µ such that (j, k) is different from the first and last arc in B. Then
the cycle time is not improved by increasing HXjk by any integer x with HX+

jk−HXjk ≥
x ≥ 1.

As we generalize this theorem in Section 7.4.3, we do not give the proof for this theorem
here. However, we present now in a very short form the idea of the proof: Let the block
B in µ consists of the nodes (i, j, k, l). Then, we can show that after increasing the height
of HXjk the value of the circuit µ′ is greater or equal to the value of µ, where µ′ is equal
to µ except the block B is replaced by (i, k, j, l).

Based on Theorem 7.7 we define a neighborhood N2 which only increases the HXij-
values of the first or last arcs of a block. It is still an open question even for the non-cyclic
case whether the neighborhood is opt-connected.

A direct conclusion of Theorem 7.7 is the following lemma.

Lemma 7.8 Let µ be a critical circuit for a feasible height function HX and let ik be not
the first or the last operation in a block B in µ. If we do not change the height of the arcs
(l, ik) for all predecessors l of ik in B by at least one or the height of the arcs (ik, l) for
all successors l of ik in B by at least one, then the cycle time is not improved.

Proof: We denote the cycle time before changing any height with α. In the following
we show that if the height of all arcs starting at a predecessor of ik in B are not in-
creased, then the new cycle time is greater or equal to the value of the circuit µ. The
block B is given in Figure 7.2. Note that the heights of the arcs (ik−l, ik−l−1), (ik−l−1,
ik−l−2), . . . , (ik−2, ik−1) are never changed during this process.

ik−l−1ik−l ik+mikik−1

Figure 7.2: Block B in proof of Lemma 7.8

7.4 Neighborhoods 104

Assume the height of at least one of the arcs (ik−b, ik) with b ∈ {1, . . . , l} is not increased.
Let the arc (ik−a, ik) be the arc with the lowest index a with this property.

We show this result by induction. We start with a = 1. As the arc (ik−1, ik) is not changed,
there exists no arc in the critical circuit which is changed. So, the new cycle time α1 is
greater or equal to the cycle time α.

The statement holds now for a = r. This means that all arcs (ik−c, ik) with c < r are
increased at least by one and the cycle time αr is greater or equal to the value of the
circuit µ, where in µ the block B is replace by the block Br. Due to Theorem 7.7 and the
idea of the proof this value is greater or equal to α. The block Br is given in Figure 7.3.

ik−l ik+mik−r ik ik−r−1

Figure 7.3: Block Br in proof of Lemma 7.8

Now we show that the statement holds also for a = r + 1. As the arc (ik−r, ik), which
height is increased, is not the first or the last arc in the block Br, due to Theorem 7.7 the
cycle time αr+1 is greater or equal to αr and therefore, greater or equal to α. 2

A direct consequence of the previous lemma is the following theorem.

Theorem 7.9 Let S together with the height function HXS and cycle time αS be a feasi-
ble solution for a cyclic job shop problem. Let S ′ together with the height function HXS′

be another feasible solution with cycle time αS′ < αS .

Then, there exists at least one operation k in a block B in a critical circuit µ of S for
which the height of the arcs (l, k) is increased by at least one for all predecessors l of k in
the block B or the height of the arcs (k, l) is increased by at least one for all successors l
of k in the block B.

Due to this observations, we introduce a neighborhood N3 which is defined by the follow-
ing moves defined for the interior vertices j of blocks of a critical circuit. There are two
neighbors associated with j. The first neighbor is constructed by increasing HXi1 j by
one, where i1 is the first predecessor of j in the block. The height can be always increased
because of Theorem 7.5. Then we increase HXi2 j by one, if HXi2 j < HX+

i2 j , where
i2 is the predecessor of i1 in the block. If HXi2 j is increased, then we increase HXi3 j

7.4 Neighborhoods 105

by one if HXi3 j < HX+
i3 j , etc. Finally if HXil−1 j is increased, we increase HXil j , if

HXil j < HX+
il j holds, where il is the first vertex in the block. Symmetrically, the second

neighbor is constructed by increasing successively HXj k1 , HXj k2 , . . . , HXj kh
where kh

is the last vertex in the block.

Theorem 7.10 The neighborhood N3 is opt-connected.

Proof: The proof is similar to the proof of Theorem 7.6. Let HX∗ be an optimal height
function and HX be the actual height function. Let µ be a critical circuit with respect
to HX . If HX is not optimal, then due to Theorem 7.9 there must exist at least one
node k in a block B in µ for which either the height of all arcs (l, k) is increased by one
for all predecessors l of k in B or the height of all arcs (k, l) is increased by one for all
successors l of k in B. Assume that the height for all predecessors of k must be increased.
Thus, HXlk < HX∗

lk for all predecessors l of k in B. Therefore, the distance∑
(i,j)∈D

|HXij −HX∗
ij|

decreases by at least 2 because due to Theorem 7.5 the height of the arc (a, k) can always
be increased, where a is the direct predecessor of k. 2

These three different neighborhoods are applied to the following applications: cyclic job
shop, cyclic job shop with job repetition and cyclic job shop with machine repetition. The
computation results are given in Section 8.

Now we describe several neighborhoods for the problems with blocking.

7.4.3 Neighborhoods for Cyclic Job Shop Problems With Blocking

In this section, we first derive neighborhoods for the cyclic job shop problem and for the
cyclic job shop problem with job repetition. We assume that each operation of a job is
processed on a different machine. After this description, these neighborhoods are adapted
to the cyclic job shop problems with machine repetition.

Neighborhoods for the Cyclic Job Shop Problem With Blocking

Unfortunately, due to the blocking restrictions, the condition Theorem 7.5 does not hold
anymore. This can also be seen in the following example. There exists a disjunctive arc
on a critical circuit which cannot be increased because the height of the arc is equal to the
upper bound. Thus, increasing the height would lead to an infeasible solution.

7.4 Neighborhoods 106

Example 7.11 The example consists of 2 jobs. The first job consists of five operations,
where the second job consists of 2 operations. The data for the problem is given in
Table 7.11.

Jobs 1 2
Operations 1 2 3 4 5 6 7

Processing time 3 3 4 2 3 1 1
Machine 1 2 3 1 2 1 2

Table 7.2: Data for Example 7.11

The precedence constraints are given by the graph G in Figure 7.4. Note that not all
conjunctive arcs imposed by the loop constraints (see (4.12)) are shown in the graph G.
As an example the arc (7, 6) is shown. The height of this arc is 1. The height of the arc
(?, 0) is also 1.

1

0 ?

6 7

i j

3 4 52

i j

conjunctive arc disjunctive arc

Figure 7.4: Precedence constraints for Example 7.11

7.4 Neighborhoods 107

The heights of all other conjunctive arcs are zero.

The heights and the delays of the disjunctive arcs are given in Table 7.3.

Arc (2,6) (2,4) (3,7) (3,5) (5,6) (5,7)
Height 0 0 0 0 0 0
Delay 0 0 0 0 0 3

Alternative arc (7,1) (5,1) (7,2) (5,2) (7,4) (7,5)
Height 1 1 1 1 1 1
Delay 0 0 1 3 0 1

Table 7.3: Height of the disjunctive arcs

The corresponding gantt chart with cycle time α = 16 is given in Figure 7.5. The cycle
time of the optimal solution, which is computed by solving the corresponding mixed inte-
ger program, is α = 15. The gantt chart of the optimal solution is given in Figure 7.6.
Note that after each occurrence of operation 6 the machine M1 is blocked. This is also
shown in the gantt chart.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(1; 0)

(2; 0)

(3; 0)

(4; 0)

(5; 0)

(6; 0)

(7; 0)

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(5; 1)

(6; 1)

. . .

. . .

. . .

Figure 7.5: Gantt chart for Example 7.11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(1; 0)

(2; 0)

(3; 0)

(4; 0)

(5; 0)

(6; 0)

(7; 0)

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(5; 1)

(6; 1)

(7; 1)

. . .

. . .

. . .

Figure 7.6: Optimal solution

A critical circuit is (1, 2, 3, 4, 5, 7, ?, 0, 1) and the value is 16. The only disjunctive arc on
this circuit is (5, 7). To get a possibly better solution we need to increase the height of this
arc to 1 and decrease the height of the arc (7, 5) to zero. However, this would lead to an
infeasible solution because the height of the circuit (5, 6, 7, 5) is zero, where the delay is
positive. Due to Theorem 2.1 we get an infeasible solution.

7.4 Neighborhoods 108

The delay of the path µ = (5, 6, 7) is equal to L56 + L67 = 1 and the delay of the arc
(5, 7) is equal to L57 = 3. Thus, the constraint (7.5) of Theorem 7.5 is violated.

We usually cannot find disjunctive arcs on a critical circuit which can be increased. There-
fore, we need to find a way to increase the height of an arc even if the new height is larger
than the upper bound.

First, we generalize Theorem 7.7 for blocking situations.

Let HX be a feasible height function and let µ be a critical circuit with respect to HX .

A sub-path in µ containing at least one arc is called block if the following conditions are
fulfilled:

• Two operations i and i′ which are processed successively on the same machine are
connected either by a disjunctive arc from i to i′, where operation i is a nonblocking
operation or has no successor, or by a conjunctive and a disjunctive arc, where
operation i is a blocking operation.

• The sub-path is a maximal sub-path with this property.

Theorem 7.12 Let µ be a critical circuit for a feasible height function HX and let
(b(k), l) be an arc of a block B in µ such that (b(k), l) is different from the first and
last arc in B. Then the cycle time is not improved by increasing HXb(k) l by any integer
x ≥ 1.

Proof:

s(i)i
µnew

µ

disjunction

conjunction

k s(k) s(l) ml

Figure 7.7: The block B in the proof of Theorem 7.12

First, for two operations c and d which are processed on the same machine, we need to
define a path τcd from operation c to d. τcd consists of three operations c, s(c) and d, if c
is a blocking operation, otherwise path τcd consists of two operations c and d. The delay
and height of this path τcd is L(τcd) = pc and HX(τcd) = HXb(c) d, respectively.

7.4 Neighborhoods 109

Let us consider a situation, where operations i, k, l and m are processed on the same
machine. In Figure 7.7 i, k and l are assumed to be blocking operations. In the following,
we consider a more general situation.

Let τ old
im be the path consisting of the sub-paths τik, τkl and τkm. We denoted the height of

the path τ old
im with respect to HX by

HXold = HX(τik) + HX(τkl) + HX(τlm)

and let HXnew be the height of the path τnew
im which consists of the sub-paths τil, τlk and

τkm after increasing the height of the arc (b(k), l) (i.e. decreasing the height of (b(l), k).

Furthermore, let µ′ be the circuit if in µ the path τ old
im is replaced by τnew

im and let HXnew(µ′)
be the height of µ′ after increasing HXb(k) l.

Then it is sufficient to show that

HXnew ≤ HXold (7.8)

because this implies that
L(µ)

HX(µ)
≤ L(µ′)

HXnew(µ′)
(7.9)

because L(µ) = L(µ′).

To prove (7.8), we firstly derive two inequalities which are consequences of the fact that
HX is consistent. For the circuit which consists of the paths τik, τkl and τli and which has
a positive delay we have:

1 ≤ HX(τik) + HX(τkl) + HX(τli) (7.10)
= HXb(i) k + HXb(k) l + HXb(l) i (7.11)

As HXb(i) l + HXb(l) i = 1 we get
= HXb(i) k + HXb(k) l + 1−HXb(i) l (7.12)

Therefore, we have
HXb(i) k + HXb(k) l ≥ HXb(i) l (7.13)

Similarly, because HXb(k) m + HXb(m) k = 1 holds, we get for the circuit which consists
of the paths τkl, τlm and τmk

HXb(k) l + HXb(l) m ≥ HXb(k) m. (7.14)

7.4 Neighborhoods 110

Thus,

HXnew = HXb(i) l + HXb(l) k − x + HXb(k) m (7.15)
≤ HXb(i) k + HXb(k) l + HXb(l) k − x + HXb(k) m (7.16)
= HXb(i) k + 1− x + HXb(k) m (7.17)
≤ HXb(i) k + HXb(k) m (7.18)
≤ HXb(i) k + HXb(k) l + HXb(l) m (7.19)
= HXold (7.20)

(7.15) is smaller or equal to (7.16) due to (7.13). (7.16) and (7.17) are equal because
HXb(k) l + HXb(l) k = 1. (7.18) is smaller or equal to (7.19) due to (7.14). 2

The remaining part of this section deals with the problem that the height of a disjunctive
arc is equal to the upper bound.

For non-cyclic job shop and flow shop problems with blocking we can show the following
theorem. A proof for this theorem can be found in Nieberg [55].

Theorem 7.13 For the non-cyclic job shop problem we can always find a new feasible
solution by eliminating in a feasible solution one job and putting the job at the end of the
schedule by reversing all disjunctive arcs which start at operations of this job.

Now we want to use the idea of this theorem to compute a new consistent and relevant
height function for cyclic job shop scheduling problems with blocking.

First, we have to develop another bound for the height of a disjunctive arc. Due to the
given conjunctive arcs, we can show the following lemma.

Lemma 7.14 If (b(i), i′) ∈ D is a disjunctive arc, then there exists no consistent and
relevant height function HX satisfying HXb(i) i′ > HX?0 or HXb(i′) i < 1−HX?0.

Proof: Assume there exists a disjunctive arc (b(i), i′) ∈ D with HXb(i) i′ > HX?0 i.e.
HXb(i) i′ ≥ HX?0 + 1, where HX is relevant. Thus, the alternative arc (b(i′), i) has the
height HXb(i′) i = 1−HXb(i) i′ ≤ −HX?0 < 1−HX?0.

7.4 Neighborhoods 111

ji (Lij, HXij) ji (Lij, HXij)

i

(pi′ , 0)

conjunctive arc disjunctive arc
path with zero height
and nonnegative delay

(0, HX?0)

s(i′)

s(i)

i′

(pi, 0)

(0, HXb(i′)i)
0 ?

Figure 7.8: Situation in Proof of Lemma 7.14

Furthermore, there exists a path µ1 from i to ? which has a positive delay and zero height.
Additionally, there exists a path µ2 from 0 to b(i′) with non-negative delay and zero height.
Both paths µ1 and µ2 only consist of conjunctive arcs. Together with the arc (?, 0), which
has zero delay and height HX?0, these paths form a path µ and have a positive delay and
height HX?0. If operation i and i′ are blocking operations, then the situation is shown in
Figure 7.8.

The path µ and the alternative arc (b(i′), i) form a circuit with HXb(i′) i′ + HX?0 <
1 − HX?0 + HX?0 = 1, i.e. with non-positive height and positive delay. Thus, HX is
not consistent. 2

We now develop an algorithm which allows us to increase the height of a disjunctive arc
(b(i), i′) on a critical circuit even if the current height is equal to the upper bound.

To show that our approach always finds a feasible solution, we introduce the expanded
graph Gexp.

Gexp consists of an infinite number of nodes (i; k) (i ∈ T, k ∈ Z). The node (i; k)
represents the k-th occurrence of the operation i. The node set of the expanded graph Gexp

7.4 Neighborhoods 112

is denoted by Texp. Furthermore, if there exists an arc (i, i′) in G with delay Lii′ and height
HXii′ , then in the graph Gexp there exist arcs between the nodes (i; k) and (i′; k +HXii′)
with length Lii′ for all k ∈ Z. The following lemma describes a relationship between
circuits with positive length in Gexp and circuits with zero height and positive delay in G.

Lemma 7.15 There exists a circuit with positive length in Gexp if and only if there exists
a circuit with zero height and positive delay or a circuit with negative height and non-
negative delay in G.

Proof: Assume there exists a circuit µ with positive length in Gexp which consists of the
following operations ((i1; k1), (i2; k2), . . . , (il; kl), (i1; k1)).

We now show that there exists either a circuit with zero height and positive delay or a
circuit with negative height and non-negative delay in G. As each arc in Gexp is derived
from an arc in G, all arcs ((ip; kp), (ip+1; kp+1)) for 1 ≤ p ≤ l in the circuit µ with length
Lip ip+1 and height HXip ip+1 = kp+1 − kp exist in the graph G. Note that we identify the
node (il+1; kl+1) with (i1; k1). The height of the circuit µ in G is

∑
(i,j)∈µ HXij = 0 and

the length is
∑

(i,j)∈µ Lij positive.

The circuit µ in G can consist of several simple circuits. If one of the simple circuits has
a positive height, then there must exist at least one circuit µ′ with negative height because
the sum of the height of all simple circuits is equal to zero. As all arcs have non-negative
length, the length of the circuit µ′ is greater or equal to zero. Thus, the circuit µ′ violates
the conditions of Theorem 2.1 because a circuit with negative height must also have a
negative delay. If all simple circuits have height zero, then there must exist at least one
circuit µ′ with positive delay because the delay of the circuit µ is positive. Thus, the
height of the circuit µ′ is zero and the length is positive. This circuit also violates the
conditions of Theorem 2.1 because any circuit with zero height must have a non-positive
delay. Summarizing, a circuit with positive length in Gexp leads to a circuit with negative
height and non-negative delay or to circuit with zero height and positive delay.

Now assume that there exists a circuit µ = (i1, i2, . . . , il, i1) in G with negative height and
non-negative delay. Thus, there exists a path µ1 = ((i1; k1), (i2; k2), . . . , (il; kl), (i1, k

′
1))

in Gexp with k2 = k1 + HXi1i2 and kν = kν−1 + HXiν−1 iν for all 3 ≤ ν ≤ l + 1.
We again identify node (i1, k

′
1) with (il+1, kl+1). As the height of the circuit µ in G is

negative, k′1 < k1 holds. Now we add the arcs ((i1; k), (i1; k + 1)), if i1 is a non-blocking
operation (see Figure 7.9.a), or ((i1; k), (s(i1); k)) and ((s(i1); k), (i1; k + 1)), if i1 is a
blocking operation (see Figure 7.9.b), to the path µ1 until k′1 = k1. These arcs exist due
to the loop constraints (see (4.12)). Thus, we get a circuit in Gexp with positive length
because the length of the path from the node (i1, k

′
1) to the node (i1, k1) is positive.

7.4 Neighborhoods 113

(i1; k′1)

(i1; k′1)

(i1; k′1)

(i1; k′1)

k′1 + 1)
(i1;

k′1 + 1)
(i1;

µ1

(b)

µ1

(a)

(s(i1);
k′1)

(pi1 , 0)

(pi1 , 0)

(0, 1)

Figure 7.9: The path µ1 in the proof of Lemma 7.15

Now assume that there exists a circuit µ = (i1, i2, . . . , il, i1) in G with zero height and pos-
itive delay in G. Thus, there exists a circuit µ1 = ((i1; k1), (i2; k2), . . . , (il; kl), (i1, k

′
1))

in Gexp with k2 = k1 + HXi1i2 and kν = kν−1 + HXiν−1 iν for all 3 ≤ ν ≤ l + 1. We
again identify node (i1, k

′
1) with (il+1, kl+1). As the height of the µ is zero, k′1 = k1 holds.

Thus, the circuit µ1 is a circuit with positive length in Gexp. 2

Now we want to analyse the impact on the graph Gexp if we change the height of a disjunc-
tive arc. Assume the operations i and i′ are processed on the same machine. Therefore,
there exists a disjunctive arc between b(i) and i′ with height HXb(i) i′ and the correspond-
ing alternative arc between b(i′) and i with height HXb(i′) i = 1 − HXb(i) i′ . In Gexp

there exist disjunctive arcs between (b(i); k) and (i′; k +HXb(i) i′) and the alternative arcs
between (b(i′); k + HXb(i) i′) and (i; k + HXb(i) i′ + HXb(i′) i) for all k ∈ Z. Note that
HXb(i) i′ + HXb(i′) i = 1.

If we now increase the height of the disjunctive arc (b(i), i′) by one and decreases the
height of the alternative arc by the same amount, we have to replace the arcs

((b(i); k), (i′; k + HXb(i) i′)) (7.21)

by
((b(i); k), (i′; k + HXb(i) i′ + 1))

7.4 Neighborhoods 114

and the alternative arcs

((b(i′); k + HXb(i) i′), (i; k + HXb(i) i′ + HXb(i′) i)) (7.22)

by
((b(i′); k + HXb(i) i′ + 1), (i; k + HXb(i) i′ + 1 + HXb(i′) i − 1))

for all k ∈ Z in the graph Gexp.

Before the increase of the height the following inequalities hold due to the disjunctive
arcs (7.21) and (7.22) and (4.7):

t(i; k) + pi ≤ t(b(i); k) + pb
i ≤ t(i′; k + HXb(i) i′) (7.23)

and
t(i′; k) + pi′ ≤ t(b(i′); k) + pb

i ≤ t(i; k + HXb(i′) i).

If we now increase the height HXb(i) i′ by one and decreases HXb(i′) i by one, we get

t(i; k) + pi ≤ t(b(i); k) + pb
i ≤ t(i′; k + HXb(i) i′ + 1)

and

t(i′; k) + pi′ ≤ t(b(i′); k) + pb
i′ ≤ t(i; k − 1 + HXb(i′) i) = t(i; k −HXb(i) i′)

must hold because HXb(i′) i + HXb(i) i′ = 1. This implies

t(i′; k + HXb(i) i′) + pi′ ≤ t(i; k). (7.24)

By comparison inequalities (7.23) and (7.24) we get the following lemma.

Lemma 7.16 An increase of the height by one of a disjunctive arc (b(i), i′) leads to a
change in the processing order of the corresponding operations in Gexp.

Let us now consider the disjunctive arc (b(i′), i′′) with height HXb(i′) i′′ < HX?0 which
lies on a critical circuit in G. Assume that the height function HX is consistent and that
the height of this arc is equal to the height of the upper bound. Thus, an increase would
lead to an infeasible solution. Now we want to describe an algorithm which changes
the height of some arcs to get a new consistent height function in which the height of
the disjunctive arc (b(i′), i′′) is increased. Note that, due to Lemma 7.14, we can only
increase the height of a disjunctive arc (b(i′), i′′) by one, if HXb(i′) i′′ < HX?0 holds
because otherwise, we cannot find a feasible solution.

The main idea of our algorithm can be described by the following three steps.

7.4 Neighborhoods 115

i. Fix a set L0 in which each operation occurs exactly once (with possibly differ-
ent occurrence numbers) in Gexp. However, the occurrence number kj for all op-
erations i ∈ O(j) of the same job j ∈ J in the set L0 must be the same, i.e.
L0 = {(i; kj(i))|i ∈ T}.

ii. Replace all disjunctive arcs ((b(c); kj(c)), (d; kj(c) + HXb(c) d)) by ((b(c); kj(c)),
(d; kj(d))) and the corresponding alternative arcs by ((b(d); kj(d)), (c; kj(c) + 1)),
if kj(c) + HXb(c) d 6∈ {kj(d), kj(d) + 1}.

For the last step we need to define sets Ll for all l ∈ Z. Due to the periodic constraints,
the operations of the set L0 are repeated in the same pattern infinitely often. Therefore,
we introduce the sets Ll = {(i; kj(i)+l)|i ∈ T}. We call the sets L−l with l > 0 preceding
sets and the sets Ll with l > 0 succeeding sets.

iii. Change the processing orders of the operations in the sets Ll so that all operations
of job j′ := j(i′) are processed as the last operations in the sets Ll for all l ∈ Z.

We show that these three steps lead to a new consistent height function in which the height
of the arc (b(i′), i′′) is increased.

In the following, we describe the three steps of our proposed algorithm in more detail.
Before this, we want to illustrate our approach with the following example.

Example 7.17 Consider the example in Table 7.4, which consists of three jobs, each with
three operations and a source 0 and sink node ?. The height of all conjunctive arcs is 0,
except the height of the arc (?, 0) which equals 2. The heights of the disjunctive arcs are
given in Table 7.5.

Jobs 1 2 3
Operations 1 2 3 4 5 6 7 8 9

Processing time 2 1 2 1 5 2 3 2 1
Machine 1 2 3 2 3 1 1 3 2

Table 7.4: Job-shop problem with three jobs, each with three operations

7.4 Neighborhoods 116

Arc (2,6) (2,7) (3,4) (3,9) (3,5) (3,8) (5,9) (6,8) (6,7)
Height 0 1 1 1 1 2 1 1 2

Alternative arc (6,1) (8,1) (5,2) (9,2) (6,3) (9,3) (9,4) (9,5) (8,6)
Height 1 0 0 0 0 -1 0 0 -1

Table 7.5: Height of the disjunctive arcs

The cycle time is α = 9. A critical circuit consists of the nodes (3, 5, 6, 8, 9, 3). The upper
bound for the disjunctive arc (3, 5) is 1 because an increase of the height of the arc (3, 5)
leads to an infeasible solution. Now we describe how our algorithm changes the height
function to get a new feasible solution.

In a first step we need to fix the set L0. The first occurrences of all operations of job 1 and
the second occurrences of all operations of job 2 must be in the set L0. Additionally, we
choose the occurrence number 2 for all operations of the third job.

So, L0 includes the following operations

L0 := {(1; 1), (2; 1), (3; 1), (4; 2), (5; 2), (6, 2), (7, 2), (8, 2), (9, 2)}.

This situation is shown in Figure 7.10. Note that in this and in the following figures not
all disjunctive arcs are drawn.

The color of the nodes describes to which set the nodes belong. As we see in this figure,
there exists the arc ((8; 2), (6; 1)), which starts in L0 and ends in L−1. Additional to this
arc, the arc ((2; 1), (6; 1)) also starts in L0 and ends in L−1.

Due to the second step of our algorithm, we need to change these two arcs. The arc
((8; 2), (6; 1)) is replaced by ((8; 2), (6; 2)), the alternative arc ((6; 1), (8; 3)) is replaced
by ((6; 2), (8; 3)). The arc ((2; 1), (6; 1)) is replaced by ((2; 1), (6, 2)) and the alternative
arc by ((6; 2), (2; 2)). Note that we have also to change the other occurrences of these
arcs in the same way. Therefore, we get the situation which is shown in Figure 7.11. To
get a new consistent and relevant height function we have now to process all operations
of job 1, i.e. operations 1,2, and 3 as last in the set L0. This situation is shown in Figure
7.12. The cycle time of the new solution is α = 19.

7.4 Neighborhoods 117

(1; 2) (7; 3)

(2; 2) (9; 3)

(3; 2)(8; 3)

L1

(5; 1)

(4; 1)

(6; 1)

L−1

(1; 1) (7; 2)

(2; 1)

(8; 2)

(9; 2)

(3; 1)

(4; 2)

(5; 2)

(6; 2)

L0

(6; 1)

(4; 1) (2; 1) (9; 2)

(5; 1) (8; 2) (3; 1)

(1; 2) (7; 3) (6; 2)

(4; 2) (2; 2) (9; 3)

(5; 2) (8; 3) (3; 2)

(1; 1) (7; 2)

Figure 7.10: Situation after fixing the set L0

(2; 2) (9; 3)

(3; 2)(8; 3)

(1; 2) (7; 3)

L1

(5; 1)

(4; 1)

(6; 1)

L−1

(2; 1)

(8; 2) (3; 1)

(4; 2)

(5; 2)

(9; 2)

(1; 1) (7; 2) (6; 2)

L0

(4; 1) (2; 1)

(5; 1) (8; 2) (3; 1)

(4; 2) (2; 2) (9; 3)

(5; 2) (8; 3) (3; 2)

(6; 1) (1; 2) (7; 3)

(9; 2)

(1; 1) (7; 2) (6; 2)

Figure 7.11: Situation after replacing the arcs

7.4 Neighborhoods 118

(9; 3) (4; 3)

(5; 3)(8; 3)

(7; 3) (6; 3)

L1

(3; 0)

(2; 0)

(1; 0)

L−1

(9; 2)

(8; 2) (5; 2)

(2; 1)

(3; 1)

(4; 2)

(7; 2) (6; 2) (1; 1)

L0

(2; 0) (9; 2)

(3; 0) (8; 2) (5; 2)

(2; 1) (9; 3) (4; 3)

(3; 1) (8; 3) (5; 3)

(1; 0) (7; 3) (6; 3)

(4; 2)

(7; 2) (6; 2) (1; 1)

Figure 7.12: New solution

To define the set L0, we have to fix an occurrence number kj for each job j ∈ J . The
occurrence number of job j′ is set to kj′ := 0. The occurrence number of the job j′′ :=
j(i′′) depends on the occurrence number of job j′ as follows: kj′′ := kj′ + HXb(i′) i′′ =
HXb(i′) i′′ . For all other jobs j ∈ J \ {j′} we fix the occurrence number such that

kj < kj′ + HX?0 = HX?0 (7.25)

and
1−HX?0 ≤ max

j∈J ′
kj −min

j∈J ′
kj ≤ HX?0 (7.26)

for all J ′ ∈ P(J) hold.

Thus, we need to fix the kj-variables for all j ∈ J \{j′, j′′} to satisfy the conditions (7.25)
and (7.26). This is done by a heuristic, which is presented later. This concludes the first
step of our algorithm.

For the second step we have to change all disjunctive arcs which start at operations in
the set L0 and end at operations of a preceding set L−ν , ν ≥ 1 or end at operations of
a succeeding sets Lν , ν ≥ 2. Afterwards, we show that after the second step the new
graph Gnew

exp has no circuit with positive length, implying that Gnew is consistent (see
Lemma 7.15).

To change the disjunctive arcs, we substitute

((b(c); kj(c)), (d; kj(d) − ν))

7.4 Neighborhoods 119

with ν ≥ 1 and (c; kj(c)), (b(c); kj(d)) ∈ L0 by

((b(c); kj(c)), (d; kj(d))).

Due to the above substitution, we need to change the height of the arc (b(c), d) in G
from HXb(c) d := kj(d) − ν − kj(c) to HXnew

b(c) d := kj(d) − kj(c). Thus, the height of arc
(b(c), d) is increased by ν. Therefore, we have to decrease the height of the alternative
arc (b(d), c) which is equal to HXb(d) c = 1 − HXb(c) d = 1 − kj(d) + ν + kj(c) by ν.
Thus, HXnew

b(d) c = 1 − kj(d) + kj(c). Therefore, we have to replace the alternative arc of
((b(c); kj(c)), (d; kj(d) − ν)) which is

((b(d); kj(d) − ν), (c; kj(d) − ν + 1− kj(d) + ν + kj(c)))

or equivalently
((b(d); kj(d) − ν), (c; 1 + kj(c)))

by
((b(d); kj(d)), (c; kj(d) + 1− kj(d) + kj(c)))

or
((b(d); kj(d)), (c; 1 + kj(c))).

Note that (c; 1 + kj(c)) ∈ L1 holds.

Due to the above changes in Gnew
exp , there exists no disjunctive arc which starts at operation

(b(c); kj(c)) ∈ L0 and ends at operation (d; kj(d) + ν) ∈ Lν , ν ≥ 2 because for the
corresponding alternative arc ((b(d); kj(d) + ν), (c; kj(c) +1)) the conditions (b(d); kj(d) +
ν) ∈ Lν and (c; kj(c)+1) ∈ L1 would hold or equivalently (b(d); kj(d)) ∈ L0 and (c; kj(c)+
1 − ν) ∈ L1−ν , ν ≥ 2. However, as the disjunctive arc ((b(d); kj(d)), (c; kj(c) + 1 − ν))
and the corresponding alternative arc are already substituted, there exists no disjunctive
arc which starts at operations in L0 and ends at operations in Lν , ν ≥ 2.

Therefore, after this change all disjunctive arcs which start at operations in L0 end at
operations in L0 or in L1.

To show that Gnew
exp has no circuits with positive length, we need the following lemma.

Lemma 7.18 If there exists a disjunctive arc ((b(c); kj(c)), (d; kj(d) − ν)) with ν > 0 and
(b(c); kj(c)), (d; kj(d)) ∈ L0 in Gexp, then there exists also a path with positive length from
(b(c); kj(c)) to (d; kj(d)) in Gexp.

Proof: The alternative arc of ((b(c); kj(c)), (d; kj(d) − ν)) is ((b(d); kj(d) − ν), (c; 1 +
kj(c))), so there exists a path from (b(c); kj(c)) to (d; kj(d) − ν). Additionally, there exists

7.4 Neighborhoods 120

a disjunctive arc ((b(c); kj(c) +1), (d; kj(d)− ν +1)) and the alternative arc ((b(d); kj(d)−
ν + 1), (c; 2 + kj(c))). So, there exists a path from (c; kj(c)) to (d; kj(d) − ν + 1). If d is
a blocking operation then the path also includes the arc ((d; kj(d) − ν), (s(d); kj(d) − ν)).
This process can be repeated until we get a path from (c; kj(c)) to (d; kj(d)). We can
easily verify that the length of the path is positive (A similar idea is used in the proof of
Lemma 7.15). 2

Now we show that after the second step there exists no circuit with positive length in
Gnew

exp . First we show that there exists no path µ in Gnew
exp that connects an operation of the

set L0 with an operation of a previous set L−ν with ν ≥ 1.

Lemma 7.19 There exists no path µ in Gnew
exp from (c; kj(c)) ∈ L0 to (d; kj(d) − ν) ∈ L−ν

with ν > 0.

Proof: Assume there exists a path µ from (c; kj(c)) ∈ L0 to (d; kj(d) − ν) ∈ L−ν . Due to
the change of the disjunctive arcs, all disjunctive arcs start at operations in L0 and end at
operations in L0 or L1. The conjunctive arcs between the operations of a job start in L0

and end in L0. Therefore, an arc ((?, k), (0, k + HX?0)) must be in the path.

We denote the last operation on the path µ before the node (?, k) with (e; k) and the first
operation after the node (0; k + HX?0) with (f ; k + HX?0). As all arcs except the arc
((?, k), (0, k +HX?0)) connect nodes in Lk with nodes in Lk or Lk+1, the node (e; k) can
be in any set Lk′ with k′ ≥ 0. With the same argument we can conclude that the node
(f ; k + HX?0) can be in any set Lk′′ with k′′ ≤ −ν.

Thus, (e; k − k′) ∈ L0 and (f ; k + HX?0 − k′′) ∈ L0 hold. Now we check whether
inequality (7.26) holds.

If k − k′ ≥ k + HX?0 − k′′ we get

max{kj(e), kj(f)} −min{kj(e), kj(f)}
= max{k − k′, k + HX?0 − k′′} −min{k − k′, k + HX?0 − k′′}
= k − k′ − (k + HX?0 − k′′)

= −k′ −HX?0 + k′′

≤ 0−HX?0 − ν

< 1−HX?0

7.4 Neighborhoods 121

For the other case we get

max{kj(e), kj(f)} −min{kj(e), kj(f)}
= k + HX?0 − k′′ − (k − k′)

= HX?0 − k′′ + k′

≥ HX?0 + ν

> HX?0

Thus, both cases lead to a contradiction to inequality (7.26). Therefore, there cannot exist
a path µ from (c, kj(c)) ∈ L0 to (d; kj(d) − ν) ∈ L−ν , ν > 0. 2

As all operations and arcs in L0 are repeated in the same pattern, this results can be
generalized to

Lemma 7.20 There exists no path µ in Gnew
exp from (c; k′) to (d; k′′) with (c; k′) ∈ Lk and

(d; k′′) ∈ Lk−ν , ν > 0.

With Lemma 7.18 and Lemma 7.20 we can now show that the second step of our algorithm
leads to no circuit with positive length in the expanded graph Gnew

exp .

Theorem 7.21 After performing the second step of our proposed algorithm there exists
no circuit with positive length in the graph Gnew

exp .

Proof: Assume in Gnew
exp there exists a circuit µ with positive length. The nodes in this

circuit must belong to the same set Lk because if a node in this circuit is in Lk and another
node is in Lk+ν , ν > 0, then, as there exists no path from any node in Lk+ν back to a node
in Lk (see Lemma 7.20), these nodes cannot be in a circuit with positive length in Gnew

exp .
Additionally, due to the periodic constraints, this circuit exists infinitely often in the graph
Gnew

exp . Therefore, we can assume that the only nodes in the circuit µ except the ? and 0
nodes belong to the set L0. Furthermore, there must be at least one arc in this circuit
which was not in Gexp because otherwise the circuit also exists in Gexp. Each arc from
(i; k) ∈ L0 to (i′; k′) ∈ L0 exists also in Gexp or is a new arc in Gnew

exp . If the arc is a
new arc, then there exists an arc from ((i; k) to (i′; k′ − ν) with ν > 0 in Gexp. Due to
Lemma 7.18, there exists also a path with positive length from ((i; k) to (i′; k′) in Gexp.
Therefore, the circuit µ must be also in Gexp. This leads to a contradiction because in
Gexp there exists no circuit with positive length. 2

The last step to get a new relevant and consistent height function is to change the pro-
cessing orders in the set L0 (and thus also in the sets Ll) so that all operations of the job
j′ = j(i′) are processed as last operations in the sets.

7.4 Neighborhoods 122

The following theorem shows that this leads to a new relevant and consistent height func-
tion.

Theorem 7.22 If we change the order in the set L0 so that all operations of job j′ are
scheduled as last, then we get a new consistent height function.

Proof: Before changing the order in the set L0 all disjunctive arcs which start at operations
of job j′ in L0 end either at operations in L0 or L1. The set of disjunctive arcs which start
at operations of job j′ in L0 and end at operation in L0 is denoted with R.

Consider a disjunctive arc ((b(i′); kj′), (i
′′; kj(i′′))) in R and its alternative arc

((b(i′′); kj(i′′)), (i′; kj′ + 1)) with (b(i′); kj′), (i
′′; kj(i′′)) ∈ L0 and (i′; kj′ + 1) ∈ L1.

These arcs are replaced by ((b(i′′); kj(i′′)), (i
′; kj′)) and ((b(i′); kj′), (i

′′; kj(i′′) + 1)) with
(b(i′′); kj(i′′)), (i′; kj′) ∈ L0 and (i′′; kj(i′′) + 1) ∈ L1. This is also done for all the other
arcs in R and its alternative arcs.

Therefore, the height HXb(i′) i′′ = kj(i′′) of the arc (b(i′), i′′) is increased by one and the
height HXb(i′′) i′ = 1 − kj(i′′) of the alternative arc (b(i′′), i′) is decreased by one (see
Lemma 7.16). So, the new heights are smaller or equal to HX?0 and greater or equal to
1−HX?0 because kj(i′′) < HX?0 and 1− kj(i′′) > 1−HX?0.

Thus, after replacing these arcs all new disjunctive arcs which end at operations of j′ in
L0 start at operations in L0 and all new and old disjunctive arcs which start at operations
of j′ in L0 end at operations in L1.

Furthermore, there exists no path from the last operation (l; kj′) of job j′ in L0 to a first
operation (a; kj(a)) of a job j(a) 6= j′ in L0 passing the nodes (?; kj′) and (0; kj′ +HX?0)
because in this case the occurrence number kj(a) of operation a must be kj′+HX?0, which
violates the constraint (7.25).

Now assume that after replacing all the arcs in R and their alternative arcs, there exists a
circuit µ in Gnew

exp with positive length. Due to Theorem 7.21, there exists no circuit with
positive length in the graph Gnew

exp before replacing the arcs. Thus, there must be at least
one new disjunctive arc in the circuit µ. Since we only insert arcs which start at operations
in L0 and end at operations in L0 or L1 all nodes in µ must be in L0 because there exists
no path from nodes in L1 to nodes in L0. As each new disjunctive arc, which connects
nodes in L0, ends at operation of job j′ and each arc which starts at operation of job j′ in
L0 ends at operation in L1, there cannot exist a new disjunctive arc in the circuit µ. Thus,
there cannot exist a circuit with positive length in Gnew

exp after replacing the arcs. 2

Due to the periodic constraints changing the processing orders in the set L0 also lead to a
change in the processing orders of the other sets.

7.4 Neighborhoods 123

To sum up, we have shown that our algorithm computes a new consistent and relevant
height function in which the height of the disjunctive arc (b(i′), i′′) is increased. Now the
only open question is how to compute the kj-variables for all j ∈ J \ {j′, j′′}.

We propose two different heuristics.

Heuristic H1

An easy way to get the set L0 is to add, in addition to the kj′-th occurrence of job j′ and
the (kj′ + HXb(i′) i′′)-th occurrence of job j′′, the kj′-th occurrences of all other jobs j ∈
J\{j′, j′′} to the set L0. We call this heuristic H1. Now we show that the constraints (7.25)
and (7.26) are fulfilled. As kj is equal to kj′ = 0 for all j ∈ J \ {j′, j′′} and HX?0 ≥ 1,
constraint (7.25) is fulfilled.

For J ′ ∈ P(J) the value maxj∈J ′ kj − minj∈J ′ kj is either 0 or HXb(i′) i′′ which implies
that (7.26) holds because HX?0 ≥ 1 implies 1−HX?0 ≤ 0 ≤ HX?0 and by Lemma 7.14
we also have 1−HX?0 ≤ HXb(i′) i′′ ≤ HX?0. Therefore, the constraints (7.25) and (7.26)
are fulfilled.

The disadvantage of this set is that it might be possible that we insert occurrence of jobs
to this set which are not processed near the occurrences of the operations of the jobs j′

and j′′ in L0.

Heuristic H2

The second heuristic H2 inserts the operations to the set L0 which are scheduled near the
operations of job j′.

First, we compute the starting times of the kj′-th occurrence of all operations of job j′.
Then we compute a time interval with length α for each machine m ∈ M , where the
starting time is defined by min{t(i; kj′)|i ∈ O(j′) and M(i) = m} and α is the cycle
time of the actual solution. Finally, we add all jobs j := j(i) for which the first operation
(i; l) starts in these time intervals with some occurrence number l to the set L0. If there
exists a job j which first operation is not scheduled in the computed time intervals, then
we fix the occurrence number kj to 0.

If for the computed occurrence number l the inequality l ≥ kj′ + HX?0 holds, then we
set l := (kj′ + HX?0 − 1) as occurrence number of all operations of the job j(i). So, the
occurrence number for job j(i) is

kj := min{l, kj′ + HX?0 − 1} ≤ HX?0 − 1. (7.27)

If kj−minj′∈J ′ kj′ > HX?0 holds, then we set kj := minj′∈J ′ kj′+HX?0. If maxj′∈J ′ kj′−
kj > HX?0 holds, then we set kj := maxj′∈J ′ kj′ −HX?0.

Thus, we get the following four different cases for the occurrence number kj of job j:

7.4 Neighborhoods 124

i. kj = 0 or

ii. kj = min{l, kj′ + HX?0 − 1}, if max{maxj′∈J ′ kj′ , kj} −min{minj′∈J ′ kj′ , kj} ≤
HX?0 or

iii. kj = minj′∈J ′ kj′ + HX?0, if min{l, kj′ + HX?0 − 1} −minj′∈J ′ kj′ > HX?0 or

iv. kj = maxj′∈J ′ kj′ −HX?0, if maxj′∈J ′ kj′ −min{l, kj′ + HX?0 − 1} > HX?0.

In the following we show that the constraints (7.25) and (7.26) are fulfilled. We show now
that after we insert a new job j to the set L0 that

kj′ < HX?0 (7.28)

for all j′ ∈ J ′ ∪ {j} and

1−HX?0 ≤ max
j′∈J ′′

kj′ − min
j′∈J ′′

kj′ ≤ HX?0 (7.29)

for all J ′′ ∈ P(J ′ ∪ {j})hold , where J ′ is the set of already inserted jobs.

After inserting the first two jobs j′ and j′′ into L0 with kj′ = 0 and kj′′ = HXb(i′) i′′

inequalities (7.29) and (7.28) hold.

Now we have to show that after adding the job j with occurrence number kj to the set L0

inequalities (7.29) and (7.28) hold.

We start with the first case, i.e. kj = 0 holds. We can easily see with the same arguments
as for heuristic H1 that (7.28) and (7.29) are fulfilled.

Let us now consider the second case, i.e.

kj = min{l, kj′ + HX?0 − 1}

and
max{max

j′∈J ′
kj′ , kj} −min{min

j′∈J ′
kj′ , kj} ≤ HX?0

hold. Inequality (7.28) is fulfilled due to inequality (7.27).

First we derive some bounds for the maximum and minimum of maxj′∈J ′′ kj′−minj′∈J ′′ kj′

for all J ′′ ∈ P(J ′ ∪ {j}). The maximal value is

max{max
j′∈J ′′

kj′ − min
j′∈J ′′

kj′|J ′′ ∈ P(J ′ ∪ {j})} = max
j∈J ′∪{j}

kj − min
j∈J ′∪{j}

kj (7.30)

7.4 Neighborhoods 125

and the minimal value is

min{max
j′∈J ′′

kj′ − min
j′∈J ′′

kj′|J ′′ ∈ P(J ′ ∪ {j})} ≥ 0. (7.31)

As for the second case max{maxj′∈J ′ kj′ , kj} − min{minj′∈J ′ kj′ , kj} ≤ HX?0 holds,
inequality (7.29) is fulfilled due to (7.30).

Now we analyse the third case, i.e. kj = minj′∈J ′ kj′ + HX?0 and min{l, kj′ + HX?0 −
1} − minj′∈J ′ kj′ > HX?0 First, we show that kj < HX?0 holds. As HX?0 − 1 ≥
min{l, kj′ + HX?0− 1} > HX?0 + minj′∈J ′ kj′ = kj holds, (7.28) holds. Now we check
if (7.29) holds. We get

max
j∈J ′∪{j}

kj = max{max
j∈J ′

kj, min
j′∈J ′

kj′ + HX?0}.

If maxj∈J ′∪{j} kj = maxj∈J ′ kj , then we get

max{max
j′∈J ′′

kj′ − min
j′∈J ′′

kj′|J ′′ ∈ P(J ′ ∪ {j})}

= max
j∈J ′

kj − min
j∈J ′∪{j}

kj

= max
j∈J ′

kj −min
j∈J ′

kj

≤ HX?0.

If maxj∈J ′∪{j} kj = minj′∈J ′ kj′ + HX?0, then we get

max{max
j′∈J ′′

kj′ − min
j′∈J ′′

kj′|J ′′ ∈ P(J ′ ∪ {j})}

= min
j′∈J ′

kj′ + HX?0 − min
j∈J ′∪{j}

kj

= HX?0

≤ HX?0.

Thus, for both cases the inequality (7.29) is fulfilled.

Finally, we consider the fourth case, i.e. kj = maxj′∈J ′ kj′ − HX?0 and maxj′∈J ′ kj′ −
min{l, kj′+HX?0−1} > HX?0 hold. First, we need to show that kj < HX?0 holds. This
is equivalent to maxj′∈J ′ kj′−HX?0 < HX?0. This holds because maxj′∈J ′ kj′ < HX?0.
Thus, the inequality (7.28) holds. Now we show that inequality (7.29) holds. We get

min
j∈J ′∪{j}

kj = min{min
j∈J ′

kj, max
j′∈J ′

kj′ −HX?0}.

7.4 Neighborhoods 126

If minj∈J ′∪{j} kj = minj∈J ′ kj , then we get

max{max
j′∈J ′′

kj′ − min
j′∈J ′′

kj′|J ′′ ∈ P(J ′ ∪ {j})}

= max
j∈J ′∪{j}

kj −min
j∈J ′

kj

= max
j∈J ′

kj −min
j∈J ′

kj

≤ HX?0.

If minj∈J ′∪{j} kj = maxj′∈J ′ kj′ −HX?0 holds, we get

max{max
j′∈J ′′

kj′ − min
j′∈J ′′

kj′|J ′′ ∈ P(J ′ ∪ {j})}

= max
j∈J ′∪{j}

kj −max
j′∈J ′

kj′ + HX?0

= HX?0

≤ HX?0.

Thus, for both cases the inequality (7.29) is fulfilled. Summarizing, we showed that after
inserting a new job j into the set L0 the inequalities (7.28) and (7.29) hold. So, after
adding all jobs to the set L0 the constraints (7.25) and (7.26) are fulfilled.

For the description of the neighbourhood N4 we need to define the arc set A and the
corresponding height function HXA. The arc set A is defined by all arcs which are
changed during the repair algorithm. The corresponding height function HXA is defined
by replacing the heights of all arcs in A in the old height function HX by the computed
height values of our algorithm. Thus, we can define N4:

To each feasible height function HX the set N4(HX) of all height functions derived from
HX is assigned as follows: We start with choosing an arc (b(i′), i′′) ∈ D in G on a critical
circuit and replace the height HXb(i′) i′′ by HXb(i′) i′′ + x with x = HX+

b(i′) i′′ −HXb(i′) i′′

if x > 0 or we replace the height function HX by HXA.

To show that the neighbourhood N4 is not opt-connected, we reuse Example 7.11.

Example 7.23 To increase the height of the arc (5, 7), we use the proposed repair algo-
rithm, which is used in neighborhood N4 to get a new feasible height function. The repair
algorithm leads to the following new solution, which is presented in the gantt chart in
Figure 7.13. The height of the disjunctive arcs is given in Table 7.6.

7.4 Neighborhoods 127

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(1; 0)

(2; 0)

(3; 0)

(4; 0)

(5; 0)

(6; 0)

(7; 0)

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(5; 1)

(6; 1)

(7; 1)

. . .

. . .

. . .

Figure 7.13: Gantt chart for Example 7.23

Arc (2,6) (2,4) (3,7) (3,5) (5,6) (5,7)
Height 1 0 1 0 1 1

Alternative arc (7,1) (5,1) (7,2) (5,2) (7,4) (7,5)
Height 0 1 0 1 0 0

Table 7.6: Height of the disjunctive arcs

The critical circuit is (1, 2, 3, 4, 5, ?, 0, 6, 7, 1). The only disjunctive arc in this circuit is
(7, 1). Due to the circuit (2, 6, 7, 2), we must again apply the repair algorithm to get a
new feasible solution in which the height of the arc (7, 1) is increased. After applying
the repair algorithm, we get back to the solution in Figure 7.5. So, the algorithm cannot
reach the optimal solution which is given in Figure 7.6.

Now we want to describe another way of getting a new and feasible height function which
is based on the previous computed arc set A. We now compute a subset A′ of this arc set
A, which also leads to a new and feasible height function. Note that A′ and A can be
equal.

This algorithm works as follows: As the disjunctive arc (b(i′), i′′) lies on a critical circuit
the height of this arc must be changed to HXA

b(i′) i′′ . Thus, we increase the height of this
arc and decrease the height of the alternative arc. Now it can happen, that in the graph G
there exists a circuit µ which does not fulfill the conditions of Theorem 2.1. If this is the
case, there must exist an arc a1 in the circuit µ which is also in the arc set A. Therefore, we
add this arc a1 to the set A′ and change the height of arc a1 so that it equals to HXA

a1
and

check again whether the height function is relevant and consistent. If the height function
is still not relevant and consistent, we can again find an arc a2 on a circuit which does
not fulfill the conditions of Theorem 2.1 and which is also in the arc set A. The arc is
also added to the arc set A′ and the height is also changed to HXA

a2
, etc. The algorithm

stops, if we get a feasible height function. As the algorithm only changes the height of
arcs which are in the arc set A the algorithm always finds a feasible solution.

7.4 Neighborhoods 128

In each circuit µ which does not fulfill the conditions of Theorem 2.1 there must exist
an arc which is also in the arc set A because otherwise the circuit would still exist after
replacing HX by HXA. As replacing HX by HXA always leads to a feasible solution,
this cannot happen.

Based on this algorithm a new neighborhood N5 can be defined. If the height of a dis-
junctive arc on a critical circuit cannot be increased, a new height function is computed
based on the arc set A′.

Note by applying the neighborhood N5 on the instance given in Example 7.11 we can
reach the optimal solution. However, it is still an open question whether the neighborhood
is opt-connected.

Now we want to illustrate the neighborhood N5 with the continuation of Example 7.17.

Example 7.24 If we apply neighbourhood N5 to the problem presented in Example 7.17,
we gets a solution with cycle time α = 14. This solution is shown in Figure 7.14. The
only difference between the solutions computed by N4 and N5 is the processing order
between the operations (6; k + 1) and (1; k) for all k ∈ Z. In the solution computed by
neighbourhood N5 the operations (1; k) are processed before the operations (6; k + 1).
In the solution computed by neighbourhood N4 the operations (6; k + 1) are processed
before the operations (1; k).

(9; 3) (4; 3)

(5; 3)(8; 3)

(7; 3) (1; 2)

L1

(3; 0)

(2; 0)

(6; 1)

L−1

(9; 2)

(8; 2) (5; 2)

(2; 1)

(3; 1)

(7; 2) (1; 1) (6; 2)

(4; 2)

L0

(2; 0) (9; 2)

(3; 0) (8; 2) (5; 2)

(2; 1) (9; 3) (4; 3)

(3; 1) (8; 3) (5; 3)

(6; 1) (7; 3) (1; 2)(7; 2) (1; 1) (6; 2)

(4; 2)

Figure 7.14: Solution computed by neighbourhood N5

Now we present a slightly different repair algorithm based on a result for the non-cyclic
job shop, which again can be found in Nieberg [55].

7.4 Neighborhoods 129

Theorem 7.25 For the non-cyclic job shop problems we can always find a new feasible
solution by eliminating in a feasible solution one job and putting the job at the beginning
of the schedule by reversing all disjunctive arcs which end at operations of this job.

To use this idea, we have to change the conditions (7.25) and (7.26) of the set L0 for the
new repair algorithm to:

For all jobs j ∈ J \ {j′, j′′} the following inequalities for the occurrence number must
hold

kj > kj′′ −HX?0 (7.32)

and
1−HX?0 ≤ maxj∈J ′kj −minj∈J ′kj ≤ HX?0 (7.33)

for all J ′ ∈ P(J).

So, we can now describe a new algorithm to compute a new feasible solution in which
the height of a disjunctive arc (b(i′), i′′) on a critical circuit is increased. This algorithm
is quite similar to the previous proposed algorithm.

i. Fix a set L0 in which each operation occurs exactly once in Gexp. The occurrence
number kj for all operations i ∈ O(j) of the same job j ∈ J in the set L0 must
be the same. Furthermore, kj′ := 0, kj′′ := HXb(i′) i′′ and the inequalities (7.32)
and (7.33) must hold.

ii. Replace all disjunctive arcs ((b(c); kj(c)), (d; kj(c) + HXb(c) d)) by ((c; kj(c)),
(d; kj(d))) and the corresponding alternative arc by ((d; kj(d)), (c; kj(c) + 1)), if
kj(c) + HXb(c) d 6∈ {kj(d), kj(d) + 1}.

iii. Change the processing orders of the operations in the set Ll so that all operations of
job j′′ are processed as the first operations in the set Ll for all l ∈ Z.

Note that the second step is the same for both algorithms. Then we can show with the
same ideas as for the first algorithm that after the second step of the algorithm there exists
no circuit with positive length in Gnew

exp . Now we explain that the third step of the second
algorithm leads to a new relevant and consistent height function.

Theorem 7.26 If we change the order in the set L0 so that all operations of job j′′ are
scheduled as first, then we get a new consistent height function.

7.4 Neighborhoods 130

Proof: Before changing the order in the set L0 all disjunctive arcs which end at operations
of job j′′ in L0 start either at operations in L−1 or L0. The set of disjunctive arcs which
end at operations of job j′′ in L0 and start at operations in L0 is denoted with R.

Consider a disjunctive arc ((b(i′); kj(i′)), (i
′′; kj′′)) in R and its alternative arc ((b(i′′); kj′′),

(i′; kj(i′) + 1)) with (b(i′); kj′), (i
′′; kj(i′′)) ∈ L0 and (i′; kj′ + 1) ∈ L1. These arcs

are replaced by ((b(i′′); kj′′), (i
′; kj(i′))) and ((b(i′); kj(i′)), (i

′′; kj′′ + 1)) with (b(i′′); kj′′),
(i′; kj(i′)) ∈ L0 and (i′′; kj′′ + 1) ∈ L1. This is also done for all the other arcs in R and its
alternative arcs.

Therefore, the height HXb(i′) i′′ = kj′′ − kj(i′) of the arc (b(i′), i′′) is increased by one and
the height HXb(i′′) i′ = 1 + kj(i′) − kj′′ of the alternative arc (b(i′′), i′) is decreased by
one. So, the new heights are smaller or equal to HX?0 and greater or equal to 1−HX?0

because kj′′−kj(i′) < HX?0 and 1−kj′′ +kj(i′) > 1−HX?0 hold due to constraint (7.32).

Thus, after replacing these arcs all new arcs which start at operations of j′′ in L0 end at
operations in L0 and all old and new arcs which end at operations of j′′ in L0 start at
operations in L−1.

Furthermore, there exists no path from a last operation l of a job j, j 6= j′′, in L0 to the
first operation (a; kj′′) of job j′′ in L0 passing the nodes (0; kj′′) and (?; kj′′ − HX?0)
because in this case the occurrence number of l must be kj′′ −HX?0, which violates the
constraint (7.32).

Now assume that after replacing all the arcs in R and their alternative arcs, there exists a
circuit µ in Gnew

exp with positive length. Due to Theorem 7.21, there exists no circuit with
positive length in the graph Gnew

exp before replacing the arcs. Thus, there must be at least
one new disjunctive arc in the circuit µ. Since we only insert arcs which end at operations
in L0 and start at operations in L−1 or L0 all nodes in µ must be in L0 because there exists
no path from nodes in L0 to nodes in L−1. As each new disjunctive arc which connects
nodes in L0 starts at operation of job j′′ and each arc which ends at operation of job j′′

starts at operation in L−1, there cannot exist a new arc in the circuit µ. Thus, there cannot
exist a circuit with positive length in Gnew

exp after replacing the arcs. 2

The heuristics H1 and H2 can be easily adapted to the second repair algorithm.

Therefore, we can now define two additional neighborhoods N6 and N7 which are both
based on the second algorithm. The arc set which is changed while applying the second
algorithm is denoted by B and the corresponding height function is denoted by HXB.
Note that we can also compute a smaller set B′ ⊂ B, leading to a new feasible solution by
using the same technique which is used to compute the set A′ ⊂ A for the neighborhood
N5. So, the neighborhood N6 (N7) is defined as follows:

7.4 Neighborhoods 131

To each feasible height function HX the set N6(HX) (N7(HX)) of all height functions
derived from HX is assigned as follows: We start with choosing an arc (b(i′), i′′) ∈ D
in G on a critical circuit and replace the height HXb(i′) i′′ by HXb(i′) i′′ + x with x =
HX+

b(i′) i′′ −HXb(i′) i′′ if x > 0 or we replace the height function HX by HXB (HXB′
).

Finally, we propose two combined neighborhoods N8 and N9. N8 (N9) assigns to each
feasible height function HX the set N8(HX) (N9(HX)) of all height functions derived
from HX by choosing an arc (b(i′), i′′) ∈ D on a critical circuit and

• replacing the corresponding HXb(i′) i′′-value by HXb(i′) i′′+x, with x = HX+
b(i′) i′′−

HXb(i′) i′′ if x > 0 or

• replacing the height function by HXA (HXA′
) or

• replacing the height function by HXB (HXB′
).

Furthermore, due to Theorem 7.12, we introduce the neighborhoods NBlock
i for i = 4, . . . ,

9. In this neighborhood, we only change the height of the first or the last arc of a block.

Now we want to analyse the case that several operations of a job are processed on the
same machine. We adapt our proposed repair algorithm for this new situation. First we
have to derive new upper and lower bounds for this situation.

Lemma 7.27 Consider the disjunctive arc (b(i′), i′′) with j(b(i′)) = j(i′′). The operation
i′ is a predecessor of i′′. Then

1−HX?0 ≤ HXb(i′) i′′ ≤ 0 (7.34)

and
1 ≤ HXb(i′′) i′ ≤ HX?0 (7.35)

must hold.

Proof: The operations i′ and i′′ need to be processed on the same machine. Thus, there
exists a disjunctive arc (b(i′), i′′) and its alternative arc (b(i′′), i′). Due to the conjunctive
arcs there exists a path from i′ to b(i′′) with height 0. Therefore, the height of the dis-
junctive arc (b(i′′), i′) must be greater than 1 and due to Lemma 7.14 smaller or equal to
HX?0. Thus,

1 ≤ HXb(i′′) i′ ≤ HX?0

holds. This is equivalent to

1 ≤ 1−HXb(i′) i′′ ≤ HX?0

7.4 Neighborhoods 132

or
0 ≥ HXb(i′) i′′ ≥ 1−HX?0.

2

So, we can only find a new feasible height function in which the height of the arc (b(i′), i′′)
is increased if b(i′) is a predecessor of i′′ and HXb(i′) i′′ < 0 hold or b(i′) is a successor
of i′′ and HXb(i′) i′′ < HX?0 hold. Thus, the case is only relevant if HX?0 > 1 because
otherwise the heights of the disjunctive arcs cannot be changed (see constraints (7.34)
and (7.35)).

We first derive an algorithm for the case that b(i′) is a predecessor of i′′. The main idea
is to divide the job j(i′) into at least two jobs and at most HX?0 jobs. In the following
we assume that the job is divided into two new jobs j′1 and j′2. The job j′1 consists of the
first operations of the job j(i′) up to operation b(i′). The job j′2 consists of the rest of the
operations.

If b(i′) is a successor of i′′, then we divided the job also into two new jobs j′1 and j′2. The
job j2(i

′) consists of the first operations of the job j(i′) up to the predecessor of i′ and the
second job j′1 consists of the rest of the operations.

Now we need again to fix the set L0 in which each operation occurs exactly once in
Gexp. However, the occurrence number kj for all operations i ∈ O(j) of the same job
j ∈ J ∪ {j′1} ∪ {j′2} \ {j} in the set L0 must be the same. The occurrence number of
job j′1 is set to kj′1

:= 0 and the occurrence number of job j′2 is set to kj′2
:= HXb(i′) i′′ .

For all other jobs we fix the occurrence number such that constraints (7.25) and (7.26) are
fulfilled. Then we can perform the last two steps of our proposed algorithm which leads
to a new consistent and feasible height function in which the height of the arc (b(i′), i′′) is
increased by one.

Now we want to illustrate our new algorithm by the following example.

Example 7.28 The example is the same as in Example 7.11. The only difference is that
the height of the arc (?, 0) is set to 2. The height of the disjunctive arcs is given in
Table 7.7.

7.4 Neighborhoods 133

Arc (2,6) (2,4) (3,7) (3,5) (5,6) (5,7)
Height 0 0 0 0 1 1
Length 0 0 0 0 0 3

Alternative arc (7,1) (5,1) (7,2) (5,2) (7,4) (7,5)
Height 1 1 1 1 0 0
Length 0 0 1 3 0 1

Table 7.7: Height of the disjunctive arcs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3

(5; 0)

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(5; 1)

(6; 1)

(7; 1)

(1; 2)

(2; 2)

(3; 2)

(4; 2)

(5; 2)

(6; 2)

(7; 2)

(1; 3)

(2; 3)

(6; 3)

. . .

. . .

. . .

Figure 7.15: Gantt chart with cycle time α = 12 for Example 7.28

The corresponding gantt chart with α = 12 is given in Figure 7.15. The critical circuit
is (1, 2, 3, 4, 5, 1). Thus, the only disjunctive arc which must be changed is (5, 1). Both
operations of this arc belong to the same job. Therefore, we divide the first job into
two jobs 1 with operations 1, 2 and 3 and job 1′ with operations 4 and 5. We choose
k1′ = 1, k1 = 0 and k2 = 0. After applying the algorithm we get the optimal solution with
α = 9. The gantt chart is given in Figure 7.16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1

M2

M3 (3; 0)

(4; 0)

(5; 0)(7; 0)

(1; 1)

(2; 1)

(3; 1)

(4; 1)

(5; 1)

(6; 1)

(7; 1)

(1; 2)

(2; 2)

(3; 2)

(4; 2)

(5; 2)

(6; 2)

(7; 2)

(1; 3)

(2; 3)

(3; 3)

(6; 3)

(7; 3)

(1; 4)

. . .

. . .

. . .

Figure 7.16: Gantt chart with cycle time α = 9 for Example 7.28

In the previous paragraphs, we developed neighborhoods, which can be applied to cyclic
job shop problems with blocking. In the following, we check whether these neighbor-
hoods can be adapted to cyclic job shop problems with job chain and machine chain
repetition. Furthermore, we have also to adjust the conditions (7.25) and (7.26) to the
new situation.

7.4 Neighborhoods 134

Cyclic Job Shop Problems With Job Chain Repetition

For cyclic job shop problems with job chain repetition there exists no conjunctions be-
tween the different jobs. Therefore, we cannot develop an upper bound on the height of a
disjunctive arc.

This leads to the following new result for the occurrence numbers of the jobs in the set
L0, which need to be computed during the repair algorithm.

Assume that the disjunctive arc (b(i′), i′′) lies in a critical circuit and HX+
b(i′) i′′ = HXb(i′) i′′

holds. Then we fix kj(i′) = 0 and kj(i′′) = HXb(i′) i′′ . For all other jobs we can choose any
integer value kj ∈ Z ∀ j ∈ J \ {j(i′), j(i′′)}.

Now we have to check after we apply the proposed algorithm for cyclic job shop problems
with blocking to problems with job chain repetition whether the algorithm still computes a
new feasible solution. Therefore, we must check whether Lemma 7.19 and Theorem 7.21
and 7.22 still hold because the proofs of the lemma and the theorems are based on con-
ditions 7.25 and 7.26. All other developed lemmas are based on special properties of the
expanded graph Gexp.

As the arcs from the last operation of a job to the first operation of a job are the only
conjunctive arcs which connect operations of a set Lk with operations of a set Lk′ with
k′ > k, Lemma 7.19 is immediately fulfilled. Theorem 7.21 and 7.22 are fulfilled, too.
Therefore, we can reuse the developed neighborhoods also for cyclic job shop problems
with blocking and with job chain repetition.

Also the heuristics H1 and H2 can be reused. The only difference is that we do not have
to check whether feasible occurrence numbers are computed.

Cyclic Job Shop Problems With Machine Chain Repetition

Now we have to adapt the neighborhoods for cyclic job shop problems with machine chain
repetition. For these problems, we can again compute an upper bound for a disjunctive
arc based on the given conjunctions.

Lemma 7.29 If (b(i), i′) ∈ D is a disjunctive arc with M(i) = M(i′), then there ex-
ists no consistent and relevant height function HX satisfying HXb(i) i′ > HXMPS or
HXb(i′) i < 1−HXMPS .

Proof: Consider the situation in Figure 7.17. Then we can easily adapt the proof of
Lemma 7.14 to prove this result.

7.4 Neighborhoods 135

i

ji (Lij, HXij)

disjunctive arc
ji (Lij, HXij)

conjunctive arc

(pi′ , 0)

(0, HXMPS)

s(i′)i′

0m ?m

(0, 0)

(pi, 0)

(0, HXb(i′)i)

Figure 7.17: Situation in Proof of Lemma 7.29

2

Thus, the new constraints on the occurrence number are:

Consider again the disjunctive arc (b(i′), i′′) with HXb(i′) i′′ < HXMPS which height must
be increased. We again denoted the job j(i′) by j′ and j(i′′) by j′′. Then we fix kj(i′) := 0
and kj(i′′) := HXb(i′) i′′ . For all other jobs j ∈ J \ {j′, j′′} we fix the occurrence number
such that

kj < HXMPS (7.36)

and
1−HXMPS ≤ max

j∈J ′
kj −min

j∈J ′
kj ≤ HXMPS (7.37)

for all J ′ ∈ P(J) hold.

Note, heuristic H1 computes feasible occurrence numbers. Furthermore, we can easily
change the heuristic H2 in such a way that this heuristic also computes feasible occurrence
numbers.

Now we have check whether Lemma 7.19 is still valid for the cyclic job shop problems
with blocking and machine chain repetition.

Lemma 7.30 If (7.37) holds, then there exists no path µ in Gnew
exp from (c; kj(c)) ∈ L0 to

(d; kj(d)) ∈ L−ν with ν > 0.

7.4 Neighborhoods 136

Proof: Assume there exists a path µ from (c; kj(c)) ∈ L0 to (d; kj(d)) ∈ L−ν . Due to
the change of the disjunctive arcs, all disjunctive arcs start at operations in L0 and end at
operations in L0 or L1. The conjunctive arcs between the operations of a job start in L0

and end in L0. Therefore, at least one of the arcs ((?m, k), (0m, k + HXMPS)) for some
m = 1, . . . ,M connects an operation of a set Lk with k ≥ 0 with an operation of a set Lk′

with k′ ≤ −ν. Assume that the arc ((?m′ ; k), (0m′ ; k + HXMPS)) is one of these arcs.

We denote the last operation on the path µ before the node (?m′ ; k) with (e; k) and the
first operation after the node (0m′ ; k + HXMPS) with (f ; k + HXMPS). The node (e; k)
can be in any set Lk′ with k′ ≥ 0 and the node (f ; k + HXMPS) can be in any set Lk′′

with k′′ ≤ −ν. Thus, (e; k − k′) ∈ L0 and (f ; k + HXMPS − k′′) ∈ L0 hold.

Now we check whether inequality (7.37) holds. If k − k′ ≥ k + HXMPS − k′′ we get

max{kj(e), kj(f)} −min{kj(e), kj(f)}
= max{k − k′, k + HXMPS − k′′} −min{k − k′, k + HXMPS − k′′}
= k − k′ − (k + HXMPS − k′′)

= −k′ −HXMPS + k′′

≤ 0−HXMPS − ν

< 1−HXMPS.

For the other case we get

max{kj(e), kj(f)} −min{kj(e), kj(f)}
= k + HXMPS − k′′ − (k − k′)

= HXMPS − k′′ + k′

≥ HXMPS + ν

> HXMPS.

Thus, both cases lead to a contradiction to inequality (7.37). 2

Finally, we can easily verify that Theorems 7.21 and 7.22 are still valid for job shop
problem with blocking and machine chain repetition.

Therefore, the proposed algorithm can compute to each solution a new feasible solution
in which the height of the arc (b(i′), i′′) is increased, if conditions (7.36) and (7.37) are
fulfilled. To solve instances of the job shop problems with blocking and machine chain
repetition, we apply the adjusted neighborhoods Ni with i = 4, . . . , 9.

7.4 Neighborhoods 137

7.4.4 Neighborhoods for Robotic Cell Problems

In this section, we discuss how to adjust the developed neighborhoods to the robotic
cell problems without time window constraints. For these problems we assume that the
triangle inequality dij + djk ≥ dik holds for all machines i, j, k. As the robotic cell
problems are based on the cyclic job shop problems with machine chain repetition, we
can apply the neighborhoods which are developed for the problem without transportation.
However, as there exist several operations, namely the transport operations of a job, which
are processed on the same machine, the robot, we show in the following that the height
of the disjunctive arcs between these operations can be always increased. As mentioned
in Section 6.2 each non-transport operation has a preceding and succeeding transport
operation. So, we have the following disjunctive constraints for a robotic cell problem:

• For all transport operations Ti and Ti′ with Ti 6= Ti′ and k, l ∈ Z we get

t(Ti; k) + pTi
+ dM(i) M(p(i′)) ≤ t(Ti′ ; l)

∨ t(Ti′ ; l) + pTi′
+ dM(i′) M(p(i)) ≤ t(Ti; k) (7.38)

• For all operations i and i′ with M(i) = M(i′), i 6= i′ and k, l ∈ Z we get

t(Ts(i); l) + pTs(i)
+ dM(s(i)) M(p(i′)) ≤ t(Ti′ ; k)

∨ t(Ts(i′); l) + pTs(i′)
+ dM(s(i′)) M(p(i)) ≤ t(Ti; k). (7.39)

Note that each operation in a job is processed on a different machine and therefore,
j(i) 6= j(i′) holds.

First, we consider two transport operations Ti and Ti+1 with j(Ti) = j(Ti+1).

iTi Ti+1

i

0

j
Hij

0

1

Figure 7.18: The conjunctive and disjunctive arcs between Ti and Ti′

7.4 Neighborhoods 138

Now we show that we cannot change the height of the disjunctive arcs (Ti, Ti+1) and
(Ti+1, Ti). In Figure 7.18 the transport operation Ti and Ti+1 and the operation i are
shown. Additionally, to this, the conjunctive arcs between Ti and Ti+1, due to constraint
(6.11), between Ti and i, due to constraint (6.4), and between i and Ti+1, due to (6.10),
are shown. For this figure, we can conclude that the lower bound for the height of the
arc (Ti, Ti+1) is 0. The lower bound of (Ti+1, Ti) is 1. Thus, HXTi Ti+1

≥ 0 must hold.
This is equivalent to 1−HXTi+1 Ti

≥ 0 or 1 ≥ HXTi+1 Ti
. As the lower bound of the arc

(Ti+1, Ti) is 1, we get 1 ≥ HXTi+1 Ti
≥ 1 So, HXTi+1 Ti

must be fixed to 1 and HXTi Ti+1

must be fixed to 0. Therefore, we can consider these arcs as conjunctive constraints.

Now consider a disjunctive arc between two transport operations Ti and Ti′ with i± 1 6=
i′ which is derived from (7.38). Furthermore, we assume that there exists no parallel
disjunctive arc between Ti and Ti′ which is derived from (7.39). Thus, the corresponding
arc of (Ti, Ti′) is (Ti′ , Ti). Now we want to show that the height of the disjunctive arc
(Ti, Ti′) can be increased at least by one if the arc is in a critical circuit. Therefore, we
have to check whether the conditions of Theorem 7.5 are fulfilled. We can easily check
that constraint (7.6) of Theorem 7.5 is fulfilled.

Now we show that constraint (7.5) of Theorem 7.5 is also fulfilled. Consider a path µ
from the transport operation Ti to any other transport operation Tj which does not pass
the nodes i and Ti+1. So,

L(µ) ≥ pTi
+ dM(i) M(p(j))

holds, because the length of an arc which start at transport operation Ti and does not end
at operation i is greater or equal to pTi

+ dM(i) M(p(j)) (see also (7.38) and (7.39)). If the
path µ passes the nodes i and Ti+1, we get

LTi i + Li Ti+1
+ L(µ1) ≥ pTi

+ pi + pTi+1
+ dM(i+1) M(p(j))

= pTi
+ pi + εM(i) + dM(i) M(i+1) + εM(i+1) + dM(i+1) M(p(j))

≥ pTi
+ dM(i) M(i+1) + dM(i+1) M(p(j))

≥ pTi
+ dM(i) M(p(j)),

where µ1 is the sub-path of µ which connects Ti+1 and Tj .

Thus, for the delay of a path µ from Ti to any other transport operation Tj

L(µ) ≥ pTi
+ dM(i) M(p(j))

holds.

If we now consider a path µ from Ti to Ti′ with at least two arcs, the path µ must pass at
least one other transport operation Tj 6= Ti′ . So, we get

L(µ) > pTi
+ dM(i) M(p(i′)

7.4 Neighborhoods 139

because the processing time of any transport operation is greater than zero. Thus, we can
apply Theorem 7.5 and therefore, the height of the disjunctive arcs between the transport
operation Ti and Ti′ can be increased at least by one. If there exists a parallel disjunctive
arc between Ti and Ti′ which is derived from (7.39), we can apply the proposed repair
algorithm for the cyclic job shop problem with machine chains repetition and blocking.
Summarizing, to solve robotic cell problems we apply the adjusted neighborhoods Ni

with i = 4, . . . , 9.

Now we consider the case that there exist time window constraints for the robotic cell
problems. Assume that we want to increase the height of the disjunctive arc (b(i′), i′′).
Without the given time window constraints we showed in the previous sections that there
exists a feasible height function in which the height of the arc (b(i′), i′′) is increased by
one. Unfortunately, this cannot be proved if there exist time window constraints.

Therefore, we propose the following neighborhood for the robotic cell problems with time
window constraints which does not find in all cases a new feasible height function. The
idea is quite similar to the idea of the neighborhood N5.

We increase the height of the disjunctive arc (b(i′), i′′) by one. If HX+
ij = HXij holds,

then we get at least one circuit µ which does not fulfill the conditions of Theorem 2.1.
Thus, we must change the height of a disjunctive arc in this circuit. Therefore, the algo-
rithm checks if there exists a disjunctive arc in the circuit µ which can be increased and
which leads to a new feasible solution. If there does not exist such an arc, the algorithm
chooses an arbitrary arc in this circuit, which height is increased by one. Afterwards,
we check again whether there exists a circuit which does not fulfill the conditions of
Theorem 2.1 and starts again with searching for a disjunctive arc which height can be
increased.

The process stops after a given number C of iterations or after a new feasible height
function is found.

We denote this neighborhood by NC
10.

Up to now, we presented several different neighborhoods, which can be used to solve dif-
ferent cyclic scheduling problems. In the following subsection we describe two different
start heuristics.

7.5 Start heuristics 140

7.5 Start heuristics

In this section, we describe how we compute a starting solution for the different applica-
tion, for which we implemented the tabu search. We present two different heuristics. The
first heuristic can be used to compute a starting solution for all different applications. The
second heuristic can only be applied on the different cyclic job shop applications without
blocking.

We start with the first heuristic SH1. All applications with and without blocking have in
common that we get a feasible solution if we schedule one job after another. Thus, the
first heuristic computes a feasible and consistent height function by scheduling job 1 as
the first job, job 2 as the second job and so on, until all jobs are scheduled.

The second heuristic is a more complex heuristic, which can be applied on problems
without blocking. Note that in this case the delay of the conjunctive and disjunctive arcs
are positive integer values. Thus, a height function HX is called consistent if each circuit
µ has a positive height.

Due to this definition of a consistent height function, we can derive the following upper
and lower bounds on the height of a disjunctive arc. Both bounds can be computed in
polynomial time.

Lemma 7.31 Assume that the heights of the arcs (i, j) and (j, i) are not fixed. Then

HX+
ij := min{HX(τ)|τ is a path from i to j in (T, E ∪D \ {(i, j)}} (7.40)

is an upper bound on the height of the arc (i, j) and

HX−
ij := 1−min{HX(τ)|τ is a path from j to i in (T, E ∪D \ {(j, i)}} (7.41)

is a lower bound on the height of the arc (i, j).

Proof: First, we show that HX+
ij is an upper bound, then we show that HX−

ij is a lower
bound.

In order to get a relevant and consistent height function the following inequality must hold
for every path τ from i to j:

HX(τ) + HXji ≥ 1.

So, it must also hold for the path τ− with the lowest height value. Thus, we get

HX(τ−) + HXji ≥ 1

or HXτ− ≥ HXij

7.5 Start heuristics 141

Therefore, as HXτ− = HX+
ij holds, HX+

ij is an upper bound on the height of the arc
(i, j).

The lower bound can be proved in a similar way. In order to get a relevant and consistent
height function the following inequality must hold for every path τ from j to i:

HX(τ) + HXij ≥ 1.

So, it must also hold for the path τ− with the lowest height value. Thus, we get

HX(τ−) + HXij ≥ 1

⇔ HXij ≥ 1−HX(τ−)

Therefore, as 1 − HX(τ−) = HX−
ij holds, HX−

ij is a lower bound on the height of the
arc (i, j). 2

Based on these two bounds we develop the second heuristic. The heuristic starts with
G := (T, E) and a relevant and consistent height function HX defined on the set E. The
function HX is extended by (i, j), (j, i) ∈ D \ E by setting HXij to HX+

ij and HXji

to 1 −HX+
ij , where E desribes the set of disjunctive and conjunctive arcs for which the

height is already fixed.

Now the question is how to choose a disjunctive arc (i, j), which is added to the current
arc set E. To choose an arc, we first compute the current cycle time αE for the graph
G := (T, E) and choose an operation k from a critical circuit.

Then we compute the following two values a+
ij and a+

ji. The maximum value of these two
values is denoted by a+

max(i, j).

a+
ij = max{L(µ)− αEHX(µ)|µ is a path from k to i}+

Lij − αEHX+
ij +

max{L(τ)− αEHX(τ)|τ is a path from j to k} (7.42)

a+
ji = max{L(µ)− αEHX(µ)|µ is a path from k to j}+

Lji − (1− αEHX+
ij) +

max{L(τ)− αEHX(τ)|τ is a path from i to k} (7.43)

7.5 Start heuristics 142

The next arc (i, j) which is added to the arc set E is the arc with the minimal a+
max(i, j)-

value.

Summarizing, we have the following procedure SH2 which provides a relevant and con-
sistent height function.

1 E := E;
2 D := List of all disjunctions (i, j) with i < j;
3 while D 6= ∅ do
4 a+

min := ∞;
5 αE := Actual cycle time of G := (T, E);
6 for each arcs (i, j) ∈ D do
7 Calculate HX+

ij according to (7.40);
8 Calculate HX−

ij according to (7.41);
9 if (HX−

ij > HX+
ij) then

10 return No_consistent_solution;
11 Compute a+

ij according to (7.42);
12 Compute a+

ji according to (7.43);
13 a+

max(i, j) := max{a+
ij, a

+
ji};

14 if (a+
min > a+

max) then
15 a+

min := a+
max;

16 (ic, jc) := (i, j);
17 D := D \ (ic, jc);
18 Set HXicjc := HX+

icjc
;

19 E := E ∪ {(ic, jc), (jc, ic)};

Listing 4: Procedure SH2

Now we show that the second heuristic always computes a relevant and consistent height
function.

Theorem 7.32 The procedure SH2 computes always a relevant and consistent height
function.

Proof: The procedure terminates with an inconsistent height function, if HX−
ij > HX+

ij

holds. This is equivalent to
1−HX+

ji > HX+
ij

or
1 > HX+

ij + HX+
ji .

7.5 Start heuristics 143

Thus, the procedure cannot find a consistent height function if there exists a circuit with
non-positive height. However, as the height of a disjunctive arc is fixed to the upper
bound, there cannot exist a circuit with non-positive height in the graph G = (T, E) after
the end of the while-loop. Thus, in each step of the while-loop HX−

ij ≤ HX+
ij holds. 2

Up to now, we have presented the neighborhoods and the start heuristics for our tabu
search. In the following section, we present some implementation details and the compu-
tational results.

8. Implementation and Computational Results 144

8 Implementation and Computational Results

In this section, we describe some implementation details and report some computational
results. We implemented all algorithms in C and tested these algorithms on a Celeron
1.8GHz computer with operation system Linux and 256MB general storage.

First, we present the test data. Then in Section 8.2 we describe the detailed settings for
our tabu search procedure. In Section 8.3 we finally present the computational results for
several different applications.

8.1 Test Data

We tested our algorithms on the following applications:

• cyclic job shop with and without blocking and HX?0 ∈ {1, 2},

• cyclic job shop with machine chains repetition with and without blocking and
HXMPS ∈ {1, 2},

• cyclic job shop with job chains with and without blocking and HXJob ∈ {1, 2} and

• cyclic job shop with machine chains and blocking and one transportation robot and
HXMPS = {1, 2}.

As there exists no benchmark instances for all these different applications we transform
the job-shop benchmark instances given in Table 8.1 into instances for the consider appli-
cations.

Instance #jobs #machines #operations
la01 10 5 50
la02 10 5 50
la03 10 5 50
la04 10 5 50
la05 10 5 50
la06 15 5 75
la07 15 5 75
la08 15 5 75
la09 15 5 75
la10 15 5 75

8.1 Test Data 145

Instance #jobs #machines #operations
la11 20 5 100
la12 20 5 100
la13 20 5 100
la14 20 5 100
la15 20 5 100
la16 10 10 100
la17 10 10 100
la18 10 10 100
la19 10 10 100
la20 10 10 100
la21 15 10 150
la22 15 10 150
la23 15 10 150
la24 15 10 150
la25 15 10 150
la26 20 10 200
la27 20 10 200
la28 20 10 200
la29 20 10 200
la30 20 10 200
la31 30 10 300
la32 30 10 300
la33 30 10 300
la34 30 10 300
la35 30 10 300
la36 15 15 225
la37 15 15 225
la38 15 15 225
la39 15 15 225

Table 8.1: Job-Shop benchmark problems

These job shop problems are taken from [5].

For the problem with one transport robot we use as underlying problem the instances la01
and la06. For the transportation times dij and the un- and loading times εi for the robot
we consider the following cases:

8.2 Experiments Setup 146

• dij = d for all i, j ∈ M and εi = ε for all i ∈ M . The names of the test instances
are la0i 1 d ε with i ∈ {1, 6}.

• dij, εi are randomly generated from an interval [1, DMAX], [1, εMAX]. The chosen
dij values are adjusted so that the triangle inequality holds. The names of the test
instances are la0i 2 DMAX εMAX with i ∈ {1, 6}.

• dij = D ∗ |i − j| for all i, j ∈ M and εi = ε for all i ∈ M . The names of the test
instances are la0i 3 D ε with i ∈ {1, 6}.

The name of the test set for the problems with one transportation robot is JR.HXMPS .

The names of the test instances for the applications without one transportation robot are
J.HX?0 for the cyclic job shop problems, JM.HXMPS for the cyclic job shop problems
with machine chains repetition and JC.HXJob for the cyclic job shop problems with job
chains repetition.

8.2 Experiments Setup

Several tests have been performed to investigate the influence of

• the neighborhood,

• the choice of a strategy for selecting a neighbor,

• definition of the tabu status and

• organization of the tabu list.

From these preliminary tests we chooses the neighborhoods N2 and N3 for the different
cyclic job problem without blocking and N9 and NBlock

9 together with heuristic H1 and H2

for the cyclic job shop problems with blocking. For the problem with one transportation
robot we use the adjusted neighborhoods N9 and NBlock

9 together with heuristics H1 and
H2.

In each iteration of the tabu search procedure the current solution is replace by the neigh-
bor with the best solution value.

We use the following type of attributes TB to describe moves. As in the neighbor-
hoods N3, N9 and NBlock

9 several arcs are changed we consider only the first arc which is
changed to describe moves. Thus, TB is given by

8.3 Computational Results 147

• the first arc (b(i), i′) for which the height HXb(i),i′ is changed and

• the value HXb(i)i′ before its change.

In connection with TB we choose the following aspiration criterion: accept tabu moves
if it improves the best solution found so far.

To decide whether a neighbor is tabu or not we check for all changed arcs whether one
of these arcs is in the tabu list TL. If one of the arcs is in the tabu list and the neighbor
does not improve the best solution found so far, we cannot accept the neighbor as a new
starting solution for the next iteration of the tabu search.

We organize the tabu list TL in the following way: We start with an empty list. Then
the attributes of all visited neighbors are inserted into the list until the list has reached a
maximal length LMAX . In this case, the oldest entry is replaced by the attribute of the
actual solution. If all neighbors of a solution are tabu, then the oldest entries are deleted
one by one until one neighbor is not tabu. The maximal tabu list length is computed by
LMAX = n · m · k with k ∈ {0.1, 0.15, 0.2, 0.25, 0.3}, where n is the number of jobs
and m is the number of machines. For the problems without blocking we use as a start
heuristic SH1 and SH2. For the problems with blocking we use only SH1.

We decided to stop each run of our tabu search procedure after 1000 non-improving steps
or after 3600 seconds of computation time.

8.3 Computational Results

In this section, we present the computational results for the different applications. The
section is divided into three parts. In the first part, we consider the applications without
blocking, then the applications with blocking and finally, we discuss the results for the
problem with blocking and one transportation robot.

In each part, we first present the best results for each test instance. Furthermore we analyse
which neighborhood contributes most to the best results. For the analysis we compute the
following values:

• the average value ∆avg for the relative deviation

∆ :=
αH − αBest

αBest

· 100%

of the cycle time αH provided by the heuristic from the best solution αBest.

8.3 Computational Results 148

• the average computation time ∆CPU in seconds.

Finally, we compare our best results with the optimal results which can be found in the
literature.

Cyclic Scheduling Without Blocking

The best results for the different type of applications without blocking are given in Ta-
ble 8.2. If the best result is equal to the computed lower bound, which means that we have
found the optimal solution, then we add the symbol ∗ to the best result.

Cyclic Job Shop Cyclic Job Shop Cyclic Job Shop
with job chains with machine chains

Instance H?0 = 1 H?0 = 2 HJob = 1 HJob = 2 HMPS = 1 HMPS = 2
la01 666.0∗ 666.0∗ 666.0∗ 666.0∗ 666.0∗ 666.0∗

la02 655.0 635.0∗ 635.0∗ 635.0∗ 635.0∗ 635.0∗

la03 603.0 588.0∗ 588.0∗ 588.0∗ 588.0∗ 588.0∗

la04 590.0 537.0∗ 537.0∗ 537.0∗ 556.0 537.0∗

la05 593.0∗ 593.0∗ 593.0∗ 593.0∗ 593.0∗ 593.0∗

la06 926.0∗ 926.0∗ 926.0∗ 926.0∗ 926.0∗ 926.0∗

la07 890.0 869.0∗ 869.0∗ 869.0∗ 869.0∗ 869.0∗

la08 863.0∗ 863.0∗ 863.0∗ 863.0∗ 863.0∗ 863.0∗

la09 951.0∗ 951.0∗ 951.0∗ 951.0∗ 951.0∗ 951.0∗

la10 958.0∗ 958.0∗ 958.0∗ 958.0∗ 958.0∗ 958.0∗

la11 1222.0∗ 1222.0∗ 1222.0∗ 1222.0∗ 1222.0∗ 1222.0∗

la12 1039.0∗ 1039.0∗ 1039.0∗ 1039.0∗ 1039.0∗ 1039.0∗

la13 1150.0∗ 1150.0∗ 1150.0∗ 1150.0∗ 1150.0∗ 1150.0∗

la14 1292.0∗ 1292.0∗ 1292.0∗ 1292.0∗ 1292.0∗ 1292.0∗

la15 1207.0∗ 1207.0∗ 1207.0∗ 1207.0∗ 1207.0∗ 1207.0∗

la16 962.0 660.0∗ 756.0 660.0∗ 781.0 660.0∗

la17 785.0 683.0∗ 683.0∗ 683.0∗ 713.0 683.0∗

la18 861.0 623.0∗ 708.5 623.0∗ 768.0 623.0∗

la19 852.0 685.0∗ 721.0 685.0∗ 794.0 685.0∗

la20 902.0 744.0∗ 758.0 744.0∗ 769.0 744.0∗

la21 1070.0 935.0∗ 935.0∗ 935.0∗ 963.0 935.0∗

la22 960.0 830.0∗ 830.0∗ 830.0∗ 875.0 830.0∗

la23 1032.0∗ 1032.0∗ 1032.0∗ 1032.0∗ 1032.0∗ 1032.0∗

la24 955.0 857.0∗ 883.0 857.0∗ 924.5 857.0∗

la25 996.0 864.0∗ 872.0 864.0∗ 902.0 864.0∗

la26 1218.0∗ 1218.0∗ 1218.0∗ 1218.0∗ 1218.0∗ 1218.0∗

8.3 Computational Results 149

Cyclic Job Shop Cyclic Job Shop Cyclic Job Shop
with job chains with machine chains

Instance H?0 = 1 H?0 = 2 HJob = 1 HJob = 2 HMPS = 1 HMPS = 2
la27 1293.0 1188.0∗ 1188.0∗ 1188.0∗ 1197.0 1188.0∗

la28 1242.0 1216.0∗ 1216.0∗ 1216.0∗ 1216.0∗ 1216.0∗

la29 1212.0 1105.0∗ 1105.0∗ 1105.0∗ 1105.0∗ 1105.0∗

la30 1355.0∗ 1355.0∗ 1355.0∗ 1355.0∗ 1355.0∗ 1355.0∗

la31 1784.0∗ 1784.0∗ 1784.0∗ 1784.0∗ 1784.0∗ 1784.0∗

la32 1850.0∗ 1850.0∗ 1850.0∗ 1850.0∗ 1850.0∗ 1850.0∗

la33 1719.0∗ 1719.0∗ 1719.0∗ 1719.0∗ 1719.0∗ 1719.0∗

la34 1721.0∗ 1721.0∗ 1721.0∗ 1721.0∗ 1721.0∗ 1721.0∗

la35 1888.0∗ 1888.0∗ 1888.0∗ 1888.0∗ 1888.0∗ 1888.0∗

la36 1305.0 1028.0∗ 1153.0 1028.0∗ 1204.5 1028.0∗

la37 1483.0 980.0∗ 1223.0 980.0∗ 1326.0 980.0∗

la38 1267.0 876.0∗ 1123.0 876.0∗ 1157.5 876.0∗

la39 1274.0 1012.0∗ 1137.0 1012.0∗ 1172.0 1012.0∗

Table 8.2: Best results for the different cyclic job shop problems without blocking

As we can see, our tabu search approach computes very good results, especially for the
problems with height equal to two. Here we found for all instances and all different
applications an optimal solution. It turns out that the computed lower bound is very tight.

In Table 8.3 we compare the different neighborhoods. The main result is that on the
average both neighborhoods N2 and N3 lead almost to the same results. With the neigh-
borhood N3 we get slightly better results. Quite interesting is also the impact of the start
heuristics. In almost all cases, the second start heuristic leads to better results for both
neighborhoods. With the first start heuristic, we get only better results for the test set
JC.1.

8.3 Computational Results 150

Test Neighborhood N2 with Neighborhood N3 with
set SH1 SH2 SH1 SH2

∆avg ∆CPU ∆avg ∆CPU ∆avg ∆CPU ∆avg ∆CPU
J.1 1.74 656 0.46 129 0.48 762 0.21 241
J.2 0.08 463 0.03 83 0.00 372 0.00 250

JC.1 0.49 479 1.00 120 0.25 437 0.47 148
JC.2 0.00 376 0.00 66 0.00 291 0.00 66
JM.1 1.21 737 0.55 139 0.93 790 0.17 256
JM.2 0.00 456 0.00 106 0.00 388 0.00 266

Table 8.3: Comparison between the different neighborhoods and start heuristics

But the main disadvantage of the second start heuristic is the computational time which is
needed to compute a feasible solution. The average computational time ∆CPU and the
average value ∆avg for the relative deviation from cycle time αH from the best solution
αBest is given in Table 8.4. Here αH is provided by the start heuristic SH2.

Test set ∆avg ∆CPU
J.1 16.71 445.05
J.2 5.43 418.61

JC.1 30.20 467.41
JC.2 45.55 466.00
JM.1 12.81 687.39
JM.2 2.99 690.19

Table 8.4: Average computational time for start heuristic SH2

For almost every test set SH2 needs the same computational time as the tabu search with
the first start heuristic. The average computational time for the first start heuristic is less
than 2 seconds.

Finally, we compare the best results for the cyclic job shop with height one known from
the literature with our best results. Minimizing the cycle time for the cyclic job shop
with height one is equivalent to minimizing the maximal completion time for the classical
non-cyclic job shop problem. Here the deviation between our best results and the optimal

8.3 Computational Results 151

results is 1.18%. Thus, the results of our solution method are also very good for this kind
of problem.

Cyclic Scheduling With Blocking

In Table 8.5 the best results for the different type of problems with blocking are given.

Cyclic Job Shop Cyclic Job Shop Cyclic Job Shop
with job chains with machine chains

Instance H?0 = 1 H?0 = 2 HJob = 1 HJob = 2 HMPS = 1 HMPS = 2
la01 793.0 775.0 776.0 775.0 775.0 775.0
la02 793.0 748.0 740.0 740.0 757.0 744.0
la03 715.0 656.0 656.0 656.0 656.0 656.0
la04 743.0 677.0 677.0 666.0 714.0 677.0
la05 671.0 645.0 642.0 642.0 662.0 645.0
la06 1145.0 1072.0 1094.0 1094.0 1099.0 1094.0
la07 1048.0 1041.0 1024.0 1016.0 997.0 975.0
la08 1099.0 1071.0 1056.0 1053.0 1087.0 1066.0
la09 1202.0 1187.0 1179.0 1139.0 1173.0 1173.0
la10 1159.0 1113.0 1118.0 1116.0 1121.0 1112.0
la11 1553.0 1460.0 1511.0 1486.0 1509.0 1505.0
la12 1304.0 1304.0 1327.0 1325.0 1319.0 1299.0
la13 1499.0 1468.0 1469.0 1461.0 1465.0 1486.0
la14 1525.0 1498.0 1477.0 1477.0 1539.0 1493.0
la15 1598.0 1513.0 1507.0 1507.0 1542.0 1514.0
la16 1097.0 956.0 942.0 942.0 1031.0 953.0
la17 969.0 868.0 854.0 850.0 931.0 843.0
la18 1046.0 893.0 910.0 910.0 1004.0 879.0
la19 1094.0 920.0 911.0 911.0 1035.0 908.0
la20 1111.0 960.0 934.0 934.0 1018.0 1004.0
la21 1572.0 1432.0 1413.0 1413.0 1500.0 1441.0
la22 1442.0 1327.0 1348.0 1348.0 1390.0 1331.0
la23 1532.0 1422.0 1489.0 1475.0 1486.0 1443.0
la24 1423.0 1372.0 1446.0 1410.0 1478.0 1408.0
la25 1462.0 1375.0 1387.0 1317.0 1439.0 1380.0
la26 2121.0 1941.0 2016.0 1961.0 2030.0 1925.0
la27 2151.0 1997.0 2053.0 2053.0 2117.0 2038.0
la28 2063.0 2004.0 2013.0 1947.0 2121.0 2010.0
la29 1956.0 1834.0 1965.0 1938.0 1894.0 1813.0
la30 2140.0 2019.0 1924.0 1924.0 2136.0 2108.0
la31 3208.0 3073.0 3388.0 3248.0 3062.0 3097.0

8.3 Computational Results 152

Cyclic Job Shop Cyclic Job Shop Cyclic Job Shop
with job chains with machine chains

Instance H?0 = 1 H?0 = 2 HJob = 1 HJob = 2 HMPS = 1 HMPS = 2
la32 3569.0 3345.0 3661.0 3553.0 3418.0 3299.0
la33 3161.0 3103.0 3059.0 2905.0 3246.0 3042.0
la34 3432.0 3206.0 3015.0 2963.0 3352.0 3183.0
la35 3361.0 3134.0 3193.0 3139.0 3232.0 3155.0
la36 1916.0 1716.0 1751.0 1649.0 1769.0 1714.0
la37 2014.0 1840.0 1867.0 1867.0 1918.0 1868.0
la38 1897.0 1597.0 1637.0 1559.0 1822.0 1621.0
la39 1852.0 1697.0 1696.0 1696.0 1788.0 1716.0

Table 8.5: Best results for the different cyclic job shop problems without blocking

In Table 8.6 we compare the different tested neighborhoods and the heuristics H1 and
H2. It turns out that on average the use of heuristic H1 leads to better results even for the
problems with height 2. For the most problems, the neighborhoods based on the block
approach contributes the most to the best results.

One disadvantage of our local search approach is the high computation time which is due
to our proposed repair algorithm. We use, as already mentioned, two stop criteria for the
tabu search, the time limit and the criterion based on visiting non-improving solutions.
For these problems with blocking the stop criterion is in most cases the given time limit
of 3600 sec. We can assume that the results get better if we skip the time limit.

Test Neighborhood N9 with Neighborhood NBlock
9 with

set H1 H2 H1 H2

∆avg ∆CPU ∆avg ∆CPU ∆avg ∆CPU ∆avg ∆CPU
J.1 1.00 2482 2.89 2304 2.23 2415 2.48 2359
J.2 2.10 2494 1.88 2384 1.71 2533 2.07 2411

JC.1 1.69 2444 3.11 2891 1.20 2494 4.26 2929
JC.2 1.91 2603 5.74 2911 2.28 2558 5.90 2932
JM.1 1.49 2650 2.44 2551 1.29 2641 2.53 2548
JM.2 3.38 2786 1.83 2568 2.54 2660 1.87 2743

Table 8.6: Comparison between the different neighborhoods and heuristics

8.3 Computational Results 153

To sum up, the more complex heuristic H2 is only useful for the cyclic job shop with
machine chain repetition and not for all problems with height 2.

In Table 8.7 we compare our best results with the best results for the classical job shop
problem with blocking known from the literature. Here again our tabu search approach
computes good results. In the same table we also give the average deviation ∆avg LB of
the best results to the lower bound. Based on this value we can conclude that the lower
bound is not very useful to measure the results of the tabu search approach.

Test set ∆avg ∆avg LB
J.1 2.06 37.64

Table 8.7: Comparison between the best solutions, the optimal solutions, and the lower
bound

Cyclic Scheduling With Blocking and One Transportation Robot

In Table 8.8 the best results for the cyclic job shop with blocking and one transportation
robot are given.

Cyclic Job Shop with blocking
and one transportation robot

Instance HMPS = 1 HMPS = 2
la01 1 2 2 1146.0 1130.0
la01 1 2 3 1213.0 1213.0
la01 1 3 2 1217.0 1113.0
la01 1 3 3 1311.0 1211.0
la01 1 4 2 1182.0 1182.0
la01 1 4 3 1290.0 1270.0
la01 2 2 2 1146.0 1130.0
la01 2 2 3 1223.0 1196.0
la01 2 3 2 1073.0 1073.0
la01 2 3 3 1199.0 1199.0
la01 2 4 2 1173.0 1125.0
la01 2 4 3 1265.0 1185.0
la01 3 2 2 1237.0 1225.0
la01 3 2 3 1362.0 1347.0
la01 3 3 2 1387.0 1311.0

8.3 Computational Results 154

Cyclic Job Shop with blocking
and one transportation robot

Instance HMPS = 1 HMPS = 2
la01 3 3 3 1432.0 1375.0
la01 3 4 2 1558.0 1500.0
la01 3 4 3 1636.0 1636.0
la06 1 2 2 1847.0 1830.0
la06 1 2 3 1801.0 1801.0
la06 1 3 2 1741.0 1741.0
la06 1 3 3 2045.0 2029.0
la06 1 4 2 1962.0 1962.0
la06 1 4 3 2049.0 2049.0
la06 2 2 2 1811.0 1811.0
la06 2 2 3 1783.0 1783.0
la06 2 3 2 1773.0 1773.0
la06 2 3 3 1854.0 1854.0
la06 2 4 2 1805.0 1805.0
la06 2 4 3 1950.0 1881.0
la06 3 2 2 1984.0 1984.0
la06 3 2 3 2117.0 2115.0
la06 3 3 2 2102.0 2102.0
la06 3 3 3 2334.0 2245.0
la06 3 4 2 2437.0 2408.0
la06 3 4 3 2710.0 2677.0

Table 8.8: Best results for the cyclic job shop with blocking and one transportation robot

In Table 8.9 the different tested neighborhoods together with the heuristics H1 and H2 are
compared. Here it turns out that the use of heuristic H2 leads to better results for both test
sets.

As for the problems with blocking, the computation time is very high. Again, the given
time limit of 3600 seconds stops in the most cases our tabu search. We can assume that
the results get better if we skip the time limit.

8.3 Computational Results 155

Test Neighborhood N9 with Neighborhood NBlock
9 with

set H1 H2 H1 H2

∆avg ∆CPU ∆avg ∆CPU ∆avg ∆CPU ∆avg ∆CPU
JR.1 1.36 3624 1.24 3616 1.65 3625 1.37 3613
JR.2 4.58 3623 3.28 3629 4.70 3643 3.15 3627

Table 8.9: Comparison between the different neighborhoods and heuristics

To sum up, for problems with blocking and one transportation robot the neighborhood N9

and NBlock
9 together with heuristic H2 lead to the best results. As there exists no compu-

tational results for this type of problem in the literature, we cannot give any comparison.

9. Concluding remarks 156

9 Concluding remarks

In this thesis, we develop a general framework to describe and to model various cyclic
scheduling problems. The foundation for this model is on the one hand the GBCSP and
on the other hand, the alternative graph model that describes blocking situations. The
latter is known from the classical non-cyclic scheduling literature.

For the GBCSP, we develop the necessary theoretical background to solve general prob-
lems without any resource conflicts. Furthermore, we generalize Howard’s Algorithm,
a practicably very fast algorithm to compute the optimal cycle time. We also adapt the
alternative graph model to model cyclic problems with blocking.

We analyse several cyclic scheduling problems both with and without blocking, and trans-
portation robots proposed in the literature, and we show how to model these problems
within our general framework. To model special applications in the area of software
pipelining we generalize the alternative graph model.

In the last part of this thesis, we develop a local search method to solve general cyclic
scheduling problems. To evaluate our new solution method, we test this method with
several cyclic scheduling problems from the literature. Here, it turns out that the solution
method performs very well on problems without blocking and without any transportation
robots and on problems with blocking.

Another result of the evaluation of our local search method is that the computed lower
bounds for problems with blocking are not very tight. Therefore, it would be necessary to
develop better methods and algorithms to compute such lower bounds for problems with
blocking.

Also, new start heuristics for these kinds of problems should be developed. Another
interesting aspect would be to analyse the relationship between the flow time and the cycle
time. It would be interesting to see how our local search approach works on the problem
of minimizing the flow time for a given upper bound on the cycle time. Furthermore, new
solution methods for problems with time window constraints, as exist in hoist scheduling
problems, should be developed. Although we do not think that a repair algorithm similar
to the algorithm proposed by us for the problems with blocking and time windows can
be developed. This is due to the fact that it is already a hard problem to find a feasible
solution when some of the disjunctive constraints are fixed in advance. Therefore, new
ideas for a local search approach must be developed. One idea could be to allow moves
to infeasible solutions during the search process.

Another area of further research would be to analyse other software pipelining problems
in order to get a better understanding of the types of problems which occur in this area.
This could lead to more discussions and exchange between the different research groups.

10. Bibliography 157

10 Bibliography

[1] ILOG CPLEX: Mathematical Programming Optimizer.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin (1993). Network Flows. Englewood
Cliffs: Prentice Hall.

[3] V. Allan, R. Jones, R. Lee, and S. Allan (1995). Software Pipelining. ACM Com-
puting Surveys 27(3), 367–432.

[4] E. Balas (1969). Machine sequencing via disjunctive graphs: An implicit enumera-
tion algorithm. Operations Research 17(6), 941–957.

[5] J.E. Beasley (1990). OR-Library: distributing test problems by electronic mail.
Journal of the Operational Research Society 41(11), 1069–1072.

[6] N. Brauner, G. Finke, and W. Kubiak (1997). A proof of the Lei and Wang claim.
Technical report, Laboratoire Leibnitz, Institut IMAG, Grenoble.

[7] P. Brucker (2004). Scheduling algorithms. Fourth edition. Berlin: Springer-Verlag.

[8] P. Brucker and T. Kampmeyer (2005). Tabu search algorithms for cyclic Machine
scheduling problems. Journal of Scheduling 8, 303–322.

[9] P. Brucker and T. Kampmeyer (2005). Tabu search algorithms for cyclic machine
scheduling problems with blocking. In G. Kendall, L. Lei, and M. Pinedo, eds.,
Proceedings of the 2nd Multidisciplinary International Conference on Scheduling:
Theory and Applications, volume 1, 107–108.

[10] P. Brucker and S. Knust (2000). A linear programming and constraint propagation-
based lower bound for the RCPSP. European Journal of Operational Research 127,
355–362.

[11] P. Brucker and S. Knust (2003). Lower bounds for resource-constrained project
scheduling problems. European Journal of Operational Research 149(2), 302–313.

[12] J. Carlier and P. Chrétienne (1988). Les Problèmes d’ordonnancement. Masson,
Paris.

[13] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein
(1981). Register allocation via coloring. Comput. Lang. 6(1), 47–57.

10. Bibliography 158

[14] A. Che, C. Chengbin, and E. Levner (2003). A polynomial algorithm for 2-degree
cyclic robot scheduling. European Journal of Operational Research 145, 31–44.

[15] H. Chen, C. Chu, and J.-M. Proth (1995). Cyclic hoist scheduling based on graph
theory. In Emerging Technologies and Factory Automation, 1995. ETFA ’95, Pro-
ceedings., 1995 INRIA/IEEE Symposium on, 451–459.

[16] P. Chrétienne (1991). The basic cyclic scheduling problem with deadlines. Discrete
Applied Mathematics 30, 109–123.

[17] V. Chvatal (1983). Linear programming. New York - San Francisco: W. H. Freeman
and Company.

[18] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. Mc Gettrick, and J.P. Quadrat (1998).
Numerical Computation of Spectral Elements in Max-Plus Algebra. In Proc. IFAC
Conf. on Sys. Structure and Control.

[19] G. Cohen, D. Dubois, J.P. Quadrat, and M. Viot (1985). A linear system theoretic
view of discrete event process and its user for performance evaluation in manufac-
turing. IEEE Transactions on Automatic control 30(3), 210–220.

[20] Y. Crama, V. Kats, J. van de Klundert, and E. Levner (2000). Cyclic scheduling in
robotic flow-shops. Annals of Operations Research 96, 97–124.

[21] Y. Crama and J. van de Klundert (1997). Cyclic scheduling of identical parts in a
robotic cell. Operations Research 45(6), 952–965.

[22] G.B. Dantzig, W.O. Blattner, and M.R. Rao (1966). Finding a cycle in a graph with
minimum cost to time ratio with application to a ship routing problem, 77–84. New
York: Gordon and Breach.

[23] A. Dasdan, R.K. Gupta, and S.S. Irani (1998). An Experimental Study of Minimum
Mean Cycle Algorithms. Technical Report 98-32, University of California.

[24] D. Fimmel and J. Müller (2001). Optimal software pipelining under resoucre con-
straints. International Journal of Foundations of Computer Science 12(6), 697–718.

[25] F. Glover (1989). Tabu search. I. ORSA Journal on Computing 1, 190–206.

[26] F. Glover (1990). Tabu search. II. ORSA Journal on Computing 2, 4–32.

[27] N. G. Hall, H. Kamoun, and C. Sriskandarajah (1998). Scheduling in robotic cells:
Complexity and steady state analysis. European Journal of Operational Research
109(1), 43–65.

10. Bibliography 159

[28] N.G. Hall, H. Kamoun, and C. Sriskandarajah (1997). Scheduling in robotic cells:
Classification, two and three machine cells. Operations Research 45(3), 421–439.

[29] N.G. Hall, T.E. Lee, and M.E. Posner (2002). The Complexity of Cyclic Shop
Scheduling Problems. Journal of Scheduling 5(4), 307–327.

[30] C. Hanen (1994). Study of a NP-hard cyclic scheduling problem: The recurrent
job-shop. European Journal of Operational Research 72, 82–101.

[31] C. Hanen and A. Munier (1995). Cyclic scheduling on parallel processors: on
overview. In P. Chretienne, E.G. Coffman, J.K. Lenstra, and Z. Liu, eds., Scheduling
Theory and Its Applications, chapter 4, 194–226. New York: John Wiley and Sons.

[32] C. Hanen and A. Munier-Kordon (2004). Periodic Schedules For Linear Precedence
Constraints. Technical report, Laboratoire LIP6, Paris.

[33] K.L. Hitz (1980). Scheduling of Flexible Flow Shops II. Technical Report LIDS-R-
1049, Laboratory for Information and Decision Systems, MIT, Cambridge, USA.

[34] R.A. Howard (1960). Dynamic Programming and Markov Processes. New York,
NY: Technology Press & Wiley.

[35] J. Hurink and S. Knust (2002). A tabu search algorithm for scheduling a single robot
in a job-shop environment. Discrete Applied Mathematics 119, 181–203.

[36] I. Ichimori and F. Soumis (1995). Schedule efficiency in a robotic production cell.
International Journal of Flexible Manufacturing Systems 7, 5–26.

[37] I. Ioachim, E. Sanlaville, and M. Lefebvre (2001). The basic cylcic scheduling
model for robotic flow shops. INFOR - Information systems and operational re-
search 39(3), 257–277.

[38] R.M. Karp and J.B. Orlin (1981). Parametric shortest path algorithms with an appli-
cation to cyclic staffing. Discrete Applied Mathematics 3, 37–45.

[39] V. Kats and E. Levner (1998). Cyclic scheduling of operations for a part type in an
FMS handled by a single robot: a parametric critical-path approach. The Interna-
tional Journal of Flexible Manufacturing Systems 10, 129–138.

[40] S. Knust (1999). Shop-scheduling problems with transportation. Ph.D. thesis, Uni-
versität Osnabrück, Fachbereich Mathematik/Informatik.

[41] W. Kubiak, S.X.C. Lou, and Y. Wang (1996). Mean flow time minimization in
reentrant job shops with hub. Operations Research 44, 764–776.

10. Bibliography 160

[42] C. Kuijpers (2001). Cyclic Machine Scheduling with Tool Transportation. Enschede:
Disseration, University of Twente.

[43] T.E. Lee and M. Posner (1997). Performance Measures and Schedules in Periodic
Job Shop. Operations Research 45, 72–91.

[44] L. Lei and T.J. Wang (1989). A proof: the cyclic hoist scheduling problem is NP-
complete. Working paper 890016, Rudgers University.

[45] J.M.Y. Leung, G. Zhang, X. Yang, R. Mak, and K. Lam (2004). Optimal Cyclic
Multi-Hoist Scheduling: A Mixed Integer Programming Approach. Operations Re-
search 52(6), 965–976.

[46] V. Lev and I. Adiri (1984). V-shop scheduling. European Journal of Operational
Research 18, 51–56.

[47] E. Levner and V. Kats (1998). A parametrical critical path problem and an applica-
tion for cyclic scheduling. Discrete Applied Mathematics 87, 149–158.

[48] E. Levner, V. Kats, and V.E. Levit (1997). An improved algorithm for a cyclic robotic
scheduling problem. European Journal of Operational Research 97, 500–508.

[49] E.V. Levner (1969). Optimal planning of parts machining on a number of machines.
Automation and Remote Control 12, 1972–1981.

[50] A. Mascis and D. Pacciarelli (2002). Job-Shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research 143, 498–517.

[51] H. Matsuo, J.S. Shang, and R.S. Sullivan (1991). A crane scheduling problem in
a computer-integrated manufacturing environment. Management Science 17, 587–
606.

[52] S.T. McCormick, M. Pinedo, S. Shenker, and B. Wolf (1989). Sequencing in an
assembly line with blocking to minimize cycle time. Operational Research 37(6),
925–935.

[53] M. Middendorf and V.G. Timkovsky (2002). On Scheduling cycle shops: Classifi-
cation, complexity and approximation. Journal of Scheduling 5(2), 135–169.

[54] A. Munier (1996). The basic cyclic scheduling problem with linear precedence
constraints. Discrete Applied Mathematics 64, 219–238.

[55] T. Nieberg (2002). Tabusuche für Flow-Shop und Job-Shop Probleme mit begren-
ztem Zwischenspeicher. Master’s thesis, University of Osnabrück.

10. Bibliography 161

[56] E. Nowicki and C. Smutnicki (1996). A fast tabu search algorithm for the job shop
problem. Management Science 42(6), 797–813.

[57] L.W. Phillips and P.S. Unger (1976). Mathematical programming solution of a hoist
scheduling program. AIIE Transactions 8(2), 219–225.

[58] M. Pinedo (2002). Scheduling: Theory, Algorithms and Systems. 2nd edition. Pren-
tice Hall.

[59] B.R. Rau and J.A. Fisher (1993). Instruction-level parallel processing: History,
overview and perspective. Journal of Supercomputing 7, 9–50.

[60] R. Reiter (1968). Scheduling parallel computations. Journal of the ACM 15, 590–
599.

[61] I. V. Romanovskii (1967). Optimization of stationary control of a discrete determin-
istic process. Cybernetics 3, 52–62.

[62] R. Roundy (1992). Cyclic Schedules for job-shops with identical jobs. Mathematics
of Operations Research 17, 842–865.

[63] B. Roy and B. Sussmann (1964). Les problèmes d’Ordonnancement avec Con-
straints Disjonctives. Note DS no. 9 bis, SEMA, Paris.

[64] Harald Scheid (1994). Zahlentheorie, 2nd edition. BI Wissenschaftsverlag.

[65] J.W. Seo and T.E. Lee (2002). Steady-State Analysis and Scheduling of Cyclic
Job Shops with Overtaking. The International Journal of Flexible Manufacturing
Systems 14, 291–318.

[66] R. Sethi (1975). Complete register allocation problems. SIAM Journal of Computing
4(3), 226–248.

[67] S.P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz, and W. Kubiak (1992). Se-
quencing of parts and robot moves in a robotic cell. International Journal of Flexible
Manufacturing Systems 4, 331–358.

[68] J.S. Song and T.E. Lee (1998). Petri net modeling and scheduling for cyclic job shop
with blocking. Computers and Industrial Engineering 34(2), 281–295.

[69] G. Steiner and Z. Xue (205). Scheduling in reentrant robotic cells: Algorithms and
complexity. Journal of Scheduling 8, 25–48.

10. Bibliography 162

[70] R.E. Tarjan (1972). Depth first search and linear graph algorithms. SIAM Journal
on Computing 1(2), 146–160.

[71] M.Y. Wang, S.P. Sethi, and S.L. van de Velde (1997). Minimizing makespan in a
class of reentrant shops. Operations Research 45, 702–712.

[72] N.E. Young, R.E. Tarjan, and J.B. Orlin (1991). Faster parametric shortest path and
minimum-balance algorithms. Networks 21, 205–221.

