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1 Introduction

Polyoxometalate chemistry has successfully improved the synthesis of magnetic mole-
cules in recent years. Since the synthesis of Mn12 [1], which can be regarded as the
birth of this new class of materials, many different molecules of various sizes and
structures have been produced [2, 3]. These molecules consist of many atoms, but
their magnetic nature originates from a number of paramagnetic ions, whose unpaired
electrons form collective angular momenta, referred to as spins. The number of
interacting spins ranges from as few as two up to several dozens, which is realized in
the giant Keplerate molecule {Mo72Fe30}, where 30 paramagnetic Fe3+ ions occupy
the vertices of an icosidodecahedron [4].

Magnetic molecules usually appear as macroscopic samples. However, the magnetic
interactions between molecules are often negligible compared to the intramolecular
interactions. Measurements of the sample hence reflect properties of single molecules,
which are significantly different from bulk magnets. Various possible fields of applica-
tion may be offered by the magnetic molecules, including quantum computing, data
storage, nano switches, and even biomedicine [2, 3, 5, 6]. However, some applications
have to be considered as speculative so far. Our main interest in magnetic molecules
arises from the fact that they represent mesoscopic quantum systems, i.e. they can
neither be described as single particles nor as solids.

In most magnetic molecules the localized spins couple antiferromagnetically, and the
interaction can be accurately described by the Heisenberg model [7]. For the under-
standing and prediction of the properties of a spin system, the eigenvalue spectrum of
the Hamiltonian has to be calculated or at least approximated. To this end, various
methods have been developed, or adopted from other fields.

The existence of symmetries can allow the analytical solution of the eigenvalue prob-
lem. Analytical solutions are found very rarely, since their derivations often rely on
special substitutions of the operators in the Hamiltonian, which are possible only for
certain systems. Furthermore, no general recipe can be given for the development
of an analytical solution. The existence (and knowledge) of an analytical solution
hence remains an exceptional situation. However, analytical solutions are extremely
valuable for the verification of numerical data, so that new algorithms can first be
applied to systems whose eigenspectra are known, and used to calculate data for
other systems only after they have been proven to deliver accurate results.

Another more general tool for the calculation of the eigenvalue spectrum is the nu-
merical exact diagonalization method. It is not limited to a special class of systems,
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1 Introduction

but only by the size of the Hilbert space of the model. The term “numerical exact
method” refers to the fact that the method uses the unmodified Hamiltonian, hence
it is exact, but incorporates numerical algorithms to perform the diagonalization.
This approach is therefore only exact with respect to the numerical precision of the
algorithm and the computer it is processed on. Exact diagonalization is limited to
small systems, since the size of the Hilbert space grows exponentially with the num-
ber of spins, although the exploitation of symmetries can help to reduce the effective
size [8].
For the analysis of ground state (or low-temperature) properties, the Lanczos or
DMRG methods [9] extend the class of numerically treatable molecules, since they
reduce the numerical effort by targeting only a limited number of eigenstates.
Monte Carlo methods have been utilized to calculate thermodynamic properties di-
rectly, but their main focus is on the behavior of an infinite lattice of spins [10].
Although the simulations are performed with a finite number of spins, the results are
extrapolated after analyzing the dependence on the system size. The application of
Monte Carlo methods to magnetic molecules is only found rarely, e.g. in references
[11, 12].
The methods presented above operate on the unmodified Hamiltonian, the approx-
imation arises from the use of numerical algorithms with a limited precision or the
reduction of the set of solutions. Another approach of approximation is the substitu-
tion of the Hamiltonian by a simplified model that can be diagonalized more easily.
The Ising model, e.g., reduces an s = 1

2 Heisenberg system to a dependence on only
the z-component, and the Ising Hamiltonian is automatically diagonal in the basis
of Ŝz-eigenstates. Analytical solutions are known for both one- and two-dimensional
Ising systems, hence the Ising model has become the standard model to demonstrate
and verify Monte Carlo implementations [10].
For the class of magnetic molecules, the rotational band model was introduced to
describe the low-energy spectrum of the antiferromagnetic Heisenberg Hamiltonian
[13]. Whereas some structures (e.g. dimer, trimer, tetrahedron) possess strict rota-
tional bands, the spectra of ring systems and various polytopes were shown to exhibit
a nearly quadratic dependence on the total spin S.
In this work, we will use the rotational band model to derive an approximation
of the inelastic neutron scattering (INS) cross-section of {Mo72Fe30} (see chapter
2). We will analyze the degeneracies of the eigenvalues and infer the dependence of
the energy spectrum on an external magnetic field. Our results are then compared
to INS experiments, which were performed at various temperatures and magnetic
field strengths. The verification of our results by comparison with the experiment
is intended to broaden the knowledge of the range of applicability of the rotational
band model. The model has already been shown to comply with magnetization and
susceptibility data [14], but since inelastic neutron scattering can directly measure
the excitation spectrum of the molecule, the successful application of our approach
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substantiates the validity of the rotational band model.
Whereas the comparison of the rotational band model approximation to experimental
results verifies a theory that was developed specifically for magnetic molecules, this
class of materials can serve as an example for studying general questions of quantum
mechanics, as well.
Since chemistry now allows the preparation of magnetic molecules with various spin
quantum numbers, this class of materials can also be utilized for studying the rela-
tions between classical and quantum regime. Due to the correspondence principle,
a quantum spin system can be described exactly by classical physics for s → ∞.
However, the question remains for which quantum numbers s a classical calculation
yields a reasonable approximation. Classical Monte Carlo has been used to study
the properties of several magnetic systems [10], and the numerical data has been
successfully verified by experiments. The general assumption is that, for high tem-
peratures, the classical model can accurately predict the thermodynamic properties,
and that with growing spin quantum number, the range of applicability extends to
lower temperatures, since the system approaches the classical limit.
However, the argument for the allowed temperature range, where the quantum system
essentially behaves as a classical system, is often derived from the comparison with
the experiment, rather than from the analysis of the quantum Hamiltonian.
Our approach in this work is to develop a converging scheme that adds systematic
quantum corrections to the classical density of states. To this end, we will first
introduce the classical density of states in chapter 3 by giving a general definition
and relating it to statistical thermodynamics. We will give an exact solution for
Heisenberg spin rings, derived from an expression for the partition function. Fur-
thermore, we will discuss the two stochastic algorithms of classical Monte Carlo and
Wang-Landau sampling. Whereas Monte Carlo is mainly used as a reference method
for thermodynamic quantities, Wang-Landau sampling is able to give a numerical
approximation of the density of states itself.
The classical density of states is determined by the phase space volume of an energy
shell, i.e. all phase space points whose corresponding energies lie within a given energy
interval. The definition of the quantum spectrum is rather different, since it is derived
from the discrete set of energy eigenvalues [15]. Nevertheless, we will implement a
formalism that connects quantum and classical spectrum. The correspondence of
the two differently defined quantities relies on special quantum states that span the
Hilbert space and are parametrized by continuous variables. The main requirement
for these states is, however, that the expectation value of the quantum Hamiltonian
equals the value of the classical Hamiltonian function for the given parameters. For
the Heisenberg model this correspondence is satisfied by the spin-coherent states.
The main goal of the work presented in chapters 3 and 4 is to derive a controllable,
converging algorithm that approximates the quantum spectrum of a general Heisen-
berg spin system. The availability of such a method is eminently valuable, since
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1 Introduction

other approaches such as classical Monte Carlo rely on empirical arguments whether
the system is in the classical domain or not. Furthermore, our algorithm allows the
analysis of how the classical limit is approached, which gives general criteria for the
similarity of the classical density of states to the quantum spectrum.
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2 Quantum mechanical eigenvalue
spectrum

This chapter deals with aspects of the quantum mechanical energy spectrum of spin
systems. We will first introduce the Heisenberg Hamiltonian, which is used through-
out this thesis. The spectrum is then related to thermodynamical properties of the
system. The main focus of the chapter is on approximate methods to describe the
spectrum. After reviewing the eigenvalue problem and discussing aspects of exact
diagonalization, we will give brief summaries of two simplifications of the spectrum.
The rotational band model is presented more thoroughly, since it will be used to
explain results of neutron scattering experiments later.

2.1 Heisenberg model

In the work presented here, we will solely use the Heisenberg model to describe mag-
netic interactions between the localized magnetic moments of the molecules. The
Heisenberg model introduces an effective Hamiltonian, describing the electrostatic
interactions between the electrons as a coupling of the spins of the ions. The mag-
netic exchange interactions between two spins of the system are assumed to be scalar
products of the spin angular momentum operators, multiplied by the exchange pa-
rameter J :

Ĥ12 = J ŝ1 · ŝ2 . (2.1)

For a magnetic molecule, the Heisenberg Hamiltonian for the whole system is written
as the sum over all interacting pairs,

Ĥ =
∑

i<j

Jij ŝi · ŝj , (2.2)

where Jij denotes the interaction matrix, containing the exchange parameters of
pairs (i, j). The sign of the exchange parameter determines the type of interaction,
i.e. Jij > 0 denotes antiferromagnetic exchange, and Jij < 0 denotes ferromagnetic
exchange. This is easily deduced from eq.(2.2), when the spin operators are replaced
by classical vectors. Positive J then favors anti-parallel alignment of the vectors.
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2 Quantum mechanical eigenvalue spectrum

2.1.1 Angular momentum operators

The operators ŝi in eq.(2.2) are spin angular momentum operators. We will give a
brief summary of their properties [16].

The states | s 〉 are eigenstates of the square of the spin operator ŝ:

ŝ2 | s 〉 = s(s+ 1) | s 〉 (2.3)

The components of the vector operator ŝ satisfy the commutation relation

[

ŝα, ŝβ
]

= i ǫαβγ ŝ
γ with α, β, γ ∈ {x, y, z} , (2.4)

where ǫαβγ denotes the Levi-Civita symbol. All components commute with the square
of the spin operator:

[
ŝ2, ŝα

]
= 0 with α ∈ {x, y, z} . (2.5)

However, the components do not commute with each other, and the usual choice for
the axis of quantization is the z-axis. We can form a basis of the Hilbert space with
eigenstates of the ŝz-operator, denoted by | s,m 〉:

ŝz | s,m 〉 = m | s,m 〉 . (2.6)

The quantum number m can take values m = −s,−s+1, . . . , s (the dimension of the
Hilbert space is 2s+ 1), and the states are connected with the ladder operators

ŝ+ | s,m 〉 =
√

s(s+ 1) −m(m+ 1) | s,m+ 1 〉 (2.7)

and

ŝ− | s,m 〉 =
(
ŝ+
)† | s,m 〉 =

√

s(s+ 1) −m(m− 1) | s,m− 1 〉 (2.8)

The ladder operators can be expressed as linear combinations of the x- and y-
components of ŝ:

ŝ+ = ŝx + iŝy and ŝ− = ŝx − iŝy , (2.9)

Note that we have set the Planck constant ~ = 1 in all definitions. This convention
is used throughout this thesis, unless we specifically require ~, e.g. for the derivation
of the classical limit of a quantum mechanical property.

Product states

For a system of N spins, the Hilbert space is the product of the single-spin Hilbert
spaces. The basis states can be expressed as product states

| s1,m1, s2,m2, . . . , sN ,mN 〉 := | s1,m1 〉 ⊗ | s2,m2 〉 ⊗ · · · ⊗ | sN ,mN 〉 . (2.10)
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2.1 Heisenberg model

The dimension of the product Hilbert space is

dimH =
N∏

i=1

(2si + 1) , (2.11)

or in case of a common spin quantum number s,

dimH = (2s + 1)N . (2.12)

The total spin operator of the system is the sum of the individual spin operators:

Ŝ =

N∑

i=1

ŝi . (2.13)

However, the product states of the form (2.10) are not eigenstates of Ŝ2, but of the
z-component of the total spin

Ŝz =
N∑

i=1

ŝz
i , (2.14)

with

Ŝz | s1,m1, s2,m2, . . . , sN ,mN 〉

=

(
n∑

i=1

mi

)

| s1,m1, s2,m2, . . . , sN ,mN 〉 , (2.15)

where
∑n

i=1mi is referred to as the quantum number M .

2.1.2 Magnetic field

Eq.(2.2) only describes the mutual interactions of the spins of the molecule. Being
magnetic moments, the spins naturally interact with an external field, as well. The
Zeeman Hamiltonian describes the interaction of a magnetic moment with an external
magnetic field B:

ĤZeeman = −gµBB · Ŝ , (2.16)

where the magnetic moment is proportional to the total spin Ŝ of the system with
the Landé factor g = 2 and the Bohr magneton µB. Since we assume the isotropic
Heisenberg model, we can choose the z-axis as the axis of quantization, and the total
Hamiltonian can be written as

Ĥ =
∑

i<j

Jij ŝi · ŝj − gµBBŜ
z , (2.17)

where B is the magnetic field in z-direction. Note that the sign of the Zeeman
interaction is arbitrary, since the Heisenberg model is symmetric in changing the sign
of the total quantum number M . We have chosen the minus sign for compatibility
with previous numerical calculations.
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2 Quantum mechanical eigenvalue spectrum

2.2 Exact diagonalization

The basis for the calculation of any physical property of the system is given by the
eigensystem of the Hamiltonian. In order to obtain the eigenvalues and eigenstates,
the equation

Ĥ |ψ 〉 = λ |ψ 〉 (2.18)

has to be solved.
For the numerical evaluation of the eigensystem, the Hamiltonian has to be expressed
by its matrix representation H, i.e. Hij = 〈 i | Ĥ | j 〉, where the states | i 〉 with
i = 1, 2, . . . ,dimH form a basis of the Hilbert space. The algorithm then uses matrix
operations to find the matrix U that diagonalizes the Hamiltonian H:

Hdiag = U †HU (2.19)

The columns of the matrix U represent the eigenvectors, and Hdiag is a diagonal
matrix containing the eigenvalues (hence the term “diagonalization”). The numerical
exact diagonalization results presented here are calculated using the linear algebra
package LAPACK [17].
Since the diagonalization is an algorithm that scales with the cube of the dimension
of the Hilbert space, it is important to minimize this dimension. If one can find a
set of mutually commuting operators, the diagonalization can be performed in sub-
spaces characterized by the quantum numbers related to the chosen operators. For
the Heisenberg Hamiltonian, e.g., one can use the total Ŝz-operator with the corre-
sponding quantum number M to divide the Hilbert space into mutually orthogonal
subspaces H(M), and perform the diagonalization in each subspace separately. In the
case of a ring system, a “shift-operator” T can be defined, which cyclically remaps
each spin to its next neighbor position. It commutes with both Ĥ and Ŝz and can
be used to further reduce the dimensions of the matrices to be diagonalized. For
molecules of different structures, analogous symmetry operators can often be found.

2.2.1 Thermodynamic averages

The statistical operator describing the canonical ensemble is given by [18]

ρ̂ =
e−βĤ

Tr e−βĤ
, (2.20)

where the denominator is referred to as the partition function:

Z(β) = Tr e−βĤ =
∑

ν

e−βEν , (2.21)

with β = 1/kBT and Eν the eigenvalues of Ĥ.
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2.3 Approximation of the quantum mechanical energy spectrum

Thermodynamic averages are evaluated using the trace over the product of the sta-
tistical operator and the respective observable Â:

〈〈Â〉〉 = Tr
(

ρ̂Â
)

=
1

Z
Tr
(

e−βĤÂ
)

. (2.22)

The internal energy is defined as the thermodynamic mean of the Hamiltonian of the
system:

U(β) := 〈〈Ĥ〉〉 =
1

Z(β)

∑

ν

Eν e
−βEν = − ∂

∂β
lnZ(β) . (2.23)

The specific heat can either be expressed as a second order derivative of the partition
function, or it can be described by the fluctuations of the Hamiltonian:

C(β) =

(
∂U

∂T

)

V

= kB β
2 ∂2

∂β2
lnZ(β) (2.24)

= kB β
2
(

〈〈Ĥ2〉〉 − 〈〈Ĥ〉〉2
)

. (2.25)

2.3 Approximation of the quantum mechanical energy
spectrum

After discussing the exact diagonalization of the Hamiltonian in the previous sec-
tion, we will now give examples of approximations of the energy spectrum. These
methods will not be used to derive new results, but they will serve as background
for discussions in later sections. Although the rotational band model described in
section 2.4 certainly is a method for the approximation of the quantum mechanical
energy spectrum, it is presented in a separate chapter, since it will be used to explain
experimental results in section 2.5

2.3.1 ”Binning” of energy eigenvalues

The true spectrum of a Heisenberg system consists of a vast number of different
eigenvalues (up to dimH, if no degeneracies are present). We will now analyze the
effect of reducing the number of distinct contributions to the spectrum by summating
over the weights of the eigenvalues contained in equally-sized energy intervals (energy
bins). The resulting approximated spectrum then consists only of the central energies
of the bins and the corresponding summated weights.

Figure 2.1 shows the temperature dependence of the internal energy with applied
“binning” of the spectrum compared to the exact result. The approximations with
∆E ≤ 5J can accurately describe the exact dependence except for very low temper-
atures. Since the curves are qualitatively very similar, the internal energy does not

9



2 Quantum mechanical eigenvalue spectrum

0 2 4 6 8
T / kB

-1
 J

-50

-40

-30

-20

U
 / 

J

full spectrum
∆E = 0.5 J
∆E = 1 J
∆E = 5 J
∆E = 10 J

Figure 2.1: Internal energy vs. temperature for the spin ring with N = 6, s = 5

2
. The

solid line represents the result for the full eigenvalue spectrum; other curves are
approximations for “binned” spectra with the given width of the energy bins.

provide us with an adequate tool for the distinction of the quality of the approxima-
tions.

Figure 2.2 shows the specific heat for different widths of the energy bins. The main
features of the exact curve are reproduced by all “binned” spectra but the ones with
∆E ≥ 5J , which significantly differs for the temperature interval that is shown. The
other two curves can reproduce the exact one for almost all temperatures. Only
for J−1kBT < 1, we can see a deviation from the so-called “Schottky peak”1 which
is determined by the gap between ground state and first excited state (E1 − E0 ≈
0.692J). This energy difference cannot be reproduced by a binned spectrum with
equidistant intervals, unless the width of the bins equals this energy gap (or is a
divisor, respectively).

Comparing to the results for the internal energy, we find that the specific heat is
more sensitive to the level of approximation of the energy spectrum. It exhibits
much stronger visual differentiation between the curves, since it is a second-order
derivative of the partition function, whereas the internal energy is of first order. We
will therefore use the specific heat as the measure of quality for other approximate
methods described in later sections.

1The Schottky peak is referred to as the maximum of the specific heat C(T ) of a system with two
energy levels
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0 2 4 6 8
T / kB

-1
 J

0

2

4

6

C
 / 

k B

full spectrum
∆E = 0.5 J
∆E = 1 J
∆E = 5 J
∆E = 10 J

Figure 2.2: Specific heat vs. temperature for the spin ring with N = 6, s = 5

2
. The

solid line represents the result for the full eigenvalue spectrum; other curves are
approximations for “binned” spectra with the given width of the energy bins.

2.3.2 High-temperature expansion of the partition function

The partition function (2.21) can be expressed as a series of traces of powers of Ĥ:

Z = Tr e−βĤ =

∞∑

n=0

(−1)n

n!
βn Tr Ĥn . (2.26)

This can be used to derive a high-temperature (low β) expansion of the internal
energy, since the literature lists exact expressions for traces of powers of Ĥ [19]:

Tr Ĥ0 = (2s + 1)N = dimH , (2.27)

Tr Ĥ1 = 0 , (2.28)

Tr Ĥ2 =
(∑

i<j

J2
ij

)1

3
s2(s+ 1)2(2s+ 1)N . (2.29)

Inserting (2.26) into the definition (2.23) and keeping only first-order terms in β, one
obtains

U(β) ≈ −TrĤ2

TrĤ0
β . (2.30)

Hence, the high-temperature limit of the specific heat can be expressed as

C(T ) =
TrĤ2

TrĤ0

1

kBT 2
, (2.31)
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2 Quantum mechanical eigenvalue spectrum

which becomes

C(T ) =
N

3
s2(s+ 1)2

1

kBT 2
(2.32)

for rings with N sites.
The high-temperature limit is equivalently obtained when the energy spectrum is
approximated by a Gaussian distribution with the same variance as the Hamiltonian
Ĥ.
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Figure 2.3: Spin ring with N = 6,s = 5

2
. Left: histogram of the quantum mechanical energy

spectrum (width of bins ∆E = 1J) and approximation with a Gaussian. Right:
high-temperature approximation of the specific heat compared to exact quantum
mechanical result.

Figure 2.3(left) shows a histogram of the quantum mechanical eigenvalue spectrum
of the spin ring with N = 6, s = 5

2 . The general shape of the energy distribution
is well described by the Gaussian, which has the same variance as the Hamiltonian.
The histogram entries add up to a total weight of 1, and the normalization of the
Gaussian is chosen so that it matches the histogram.
The graph on the right of figure 2.3 gives a comparison of the high-temperature
approximation of the specific heat with the exact result. Since only the second
moment of the energy distribution is used, we could not expect any details of the
shape of the specific heat to be reproduced by this approximation.

Classical limit of the variance of Ĥ

As mentioned in section 2.1.1, we set ~ = 1 in all equation, unless otherwise noted.
When we rewrite eq.(2.29) with ~, we can calculate the classical limit of the width
of the spectrum. The classical limit is approached when ~ → 0 and s → ∞, so that
~s→ 1. For the variance of the spectrum, this means that

lim
s→∞

~→0

Tr Ĥ2

Tr Ĥ0
= lim

s→∞

~→0

1

3

(∑

i<j

J2
ij

)

~
4s2(s+ 1)2 =

1

3

(∑

i<j

J2
ij

)

. (2.33)
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2.4 Rotational band model

The above formula allows us to calculate the variance of the classical density of states
analytically, thus providing a tool for the verification of numerical Wang-Landau
results (cf. Sec. 3.5).

2.4 Rotational band model

The thermodynamic behavior of a quantum system can be described completely,
if the full energy spectrum is known. However, the full quantum spectrum is not
always accessible. In the case of spin systems, the dimension of the Hilbert space
grows exponentially with the number of spins.

On the other hand, the Boltzmann factor e
−

Ei
kBT decides how much a given energy

eigenstate state |ψi 〉 contributes to the thermodynamic averages. If the temperature
is low, only a small number of energy levels is actually occupied and a huge part of the
spectrum can be neglected. It is therefore still valuable to develop an approximation
that can only describe the low-energy part of the spectrum.
For magnetic molecules of the form of rings with an even number of spins, it was
found that the series of minimum energies in subspaces of the total spin H(S) follow
a Landé rule: (Emin(S) − E0) ∝ S(S + 1) [20, 21].
These systems are bipartite, i.e. they can be decomposed into two sublattices of spins,
with no spin interacting with any other spin of the same sublattice. Classical systems
of this kind have a well known ground state referred to as a Néel state. Neighboring
spins are aligned anti-parallelly (next-nearest neighbors are parallel). This feature of
the classical ground state can be used to construct a quantum mechanical trial state
as an approximation of the true ground state. The Néel-like quantum ground state
would consist of two spins SA and SB , representing each sublattice and assuming
their maximum value SA = SB = Ns

2 , which are coupled to a total spin of S = 0.
The series of all Néel-like quantum states from coupling to the minimum S = 0 to
the maximum S = Ns leads to a parabolic energy spectrum [22]:

ENéel(S) = 4
J

2N

[

S(S + 1) − 2
Ns

2

(
Ns

2
+ 1

)]

(2.34)

The factor 4 fixes the equality of the energy of the Néel-like state with S = Ns and
the ground state of the corresponding ferromagnetically coupled system, which has
E = JNs2. The term rotational band was introduced for this type of spectrum,
because it resembles the spectrum of a rigid rotor.
Eq.(2.34) describes the spectrum of a two-spin system with an interaction strength
of 2J

N , where both spins ŜA and ŜB have quantum numbers SA = SB = Ns
2 . Thus,

an equivalent representation of (2.34) can be given by an effective Hamiltonian [13]

Ĥ = 4
J

2N

[

Ŝ2 − Ŝ2
A − Ŝ2

B

]

. (2.35)
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2 Quantum mechanical eigenvalue spectrum

The above equation can be used to derive an approximation of the whole spectrum,
because the spins of the sublattices A and B can be allowed to couple to sublattice
spin values between SA = 0 and SA = Ns

2 (SB accordingly). Reference [13] shows
that many systems exhibit a second parabolic band above the lowest one (Néel band).
In the rotational band model, this first excited band can be described by coupling
the two sublattice spins with SA = Ns

2 (maximum) and SB = Ns
2 − 1 (maximum

decreased by one) to a total spin S = [1, 2, . . . ,Ns− 1]. The missing S = 0 level
also agrees with the exact spectra of bipartite systems. However, higher excitations
should not be expected to be described adequately by the rotational band model.

In reference [13] it was also shown that the rotational band model can be extended
to rings with an odd number of spins as well as to other structures like octahedra,
icosahedra, and rings with next-nearest neighbor interaction. The formula for the
series of minimum energy states in subspaces H(S) has to be modified to match the
given structure:

Emin(S) ≈ E0 + J
D(N, s)

2N
S(S + 1) . (2.36)

The spin- and size-dependent parameter D(N, s) describes the curvature of the
parabola, whereas E0 is the ground state energy. These parameters were adjusted
so that eq.(2.36) reproduces the ground state energies of both the antiferromagnetic
and the ferromagnetic case. It was found that eq.(2.36) then showed good numerical
agreement to the minimum energies of the H(S) subspaces of the full Heisenberg
Hamiltonian.

2.4.1 Application to {Mo72Fe30}

Since the number of states in {Mo72Fe30} is astronomically large ((2s + 1)N = 630,
which is about Avogadro’s number), we don’t have access to the true energy spectrum
of this molecule. However, we can establish an approximation of the spectrum using
the rotational band model described in the previous section.

The ground state of the corresponding classical Hamiltonian of {Mo72Fe30}, where
the vector spin operators are replaced by classical vectors, can be found analytically.
Using graph theory, one can show that the corresponding graph to the interaction
matrix Jij in eq.(2.2) is three-colorable. This means each site can be assigned one out
of three colors, so that none of the neighboring sites has the same color. Therefore,
the ground state structure is composed of three sublattices, each containing ten spins.
On each of these sublattices, all spins point to the same direction. The sublattice
vectors are coplanar, and the angle between each two of them is 120 degrees [23].

The knowledge of the classical ground state forms the basis for the construction of an
approximate quantum Hamiltonian according to the rotational band model. The ten
spins on each sublattice first couple to a super-spin, and these three spin operators
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2.4 Rotational band model

Ŝ1, Ŝ2, and Ŝ3 then interact via a Heisenberg Hamiltonian:

Ĥrot.band = J
D(N, s)

N

[

Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3 + Ŝ3 · Ŝ1

]

= J
D(N, s)

2N

[

Ŝ2 − Ŝ2
1 + Ŝ2

2 + Ŝ2
3

]

. (2.37)

In order to achieve a better approximation of the real spectrum in the form of
eq.(2.36), the refined Hamiltonian introduced in reference [24] is used. A param-
eter γ is introduced, which adjusts the offset determined by the configuration of the
sublattice spins, and thereby shifts the ground state energy.

Ĥrot.band = J
D(N, s)

2N

[

Ŝ2 − γ
(

Ŝ2
1 + Ŝ2

2 + Ŝ2
3

)]

. (2.38)

This Hamiltonian can easily be diagonalized, and its energy eigenvalues are

E (S;S1, S2, S3) = J
D(N, s)

2N

[

S (S + 1) − γ

3∑

k=1

Sk (Sk + 1)

]

. (2.39)

This follows from the fact that each sublattice spin operator Ŝk commutes with the
total spin Ŝ2 and both the other sublattice spins.

Using the simple model, we can generate an approximate energy spectrum for our
molecule. We can independently choose the three sublattice spins in the allowed
interval

[
0, N

3 s = 25
]
. We refer to a band as the series of energy levels E(S;S1, S2, S3)

we get for a given choice of S1, S2, and S3, when the total spin quantum number S
is varied. The energy levels of the lowest band are obtained when all sublattice spin
quantum numbers assume their maximum value, Sk = N

3 s = 25.

The parameters D(N, s) and γ can be derived by enforcing the same energy eigen-
value of the ferromagnetic ground state for both the full Heisenberg Hamiltonian and
the simplified rotational band model. The ferromagnetic ground state exhibits the
maximum total spin S = Ns, and the corresponding energy eigenvalue is

E = 2Ns2J = 60 (
5

2
)2 J = 375J (2.40)

for the full Hamiltonian (2.2). The energy is doubled compared to a ring system of
N spins because each spin in {Mo72Fe30} has four instead of two neighbors. In the
simple model, the parameter γ = 1. Hence, the parameter D has to equal 6, in order
eq.(2.39) yields E = 2JNs2 for S = Ns and Sk = Ns

3 (all sublattice spins Sk assume
their maxima and couple to the maximum total spin).

In earlier investigations [25], we have confirmed that the series of lowest energies of
the H (S) subspaces indeed show a nearly parabolic dependence on S. Figure 2.4
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2 Quantum mechanical eigenvalue spectrum

shows our numerical results for the eigenvalues of the full Heisenberg Hamiltonian
using the DMRG algorithm [9, 26], and a fit to the refined rotational band model
as in eq.(2.39). The least-squares fitting procedure yields parameters D = 6.17 and
γ = 1.05, leading to a good global consistency of both curves.
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-100
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200
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400
E

m
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 / 

J

DMRG calculation
fit to rotational band

Figure 2.4: DMRG approximations for the lowest energy eigenvalues in subspaces H(S), and
the corresponding fit to the rotational band model

An alternative method to determine the parameters is by comparing to magnetization
measurements, resulting in D = 6.23 and γ = 1.07 [24]. The good agreement with the
above mentioned values of D = 6 and γ = 1 shows the applicability of this simplified
model.

Magnetic field

Adding a Zeeman term (cf. Sec. 2.1.2) for the interaction with a magnetic field,
eq.(2.38) becomes

Ĥrot.band = J
D(N, s)

2N

(

Ŝ2 − γ

3∑

k=1

Ŝ2
k

)

− gµBBŜ
z . (2.41)

Therefore the energy levels are:

E (S,M) = J
D(N, s)

2N

[

S (S + 1) − γ
3∑

k=1

Sk (Sk + 1)

]

− gµBBM . (2.42)

16



2.4 Rotational band model

Sources for degeneracies of energy levels

Each band generated by eq.(2.36) consists only of Smax + 1 = S1 + S2 + S3 + 1
different energy levels (S = [0, 1, . . . , Smax]). However, the dimension of the Hilbert
space (2s+ 1)N = 630 is retained by the simplified Hamiltonian, and these bands are
highly degenerate. The sources for the degeneracies can be classified by four types:

Type a): Coupling paths of sublattice spins

There are different paths to couple the ten spins to the respective sublattice spin Sk.
The number of degeneracies can be calculated using the following procedure:
Starting with one spin of quantum number S1 = s (where the index 1 now denotes the
number of spinsN , and not the number of the sublattice), the possible total spin when
coupled to another spin of the same kind can be S2 = [|S1 − s| = 0, 1, . . . , S1 + s = 2s].
There is only one path to reach each of the possible values of S2. When another spin s
is added, the total spin S3 of three spins can assume values from 0 (1

2 for half-integer
s) to 3s. Now for each possible configuration of S3, one has to add the degeneracies of
all those S2 configurations that can be coupled with s to the resulting S3. Coupling
S2 with s to S3 is possible, if

|S2 − s| ≤ S3 ≤ S2 + s . (2.43)

The procedure is continued accordingly until the total number of spins is reached
(S10 in the case of the {Mo72Fe30} sublattices).
Another formulation of the above can be given with a recurrence formula. The
number of paths leading to a given configuration (S,N) is

ds(S,N + 1) =

min(S+s,Ns)
∑

S′=|S−s|

ds(S
′, N)

with (N + 1) s ≥ S ≥
{

0 if 2s (N + 1) even
1
2 if 2s (N + 1) odd

. (2.44)

and trivially,

ds(S, 1) =

{
1 if S = s
0 else

. (2.45)

Table 2.1 illustrates the algorithm for the example of coupling four spins s = 3
2 . In

order to find the number of paths leading to S4 = 2, the degeneracy levels of the
three-spin system have to be summed from S3 = |S4 − s| = 1

2 to S3 = S4 + s = 7
2 .

Accordingly, the coupling paths for the sublattice spins (ten spins s = 5
2) were cal-

culated using a simple computer program implementing eq.(2.44). Table 2.2 only
shows the numbers of coupling paths which are interesting for our simulation, since
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2 Quantum mechanical eigenvalue spectrum

S
N 0 1

2 1 3
2 2 5

2 3 7
2 4 9

2 . . .

1 1
2 1 1 1 1
3 2 4 3 2 1 . . .

︸ ︷︷ ︸

4 11
...

Table 2.1: Coupling pyramid for an s = 3
2 system

only the sublattice spin configurations with large Sk are responsible for the low-lying
rotational bands.

S
N 0 1

2 1 3
2 2 5

2 3 7
2 4 9

2 5 . . . 23 47
2 24 49

2 25

1 1
2 1 1 1 1 1 1
3 2 4 6 5 4 . . .
...

10 . . . 45 9 1

Table 2.2: Coupling pyramid for a sublattice spin of the rotational band model. Ten
spins with s = 5

2 are coupled to the resulting sublattice spin.

Type b): Permutation of lattice spins

The three sublattice spins Sk contribute symmetrically to the Hamiltonian (2.38).
They can therefore be permuted without changing the energy eigenvalue. The number
of permutations depends on the configuration of the sublattice spins Sk:

dperm(S1, S2, S3) =







1 if S1 = S2 = S3
3!
2! = 3 if only two of the Sk are equal
3! = 6 if the Sk are all different

. (2.46)

Type c): Coupling paths for total spin

A given set of sublattice spins S1, S2 and S3 can be coupled to the total spin S via
different paths. The procedure to calculate the number of these paths is similar to the
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2.4 Rotational band model

one described for type a). Whereas for type a) ten spins of the same quantum number
s = 5

2 were coupled, the Sk can assume different values in the interval
[
0, Ns

3 = 25
]
.

Since we have already calculated the number of permutations of the lattices, we can
now choose one sequence for the coupling. At first, S1 and S2 are coupled to S12,
then the third sublattice spin S3 is added to S12 to obtain the total spin S.

The simple algorithm was implemented using a loop counting from S12 = |S1 − S2|
to S12 = S1+S2. For every S12 that satisfies the condition |S12 − S3| ≤ S ≤ S12+S3,
the counter dS(S1, S2, S3) is incremented.

Type d): M-degeneracy

In case of no applied magnetic field, the Hamiltonian (2.41) is independent of Ŝz.
Therefore, each energy level is dM = 2S + 1 times degenerate (quantum number
M can assume values from −S to +S). This degeneracy is of course lifted when a
magnetic field is present.

Product of degeneracies

Thus, the degeneracy for a given eigenstate of the rotational band Hamiltonian,
characterized by the total and the three sublattice spin quantum numbers, is given
by the product of all types of degeneracies introduced above:

d(S, S1, S2, S3) = ds(S1) · ds(S2) · ds(S3) (type a)

· dperm(S1, S2, S3) (type b)

· dS(S1, S2, S3) (type c)

· dM(S) (type d) (2.47)

2.4.2 Energy levels and degeneracies of the lowest two bands

The lowest band is formed by coupling the sublattices with equal (maximum) spin
S1 = S2 = S3 = 25. Therefore, the degeneracy of these energy levels arises only from
types c) and d) of the above mentioned sources. The level of degeneracy according
to type c) can be calculated using the inequality |S12 − S3| ≤ S ≤ |S12 + S3|, with
S3 = 25 and 0 ≤ S12 ≤ 50. Depending on S, there are two situations. When
S ≤ 25, the right inequality always holds, and only |S12 − 25| needs to be evaluated.
All configurations S12 = {25 − S, 25 − S + 1, . . . , 25 + S} can couple to the given S,
leading to a (2S + 1)-fold degeneracy.

In the case of S > 25, the left inequality is always satisfied. Therefore, only S12+25 ≤
S is to be considered, yielding S12 = {S − 25, S − 25 + 1, . . . , 50}.
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2 Quantum mechanical eigenvalue spectrum

The Ŝz degeneracy type d) is always (2S+1)-fold. This leads to the following formula:

d(S, 25, 25, 25) = (2S + 1) ·
{

(2S + 1) if S ≤ 25
(76 − S) else

. (2.48)

The levels of degeneracy in the first excited band (S1 = S2 = 25, S3 = 24) also have
a component of type a) and type b). In the coupling pyramid for ten spins s = 5

2
(table 2.2), we find nine paths to couple ten spins with s = 5

2 to a total S = 24.
There are three permutations of the lattice spins S1, S2, S3 in this case. The level of
degeneracy of type c) can be calculated analogously to the lowest band:

d(S, 25, 25, 24) = 3 · 9 · (2S + 1) ·







(2S + 1) if S ≤ 24
49 if S = 25

(75 − S) if S ≥ 26
. (2.49)

1 9
25

49
81

121

27 243
675

1323
2187

3267

0 1 2 3 4 5
S

-195

-190

-185

E
/J

Figure 2.5: Rotational band model for {Mo72Fe30}. Numbers next to the energy levels
specify the level of degeneracy, with none of the types of degeneracies lifted
mentioned in section 2.4.1

Figure 2.5 illustrates the energy levels and the degeneracies for the lowest two bands
for small S. The two bands are parallel and are separated by an energy gap of
E1(S) − E0(S) = 5γJ with γ = 1 for this graph.

2.4.3 Field dependence of the ground state

When the external magnetic field B is raised, the Zeeman energy in eq.(2.42) lifts the
(2S + 1)-fold degeneracies of the Ŝ2-eigenstates. Due to the linearity of the Zeeman
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2.4 Rotational band model

energy with the M quantum number, states from multiplets with higher S become
ground state with increasing magnetic field.
One can calculate the total spin of the ground state depending on the external mag-
netic field B. According to eq.(2.42), the minimum energy states (M = S) have

E (S) = J
D(N, s)

2N

[

S (S + 1) − γ

nL∑

k=1

Sk (Sk + 1)

]

− gµBBS . (2.50)

Introducing the dimensionless variables

B′ =
2NgµB

DJ
B , E′ =

2N

DJ
E , (2.51)

eq.(2.50) simplifies to

E′(S) = S(S + 1) −B′S − const . (2.52)

The energy difference between two levels E′(S) and E′(S + 1) in the same band is

E′(S + 1) − E′(S) = 2(S + 1) −B′ , (2.53)

and therefore, these levels cross at magnetic field strengths of

B′
cross = 2(S + 1) . (2.54)

Thus, the spin quantum number of the ground state at the current magnetic field is
the largest integer smaller than B′/2:

S0(B
′) =

⌊
B′

2

⌋

. (2.55)

2.4.4 Lifting of degeneracies

Due to its simplicity, the rotational band model possesses certain characteristics
that are absent for the exact Hamiltonian (2.2). The degeneracies introduced by
the simplified Hamiltonian (2.38) are likely to be lifted in this complex structure,
i.e. energy levels in this system are presumably not exactly aligned to parabolic
bands. Therefore, one might think of the following change to the model. Instead
of assuming all levels exactly at the calculated band energy E(S, S1, S2, S3), one
could rather group the levels around those energies, with eq.(2.39) only describing
the average energy in the respective band.
This broadening of the bands could be described by Gaussian distributions of energy
levels centered at the respective band energy. The density of states can then be
expressed as

ρ(E) ∝ e−
[E−E(S,S1,S2,S3)]

2

2σ2 . (2.56)
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Figure 2.6: Energy levels for {Mo72Fe30} with broadened rotational bands. The degeneracies
of figure 2.5 are all lifted except for type d) (M -degeneracy). The broadening
parameter is σ = 1J .

The Gaussian has a mean value of E(S, S1, S2, S3) and its variance is specified by
σ2. A distribution with the required Gaussian density can be generated by inverting
the integral of the density ρ(E) and applying the resulting function to a uniform
distribution [27].

E = Φ−1(x) =
√

2σ erf−1 (1 − 2x) with x ∈ (0, 1) (2.57)

yields a Gaussian distribution for the energy E with variance σ2. For an improvement
of our approximation, we can now generate energy levels with a broadening parameter
σband using the above formula:

Ej(S) = E(S, S1, S2, S3) − σband

σ(nS)
erf−1

(

1 − 2
j

nS + 1

)

; j = 1, 2, . . . , nS . (2.58)

erf−1 denotes the inverse error function, and nS is the degeneracy of the respective
energy level, excluding the degeneracy arising from the M quantum number:

nS = ds(S1) · ds(S2) · ds(S3) · dperm(S1, S2, S3) · dS(S1, S2, S3) . (2.59)

Eq.(2.57) is strictly valid only for continuous distributions. The variance of a discrete
set generated with this formula differs from the desired σ2 (in the limit of large n this
difference vanishes). In order to obtain a distribution of energy levels with variance
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2.5 Inelastic neutron scattering on {Mo72Fe30}

σband, the fraction σband

σ(nS ) is introduced to formula (2.58) with

σ2(nS) = var

{

erf−1

(

1 − 2
j

nS + 1

)}

j=1,2,...,nS

(2.60)

being the nS-dependent variance of the generator.

Figure 2.6 shows an example spectrum with broadened bands (broadening parameter
σ = 1J). The band structure is still visible since the density of states is concentrated
at the band energies of eq.(2.39), however, the spectrum could be more realistic than
the pure rotational band structure with its artificial degeneracies.

2.5 Inelastic neutron scattering on {Mo72Fe30}
This chapter deals with the simulation of inelastic neutron scattering (INS) spectra
for {Mo72Fe30} using the rotational band model. A brief introduction on neutron
scattering will be given, both on principal experimental setup and on basic theory.
Thereafter, we will outline the relations between properties of the magnetic probe
and the cross-section of the scattering process. We will recall the information on
the energy spectrum of {Mo72Fe30} developed in the previous chapter. The insights
gained from the above will then be used to derive a simple method to simulate INS
spectra for {Mo72Fe30} for given temperatures and external magnetic field strengths.
This simulation is then compared to experimental results, and the quality of our
method is discussed with respect to these results.

2.5.1 Introduction

Neutrons are baryons and form the basis of atomic nuclei together with the protons.
They carry no charge, but a spin of sn = 1

2 , their mass is mn = 1.008665 u. The
operator of the magnetic moment for a neutron is

µ̂n = γnµN σ̂ (2.61)

with µN = e~

2mp
≈ 5.050 ·10−27 J T−1 being the nuclear magneton and γn = −1.91 the

gyromagnetic ratio for neutrons. The operator σ̂ represents the Pauli spin matrices.
According to their kinetic energy, neutrons are classified into groups relating the
energy to a temperature scale. The INS experiments on {Mo72Fe30} were carried out
using cold neutrons (E ≈ 2meV ≈ 20 kBK), i.e. with a substantially lower energy
compared to thermal neutrons (kB · 300K ≈ 25meV).

Neutrons can be obtained from nuclear reactions such as take place in accelerator
collisions or nuclear reactors. Since they have no charge, neutrons cannot be as easily
directed or accelerated as protons or electrons.
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2 Quantum mechanical eigenvalue spectrum

At the ISIS pulsed neutron source [28], a high-energy beam of protons is directed to
a metal target, where the collision process creates neutrons that are emitted in all
directions. To achieve coherent k-vectors for the scattering experiments, the actual
facilities for performing INS experiments are supplied with neutrons via long tubes
emerging from the spallation target area.

The interaction between neutrons and matter is relatively weak, and the penetration
depth in matter is very large, making neutrons suitable mainly for analyzing bulk
properties. Neutron scattering can measure the undistorted properties of the tar-
get sample, manifested in the fact the cross-section can be written as a product of
two parts, a response function depending only on the target sample, and a function
describing the neutron-matter interaction (cf. Sec. 2.5.2). INS experiments are there-
fore an excellent tool to investigate the nature of the energy spectrum of magnetic
molecules.

The basic quantity measured in an INS experiment is the partial differential cross-
section

dσ2

dΩ dE′
. (2.62)

Given an incident beam of neutron of energy E, it denotes the fraction of neutrons
scattered into the element of solid angle dΩ around Ω with energies between E′ and
E′ +dE′. In the following paragraph, we will give a short outline of scattering theory
necessary to calculate the cross-section from properties of the target material. We
mainly reproduce the derivation given in reference [29]:

2.5.2 Outline of scattering theory

At first, an expression for the cross-section of elastic scattering is developed. An
incident neutron, described by a plane wave function ψk = 1

L3/2 e
ik·r, is scattered

into the plane wave function ψk′ . The probability of state ψk changing to ψk′ can be
calculated using Fermi’s Golden rule:

Wk→k′ =
2π

~

∣
∣
∣
∣

∫

drψ∗
k′V̂ ψk

∣
∣
∣
∣

2

ρk′(E) . (2.63)

V̂ denotes the interaction potential of the neutron with the target, and ρk′(E) the
density of final scattering states per energy unit. This result is derived from perturba-
tion theory and is therefore only approximate. However, the scattering of neutrons at
the target is a weak process, justifying the assumption the scattering can be described
perturbatively.

Enclosing the entire system into an artificial box of volume L3, normalizing the states
ψk and ψk′ , and relating the incident flux of neutrons to their velocity, the cross-
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2.5 Inelastic neutron scattering on {Mo72Fe30}

section can be expressed as

dσ

dΩ
=
∣
∣
∣〈k′ | V̂ |k 〉

∣
∣
∣

2
, (2.64)

with

〈k′ | V̂ |k 〉 =
L3mn

2π~2

∫

drψ∗
k′ V̂ ψk . (2.65)

Eq.(2.64) describes elastic scattering. In order to obtain a formula for inelastic neu-
tron scattering, i.e. scattering incorporating a transfer of energy, the wave functions
have to be extended so they include the state |λ 〉 of the target. The incident state
of the system then becomes |k 〉 |λ 〉 = |kλ 〉.
The cross-section of the scattering process involving a change of the system state |λ 〉
to |λ′ 〉 is, according to eq.(2.64),

(
dσ

dΩ

)λ

λ′

=
k′

k

∣
∣
∣〈k′λ′ | V̂ |kλ 〉

∣
∣
∣

2
. (2.66)

The fraction k′

k takes into account that the wavelength of the neutron has changed
after the scattering process. Since the energy has to be conserved, the energy change
of the neutron must equal the change of energy of the sample. The common notation
for the energy change of the neutron is ~ω, being positive when energy is transferred
to the sample:

~ω = Eλ′ − Eλ . (2.67)

Eq.(2.66) can now be transformed to a partial differential cross-section, using a delta
function describing the energy conservation:

(
dσ

dΩ dE′

)λ

λ′

=
k′

k

∣
∣
∣〈k′λ′ | V̂ |kλ 〉

∣
∣
∣

2
δ (~ω +Eλ − Eλ′) . (2.68)

Since the target has several initial states |λ 〉 and final states |λ′ 〉, the cross-sections
(2.68) for all combinations λ and λ′ have to be added. The transitions in the target
system have different weights pλλ′ , consisting of a product of the Boltzmann weight

of the initial state e
−

Eλ
kBT and degeneracy factors dλ and dλ′ of both initial and final

state. The normalization is chosen to be
∑

λ pλλ′ = 1. Thus, the partial differential
cross-section is given by the expression

dσ2

dΩ dE′
=
k′

k

∑

λλ′

pλλ′

∣
∣
∣〈k′λ′ | V̂ |kλ 〉

∣
∣
∣

2
δ (~ω + Eλ − Eλ′) . (2.69)

The horizontal bar in the previous formula denotes the average over properties not in-
cluded in the weights pλλ′ as e.g. the distribution of isotopes. Furthermore, eq.(2.69)
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2 Quantum mechanical eigenvalue spectrum

is independent of the neutron spin. In the next section, we will give the cross-section
for magnetic scattering on a spin system. The neutron spin σ̂ is needed for the
derivation of the cross-section, but will be averaged over in the end, and is therefore
not included in eq.(2.69).

Magnetic scattering on spin systems

To derive the cross-section for magnetic scattering, one has to replace the operator
V̂ in eq.(2.69) with the appropriate interaction operator. We assume the magnetic
structure of {Mo72Fe30} to be describable by localized spins situated at the Fe3+ sites
of the molecule [30]. Therefore, we will replace V̂ with the operator representing the
interaction of the magnetic moment of the neutron with the magnetic field generated
by the spins. The magnetic field of a dipole with magnetic moment µν situated at
rν at a distance Rν = r− rν is [31]

B = −µ0

4π
∇ ×

(

µν × ∇
1

|Rν |

)

. (2.70)

Using the correspondence principle, we replace the magnetic moment by the mag-
netic moment operator of a localized spin µ̂ν = −gµBŝν . Therefore, the interaction
operator V̂ is

− µ̂n · B =
µ0

4π
γµNgµB σ̂ ·

{

−∇ ×
(

ŝν × ∇
1

|Rν |

)}

, (2.71)

and, because the interaction now depends on the neutron spin orientation, the matrix
element in eq.(2.69) has to be extended by the neutron spin state |σ 〉:

〈k′λ′ | V̂ |kλ 〉 → 〈k′λ′σ′ | − µ̂n ·B |kλσ 〉 (2.72)

In order to evaluate the previous matrix element, we will first rewrite the expression
for the field by inserting the Fourier transform of the potential 1

|Rν |
:

1

|Rν |
=

1

2π2

∫

dq
1

q2
eiq ·Rν . (2.73)

The magnetic dipole field then becomes

−µ0

4π
∇ ×

(

ŝν × ∇
1

|Rν |

)

= −µ0

4π

1

2π2

∫

dq
1

|q|2
{∇ × (ŝν × ∇)} eiq ·Rν

=
µ0

4π

1

2π2

∫

dq
1

|q|2
{q× (ŝν × q)} eiq · Rν , (2.74)
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2.5 Inelastic neutron scattering on {Mo72Fe30}

because ∇ eiq·Rν = iq eiq·Rν . This result enables us to evaluate the k-dependent part
of the matrix element:

〈k′ | − µ̂n · B |k 〉

= −µ0

4π
γµNgµB

L3mn

2π~2

1

2π2

∫

dr e−ik′·r σ̂ ·
∫

dq
1

|q|2
{q× (ŝν × q)} eiq·Rν eik·r

= −µ0

4π
γµNgµB

mn

2π~2
4π

1

|κ|2
eiκ·rν σ̂ · {κ × (ŝν × κ)} . (2.75)

This follows the fact that the r-integration yields a delta function δ (κ + q), with
κ = k− k′ being the scattering vector.
When the neutron is scattered at a system of spins, the magnetic field B is generated
by the magnetic moments of all spins:

B = −µ0

4π
∇ ×

∑

ν

(

µν × ∇
1

|Rν |

)

, (2.76)

so with κ̃ = κ
|κ| , eq.(2.75) becomes

〈k′ | − µ̂n · B |k 〉 = −r0 σ̂ ·
{

κ̃ ×
(
∑

ν

eiκ̃ · rν ŝν × κ̃

)}

= −r0 σ̂ · Q̂⊥ , (2.77)

where Q̂⊥ is defined by the term in curly brackets, and

r0 =
µ0gγµNµBmn

2π~2
= −0.54 · 10−12 cm . (2.78)

The magnetic cross-section is the sum over the spin system states |λ 〉 and neutron
spin states |σ 〉 (with weights pσ) of the square of the absolute value of (2.77):

d2σ

dΩ dE′
= r20

k′

k

∑

λλ′

∑

σσ′

pλλ′pσ

∣
∣
∣〈λ′σ′ | σ̂ · Q̂⊥ |λσ 〉

∣
∣
∣

2
δ
(
~ω + Eλ − E′

λ

)

= r20
k′

k

∑

λλ′

∑

σσ′

pλλ′pσ〈λσ |
(

σ̂ · Q̂⊥

)†
|λ′σ′ 〉〈λ′σ′ | σ̂ · Q̂⊥ |λσ 〉

δ
(
~ω + Eλ − E′

λ

)
(2.79)

Since we are describing an experiment with unpolarized neutrons, the sum over the
neutron spin states is

∑

σ

pσ〈σ | σ̂ασ̂β |σ 〉 =
1

2

∑

σ

〈σ | 1̂1δαβ + i ǫαβk σ̂k |σ 〉 = δαβ . (2.80)
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Furthermore, The scalar product

Ŷ† · Ŷ =
∑

αβ

(δαβ − eαeβ) X̂†αX̂β (2.81)

for Ŷ = e ×
(

X̂× e
)

, with e being an arbitrary unit vector, and X̂α denoting the

α-th component of the vector operator X̂. Using first eq.(2.80) and then (2.81), the
cross-section can finally be written as

d2σ

dΩ dE′
= r20

k′

k

∑

λλ′

pλλ′〈λ | Q̂†
⊥ |λ′ 〉 · 〈λ′ | Q̂⊥ |λ 〉 δ(~ω + Eλ − E′

λ)

= r20
k′

k

∑

αβ

(δαβ − κ̃ακ̃β)
∑

λλ′

pλλ′

∑

νν′

eiκ̃ · (rν′ − rν)

·〈λ | ŝα
ν |λ′ 〉〈λ′ | ŝβ

ν′ |λ 〉 δ(~ω + Eλ − E′
λ) . (2.82)

As mentioned in the introduction, the cross-section factorizes into an interaction part
r20

k′

k , and a response function (usually denoted S(κ, ω)) that only depends on the
properties of the sample. The response function contains matrix elements of unper-
turbed eigenstates |λ 〉 with the spin operators ŝα

ν , and the unperturbed eigenenergies
appear in the delta function as well as in the Boltzmann factor in the weights pλλ′ .
INS experiments are therefore well suited for directly probing the energy spectrum
of magnetic systems.
The result (2.82) is based on the assumption of localized magnetic moments generated
by the 3d electrons of the Fe3+ ions situated at positions rν . A more precise formula
would have to include the spin density of these ions (the Fourier transform thereof is
the so-called form factor). However, since we do not have access to the eigenfunctions
λ of the full Heisenberg Hamiltonian, and the experimental data is already an integral
over a range of scattering vectors κ, we use eq.(2.82) only to derive selection rules
for the allowed transitions the neutrons can initiate.

Selection rules for allowed transitions

The matrix elements in eq.(2.82) decide whether a transition from a state |λ 〉 to a
state |λ′ 〉 is allowed or not. We now represent the states |λ 〉 by total S and M ,
because we will derive selection rules for these quantum numbers:

|λ 〉 → |SM 〉 . (2.83)

Matrix elements of the ŝz operator can trivially only connect states with the same
M :

〈SM | ŝz
ν |S′M ′ 〉 = 0 if M 6= M ′ , (2.84)
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2.5 Inelastic neutron scattering on {Mo72Fe30}

and the ladder operators involve a change of the M quantum number by one:

〈SM | ŝ±ν |S′M ′ 〉 = 0 if M 6= M ′ ± 1 , (2.85)

with the relation s± = sx ± isy.

The Wigner-Eckart theorem [32] states that calculating matrix elements of the form
〈SM | ŝα |S′M ′ 〉 is equivalent to coupling a spin with s = 1 to the state |SM 〉,
based on the tensor nature of the operators ŝα. This leads to the following selection
rules for total S:

|S − s| ≤ S′ ≤ S + s with s = 1

⇒ 〈SM | ŝα
ν |S′M ′ 〉 = 0 if

{
|S′ − S| > 1 if S > 0
S′ 6= 1 if S = 0

. (2.86)

Combining all three equations, we arrive at the selection rules for S and M . A
transition from a state |SM 〉 to a state |S′M ′ 〉 can only occur, if

∆S = S′ − S =

{
−1, 0,+1 if S > 0

+1 if S = 0
, (2.87)

and

∆M = 0,±1 . (2.88)

2.5.3 Simulation of the INS spectrum

Our goal now is to give an approximation of the INS spectrum based on the rotational
band model for the energy spectrum, the formula for the cross-section (2.69), and
the selection rules derived in the previous section. Since we do not have access to
the eigenstates |λ 〉 for {Mo72Fe30}, we cannot use eq.(2.82) to calculate the cross-
section directly. We will rather start from the general form of the cross-section given
in (2.69) and use the selection rules to decide which transitions contribute to the
INS spectrum. A transition between two levels is only possible if the rules (2.87)
and (2.88) are satisfied. For each possible transition there is a corresponding peak
in the INS spectrum. The height of this peak is proportional to pλλ′ and the matrix
element for the neutron-scattering-induced transition between the levels, according
to eq.(2.68). The weight pλλ′ is the product of the degeneracies of the two levels and
the occupancy (Boltzmann weight) of the starting level. These two quantities can
easily be calculated from our model. However, the matrix elements 〈λ | V̂ |λ′ 〉 have
to be approximated. We assume they are equal to one for all allowed transitions.
This is a rather coarse approximation, but it will still allow predictions as to where
peaks should appear in the INS spectrum. Nevertheless, predictions about the height
of those peaks will be uncertain without having further knowledge about at least the
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2 Quantum mechanical eigenvalue spectrum

orders of magnitude of the associated matrix elements. The results obtained from this
simulation will have the character of a qualitative description rather than allowing
direct fitting to experimental data.
Additionally, we will restrict the simulation to transitions from the lowest rotational
band to the first excited band. For magnetic molecules that also exhibit rotational
band structures in the low-energy regions of their spectra, it was shown that transi-
tions to higher-energy states have negligible influence on the INS spectrum [33]. We
will show later that the experimental INS data for {Mo72Fe30} does not indicate that
the restriction to the lowest two bands has to be lifted.

Algorithm for the simulation

For our simulation of the INS spectrum, we replace the Dirac delta function in
eq.(2.68) for each allowed transition from an initial (Ei) to a final (Ef ) energy level by
a Lorentzian. Since the experimental data we will discuss later is already integrated
over a range of wave vectors, we give a simplified version of the integral of (2.68):

σB,T
i→f (E) = di df e

− Ei
kBT

Γ

Γ2 + [(Ef − Ei) − E]2
, (2.89)

with di and df being the degeneracy factors for the respective levels, T the temper-
ature, and Γ a common broadening parameter for all signals. Γ corresponds to the
half-width at half-maximum (HWHM) of the Lorentzian. The superscript B,T de-
notes the dependence of the signal on the temperature and on the applied magnetic
field, since the energy eigenvalues of (2.42) are shifted by the Zeeman term.
We have implemented the approximate method described above as a C program. The
program has to be provided with a set of parameters: exchange constant J , magnetic
field value B, temperature T , width of the Lorentzians Γ, and an optional broadening
parameter σ for the rotational band model.
As a first step, the spectrum of energy levels is generated according to the rotational
band model, with an optional broadening of the bands. The generation of the spec-
trum can be omitted, and the spectrum can be imported from another source instead,
e.g. an exact diagonalization program. This can be used to simulate neutron scatter-
ing on molecules whose Heisenberg Hamiltonian can be treated with numerical exact
methods.
After the energy levels have been generated, all transitions between two levels are
evaluated in order to find the ones allowed by the following criteria:

• We are interested in the absorption spectrum only, so the energy difference
between the final and the initial state of a transition has to be positive

Ef − Ei
!
> 0 . (2.90)
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2.5 Inelastic neutron scattering on {Mo72Fe30}

• The selection rules (2.87) and (2.88) have to be satisfied.

• To allow calculation of the scattering spectrum for a large number n of energy
levels, we define a temperature dependent cut-off for allowed initial levels. Only
transitions initiating from states within 20 kBT of the ground state are assumed
to contribute to the scattering spectrum:

Ei − E0
!
< 20 kBT , (2.91)

where E0 is the ground state energy for the given magnetic field. The states that
are omitted by this procedure have a Boltzmann weight of less than 2 · 10−9

relative to the (field dependent) ground state, therefore they can safely be
neglected.

If one would not establish this cut-off, n2 transitions would have to be evaluated,
rendering the approach unfeasible for a large number n of energy levels.

For each transition that satisfies these conditions, a Lorentzian according to eq.(2.89)
is added to the simulated spectrum. Thus, the simulated INS spectrum can be
expressed as

σB,T (E) =
1

CB,T

∑

i,f

σB,T
i→f (E) , (2.92)

where CB,T is a factor to normalize the total area of the INS spectrum:

CB,T =

∫

dE
∑

i,f

σB,T
i→f (E) . (2.93)

This quantity is proportional to the number of neutrons collected at the detector and
can be used to fit the theoretically predicted INS spectrum to experimental results.

Types of transitions

At very low temperatures, the ground state is dominantly populated. We will now
describe the transitions originating from the field-dependent ground state, which
form the basis of the low-temperature INS spectrum. The derivation is based on the
results of section 2.4.3 and the notation used there.

There are six basic types of transitions with different weights according to eq.(2.89).
The transition types represent the possible changes of S to S′ = S − 1, S, S + 1 with
or without a transition to the excited band. Figure 2.7 shows an example situation
for a magnetic field of B′ = 5, which produces a ground state with quantum numbers
S = 2, M = 2. In this case, all six transition types can occur. If S = 0, of course
types I and IV are impossible.
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Figure 2.7: Rotational band model for {Mo72Fe30}. Allowed transition originating from the
ground state for B′ = 5, which has S = 2, M = 2. Roman numbers describe
the type of transition, Arabic numbers next to the levels show their M -quantum
numbers.

The number of signals generated is three for the types III and VI (∆M = −1, 0,+1),
two for type V (∆M = 0,−1), and one for types I, II, and IV (only ∆M = −1).

The rotational bands are parallel, therefore there is a constant gap ∆Eband = 5J
between states in different bands but with the same quantum numbers S and M . As
a simplification, we use the energy formula (2.52) with dimensionless E′ and B′.

The energy difference when S changes to S′ is

∆E′
S =







−2S if S′ = S − 1
0 if S′ = S

2(S + 1) if S′ = S + 1
. (2.94)

A change in the quantum number M leads to an energy transfer of

∆E′
M =







B if M ′ = M − 1
0 if M ′ = M

−B if M ′ = M + 1
. (2.95)
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With these equations, we can now describe the dependence of the energy difference
of the allowed transitions on the magnetic field. We concentrate on the transitions
that involve a change to the excited rotational band. Transitions inside a band lead
to relatively small energy differences. Additionally, the excited band is 27 times
degenerate compared to no band degeneracy in the lowest band. This leads to a
27 times weaker signal for transitions which remain in the lowest band according to
eq.(2.89). In inelastic neutron scattering, one usually gets a very strong signal at
low energies, which prevents the analysis of weak peaks in the vicinity of zero energy
transfer. This justifies the concentration on the interband transitions (types IV to
VI). In the following formulas, we will use the dependence of the ground state spin
quantum number S0 on the field B given in eq.(2.55).

Type IV

∆S = −1; ∆M = −1

⇒ ∆E′ = ∆E′
band − 2S0(B

′) +B′

= ∆E′
band − 2

⌊
B′

2

⌋

+B′
(2.96)

Type V

∆S = 0; ∆M =

{
−1

0

⇒ ∆E′ = ∆E′
band +

{
B′

0
(2.97)

Type VI

∆S = +1; ∆M =







−1
0

+1

⇒ ∆E′ = ∆E′
band + 2

[
S0(B

′) + 1
]
+







B′

0
−B′

= ∆E′
band + 2 + 2

⌊
B′

2

⌋

+







B′

0
−B′

(2.98)

Figure 2.8 shows the dependence of the three transition types into the excited band.
They form three groups, which have characteristic average behaviors: three energy
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Figure 2.8: Energy transfer for different transition types into excited rotational band de-
pending on the applied magnetic field

transfers are static, two grow proportional to B′, and one proportional to 2B′. This

can be derived from eqs.(2.96) to (2.98), when the step function
⌊

B′

2

⌋

is replaced by

the identity B′

2 .

Therefore, we expect the neutron scattering spectrum for B = 0 to consist of one
major peak at ∆Eband = 5J , and two satellite peaks emerging from it with increasing
magnetic field. One peak’s position is expected to be at ∆Eband + gµBB, whereas
the second one should be located at ∆Eband + 2gµBB. The relative heights of the
peaks are determined by the number of signals added and the level of degeneracy of
the final state.

According to eq.(2.49), the ratio of the degeneracies (M -degeneracy lifted) of a level
with S = S0 − 1 to the one with S = S0 is

dS0−1

dS0

=
2 (S0 − 1) + 1

2S0 + 1
= 1 − 2

2S0 + 1
. (2.99)

This corresponds to a transition of type IV. A transition with ∆S = +1 (type VI)
has

dS0+1

dS0

=
2 (S0 + 1) + 1

2S0 + 1
= 1 +

2

2S0 + 1
. (2.100)

The above is only valid as long as S0 < 24. For larger fields, and therefore larger
total spin S0 of the ground state, the ratios can be calculated accordingly: type IV
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has
dS0−1

dS0

=

{
1 if S0 = 24 ∨ S0 = 25

1 + 1
75−S0

if S0 > 25
, (2.101)

and type VI
dS0+1

dS0

=

{
1 if S0 = 24 ∨ S0 = 25

1 − 1
75−S0

if S0 > 25
. (2.102)

The stationary peak consists of three transitions of types IV, V, and VI. Thus, the
height of this peak is

h0 =
k

dS0

(dS0−1 + dS0
+ dS0+1) . (2.103)

The peak displaced by gµB has

h1 =
k

dS0

(dS0
+ dS0+1) , (2.104)

and the peak with position proportional to 2gµB

h2 =
k

dS0

dS0+1 . (2.105)

In the above formulas, k is a factor common to all three types of peaks, containing
the Boltzmann weight of the ground state and the levels of degeneracy of the bands.
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Figure 2.9: Relative height of the three major peaks depending on the applied magnetic
field up to saturation (Bsat ≈ 17.4 T). The major static peak is set to a constant
height of 1.
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The ratio h0 : h1 : h2 depends on S0 and therefore on the applied magnetic field.
Figure 2.9 shows the ratio from zero field up to the saturation level. The height
of the main peak h0 is set to 1. The graph indicates one can expect the three peak
heights to have an approximate ratio of 3:2:1 for the most part of the region of applied
magnetic fields.

2.5.4 Experimental INS data

Recently, several INS experiments were carried out, in order to get more insight
into the structure of the spectrum of the magnetic interactions in the molecule
{Mo72Fe30}. The scattering experiments were performed on deuterated samples, i.e.
with hydrogen atoms replaced by deuterium, since the incoherent scattering cross-
section is much smaller for deuterium. The properties of the deuterated samples were
shown to be consistent with the original molecule [30].
The experimental data presented here [34] was obtained at the OSIRIS spectrometer
at ISIS [28]. The neutrons had a fixed final energy of 1.845meV, i.e. cold neutrons
were used.
Figure 2.10 shows experimental results for the INS spectrum of {Mo72Fe30}. The
main contribution to the spectrum is located at energy transfers close to ∆E = 0,
as can be seen in (b). This strong background is expected to arise from quenched
static structural disorder, and therefore is of non-magnetic nature [34]. The back-
ground was modeled using the sum of a Gaussian and a Lorentzian. The procedure
of extracting the magnetic spectrum from the measured data can be seen in figure
2.10(a), performed at the data for the base temperature T = 65mK. The main graph
shows the model for the background fitted to the raw data. The inset contains the
background-subtracted data, which is assumed to be the pure magnetic spectrum.
Figure 2.10(b) also reveals a problem for the interpretation of the data. The back-
ground is actually stronger than the magnetic part of the spectrum. The broad peak
of the magnetic spectrum is only represented by a shoulder in the raw data, and the
low-energy section is uncertain for the analysis because of the strong signal of the
background residing at ∆E = 0.

2.5.5 Comparison of simulation and experiment

Our theoretical model (2.41) suggests the use of J as the unit of energy transfer. It
is also common notation to measure the energy in units of K, which means E[J] =
kBE[K] in SI. Since for neutron scattering experiments meV is the most widely used
unit, we have to convert our data using

1 kBK = 0.0862meV . (2.106)

The interaction constant between the spins in {Mo72Fe30} was determined in [30] to
be J = 1.57 kBK = 0.135meV.
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Figure 2.10: (a) Inelastic neutron scattering spectrum at T = 65 mK. The solid line shows
an estimate of the non-magnetic scattering background, the inset gives the
spectrum with the background subtracted. (b) shows the raw data for different
temperatures. [34]

Our simulation can now be compared to the experimental results. Since the back-
ground signal in the measured spectra is stronger than the magnetic contribution, we
limit the discussion to a qualitative comparison of theory and experiment. Numerical
analysis as direct fitting of our simulation to the data is not justified because of the
uncertainties in the gathering of the magnetic part of the spectrum.
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2 Quantum mechanical eigenvalue spectrum

Zero-field

Figure 2.11 gives the background-subtracted INS data for different temperatures. At
the base temperature, the broad peak is centered at approximately 0.6meV, with
a HWHM (half-width at half-maximum) of about 0.3meV [34]. With increasing
temperature, the low-energy section at about 0.2meV gains spectral weight, and
dominates the spectrum for large temperatures (T = 6.5K).

These results are now compared to our simulations. We assume a rotational band
structure for the eigenvalue spectrum of {Mo72Fe30}. Due to the limited accuracy of
the experiment, we do not incorporate the refined estimates for D and γ in (2.42),
but use the values D = 6 and γ = 1 derived from the constraint for the ferromagnetic
ground state energy (2.40). Following from that, the energy gap between the two
lowest bands is 5J = 0.676meV, and an intraband transition S → S + 1 requires
(S + 1) · J

5 = (S + 1) · 0.027meV.

For low temperatures, the ground state is dominantly populated. Thus, we expect
two transitions to constitute the INS spectrum: The interband transition with ∆E =
5J + J

5 and the intraband transition with ∆E = J
5 , whereas the latter is expected to

be much weaker (the degeneracy factor is 27 times smaller).

When the temperature is increased, states of the first excited band become populated,
allowing intraband transitions in this band. The degeneracy factor for states in the
upper band is 27 times larger than for states in the lowest band (for states with
the same S, see Fig. 2.5). Therefore, these intraband transitions will dominate the
resulting spectrum with increasing temperature, leading to a prominent peak in the
section of low energy transfer.

Following these preliminary remarks, we use our program to generate simulated INS
spectra for the same temperatures as in the experiment. We base the simulation on
the measurement at the lowest temperature T = 65mK, using the HWHM value of
0.3meV, obtained for the single peak structure, as the parameter Γ in eq.(2.89).

Figure 2.12 shows the simulated INS spectrum for different temperatures. The nor-
malization factors CB,T have been adjusted so the maxima of both experiment and
simulation have the same heights. Comparing the experimental and simulated re-
sult, we find good qualitative agreement. The spectrum for the lowest temperature
T = 65mK yields a single peak, and with increasing temperature, a second signal at
lower energies (∼ 0.2meV) becomes visible and dominates for T = 6.5K.

Magnetic field

Figure 2.13 shows the experimental data of INS on {Mo72Fe30} with applied magnetic
field of various strengths. It is obvious that the strong background at low energy
transfers renders quantitative analysis of the field dependent behavior very difficult.
Nevertheless, the curve was fitted to three Lorentzians with a central peak and two
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Figure 2.11: INS spectrum of {Mo72Fe30} for different temperatures at B = 0 [34]. The
background has been subtracted as illustrated in figure 2.10
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Figure 2.12: Simulated INS spectrum based on the rotational band model, normalization
factors set to appropriate values in order to match the proportions of the curves
in figure 2.11
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2 Quantum mechanical eigenvalue spectrum

sidebands. Whereas the strong background prevented a quantitative description of
the field dependence of the lower sideband, a linear behavior could be extracted for
the upper sideband. The slope is approximately 0.049meV/T [34].
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Figure 2.13: Inelastic neutron scattering on {Mo72Fe30}. Experimental results for different
strengths of the applied magnetic field [34]. The inset shows the dependence
of the upper sideband on the applied magnetic field.

Again, we use the algorithm described in section 2.5.3 to simulate the INS spectra.
However, now the magnetic field is varied at a fixed temperature of T = 65mK. We
use the same broadening parameter as in the previous section. The result of our
simulation is shown in figure 2.14. The normalization factor for these curves was set
to retain a constant area of the spectrum (cf. eq.(2.93)). We could not follow the
fitting procedure used for the B = 0 results, because the background has not been
subtracted from the data shown in figure 2.13. This has been omitted in order to
directly extract the dependence on the magnetic field shown in the inset.

The simulated spectra show the behavior predicted in section 2.5.3. Two extra peaks
emerge from the central peak and move proportional to the applied field, while the
displacement of the smaller one is twice as large as for the other one.

This is a clear discrepancy with the behavior extracted from the experiment, where
two symmetric sidebands appear at lower and higher energies from the central sta-
tionary peak. When we try to fit the slope of the upper sideband extracted from the
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Figure 2.14: Simulated INS spectrum for {Mo72Fe30} at T = 65 mK for the same strengths of
the applied magnetic field as in figure 2.13. Normalization factors are the same
for all curves since we cannot compare to background-subtracted experimental
results.

experimental data to the theoretical prediction for the first satellite peak, we find

0.049
meV

T
= g µB ⇒ g ≈ 0.85 . (2.107)

On the other hand, the upper sideband position does not reach zero displacement
when extrapolated to B = 0. Assuming its source is in the Zeeman interaction of the
magnetic field with the spins in {Mo72Fe30}, the sideband has to disappear when the
external field is absent.

2.5.6 Discussion

We will now summarize the results from the previous sections. The aim of the INS
spectrum simulation was to verify the applicability of the rotational band model to
the complex magnetic molecule {Mo72Fe30}. The main features we expected to show
in the experimental data for low temperatures were a dominant peak at fixed position
corresponding to the gap between the lowest two rotational bands, and two peaks
emerging from the latter when a magnetic field is present.

We find very good agreement of our simulations with the experimental data in the
absence of a magnetic field. Figures 2.11 and 2.12 are qualitatively equivalent. Es-
pecially the one-peak structure at low temperatures is a clear indication that the
eigenvalue spectrum has a gap as predicted by the rotational band model of about
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5J = 0.68meV. If there were an enhanced density of states at the band separa-
tion of the two lowest bands, corresponding peaks in the low energy region of the
INS spectrum should be visible in the experimental data. The fact that only one
peak is visible for low temperatures also justifies our restriction to the lowest two
bands in our simulation. If transitions to higher energy levels had non-negligible
matrix elements with respect to neutron scattering, this should be manifested in ad-
ditional peaks at higher energy transfers. Assuming the rotational band model to be
valid for the second excited band, these energy transfers should be in the region of
∆E = 9.8J = 1.32meV. If these matrix elements were of the same order of mag-
nitude as the ones between the lowest two bands, the corresponding peaks in the
INS spectrum would be even larger than the ones visible in the graphs, because the
degeneracy factors are much larger for higher bands. The absence of these signals
complies with reference [33], which states that transitions to energy levels above the
first excited band are negligible.
The broadening of the bands proposed in section 2.4.4 cannot be verified easily with
the available experimental data. The structures in the measured spectra do not con-
sist of a series of narrow lines as comparable experiments would suggest (cf. Ref. [35]).
The experimental spectra could be simulated equally well with a small width Γ of
the Lorentzians in eq.(2.89) and a broadening parameter σ for the first excited rota-
tional bands that yields the same HWHM as in the measured peak (the HWHM of a
Gaussian with variance σ is

√
2 log 2σ). It is hence difficult to tell whether the broad

structures arise from the difficult experimental setup or from the energy spectrum of
the magnetic molecule.
Despite the striking resemblance of the simulated curve to the experimental data
for T = 6.5K, the simulated spectrum has to be regarded as speculative for this
temperature. At T = 6.5K, the first excited band will be strongly populated, and
even higher excitations would have to be considered. The simple two-band approach
is possibly invalid, because the temperature is already in the range of the energy gap
(5J = 7.85 kBK ) between the two bands. More rotational bands in the higher-energy
spectrum of {Mo72Fe30} are probably not to be expected. Even for smaller systems,
the energy levels above the second excited band fill the spectrum more densely and
form a quasi-continuum [33]. Since the rotational band model was developed for the
approximation of the low-energy spectrum, it cannot deliver information about the
quasi-continuum in the eigenvalue spectrum for higher energies.
In the presence of a magnetic field, simulation and experiment do not agree to a large
extend. The simulation predicts two additional peaks at higher energy transfers to
appear with an applied field. Their positions relative to the central peak should be
equal to gµBB and 2gµBB, respectively. The behavior extracted from the experiment
suggests one peak at higher energy transfers, the slope of its relative position being
∼ 1µB with increasing field and an additional offset. This both contradicts the nature
of the energy shift introduced by the Zeeman term in the Hamiltonian.
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2.5 Inelastic neutron scattering on {Mo72Fe30}

However, the experimental data is uncertain for the B 6= 0 measurements. The
subtraction procedure for eliminating the background from the scattering data could
not be performed, leading to relatively imprecise results, as can be seen in figure 2.13.
It is hence impossible to tell whether the model describes the field-dependent behavior
improperly, or whether the discrepancy of measurement and simulation arises from
inaccurate experimental data. A better spectrometer with a defined background
function is being installed at the HMI in Berlin. In contrast to the experimental
data presented here, the magnetic scattering data of future measurements could
be extracted using a well-defined and also faster-decreasing function describing the
background of this spectrometer [36]. This could bring more clarity to the behavior
of {Mo72Fe30} in the presence of a magnetic field.
Summarizing the results, we can conclude the INS experiments endorse the assump-
tion that the low-energy region of the energy spectrum of {Mo72Fe30} can be de-
scribed by rotational bands. However, the measurements at B 6= 0 neither support
the model nor do they indicate to which extent the model might have to be modi-
fied. The question might be solved by future INS measurements that deliver clearer
results. It remains to point out that so far, no other method can adequately explain
the low-energy spectrum of {Mo72Fe30}. Hence the rotational band model remains
the most suitable tool for the description of the INS experiments on {Mo72Fe30}.
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3 Classical density of states

After discussing aspects of the quantum mechanical spectrum of spin systems in the
previous chapter, we will now switch to a classical description. This chapter deals
with the formulation of the classical density of states, its relevance for thermodynam-
ics, and methods to obtain its numerical representation via exact methods as well as
with stochastic algorithms.

3.1 Definition and relation to statistical mechanics

The density of states ρ(E) represents the amount of phase space volume per energy
unit occupied by states with energies from an infinitesimally small interval centered
at energy E. It can be derived from the Hamiltonian function describing the system
[37]. We first think of the volume of phase space that contains all states with energies
from the interval [E − ǫ/2, E + ǫ/2]:

G(E, ǫ) =

∫

d3Np d3Nq Θ
( ǫ

2
− |E −H (p,q)|

)

, (3.1)

with p and q describing the variables of the N -particle system and Θ denoting the
Heaviside step function. Taking the limit ǫ → 0 of G(E, ǫ)/ǫ, we obtain the density
of states

ρ(E) =

∫

d3Np d3Nq δ (E −H (p,q)) . (3.2)

In the canonical ensemble for systems in thermal equilibrium with a temperature
T = const, the partition function is the integral over the Boltzmann weights of all
phase space points. Since we have introduced the density of states, we can formulate
the partition function as an integral over energy [18]:

Z(β) =

∞∫

−∞

dE ρ(E) e−βE , (3.3)

where β = 1/kBT . In general, the thermodynamic mean of a quantity A, which is
given as a function of energy, can be calculated as

〈〈A〉〉 =
1

Z

∞∫

−∞

dE ρ(E) A(E) e−βE . (3.4)
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The internal energy U is the thermodynamic average of the Hamiltonian function
and can be expressed as a derivative of the partition function:

U(β) = 〈〈H〉〉 =
1

Z(β)

∞∫

−∞

dE ρ(E)E e−βE = − ∂

∂β
lnZ(β) . (3.5)

The specific heat measures the differential amount of internal energy gained with a
differential increase of temperature:

C(β) =

(
∂U

∂T

)

V

= kB β
2 ∂2

∂β2
lnZ(β) . (3.6)

When the system has a discrete set of energies, the density of states can be written
as

ρ(E) =
∑

ν

δ (E − Eν) g(Eν) , (3.7)

with weights g(E) representing all states with energy E. The partition function then
becomes

Z(β) =
∑

ν

g(Eν) e−βEν , (3.8)

and thermodynamic averages are evaluated as follows:

〈〈A〉〉 =
1

Z

∑

ν

g(Eν)A(Eν) e−βEν . (3.9)

This description is identical to the one given in section 2.2.1 for quantum systems.
One can argue whether there are classical systems with a discrete set of energy states,
if one thinks of classical systems as a set of particles described by their continuous
positions and momenta. Nevertheless, we will utilize discrete energy states for all
numerical data, since we cannot represent continuous functions on a computer. The
density of states will have to be described as a set of energies and weight factors
g(Eν), which represent the integrated density of all states from the interval around
the respective energy.

3.2 Classical Heisenberg model

Analogous to the quantum mechanical Hamiltonian for a Heisenberg system, one can
give the corresponding classical Hamiltonian function

H =
∑

i<j

Jc
ij si · sj , (3.10)
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where the spin operators are replaced by classical unit vectors si. This classical
Heisenberg model was introduced mainly to simplify the calculation of quantities
such as the specific heat for systems which cannot be treated quantum mechanically.
The model has to be applied with care, since it is not obvious where to expect the
boundary between classical and quantum (small quantum numbers, low tempera-
tures) regime.
The classical exchange constant Jc can be scaled to imitate the quantum mechanical
operator (2.2) by

Jc = s(s+ 1)Jqm . (3.11)

This stems from the eigenvalue of the squared spin operator,

ŝ2 | s 〉 = s(s+ 1) | s 〉 . (3.12)

Since the classical model is defined using unit vectors si, the factor s(s + 1) scales
to the maximum quantum mechanical “length” of the product of two spin operators.
This scaling, however, is rather arbitrary, one could as well scale with a factor s2,
thereby obtaining equal energy for the fully magnetized state (ferromagnetic ground
state). Reference [38] shows that correction terms to the field-dependent ground
state of a ferromagnetically coupled chain of spins are smaller, if the scaling factor is
chosen to be s(s+ 1).
Although the factor s(s + 1) has been successfully used for the scaling of classical
Monte Carlo data (cf. Sec. 3.4), one has to keep in mind the model remains classical.
Therefore, the question of general applicability, or the temperature range, for which
the classical model can be applied, is still unanswered after the scaling. We will
discuss relations between classical and quantum description of a system in chapter 4.
Alternatively to scaling the interaction constant J , instead of using unit vectors, one
can choose the length of the spin vectors to be |s| =

√

s(s+ 1). Then the distinction
between the two interaction constants becomes unnecessary, i.e. Jc = Jqm.
The spin vectors can either be represented in Cartesian, or alternatively in spherical
coordinates, which is preferable for many applications. The latter introduces two
angles, the zenith θ ∈ [0, π], and the azimuth φ ∈ [0, 2π]. Using this representation,
the spin vector in Cartesian coordinates becomes

s

|s| =





cosφ sin θ
sinφ sin θ

cos θ



 (3.13)

3.3 Exact solution for Heisenberg spin rings

The direct calculation of the density of states from the Hamiltonian function via the
integral definition (3.2) is unfeasible for most systems. However, for special systems,

47



3 Classical density of states

analytical solutions are available, and we will present an expression for the density
of states for a one-dimensional system of N spins.
The derivation will start with the partition function, which according to section 3.1
contains all information needed to determine the thermodynamic properties of the
system. Nevertheless, the density of states is the spectrum of the respective system,
and we will base a numerical method to approximate the quantum spectrum on the
classical density of states in chapter 4. An exact solution, even if limited to a special
class of systems, provides us with a tool to verify numerical results. Therefore, it
proves valuable to calculate the density of states from the partition function, although
the latter can already describe the system’s thermodynamic properties.
The partition function of a one-dimensional system of N classical spins with nearest-
neighbor interaction and periodic boundary condition (spin ring) is given in reference
[39]:

ZN = λN
1 + λN

2 + . . . . (3.14)

λ1, λ2, . . . are the eigenvalues of the integral equation
∫

dξ2 e
−βU(ξ1,ξ2) ψk(ξ2) = λkψk(ξ1) , (3.15)

where the interaction potential U(ξ1, ξ2) between two nearest-neighbor pairs for clas-
sical spins is defined as

U(ξ1, ξ2) = −2Js1 · s2 . (3.16)

It is found that the eigenvalues can be written as

λk(K) =

√
π

2K
Ik+ 1

2
(K) , (3.17)

where In denotes the modified Bessel function of the first kind of order n, and K =
2Jβ. Each eigenvalue λk is (2k+1) times degenerate. Since reference [39] uses the
interaction potential (3.16), we have J = −1

2J
c in order to match our definition of the

classical Hamiltonian given in (3.10). Thus, we obtain K = −Jcβ, and the partition
function (3.14) can be written as

ZN (β) =

( −π
2Jβ

)N
2

∞∑

k=0

(2k + 1)
(

Ik+ 1
2
(−Jβ)

)N
(3.18)

The partition function is the Laplace transform of the density of states. Therefore,
we can derive the density of states by inverting this transformation:

ρ(E) =
1

2πi

∫ c+i∞

c−i∞
eEβ Z(β) dβ (3.19)
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We choose c = 0, β = ix. By inserting (3.18) into the equation, we obtain

ρN (E) =
1

2π

∫ ∞

−∞
dx eiEx

∞∑

k=0

(2k + 1)

(√

−π
2J ix

Ik+ 1
2
(−J ix)

)N

=
∞∑

k=0

(2k + 1)F−1







(√

iπ

2Jx
Ik+ 1

2
(−J ix)

)N






=

∞∑

k=0

(2k + 1) CN−1

{

F−1

{√

iπ

2Jx
Ik+ 1

2
(−J ix)

}

︸ ︷︷ ︸

=:ρ̃k(E)

}

, (3.20)

where F−1 is the inverse Fourier transform, and CN−1 denotes the (N − 1)-fold
convolution of the term in curly brackets with itself, defined as

C1 {ρ̃k(E)} = ρ̃k(E) ∗ ρ̃k(E) =

∫ ∞

−∞
dE′ ρ̃k(E

′) ρ̃k(E − E′) (3.21)

and

CN {ρ̃k(E)} = CN−1 {ρ̃k(E)} ∗ ρ̃k(E) . (3.22)

ρ̃k(E) can be rewritten in the following way, where we set J = 1 from here on, so
both energy and density of states become dimensionless.

ρ̃k(E) =
1

2π

∫ ∞

−∞
dx eiEx

√

iπ

2x
Ik+ 1

2
(−ix)

using In(x) = (−i)nJn(ix) :

=
1√
8π

i−k

∫ ∞

−∞
dx eiExx−

1
2Jk+ 1

2
(x)

using Abramowitz [40] 11.4.26 :

=
1

2
(−1)k Pk(−E) Θ(1 − E2)

=
1

2
Pk(E) Θ(1 − E2) , (3.23)

where Pk is the Legendre polynomial of the k-th order and Θ denotes the Heaviside
step function. Thus, the density of states can be written as

ρN (E) = lim
kmax→∞

kmax∑

k=0

(2k + 1) CN−1

{
1

2
Pk(E) Θ(1 − E2)

}

. (3.24)
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We have hence arrived at an exact solution for the density of states of a spin ring, de-
rived from an analytical expression for the partition function of this system. Eq.(3.24)
is an exact expression, but we cannot give it in closed form, since it would require
to calculate the limit kmax → ∞. We will therefore only have access to numerical
results.

3.3.1 Numerical treatment

The classical density of states (3.24) can now be calculated numerically for a given
system. The sum is only calculated up to a maximum index kmax, which will be the
control parameter for the numerical accuracy. We use the computer algebra software
Mathematica [41] to evaluate the expression (3.24). The contributions to the density
of states for an N -spin system,

ρN
k (E) := CN−1 {ρ̃k(E)} , (3.25)

are calculated independently for the orders k. In order to simplify the calculation
of the convolution integrals, we make a case differentiation for the energy E. This
allows us to omit the Heaviside step function and evaluate the integrals analytically
with Mathematica.
For the given order k, we start with the two-spin density

ρ2
k(E) =

∫ ∞

−∞
dE′ ρ̃k(E

′) ρ̃k(E − E′) =
1

4

∫ b

a
dE′ Pk(E

′)Pk(E − E′)

with {a, b} =

{
{−1, E + 1} if −2 ≤ E ≤ 0
{E − 1, 1} if 0 < E ≤ 2

(3.26)

and ρ2
k(E) = 0 for |E| > 2 .

The two cases stem from the product of the Heaviside functions in ρ̃k(E − E′), and
describe the two regions, where the integrand does not vanish. The expression for
the border regions of the three-spin density is analogous to (3.26),

ρ3
k(E) =

1

2

∫ b

a
dE′ ρ2

k(E
′)Pk(E − E′)

with {a, b} =

{
{−2, E + 1} if −3 ≤ E ≤ −1
{E − 1, 2} if 1 < E ≤ 3

(3.27)

and ρ3
k(E) = 0 for |E| > 3 .

However, we express ρ3
k(E) in the energy interval [−1, 1] as the sum

ρ3
k(E) =

1

2

∫ 0

E−1
dE′ ρ2

k(E
′)Pk(E − E′) +

1

2

∫ E+1

0
dE′ ρ2

k(E
′)Pk(E − E′) , (3.28)
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so that in each integral, ρ2
k(E) is evaluated in only one of the cases described in

(3.26). Using this notation, we can represent each case of (3.26) as an individual
function, thereby simplifying the calculation in Mathematica.
Analogously to the calculation for two and three spins, the procedure is iterated up to
the given system size N . Because of the Heaviside function in ρ̃k(E), each convolution
extends the allowed energy interval symmetrically by one energy unit. Therefore, the
density of states of a system with N sites vanishes for energies |E| > N . For rings
with an even number of spins, we have a ground state energy of E0 = −N and a
maximum energy of Emax = N . The fact that the ground state energy E0 does
not equal −N , when the system is frustrated, is not a constraint imposed by the
convolution of Heaviside functions in this method. However, the summation of the
convoluted Legendre polynomials will correctly reproduce the ground state energy
E0, because the resulting ρ(E) also vanishes in the energy interval [−N,E0].
The energy interval |−N,N ] is represented by a discrete set of energies

Eν = E0 +
ν

n
(Emax − E0) = N

(

2
ν

n
− 1
)

, (3.29)

where n is set to the desired resolution. The density of states is calculated at these
energies according to

ρN (Eν) =

kmax∑

k=0

(2k + 1) ρN
k (Eν) , (3.30)

where ρN
k (Eν) is first evaluated numerically at the energies Eν , and the numerical

values are then summated over k. Alternatively, the ρN
k (E) can be summated analyt-

ically, resulting in one polynomial for ρN (Eν) that is defined piecewise, reflecting the
respective energy intervals as in (3.26). The analytical summation and evaluation
of the resulting polynomial reduced the computer time moderately compared to the
direct numerical calculation for each order k. However, it proved numerically unsta-
ble in Mathematica, which prohibits further use. We will give numerical results for
the two different situations, namely an odd or even number of spins, in the following
section.

3.3.2 Spin ring with N=6

As the first example system, we choose the classical spin ring with N = 6 sites.
Eq.(3.24) is evaluated according to the previous section, and the result is given in
figure 3.1.
Reviewing the graph qualitatively, we find a very fast convergence of the approxi-
mated density of states on growing kmax. The result for kmax = 10 can hardly be
distinguished from the one for kmax = 1. We do not show approximations of higher
orders, because they would not deviate from the kmax = 10 result for this resolution
of the graph.
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Figure 3.1: Density of states for the classical spin ring with N = 6 and J = 1. Numerical
results derived from eq.(3.24) with given maximum index kmax.

From this example, we find that eq.(3.24) is able to deliver precise results for the spin
ring with N sites even when only low-order Legendre polynomials are used. However,
this is not always the case as we will see when we analyze the results for a different
system, namely the trimer, in the following section.

3.3.3 Spin trimer

The density of states for a spin ring with N = 3 (equilateral triangle, trimer) can
be given analytically in closed form. Reference [42] demonstrates that the partition
function, represented by an integral over total spin S rather than energy, is

Z =

∫ 3

0
dS ρ(S) e−βE(S) , (3.31)

with

ρ(S) =







S2

2 if 0 ≤ S ≤ 1
S(3−S)

4 if 1 < S ≤ 3
0 if S > 3

, (3.32)

where the total spin S = |s1 + s2 + s3|. The energy as a function of S can be
expressed as

E(S) =
J

2

(
S2 − 3

)
. (3.33)

Substituting the variable S with the energy E in eq.(3.31), one can identify the
energy-dependent density of states as [43]
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3.3 Exact solution for Heisenberg spin rings

ρ(E) =







1
2J

√
2E
J + 3 if − 3

2J ≤ E ≤ −J
1
4J

(

3 −
√

2E
J + 3

)

if − J < E ≤ 3J

0 else

. (3.34)
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Figure 3.2: Density of states for the classical spin trimer with J = 1. Numerical results
derived from eq.(3.24) with given maximum index kmax and exact solution from
eq.(3.34)

Figure 3.2 shows both numerical results and the exact expression taken from eq.(3.34).
The exact curve is almost covered completely by the numerical result for kmax = 100,
but deviations are visible at the ground state energy E0 = −3

2J . The numerical
density of states does not vanish completely in the interval [E,E0] below the ground
state, and it even assumes negative values. This can be explained by the fact that
eq.(3.34) is not differentiable at E = −3

2J , but is approximated by eq.(3.24) based
on polynomials. Furthermore, the ground state E = −3

2J is located inside the first
interval of eq.(3.27), so the kink cannot be produced by the case differentiation.
Therefore, even for high orders of the approximation (kmax = 100), the resulting
curve visibly deviates from the exact result.

3.3.4 Comparison of the convergence

From the previous two sections, we have learned that the quality of the approximation
using eq.(3.24) depends on the system that is analyzed. Rings with an even number
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3 Classical density of states

of spins have a density of states symmetric about the maximum at E = 0, whereas
for odd-numbered rings the frustration renders ρ(E) more complicated.

In figure 3.3, we give a visualization of the convergence of (3.24) for the two systems,
the spin trimer and the ring with six spins. As the measure of convergence, we
calculate the mean squared difference between two consecutive approximations with
kmax and kmax − 1:

‖ρkmax
− ρkmax−1‖ := (Emax − E0)

−1
∫ ∞

−∞
dE [ρkmax

(E) − ρkmax−1(E)]2

≈ 1

n

n−1∑

ν=0

]ρkmax
(Eν) − ρkmax−1(Eν)]2 , (3.35)

with Eν = E0 + ν
n (Emax − E0) and n the number of points of the discrete energy

interval.
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Figure 3.3: Comparison of the convergence of (3.24) for the trimer and the hexagon. The
graphs show the logarithm of the average squared differences between the results
for kmax and kmax − 1 as defined in eq.(3.35)

The difference between two consecutive approximations is orders of magnitude smaller
for the hexagon compared to the trimer. As we have already seen qualitatively in
figures 3.1 and 3.2, the convergence of the latter is much slower. Eq.(3.35), however,
gives a direct numerical measure of the contribution of the order kmax in eq.(3.35)
compared to the previous one. Thus, the numerical results shown in figure 3.3 suggest
that, generally, the difference between consecutive orders of approximation decreases
monotonically.
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However, the quality of the approximation does not solely depend on kmax. The
density of states for the ring of six spins can be precisely calculated with kmax = 20,
whereas for the same order of the approximation, eq.(3.24) delivers only poor results
for the trimer. In order to use the results from eq.(3.24), it is required to check
for convergence independently for each system that is analyzed. We will specifically
use the results presented in this section for the verification of the Wang-Landau
algorithm, which is described in section 3.5. We can prove its applicability to systems
with an exactly calculable density of states. Later, the Wang-Landau algorithm will
be used to calculate the density of states for systems such as {Mo72Fe30}, where we
cannot apply the scheme presented here.

3.4 Classical Monte Carlo methods

As introduced in section 3.1, the behavior of a system at temperature T is described
in the canonical ensemble. In a system with discrete energy levels (denoted by ν),
the partition function can be written as

Z(β) =
∑

ν

g(Eν) e−βEν , (3.36)

and the thermodynamic mean of the quantity A is

〈〈A〉〉 =
1

Z

∑

ν

g(Eν)A(Eν) e−βEν (3.37)

However, the direct mathematical evaluation of these quantities is impossible for most
systems. Since the number of configurations can be extremely large, the spectral
weight g(E) of all states with the same energy E cannot be calculated analytically
for an arbitrary system.
If no analytical solution is available, numerical methods have to be applied. The
basic idea of stochastic methods is to generate a number of sample configurations
and use them to obtain averages for the desired quantities. Since the generation of
configurations is based upon the use of random numbers, approaches of this kind are
referred to as Monte Carlo methods.
A simple-minded approach to calculate (3.37) would be to generate a number of n
independent random configurations. One could calculate the energy Ei and the value
of the quantity to be measured, Ai = A(Ei), for each configuration i. Because we
are simulating a canonical distribution, the values Ai have to be weighted with the
Boltzmann factor, so that the summation over all samples n,

Ã =
1

n

n∑

i=1

Ai e
−Ei/kBT , (3.38)
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becomes an approximation of the true thermodynamic mean 〈〈A〉〉. The degeneracy
factors g(Ei) are then included in Ai, because they are proportional to the probabil-
ities of generating the respective configurations i.
However, a purely random generation of configurations will produce many states
which do not contribute significantly to the thermodynamic mean, because of their
small Boltzmann weight. Especially for low temperatures, only states with low en-
ergies have a significant Boltzmann weights, and the probability to generate these
states with this simple approach is very small. Thus, generally, this approach will
lead to large statistical errors.

3.4.1 Metropolis algorithm

The configurations have to be generated according to their weights in the averaging
process, i.e. so-called “importance sampling” has to be used [10]. The most popular
method of this class is the Metropolis algorithm [44]. In this algorithm, a sequence of
randomly chosen configurations is generated, as well. However, the configurations are
not chosen independently. The transition probability from an initial state k to the
next state l is made dependent on the energy difference between the two states, and
on the temperature of the system. By imposing this scheme, where the transition
probability only depends on the properties of the current and the proposed state,
a so-called Markov chain is created. Advancing from step t to step t + 1 can be
interpreted as a time evolution, where t is referred to as “Monte Carlo time”, since
it is not actually a real time.
The dynamics of the Markov process can be described by the master equation

dPk(T )

dt
=
∑

l

Pl(t)Wl→k −
∑

l

Pk(t)Wk→l , (3.39)

where Pk(t) and Pl(t) are the probabilities for the system to be in states k, or l
respectively. Wl→k denotes the transition probability to move from state k to l,
and Wk→l describes the opposite direction. The stationary situation (equilibrium) is
realized, when

Pl Wl→k = Pk Wk→l , (3.40)

which is the so-called detailed balance condition. Any transition probability satisfying
the detailed balance condition can be used for the generation of the Markov chain.
In the canonical ensemble, the probability for the system to be in a state with energy
Ei is given by Pi = 1

Z e
−Ei/kBT . In the Metropolis algorithm, the following transition

probabilities are chosen:

Wk→l = min
(

e−∆E/kBT , 1
)

, (3.41)

where ∆E = El − Ek.
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3.4 Classical Monte Carlo methods

The algorithm can be summarized in the following way:

1. Start with arbitrary initial state with energy Ei=1

2. Change the configuration and calculate the energy Ei+1 of the new state

3. If Ei+1 < Ei, accept the proposed move

4. otherwise, calculate transition probability p = e−∆E/kBT ; generate a uniformly
distributed random number r from the interval [0, 1]; if r ≤ p, accept move

5. if the move is accepted, calculate value of the variable Ai+1 (for the new state)
and use it for the averaging;
if the move is rejected, reuse the previous value, i.e. Ai+1 = Ai

6. unless specified number of n samples has been gathered, continue with step 2

The approximation of the thermodynamic mean of the variable A can be calculated
afterwards simply as the arithmetic average of the samples Ai,

〈〈A〉〉 ≈ Ā =
1

n

n∑

i=1

Ai . (3.42)

No weight factors are necessary here, because the states i in the Markov chain were
generated according to the Boltzmann distribution. The statistical error of Ā depends
of course on the number of samples n. If the samples were generated statistically
independent, the error of the mean Ā would just be the standard deviation

error =
σ√
n
, (3.43)

where the variance σ2 of the quantity A can be estimated from the samples by

σ2 ≈ 1

n− 1

n∑

i=1

(
Ai − Ā

)2
. (3.44)

However, the importance sampling scheme introduces correlations between the values
of the variable Ai for subsequently generated configurations. The statistical error of
Ā is found to be

(error)2 =
σ2

n
(1 + 2τA/δt) , (3.45)

where δt is the “time difference” between two consecutive observations Ai and Ai+1

of the simulated variable A. τA is the correlation length, measured in the same units
as δt. The correlation time depends on several parameters. It is affected by the
Hamiltonian function of the system, by the temperature at which the simulation is
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3 Classical density of states

performed, and also by the random number generator (RNG) that is used [10]. We
will not go into much detail here, but we will give an example, where despite of the
simplicity of the system, τA can take large values and thereby lead to “critical slowing
down” of the algorithm. In the two-dimensional Ising model, the correlation time
can assume large values, when the simulation is performed near the phase transition
temperature. The simulation then requires a huge number of samples to achieve
the same accuracy as in a temperature region far away from the phase transition.
This shortcoming of the method can be partially overcome with the help of advanced
methods of generating new configurations (cluster algorithms).

The Metropolis algorithm will be used as a reference for our approximate method
presented in chapter 4, and as a verification tool for the Wang-Landau data (cf.
Sec. 3.5). We will use it to generate numerical results for the specific heat of the
system, so that we can compare the data from this standard method to our new
approach.

For the generation of this data, we will use programs from the ALPS project [45]
(Algorithms and Libraries for Physics Simulations). The classical Monte Carlo pro-
gram for Heisenberg systems contained in ALPS is a highly optimized version of the
algorithm presented in this section. Because the ALPS implementation makes use of
advanced techniques for generating new configurations (cluster updates), the correla-
tion time τA is greatly reduced compared to a simple implementation. We therefore
prefer the ALPS program to an implementation of our own.

Results

We will only give the results for two ring systems here, because as mentioned above,
classical Monte Carlo is not used in this work to produce new data, but only as a
reference.

Figure 3.4 shows the specific heat of the two spin rings N = 6, s = 5
2 and N = 10, s =

1 calculated with classical Monte Carlo compared to the exact quantum mechanical
result. The calculation was performed with unit spin length, and the result was scaled
to |s| =

√

s(s+ 1). The number of Monte Carlo steps was 5 · 107 for the left and 107

for the right graph. Statistical errors are not shown here, since we concentrate on
the systematic difference between classical and quantum result, but they are of the
order of the linewidth of the curve, except for very low temperatures.

As generally expected, the result for the larger quantum number s = 5
2 is closer

to the exact result than the data for the s = 1 system. Whereas the left graph
shows good agreement between classical and quantum mechanical result even in the
vicinity of the maximum, the classical result in the right graph can only describe
the high-temperature region correctly. Naturally, both classical results fail for the
low-temperature section and do not vanish for T = 0.
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Figure 3.4: Classical Monte Carlo results for the specific heat compared to exact quantum
mechanical calculation. Left: ring with N = 6, s = 5

2
. Right: ring with N = 10,

s = 1.

3.5 Wang-Landau algorithm

The Wang-Landau algorithm [46] belongs to the class of Monte-Carlo methods, since
it is an approximate method and is heavily based on the use of random numbers.
It is related to the Metropolis sampling, as it also performs a random walk through
energy space. However, the Wang-Landau algorithm directly samples the density of
states g(E), rather than the canonical distribution

P (E,T ) = g(E) e
− E

kBT , (3.46)

as the Metropolis algorithm does. Note that g(E) does not equal the density of states
ρ(E) introduced in section 3.1. In contrast to the continuous function ρ(E), g(E)
represents the integrated density of all states in the energy interval centered at E:

g(E) =

∫ E+ǫ/2

E−ǫ/2
dE′ ρ(E′) , (3.47)

with a common width ǫ of the energy intervals (cf. definition of G(E, ǫ) in eq.(3.1)).
Since g(E) is frequently called density of states in the literature, we will also use this
nomenclature here.
Following the presentation of the Wang-Landau algorithm in reference [46], it has
been applied successfully to a large variety of problems [47].

3.5.1 Algorithm

The description of the algorithm is mainly based on reference [47]. In order to
sample the density of states, the algorithm performs a random walk in energy space.
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3 Classical density of states

A simple approach to approximate the density of states would be an unbiased random
walk. The state of the system would be changed randomly, and every move would
be accepted. The histogram of the energy distribution would be sampled, i.e. the
number of visits to each energy bin would be counted. After a long random walk,
when every energy bin has been visited, this histogram would converge to the density
of states g(E). There is a serious problem with this approach, however. The number
of possible configurations is generally a huge number, even for simple systems. The
10x10 square of Ising spins (which can only point up or down) has already 2100 ≈
1.27 ·1030 different configurations. Hence, the probability to randomly generate, e.g.,
one of the two ground states, is only one out of 299. An algorithm based on an
unbiased random walk is therefore impracticable, since it would require a gigantic
number of MC steps to reach every configuration.

The solution to this problem, and key idea of the Wang-Landau algorithm, is the
special choice of transition probability for the random walk. In the same way as the
Metropolis algorithm does based on the canonical distribution, the Wang-Landau
algorithm introduces importance sampling based on the density of states. A pro-
posed change to the configuration of the system state is accepted with a probability
proportional to the reciprocal of the density of states. Since the density of states is
unknown at the beginning of the algorithm, one starts with an estimate g(E) = 1 for
all energies (or a better estimate, if available), which is then improved continuously.
After each step, the current estimate of g(E) is multiplied by a factor f . During
the random walk, also the histogram h(E) is accumulated, i.e. h(E) is increased by
one each time the respective energy bin E is visited. Because of the choice of the
acceptance probability and the modification of the estimate g(E), the random walk
will visit every energy bin E equally frequently (approximately, in the limit of a large
number of steps), hence producing a flat histogram.

The modification factor f is changed during the course of the algorithm and has to
converge to 1. For f = 1, the random walk will produce a flat histogram only for the
true density of states g(E).

Technical description

The algorithm is started with a flat density of states g(E) = 1. Alternatively, in case
more information about the system is available, g(E) can be set to a more suitable
estimate. The initial configuration of the system can be chosen arbitrarily. Then a
new configuration of the system is proposed, e.g. in a spin system a random spin is
picked and changed to a random configuration. The acceptance probability for this
move from the state with energy E1 to the one with E2 is then

W (E1 → E2) = min

(
g(E1)

g(E2)
, 1

)

, (3.48)
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i.e. if g(E2) ≤ g(E1), the move to E2 is always accepted, otherwise the probability of

acceptance is g(E1)
g(E2)

. Technically, a random number r ∈ [0, 1] (uniformly distributed)

is generated, and if r ≤ g(E1)
g(E2) , the move is accepted. In case of acceptance, the

configuration of the system is changed to the proposed one. In any case, g(E) and
the histogram h(E) are updated, either at the previous energy of the system or the
accepted proposed energy. Every step of the algorithm generates a sample, even if
the random walk stays at the same configuration:

g(E) → f · g(E) (3.49)

h(E) → h(E) + 1 . (3.50)

The estimate for g(E) will grow very large due to the multiplication with f every
time the bin E is visited. Therefore, it is numerically more adequate to work with
the logarithm of g(E) instead. The update then becomes

ln g(E) → ln g(E) + ln f , (3.51)

and the probability for acceptance

W (E1 → E2) = min (exp [ln g(E1) − ln g(E2)] , 1) . (3.52)

The random walk is performed until the histogram is flat. After a given number of
MC steps (e.g. 10000), the histogram h(E) is reviewed and is considered flat, if

h(E)

h̄
≥ x ∀E (3.53)

is satisfied, where h̄ = nMC

nbins
is the average number of histogram entries. nMC denotes

the number of MC steps performed in this random walk, and nbins is the number of
energy bins. The ratio of all histogram entries to the average h̄ has to be at least x,
where the parameter x is typically chosen between 0.8 and 0.95, depending on the
system that is analyzed. When x is set to a too large number, the histogram may
never reach “flatness”, and too small numbers can affect accuracy.
If the histogram is flat, the factor f is modified. A constraint is that f has to decrease
monotonically so that it converges to 1. A common choice is to apply a power law

fi+1 = fd
i with d ∈ (0, 1) , (3.54)

starting with f = exp(1), i.e. ln f = 1. The histogram entries are reset to h(E) = 0,
and a new random walk is started with the updated modification factor f (i.e., a
new iteration of the Wang-Landau algorithm is performed). The estimates for the
density of states are of course adopted from the previous iteration, since they are to
be improved continuously.
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The accuracy of the estimate g(E) is proportional to ln f , therefore f will be decreased
each time a flat histogram was produced. However, we cannot set f arbitrarily close
to 1, since then no modification would take place in eq.(3.51). The simulation is
hence stopped when f reaches a final value, e.g. ffinal = exp(10−8).
The modification factor f controls the simulation. A large f leads to a fast acquisition
(i.e. after a small number of MC steps) of a flat histogram in the early iterations of the
algorithm. By decreasing f after each iteration the estimates g(E) will be modified
more accurately in later iterations, but the random walk usually requires more steps
to produce a flat histogram. The parameter d of the power law (3.54) contains a
trade-off between accuracy and computer time. Choosing d too small may not give
the algorithm enough time (i.e. MC steps) to reach a good accuracy for g(E) before
the final iteration is reached, and too large values can be a waste of computer time.
Setting d = 0.5 yields good accuracy for many systems while keeping computer time
relatively short [47].

Detailed balance

The detailed balance condition (cf. eq.(3.40)) is not strictly satisfied during the course
of the simulation. The transition probabilities are not based on the true density of
states, but rather on the current estimate for g(E). Thus, the detailed balance
condition

1

g(E1)
W (E1 → E2) =

1

g(E2)
W (E2 → E1) , (3.55)

calculated from (3.52), is only satisfied with accuracy proportional to the modification
factor ln f . This is in contrast to the Metropolis algorithm, where detailed balance is
always satisfied, because the correct probability for the canonical ensemble is chosen
(Boltzmann factor).

Scaling of resulting data

After the algorithm has reached the specified minimum modification factor ffinal, the
values for g(E) represent the final approximation of the density of states. However,
the g(E) are only relative densities of the states for different energies. If a normaliza-
tion is required, the g(E) can be rescaled either in a way that the known degeneracy
of a special state (e.g. two for the ground state of the Ising model) is reproduced, or
alternatively the weight of all states

∑

ν g(Eν) equals one or the number of states of
the system (e.g. 2N for the Ising model).

Comparison to Metropolis method

Compared to the Metropolis algorithm, the Wang-Landau method has several ad-
vantages. For certain situations, e.g. the system being close to a phase transition, the
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traditional Metropolis algorithm exhibits long time scales. Additionally, Metropo-
lis sampling is performed at a specified temperature. Thus, in order to obtain the
temperature dependence of a variable, several simulations have to be run at different
temperatures. Furthermore, it is difficult to extract certain thermodynamic variables
such as the free energy or the entropy from Metropolis data. These variables are only
accessible via integration of other thermodynamic quantities, which accumulates sta-
tistical errors contained in the latter.
Wang-Landau sampling, on the other hand, directly calculates the density of states
g(E), which readily delivers e.g. the free energy:

F (T ) = −kBT lnZ = −kBT ln
∑

ν

g(Eν) e−E/kBT , (3.56)

The density of states is independent of the temperature. Hence, after g(E) has been
calculated once, thermodynamic means can be calculated for any temperature.

Improvement of convergence

The improvement proposed by Zhou and Bhatt [48] involves an additional constraint
to the number of histogram entries. Not only has the histogram to be flat, but also a
minimum number of samples has to be gathered for each iteration of the algorithm,
depending on the current modification factor f :

h(E) >
1√
ln f

∀E . (3.57)

Using this scheme, the efficiency of each iteration of the algorithm is optimized.
Without the Zhou-Bhatt constraint, the algorithm can too quickly decrease the mod-
ification factor f in early iterations, while the approximation of the density of states
g(E) can still be very inaccurate. In later iterations, with small modification factor
f , the algorithm will then take many more steps of the random walk to improve g(E).

3.5.2 Application to the classical Heisenberg model

The Wang-Landau algorithm will be applied to the classical Heisenberg model in this
project. Since the Hamiltonian function (3.10) is the sum of scalar products between
classical vectors, the energy is a continuous function of the spin orientations. In order
to apply the Wang-Landau method, the energy interval between the ground state E0

and the state with maximum energy Emax has to be discretized into bins. We will use
equidistant energy bins, but this is not a necessity for the algorithm. The number of
energy bins will be chosen according to the desired resolution of g(E).
The update procedure between subsequent steps of the random walk involves the
change of the spin vectors. Unlike for the Ising model, where changing the spins is
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simply done by “flipping” to the opposite direction, the procedure here has to be
able to access the complete unit sphere (see parametrization in eq.(3.13)). The up-
date scheme has to produce uniformly distributed random configurations on the unit
sphere. A simple approach would be to use uniformly distributed random numbers
for each Cartesian coordinate of the spin vector (from the interval [−1, 1]). If the
length of the proposed spin is less than or equal to one (inside unit sphere), the spin
can be used as a new configuration (after renormalization to length one).
An alternative procedure is the Marsaglia method [10]. Two random numbers r1 and
r2 are generated from a uniform distribution on [0, 1], forming the vector

ξ =

(
1 − 2r1
1 − 2r2

)

with (squared) length ξ2 = ξ21 + ξ22 . (3.58)

If the length ξ2 < 1, the new spin configuration is

si+1 =





2ξ1
√

1 − ξ2

2ξ2
√

1 − ξ2

1 − 2ξ2



 . (3.59)

Both methods described above will produce random configurations that are uniformly
distributed on the unit sphere. They can in principle be implemented as the update
procedure for Wang-Landau algorithm for the Heisenberg model. However, allowing
the spins to change to an arbitrary direction with each step of the random walk
implicates problems for the evaluation of the whole range of the energy spectrum.
We have performed simulations based on the update scheme described above, and
an analysis of the random walk showed that the parts of the energy spectrum which
only carry a small weight g(E) were visited very rarely. Hence, the algorithm cannot
produce a flat histogram h(E). We have therefore implemented a refined update
procedure.
The spin states are now only allowed to change to a new configuration that is inside
a cone with a given radius rmax around the previous configuration. The algorithm
is based on the update procedure used in the Ψ-Mag toolkit for computational mag-
netism [49], with some minor modifications.
First, a cylindrical coordinate system is defined with the previous spin configuration
si = (x, y, z)T defining the z′-axis. Then, two random numbers r1 and r2 (uniformly
distributed in the interval [0, 1]) are generated. In the cylindrical system, the radius
ρ = r1 rmax is limited by the maximum radius rmax, whereas the azimuth is allowed
assume all angles: α = 2π r2. The z′-component has to be z′ =

√

1 − ρ2 in order to
retain unit length. In Cartesian coordinates (si is direction of z-axis), the new spin
configuration can be written as

s′i+1 =





ρ cosα
ρ sinα
z′



 . (3.60)
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3.5 Wang-Landau algorithm

The vector s′i+1 has to be transformed into the original coordinate system:

si+1 = R s′i+1 , (3.61)

with the rotation matrix

R =





xz
r −y

r x
yz
r

x
r y

−r 0 z



 , (3.62)

where r =
√

x2 + y2. The resulting vector is normalized and is inside the cone defined
by the previous state si and the radius rmax.

Using the refined update scheme, the random walk can explore regions with small
spectral weight g(E) more efficiently (usually the regions close to E0 and Emax).
An update to the configuration will produce a state in the near energetic vicinity,
whereas an unrestricted reorientation of the spin can easily lead to a long jump in
the energy spectrum.

Random number generator

For the generation of random numbers in our implementation, we use the MT19937
(“Mersenne Twister”) algorithm from the GNU scientific library [50]. It provides
a very large recurrence period of 219937 − 1 and has been shown to be uniformly
distributed (even in high dimensions) and having very weak correlations [51].

3.5.3 Results

We will now present results obtained with our implementation of the Wang-Landau
algorithm for classical spin systems. These results are compared to exact results, if
available, or otherwise their statistical errors will be analyzed.

Trimer

Figure 3.5(left) shows the Wang-Landau data for the spin trimer, with the density of
states normalized so the integral over all energies yields one. The right graph in this
figure shows the deviation from the exact result (cf. Sec. 3.3.3). We find very good
agreement between the exact result and our numerical data.

The algorithm was performed using 100 energy bins between ground state and max-
imum energy, the histogram flatness criterion was x = 0.95. We decreased the mod-
ification factor f with the exponent 0.8, with ffinal = 10−9.
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Figure 3.5: Left: Wang-Landau result for the classical density of states of the trimer. Right:
Absolute difference from the exact result (3.34).

Ring with N=6

We also present the Wang-Landau data for our standard example, the spin ring with
N = 6. Since we have access to numerical exact data for the density of states of spin
rings, we can directly compare the results. Figure 3.6(left) gives the Gaussian-like
density of states, and the right graph shows the absolute difference from the exact
result obtained from (3.24). Again, we only find small deviations of the Wang-Landau
data from the exact result.

The simulation was performed with 1000 energy bins, the histogram was considered
flat at a ratio of x = 0.95, f was decreased with the exponent 0.8, and the algorithm
terminated at ffinal = 10−9.
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Figure 3.6: Left: Wang-Landau result for the classical density of states of the ring with
N = 6. Right: Absolute difference from the exact result (3.24).
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3.5 Wang-Landau algorithm

Classical model for {Mo72Fe30}

Figure 3.7 shows the logarithm of the density of states for the classical model of the
magnetic molecule {Mo72Fe30}. The weights of the energy bins are scaled so that
the maximum weight at zero energy is g(E = 0) = 1. The graph reveals the vast
difference in spectral weight of states near E = 0 compared to states at the borders
of the spectrum, which occupy many orders of magnitude less of phase space.
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Figure 3.7: Classical density of states of {Mo72Fe30} calculated with Wang-Landau. The
left graph shows the relative logarithmic density of states, and the right graph
shows the statistical error.

The density of states for {Mo72Fe30} cannot be calculated analytically. We can
therefore only give statistical errors of our results. The right graph of figure 3.7 shows
the standard deviation of the logarithm of the density of states obtained from five
independent runs of the algorithm. The parameters used for these results were: 500
energy bins, criterion for flatness x = 0.85, exponent for decreasing the modification
factor 0.5, and ffinal = 10−9.

Since the statistical errors cannot show systematic errors in the algorithm, we ad-
ditionally compare the second moment of the numerical density of states with the
analytical result given in section 2.3.2. We find a relative error of 3 · 10−4 from the
exact result σ2 = 20, hence the general compliance with the (unknown) exact result
is good. However, the weight of states near the boundaries of the spectrum cannot be
calculated accurately in the same simulation as the complete spectrum, because the
probability of finding states from the center is so much larger. For the generation of
figure 3.7, the histogram entries of the three energy bins nearest to both boundaries
were not considered when deciding about the flatness of the whole histogram. This is
necessary, because otherwise the algorithm will need unpredictably large amounts of
computer time to advance to the next Wang-Landau iteration. Naturally, the data
for these energy bins does not have the same statistical quality as for the other bins.

If e.g. the low-energy section of the spectrum is required with good accuracy, the
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3 Classical density of states

Wang-Landau algorithm has to be limited to this interval, thus preventing the oc-
currence of too large differences in the spectral weight g(E).

3.5.4 Discussion

Analyzing the results presented in the previous section, we find (in compliance with
reference [52]) that the Wang-Landau algorithm can deliver accurate results for the
Heisenberg model. This is not self-evident, since the Wang-Landau algorithm was
developed for systems with a discrete set of energy values, e.g. the Ising model. For
systems described by continuous variables, such as the classical Heisenberg model,
the energy interval has to be discretized, where one has to decide about the size of
the energy bins. The size of the bins could affect the convergence of the algorithm.
However, for the systems we analyzed, the algorithm proved applicable for a wide
range of bin sizes (∆E = 0.001J to ∆E = 0.1J). For systems with a large number
of spins, e.g. the classical model of {Mo72Fe30}, the phase space volumes occupied
by states from the center of the energy spectrum is orders of magnitude larger than
the phase space volume of states that are energetically near the ground state. If the
algorithm is applied to such a system, one has to subdivide the energy spectrum into
smaller intervals and apply the algorithm to these subunits. The intervals have to
be defined so that they have an overlap with the neighboring intervals. This way,
the normalization of the whole spectrum can be achieved by matching the density of
states at the overlapping energy values. The procedure of performing multiple Wang-
Landau runs on subunits of the energy range, however, is also necessary for discrete
models with a large number of sites (cf. Ref. [47]), and is not a special problem of
the Heisenberg model.
The Wang-Landau algorithm completes our set of tools for the description of classical
systems. Whereas the exact solution presented in section 3.3 is limited to the class
of spin rings and becomes numerically demanding for a large number of spins, the
Wang-Landau algorithm is general and delivers an approximation of the density of
states for systems with an arbitrary interaction matrix Jij . It serves as the basis for
the connection between classical and quantum spectrum in chapter 4.
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4 Quantum corrections for the classical
density of states

In the previous chapters we have discussed properties of spin systems either in the
quantum mechanical or in the classical regime. The classical description of a physical
system can be regarded as the limiting case of quantum mechanics for large quantum
numbers. For the spin systems described here, the classical limit is expected for
s → ∞ (and ~ → 0 at the same time), i.e., the spin angular momentum becoming
a continuous variable. However, different definitions of the classical limit exist in
the literature. The Ehrenfest classical limit, e.g., is realized, when the dynamics
of a wave packet can be described by the Hamiltonian equations of motion for a
classical particle. This picture is valid for large masses and slowly changing potentials
(compared to the width of the wave packet) [53].
In this chapter, we will discuss relations between the density of states for quantum and
classical systems. In quantum mechanics, energy eigenstates are calculated by solving
the time-independent Schrödinger equation, i.e., the Hamiltonian is diagonalized.
One obtains a set of eigenvalues, which constitute the energy spectrum of the system.
The spectrum can be described by the density of states, gq(E), which is defined in
the following way. Let Gq(E, ǫ) denote the number of states in the energy interval
[E − ǫ/2, E + ǫ/2]. If the number of states scales linearly with ǫ, the density of states
is the number of states contained in a small interval per interval width,

gq(E) =
Gq(E, ǫ)

ǫ
. (4.1)

We cannot take the limit ǫ → 0, because this will either yield gq(E) = 0, or (4.1)
does not converge, in case E equals an eigenvalue of the quantum Hamiltonian.
Compared to the definition of the classical density of states in eq.(3.2), the quantum
mechanical density of states is based on an entirely different source. While the clas-
sical density of states is always well-defined by the integral over continuous variables
p and q, gq(E) is derived from a discrete set of energy eigenvalues and only makes
sense for well-behaved distributions, i.e., when eq.(4.1) can be used.
Following from their different definitions, one cannot expect a general similarity be-
tween the classical and the quantum version of the density of states. However, we
will show in this chapter that a general expression can be established, which connects
classical and quantum spectrum. Furthermore, we will demonstrate specifically for
Heisenberg spin systems, how this correspondence can be constructed.
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4 Quantum corrections for the classical density of states

4.1 Correspondence of classical and quantum spectrum

In the course of this section, we will give an alternative expression for the number of
quantum states in a given energy interval, based on the spectra of states which span
the Hilbert space [54].
The quantum spectrum of the Hamiltonian, Gq(E) := Gq(E, ǫ → 0), is not evaluated
directly. We will instead analyze the probability distribution of the totally mixed
state

1̂1 :=
∑

ν

|ψν 〉〈ψν | , (4.2)

where all states |ψν 〉 are occupied with the same probability. The probability to find
1̂1 in an arbitrary energy interval is proportional to the number of states contained
in that interval. Since 1̂1 is an incoherent mixture of states |ψν 〉, the spectrum will
result as the sum of the individual spectra of these states. If we can write 1̂1 as a
mixture of states, where each state corresponds to a point in classical phase space, a
connection between classical and quantum spectrum is established.
In section 4.2, we will introduce the spin-coherent states, which yield the same energy
expectation values for the quantum Heisenberg Hamiltonian as the corresponding
classical spins with the same parameters do for the classical Hamiltonian. The spin-
coherent states will serve as the basis of a numerical algorithm to derive quantum
corrections for the classical density of states.

4.1.1 Formal description

We introduce the special operator Π̂(E), defined by the equation

Ĥ =:
∑

E

E Π̂(E) , (4.3)

i.e., Π̂(E) projects onto the eigenspace of the Hamiltonian Ĥ with corresponding
energy E. The trace of this operator equals the number of states with the given
energy E:

Gq(E) = Tr Π̂(E) . (4.4)

When we think of states characterized by parameters ~γ, the trace in the previous
formula can be expressed as

Tr Π̂(E) =

∫

d~γ 〈~γ | Π̂ |~γ 〉 , (4.5)

if the integral over the projectors |~γ 〉〈~γ | yields the 1̂1-operator:
∫

d~γ |~γ 〉〈~γ | = 1̂1 . (4.6)
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4.1 Correspondence of classical and quantum spectrum

The validity of (4.5) only depends on the completeness relation (4.6). Orthogonality
is not required, i.e., 〈~γ′ |~γ 〉 6= 0 for different parameters ~γ, ~γ′ is allowed. We also
require the states |~γ 〉 to be normalized in the following way:

∫

~γ∈V

d~γ 〈~γ |~γ 〉 = V (4.7)

The volume integral over the norm of the state yields the volume itself.
We now define the spectrum of a single state |~γ 〉,

g(~γ,E) := 〈~γ | Π̂(E) |~γ 〉 . (4.8)

Thus, we find that the quantum mechanical spectrum can be expressed as

Gq(E) =

∫

d~γ g(~γ,E) . (4.9)

The full spectrum Gq(E) is obtained by integrating over the individual spectra of the
contributions |~γ 〉.

Connection to classical density of states

Let us now assume we have quantum states whose energy expectation values equal
the classical Hamiltonian function for the parameters ~γ, i.e.

〈~γ | Ĥ |~γ 〉 = H(~γ) . (4.10)

We will switch back to a description with energy bins of a finite width. When we
recall the expression for the volume of classical phase space occupied by the states
with energies [E − ǫ/2, E + ǫ/2] given in eq.(3.1), we find

Gc(E, ǫ) =

∫

d~γ Θ
( ǫ

2
− |E −H(~γ)|

)

=

∫

E−ǫ/2≤H(~γ)≤E+ǫ/2

d~γ . (4.11)

We can reformulate the quantum mechanical spectrum (4.9) as an integral over en-
ergy:

Gq(E, ǫ) =

∫

dE′ Gc(E′, ǫ) ḡE′(E, ǫ) , (4.12)

where ḡE′(E, ǫ) denotes the normalized accumulated spectrum of all states in the
energy interval [E′ − ǫ/2, E′ + ǫ/2]:

gE′(E, ǫ) =

∫

E′−ǫ/2≤H(~γ)≤E′+ǫ/2

d~γ g(~γ,E) (4.13)
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4 Quantum corrections for the classical density of states

and

ḡE′(E, ǫ) :=
gE′(E, ǫ)

Gc(E, ǫ)
, (4.14)

so that, because of (4.7),
∫

dE ḡE′(E, ǫ) = 1 . (4.15)

The accumulated spectrum of the states in the ǫ-neighborhood of E′ represents the
phase space volume Gc(E′, ǫ), since these states correspond to classical states with
|H(~γ) − E′| ≤ ǫ/2. Hence, the full quantum spectrum Gq(E′, ǫ) in eq.(4.12) can be
written as an integral over all contributing normalized spectra ḡE′(E, ǫ), weighted
with the classical phase space volumes Gc(E′, ǫ).

Thus, we have arrived at an expression that connects the quantum spectrum Gq(E, ǫ)
to the classical phase space volume Gc(E, ǫ). The energy distribution ḡE′(E, ǫ) of the
states with mean energy E′ determines the degree of similarity between quantum and
classical spectrum. If the weight distributions ḡE′(E, ǫ) are concentrated very closely
around the mean energies E′, the integration (4.12) will not modify the classical
spectrum Gc(E, ǫ) to a significant extent. In this case, i.e. for very narrow energy
distributions of the states used to span the Hilbert space, the quantum spectrum will
be similar to the classical density of states.
Generally, the limit of narrow energy distributions of the contributing states |~γ 〉
cannot be expected to be satisfied. Eq.(4.12) can then be used as the basis for an
approximate scheme to describe the quantum spectrum. If we have access to the
classical spectrum Gc(E′, ǫ) for the energy intervals E′ and the spectra of quantum
states contained in these intervals, we can approximate the total quantum spectrum
by

Gq(E, ǫ) ≈
∑

E′

Gc(E′, ǫ) ḡE′(E) (4.16)

Of course the method will not be able to deliver the set of exact eigenvalues of the
quantum Hamiltonian, but it can give an estimate of the number of states contained
in the ǫ-interval around the energy E. That is, the method will not be able to predict,
e.g., the energy gap between ground state and first excited state. However, as we
have demonstrated in section 2.3.1, the information about how many quantum states
are present in an energy interval is sufficient to calculate thermodynamic properties
such as the specific heat with a good accuracy, even with only 100 energy bins.

4.2 Spin-coherent states

In the previous section, we established a correspondence of classical and quantum
spectrum. The derivation relied on a special set of states |~γ 〉, where ~γ denotes a
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4.2 Spin-coherent states

point in classical phase space. We will show in this section that for the Heisenberg
model, we can base our approach upon the so-called spin-coherent states

In reference [55] it was shown that one can construct spin states analogous to the
coherent states of the harmonic oscillator. Whereas the coherent states were intro-
duced as minimum position-momentum uncertainty states and are characterized by
p and q representing a point in phase space, the spin-coherent states relate states in
quantum spin space to classical spin vectors.

The spin-coherent states originally were introduced without a specific purpose, but
rather for showing the analogy to the already known coherent states in position-
momentum space. Later, other authors picked up the formalism and developed var-
ious applications. The spin-coherent states were used e.g. to analyze ferromagnetic
Heisenberg chains in the continuum limit [56] or for the semi-classical description of
spin dynamics [57].

The spin-coherent states can be generated from the fully magnetized ŝz-eigenstate
| s,m = s 〉 ≡ | s 〉 using the unitary operator U (θ, φ) with the spherical angles θ and
φ. The operator can be defined as a consecutive rotation about y- and z-axis [57]

U (θ, φ) = e−iφŝz
e−iθŝy

(4.17)

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. In the basis of ŝz eigenstates, the spin-coherent
states can then be expressed as

| s,Ω 〉 = | s, θ, φ 〉 = U (θ, φ) | s 〉

=

2s∑

n=0

| s − n 〉〈 s − n |U (θ, φ) | s 〉

=
2s∑

n=0

eiφ (n− s) | s− n 〉〈 s − n | exp (−iθŝy) | s 〉

=
2s∑

n=0

(
2s

n

) 1
2
(

cos
θ

2

)2s−n(

sin
θ

2

)n

eiφ (n− s) | s− n 〉 , (4.18)

where we have made use of Wigner’s formula (A.1) to calculate the matrix elements

〈 s− n | e−iθŝy | s 〉 of the operator describing the rotation about the y-axis.

The following operator identities will be useful for the derivation of expectation values
〈 s,Ω | Â | s,Ω 〉, with Â being a product of the spin operators ŝz, ŝ+, and ŝ−. The
transformation of ŝz by the operator Û can be expressed as a rotation about the
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4 Quantum corrections for the classical density of states

y-axis:

Û † ŝz Û = eiθŝ
y
ŝze−iθŝy

= − sin θ ŝx + cos θ ŝz

= −1

2
sin θ ŝ+ − 1

2
sin θ ŝ− + cos θ ŝz . (4.19)

The identity

Û † ŝ+ Û = eiφ
[

cos2 θ

2
ŝ+ − sin2 θ

2
ŝ− + sin θ ŝz

]

(4.20)

can be derived using the Baker-Campbell-Hausdorff formula [58] and the commutator
relations for the three spin operators. Analogously,

Û † ŝ− Û =
(

Û † ŝ+ Û
)†

= e−iφ
[

cos2
θ

2
ŝ− − sin2 θ

2
ŝ+ + sin θ ŝz

]

. (4.21)

4.2.1 Some properties of spin-coherent states

Following the above definition, the spin-coherent states have interesting features re-
lating them to classical spin vectors [57]. The expectation value of the vector spin
operator equals a classical vector with length s, classified by the pair of angles Ω(θ,φ):

〈 s,Ω | ŝ | s,Ω 〉 =





s cosφ sin θ
s sinφ sin θ
s cos θ



 = s eθ,φ (4.22)

and the normalization

〈 s,Ω | s,Ω 〉 = 1 . (4.23)

However, the spin-coherent states are not orthogonal, since following from (4.18), the
overlap is

〈 s,Ωk | s,Ωl 〉 = ei (φk − φl) s·
(

cos
θk

2
cos

θl

2
+ sin

θk

2
sin

θl

2
ei (φl − φk)

)2s
. (4.24)

The absolute value of the overlap can be expressed by the corresponding classical
unit vectors:

|〈 s,Ωk | s,Ωl 〉| =
√

〈 s,Ωk | s,Ωl 〉〈 s,Ωl | s,Ωk 〉 =

(
1 + eθk,φk

· eθl,φl

2

)s
. (4.25)

The overlap is zero only if the vectors eθk,φk
and eθl,φl

are aligned anti-parallelly.
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4.2 Spin-coherent states

As their counterparts in the harmonic oscillator, the spin-coherent states exhibit the
minimum uncertainty product

∆ (e1 · ŝ)∆ (e2 · ŝ) =
1

2
|〈e3 · ŝ〉| , (4.26)

with an arbitrary orthonormal system of vectors e1, e2, e3. Furthermore, the spin-
coherent states fulfill the completeness relation

2s+ 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ | s,Ω 〉〈 s,Ω | = 1̂1 . (4.27)

N-spin system

In order to describe a system of spins by coherent states, we can construct the product
of spin-coherent states

|~s, ~Ω 〉 = | s1,Ω1 〉 ⊗ | s2,Ω2 〉 ⊗ . . . ⊗ | sN ,ΩN 〉 . (4.28)

This definition allows the system to be comprised of spins with different quantum
numbers si. For the work presented here, only systems with a common s are inves-
tigated, and the notation can be simplified to | s, ~Ω 〉 in these cases.

Expectation values for the Heisenberg Hamiltonian

The above described properties have useful consequences for the calculation of ex-
pectation values of the quantum mechanical Heisenberg Hamiltonian (2.2).

The energy expectation value becomes

〈 s, ~Ω | Ĥ | s, ~Ω 〉 =
∑

i<j

Jij 〈 s, ~Ω | ŝi · ŝj | s, ~Ω 〉

=
∑

i<j

Jij si · sj =
∑

i<j

Jij s
2 eθi,φi

· eθj ,φj
, (4.29)

where we have used eqs.(4.22) and (4.28). When we compare the expectation value
to the definition of the classical Heisenberg model in eq.(3.10), we find that the two
quantities only differ in the scaling of the interaction matrix. This follows the fact
that the Heisenberg model only depends on the scalar products between interacting
spins, and the expectation value of the spin vector operator for spin-coherent states
yields the corresponding classical vector. Thus, the spin-coherent states can be used
as a direct mapping of classical vectors to quantum states.
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4 Quantum corrections for the classical density of states

4.2.2 Spectrum of spin-coherent states

For the evaluation of the spectrum of a spin coherent state |~s, ~Ω 〉, we can represent
the projector in eq.(4.3) with the eigenstates |φj 〉 of Ĥ:

Π̂(E) =
∑

j

δ(E − Ej) |φj 〉〈φj | . (4.30)

Therefore, the spectrum of the spin-coherent state |~s, ~Ω 〉 becomes

g(~s, ~Ω, E) =
∑

j

δ(E − Ej) 〈~s, ~Ω |φj 〉〈φj |~s, ~Ω 〉

=
∑

j

δ(E − Ej)
∣
∣
∣〈~s, ~Ω |φj 〉

∣
∣
∣

2
. (4.31)

Thus, for the evaluation of g(~s, ~Ω, E), we need to calculate the projections of the
given state |~s, ~Ω 〉 onto all eigenstates of Ĥ. In numerical exact diagonalization, it
is often convenient to choose the eigenstates of the total Ŝz operator as basis states.
In this case the numerical data represents the eigenstates as coefficients Cjk of the
linear combination of basis states | ~mk 〉 := |mk1,mk2, . . . ,mkN 〉:

|φj 〉 =
∑

k

Cjk | ~mk 〉 . (4.32)

In this representation, the spectrum of a given state |~s, ~Ω 〉 can be expressed as

g(~s, ~Ω, E) =
∑

j

δ(E − Ej)

∣
∣
∣
∣
∣

∑

k

Cjk 〈~s, ~Ω | ~mk 〉
∣
∣
∣
∣
∣

2

. (4.33)

Now we consider the overlaps 〈~s, ~Ω | ~mk 〉. The N -spin state |~s, ~Ω 〉 is a product
state of spin-coherent states. We use the definition given in eq.(4.18) to obtain a
representation with Ŝz-eigenstates, which is useful for the evaluation of the inner
products in eq.(4.33). These can be written as

〈~s, ~Ω | ~mk 〉 =
N∏

l=1

〈 sl,Ωl |mkl 〉 =
N∏

l=1

〈 sl |U †(θl, φl) |mkl 〉

=
N∏

l=1







2sl∑

nl=0

(
2sl

nl

)1
2
(

cos
θl

2

)2sl − nl
(

sin
θl

2

)nl

e−iφl (nl − sl)〈 sl − nl |mkl 〉







=

N∏

l=1







(
2sl

sl −mkl

)1
2
(

cos
θl

2

)sl +mkl
(

sin
θl

2

)sl −mkl

eiφlmkl






, (4.34)
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because the eigenstates of Ŝz are orthonormal:

〈 sl − nl |mkl 〉 = δsl−nl,mkl
. (4.35)

The spectrum g(~s, ~Ω, E) of an arbitrary spin-coherent state |~s, ~Ω 〉 can now be eval-
uated using eq.(4.34). It could serve as part of an algorithm that generates spin-
coherent states and adds up their contributions to the total energy spectrum of the
system, according to eq.(4.16). However, the evaluation of (4.34) consumes signif-
icant computer time. The fact that, for each spin-coherent state’s spectrum to be
added, eq.(4.34) has to be evaluated many times prohibits this approach (from (4.33)
we find that for each spin-coherent state, (4.34) is required dimH times). Addition-
ally, it would require the knowledge of all eigenstates of the system. Therefore, it
could only serve as a verification tool for the method, because the properties of the
system could then also be calculated directly from the eigenstates and eigenvalues.

We have implemented eq.(4.33) mainly as a tool for the investigation of the spectra
of special states in the system. The information gained from the spectra is later used
to decide on the shape of simplified spectral functions to approximate g(~s, ~Ω, E) for
the algorithm.

4.2.3 Example spectra

Using formula (4.33), we can calculate the distribution of spectral weight of a given
spin-coherent state. In the following paragraph, we show example spectra for different
spin systems and spin configurations.

Spectrum of the spin ring N=6, s=5/2

Figure 4.1 shows spectra for spin-coherent states of the ring with N = 6, s = 5
2 . The

left graph shows the state corresponding to the classical ground state of the system,
the right graph gives the spectrum of a state with classical energy E = 0. Whereas the
spectrum of the latter is a broad distribution that exhibits an approximate Gaussian
shape, the spin-coherent state corresponding to the classical ground state shows a
spectrum constituted by a few separated peaks.

Spectrum of the spin ring N=10, s=1

Figure 4.2 shows the spectra of the ring with N = 10, s = 1 for equivalent states as
in the previous paragraph.

The results qualitatively resemble the ones found for the ring with N = 6, s = 5
2 .

States from the center of the classical energy interval exhibit a Gaussian shape,
whereas the classical ground state configuration yields a sparse spectrum.
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Figure 4.1: Spectra of two spin-coherent states for the Heisenberg Hamiltonian of a spin
ring with N = 6, s = 5

2
. The spectral weight is integrated in equally spaced bins

(width 0.01 JNs2). The left graph shows a state configured equivalently to a
classical ground state (E0 = −37.5J), and the right graph a state with classical
energy of E = 0. The boundaries of the classical energy range are marked by
E0 and Emax
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Figure 4.2: Spectra of two spin-coherent states for the Heisenberg Hamiltonian of a spin
ring with N = 10, s = 1. The spectral weight is integrated in equally spaced
bins (width 0.01 JNs2). The left graph shows a state configured equivalently to
a classical ground state (E0 = −10J), and the right graph a state with classical
energy of E = 0. The boundaries of the classical energy range are marked by
E0 and Emax.

4.2.4 Moments of spin-coherent states

The evaluation of eq.(4.34) relies on the knowledge of all the eigenstates of the system
in question. For large systems, the eigenstates are not accessible (and if they were,
no approximations for the spectrum would be needed). Therefore, the spectra of the
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4.2 Spin-coherent states

spin-coherent states will have to be expanded into moments of the Hamiltonian. For
the following formulae, we assume the total weight of the state to be normalized to
one, i.e. ∫ ∞

−∞
dE g(s, ~Ω, E) = 1 , (4.36)

which can always be achieved by rescaling the weights.
The expectation value of the energy equals the Hamiltonian function for the classical
Heisenberg model, as noted before:

Ē =

∫ ∞

−∞
dE g(s, ~Ω, E)E = H(s, ~Ω) . (4.37)

The variance of the Hamiltonian describes the width of the energy distribution of the
given state, and is defined as the expectation value of the squared distance to the
mean energy Ē:

σ2 =

∫ ∞

−∞
dE g(s, ~Ω, E)

(
E − Ē

)2
= 〈 s, ~Ω | Ĥ2 | s, ~Ω 〉 − 〈 s, ~Ω | Ĥ | s, ~Ω 〉2 . (4.38)

The skewness measures the asymmetry of the distribution:

γ1 =
1

σ3

∫ ∞

−∞
dE g(s, ~Ω, E)

(
E − Ē

)3

=
1

σ3

[

〈 s, ~Ω | Ĥ3 | s, ~Ω 〉 − 3σ2Ē − 〈 s, ~Ω | Ĥ | s, ~Ω 〉3
]

. (4.39)

Evaluation of the second moment

The variance of a spin-coherent state | s, ~Ω 〉 can be expanded as follows:

σ2 =
〈
Ĥ2
〉
−
〈
Ĥ
〉2

= 〈 s, ~Ω | Ĥ2 | s, ~Ω 〉 − 〈 s, ~Ω | Ĥ | s, ~Ω 〉2

=
∑

k<l

∑

k′<l′

JklJk′l′〈 s, ~Ω | (ŝk · ŝl) (ŝk′ · ŝl′) | s, ~Ω 〉

−
∑

k<l

∑

k′<l′

JklJk′l′〈 s, ~Ω | (ŝk · ŝl) | s, ~Ω 〉〈 s, ~Ω | (ŝk′ · ŝl′) | s, ~Ω 〉

=
∑

k<l

∑

k′<l′

JklJk′l′

[

〈 s, ~Ω | (ŝk · ŝl) (ŝk′ · ŝl′) | s, ~Ω 〉 − (sk · sl) (sk′ · sl′)
]

, (4.40)

where in the last line, the expectation values of the scalar products have been rewrit-
ten with classical vectors (cf. eq.(4.29)). For the further evaluation of the sum (4.40),
we have to make a case differentiation of the indices {k, l, k′, l′}, in order to find the
combinations that lead to a contribution to the variance. As a matter of course, only
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4 Quantum corrections for the classical density of states

combinations in which the interaction matrix does not vanish have to be considered,
i.e. Jkl 6= 0 and Jk′l′ 6= 0. In the case where the indices are mutually different, the
spin operators commute and can be replaced by the classical vectors. These combi-
nations do not contribute, since they appear in the same way in both the expansions
of 〈Ĥ2〉 and 〈Ĥ〉2.
This leaves the cases where either one or two indices are equal in {k, l, k′, l′}. We
separate (4.40) into two sums, representing these two cases:

σ2 = J2
∑

{m,n′,o′}

〈 s, ~Ω | (ŝm · ŝn′) (ŝm · ŝo′) | s, ~Ω 〉 − (sm · sn′) (sm · so′)

+ J2
∑

{a,b}

〈 s, ~Ω | (ŝa · ŝb)
2 | s, ~Ω 〉 − (sa · sb)

2 , (4.41)

where {a, b} denotes the cases, in which a := k = k′, b := l = l′, and Jab 6= 0. The
subset {m,n′, o′} contains the cases where the index m appears twice in {k, l, k′, l′},
and Jmn′Jmo′ 6= 0. Here we have restricted the calculation to systems with a common
interaction constant, i.e. each non-zero elements of Jkl is assumed to be equal to J .
When we combine the cases {m,n′, o′} and {m, o′, n′} to {m,n, o}, we can rewrite
eq.(4.41) as a sum over real terms only:

σ2 = J2




∑

{m,n,o}

σ2
{m,n,o} +

∑

{a,b}

σ2
{a,b}



 , (4.42)

with
σ2
{a,b} = 〈 s, ~Ω | (ŝa · ŝb)

2 | s, ~Ω 〉 − (sa · sb)
2 (4.43)

and

σ2
{m,n,o} = 〈 s, ~Ω | (ŝm · ŝn) (ŝm · ŝo) | s, ~Ω 〉

+ 〈 s, ~Ω | (ŝm · ŝo) (ŝm · ŝn) | s, ~Ω 〉 − 2 (sm · sn) (sm · so) (4.44)

The terms σ2
{m,n,o} and σ2

{a,b} can be expressed with expectation values of the form

〈 s,Ω | ŝαŝβ | s,Ω 〉, but the resulting expressions become rather lengthy. They are
therefore given in the appendix in eqs.(A.3) and (A.4). The expectation values
〈 s,Ω | ŝαŝβ | s,Ω 〉 can be evaluated using the generating operator Û . We give the
results for the example of ŝxŝx here:

〈 s,Ω | ŝxŝx | s,Ω 〉 = 〈 s | Û †ŝxÛ Û †ŝxÛ | s 〉

=
1

4
〈 s |

(

Û †ŝ+Û + Û †ŝ−Û
)2

| s 〉

=
1

4
s
[
1 + cos2 θ +

(
4s cos2 φ− cos 2φ

)
sin2 θ

]
, (4.45)
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where we have made use of the definition of the spin coherent states (4.17) and the op-
erator identities (4.19) through (4.21). The expectation values for other combinations
α,β can be derived accordingly and are given in the appendix in eqs.(A.7)-(A.12).
In the actual implementation, the interaction matrix Jij is analyzed at the initializa-
tion stage, and the index sets {m,n, o} and {a, b} of contributing terms are saved in
a table for fast access for the repeated calculation of moments.

Third moment

In principle, the above scheme could be used to calculated third moments (skewness)
of the spectra. The evaluation of the third moment (cf. eq.(4.39)) requires the
expansion of the expectation value of the cube of the Hamiltonian,

〈 s, ~Ω | Ĥ3 | s, ~Ω 〉 = 〈 s, ~Ω |
(
∑

i<j

Jij ŝi · ŝj

)3

| s, ~Ω 〉

=
∑

i<j

∑

k<l

∑

m<n

JijJklJmn〈 s, ~Ω | (ŝi · ŝj) (ŝk · ŝl) (ŝm · ŝn) | s, ~Ω 〉 . (4.46)

Whereas the square of the Hamiltonian yielded two types of contributing terms to
the second moment, the situation is much more complicated for the cube. We have
identified seven types of contributions in the index set {i, j, k, l,m, n}. Thus, the
calculation of the third moment of Ĥ from the parameters ~Ω of the spin-coherent
states needs a more refined case differentiation than the evaluation of the second
moment, and it would be numerically more time-consuming. We have therefore not
implemented the third moment in our algorithm.

4.3 Algorithm

As we have stated in section 4.1, quantum spectrum and classical density of states
can be related to each other, and the quantum spectrum can be written as an integral
over contributions of states that are parametrized with ~γ:

Gq(E) =

∫

d~γ g(~γ,E) . (4.47)

According to eq.(4.27), the spin-coherent states span the Hilbert space. Additionally,
the expectation value of the Heisenberg Hamiltonian equals the energy of the corre-
sponding vector array for the classical model (cf. eq.(4.29)). Hence we have a set
of states that are complete on the Hilbert space and whose average energy coincides
with the corresponding classical energy. However, the width of their energy distribu-
tions is not negligible (cf. Sec. 4.2.3). If this were the case, the quantum spectrum
would already be well approximated by the classical density of states.
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4 Quantum corrections for the classical density of states

We base the approximation on the discrete representation of the integral over weighted
spectra, introduced in section 4.1:

Gq(E, ǫ) ≈
∑

i

Gc(Ei, ǫ) ḡEi(E) , (4.48)

where Ei denotes the mean energy of the bin i.
In our approach, we cannot sum over the complete individual spectra of the contribut-
ing configurations as in eq.(4.47), because the calculation of these spectra would
require the knowledge of the spectrum of the entire system. We will rather use
approximations of the individual spectra ḡEi(E), based on the calculation of the mo-
ments of the energy distributions. For this purpose, we replace the spectra ḡEi(E) in
eq.(4.48) by the normalized functions f(E − Ei, ~µ(i)). The vector ~µi represents the
moments of the energy distribution ḡEi(E), i.e.

µ0(i) = 1 , (4.49)

µ1(i) = 0 , (4.50)

µ2(i) = 〈Ĥ2〉 − 〈Ĥ〉2 , etc. (4.51)

The function f(E) is an arbitrary function, with the constraint that it exhibits the
specified moments. Only if all moments are known, f is fully specified and equals
the spectrum ḡEi(E). The first moment has been set to 0 (rather than to 〈Ĥ1〉 =
H(s, ~Ω)), so that we can use functions with vanishing average energy and shift them
by the mean energy of the bin Ei when the summation is performed:

Gq(E, ǫ) ≈
∑

i

Gc(Ei, ǫ) f(E − Ei, ~µ(i)) (4.52)

The evaluation of (4.52) is performed in consecutive steps. In a first step, the classical
spectrum Gc(E, ǫ) has to be acquired. For certain systems (cf. Sec. 3.3) the classical
density of states can be calculated exactly, but usually a Wang-Landau procedure will
be performed. In the second stage, the spectra of the states from the intervals Ei have
to be calculated. These spectra cannot be calculated exactly in most cases, hence
we will limit the calculation to a number of moments of the energy distributions.
The third step incorporates the classical spectrum and the acquired moments of the
quantum spectra for the calculation of (4.52), where we have to choose a broadening
function complying with the moments.
Using the above recipe we have a converging scheme, which yields the exact quantum
spectrum for the limit that both the exact classical density of states and all moments
of the quantum mechanical energy distributions of the states in the intervals Ei are
incorporated into eq.(4.52). For the actual implementation, as noted in section 4.2.4,
we limit the calculation to the second moments.
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Variance of quantum spectrum (high-T approximation)

As stated in the previous section, the estimate of the quantum spectrum is written
as a sum over individual (normalized) spectra fi centered at energies Ei, weighted
with the classical weight Gc(Ei):

Gq(E) =
∑

i

Gc(Ei) fi(E − Ei) , (4.53)

with
∑

i

Gc(Ei) = 1 and

∫

dE fi(E − Ei) = 1 . (4.54)

The variance of the quantum spectrum is then

σ2
q =

∫

dE E2Gq(E) −
(∫

dE EGq(E)

)2

=
∑

i

Gc(Ei)

∫

dE E2 fi(E − Ei)

︸ ︷︷ ︸

=
(
σ2

i +E2
i

)

−
(
∑

i

Gc(Ei)

∫

dE E fi(E − Ei)

︸ ︷︷ ︸

= Ei

)2

=
∑

i

Gc(Ei)σ
2
i +

∑

i

Gc(Ei)E
2
i −

(
∑

i

Gc(Ei)Ei

)2

︸ ︷︷ ︸

= σ2
c

, (4.55)

where σ2
i denotes the variance of the individual spectrum centered at Ei, and σ2

c is
the variance of the classical spectrum. Following from the above, the variance of the
quantum spectrum only depends on the classical spectrum and on the variances of the
spectra fi(E−Ei). In other words, if the correct second moments of the contributions
fi are used for the approximation scheme, automatically the high-temperature limit
of the specific heat will be reproduced correctly.

Sampling of the second moment

The second moments of the spin-coherent states are sampled with an algorithm simi-
lar to the Wang-Landau random walk. Starting from an arbitrary state, for each step,
a new configuration is proposed by randomly changing the spin vectors. The proba-
bility of accepting the move is adopted from the Wang-Landau algorithm, eq.(3.48),

p (E1 → E2) = min

(
Gc(E1)

Gc(E2)
, 1

)

. (4.56)

For each configuration, the width of the energy distribution is calculated according to
eq.(4.42) and used for the averages in the respective bin. The weights Gc(E) have to
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4 Quantum corrections for the classical density of states

be known before the sampling of the moments can be started. They can be obtained
from a previous Wang-Landau calculation and are not modified while performing
the random walk for sampling the moments. The random walk with Wang-Landau
transition probability is only used to achieve a flat histogram situation, i.e. each
energy bin is visited equally often. Thus, the averaging of the moments will be of
similar statistical quality in all bins.

4.3.1 Broadening functions with given second moment

For the broadening of the classical density of states, we have to choose a function
f(E, ~µ) in eq.(4.52) that complies with the given moments µ0 (normalization), µ1

(centering), and µ2 (width). We will now give examples of functions that have a
specified second moment σ2, a vanishing first moment, and are normalized to 1.

Gaussian

The most general form for a function, when only the variance is known, is the Gaus-
sian distribution; it is the “most unbiased guess”:

f(E) =
1

σ
√

2π
e−

E2

2σ2 , (4.57)

with no limitation to the energy interval. However, the use of unbounded distribu-
tions as broadening functions leads to unphysical results. Eq.(4.52) would yield a
non-vanishing density of states in regions far outside the interval [Eq

0 , E
q
max] given by

the quantum Hamiltonian. As can be seen in the case of representing the spectrum
by a single Gaussian (cf. Sec. 2.3.2), the specific heat diverges for the temperature
T approaching zero.
Therefore, the following distributions are limited to a specified energy interval, and
vanish for other energy values. We will list a set of functions that all comply with the
above stated, and compare them with regard to their similarity with the Gaussian
distribution.

Rectangle

The simplest form of a bounded distribution is a uniform distribution (rectangular
shape), its functional representation can be given as

f(E) =
1

2
√

3σ
with |E| ≤

√
3σ . (4.58)

The uniform distribution certainly is a very coarse approximation of the real distri-
bution, since we know that the spectra of most spin-coherent states show a peaked
weight around the mean energy (cf. Sec. 4.2.3).
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Triangle

Therefore, a triangular shape is more appropriate. It can be described by

f(E) =
1√
6σ

(

1 − |E|√
6σ

)

with |E| ≤
√

6σ . (4.59)

Parabola

For numerical reasons, it is desirable to have “smooth” distributions, i.e. they should
not introduce kinks to the density of states, as the previous two function do. The
use of these distributions can lead to oscillatory behavior of functions derived from
the spectrum, e.g. the specific heat.

A parabola eliminates the non-differentiable point at the center of the triangular
distribution:

f(E) =
3

4
√

5σ

(

1 − E2

5σ2

)

with |E| ≤
√

5σ . (4.60)

Cosine

Leaving the class of polynomials, we introduce the cosine distribution, which has the
advantage that it is differentiable at the boundaries of the interval:

f(E) =

√
π2 − 6

2
√

3πσ

[

1 + cos

(√
π2 − 6√

3σ
E

)]

with |E| ≤
√

3πσ√
π2 − 6

. (4.61)

Comparison of the distributions

When we compare the graphs of the functions introduced above in figure 4.3, we
find that the cosine is the “most similar” to the Gaussian. Speaking in terms of
information theory, the cosine function has the largest Shannon entropy in this set of
bounded functions (the Gaussian maximizes the Shannon entropy). We choose the
cosine function as broadening function with given second moment, since it combines
the advantages of being smooth on the defining interval, vanishing at the boundaries,
and containing the least information of the presented distributions.

4.3.2 Results

The algorithm described above is now applied to an exactly solvable system, namely
the ring with N = 6 and s = 5

2 . Systems with a spin quantum number as large as
s = 5

2 are often considered to be close to the classical regime, and classical methods
are used to describe their properties [11]. Hence the correction to the classical density
of states introduced by the scheme presented above should only be minor.
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Figure 4.3: Comparison between different broadening functions. The second moment is
σ = 1 for all curves

As we have demonstrated in section 3.5, we can accurately calculate the density of
states for this system. The acquisition of the second moments is performed according
to the modified Wang-Landau procedure. Since we will average over the second
moments in each bin, we have to analyze how these moments are distributed, in
order to justify this procedure. If the variance of the uncertainties of the spin-
coherent states in the same bin was too large, this averaging procedure would not be
appropriate.

Distribution of the second moment

Figure 4.4(left) shows the distribution of the uncertainty of the spin-coherent states
as a function of energy. The uncertainty vanishes for the fully magnetized state
with energy E = JNs2, because it is a direct mapping of the classical state to
the quantum state with maximum M quantum number. The uncertainty exhibits
three local maxima and does not vanish for the classical ground state, since the
quantum spectrum of the corresponding spin-coherent state, unlike the spectrum of
the maximum energy state, is comprised of many contributions.

The standard deviation of the distribution of uncertainties in the bins is shown in
the right graph of figure 4.4. We find that for low energies, where the spectrum is
important for low-temperature properties of quantities such as the specific heat, the
relative deviation is less than 10%, with a peak value of 20% in the total energy range.
Thus, we conclude that the averaging procedure for generating σ(E) is applicable.
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Figure 4.4: Left: distribution of the width of the spin-coherent wave-functions vs. energy.
Right: relative standard deviation of wave-function widths contributing to the
average of the respective bin E.

Broadening of the classical spectrum

With the gathered data of the uncertainty distribution, we can now perform the sum-
mation according to eq.(4.52). As noted in section 4.3.1, we use a cosine distribution
as broadening function f(E, ~µ), since it represents a comparably weakly biased guess
for the true energy distribution, while being bounded.
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Figure 4.5: Classical density of states and broadened spectrum for the ring with N = 6,
s = 5

2
. The left graph shows the logarithm of g(E).

Figure 4.5 shows the resulting spectrum after the summation (4.52). In the linear
plot, the Gaussian-like density of states appears to be scaled almost symmetrical
about the maximum. The logarithmic plot, however, clearly illustrates that the
broadening procedure has modified the low-energy region of the spectrum to a larger
extend compared to higher energies. The ground state energy of the estimated quan-
tum spectrum is shifted by about 0.5JNs2 from the classical ground state.
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4 Quantum corrections for the classical density of states

Although we have access to the complete quantum spectrum of the system, a direct
comparison to the first approximation is not straightforward, since we would have
to set up a measure for the difference of two spectra. As shown in section 2.3, the
specific heat is very sensitive to deviations in the spectrum. Hence we will use C(T )
to judge the quality of our approximation.
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Figure 4.6: Specific heat for the quantum corrected density of states of the ring with N = 6,
s = 5

2
.

Figure 4.6 shows the specific heat of the spin ring with N = 6, s = 5
2 for the exact

eigenvalue spectrum as well as for different approximations. The classical curve cor-
responds to the density of states Gc(E), and the scaled classical result is obtained by
multiplying all energies by the factor s+1

s , thus adjusting to a classical spin length

of |s| =
√

s(s+ 1). The quantum corrected result represents the broadened spec-
trum generated with (4.52). For completeness, the high-temperature expansion (cf.
Sec. 2.3.2) is given as well.

As shown above, the incorporation of the second moments for the broadening pro-
cedure automatically yields the correct high-temperature limit of the specific heat,
since the variance of the approximate spectrum equals the variance of the true quan-
tum spectrum. Figure 4.6 confirms the correct high-temperature behavior and also
shows that our approximation can accurately describe the specific heat down to
temperatures of about 6 k−1

B J . Qualitatively, the low-temperature behavior is only
similar to the exact quantum result. Our approach is therefore superior to a pure
high-temperature expansion, which approaches the exact quantum result just at the
border of this figure (∼ 12 k−1

B J).
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On the other hand, however, the low-temperature behavior is not accurately repro-
duced, and even the simple rescaling of the density of states yields an approximation
of the same quality.

4.3.3 Discussion

The algorithm presented in this section was developed as a numerical tool for the cal-
culation of an approximation of the quantum energy spectrum of magnetic molecules.
It is a converging scheme, in the sense that the use of all moments of the contributions
ḡE′(E) for the approximation (4.52) will yield the exact quantum spectrum.

Especially for large spin quantum numbers such as s = 5
2 , we expected to obtain

good results from the method, since this situation is often referred to as being close
to the classical limit. Therefore, the corrections introduced by the moments of the
spin-coherent states should have been small.

However, when we review figure 4.4, we find that the peak width of the spin-coherent
states is about 8J . From section 2.3.2, or alternatively from exact diagonalization
data, we can calculate the width of the total quantum spectrum. For a ring system,

the total width is σtotal =
√

N
3 s(s + 1)J , which is about 12.4J for the ring with

N = 6, s = 5
2 . Thus, the corrections are of the order of magnitude of the width

of the complete quantum spectrum. The system is evidently still far away from
the classical limit, where the spectral contributions of the spin-coherent states will
approach delta peaks.

Classical limit

As we have learned from the example given above, s = 5
2 cannot be considered a “clas-

sical” spin. We will now analyze the characteristics of the width of the contributing
spin-coherent states relative to the total width of the quantum spectrum. Figure
4.7 shows the average widths of the energy distributions of spin-coherent states with
corresponding classical energies E for increasing spin quantum numbers s.

We find that, as expected, the width of the individual contributions decreases with
growing spin quantum number s. However, the rate of decrease is rather slow.
Whereas it is natural that for small s the contributions have to be widespread, since
the system clearly is in the quantum regime for s = 1

2 and 3
2 , we had expected the

width of the spin-coherent states to be much smaller for large quantum numbers
s = 5 or s = 10. Since the contributions are still significant for these large quantum
numbers, we conclude that the convergence to the classical limit is much slower than
initially expected. Hence it follows that classical methods for spins as large as s = 10
still cannot be applied without precaution, although s = 10 is often considered a
classical spin.
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Figure 4.7: Distribution of the average width σ(E) of spin-coherent states relative to the
total width of the quantum spectrum for the ring with N = 6 for different spin
quantum numbers s.

Shape of energy distributions ḡE′(E)

Since we have found in the previous paragraph that the corrections introduced by
our method are not small, we will now discuss the shape of the energy distributions
ḡE′(E). Our algorithm will yield the correct quantum spectrum in the limit that
the exact energy distributions ḡE′(E) are known, i.e. all moments are incorporated
into eq.(4.52). If the spectra of the spin-coherent states were narrow, symmetric
broadening functions would probably yield adequate results. Due to the fact that the
uncertainty of the spin-coherent states is of the order of magnitude of the width of the
total spectrum, higher moments will have significant influence on the approximated
spectrum (4.52).

Our approach was to implement only the second moments of ḡE′(E), hence neglecting
any asymmetry. The spin-coherent states are only symmetric in the center of the
spectrum, i.e. for classical energies E ≈ 0, but states near the classical ground state
exhibit a significant third moment. Hence the assumption of symmetric broadening
functions proves to be an oversimplification, and the existing asymmetry (skewness)
of the spectra ḡE′(E) would have to to be incorporated in order to achieve a more
accurate approximation of the quantum spectrum.

Since the calculation of the third moments is a very (computer) time-consuming ef-
fort, our algorithm cannot be promoted as a standard numerical tool for the derivation
of an approximate quantum spectrum. It is however valuable for the analysis of the
way how a system approaches the classical limit, and whether it is justified to regard
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a system as being in the classical regime.

4.4 Truncated classical spectrum

When we analyze the broadened spectrum (cf. Fig. 4.5) for the ring with N = 6,
s = 5

2 , we find that the approximate quantum spectrum extends to very low ener-
gies. However, we can calculate the ground state energy of the quantum mechanical
Hamiltonian exactly for this system, and even for larger systems this information
is available via Lanczos and DMRG calculations. We will now discuss the effect of
incorporating the constraint into the approximation that the spectral weight vanishes
below the true quantum ground state.

Figure 4.8 shows the classical spectrum of the ring N = 6, s = 5
2 as well as the scaled

spectrum corresponding to a spin length of |s| =
√

s(s+ 1). The ground state energy
of the system (obtained from exact diagonalization) is marked by the dotted line.

-1.5 -1 -0.5 0 0.5 1 1.5
E / JNs

2

-20

-10

0

ln
 g

(E
)

E
q
0

classical WL
scaled WL

Figure 4.8: Classical spectrum of the ring with N = 6, s = 5

2
for both spin lengths of s and

√

s(s+ 1). The dotted line marks the quantum mechanical ground state of the
system.

We will now take the scaled spectrum, which extends beyond the true ground state
energy Eq

0 , and truncate it to the allowed energy interval above Eq
0 . The resulting

spectrum is then used to calculate an approximation of the specific heat for this
system. Figure 4.9 shows a comparison of the approximated specific heat, obtained
from the scaled and truncated spectrum, with the exact result. Additionally, it shows

91



4 Quantum corrections for the classical density of states

the result from the scaled spectrum, which is equivalent to a classical Monte Carlo
simulation with spin length |s| =

√

s(s+ 1).
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Figure 4.9: Specific heat for the spin ring with N = 6, s = 5

2
calculated from the full

eigenvalue spectrum compared to scaled Wang-Landau result.

Astoundingly, the truncated spectrum yields a very accurate approximation of the
specific heat for the complete temperature region. We analyzed various systems by
applying the same approach, in order to identify the behavior found in the ring with
N = 6, s = 5

2 as either a singular phenomenon of this specific system or a general
property of Heisenberg spin systems. Empirically, we find that the approach can
accurately deliver the specific heat of all ring systems we analyzed, notably even for
small quantum numbers s.

Figure 4.10 gives the results for the spin ring with N = 10 and the cuboctahedron
(both for s = 1) as examples. As noted above, the specific heat for the ring system is
approximated very accurately. We find that even for the frustrated structure of the
cuboctahedron, the truncation approach can deliver an adequate result. Naturally it
cannot predict the position and height of the Schottky-peak (cf. Sec. 2.3.1), since it
is a property that depends solely on the gap between ground state and first excited
state.

Summarizing the results, we state that the truncation method represents a tool that
accurately predicts the specific heat of the quantum system from the corresponding
classical density of states. However, we have not developed the method based on
a theory that describes the relations between the quantum spectrum and the trun-
cated classical density of states. It was found coincidentally when we incorporated
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Figure 4.10: Specific heat for two systems with s = 1. Left: ring with N = 10, right:
cuboctahedron. Each graph shows the exact quantum mechanical result and
the scaled Wang-Landau data.

the ground state energy of the quantum Hamiltonian into the approximation. Hence
further studies will have to be conducted in order to explain the success of the trun-
cation method, which proved superior both to the approximate scheme presented in
section 4.3 and to classical Monte Carlo calculations, while requiring a comparably
small numerical effort.

93



4 Quantum corrections for the classical density of states

94



5 Summary and outlook

In this work, we have presented different aspects of classical and quantum spectra of
Heisenberg spin systems. For the class of quantum spectrum methods, we reviewed
the rotational band model and analyzed it with respect to the behavior under the
influence of an external magnetic field. The rotational band model was introduced to
allow the calculation of an approximate low-energy spectrum for spin systems whose
large Hilbert space dimensions preclude the use of exact diagonalization techniques.
It simplifies the full Hamiltonian to an effective interaction between “super-spins”,
which represent the sites of sublattices of the total system. For two and three sublat-
tices, the rotational band Hamiltonian is exactly solvable, and the energy eigenvalues
can be expressed as a parabolic function of the total spin quantum number S. This
is a significant simplification compared to the full Heisenberg Hamiltonian, and the
validity of the model has to be verified for the systems it is applied to. For ring
systems, both even numbered (bipartite) and odd numbered, the model is known to
show good agreement in the low-energy region of the spectrum [13]. For {Mo72Fe30},
the model was shown to describe the series of ground state energies in subspaces
H(S) correctly and to give accurate estimates for the magnetization depending on
an applied magnetic field [24]. This is despite the fact that the molecule is of a more
complicated structure that does not allow bipartition.

We utilized the rotational band model to predict results of inelastic neutron scat-
tering experiments with {Mo72Fe30}, in order to verify the validity of the model by
comparing to experimental results. To this end, we incorporated the general results
for the dependence of the rotational band spectrum on the magnetic field into a
scheme that approximates the inelastic neutron scattering cross-section as a function
of the energy transfer.

For zero-field, our estimates showed a very good agreement with the experimental
results for different temperatures of the sample. However, with a magnetic field
present, the experimental results are inaccurate and do not allow a clear answer
whether our simulation and therefore the rotational band model is valid in the form
it is presented here. This is mainly because the scattering data contains a strong
background from non-magnetic contributions, whose subtraction is not trivial. Since
new experimental setups with better controlled background parameters have recently
become available, one should pursue the analysis of {Mo72Fe30} with neutron scat-
tering. Further research can deliver more information on the true energy spectrum
of the molecule, and it can tell us whether the rotational band model persists in the
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form presented here, or to which extent it has to be modified in order to be able to
reproduce these results. As a final remark on the rotational band model, it remains
to emphasize that, up to now, it is still the only adequate model that describes the
inelastic neutron scattering results.
In chapter 3 we introduced the classical density of states, which can be regarded as
the analogon to the quantum mechanical eigenvalue spectrum, since its knowledge
allows the calculation of thermodynamic averages. We have presented an exact solu-
tion for the class of spin rings, as well as the stochastic algorithms of classical Monte
Carlo and Wang-Landau sampling, whereas only the latter can give a direct estimate
of the density of states. We have demonstrated that the density of states is numer-
ically accessible for models with continuous variables such as the Heisenberg model.
However, for large systems such as {Mo72Fe30}, the evaluation poses a considerable
numerical effort because of the huge differences of spectral weight between states
near the ground state and states from the center of the spectrum.
We have limited the description of the density of states to a function of energy, but
one can extend the definition to a function of both energy and magnetization ρ(E,M).
This allows the calculation of thermodynamic averages of magnetic quantities such
as the susceptibility, as well. The approach with a joint density of states ρ(E,M)
has recently been demonstrated to be applicable to the three-dimensional Heisenberg
model [52]. Alternatively, field-dependent quantities can be obtained by calculating
ρ(E) in independent Wang-Landau runs at different magnetic fields, which are kept
constant within each run. This approach does not require any modification to the
random walk algorithm, but only to the function that calculates the energy from the
configuration of the system.
Although being an interesting field of research on their own, the methods for the
description of the classical density of states were primarily introduced to form the
basis of chapter 4, where we related the classical density of states to the spectrum of
the corresponding quantum system.
We have established a scheme that expresses the total quantum spectrum of a sys-
tem as an integral over individual quantum spectra weighted by the corresponding
classical density of states. The method relies on special quantum states that allow a
mapping of classical phase space points to elements of the Hilbert space. Whereas
for the harmonic oscillator this mapping is accomplished by the coherent states, the
analogous spin-coherent states exhibit this feature for Heisenberg spin systems. We
have replaced the quantum spectra of the spin-coherent states by broadening func-
tions, complying with a number of moments of the quantum spectra. This scheme is
convergent, since if all moments agree, the exact quantum spectrum is obtained.
For numerical reasons, only the second moment of the distributions could be incor-
porated without rendering the algorithm unfeasible. For large spin quantum num-
bers such as s = 5

2 , we expected only minor corrections to the classical density of
states. Our main goal was the prediction of the specific heat C(T ) for the molecule
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{Mo72Fe30}, since there is no quantum method that can deliver accurate results.
Quantum Monte Carlo is affected by the sign problem because of the frustrated struc-
ture of {Mo72Fe30}, and exact diagonalization techniques cannot deal with the large
Hilbert space. Lanczos or DMRG method only target ground state (and very few
excited states’) properties, hence they cannot give thermodynamic averages. Clas-
sical Monte Carlo and spin-dynamics deliver impressive results for {Mo72Fe30}, but
they are purely classical methods. Therefore, they do not feature a measure for the
quality of the simulation, in terms of whether the system is in the classical regime or
not.
Since we introduced a scheme that includes information of the quantum spectrum, we
expected to obtain results superior to classical Monte Carlo. However, we found that
the simplification to only use second moments of the energy distributions leads to
results of the same quality as classical Monte Carlo. That is, the specific heat can be
described well for high temperatures, whereas the region near to the peak and below
cannot be reproduced correctly. This is despite the fact that our method extends the
classical density of states based on the second moments of the spin-coherent states
as a function of energy, while in classical Monte Carlo, the imitation of the quantum
result is simply achieved by adjusting the spin length.
We have learned from these results that even for high spin quantum numbers such
as s = 5

2 , the system is still far away from the classical limit, which is assumed for
s→ ∞. We have also found that the convergence to the classical limit with growing
spin quantum number is rather slow, so that, e.g., even s = 10 cannot be regarded
as a completely classical spin.
Although the use of higher moments in our algorithm will lead to better results,
we do not promote the method as a standard numerical tool for the calculation of
thermodynamic quantities because of the significant numerical effort to include these
moments. It is better suited for the analysis of “how classical” a given system is. We
hence propose it as an accompanying tool that is utilized to verify the applicability
of a classical numerical method.
Analyzing the effects of the broadening procedure in our algorithm, we discovered an
interesting alternative method to estimate thermodynamic properties of the quantum
spectrum. After calculating the density of states with the Wang-Landau algorithm
and scaling the result to a spin length of |s| =

√

s(s+ 1), the energy interval is ex-
tended beyond the true quantum mechanical ground state of the system. Since the
Rayleigh-Ritz constraint does not allow quantum states to exist below the ground
state energy, we have truncated the broadened classical spectrum to the allowed
quantum mechanical energy interval. The specific heat approximation obtained from
the truncated spectrum described the exact quantum mechanical result very well.
This extraordinary agreement was found for ring systems of various sizes and spin
quantum numbers, and the method delivered adequate results even for the cubocta-
hedron. The clarification of the reasons for the success of this very simple approach
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will have to be provided by further studies.
Since it has been demonstrated recently that the joint density of states ρ(E,M)
can be calculated for the Heisenberg model with a modified Wang-Landau algorithm
[52], the truncation procedure should be applied to ρ(E,M) as well. The possibility
of an accurate estimation of magnetic properties such as the susceptibility would
be an even more valuable tool, hence further investigations should be aimed at the
correspondence of the classical ρ(E,M) and the quantum spectrum.
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A Appendix

A.1 Wigner’s formula for rotation matrices

Reference [58] gives an explicit formula for the matrix elements of the rotation about
the y-axis. We only present the result

d
(j)
m′ m(β) := 〈 j,m′ | exp

(

−iβĴy

~

)

| j,m 〉

=
∑

k
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2

)2j−2k+m+m′ (

sin
β

2
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. (A.1)

A.2 Summands of the variance of spin-coherent states

As shown in eq.(4.42), the variance of the energy distribution of a spin coherent state
| s, ~Ω 〉 can be expressed as

σ2 = J2




∑

{m,n,o}

σ2
{m,n,o} +

∑

{a,b}

σ2
{a,b}



 . (A.2)

The summands can be expanded in terms of expectation values of first and second-
order products of the spin operators:
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with
sγ
k := 〈 s,Ωk | ŝγ | s,Ωk 〉 and sαβ

k := 〈 s,Ωk | ŝαŝβ | s,Ωk 〉 . (A.5)

A.3 Expectation values of various operators for
spin-coherent states

Expectation values of operator products of the form ŝαŝβ with α, β ∈ {x, y, z} can
be calculated using the generating operator Û of the spin-coherent states introduced
in eq.(4.17), and the identities (4.19) and (4.20):

〈 s,Ω | ŝαŝβ | s,Ω 〉 = 〈 s | Û †ŝαÛ Û †ŝβÛ | s 〉 (A.6)
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