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Chapter 1

General introduction

Photorefractive (PR) beam coupling effects have been extensively studied during

the last decades because of their strength and diversity and also because of a large

application potential [1]. These effects are present in many materials, including

ferroelectric/semiconductive crystals and polymers [2]. In crystals, the strongest

coupling occurs in ferroelectrics whose nonlinear response is not sufficiently fast for

many applications. Many efforts have been spent to find and optimize faster PR

materials. Nowadays, cubic crystals of the sillenite family (Bi12SiO20, Bi12TiO20,

Bi12GeO20) and also cubic semiconductors (CdTe, GaAs, and InP) meet the speed

requirements most fully [3].

A common feature of the above fast materials is their relatively weak PR re-

sponse. Two techniques, dc and ac, have been developed to enhance it [4, 5]. Both

of them exploit applied electric fields. In the dc-case, the field is constant while

the interacting waves are slightly detuned in frequency. In the ac-case, which is

proven to be most useful for practical purposes, an applied electric field oscillates in

time and no detuning is introduced between the light waves. The efficiency of the

ac-technique depends on the temporal profile of the field [6]. The best enhancement

occurs for a square-wave profile when the field changes periodically its sign.

The strong spatial amplification which can be achieved in sillenites, is accom-

panied by pronounced light-induced (nonlinear) scattering [7, 8]. The underlying

mechanism of this phenomenon is not much different from that known for photore-

fractive ferroelectrics [3]. Weak seed waves arising because of the surface and bulk

crystal imperfections, experience a strong spatial amplification at the expense of the

pump.

Considerable progress in improving the photorefractive characteristics of sillen-
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CHAPTER 1. GENERAL INTRODUCTION 2

ites was made during the last decade [9, 10]. The fabrication of thin and long BSO

and BTO crystals has allowed to increase the ac-field amplitude up to 50 kV/cm, to

decrease the response time in cw-experiments to milliseconds, and to demonstrate

a variety of strong nonlinear effects relevant to applications. Among them are fast

phase conjugation [11], generation of surface light waves [12, 13], time separated

recording and readout processes [14], and linear detection of weak signals [15].

A distinctive feature of the PR phenomena in fast cubic crystals is the vectorial

character of wave coupling. The energy and polarization changes cannot generally

be separated here from each other. Sensitivity of the nonlinear-optical effects to the

polarization degrees of freedom (and also to the crystal cut) can be regarded as a

property useful for applications.

An important step in describing the vectorial coupling was made recently in [16,

17]. The authors have summarized different aspects of vectorial beam coupling in

cubic PR crystals and proposed a theoretical scheme capable of combining the gen-

eral analytical methods with incorporation of the factual data on the PR response.

This approach has allowed to describe in a uniform manner a number of impor-

tant vectorial effects including the vectorial Bragg diffraction [18] and the angular

distribution of the light-induced scattering in BTO and BSO crystals [16, 17].

The abovementioned theory describes well the vectorial coupling for a narrow

region of the small light contrast m or under assumption of constant grating ampli-

tude. It is known that the fundamental component of the space-charge wave EK is

linearly proportional to the light contrast only for small values of m. With increas-

ing m, the function EK(m) becomes strongly nonlinear and the vectorial coupling

theory needs to be corrected to work in the region of large contrast. The large-

contrast effects in sillenites under ac-enhancement were investigated in [19, 20] by

numerical methods, but the interpretation of the obtained results was insufficiently

clear. The region of large contrast is especially important in connection with the

soliton propagation problem [21] or for such application as the linear detection of

weak signals [22, 23].

The linear detection technique was developed first in its scalar variant. However,

as was recently shown, the vectorial beam coupling under ac-field can be effectively

used for the linear detection too [24, 25]. The basic idea is not much different from

that known for the scalar linear detection – to transform fast phase modulation of one

of the input beams into output intensity modulation (so-called grating translation

technique). The main obstacle on the way of implementation of this idea is that

the index grating recorded in the ac-case is π/2 shifted with respect to the pump
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light pattern. This feature would make the linear detection impossible in the scalar

case [22]. In the vectorial case, this problem can be solved by using of polarization

filtering of the output signals, as proposed in [15].

In this thesis we investigate such important aspects of the vectorial two-beam

coupling in sillinites under ac-enhancement, as recording of the space-charge field

grating in the large contrast regime, effect of the input beams polarizations on

coupling characteristics and polarization properties of scattered light.

We begin, in Chapter 2, with the analysis of the space-charge field formation

in the whole region of light contrast. We perform a theoretical description of this

phenomena and consider the first three Fourier harmonics of the space-charge field.

In Chapter 3 we incorporate the results from Chapter 2 to the vectorial two-beam

coupling theory and extend it over the whole region of light contrast. Chapter 4

deals with the grating translation technique and related to it with the linear signal

detection. We take into account the influence of the coupling effects on the output

intensity modulation and optimize the linear detection parameters for different im-

portant experimental cases. Chapter 5 gives the information about the polarization

properties of small-angle light-induced scattering in BTO crystals. To the best of

our knowledge, polarization states of scattered waves in cubic crystals were never

analyzed theoretically. A concluding Chapter 6 summarizes and accentuates the

main aspects of the thesis and also discusses an outlook on open challenges and

future tasks.



Chapter 2

Photorefractive ac-enhanced

nonlinear response: low- and

high-contrast effects

2.1 Introduction

The idea of ac-enhancement of the insufficiently high nonlinear response of fast pho-

torefractive sillenites crystals goes back to the 80ies [1, 3]. It was found first in

1985 [5] that employment of a quickly oscillating electric ac-field increases the light-

induced space-charge field within the low-contrast limit and makes the photorefrac-

tive response nonlocal, i.e., gradient-like. Such a nonlocal response is convenient for

many practical purposes.

In the subsequent years the ac-enhancement technique had become the subject

of numerous experimental and theoretical studies. It was found, in particular, that

a square-wave shape of the ac-field provides the best enhancement [6], that the low-

contrast range, where the fundamental component of the space-charge field grows

linearly with m, is very narrow, and that the enhancement property is closely re-

lated to the presence of weakly damped, low-frequency eigenmodes – space-charge

waves [26] – and to the generation of spatial subharmonics [3].

The large-contrast ac-effects in sillenites were partially investigated in [19, 20].

These works were restricted only to the fundamental component of the space-charge

field and involve many phenomenological parameters, which have insufficiently clear

significance [19, 20]. Recently, it was found under rather general conditions that the

space-charge field induced in a fast ac-enhancemented crystal by a finite light beam

4



CHAPTER 2. PHOTOREFRACTIVE NONLINEAR RESPONSE 5

possesses a discontinuity [27, 28]. The width of this discontinuity lies in the sub-µm

range, it is much smaller than the typical scale of light-intensity variations.

In this chapter we investigate the space-charge field grating formation in sillinites

crystals under ac-enhancement. In particular, we account for the discontinuity of

the field profile and analyze the dependences of the space-charge field harmonics

amplitudes on the light contrast ranging from 0 to 1. We work in the terms providing

generality of the obtained results and simplicity in using them for the vectorial beam

coupling theory.

2.2 Basic relations

We assume that two light waves propagate symmetrically to the z-axis in a fast

photorefractive crystal and a square-wave ac-field is applied parallel to the x-axis,

see Fig.2.1. The vectorial complex amplitudes of the light waves we denote a1,2.

They can change with z because of linear (field-induced birefringence and optical

activity) and nonlinear (energy exchange) effects. The sum |a1|2 + |a1|2, which is

proportional to the total intensity, does not depend on z. From now on we normalize

the vectorial amplitudes in such a way that this sum equals to unity.

Eac

x

z

22
k2 k1

K Fig.2.1. Geometrical diagram of

an AC experiment.

The spatially modulated part of the intensity distribution, Ĩ, produced by these

two waves and normalized to the sum of their intensities is

Ĩ = (a∗

2 · a1) exp(iKx) + c.c. (2.1)

where K = |k1 − k2| is the absolute value of the light wave vector difference (often

called the grating vector), x is the fringe coordinate measured in the direction of

the vector k1 − k2, and c.c. stands for complex conjugation. The contrast of the

interference light pattern, m, is given by m = 2|a∗

2 · a1|. The presence of the
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scalar product in Eq. (2.1) and in the definition of m is important for optically

isotropic cubic crystals. The polarization states of light waves change here because of

nonlinear coupling and this change cannot be generally separated from the intensity

changes [16, 29]. The contrast m reaches its maximum value (unity) only for equal

intensities, |a1|2 = |a2|2 = 1/2, and identical polarization states, a1 ‖ a2. As clear

from Eq. (2.1), the modulated part Ĩ of the intensity distribution can be rewritten

in the real form, Ĩ = m cos(Kx + ϕ) with ϕ = arg(a∗

2 · a1). Generally, the phase

ϕ depends on the propagation coordinate z because of coupling effects and this

dependence is important for the description of the vectorial 2W-coupling.

The light-induced space-charge field Esc is directed along the x-axis and can be

presented in the form

Esc(x) = EK ei(Kx+ϕ) + E2K e2i(Kx+ϕ) + . . .+ c. c. (2.2)

The amplitudes EK , E2K , . . . are complex functions of m; the form of these functions

depends on the charge transport mechanism. The fundamental amplitude EK is

of prime importance for photorefractive effects because it characterizes the rate

of mutual Bragg diffraction of the recording beams and, therefore, the coupling

strength during 2W-coupling.

In the case under study the charge separation occurs under an alternating exter-

nal field. This field is assumed to be parallel to the x-axis, to change periodically its

sign, Eex(t) = ±E0, and have an oscillation period much smaller than the photore-

fractive response time. These conditions provide an optimum ac-enhancement [6].

In the experiments, the amplitude E0 is often larger than (or comparable with)

10 kV/cm. Diffusion charge separation is negligible in this case.

The high speed of the ac-oscillations allows to employ an averaging procedure to

find the static profile Esc(x). This procedure was used first within the low contrast

approximation (and within the conventional one-species model of charge transfer)

to find the first spatial harmonic EK [5]. The main result of this paper we present

in a form which is convenient for what follows,

EK/E0 ≃ −imQ/2 (2.3)

where the real quantity Q = Q(K,E0) is the quality factor for the space-charge wave

with wavevector K [26],

Q =

(

E0

Eq

+
Em

E0

+
Ed

E0

)−1

(2.4)
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Eq, Em, and Ed are the conventional characteristic fields [3, 1],

Eq =
qNt

ǫǫ0K
Em =

1

Kµτ
Ed =

KkbT

q
(2.5)

q is the elementary charge, Nt the effective trap concentration, ǫǫ0 the static dielec-

tric constant, µτ the mobility-lifetime product for photo-excited electrons, kb the

Boltzman constant, and T the absolute temperature.

The maximum value of the function Q(K,E0) is (qNtµτ/4ǫǫ0)
1/2 [26]. The fast

photorefractive crystals are distinguished by large values of the µτ -product , here

Qmax ≫ 1. With the values Nt = 2 · 1016 cm−3, µτ = 3 · 10−7 cm2/V, and ǫǫ0 = 50,

representative for the sillenites, we have Qmax ≃ 8.

0 10 20 30 40 50
3

4

5

6

7

8

4

5

3

2

1

q
u
a
lit

y
 f
a
c
to

r 
 Q

grating spacing ( m)L m

4.0 2.0 1.0 0.50.7 0.4

half-angle (deg)q

Fig.2.2. Dependence Q(Λ) for ǫǫ0 = 50, Nt = 2 · 1016 cm−3, µτ = 3 · 10−7 cm2/V,

and several values of E0. The curves 1, 2, 3, 4, and 5 correspond to E0 = 4, 8, 12,

16 and 20 kV/cm, respectively. The dashed line shows the value of Qmax for the

accepted material parameters.

The most important features of the dependence Q(K,E0) can be described as

follows. For E0 considerably larger than (NtkbT/ǫǫ0)
1/2 (which is typically of the

order of a few kV/cm) the diffusion contribution to Q [the last term in Eq. (2.4)]

can be neglected. In this case, the optimum value of the grating vector, Kopt ≃
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E−1
0 (qNt/ǫǫ0µτ)

1/2 and the corresponding peak value of Q(K) is not far from Qmax.

This is illustrated by Fig.2.2 for the above presented material parameters. Note that

for E0 ∼ 10 kV/cm the optimum value of K corresponds to the half-angle θ between

the incident light beams (see Fig.2.1) of the order of a few degrees. The larger E0, the

wider (in Λ) is the region of large Q. The presence of the ac-enhancement manifests

itself clearly in experiments on light-induced scattering in the sillenites [16, 30, 31]:

The strongest scattering angles correspond to Kopt.

The introduced quality factor has also an apparently different implication. It

defines the threshold of the so-called subharmonic generation in the sillenites, which

corresponds to the parametric instability against excitation of weakly damped space-

charge waves [26, 32]. Lastly we mention that the quality factor can be directly

measured experimentally [33].

Let us return to Eq. (2.3) valid in the low contrast approximation. The presence

of the imaginary unit i means that the photorefractive response is nonlocal, i.e., the

light and field fringes are shifted to each other by a quarter of a period.

Since the amplitude of the space-charge field related to the first Fourier harmonic

is 2|EK |, we have E
(1)
sc /E0 ≃ mQ. Hence already at m ≈ Q−1 ≪ 1, the space-charge

field becomes comparable with the applied field. The linear approximation (ignoring

the material nonlinearity) is clearly broken here. This situation differs strongly from

that typical for slow ferroelectrics, which is caused by the difference in values of the

lifetime-mobility product for photo-excited charge carriers [26].

Recently, the procedure of averaging over the fast ac-oscillations was applied

to the nonlinear case (an arbitrary light contrast) to obtain a simple differential

equation for the normalized space-charge field e = Esc(x)/E0 in the diffusion-free

limit E0 ≫ (NtkbT/ǫǫ0)
1/2. This ordinary second-order equation reads [27],

[

(e2 − 1) (1 + Ĩ)

1 + ls ex

]

x

=
e (1 + Ĩ)

l0
(2.6)

where the subscript x denotes the x-differentiation, l0 = µτE0 is the characteristic

drift length, and ls = ǫǫ0E0/qNt the characteristic saturation length. For repre-

sentative parameters of the sillenites and E0 = 20 kV/cm we have the estimates,

l0 ≈ 50 µm, ls ≈ 0.4 µm. Correspondingly, the grating vector K has to range

between l−1
0 and l−1

s to meet the requirement Q≫ 1.

Within the linear approximation in Ĩ we have from here l0lsexx − e = l0Ĩx and

for the first harmonic EK we return immediately to Eq. (2.3). In the general case,

an even intensity distribution Ĩ(x) produces an odd distribution e(x).
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The distinctive feature of Eq. (2.6) is the presence of the smallest characteristic

length ls before the derivative ex in the denominator. As soon as the nonlinear terms

(in m) become important, this feature causes a highly peculiar behavior of the field

profile e(x). Namely, this profile cannot be smooth on the scale of the grating period

Λ = 2π/K, it has to include a discontinuity of e(x). If we assume the opposite, the

term lsex can be neglected; then Eq. (2.6) becomes a first-order differential equation

which cannot possess any periodic solution for e. Therefore the solution of Eq. (2.6)

must possess discontinuities. Their width can be estimated as ≈ ls.

2.3 Space-charge fields harmonics

Recently, equation (2.6) was applied to the beam propagation problem [28]. Below

we use it to describe the characteristics of light-induced gratings arising during 2W-

mixing. Correspondingly, the modulated part Ĩ of the intensity distribution was

chosen in the form Ĩ = m cos(Kx). Apart from the low-contrast limit, Eq. (2.6)

can be solved only numerically.

Figure 2.3 shows the main tendencies in the change of the space-charge field pro-

file with increasing contrast for Q ≈ 6. One sees that a sine-like profile occurs only

for m . 0.05. With increasing m, the discontinuity (situated at the intensity maxi-

mum) quickly progresses; far from the discontinuity the function e(x) experiences a

strong saturation and approaches the square-wave form e = ±1. The light-induced

field never exceeds the applied field, |Esc| < E0. It is curious that a strong steepen-

ing of the field profile at the intensity minima (x/Λ ≃ ±0.5) occurs only when m is

approaching unity.

Since the function e(x) is odd, all its Fourier harmonics are imaginary,

en(m) ≡ En(m)

E0

= −2i

1/2
∫

0

e(ξ,m) sin(2πnξ) dξ (2.7)

with ξ = x/Λ. This means, in particular, that the fundamental component of Esc(x)

is π/2-shifted with respect to the intensity distribution for any value of the contrast,

i.e., the photorefractive ac-enhancement response is always nonlocal. Using the

approximation of a square-wave profile of e(x) for m = 1, we obtain the following

estimate of the limit values of the spatial harmonics: en(1) ≃ −2i/nπ for odd

numbers (n = 1, 3, . . .) and en(1) = 0 for even numbers, (n = 2, 4, . . .). For the

fundamental component we expect, therefore, the limit value |e1(m = 1)| ≃ 2/π ≃
0.64.
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Fig.2.3. The profile e(x) for the accepted material parameters, E0 = 13 kV/cm,

Λ = 30 µm, (Q ≃ 6.2), and several values of the contrast. The curves 1, 2, 3, 4, 5,

and 6 correspond to m = 0.05, 0.1, 0.3, 0.6, 0.9, and 1.0, respectively.

For what follows it is useful to represent the dependence e1(m) ≡ EK(m)/E0 in

the form

e1 = −(imQ/2) f(Q,m) (2.8)

where f(Q,m) is a dimensionless function with a unit initial value, f(Q, 0) = 1.

While using Eq. (2.8) for the description of the vectorial coupling [16, 31], it is

important to keep the phase factor exp(iϕ) = 2(a∗

2 · a1)/m in Eq. (2.2).

The solid curve in Fig.2.4 shows the result of our numerical calculation of the

function |e1| = Qmf(m)/2 on the basis of Eq. (2.6); it corresponds to Q ≃ 6.2. This

curve, which is remarkable, can be considered as a characteristic one. Fairly wide

changes of the parameters Nt, µτ , E0, and Λ do not affect it seriously, provided

the corresponding values of the quality factor Q lie within the range (5 − 7) which

is most interesting for experiment. The vertical bars in Fig.2.4 show the spread of

the results obtained for Nt = (1 − 6) · 1016 cm−3, µτ = (0.7 − 4.2) · 10−7 cm2/V,

E0 = (12− 30) kV/cm, and Λ = (10− 50) µm. With increasing contrast this spread

is decreasing. At m = 1 we have |e1| ≃ 0.62, which agrees well with the above made
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analytic estimate. The close proximity of different curves means (i) that the quality

factor Q determines the photorefractive nonlinear response in the whole range of

the light contrast m and (ii) that the dependence of this response on Q is saturated

for Q≫ 1.
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fi
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|e
|
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light contrast  m
Fig.2.4. The solid lien is the calculated dependence of |e1| on the light contrast for

Q = 6.2. The dotted curve corresponds to the phenomenological Eq. (2.9) with

Q = 6.2 and a = 2.15.

It is of interest to compare the results of our numerical calculations with the

expression used in [19, 20] for fitting the numerical results and experimental data.

In our terms, this fit is equivalent to the representation of the function eK(m) in the

form

eK = (−iQ/2a)[1 − exp(−am)] exp(m) (2.9)

where a is a fitting parameter. The dotted curve in Fig.2.4 shows the best fit of our

numerical results, it corresponds to a = 2.15Q. One sees that the fitting function

given by Eq. (2.9) reproduces fairly well the main features of the photorefractive

ac-response. At the same time, the difference between the solid and dotted lines is

noticeable for m ≈ 0.15.
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Instead of the contrast m, it is often useful to employ the pump intensity ratio β.

These quantities are coupled by the relation m = 2
√
β/(1+β) with β ranging from 1

to ∞. Figure 2.5 shows the dependence |e1(β)|/m(β) = Qf(β) in a logarithmic scale

for 8 different combinations µτ , Nt, E0, and Λ. For the curves 2 – 7 the quality factor

ranges from 6 to 7, whereas the curves 1 and 6 are plotted for considerably smaller

and bigger values of Q, respectively. For very large intensity ratios, log10(β) > (4−5)

(the low-contrast limit), each curve is characterized by a plateau on the level of

Q/2; all the curves are clearly separated here. In the opposite case, log10(β) . 2

(m & 0.2), the curves with Q ≥ 6 practically coincide.
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Fig.2.5. Dependence of |eK |/m on β. The values of Q, µτ (in 10−7 cm2/V), Nt (in

1016 cm−3), Λ (in µm), and E0 (in kV/cm) for the curves 1 – 8 are the following: 1

– (4.0, 1.63, 2.37, 40, 18); 2 – (6.0, 2.51, 2.38, 10, 18); 3 – (6.2, 4.23, 1.06, 20, 12); 4

– (6.4, 7.68, 6.6, 15, 30); 5 – (6.6, 1.48, 4.23, 25, 24); 6 – (6.8, 4.03, 1.44, 35, 14); 7

– (7.0, 3.34, 2,94, 50, 20); 8 – (9.0, 3.12, 2.94, 25, 20).

As seen from Figs. 2.4, 2.5, the whole contrast range can roughly be separated

into two regions. The region 0 < m . 0.05 (β & 104) corresponds to the linear

theory [5]. Here the fundamental amplitude EK grows rapidly with the contrast and

the rate of spatial amplification of weak signals is extremely high, up to 102 cm−1. In
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the second region, 0.05 . m 6 1, the growth of EK(m) is strongly saturated. This

region is more appropriate for grating recording than for the spatial amplification

purposes.

It should be underlined that the results exhibited are related to the case Q &

(3 − 5) which is our prime interest. While the quality factor approaches unity, the

effects of ac-enhancement fade quickly.
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Fig.2.6. Dependence of the second (a) and third (b) spatial harmonics on the con-

trast m. The assumptions made are the same as for Fig.2.4.
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Apart from the fundamental harmonic eK , responsible for beam-coupling effects,

the first higher harmonics e2 = E2K/E0 and e3 = E3K/E0 are of practical interest.

These harmonics can be measured with the help of auxiliary Bragg-matched light

beams, they are important for characterization purposes. Since the function e(x) is

odd, all the higher Fourier harmonics are imaginary. Figures 6a and 6b show the

dependences |e2(m)| and |e3(m)|, respectively calculated for the same parameters

as the solid curve of Fig.2.4. The function |e2(m)| peaks at m ≃ 0.5 and turns (as

expected) to zero at m = 1. This dependence corresponds to the formation of the

step-like field profile with increasing m, see Fig.2.3. Note that the initial (quadratic)

interval of |e2(m)| is extremely narrow, m . 0.02, and the maximum expected value

of |E(2)
sc | is about 0.2E0. The spread of the curve in Fig.2.6(a) (shown by the vertical

bars) is noticeably larger than that in Fig.2.4, especially in the region of relatively

large m. The dependence e3(m) shown in Fig.2.6(b) looks quite different. It tends

first to saturate at m ≃ 0.2 but experiences then a remarkable growth with m

approaching unity. The maximum value of E
(3)
sc is about 0.4E0. Both dependences

of Fig.2.6 can be considered as the fingerprints of the ac-response in the sillenites.

Let us comment first on the relationship between our results and the numerical

results presented in [19, 20]. First of all, we note that there is no serious contra-

diction between them. But there are, nevertheless, some differences. Partially, the

parameters used in these papers correspond to the case E0 . (NtkbT/ǫǫ0)
1/2, which

is of minor interest and lies outside the field of applicability of Eq. (2.6). Simulation

of the time development of the charge density on the basis of the conventional one-

species model restricted the possibilities of numerical experiments. In particular, the

states attained were not fully stationary yet. It is not quite clear also whether the

coordinate step used was always considerably smaller than the saturation length ls.

The mentioned circumstances can be the reason for minor quantitative distinctions

in the cases where the approaches used can be compared.

Introduction of the quality factor Q has allowed us to represent the data on the

fundamental harmonic in a fairly simple manner. This is especially true for the case

Q ≫ 1 which has become topical during the last years. The form of our results

allows their incorporation into the theory of vectorial beam coupling (see Chapter

3). Also we get the new data on the higher spatial harmonics E2K,3K .

Several implications of the ac-response considered are also worth of discussion.

The first one is how to measure the dependences EnK(m) experimentally. In our

opinion, the standard coupling geometries (the longitudinal, transverse, and diago-

nal), where the recording light beams propagate near the [110] (or [1̄10]) axis, are
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not very useful for this purpose. The point is the coupling effects (involving also

the polarization changes) can hardly be excluded even for relatively thin (∼ 1 mm)

samples. The most useful one seems to be the geometry used in [32, 33] where the

recording beams propagate nearby the [001] axis and the testing Bragg-matched

beams propagate nearby [110]. In this case, the recorded space-charge field is not

distorted by coupling effects and the minor remaining theoretical problem is to take

into account the influence of optical activity and the ac-induced birefringence on the

measured diffraction efficiency [18]. A similar technique was used to measure the

higher harmonics of Esc induced in the case of the co-called resonant dc-enhancement

of the photorefractive response [34, 35].

The next aspect is the influence of the m-dependence of the fundamental har-

monic on the characteristics of two-beam coupling in the sillenites. It is important

to realize that this coupling is essentially vectorial, i.e., it cannot be reduced to

the scalar one in the general case. The aforesaid is especially true with respect to

the cases where the optical activity is essentially involved (which is, e.g., always

the case for BSO crystals). The use of the formulae of the scalar theory for fitting

of the experimental dependences can result here in misleading conclusions. In the

next Chapter, we apply the information obtained here to expand the vectorial beam

coupling theory on the whole range of light contrast.

2.4 Resume

Using the governing equation for the space-charge field induced during 2W-coupling

under an ac-field in the sillenites, we have analyzed numerically the dependences

of the first Fourier harmonics, E1,2,3 on the light contrast ranging from 0 to 1. We

found out that these rather peculiar dependences are strongly controlled by the only

scalar parameter - the quality (enhancement) factor Q. Comparison with the results

of the previous studies is performed and the possibility for experimental detection

of the theoretical predictions are discussed.



Chapter 3

Exact solution for vectorial beam

coupling

3.1 Introduction

The vectorial character of beam coupling in sillinite crystals arises due to their

cubic symmetry. As known, for this kind of symmetry the wave vectors of two

orthogonal eigenmodes are equal. Even for sufficiently large applied electric field,

the induced birefringence cannot exclude the coupling of waves with different po-

larizations. Therefore, the energy exchange between light waves is accompanied by

polarization changes. Furthermore, specific features of the electro-optic effect and

the presence of optical activity in cubic crystals lead to a high sensitivity of beam

coupling to the input beam polarizations, crystal cut, orientation of the applied

field, etc.

The theoretical description of the photorefractive nonlinear phenomena in cubic

crystals was for a long time very fragmental. First studies were devoted to the

analysis of vectorial beam coupling via a spatially uniform index grating [18, 29,

36, 37, 38]. The results show the importance of the polarization degree of freedom

and of the orientation of the grating fringes for the optimization of the readout

process. Most of these papers use various approximations or numerical methods to

solve the vectorial Bragg-diffraction problem. In [18, 36] this problem was exactly

solved in the paraxial limit. In any case, the assumption of a uniform grating

cannot be applied to the cases of strong energy and polarization exchange between

the interacting light waves.

A number of publications deal with the analysis of strong nonlinear effects caused

16
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by the enhanced PR response [12, 39, 40]. Unfortunately, the authors restrict them-

selves usually to the formulation of the governing equations for the wave amplitudes

and to particular numerical solutions of these equations. The corresponding nu-

merical results give no general insight into the nonlinear phenomena under study.

Moreover, the initial equations often do not include details essential for the wave

coupling such as, for instance, secondary electro-optic effect and the effect of the

external electric field on the linear properties of the crystal.

The theory of the vectorial beam coupling, which summarized most features of

the beam coupling in cubic crystals, was developed in [16]. The simplicity and

efficiency of this theoretical description allowed to explain well many observable

phenomena. Unfortunately, this approach was also restricted by the region of small

light contrast.

The purpose of this Chapter is to investigate (analytically and numerically) the

vectorial two-beam coupling process in the case of ac-enhancement. Our findings

can be considered as an extension of the classical results obtained for the case of

scalar beam coupling [1, 3] to the vectorial case.

3.2 Vectorial diffraction equation

Let two light waves, 1 and 2, be coupled in a cubic PR crystal via diffraction

from a light-induced grating of the space-charge field whose grating vector ~K is the

difference of the light wave vectors, see Fig. 3.1(a).

K

0 d
z

2

1

(b)(a)

K

x,[001]

y,[110]

z,[110]

�

�

ai

iE0

Fig. 3.1. (a) Schematic of a two-wave coupling experiment. (b) Orientation

of the main 2D vectors about the crystal axes, ~ai is the amplitude of the ith

wave (i = 1, 2).
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As soon as light absorption is neglected, the total intensity of the waves does

not depend on the propagation coordinate, z, and we can normalize the vectorial

complex wave amplitudes ~a1,~a2 in such a way that |~a1|2 + |~a2|2 = 1. The amplitude

of the light-induced space-charge field we denote EK ; it is generally a function of z.

With this notation and within the conventional paraxial approximation, the set of

equations describing vectorial Bragg diffraction from the grating can be presented

in the following general and compact form [16]:

(
d

dz
− iκ · σ̂)~a1 = iEK (ν0 + ν · σ̂)~a2 (3.1)

(
d

dz
− iκ · σ̂)~a2 = iE ∗

K (ν0 + ν · σ̂)~a1 (3.2)

Here κ = (κ1,−ρ, κ3) (ρ is the rotatory power) and ν = (ν1, 0, ν3) are known real

3D vectors, ν0 is a known real scalar, σ̂ = (σ1, σ2, σ2) the standard set of 2 × 2

Pauli matrices, see [64], and ~a1,2 are 2D vectors with x and y components (NB:

the 3D quantities with 1, 2, 3-components are denoted by bold letters). The vector

κ characterizes the linear optical properties; its components κ1,3 account for the

changes of the optical permittivity induced by a uniform applied electric field via

the linear electro-optic effect and the component κ2 = −ρ accounts for the effect

of optical activity (if it is present in the crystal). The vector ν and the scalar ν0

are responsible for the anisotropic and isotropic parts of diffraction, respectively.

The fact that the component ν2 = 0 means that the light-induced space-charge field

does not produce any changes of the rotatory power ρ. The set (3.1), (3.2) can

be considered as an extension of the known scalar Kogelnik theory to the vectorial

case. One can check that the hermitian property of the σ-matrices ensures the

conservation of the total wave intensity, i.e.,

I0 = |~a1|2 + |~a2|2 = 1 (3.3)

is the integral of Eqs. (3.1), (3.2). In the case of a uniform grating, EK(z) =

const, the set (3.1), (3.2) admits nontrivial exact general solutions for the vectorial

diffraction [18, 16].

In the case of nonuniform index grating EK(z) the expression for the grating

amplitude EK was obtained in the Chapter 2 (see Eq.(2.8)).

The coefficients κ1,3 and ν0,1,3 entering Eqs. (3.1), (3.2) can be calculated for any

orientation of the applied field ~E0 and the grating vector ~K about the crystal axes.
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Below we restrict ourselves to the case where the propagation axis z is directed along

[11̄0], see Fig. 3.1(b), and the applied field ~E0 is parallel to the grating vector ~K; this

covers most of the topical situations. Then the components κ1,3 can be presented in

the form

κ1 = sE0 sin ζ κ3 = −sE0

2
cos ζ (3.4)

where ζ is the angle between ~K and the [001] crystal axis, s = −πn3
0r41/λ, n0

the non-perturbed refractive index, r41 the only non-zero electro-optic constant,

and λ the wavelength. The sign of E0 can be positive and negative in Eqs. (3.4).

The coefficients ν0,1,3 include generally not only electro-optic but also elasto-optic

contributions, the latter can sometimes be of importance. If we neglect the elasto-

optic contributions, then

ν0 =
s

2
cos ζ ν1 = s sin ζ ν3 = −s

2
cos ζ (3.5)

The data on ν0,1,3(ζ) with the elasto-optic contributions taken into account can be

found in [16].

Three particular cases are especially important for the experiments:

• The transverse (T) geometry, ~K, ~E0 ⊥ [001], i.e., ζ = 90◦. Here κ1 = sE0, κ3 = 0.

The elasto-optic contributions renormalize here slightly the electro-optic constant

r41, therefore ν0 = 0, ν1 ≃ s, and ν3 = 0.

• The longitudinal (L) optical configuration, ~K, ~E0 ‖ [001], i.e., ζ = 0. Here κ1 =

0, κ3 = sE0/2. The elasto-optic contributions are absent here, hence ν0 = s/2, ν1 =

0, and ν3 = −s/2.

• The diagonal (D) geometry, ~K, ~E0 ‖ [111], ζ = arctan(
√

2) ≃ 54.7◦. Here κ1 =√
2 sE0, κ3 = −sE0/2

√
3. The elasto-optic contributions to ν0,1,3 are clearly pro-

nounced here, they can give up to 40% corrections to the values given by Eqs. (3.5),

see Chapter 5.

There is a big number of optical configurations that are equivalent (for symmetry

reasons) to the above considered, these configurations are listed in [16].

Commenting the above relations for the optical configurations, we mention first

that the isotropic part of diffraction is absent in the T-geometry. This case is

maximally different from the familiar scalar diffraction. Furthermore, there is no

case where the anisotropic part of diffraction is absent or small as compared to the

isotropic part. Hence strong polarization effects are expected in cubic PR crystals.

It is important for what follows that the vectors κ and ν are parallel to each other

in the L- and T-geometries if the optical activity is absent (crystals of the 4̄3m point
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group). In the sillenites (where ρ 6= 0) κ is approximately parallel to ν for s|E0| ≫ ρ,

which means suppression of optical activity by the applied field. This situation is

typical for ac-experiments with BTO crystals, where ρ ≃ 6.5 deg/mm ≃ 1.1 cm−1,

|s| ≃ 4 · 10−4 V−1, and the amplitude |E0| ranges from 10 to 50 kV/cm. In the D-

geometry, it is necessary to be careful when using the approximation κ ‖ ν because

of noticeable elasto-optic contributions to ν1,3.

3.3 Analysis and simplification of vectorial equa-

tions

First, using Eq. (2.8), we exclude EK from Eqs. (3.1)-(3.2) and obtain the closed

set of equations for ~a1,2,

(
d

dz
− iκ · σ̂)~a1 = Q|E0| f(m) (~a1 · ~a ∗

2 ) (ν0 + ν · σ̂)~a2 (3.6)

(
d

dz
− iκ · σ̂)~a2 = −Q|E0| f(m) (~a ∗

1 · ~a2) (ν0 + ν · σ̂)~a1 (3.7)

where, as earlier, m = 2|~a1 · ~a ∗

2 |.
In the next step we prove that the light interference fringes experience neither

bending nor tilting inside the crystal despite of the coupling effects. This is an

important generalization of the property of beam coupling known for the nonlocal

response in the scalar case on the vectorial case. We note first that the light intensity

pattern inside the crystal is proportional to [1 + m cos( ~K · ~r + Φ)], where Φ =

arg(~a1 · ~a ∗

2 ) and ~K ⊥ z. If Φ(z) = const, the light fringes remain perpendicular to

the input face. Multiplying the vectorial equations (3.6) and (3.7) scalarly by ~a ∗

2 and

~a ∗

1 , respectively, combining the obtained scalar relations, and using the hermitian

property of the σ-matrices, we obtain the necessary equality ∂zΦz = 0. This general

property of the light fringes was missed in [16]. Being very simple, it simplifies

greatly the following considerations.

Since the phase Φ(z) = const, we can put it equal zero without any loss of

generality. In other words, one can make the replacement ~a1,2 → ~a1,2 exp(±iΦ/2)

to work then with new fully equivalent vectorial light amplitudes. Therefore, from

now on we set ~a1 · ~a ∗

2 = m/2.

At this point, we need to make the main approximation of this paper, namely

κ ‖ ν. The situations where it is justified have been considered in the previous

section. Within this approximation, the set of nonlinear equations (3.6), (3.7) admits
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exact solutions while the polarization properties of beam coupling remain far from

trivial.

To get rid of the linear terms in Eqs. (3.6), (3.7), we perform a unitary transfor-

mation from ~a1,2 to the amplitudes ~b1,2,

~a1,2 = exp[i(κ · σ̂) z]~b1,2 (3.8)

This transformation does not change the scalar products; in particular, |~a1,2(z)|2 =

|~b1,2(z)|2 and ~a1(z) · ~a ∗

2 (z) = ~b1(z) · ~b ∗2 (z) ≡ m(z)/2. It does not change also the

input values of the amplitudes, ~b1,2(0) = ~a1,2(0). After the unitary transformation

we have (using the property κ ‖ ν):

d

dz
~b1 = + (Q|E0|/2)mf(m) (ν0 + ν · σ̂)~b2 (3.9)

d

dz
,~b2 = − (Q|E0|/2)mf(m) (ν0 + ν · σ̂)~b1 (3.10)

Lastly, we transfer from the propagation coordinate z to the variable ξ (an effective

coordinate),

ξ = (Q|E0|/2)

∫ z

0

m(z′) f [m(z′)] dz′ (3.11)

to obtain instead of Eqs. (3.9), (3.10):

d

dξ
~b1 = + (ν0 + ν · σ̂)~b2 (3.12)

d

dξ
~b2 = − (ν0 + ν · σ̂)~b1 (3.13)

This set of differential equations is already linear, it describes vectorial diffraction

from a uniform grating and admits an exact general solution in the terms of the

effective coordinate ξ. The nonlinear part of the problem is therefore reduced to

determination of the function ξ(z), which is monotonously increasing starting from

zero, ξ(0) = 0. As soon as the dependence m(ξ) is found from Eqs. (3.9), (3.10),

the function ξ(z) can be obtained by integration (analytical or numerical).
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3.4 Exact solutions

It is not difficult to check, see also [18, 16], that the exact solution of Eqs. (3.12),

(3.13) with the boundary conditions ~b1,2(0) = ~b 0
1,2 is

~b1 =[ cos(ν0ξ) cos(νξ) − (n · σ̂) sin(ν0ξ) sin(νξ) ]~b 0
1 +

[ sin(ν0ξ) cos(νξ) + (n · σ̂) cos(ν0ξ) sin(νξ) ]~b 0
2 (3.14)

~b2 = − [ sin(ν0ξ) cos(νξ) + (n · σ̂) cos(ν0ξ) sin(νξ) ]~b 0
1 +

[ cos(ν0ξ) cos(νξ) − (n · σ̂) sin(ν0ξ) sin(νξ) ]~b 0
2 (3.15)

where ν = |ν| is the scalar characterizing the strength of anisotropic diffraction and

n = (n1, 0, n3) = ν/ν is the real unit 3D vector. Two spatial frequencies, ν0 and ν,

are present in Eqs. (3.14), (3.15). One can check furthermore that |~b1(ξ)|2+|~b1(ξ)|2 =

1.

Using Eqs. (3.14), (3.15), we find the contrast m = 2 (~b1 ·~b ∗2 ) as a function of ξ,

m =m0 cos(2ν0ξ) cos(2νξ) −W0 sin(2ν0ξ) cos(2νξ)−
F0 cos(2ν0ξ) sin(2νξ) − P0 sin(2ν0ξ) sin(2νξ) (3.16)

where m0 = m(0) is the input value of the contrast and W0, F0, P0 are the input

values of the following real scalar characteristics of the vectorial coupling:

W = |~b1|2 − |~b2|2 F = 〈1|(n · σ̂)|1〉 − 〈2|(n · σ̂)|2〉 P = 2 Re 〈1|(n · σ̂)| 2〉 (3.17)

We have used here the conventional quantum-mechanic notation for the matrix

elements, e.g., 〈1|(n · σ̂)|2〉 = ~b ∗1 · (n · σ̂)~b2. As follows from Eqs. (3.17), W is

the normalized difference of the beam intensities, F characterizes the polarization

freedom degrees, and P describes a correlation of polarizations in the beams 1

and 2. To make this assertion more clear, we recall, see also [41, 42], that the real

3D vector Si = 〈i|σ̂|i〉/|~bi|2 (i = 1, 2) is the unit Stokes vector for ith beam, its

components (Si)1,3 characterize the degree of linear polarization and the component

(Si)2 characterizes the degree of ellipticity. In what follows, we shall provide the

reader with particular examples of polarization characterization.

The structure of Eq. (3.16) makes us to expect that explicit relations for m, W ,

F , and P , that follow from Eqs. (3.14), (3.15), form a closed set. It is not difficult
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to find out that

W =m0 sin(2ν0ξ) cos(2νξ) +W0 cos(2ν0ξ) cos(2νξ)−
F0 sin(2ν0ξ) sin(2νξ) + P0 cos(2ν0ξ) sin(2νξ) (3.18)

F =m0 cos(2ν0ξ) sin(2νξ) −W0 sin(2ν0ξ) sin(2νξ)+

F0 cos(2ν0ξ) cos(2νξ) + P0 sin(2ν0ξ) cos(2νξ) (3.19)

P = −m0 sin(2ν0ξ) sin(2νξ) −W0 cos(2ν0ξ) sin(2νξ)−
F0 sin(2ν0ξ) cos(2νξ) + P0 cos(2ν0ξ) cos(2νξ) (3.20)

From here one finds algebraically that the quantity

Ip = m2 +W 2 + F 2 + P 2 (3.21)

remains constant across the crystal, i.e., Ip is a new (in addition to I0) integral of the

set (3.1), (3.2). It involves the polarization degrees of freedom. One can show that,

depending on polarizations of the input beams, Ip ranges from 1 to 2. It is worth

mentioning that the unitary transformation (3.8) does not change the quantities W ,

F , and P , defined by Eqs. (3.17); instead of the new amplitudes ~b1,2 one can use the

old amplitudes ~a1,2 in these equations.

The ξ-dependences given by the Eqs. (3.16), (3.18) – (3.20) include a great

deal of information on the vectorial coupling. At the first sight, these oscillating

dependences look unusual for the nonlocal response which is distinguished by a one-

directional energy transfer [3]. Moreover, the possibility for the contrastm to change

sign, that formally follows from Eq. (3.16), seems to be confusing. As a matter of

fact, this feature is beyond of the field of applicability of the exact relations. It will

be shown in the next section, that this field is restricted to the region of ξ where

m ≥ 0; within this region the propagation coordinate z = z(ξ) ranges from 0 to ∞.

Particular cases

• Transverse configuration. Here ν0 = 0 and the relations (3.16), (3.18) – (3.20)

acquire the following simplified form (with the only spatial frequency 2ν present):

m = m0 cos(2νξ) − F0 sin(2νξ) F = m0 sin(2νξ) + F0 cos(2νξ) (3.22)

W = W0 cos(2νξ) + P0 sin(2νξ) P = −W0 sin(2νξ) + P0 cos(2νξ) (3.23)

From here we have:

m2(ξ) + F 2(ξ) = m2
0 + F 2

0 W 2(ξ) + P 2(ξ) = W 2
0 + P 2

0 (3.24)
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One sees that m is coupled only with F , W only with P , and instead of the integral

Ip = m2+W 2+F 2+P 2 we have two integrals, h2
0 = m2+F 2 and g2

0 = W 2+P 2. It is

interesting that evolution of the light contrast m is affected by the input value of the

polarization characteristic F0. Depending on F0, the contrast can be an increasing

or a decreasing function of ξ (and z) near the input face. A similar situation takes

place for the intensity difference W ; the sign of the derivative dW/dξ at ξ = 0, i.e.,

the direction of the energy transfer, is controlled by the sign of P0. For any input

values m0, F0, W0, and P0 the functions given by Eqs. (3.22) oscillate around zero.

Note that F0 is expressed by the input intensities of the beams I0
1,2 and the input

Stokes vectors S0
1,2, F0 = I0

1 (n · S0
1) − I0

2 (n · S0
2). If the input polarizations are the

same, S0
1 = S0

2 = S0, then F0 = W0 (n · S0) and P0 = m0 (n · S0). For m0 ≪ 1

the value of F0 can be comparable with one, which means a strong effect of the

polarization degrees on the spatial evolution of the contrast.

Let the input beams 1 and 2 be linearly polarized and α1 and α2 be the cor-

responding input polarization angles measured from the [001] axis, see Fig. 3.1b.

Then the input values m0, W0, F0, P0 can be expressed as follows:

m0 =
√

1 −W 2
0 cosα− F0 = n1

(

cosα+ sinα− +W0 sinα+ cosα−

)

(3.25)

W0 = I0
1 − I0

2 P0 = n1

√

1 −W 2
0 sinα+ (3.26)

where α± = α1 ± α2, n1 = ±1 specifies the sign of the nonlocal response. Since the

sum of the normalized intensities I0
1 + I0

2 = I0 = 1, we have three independent vari-

able input parameters, the normalized intensity difference W0 and two polarization

angles. The integrals h2
0 and g2

0 are also functions of these input parameters. The

maximum values of h2
0 and g2

0, as functions of the angles, occur at α1,2 = π/4 and

equal unity. The corresponding minimum values are 0 and W 2
0 ; they take place at

α1 = α2 = π/2.

To illustrate the consequences of Eqs. (3.25), (3.26), we consider again the situ-

ation when the input intensities are the same, W0 = 0, whereas the input polariza-

tions are almost perpendicular to each other, cosα− ≪ 1, m0 ≪ 1. Here we have

h2
0 ≃ cos2 α+ and g2

0 ≃ sin2 α+. Hence the maximum attainable values of m and |W |
during two-wave coupling are controlled by the sum of the input polarization angles

α+. They can, by will, be made small or large, see also the next section.

• Longitudinal configuration. Here ν0 = ν and we obtain from Eqs. (3.16), (3.18)
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the following explicit relations for m and W :

2m = m0 − P0 + (m0 + P0) cos(4νξ) − (W0 + F0) sin(4νξ) (3.27)

2W = W0 − F0 + (m0 + P0) sin(4νξ) + (W0 + F0) cos(4νξ) (3.28)

Furthermore one can find from Eqs. (3.19), (3.20) that the polarization characteris-

tics P and F are expressed linearly by m and W :

P − P0 = m−m0 F − F0 = W −W0 (3.29)

Again we have a strong effect of the polarization degrees of freedom on the coupling

characteristics.

To illustrate the polarization effects covered by Eqs. (3.27) – (3.29), we consider

the case of equal input intensities, W0 = 0, and linear input polarizations. For the

longitudinal optical geometry instead of the Eqs.(3.25)-(3.26) we have the following

expressions:

m0 =
√

1 −W 2
0 cosα− F0 = n3

(

W0 cosα+ sinα− − sinα+ sinα−

)

(3.30)

W0 = I0
1 − I0

2 P0 = n3

√

1 −W 2
0 cosα+ (3.31)

We can use these equations to express m0, F0, and P0 by the input polarization

angles α±. Figure 3.2 shows the dependences m(ξ) and W (ξ) for several values of

α+ and a small input value of the contrast, m0 = cosα− = 0.1. For 35◦ . α+ . 185◦

the contrast decreases with ξ and turns to zero at a certain value of the effective

coordinate ξ. When α+ is increasing, the function m(ξ) experiences a maximum

before turning to zero. Then, within the interval 325◦ . α+ . 35◦, this function

experiences oscillations (likewise the intensity difference W (ξ)) and remains positive

for any ξ. The value of [m(ξ)]max reaches unity at α+ ≃ 0. For larger values of

185◦ . α+ . 325◦ the ξ-dependence of the contrast ends up again with a zero value.

Thus, we have qualitative different behavior of m(ξ) and W (ξ) depending on the

input polarization state.

• The same input polarizations meeting the condition (n · S0
1,2) = ±1. This special

choice means that the input vectorial amplitudes, ~a 0
1,2 ≡ ~b 0

1,2, are the eigen-vectors of

the interaction matrix, i.e., the vectorial diffraction does not affect the polarization

state. In other words, this case corresponds to scalar beam coupling. The necessary

input Stokes vectors correspond to the linear input polarizations. In particular,

for the T-geometry the corresponding polarization angles are α = ±π/4; for the

L-configuration we have instead α = 0 and π/2.
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Fig. 3.2. Dependences m(ξ) and W (ξ) for the L-configuration, m0 = 0.1, and

W0 = 0. The curves 1, 2, 3, 4, and 5 are plotted for the polarization angle ϕ+ = 0,

90◦, 180◦, 270◦, and 302◦, respectively. The dots in the sub-figure (b) mark the

limiting values of W (ξ) which correspond to the condition m(ξ) = 0.
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With our choice we have at the input: F0 = ±W0, P0 = ±m0. One can see from

the Eqs. (3.19), (3.20) that these relations hold true during propagation, i.e., the

variables m and W are sufficient for a complete description. These variables obey

the relations

m = m0 cos[2(ν0 ± ν)ξ] −W0 sin[2(ν0 ± ν)ξ] (3.32)

W = m0 sin[2(ν0 ± ν)ξ] +W0 cos[2(ν0 ± ν)ξ] (3.33)

The only difference between the upper and lower signs in Eq. (3.32),(3.33) is the

value of the effective coupling constant ν0 ± ν. In any case we have m2 +W 2 = 1.

One more interesting particular case is the case of identical circular input po-

larization (left or right) where (n · S0
1,2) = 0 and F0 = P0 = 0. Only isotropic

diffraction, which is characterized by the scalar ν0, takes place here.

3.5 Transition from the ξ to the z-representation

The above exact solutions have been obtained in terms of the effective coordinate ξ

which is coupled with the propagation coordinate z by Eq. (3.11). Since we know

the dependence m(ξ), see the Eqs. (3.16), (3.22), and (3.27), we can write down in

the general case:

z =
2

Q|E0|

∫ ξ

0

dξ′

m(ξ′) f [m(ξ′)]
(3.34)

This integral can be calculated analytically or numerically for any particular case.

A step by step exhaustion of special cases is beyond the scope of this paper. Below

we focus our attention on the most important features and consequences of the

ξ → z transition.

Consider first the low-contrast case, m . mc, where f(m) ≃ 1, see Section 2b.

For the T-geometry, this condition can be fulfilled for any propagation distance if the

input parameters are chosen in such a way that h0 = (m2
0 +F 2

0 )1/2 . mc. By setting

f = 1 in Eq. (3.34) and using Eq. (3.22) for m(ξ), one can obtain the following

explicit analytic expression for z(ξ):

z =
1

Γ0

ln

[

tan(νξ∞)

tan(νξ∞ − νξ)

]

(3.35)

where Γ0 = h0Qν|E0| > 0, νξ∞ = arctan[
√

(1 − q0)/ (1 + q0) ], and q0 = F0/h0. The

increment Γ0 characterizes the rate of spatial changes (in z) and ξ∞ is the limiting
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value of ξ that corresponds to the first zero point of the function m(νξ) and ranges

from 0 to π/2ν. The value of νξ∞ is uniquely expressed by the input parameter q0,

see Fig. 3.3. The values νξ∞ = π/2, 1, and 0 correspond to F0 = −h0 (m0 = 0),

F0 = 0 (m0 = h0), and F0 = h0 (m0 = 0), respectively. The same input value of

the contrast, m0, corresponds generally to two different values of ξ∞; this is caused

by the fact that the system is not symmetric to the beam interchange in the case of

non-local PR response.
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Fig. 3.3. The limiting value νξ∞ versus the input parameter q0 for the T-

configuration.

Figure 3.4 shows the dependence νξ(z) for several representative values of νξ∞.

One sees that the effective coordinate ξ tends monotonously to its limiting value

ξ∞ when z → ∞; with νξ∞ approaching π/2 the growth of ξ(z) becomes strongly

slowed down in the regions of small and large z (where m ≃ h0).

Next, using Eq. (3.35), we express by z the trigonometric functions sin(2νξ) and

cos(2νξ) entering Eqs. (3.22), (3.23) for m, F , W , and P ,

sin(2νξ) =
m0

h0

sinh(Γ0z) + q0 coth(Γ0z) − q0
coth(Γ0z) + q0 sinh(Γ0z)

(3.36)

cos(2νξ) =
1 + q0[sinh(Γ0z) + q0 coth(Γ0z) − q0]

coth(Γ0z) + q0 sinh(Γ0z)
(3.37)

In the limit Γ0z → ∞ we have from here sin(2νξ∞) = m0/h0 and cos(2νξ∞) = F0/h0.
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Fig.3.4. Dependence νξ(z) for the T-geometry. The curves 1, 2, 3, and 4 are plotted

for νξ∞ = 0.5, 1.0, 1.45, and 1.55, respectively.

Now, using Eqs. (3.22), (3.23), and (3.36), (3.37), one can describe analytically

the dependences of m, F , W , and P on the propagation coordinate z. We restrict

ourselves to the functions m(z) and F (z),

m

m0

=
1

coth(Γ0z) + q0 sinh(Γ0z)

F

F0

=
1 + q−1

0 tanh(Γ0z)

1 + q0 tanh(Γ0z)
(3.38)

The input parameter q0 = F0/
√

F 2
0 +m2

0 entering the right-hand sides of these

expressions ranges from −1 to 1. Figure 3.5 illustrates the possible scenarios of the

spatial behavior of the light contrast m. For q0 > 0, the contrast monotonously

decreases with z tending to zero; if, additionally, m0 ≪ h0 (i.e., q0 ≃ 1), then

m ≃ m0 exp(−Γ0z). In the case q0 < 0, the function m(z) experiences first a

maximum (where m = h0 and F = 0) and then tends to zero; if, additionally,

m0 ≪ h0, then m ≃ m0 exp(Γ0z) at the initial stage of growth.
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Fig.3.5. The ratio m/m0 versus Γ0z for the T-geometry; the curves 1, 2, 3, 4, and

5 are plotted for q0 = 1, 0, −0.9, −0.99, and −0.999, respectively.

Qualitatively, the above features are not surprising for nonlocal response; the

regime with an intermediate maximum corresponds, e.g., to the energy transfer

from the initially weakest to the strongest beam. Specific properties (which are not

available in the scalar case) are here the possibility to restrict the growth of m from

above and to affect the rate and direction of the energy transfer by the polarization

degrees of freedom.

To gain an impression about the expected rates of spatial changes, we produce

some numerical estimates relevant to ac-experiments with BTO crystals. By setting

|s| = 4 · 10−4 V−1, |E0| = 20 kV/cm, and Q = 6, we have νQ|E0| ≈ 50 cm−1.

Despite the fact that h0 ≪ 1, the product Γ0z = h0Qν|E0| z can easily be made

considerably larger than unity.

We continue our analysis of the low-contrast case for the T-configuration with

specification of the values of F , W , and P that take place for Γ0z ≫ 1 (ξ → ξ∞).

These limiting values are

F∞ =
√

m2
0 + F 2

0 W∞ =
W0F0 +m0P0
√

m2
0 + F 2

0

P∞ =
P0F0 −m0W0
√

m2
0 + F 2

0

(3.39)

The limiting value of F coincides, indeed, with that prescribed by Eqs. (3.38).

It is important that the inequalities m(z), |F (z)| ≤ h0 ≪ 1 do not impose
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severe restriction on the variation range of W (z) and P (z). To make this point

clear, we consider the case of equal input intensities (W0 = 0) and linear input

polarizations. The condition h0 ≡
√

m2
0 + F 2

0 ≪ 1 can be fulfilled here only for

cos2 α± ≪ 1; this means either α1 ≃ π/2, α2 ≃ 0 (α+ ≃ π/2) or α1 ≃ π,

α2 ≃ π/2 (α+ ≃ 3π/2). Correspondingly, we have h2
0 ≃ cos2 α+ + cos2 α− and

q0 = cosα+/
√

cos2 α+ + cos2 α−. On the other hand, we have here from Eqs. (3.25),

(3.27), and (3.39), W∞ =
√

1 − q2
0 sinα+ ≃ ±

√

1 − q2
0, P∞ = q0 sinα+ ≃ ±q0.

Thus, the signs of W∞ and P∞ are controlled by the sign of sinα+ and the absolute

value |W∞| (or |P∞|) can approach unity.
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Fig.3.6. The normalized intensity difference W versus Γ0z for the T-geometry and

sinϕ+ ≃ 1; the lines 1, 2, 3, 4, and 5 correspond to q0 = 0, −0.7, 0.7, −0.99, and

0.99, respectively.

Figure 3.6 exhibits the coordinate dependence of the normalized intensity difference.

For q0 > 0 we have a monotonous growth of W (z) up to the value of
√

1 − q2
0. When

q0 changes its sign, the functionW (z) shows a maximum (Wmax = 1) and approaches

then the same limiting value. The nearer q0 to −1, the stronger is the shift of this

maximum to the right.

Now we extend our study to the whole-contrast range with emphasis on the region
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mc . m ≤ 1 where the function f(m) experiences a strong saturation. The main

expected advantage of this region is the maintenance of high values of light contrast

(because of decreasing the rate of energy exchange) during recording. Large values

of m, necessary for recording, mean identical input polarizations and comparable

intensities. We consider therefore the case where the input polarization vectors are

the eigen-vectors of the interaction matrix, see Eqs. (3.32). Then, using Eq. (3.34)

and the notation ν± = ν0 ± ν, we obtain for m(z),

ν±|E0|z =

∫ m0

m

dm

Qmf(m)
√

1 −m2
(3.40)
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Fig.3.7. Dependence m(z) for the scalar case in the whole contrast range; the curves

1 – 5 are plotted for m0 = 0.01, 0.1, 0.4, 0.7 and 1.

Figure 3.7 shows the coordinate dependence of the ratio m/m0 in a logarithmi-

cal scale for several values of m0 ranging from 0.01 (low-contrast region) to unity.

For m0 = 0.01 we have a steep linear decrease which is described by the single-

exponential function m/m0 = exp(−Qν±|E0|z). With increasing m0, decrease

of m(z)/m0 becomes less and less pronounced at the initial stage. As a result,

the interval where the recorded index grating remains approximately uniform, in-
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creases remarkably with m0. If we define the uniformity range zu by the equality

m(zu) = m0/2, then we can see that zu becomes larger by a factor of ≈ 7 when m0

is increasing from 0.01 to 1. This result may have important consequences for the

effects relevant to the grating recording [24, 25]. Moreover, strong coupling effects

and recording of quasi-uniform gratings can co-exist in one sample.
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Fig. 3.8. Dependence z(ξ) for the L-configuration. The curves 1 - 5 correspond to

ϕ+ = 33.8◦, 34.0◦, 34.6◦, 34.8◦, and 35.1◦. Other input parameters are specified in

the caption of Fig. 3.2

Lastly, we consider the ξ → z transformation for the L-configuration. As we

know, the contrast m becomes in this case a positive, oscillating function of ξ

within an interval of the input polarization angles, see Fig. 3.2(a). This means

indeed crossover to periodic dependences m(z) and W (z) and to a qualitatively new

dependence z(ξ). Figure 3.8 shows what happens with the function z(ξ) when the

input polarization angle α+ increases from 31.8◦ to 35.1◦ (transition from periodic

to non-periodic states occurs at α+ ≃ 35◦). For 185◦ < α+ < 325◦ the function z(ξ)

is finite and single-valued. It shows a linear growth superimposed by strong periodic

oscillations. The average slope tends to infinity when α+ is approaching 35◦. At

α+ = 35.1◦ the propagation coordinate z tends to infinity for ξ → ξ∞; the limiting
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value ξ∞ is, as earlier, the first zero-point of the function m(ξ).
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Fig. 3.9. Dependence m(z) for the L-geometry. Curves 1 and 2 are plotted for

ϕ+ = 34◦ and 35.1◦, respectively.

The lines 1 and 2 in Fig. 3.9 correspond to the lines 4 and 5 in Fig. 3a and exhibit

a periodic behavior of the light contrast. Nontrivial and strong periodic oscillations

of m(z) originate from harmonic oscillations of m(ξ). The oscillation period for the

curve 2 is considerably larger than that for the curve 1. This is fully due to the

proximity of the curve 5 in Fig. 3a to zero. With α+ increasing, this curve touches

the horizontal; the period of oscillation becomes here infinitely long and the periodic

oscillations of m(z) transform into a monotonous decrease.

3.6 Resume

The main findings of this Chapter can be summarized as follows:

– Vectorial two-wave coupling caused by the ac-enhanced nonlinear response pos-

sesses different quantitative properties in the regions of low (0 ≤ m . mc ≪ 1) and

high (mc . m ≤ 1) light contrast m. The narrow low-contrast range is optimal for
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the spatial amplification of weak waves, while the high-contrast region is preferable

for recording of refractive index gratings.

– The light interference fringes experience neither bending nor tilting during vecto-

rial two-wave coupling under an ac-field; this result is valid in the whole contrast

region irrespectively of the input polarizations of the interacting waves.

– Owing to this property of the light fringes and under certain assumptions on the

coupling characteristics (applicable, e.g., to BTO crystals and crystals of the 4̄3m

point group), the nonlinear problem of vectorial coupling is reduced to a linear prob-

lem of vectorial Bragg diffraction; the latter admits an exact solution.

– Analysis of the auxiliary linear problem has shown the presence of an additional

(to the energy conservation law) integral of motion which involves the polarization

degrees of freedom; this conclusion is not restricted to any particular contrast range.

– Consideration of particular cases relevant for the experiments has allowed to reveal

the possibilities for further simplifications of the vectorial equations and predict a

number of new regimes with a strong influence of the input polarizations on the

output energy and polarization characteristics.



Chapter 4

Linear signal detection with cubic

photorefractive crystals under an

ac-field: influence of coupling

effects

4.1 Introduction

One of the important application of PR crystals is the detection of small-amplitude

ultrasonic vibrations. This technique is used for nondestructive testing, quality

control, and condition monitoring. The surface under inspection is usually optically

rough resulting in a scattered beam with a random distribution of intensity and

phase. When this beam is made to interfere with a reference beam in a conventional

interferometer, the small phase shift produced by ultrasound is nearly averaged out,

which results in low sensitivity. PR two-beam coupling is known as the simplest

solution of this problem. In this technique, two beams, a reference beam and a

phase-modulated object beam, couple in a PR crystal. The output intensities of the

beams appear to be linearly modulated by the input phase.

The linear detection of small phase excursions via PR two-beam coupling were

investigated in different publications. Many of them deal with conventional scalar

two-beam coupling. The vectorial character of beam coupling was taken into account

only recently [15, 24, 25]. In these works, the linear detection theories incorporate

correctly the vectorial effects, but use the linear-in-contrast approximation or the

assumption of a spatially uniform index grating. Usually, the linear-in-contrast

36
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approximation is not valid in experiments and applications, where input beams with

equal intensities and polarizations are used. The assumption of constant grating

amplitude is well justified only for thin crystals where the effects of beam coupling

between the pump beams are negligible and the detection quality is weak. In thick

crystals, beam coupling effects become very strong and the changing of the grating

amplitude along the crystal is sufficiently large. In this Chapter we use the vectorial

beam coupling theory, developed in Chapter 3, to describe the linear detection in

thick crystals and for the whole range of the light contrast.

4.2 Exact solution under phase scanning

Let us have the space-charge field grating which is recorded under the assumptions

made in Chapter 3. After the grating is recorded, a phase change ϕ is introduced

for a short time (compared with the PR response time) into one of the input beams.

The phase change does not affect the space-charge field, so that only the readout

conditions are varying. The output intensities of the readout beams are modulated

by the input phase.

To describe the influence of the input phase change on the output intensities,

we use the exact solution given by Eqs.(3.14)-(3.15) with new boundary conditions,

which correspond to the phase scanning procedure (the amplitudes of the readout

beams we denote as ~p1,2):

~p1(0) = ~a1(0) eiϕ ~p2(0) = ~a2(0) (4.1)

Then we introduce the new amplitudes ~r1,2(z) similarly to Eq.(3.8),

~r1,2(z) = exp[−i(κ · σ̂) z] ~p1,2(z) (4.2)

Solution of the Eqs.(3.6),(3.7) for the readout beams with the boundary condi-

tions (4.1) follows from the Eqs.(3.14),(3.15) by the replacement of ~b1,2(ξ) by ~r1,2(ξ)

and ~b 0
1,2 by ~r 0

1,2 = ~r1,2(0) = ~p1,2(0). This is true because of the phase varying

does not change the grating amplitude EK(z) and the variable ξ(z). Combining

Eqs.(3.14),(3.15) and (4.1), we obtain:

~r1,2(ξ) = ~b1,2(ξ) + ~R1,2(ξ)(e
iϕ − 1),where (4.3)

~R1(ξ) = [ cos(ν0ξ) cos(νξ) − (n · σ̂) sin(ν0ξ) sin(νξ) ]~b 0
1 (4.4)

~R2(ξ) = −[ sin(ν0ξ) cos(νξ) + (n · σ̂) cos(ν0ξ) sin(νξ) ]~b 0
1 (4.5)
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By returning to the amplitudes ~p1,2(ξ), we have:

~p1,2 = exp[i(κ · σ̂) z]~r1,2 = ~a1,2 + (eiϕ − 1) exp[i(κ · σ̂) z] ~R1,2 (4.6)

The introduction of the phase change leads to the appearance of additional terms in

the output amplitudes ~p1,2. These terms are proportional to (eiϕ − 1); they depend

on the input intensities and polarizations of the recording beams and also on the

optical configuration in question. As a consequence, the output intensities of the

readout beams Ĩ1,2 have constant on ϕ and ϕ-dependent parts.

Substituting the Eqs. (3.14),(3.15) and (4.3)-(4.5) in Eq.(4.6) and using the

notation (3.17) we obtain the expressions for the output intensities with and without

phase scanning, Ĩd
1,2 and Id

1,2 consequently:

Ĩd
1,2 = |~p1,2(ξd)|2 = Id

1,2 ∓
(

1 − cosϕ
)

[m0

2
sin(2ν0ξd) cos(2νξd)

+ ReJ0 cos(2ν0ξd) sin(2νξd)
]

∓ sinϕ
[

cos(2ν0ξd) sin(2νξd)ImJ0

]

(4.7)

2Id
1,2 = 1 ±W0 cos(2ν0ξd) cos(2νξd) ±m0 sin(2ν0ξd) cos(2νξd)

± P0 cos(2ν0ξd) sin(2νξd) ∓ F0 sin(2ν0ξd) sin(2νξd) (4.8)

where ξd ≡ ξ(z = d), d is the crystal thickness and J0 = ~a 0∗
1 (n · σ̂)~a0

2 is a character-

istic of phase scanning. One can check that |J0| 6 1/2. For linearly polarized input

beams (real vectors ~a 0
1,2), the factor J0 is real and the difference Ĩd

1,2 − Id
1,2 varies as

(1 − cosϕ). The same situation takes place when input beams are polarized identi-

cally. In other cases, J0 is complex and the difference Ĩd
1,2 − Id

1,2 contains both type

of terms varying as, (1 − cosϕ) and sinϕ.

Note, that the introduction of the phase change into the second beam leads to the

sign and index change in the Eqs.(4.4)-(4.5): ~b 0
1 ↔ ~b 0

2 , ~R1,2 ↔ −~R2,1; also the sign

before sinϕ in Eq.(4.7) changes. The Eqs.(4.3), (4.8) are the vectorial generalization

of the equations for the scalar grating translation technique [43].

4.3 Linear detection of small signals

The phase scanning procedure is widely used for the linear detection of weak and

fast signals. In our case, small varying of the input phase, ϕ << 1, plays the role of
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such a signal. Then the output intensities can be represented as a linear functions

of the phase change:

Ĩd
1,2 = A1,2 +B1,2 ϕ (4.9)

The coefficients A1,2 and B1,2 are called background intensities and modulation

coefficients. The expressions for them follow from the Eqs.(4.7), (4.8):

A1,2 =
1

2
± 1

2

[

W0 cos(2ν0ξd) cos(2νξd) +m0 sin(2ν0ξd) cos(2νξd)

+ P0 cos(2ν0ξd) sin(2νξd) − F0 sin(2ν0ξd) sin(2νξd)
]

(4.10)

B1,2 = ∓ cos(2ν0ξd) sin(2νξd)ImJ0 (4.11)

Linear detection is possible if the modulation coefficients B1,2 are nonzero. With

ν 6= 0 (the presence of anisotropic diffraction) this condition is fulfilled when the

factor ImJ0 differs from zero, what is valid only for differently polarized input light

beams and at least one of them must be elliptically polarized.

To optimize the conditions for linear detection, we have to maximize first the

value of |B1,2| and then, if possible, to minimize A1,2 to increase the parameter

|B1,2|/
√

A1,2. This parameter controls the signal-noise ratio because the actual

noise is proportional to the square root of the background intensity.

The coefficients A1,2 and B1,2 are functions of input beam characteristics, the

crystal thickness d and the external field amplitude E0. The exact form of these

functions depends on the particular optical configuration. The simplest case corre-

sponds to the transverse geometry, where ν0 = 0. In this case, the expressions for

A1,2 and B1,2 acquire the form:

A1,2 =
1

2
± 1

2

[

W0 cos(2νξd) + P0 sin(2νξd)
]

(4.12)

B1,2 = ∓ sin(2νξd) ImJ0 (4.13)

We consider the following useful optimization scheme. Let the input beam am-

plitudes be ~a 0
1 = (1/2, exp(iδ)/2) and ~a 0

2 = (1/
√

2, 0). This means that the first

input beam is elliptically polarized (with the ellipticity tan(δ/2)), the second beam

is linearly polarized in the x direction (see Fig.1), the input beam intensities are

the same, and the input contrast m0 = 1/
√

2. Then we have from the Eqs.(4.12),

(4.13):

A1,2 =
1

2
± 1

2
√

2
n1 sin(2νξd) cos δ (4.14)

B1,2 = ∓ 1

2
√

2
n1 sin(2νξd) sin δ (4.15)



CHAPTER 4. LINEAR SIGNAL DETECTION 40

where the first component of the vector n, n1 = ±1, specifies the sign of the nonlocal

response (see Sec.3.4). To maximize |B1,2| we set δ = π/2. For this δ and chosen

crystal thickness d we use an amplitude of the external field E0 which maximizes

the factor sin(2νξd).
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Fig. 4.3. Dependence of |B1| on external field amplitude E0. The curves 1, 2, 3, 4

and 5 are plotted for the crystal thicknesses d = 1, 2, 3, 4, 5, mm, respectively.

Figure 3 shows the dependences |B1,2(E0)| for different crystal thicknesses d and

typical BTO parameters (see Chapter 3). One can see, that the larger is the crystal

thickness, the smaller is the external field amplitude, at which |B1,2| reaches its

maximal value 2−3/2. The parameters |B1,2|/
√

A1,2 equal 1/2, when the modulation

coefficients are maximal (see Eqs.(4.14), (4.15)).

The obtained values of B1,2 are approximately 44% larger than the one reported

for the linear detection with polarization filtering [25]. Using more complicated

optimization schemes and other optical configurations can give higher values of the

modulation coefficients |B1,2| and the parameters |B1,2|/
√

A1,2. The limiting value of

the modulation coefficients is 1/2, what follows from the definition of the parameter

J0 and Eq.(4.11),.
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4.4 Linear detection of small signals by polariza-

tion filtering

As we have mentioned, the imaginary part of the parameter J0 equals to zero if

both input light beams are linearly polarized. Then the modulation coefficients B1,2

also equals to zero and linear signal detection becomes impossible. However, as was

recently shown, accomplishing the detection scheme by a polarization filtering allows

performing the detection with linear polarized beams [25]. Let us have two linearly

polarized input beams with polarization angles α1 and α2. A polarization filter P,

which transmits a linearly polarized component of outgoing beams, is placed behind

the crystal. The filter is characterized by the unit vector ~ep, the orientation of which

is determined by the angle β. All angles are measured from the [001] axis, see Fig.4.4

Then the output intensities after the polarization filter are equal to |~ep · ~p1,2(d)|2.

K

0 d
z

(b)(a)

K

x,[001]

y,[110]

z,[110]

�

�

ai

i
�

�

P

2

1

E0 ep

Fig. 4.4. Scheme of the linear detection with polarization

filtering.

Representing the filtered output intensities in the same form as in Eq.(4.9) and

using the Eqs.(4.3)-(4.6) we get for the background intensities A1,2 and modulation

coefficients B1,2:

A1,2 = cos2(κd)
(

~ep ·~b1,2

)2
+

sin2(κd)

κ

[

~ep (κ · σ̂)~b1,2

]

(4.16)

B1,2 =
sin(2κd)

κ

[

(

~ep · ~R1,2

)(

~ep (κ · σ̂)~b1,2

)

−
(

~ep ·~b1,2

)(

~ep (κ · σ̂) ~R1,2

)

]

(4.17)

where the vectors ~b1,2 and ~R1,2 are taken at ξ = ξd. The necessary condition for

linear detection is B1,2 6= 0. As in the previous section, we will try first to maximize
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the value of |B1,2| and then to minimize A1,2. Here the coefficients |A1,2| and |B1,2|
are functions not only of the parameters d, E0 and the characteristics of the input

beams, α1,2, I
0
1,2, but also of the angle β. The particular dependences vary for

different optical configurations. Below we optimize the linear signal detection for

the T- and L- optical configurations and using material parameters typical for BTO

crystals.

4.4.1 Optimization for T-geometry

For the transverse configuration, the coefficient B1 equals:

B1 = −1

4
n1

√

1 −W 2
0 sin(2κ d) sin(2 ν ξd) cos(2β)c+ (4.18)

where c+ = cos(α+) and α+ = α1 +α2. The factor n1 = ±1 is the first component of

the vector n. We omit the expression for the background intensity A1 since it looks

very cumbersome. The coefficient B2 which characterizes the second beam, can be

found from relation: B2(n1) = −B1(−n1). As follows from Eq.(4.18) |B1| 6 1/4.

Due to large number of variable parameters, the optimization procedure of the

coefficients A1 and B1 is rather complicated. The most simple case corresponds to

the input beams with equal polarizations and intensities, α1 = α2 = α and I0
1 = I0

2 .

Then we have W0 = 0, m0 = 1, F0 = 0, α+ = 2α and then m(d) = cos(2νξd) (see

Eq.(3.16)). For the absolute value of the coefficient |B1| we obtain from Eq.(4.18):

|B1| =
1

4
cos(2νξd)

∣

∣ sin(2κ d) cos(2β)c+
∣

∣ =

1

4

√

1 −m2(d)
∣

∣ sin(2κ d) cos(2β)c+
∣

∣ (4.19)

To study the influence of the coupling effects, we compare our formulae with the

results, obtained under the assumption of constant grating amplitude [25]. To get the

formula for the modulation coefficient |B̄1| from [25], we should substitute ξd = EKd

in Eq.(4.18):

|B̄1(d)| =
1

4

∣

∣sin(2κ d) sin(2 ν EKd)
∣

∣ (4.20)

.

where EK = 0.62E0 is the grating amplitude for the unit light contrast, see Chap.2.

In the following, the modulation coefficients and background intensities, which cor-

respond to this assumption, we denote with overlined letters. There are four com-

binations of α and β that maximize |B1|, i.e. α = 0, β = 0;α = π/2, β = π/2;α =

0, β = π/2;α = π/2, β = 0. The values of the angles that differ by π are equivalent.
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Fig. 4.5. Dependences of the modulation coefficients |B1| and |B̄1| on the crystal

thickness d. Solid and dashed lines correspond to the nonuniform and constant index

grating consequently, dotted line is the light contrast m.

Figure 4.5 shows the dependences of |B1| (solid line) and |B̄1| (dashed line) on crystal

thickness d after the angular optimization. The dotted line in Fig.4.5 corresponds

to the light contrast m(d). One can see that for small thickness (d . 2.3 mm)

the dependences |B1(d)| and |B̄1(d)| practically coincide. The difference between

the first maxima is approximately 10%. For large crystal thickness d ≥ 0.3 mm

our results deviate strongly from that obtained for the constant grating amplitude.

The coefficient |B̄1(d)| changes as the product of two harmonic functions with spacial

frequencies 2κ and 2νEK , while |B1(d)| tends to the function | sin(2κd)|, what follows

from Eq.(4.19) and the light contrast behavior, see Fig.5. The maxima of |B1(d)| =

1/4 occur at the points dl ≈ (π/2 + πl)/2κ, with l = 1, 2, .... Changing the external

field amplitude, E0, in the range from 10 to 50 kV/cm, only shifts the extrema of

|B1(d)| and |B̄1(d)| along the d axis. Their maximal values vary approximately 1%.

For the angles α, β which optimize B1, the background intensities for the nonuni-

form and uniform index grating, A1 and Ā1, are:
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A1(d) =
1

4

[

1 + cos(2νξd) cos(2κd)
]

=
1

4

[

1 +m(d) cos(2κd)
]

(4.21)

Ā1(d) =
1

4

[

1 + cos(2 ν EKd) cos(2κd)
]

(4.22)

The coefficient A1(d) reaches its minimal zero value at m = 1 and cos(2κd) = −1.

Due to the coupling effects, m(d) equals to unity only near the input crystal face,

where d = 0. Therefore, the minimum of A1 is larger than zero.
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Fig. 4.6. Dependences of the parameters |B1|/
√
A1 on the crystal thickness d.

Solid and dashed lines correspond to the nonuniform and constant index grating

consequently.

We compare in Fig.4.6 the parameter |B1|/
√
A1 for the cases of nonuniform (solid

line) and uniform (dashed line) index grating. For small crystal thickness these

dependences are very close. For large values of d, where the light contrast is small,

m ≪ 1, the background intensity A1 is close to 1/4, as follows from Eq.(4.21), and

the parameter |B1(d)|/
√

A1(d) tends to the function | sin(2κd)|/2. It reaches the

value of 1/2 at the same points, where the maxima of |B1(d)| occur. It is remarkable,

that taking into account coupling effects leads to simpler dependences of |B1| and
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the parameter |B1|/
√
A1 on the crystal thickness d than under the assumption of

constant grating amplitude.

4.4.2 Optimization for L-geometry

Here we have ν0 = −n3ν and ν1 = κ1 = 0 and then the coefficient B1 has the form:

B1 = −1

4
n3

√

1 −W 2
0 sin(2κ d) sin(2 ν ξd) sin(2β)(s+ − s−) (4.23)

where s± = sin(α±), α− = α1−α2 and the factor n3 = ±1 is the third component of

the vector n. Eq.(4.23) is very similar to Eq.(4.18) for the transverse geometry. The

main difference between them is the limiting value of |B1|. For the L-configuration,

the modulation coefficient is proportional to the factor |s+ − s−| which maximal

value is 2. Therefore, the limiting value of |B1| is 1/2 here, what is two-times larger

than in the T-case. The next difference is the appearance of an extra factor of 1/2

in the parameters κ, ν. It means that we need two-times-thicker crystals to get the

same values of the modulation coefficients as in the transverse geometry.

The simplest situation corresponds to the identical linearly polarized input light

beams: I0
1,2 = 1/2, α1 = α2 = α. Then W0 = 0, m0 = 1, F0 = 0, α+ = 2α, α− = 0

and m(d) = 1 + (c+ − 1) sin2(2νξd). In this case B1 has the form:

B1 = −1

4
n3 sin(2κ d) sin(2 ν ξd) sin(2β)s+ (4.24)

To maximize the coefficient |B1| we set α+ = ±π/2 and β = ±π/4. The dependence

|B̄1(d)| for the constant index grating can be obtained from Eq.(4.24) in the same

way as in Eq.(4.20). With the optimum angles, the dependences |B1(d)| and |B̄1(d)|
look very similar to the ones from Figure 4.5. The only qualitative difference is that

the maxima of |B1(d)| and |B̄1(d)| are reached in twice thicker crystals.

We omit again the expressions for the background intensities A1, Ā1 and show in

Fig.4.7 the dependences of the parameter |B1|/
√
A1 on thickness d, for the cases of

nonuniform (solid line) and constant (dashed line) index grating. For small crystal

thickness, as expected, the dependences |B1|/
√
A1 and |B̄1|/

√

Ā1 are practically the

same. In the region where the light contrast m(d) is close to zero, the maximum of

|B1|/
√
A1 equals 0.71, what is 42% larger than the maximum of the corresponding

dependence for the constant index grating. In contrast to the transverse geometry,

see Fig.6, the assumption of the nonuniform grating amplitude does not simplify the

optimization of the parameter |B1|/
√
A1.



CHAPTER 4. LINEAR SIGNAL DETECTION 46

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Crystal thickness d, mm

|B
1
| \

 A
1
/2

1

Fig. 4.7. Dependences of the parameter |B1(d)|/
√

A1(d) on the crystal thickness

d. Solid and dashed lines correspond to the nonuniform and constant index grating

consequently.

Until now we have considered the simplest values of the input polarization angles.

In these cases, the light contrast m decreases from unity to zero along the crystal

and the optimum (maximum) modulation coefficient |B1| and parameter |B1|/
√
A1

correspond to very small output values of m. The maximum of |B1| is limited here

by 1/4. However, as we have mentioned, this limiting value of |B1| can be exceeded

by using specially polarized input light beams.

To illustrate the optimization of the linear detection in this case, we use input

beams with equal intensities (W0 = 0) and such polarization angles α±, which yield

the light contrast oscillation along the crystal, see Chapter 3. For instance, we take

α− = 840 and α+ = 3320. Then the input light contrast is small, m0 = 0.1, and the

factor |s+ − s−| in Eq.(4.23) equals approximately 1.46.



CHAPTER 4. LINEAR SIGNAL DETECTION 47

0 4 8 12 16 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

|B
1
|, 

|B
1
| \

 A
1
/2

1

L
ig

h
t 

co
n
tr

as
t 

m

3

2

Crystal thickness d, mm

1

Fig. 4.8. The curves 1, 2, 3 are the dependences of |B1(d)|, |B1(d)|/
√

A1(d) and

m(d) respectively. The input parameters are m0 = 0.1, W0 = 0, α+ = 3320, E0 =

15kV/cm.

Figure 4.8 shows the dependences of m (dotted line), the parameter |B1|/
√
A1

(dashed line) and the modulation coefficient |B1| (solid line) on crystal thickness

d. The light contrast m(d) oscillates between 0.04 and 0.95 with a period of ap-

proximately 12 mm. The maxima of |B1| ≈ 0.36 and |B1|/
√
A1 ≈ 0.72 occur in

the vicinity of the maxima of the light contrast dependence. The obtained values

of the modulation coefficient and the parameter |B1|/
√
A1 are larger than for linear

detection with polarization filtering and comparable with ones from the Sec.4.3. In

that way, the L-geometry is found to have certain advantages for linear detection

with thick crystals in comparison with the T-geometry.

4.5 Resume

We have used the vectorial wave coupling theory to describe linear signal detection

in cubic PR crystals under ac-enhancement. In contrast to previous studies, we have

investigated the influence of the coupling effects on the characteristics of the linear

signal detection such as, modulation coefficient and background intensity.
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We have optimized the linear detection with polarization filtering for T- and

L-optical configurations. We have found that coupling effects are not critical in thin

crystals and lead to only 10% decrease of the maximal value of the modulation co-

efficient. In thick crystals, the influence of the coupling effects becomes very strong.

The calculated values of the modulation coefficient for nonuniform and constant

index grating differ by several times. The predicted maxima of the modulation co-

efficient are approximately 10% larger than for thin crystals. It is also remarkable,

that the optimization procedure for linear detection is considerably simpler without

the assumption of constant grating amplitude.

The developed vectorial theory of the linear detection allows us to predict that a

maximum value of the modulation coefficient twice larger than reported earlier [25]

is achievable. In particular, the performed optimization scheme was made for the

L-geometry, thick crystals (d ≈ 10 mm) and specially linearly polarized input light

beams. The calculated exceeding of the modulation coefficient was about 41%.

We have shown, that linear detection in the case of nonlocal response is also

possible without polarization filtering. For this purpose we suggest to use elliptically

polarized input light beams. The simple optimization scheme has been made for T-

geometry, thin crystal and one circular and one linear polarized input beams. With

these conditions, we have got the maximum of the modulation coefficient 44% larger

than reported.



Chapter 5

Polarization properties of

light-induced scattering in BTO

crystals: Theory and experiment

for the diagonal geometry

5.1 Introduction

Light-induced scattering of holographic type in PR crystals is due to the formation

of secondary noise gratings between light noise, originating from various inhomo-

geneities, and the pump waves [1, 44] The light scattering in PR crystals can be

phase-matched or not. In the first case, only those components of the light noise

are amplified which are parametrically coupled to the pump waves. Phase-matched

scattering may be realized when two or more pump waves propagate inside the sam-

ple. This leads to narrow scattering patterns like rings [45, 46], open lines [47] and

bright dots [48, 49]. In the presence of one pump wave, phase-matched scattering

can be realized in crystals with anisotropy [44]. It results in ring-like scattering

patterns [50, 51, 52, 53, 54].

The induced birefringence in sillenites is weak even for high applied voltages.

Therefore non-phase-matched scattering is observed if there is only one pump wave [40,

55, 56, 57]. That is, many different components of the light noise may be amplified

by interaction with the pump wave. This interaction may be considered as two-

beam coupling between the pump wave and the individual scattered plane waves if

the amplification is weak. In this case, the intensity distribution of the scattered

49
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light follows the angular dependence of the two-beam coupling amplification [?].

Since the scattered beam intensity is much smaller than the pump beam intensity,

the space-charge grating formation can be considered in the low-contrast approxi-

mation.

Various publications investigate angular distributions of the light scattering in

ac-biased sillinites crystals [40, 55, 56, 57], but the polarization states of scattered

waves were never analyzed theoretically. In this Chapter we apply the vectorial

beam coupling theory in the low-contrast approximation to describe the polarization

properties of small-angle, light-induced scattering in BTO crystals.

5.2 Basic relations

Assuming that the scattered waves are weak compared to the pump beam propagat-

ing along the [1̄10] crystal axis, we neglect pump depletion and consider the spatial

amplification of a scattered wave travelling at a small angle to [1̄10]. The scheme of

an experiment is shown in Fig.5.1.

Elect rodes

Pump

Scattered
light

[112]

[110]

[111]

(a)
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x, 111[ ]

y, 112[ ]
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[00 ]1
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Fig. 5.1. (a) Schematic of an experiment on light-induced scattering. (b) Geometri-

cal diagram for the diagonal geometry, ψ is the polar angle measured from the [1̄1̄1]

axis, ζ0 is the angle between [1̄1̄1] and [001], and the propagation direction is [1̄10].

The vectorial complex amplitudes of the pump and scattered waves we denote by

~e and ~a, respectively, they are generally functions of the propagation coordinate z.

The pump intensity is normalized in such a way that |~e |2 = 1, this means that ~e

can be treated as a unit polarization vector. Within the paraxial approximation,
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the light amplitudes possess only x and y components. The amplitude ~a = ~a(z) is

governed by the ordinary first-order differential equation [16]

d~a

dz
− i(κ · σ̂)~a = Q|E0 cosψ| (~a · ~e ∗) (ν0 + ν · σ̂)~e (5.1)

As we have neglected the pump depletion, the governing equation for the pump

amplitude ~e = ~e(z) differs from Eq. (5.1) for ~a only by the absence of the right-

hand side. This means that ~e changes only because of optical activity and the

ac-field induced optical anisotropy. From now on we restrict ourselves to the so-

called diagonal configuration ( ~E0 ‖ [1̄1̄1] ⊥ [1̄10]), distinguished by the strongest

nonlinear coupling [58, 59]. Furthermore, the relevant experimental characteristics

are obtained just for this geometry.

Here, in contrast to Chapters 3,4, the coupling parameters ν0 and ν, in contrast

to the parameters κ1,3, generally include not only the electro-optic but also elasto-

optic contributions [60, 61, 62]; the later result from the deformations produced by

the space-charge field via the piezo-effect. Furthermore, in specifying these parame-

ters we should keep in mind that the grating vector ~K is not parallel to the diagonal

[1̄1̄1]. In other words, these parameters are functions of the angle ψ between ~K and

[1̄1̄1]. If we provisionally neglect the elasto-optic contributions, then the nonzero

coupling parameters are

ν0,3 = ±s
2

cos(ζ0 + ψ) ν1 = s sin(ζ0 + ψ) (5.2)

where ζ0 = arctan(
√

2) ≃ 54.7◦, see Fig. 5.1(b). For ψ = 0 we have κ1/ν1 = κ3/ν3 =

E0. The elasto-optic contributions modify the dependences ν0,1,3(ψ). A relevant

example for BTO crystals is presented in Fig. 5.2. One sees that the components ν0

and ν3 are subjected to the strongest changes. Anyhow the relative changes do not

exceed 40%. In the subsequent calculations of the scattering characteristics (section

4) the elasto-optic contributions are taken into consideration.
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Fig. 5.2. Dependences ν0,1,3(ψ) for the diagonal geometry; the dotted lines are

plotted for zero elasto-optic contributions.
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Figure 5.3 exhibits the angular dependence of the factor Q̃ = Q( ~K)| cosψ| en-

tering Eq. (5.1) for |E0| = 17 kV/cm and the light wave length λ = 633 nm. For

the sake of convenience, we use the azimuth angle ψ and the polar angle θ instead

of the components Kx and Ky. The polar scattering angle θ is recalculated for air.

One sees that the maximum value of Q̃(θ, ψ) occurs at θmax ≈ 5◦, ψmax = 0, π.

With increasing |E0| the value of θmax decreases while the value of Q̃max remains

almost constant. Increasing the ratio µτ/Nt makes the angle θmax smaller but does

not change Q̃max [26]. The latter is determined by the product µτNt. The above

mentioned features are important for understanding many features of light-induced

scattering.
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Fig. 5.3. Contour plots Q̃(θ, ψ) = const for |E0| = 17 kV/cm, µτ = 10−7 cm2/V,

and Nt = 3 × 1016 cm−3. The dots mark the positions of two symmetric maxima.

To complete the background information, we comment shortly on the status of

our theory. The conventional one-species model [3] is used for the description of the

photorefractive AC response. The amplitudes of the scattered waves are supposed to

be small as compared to the pump wave amplitude. With respect to other relevant

aspects our basic equations are quite general. They incorporate the electro- and
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elasto-optic contributions to the optical permittivity and optical activity. They in-

clude fully the vectorial character of beam coupling in cubic photorefractive crystals,

i.e., the possibility for light polarization change. In this sense, the vectorial theory

is a generalization of the scalar theory which is applicable to birefrigent media. An

application of the scalar theory to the description of light-induced scattering can be

found in Ref [63].

5.3 Linear properties

The linear optical properties, determined by the 3D-vector κ, are of importance for

what follows. Within the linear approximation we have for the pump amplitude ~e,

d~e

dz
= i(κ · σ̂)~e (5.3)

The same linearized equation for ~a(z) follows from Eq. (5.1). To find the optical

eigen-modes, we search the solution of Eq. (5.3) in the form ~e ∝ exp(iδk z), where

δk is the wave vector measured from its non-perturbed value k0 = 2πn0/λ. Then

we arrive at the 2D eigenproblem:

(κ · σ̂)~e = δk ~e (5.4)

From this equation one can find two eigen-values for (δk)± and two corresponding

eigen polarization vectors ~e±. Since the matrix κ · σ̂ is hermitian, its eigen-values

are real. Using the known properties of the σ-matrices [64, 65] we have immediately,

(δk)± = ±κ, where κ = |κ|. The distance between the wave surfaces is therefore

2κ. For the diagonal configuration we have 2κ =
√

3s2E2
0 + 4ρ2.

The eigen polarizations that correspond to the eigen-values ±κ are generally

elliptical; one of the ellipses is extended along [1̄1̄1] (parallel to ~E0) and another

– along [112] (perpendicular to ~E0). The degree of ellipticity (i.e. the ratio short

axis/long axis) in both cases is the same, |ρ|/(κ +
√

3|sE0|/2). In the limit |E0| ≫
Ec ≡ 2|ρ|/

√
3|s| the eigen-modes are polarized linearly, in the laboratory coordinate

system the corresponding polarization vectors are ~e+ = (1, 0) and ~e− = (0, 1), in

the experiments they are usually horizontal and vertical, respectively. This case is

of practical interest for BTO crystals at λ ≃ 630 nm. The rotatory power is fairly

small here, |ρ| ≃ 6.5 deg/mm, so that the characteristic field Ec ≃ 3.2 kV/cm.

The values of the ac-fields used in experiment are typically much higher. In other

words, the applied field suppresses strongly optical activity, which can actually be

neglected [66].
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The vectorial equation (5.1) admits the general solution,[16]

~e (z) = exp[i(κ · σ̂)z]~e0 (5.5)

= [cosκz + iκ−1(κ · σ̂) sinκz]~e0

where ~e0 = ~e (0) is the input pump polarization vector. If it is chosen to be an

eigenvector, ~e0 = ~e±, no polarization changes occur during propagation. This means,

in particular, that the vertical and horizontal input polarization are not subjected

to any strong changes owing to the linear effects for |E0| ≫ 3.2 kV/cm.

5.4 Calculation of scattering characteristics

As we have seen, the vectorial pump amplitude ~e entering Eq. (5.1) is not constant in

the general case, it changes because of the linear optical effects. The same is partly

applicable to the probe amplitude ~a. The linear effects do not influence directly the

beam intensities. They change, however, the polarization state and affect in this

way the polarization-sensitive nonlinear coupling.

Within the vectorial theory, we can get rid of the linear terms by switching from

the vector ~a to the new vectorial amplitude ~b,

~a = exp[i(κ · σ̂)z]~b (5.6)

This procedure is similar to the above transition from ~e (z) to ~e0, see Eq. (5.5).

As the matrix κ · σ̂ is hermitian, the transformation (5.6) is unitary; it changes

neither the values of the 2D-vectors nor their scalar products. It is equivalent to the

so-called interaction representation in quantum mechanics [64].

After the unitary transformation we have instead of Eq. (5.1):

d~b

dz
= (~b · ~e ∗0 ) (q0 + q · σ̂)~e0 (5.7)

where q0 = Q|E0 cosψ|ν0 is a real constant and q is a real 3D-vector,

q = Q|E0 cosψ|
[

κ(ν · κ)

κ2
(5.8)

+
[

ν − κ(ν · κ)

κ2

]

cos 2κz − (ν × κ)

κ
sin 2κz

]

This vector depends on the propagation coordinate z, wherein the oscillating terms

(presented in the second line) are due to the fact that κ and ν are not parallel to
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each other, i.e., the eigen-vectors of the operators κ · σ̂ and ν · σ̂ are different. The

spatial frequency of the oscillations is 2κ.

The problem of calculation of scattering characteristics is reduced now to two

different tasks: (i) Calculation of intensity distributions for different pump polar-

izations and (ii) Calculation of polarization properties of scattered light. To solve

the first task, it is sufficient to find ~b(z, θ, ψ). Then the value |~b(z0)|2 ≡ |~a(z0)|2,
where z0 is the crystal thickness, defines the angular distribution of the light-induced

scattering. The second task is more difficult. Direction of the vector ~b(z) is more

sensitive to the model assumptions than its absolute value. Furthermore, it is nec-

essary to perform the unitary transformation (5.6) from ~b(z0) to ~a(z0) to find the

output polarization.

5.4.1 Intensity distributions

The spatially-oscillating terms in Eq. (5.8) are of minor importance in the case of

strong spatial amplification. The point is that the presence of the spatially-uniform

contribution to q and the spatially-uniform parameter q0 gives rise to an expo-

nential growth of ~b with increasing propagation distance z, whereas the oscillating

contributions to q cannot produce any permanent spatial growth. Furthermore, the

amplitudes of the oscillating terms in Eq. (5.8) are often relatively small for the

actual angles θ and ψ. For these reasons, we neglect these terms in the leading

approximation. Then we have from Eq. (5.7):

~b ≈ Q̃|E0| (~e ∗0 ·~b0)
exp(Γz)

Γ

[

ν0 +
(ν · κ)(κ · σ̂)

κ2

]

~e0 (5.9)

where~b0 = ~b(0) is the seed amplitude and Γ is the rate of spatial amplification called

also the increment. The general expression for Γ can be presented as follows:

Γ = Q|E0 cosψ|
[

ν0 + κ−2 (ν · κ) (κ · S0)
]

(5.10)

where S0 = ~e ∗0 : σ̂ : ~e0 ≡ 〈~e0|σ̂|~e0〉 is the real 3D-vector characterizing the pump

state and often called the Stokes vector [42]. The descriptions of the pump polar-

ization by S0 and ~e0 are equivalent; they differ only in the degree of convenience.

The absolute value of the Stokes vector S0 for a totally polarized pump wave equals

to unity.
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Fig. 5.4. Angular dependences of the increment for |E0| = 17 kV/cm and the

accepted parameters of BTO crystals. The cases (a), (b), and (c) correspond to

horizontal, vertical, and circular pump polarization, respectively. The polar angle θ

is recalculated for air.
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The dependence of the increment on the polar scattering angle θ is defined by

the factor Q̃, see Fig. 5.3. The dependence of Γ on the azimuth angle ψ comes

from the factor Q and also from the parameters ν0 and ν, see Fig. 5.2. Owing

to the general properties of the last parameters, we have Γ(ψ) = −Γ(ψ ± π); in

other words, the increment is an odd function of the scattering (grating) vector
~K. This feature is indeed a generalization of the known property of the scalar

spatial amplification, caused by a non-local photorefractive response, to the vectorial

case [3]. The increment Γ does not depend on the polarization of the test beam.

This polarization influences only the pre-exponent (~e ∗0 ·~b0); most probably, ~e0 ‖ ~b0
so that |~e ∗0 ·~b0| = |~b0|.

Let us consider several representative cases of the pump polarization. For the

horizontal and vertical polarizations we have κ · S0 = ±κ, respectively, so that the

square bracket in Eq. (5.10) is simply [ν0±(ν ·κ)κ−1]. Figures 5.4(a) and 5.4(b) show

the corresponding angular dependences of the increment [in the region of its positive

values] for |E0| = 17 kV/cm and the accepted BTO parameters. For the horizontal

(+) polarization, the dependence Γ = Γ+(θ, ψ) is characterized by a pronounced

horizontal right lobe. The maximum rate of spatial amplification (Γmax
+ ≈ 48 cm−1)

takes place at ψ = 0, θ ≃ 5◦. Light-induced scattering is strongest in this case [16].

For vertical (−) polarization the distribution Γ−(θ, ψ) is quite different; it possesses

one tilted left lobe at ψ ≈ 150◦. The maximum value of the increment is noticeably

smaller here, Γmax
−

≈ 27 cm−1.

Next we calculate the gain factor Γ̃ = (2z0)
−1 ln(|~a(z0)|2/|~a(0)|2) by solving nu-

merically the initial vectorial Eq. (5.1) for the thickness z0 = 1 cm and the same

material and experimental parameters. We find that the angular distributions of

the increment Γ and the gain Γ̃ differ from each other only in fine details. This

proves that (i) the oscillating terms in q are of minor importance and (ii) the incre-

ment Γ is really a useful characteristic of the intensity distribution for light-induced

scattering.
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Fig. 5.5. Experimental distributions [7] of scattered light for |E0| = 17 kV/cm for

the diagonal geometry. The cases (a), (b), (c), and (d) correspond to horizontal,

vertical, +45◦, and (+)–circular pump polarization, respectively. The scattering

distributions for −45◦ and (−)–circular polarization are not visually different from

those shown for the cases (c) and (d).

Now we compare our results with an experiment made by the group of Kamshilin [7].

In this experiment a 9.94 mm-thick sample was used, the amplitude of the ac-field

(applied along the diagonal [1̄1̄1])) was ≈ 17kV/cm, the typical pump intensity was

≈ 0.8W/cm2, and the AC frequency was ≈ 70Hz. Figures 5.5(a) and 5.5(b) show

intensity distributions for light-induced scattering, recorded from an observation

screen placed in far-field, for ~e0 ‖ [1̄1̄1] and ~e0 ⊥ [1̄1̄1]. One sees that the experiment

gives very similar angular distribution of scattered light. The azimuth positions of

the lobes and the polar angle θmax are in good agreement with theory.

To analyze the effect of pump polarization on the scattering characteristics

in more detail, we have considered the cases of right and left circular pump po-

larization and also two cases of linear polarization when the polarization angle

ϕ0 = ∠ ~e0 , [1̄1̄1] = ±45◦. The main theoretical prediction is that the increment

Γ is almost the same for these four cases,

Γ ≃ (Γ+ + Γ−)/2 = Q|E0 cosψ| ν0 (5.11)

To prove this assertion, we mention that for all four cases the pump polarization
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vector can be represented as ~e0 = c+~e+ + c−~e− with |c±| ≃ 1/
√

2. This is true

because the eigen-vectors ~e± are parallel and perpendicular to the [1̄1̄1]-axis for

|E0| ≫ 3.2 kV/cm. Therefore we have (κ · σ̂)~e0 = κ(c+ ~e+ − c− ~e−) which is

perpendicular to ~e0, and from Eq. (5.10) we get immediately the necessary result.

Note that the suppression of optical activity by the applied field is crucial for validity

of Eq. (5.11).

Figure 5.4(c) shows the angular distribution Γ(θ, ψ) given by Eq. (5.11) for |E0| =

17 kV/cm. It is the sum of the distributions presented in the Figs. 5.4(a) and 5.4(b).

Here we have two scattering lobes. The strongest one is tilted by ≈ 15◦ to the

horizontal. It originates indeed from the horizontal lobe of the increment Γ+(θ, ψ),

the tilt being caused by the influence of the ”negative” lobe of Γ−(θ, ψ) which can be

obtained by a π-rotation of the positive lobe shown in Fig. 5.4(b). The weakest lobe

in Fig. 5.4(c) originates from the tilted lobe presented in Fig. 5.4(b); its increasing

tilt to the horizontal is caused by the influence of the negative horizontal lobe of

Γ+(θ, ψ) [situated symmetrically to the lobe shown in Fig. 5.4(a)]. The maximum

values of Γ for the quasi-horizontal and tilted left lobes in Fig. 5.4(c) are ≃ 30 cm−1

and ≃ 8 cm−1, respectively; they are considerably smaller than the corresponding

values for Figs. 5.4(a) and 5.4(b). This is, indeed, due to the described partial

compensation mechanism.

Direct simulation of the vectorial equations (5.6), (5.7) has shown that the spatial

distributions of Γ̃ = (2z0)
−1 ln(|~a(z0)|2/|~a(0)|2) for the (±)-circular and ±45◦ pump

polarization are in a good qualitative agreement with the distribution presented in

Fig. 5.4(c). At the same time, quantitative distinctions become here noticeable.

Figures 5.6(a) and 5.6(b) show the angular dependence of the gain factor Γ̃

for right and left circular polarizations. These distributions are slightly different,

which is fully due to the influence of optical activity. A bigger influence of optical

activity (as compared to the cases of eigen pump polarization) is caused by a partial

cancellation of the biggest contributions to Γ coming from Γ+ and Γ−.
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Fig. 5.6. Dependence Γ̃(θ, ψ) for (+) (a) and (−) (b) circular pump polarization.

The maximum values for the main lobe are ≃ 18.2 and 22.9 cm−1, whereas for the

secondary lobe they are ≃ 9.0 and ≃ 5.9 cm−1.

The experiment [7] did not show any noticeable difference between the intensity

distributions for the above four different choices of pump polarization [7]. Figure

5.5(c) shows a representative distribution obtained for the left circular polarization

at |E0| = 17 kV/cm. In accordance with theory, there is a slightly tilted main right

lobe and a considerably weaker, strongly tilted left lobe. The angular positions of
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these lobes are ψ ≈ 5◦ and ≈ 135◦, respectively. These numbers are slightly differ-

ent from the model predictions. The intensity of the scattered wave is, as expected,

considerably lower than that for the cases (a) and (b). It should be understood

that the pump is essentially depleted in the 9.94 mm-sample, i.e., the spatial growth

experiences a saturation. This makes unreliable quantitative estimates of the to-

tal scattering intensity but can hardly affect strongly the angular and polarization

scattering properties.

5.4.2 Scattering polarization

Polarization properties of scattered light seem to be more sensitive to the choice

of experimental and material parameters than the intensity distributions. This is

especially true with respect to the weakest lobes considered above.

Since the simplified model which ignores the spatially-oscillating contributions

to ~q but includes elasto-optic contributions to Γ gives satisfactory results for the

intensity distributions, it is natural to apply it to the description of the output

polarizations. Therefore we have to calculate ~b(z0) from Eq. (5.9) and perform

the unitary transformation (5.6) to find ~a(z0) as a function of θ and ψ. The most

important propagation directions correspond indeed to the maxima of the increment

Γ.

Let us revisit first the cases of horizontal and vertical input pump polarization.

Here ~e0 is the eigen-vector of the operator κ · σ̂ with a good accuracy (we assume

again that |E0| ≫ Ec ≃ 3.2 kV/cm). Therefore ~b(z0) is almost parallel to ~e0.

The unitary transformation does not change the eigen-vector directions. We come

therefore to the conclusion that for the main horizontal lobe presented in Fig. 5.4(a)

the scattering polarization has to be horizontal and for the tilted left lobe of Fig.

5.4(b) – vertical. Experimental polarization measurements confirm this prediction

with a high accuracy.

In the case of mixed pump polarization it is useful to represent the amplitude ~b

in the form ~b = b+(z)~e+ + b−(z)~e−. Then for all the four cases considered above

the ratio horizontal-to-vertical intensity components is the same,

|b+/b−|2 = (Γ+/Γ−)2 (5.12)

This ratio depends on the azimuth angle ψ and does not depend on the polar angle θ.

Let us estimate it first for the main scattering lobe of Fig. 5.4(c). At the maximum of

Γ(θ, ψ) we have |b+/b−|2 ≈ 102. This means that the vector ~b(z0) at this maximum
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is almost horizontal, as well as the vector ~a(z0). Simulation of the vectorial equation

(8) with the oscillating terms and optical activity included followed by the unitary

transformation (5.6) from ~b(z0) to ~a(z0) has given the range (3 − 23) × 102 for the

ratio of horizontally-to-vertically polarized intensity components for the above cases

of mixed pump polarization. In this way, we expect from theory that the polarization

of the quasi-horizontal (strongest) lobe is almost horizontal (~a(z0) ‖ [1̄1̄1]) for the

(±)-circular and ±45◦-pump polarization. Experimental measurements confirm this

result with a high accuracy.

We turn lastly to the weakest lobe of Fig. 5.4(c). Here the simplified model

(neglected oscillating terms and optical activity) gives the estimate |b−/b+|2 ≈ 3 for

the corresponding maximum of the increment. This number cannot be considered

as big enough to expect a quasi-vertical polarization of the scattering lobe. More

accurate numerical calculations based on Eqs. (5.6) – (5.8) have shown that the

intensity ratio of vertical/horizontal components ranges from ≈ 1.6 to ≈ 12.5 for

the cases of mixed pump polarization. This theoretical prediction has found only

a qualitative experimental confirmation. Experiment shows that the polarization

of the weakest (tilted) lobe is vertical with a good accuracy for (±)-circular and

±45◦-pump polarization.

5.5 Resume

We have applied above the vectorial theory to describe the angular distributions and

polarization properties of light-induced scattering in cubic ac-biased BTO crystals

for different polarization states of the incident pump beam. The diagonal geometry,

distinguished by the strongest vectorial coupling, was chosen for comparison between

theory and experiment.

We have found that a great variety of the angular intensity distributions can

be described uniformly within a relatively simple and transparent vectorial model

of spatial amplification without an extensive use of numerical simulations. The

measured scattering distributions are in good quantitative agreement with theory.

The photo-elastic contributions to the coupling constants affect mostly the absolute

values of the rates of spatial amplification.

For the strongest lobes of light-induced scattering, the theory allows also for a

simple and satisfactory description of the main polarization properties. The polar-

ization properties of the weakest scattering lobe are found to be sensitive to the

model assumption made. At this point, there is only qualitative agreement between
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experiment and theory (including numerical simulations).

The results obtained are of interest for the use of fast photorefractive materials

for various interferometric applications,[15, 22, 23, 67] and also for characterization

purposes [68, 69].



Chapter 6

Summary and outlook

6.1 Summary

The aim of this thesis was the extension of our knowledge about the vectorial beam

coupling in sillinite crystals and the study of the possibilities of using vectorial effects

in different important applications. In this section we collect the main significant

findings of our work.

6.1.1 Space-charge field formation

• The space-charge field profile within one grating period strongly depends on

the light contrast m. It has a sine-like form only for small contrast, m .

0.05. With increasing m, a discontinuity, situated at the intensity maximum,

appears and the space-charge field profile tends to the square-wave form.

• All Fourier harmonics of the space-charge field are imaginary. It means, in

particular, that the fundamental component is π/2-shifted with respect to the

intensity distribution for any value of the contrast, i.e. the PR ac-response is

always nonlocal.

• The quality factor of the space-charge waves, Q, determines the photorefractive

nonlinear response in the whole contrast range. The dependencies of the space-

charge field harmonics amplitudes on Q are saturated for Q≫ 1.

• The whole contrast range can roughly be divided into two regions. The re-

gion 0 < m . 0.05 corresponds to the linear theory. Here the fundamental

65



CHAPTER 6. SUMMARY AND OUTLOOK 66

amplitude EK grows rapidly with the contrast and the rate of spatial amplifi-

cation of weak signals is extremely high, up to 102 cm−1. In the second region,

0.05 . m 6 1, the growth of EK(m) is strongly saturated. This region is more

appropriate for grating recording.

6.1.2 Vectorial beam coupling theory

• It was proved that the light fringes remain straight inside the crystal in spite

of coupling effects.

• The exact solution for the set of vectorial beam coupling equations was ob-

tained. This solution is valid for arbitrary intensities and polarizations of the

input light beams.

• New conservation laws involving polarization degrees of freedom were found.

• The obtained exact solution was applied to particular optical configurations

and a number of new regimes, where the input beams parameters influence

strongly the output energy and polarization characteristics, were predicted.

6.1.3 Grating translation technique

• Based on the improved vectorial coupling theory, the problem of transfor-

mation of the fast phase modulation of one of the input beams into output

intensity modulation was solved.

• It was shown that the input beams polarizations affect essentially the output

intensities modulation. Using input beams with linear or identical polariza-

tions leads to the intensity modulation dependent on input phase ϕ as cosϕ.

With other input beam polarizations, the output intensities have two terms,

which are proportional to cosϕ and sinϕ, respectively.

6.1.4 Linear signal detection

• The possibility of linear detection without polarization filtering by making use

of elliptically polarized input light beams was shown.

• The theory of the linear detection with polarization filtering for the case of

thick crystals was developed. The optimal experimental parameters, which

maximize the output intensity modulation are found.
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• It was predicted that the maximal value of the output intensity modulation is

twice larger than was reported earlier. This maximum can be achieved with

or without polarization filtering.

6.1.5 Polarization properties of the scattered light

• A big variety of the observed angular intensity distributions was explained

uniformly within a relatively simple and transparent vectorial model of spatial

amplification without an extensive use of numerical simulations.

• The scattered patterns consisting of two lobes are predicted for both, linear and

circular polarizations of pump beam. For the strongest lobe, the theory allows

a simple and satisfactory description of the main polarization properties. The

polarization properties of the weakest scattering lobe are found to be sensitive

to the model assumption made.

6.2 Outlook

Despite of numerous publications, vectorial beam coupling covers still many inter-

esting and challenging problems. Some of them, which are related to this study and

look promising for the use in different photorefractive applications, are formulated

below.

6.2.1 Vectorial beam coupling

• The vectorial coupling theory can be extended to the case of the reflection

geometry. The equation describing the dependence of the space-charge field

amplitude on the light contrast does not depend on the geometry in question.

Thus, only the vectorial Bragg diffraction equations need to be rewritten for

a reflection configuration.

• It is interesting to investigate the influence of the vectorial effects on the feed-

back controlled space-charge field formation [70]. Until now feedback theories

have been developed only for scalar beam interactions [71, 72, 73, 74, 75, 76].

• The phase conjugation problem was also considered in its scalar variant [11]. In

the vectorial case, one can expect the appearance of new valuable polarization

features.
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6.2.2 Linear signal detection

• Within the performed simple optimization procedures the maximum of the

modulation coefficient reaches only 72% of the theoretical predicted limiting

value. Therefore, looking for new optimization schemes should allow further

improving of the linear detection characteristics.

• It is attractive to consider the problem of linear signal detection in the reflec-

tion geometry.
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noch keinen Promotionsversuch unternommen zu haben.

Osnabrück, den 15 Juli 2004

(O. Filippov)

Tag der Einreichung: 15. Juli 2004
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