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Synoptic view of the study
(Abstract)

The aim of this thesis is to define and study stochastic models of repairable systems and the
application of these models to biological systems, especially for cell survival after irradiation

with ionizing radiation. The study is divided into four chapters:

The first chapter is considered as an introductory one. In it, basics of renewal pro-
cesses and reliability theory are defined, for example, renewal process (renewal sequence,
renewal time, renewal function and renewal equation), lifetime distributions and failure
rates, availability, failure frequency of Markov processes and the supplementary variable
technique, Markov renewal process, Markov renewal function, Markov renewal kernel, semi-

Markov process, and jump time process.

The second chapter consists of six sections. The first section provides information on
stochastic models on repairable systems.

Then in the next section 2.2, we will study two-unit systems with exponential distribu-
tion function of failure and repair time. This section consists of three subsections: in the
first subsection, assumptions and states of the system are defined; in subsection 2.2.2, the
system is studied; and in subsection 2.2.3, availability and special cases of the system are

calculated.

In section 2.3, two-unit systems with general distribution function of repair time and
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exponential distribution function of failure time are studied. This section also consists of
three subsections: in the first subsection, assumptions and states of the system are defined;
in subsection 2.3.2, the system is studied; and finally in subsection 2.3.3, special cases and

numerical examples of the system are given.

In section 2.4, the availability characteristics of a two-unit repairable system (series
and parallel) with two types of failures are investigated using the supplementary variables

method. We study the series and parallel system includunig an availability analysis.

In section 2.5, a three-unit model with two repair facilities is investigated; we show how
to obtain the undetermined functions, when the supplementary variables method is used.
This model is one of the important ones we often encounter in reliability applications. It’s
difficult to analyze if there some of the random variables have a general distribution. For
the model considered here, some of the system equations involve two hazard functions.

In the first subsection the assumptions of the general system are defined, in subsection
2.5.2 the states and equations of the system are presented, in subsection 2.5.3 the solution
of the equations of the system is calculated, in subsection 2.5.4 some special cases of the

system are investigated, and in subsection 2.5.5 the availability of the system is studied.

In section 2.6, an exponential limit theorem for two alternating renewal processes is
proved. For a two-unit parallel system with alternating operating and repair intervals
we consider the first time both units are under repair and show that it is systematically

exponential.

The following chapter is concerned with the general structure and functions of cells
and the radiation effect. We explain the general structure of the cell.
The radiation effect on the cell is described; this section consists of three subsections.

In subsection 3.3.1, radiation sources are illustrated, the first source is ionizing radiation
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(alpha-, beta-, and gamma- radiation). lonizing radiation exposure can occur from a ra-
diation source outside of the body (external radiation) or as a result of taking radioactive
material into the body (internal radiation). The second source is optical radiation, and the
third source is non-ionizing radiation. In subsection 3.3.2, the two theories which prevail
in the field of radiobiology (target theory and absorption of radiation) are explained. In

subsection 3.3.3, the radiation effects on cell constituents are considered.

Finally, the last chapter consists of four sections. The first section serves as an in-
troduction and presents the literature on stochastic models for cell survival after irradiation
with ionizing radiation.

In section 4.2, a stochastic two compartment model for cell survival after irradiation is
studied. The core of the model is the assumption that once a compartment of the cell is
repaired, it will behave like a normal compartment when irradiated further. The probability
of survival or damage of an irradiated cell at an arbitrary time instant has been obtained
assuming general repair time distributions, which may differ for the two compartments. The
availability of the model is also computed. The special cases of exponential repair times

and some numerical examples are presented.

In section 4.3, a n compartments model for cell survival after ionizing irradiation is
studied. In this model the cell consists of n regions with different sensitivities; we take
into account recovery phenomena with general repair-time and damage distributions, which
differ for each region. The probability that the cell is damaged and the mean life-time of

the cell are obtained. The special cases are given.

In the final section, a semi-Markovian model for the behavior of a living cell exposed
to radiations is studied. We obtain various characteristics of interest pertaining to the cell
behavior, for example the probabilities of the cell being in different states and the expected

time spent in each state.



Chapter 1

Introduction

In this chapter we review some important background material required in the later chapters.

1.1 Basics of renewal processes and reliability theory

Definition 1.1.1. (Renewal process) Karlin and Taylor [27]:-

Let (X,,n > 1) be a sequence of non-negative random variables defined on a probability
space (2,3, P). We interpret X,, is the time between the (n — 1)th and the nth event. If
X,, = 0 then the (n — 1)th and the nth event occur simultaneously.

We assume that (X,,n > 1) is a sequence of independent and identically distributed
non-negative random variables with the common distribution function F'(z).

Let Sp, 51,57, ... be the random variables defined by

S = Xo =0,

Sn_|_1 = Sn+4Xn+1; RZO, (111)

the sequence S = (S,;n € R) is called a renewal sequence. The times S, are called
renewal times.

Let N; be the counting process of the renewal precess, i.e.

Ni(w) = sup{n; S, <t}; we Q. (1.1.2)

4



Chapter 1. Introduction 5

F(z) is called the renewal distribution. Let

M(t) = E[N)]= iFn(t); t>0, (1.1.3)
where .
F,(z) = /OI Foi(z — y)dF(y), (1.1.4)
and
Fy(z) = F(x)

The function M (t) is called the renewal function. There are a number of other random
variables of interest. Three of these are: the excess life (also called the excess random
variable), the current life (also called the age random variable) and the total life, defined,

respectively, by

v¢ = Sn+1—t (excess or residual lifetime),
% = t—Sn, (current life or age random variable),
By = v+ (total life),

a pictorial description of these random variables is given in Figure 1.1.

The equation
¢
M(t) IF(t)—I-/ M(t — s)dF(s); s <t (1.1.5)
0
is called the renewal equation.

Definition 1.1.2. (Lifetime distributions and failure rates) Osaki [40]:-

Let X denote the lifetime of a system or a unit subject to random failure, which is, of

course, a random variable. The distribution of the lifetime untie failure is given by:

F(t)=Pr{X <t}; (t >0).
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The survival probability of X is given by
F(t) = 1-F(t)=Pr{X >t}; (t >0), (1.1.6)

which is the probability that the unit survives up to time ¢t. The probability density of X

is assumed to exist and given by

f)y=——=  (t=0), (1.1.7)

=G 20 (1.1.8)

Definition 1.1.3. (Availability A(t)) Osaki [40]:-

The availability at time ¢ is defined by
A(t) = Pr{a unit is operating at a specified time (}. (1.1.9)
This availability is referred to as pointwise availability or instantaneous availability.

Definition 1.1.4. (Failure frequency, Markov process case) Lam [32]:-

Assume that {X(¢),¢t> 0} is a continuous-time homogeneous Markov chain with state

space S ={0,1,2,...}. Denote the infinitesimal matrix for the process by ) = [¢;;]. Then
pi(A) = Pr{X@+an=j]X(@t)=if

_ ) aalbdo(Als A (1.1.10)
1—qgAt+o(Al); j=1,
where ¢; = —¢;; and ¢;; > 0. Let there further be two kinds of states, up states and down
states, where W and F represent, respectively, the sets of the up states and down states. If
S =WUF and p;(t) = Pr{X(t) = i}, then the rate of occurrence of failures (ROCOF) at
time ¢ is given by

mp) =Y pilt)aj. (1.1.11)

1EWjeF
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Definition 1.1.5. (Failure frequency, supplementary variable case) Lam [32]:-

If a process {X(t),t > 0} is not Markovian, one may sometimes introduce some sup-
plementary processes Xi(t),...X,.(t), such that {(X(t),Xl(t),Xg(t), X (1), > 0} is a
higher-dimensional Markov process.

Assume again that the process {(X(t), Xi1(t), Xa(t), .. Xn(t)),t > O} has two kinds of
states only, namely up states and down states, let W and F represent, respectively, the sets
of the up states and down states, so that S = W U F. Let the transition probability given
by

p(lv L1, L2 .- wmv]v 'r’lv 'r’?v ] 'r,mv At)
= Pr{(X(t+ A0, Xi(t+ AL, Xo(t + A1), oo Xpn(t + AL)) = (7, 47, 8, 370)
| (X(0) X2(8), Xa(0), oo Xn(0)) = (i 21,22, 0 2) |

i (X1, Ty e, ) AL 4+ 0(AL); | £ 1,
_ Gij(z1, T2 ) (Al) J# (1.1.12)

1= gi(21, @2, ..., Tr) At + 0o(AL); j=1i

where ¢;(z1, 22, ..., o) = —qis (21, T2, ..., ) > 0 and g¢;; (21, 22, ..., z) > 0, for j # 1.
The matrix Q(z1, 2, ..., £p) = [¢ij (21, T2, ..., Tp)] is called the infinitesimal matrix for
the Markov process {(X(t), Xq(t), Xo(t), .. Xn(1)),t > 0}.
Let pi(t, 21,02, s 2) = Pr{(X (1), X1(8), Xa(t), -, Xn(t)) = (21,22, 0., 2) |, then
the ROCOF at time ¢ is given by
mys(t) = Z /OO /00 pilt,z1, %2, ..., T)Gij (21, T2, .o, Tp)dzydzg. dy,.  (1.1.13)
iew,jer ’0 0

Definition 1.1.6. (Markov renewal process) Cinlar [9] and Kohlas [30]:-

Let, for each n € X, the random variable X, take values in a countable set E and the

random variable 7}, taking values in Ry = [0,400) such that 0 =15 <77 <15 < ...
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The stochastic process (X,7T) = {Xn,Tn;n € N} is said to be a Markov renewal

process with state space F if

PT{AXn+1 = jv Tn-l—l - Tn <t | X07X17 "'7Xn;T07T17 7Tn}

- Pr{Xn_H — Tt —Th < 1| Xn}, (1.1.14)

foralln e R, j e E,and t € ;.

We will always assume that (X, T) is time-homogeneous, that is, forany ¢,j € E,t € R,
Pr{Xop = j, Togs = T <] Xo = i} = Qis(1), (1.1.15)
is independent of n. The family of probabilities
Q) = {Qij(t)§i7j €k te §R+}, (1.1.16)
is called a semi-Markov kernel over F.

Definition 1.1.7. (Markov renewal function) Cinlar [9]:-

Let (X,T) = {Xn, To;n € N} be a Markov renewal process with a semi-Markov kernel
Q(t) over a countable state space F, we will write P;,{A} for the conditional probability

Pr{A | Xo = z} and, similarly, F; for the conditional expectations given {Xy = ¢}. Define

%(t)IB{anj,TnSt}; i,j € E,t€Ry, (1.1.17)
for all n € N and
1; ifi=jy,
0
() = (1.1.18)
0; if i #j,

for all ¢ > 0.

The expected number of renewals in any finite interval is finite, and

Ri;(t) = iPi{Xn =5 T, <t} = i@;}(t), (1.1.19)
n=0 n=0
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is finite for any ¢, 7 € £ and ¢ < co. The functions t — R;;(t) are called Markov renewal
functions and the collection R = {Rij(.); 1,7 € E} of these functions is called Markov

renewal kernel.

Definition 1.1.8. (Semi-Markov processes) Cinlar [9]:-

Let (X,T) be a Markov renewal process with state space £ and semi-Markov kernel

Q(t). Define
L =sup{T,};
then L is the lifetime of (X, 7).

Let the process Y = {Y};t > O} defined by

Xy T, <t <Thy,
Y, = (1.1.20)
A, ift> L,

where A is a point not in £. This continuous-time parameter process is called the minimal

semi-Markov process associated with (X, 7).

Definition 1.1.9. (Jump time processes):-

Let tg < 81 < t; < 83 < ... be random variables. Let

1, tejo,s);
0, te€][s1,t1);

X(t)=19 1, telty,ss); (1.1.21)
0, t€[s2ta);

We define the jump time process R(t) by

R(t) = 0 te Uizoltis i), (1.1.22)

t—sn; s, <t<t, for some n,

and describe by Figure 1.2
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A N@)

time

t
0 SNm SNm+1

Figure 1.1: The excess life 44, the current life §; and the total life f;.

A R()

Figure 1.2: The jump time processes R(t).
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Chapter 2

Stochastic models of repairable
systems

2.1 Introduction and literature

Ever since world war II reliability engineering principles have been applied in many fields,
and the study of repairable systems is an important topic in reliability.

There is an extensive literature on availability characteristics of repairable systems with
two or three units under varying assumptions on the failures and repairs. Several researchers,
including Gaver [14], Srinivasan [45], Osaki and Asakura [41], Osaki and Nakagawa [42],
Srinivasan and Gopalan [46], Gopalan and D’Souza ([18] and [17]), Gopalan [16], Li, Alfa
and Zhao [35], Dhillon and Rayapati [12], Lam ([31] and [32]), Lam and Zhang ([33] and
[34]), Goel , Jaiswal and Gupta [15], Stadje and Zuckerman ([47], [48], [49], [50] and [51]) and
the book of Ascher and Feingold [4], have studied stochastic models of repairable systems
with several units and repair facilities.

In particular, Li, Alfa and Zhao [35] have studied repair systems with three units and two
repair facilities, and (Lam ([31] and [32]) has studied also the two-unit system (series and
parallel), defined the rate of occurrence of failures (ROCOF), and obtained the ROCOF in

special cases. Osaki and Nakagawa [42] have studied a two-unit standby redundant system

11



Chapter 2. Stochastic models of repairable systems 12

with standby failure.

In most of these papers, exponential distributions are assumed for some system variables
and only one type of failure is considered. The methods used in some sections of the existing
chapter dealing with non-Markov systems involving many general random variables include
Regenerative point technique ([23] and [24]) and the Supplementary variables Method ([11],
[31], [32], [33], [35], [38] and [44]).

Then in the next section 2.2, we will study two-unit systems with exponential distribu-
tion function of failure and repair time. This section consists of three subsections: in the
first subsection, assumptions and states of the system are defined; in subsection 2.2.2, the
system is studied; and in subsection 2.2.3, availability and special cases of the system are

calculated.

In section 2.3, two-unit systems with general distribution function of repair time and
exponential distribution function of failure time are studied. This section also consists of
three subsections: in the first subsection, assumptions and states of the system are defined;
in subsection 2.3.2, the system is studied; and finally in subsection 2.3.3, special cases and

numerical of the system are given.

In section 2.4, the availability characteristics of a two-unit repairable system (series
and parallel) with two types of failures are investigated using the supplementary variables

method. We study the series and parallel system includunig an availability analysis.

In section 2.5, a three-unit model with two repair facilities is investigated; we show how
to obtain the undetermined functions, when the supplementary variables method is used.
This model is one of the important ones we often encounter in reliability applications. It’s
difficult to analyze if there some of the random variables have a general distribution. For

the model considered here, some of the system equations involve two hazard functions. In
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the first subsection the assumptions of the general system are defined, in subsection 2.5.2
the states and equations of the system are presented, in subsection 2.5.3 the solution of the
equations of the system is calculated, in subsection 2.5.4 some special cases of the system

are investigated, and in subsection 2.5.5 the availability of the system is studied.

In section 2.6, an exponential limit theorem for two alternating renewal processes is
proved. For a two-unit parallel system with alternating operating and repair intervals,
we consider the first time both units are under repair and show that it is systematically

exponential.
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2.2

2.2.1

Two-unit system with exponential distributions of failure

and repair times

Assumptions of the system

We make the following assumptions:

1.

2.2.2

The system consists of two units, at the beginning new units are used, and both are

operating. Whenever a unit fails it is repaired.

. Let X (t) be the state of unit 1 at time ¢ such that:

X(0) 1;  if unit 1 is operating at time ¢ , (2.2.1)
0; if unit 1 is under repair at time ¢, o

with exponential distribution functions with parameters A; and pq for operating and

the repair time respectively.

. Let Y (¢) be the state of unit 2 at time ¢ such that:

i 1;  if unit 2 is operating at time ¢ ,
Y(t) = (2.2.2)
0; if unit 2 is under repair at time ¢,

with exponential distribution functions with parameters Ay and ps for operating and

the repair time respectively.

. Let M(t) = (X(t),Y(t)) be the state of the system at time t, we have the four states

of the system {(070), (0,1), (1,0), (1, 1)}.

Study of the system

Under these assumptions, the process M (¢) is a finite-state, continuous-time Markov chain

and the translation probabilities satisfy:
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por(h) = Pr{M(t+h)=(0,1)|M(t)=(0,0)}

_ K2 o
= (M1+M2)h+ (h), (2.2.3)

po(h) = Pr{M(t+h)=(0,0)[M(t)=(0,1)}

= — 22 _hto(h), (2.2.4)

poa(h) = Pr{M(t+h)=(1,0)[M(t)=(0,0)}

= H 4] L
= Gt (2.2.5)

po(h) = Pr{M(t+h)=(0,0)|M(t)= (1,0)}
A1

= ot ) h+ o(h), (2.2.6)

psi(h) = Pr{M(t+h)=(0,1)|M(t)=(1,1)}
At

= ) h+ o(h), (2.2.7)

pas(h) = Pr{M(t+h)=(1,1)|M(t)=(1,0)}

_ K2 o
= (/\1+M2)h+ (h), (2.2.8)

psa(h) = Pr{M(t+h)=(1,0)|M()=(1,1)}

= (/\1/_\:/\2)h—|—0(h), (2.2.9)

otherwise

pij(h) = o(h); Vi, (2.2.10)
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and
poo(h) = Pr{M(t+h)=(0,0)|M(t)=(0,0)}
H2 H1
= 1- + h+ o(h
[(M1+M2) (M1+N2)] (&)
= 1—h+o(h), (2.2.11)
also
pii(h) = 1—h+o(h); 1=0,1,2,3, (2.2.12)
such that as h — 0, we have p;; = ¢;;, where ¢;; is the Kronecker delta function.
Now we calculate the infinitesimal matrix ¢ of the Markov chain:
. 1—py(h) .
i = lim ————=; =0,1,2,3, 2.2.1
o= =01 2213)
and
oy PuB)
4 hlg& L (2.2.14)
We have
i = 7::07172737
and
go1 = S L
(g1 + p2) ’
_ A2 .
@io = 7(1“ )
qo2 = R
(g1 + p2) 7
At
q0 =

(A1 +p2)’
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otherwise

We obtain

Let 7 = (ﬂ'o, T, T2, 7T3) be the stationary distribution of the system. Then

and

qi3 = S
(11 + Az)’

—_ Al .

431 = 7(/\1+/\2)7
_ H2 )

423 (/\1-|-,u2)’
—_ AQ .

432 = (/\1+/\2)’

¢; = 0;  Vi#j

—qoo qo1 qo2 qo3

qi0  —q11 12 q13

Q =
420 421 —q22 23
430 431 432  —4q33
-1 H2 H1
(1 +p2) (o1 + p2)
_ _1 0 M
(11 + A2) (1 + Az2)
AL 0 _1 e
(A1 + p2) (A1 + p2)
0 M A2 1

(A1 4+A2) (A1 4+ A2)

17

(2.2.15)

(2.2.16)

(2.2.17)
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By equations (2.2.15), (2.2.16) and (2.2.17), we obtain the system of equations

A A
T = CH L, (2.2.18)
(A2 + p1) (A1 + p2)
M2 Al
e mo + T3, 2.2.19
T G e (2:2.19)
H1 Ag
Ty = o + T3, 2.2.20
S e EL R PR w L (2.220)
H1 H2
s T T3, 2.2.21
’ Cetm) " atm) ( )
1 = 7T0+7Tl +7T2 —|—7Tg. (2222)
Solving the linear system (2.2.18)-(2.2.22), we have
A1z (g + p2)
= = e 2.2.2
o IR ’ ( 3)
Avpa (A2 + )
_— 2.2.24
T IR 9 ( )
Aapir (M1 + pa)
= == 2.2.25
2 IR 9 ( )
A+ A
- papz (A1 + Aa) (2.2.26)

2R k
where

R = A Aopy + ArAgpg + Aqprypeg + Agpig pio.

The steady-state probability of two units operating together is given by w3, the steady-state

probability that both units are under repair is 7.
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2.2.3 Availability and special cases of the system

The availability of the system, denoted by A(t), is the probability that the system is oper-
ating at time ¢, see definition 1.1.3. Then at least one unit is operating and the steady-state

availability of the system, denoted by A, is given by

3
2 A A A
A:Zm: paptz (A1 4 Az) + A (pr + p2)

. 2.2.2
. 2R ( 7)
=1
Figure 2.1 displays A as a function of Ay for a few fixed values of As.
Let Ay = A2 = A and pq = pe = g, in equations (2.2.23)- (2.2.26), we have
1
Ty = T2 = Z’ (2228)
A (2.2.29)
T — —————, 2.
’ 2(A+ p)
I
T3 = ——. 2.2.30
’ 2(A+ p) ( )

As t — oo, the probability of two units operating together at time ¢ converges to w3, and
the probability of both units being under repair tends to mg. The steady-state availability

of the system is given by

3
A+ 2u

A= = —. 2.2.31

;W 2(A+ p) ( )
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2.3 Two-unit system with general distribution function of re-
pair time and exponential distribution function of failure

time

2.3.1 Assumptions of the system

We make the following assumptions:

1. A system consists of two units, at the beginning new units are used, and both oper-

ating. Whenever a unit fails it can be repaired .

2. Let X (t) describe the state of unit 1 at time ¢:

1;  if unit 1 is operating at time ¢,
X() = (2.3.1)

0; if unit 1 is under repair at time ¢.

The operating times of unit 1 are exponential with parameter A, the repair times have

an arbitrary distribution function Fy(¢) with density fi(¢) and hazard rate p;(%).

3. We define Ry(t) a is the elapsed repair time of unit 1 under repair at time ¢ (the

current lifetime of unit 1); Ry (¢) is a jump time process (see definition 1.1.9).

4. Let Y (t) describe the state of unit 2 at time ¢:

i 1;  if unit 2 is operating at time ¢,
Y(t) = (2.3.2)

0; if unit 2 is under repair at time ¢.

The operating times of unit 2 are exponential with parameter y, the repair times have

an arbitrary distribution function F3(¢) with density f2(¢) and hazard rate pa(%).

5. We define R;(t) is the elapsed repair time of unit 2 under repair at time ¢; Ry() is a

jump time process (see definition 1.1.9).
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6. Let M(t) = (X(t),Y(t)) be the state of the system at time ¢; there are four states:
{0,1),(1,0),(0,1),0,0)}.

7. Let w = {(1,0),(0,1)} and define

7 =inf{t > 0|M(t) = (0,0)}. (2.3.3)

2.3.2 Study of the system

Under these assumptions, the probability of the two units operating together at time ¢

without both having simultaneously failed before is

p(t) = Pr{M(t) = (1,1),M(s) € wU{(1,1)}Vs < t}. (2.3.4)
Let
d
Qi(t,r1) = d—m{(h(tﬂ‘l)} (2.3.5)
d
Qa(t,r2) = d—m{QQ(t,T‘Q)} (2.3.6)
where
a(t,r) = Pr{M(t) = (1,0), M(s) e wU{(1,1)}Vs < t, Ry(t) < rl},
w(tr) = Pr{M(t) = (1,0), M(s) € wU{(1,1)}Vs < t, Ry(t) < rQ};
we define
Qt,ri,re) = Q1(t, 1) + Q2(t, ra). (2.3.7)
Then

Pr(r € dt) = (/OOO O (t, 1) Adry + /OOO Qa(t, r2)pdry ) dt, (2.3.8)
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so that 7 has the density function G(t) given by

G(t) = A/(;OO Ql(t,rl)dT1+HAm QQ(t,T’Q)dT‘Q. (239)

These conditions lead to a system of differential equations under the different states of
the units. Consider two continuous intervals (0,¢] and (¢,t + €] where € is very small. The

forward equations for the process may be written as

plt+e) =p(t) - M+uM@k+€AmQﬂaﬁMdem

+ 6/000 Q2(t,r2)pa(re)dry + o(e€), (2.3.10)

Qit+e,ri+erate = Qit+eri+e+Qa(t+era+e)
= Qi(t,r1) +Q2(t,m2) — (A4 p1(r1)) Q1 (L, 1)

—c(+ pa(r2))Qa(t,m2) + o(e). (2.3.11)

As € — 0, from equations (2.3.10) and (2.3.11) we conclude that
p(t) = —(A+ wp(t) +/ Q1 (t,r1)pa(ri)dry +/ Q2(t, r2) pa(ra)dra, (2.3.12)
0 0

0 0 0 0
%Ql(h r) + EQl(L r) + %Qﬂh r2) + EQ2(ET‘Q)

= —(A+p1(r)Q1(t, 1) — (1 + pa(r2))Qa(t, r2). (2.3.13)

Equation (2.3.12) and (2.3.13) are to be solved subject to boundary conditions.

The first is

Q1(t,0) = Ap(t), (2.3.14)

Q2(¢,0) = pp(t). (2.3.15)
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This specifies that as soon as the units of the system enter the states {(O, 1), (1, O)} it goes

into the repair process. The second is the initial condition

p(0) = 1.

(2.3.16)

The solution of equations (2.3.12) and (2.3.13) are made easier if they are recast in terms

of Laplace transforms.

We have then for equations (2.3.12)-(2.3.15) the transformed equations
W0 =~ )+ [ Qi)
0

+AmQaammxmmm

g%Qaam>— Q1(0,11) — Qs(0,7) =

(s Ao (r))Qi(s )~ (5 s pa(r2) @35, ),

d .
%Ql(s,m) +

and

Q°(5,0,0) = (A+p)p"(s) = Q1(s,0) +Q3(s,0),

where

Qi(s,0) = Ap™(s),

Q3(s,0) = up(s).
We have p(0) = 1 so that Q1(0,71) = 0 and Q2(0,rz) = 0.

9 ssir) = — (st A+ pr(r)Q; (s )

0,
G Qi)+ o

67’1
- (5+H‘|‘P2(r2))Q3(577'2)7

(s+Atmp(s)=1 + AWQN&mMNﬁMm

T Lm@aammmem.

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

(2.3.22)

(2.3.23)
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It follows that

Qi) + (s + A ()@ ) = 0,
1

d

8—@3(577‘2)4'(5+M+P2(7‘2))Q§(577’2) = 0.
g

By integration and simplification, equations (2.3.24) and (2.3.25) become

Qi(s,r) = (1= Fi(r1))Qi(s,0) exp{—(A+ s)r1}

= M1—=Fi(r))P*(s)exp{—(A+ s)r1},

Q3(s,r2) = (1= Fy(r2))Q3(s, 0) exp{—(p + s)ra}

= u(l = Fy(re))P*(s) exp{—(p + s)rz2},

and

1
[s + A1 = [T(s+A) + (L = f5(s+ w)]

pr(s) =

By Laplace inversion transform of equations (2.3.26) and (2.3.27), we obtain

Q1(t,m1) = A1 = Fi(r1))u(t — ri)p(t — r1) exp{—2Ar1},

Q2(t,r1) = p(l— Fy(ra))ult — ra)p(t — ra) exp{—prs},

where

0; ift<r,
u(tr){ ' "

1; ift>r,

such that for ¢t > rq and t > ry, we have

Q1(tyr1) = A1 = Fi(r1))p(t — r1) exp{=Ar1},

24

(2.3.24)

(2.3.25)

(2.3.26)

(2.3.27)

(2.3.28)

(2.3.29)

(2.3.30)

(2.3.31)

(2.3.32)



Chapter 2. Stochastic models of repairable systems

Q2(t,r1) = p(1 = Fp(ra))p(t — r2) exp{—pra}.
In equation (2.3.7), we get

Q(t,r1,re) = M1 = Fi(ry))p(t —r1) exp{—=Ari}

+p(l = Ey(ra))p(t — o) exp{—prs},
by equations (2.3.32), (2.3.33) and (2.3.9), we find that

Git) = A\ /000(1 — Fi(r)e Mp(t — ri)dry

—I—MQ/ (1 = Fa(rz))e " 2p(t — rq)dr,.
0

The expected value F/(7) is obtained by differentiating Ele~*7]. By (2.3.8),

E[e™"] = /Ooo e_St{/OOO Qu(t,ri)Adry + /000 Q?(tvr2)/‘dr2}dt

1

—Ff<A+s>}

* 1 *
+u?p (8){ —Fz(u+8)}-
It follows that

E[r] = lim _—dE[e_”] = lim E[re™ "]

s—=0 ds s—0

- ()

+H2((u—1ks) _FQ*(M+S)) p*(S)}'

25

(2.3.33)

(2.3.34)

(2.3.35)

(2.3.36)

(2.3.37)
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2.3.3 Special cases and numerical calculations

Let the repair time distribution functions F;(¢),7 = 1,2, be exponential with parameters

5,1 = 1,2, respectively. Then

(23]

* _ a9
Llp+s) = PETEwst (2.3.39)
Fr(A+s) = e (2.3.40)

A+ ar +s)(A+s)’
and

Fy(u+s) = TETTEI T (2.3.41)

In equations (2.3.28), (2.3.36) and (2.3.37) we obtain

pi(s) = %1 (2.3.42)
Ele™] = %2 (2.3.43)

where

0 = sA+tar+s)(ptarts)+AA+s)(up+ar+s)+p(pts)(A+ o +s),
6 = (Atar+s)(p+az+s),

0, = pA+ar+s)+ 2+ az+s),

and we have

B[] = pA+ @) + A+ az) + A+ an)(pt+aa) (2.3.44)

P+ ar) + X (i + )
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Let 4 = X and oy = a3 = «. In this case

*(S) _ (A—}_a—}_s)
P  os(Ad+a+s)+20(A+s)’
222
Ele—*"
[e™] sA+a+s)+2X(A+s)’
and
3N+

27

(2.3.45)

(2.3.46)

(2.3.47)

We consider two numerical examples from [31]. The parameter set in Example 1 is

A=1.0, p = 2.0, oy = 4.0 and @y = 3.0, and in Example 2 A = 2.0, g = 1.0, oy = 5.0

and ay = 3.0. By (2.3.44) the expected first time at which both units are under repair is

E[r] = 1.6 and E[r] = 1.86957, respectively.

The probability of the two units operating together at time ¢ is given by (2.3.42) and

depicted in Figure 2.2.

Now consider (2.3.45)- (2.3.47) for A = 1.0 and @ = 4.0, and A = 2.0 and o = 5.0. The

expected frist time at which both units are not operating is F[r] = 3.5 or E[r] = 1.375,

respectively.

The probability of the two units operating together at time ¢ is given by Figure 2.3.
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2.4

24.1

Stochastic analysis of a repairable two-unit system with

two types of failures

Assumptions of the system

We consider the following assumptions:

1.

A system consists of two units and one repairman. At the beginning new units are
used so that both are operating. Whenever a unit fails either due to type I failures or

due to type II failures it can be repaired by the repairman.

. A repaired unit is as good as a new one.

. The probability that a repair of unit ¢ is due to type I (II) failure is p; (¢;), where

pi +q; = 1.

. Let X, be the operating time of unit ¢ after its (n — 1)th repair (due to type I or

type Il failures), ¢ = 1,2. Then the sequences {Xm, n=1,2, } are independent and
identically distributed random variables; each X;, has an exponential distribution

function F;(z),¢= 1,2, with density function

filw) = Arexp{—-Nz}; if x>0, (2.4.1)

0; otherwise.

. Let Y;, be the repair times due to type I failures of unit 7, « = 1,2. The sequence

{Ym, n=1,2, } is i.i.d., Y;, has distribution function G;(y) with density function

gi(y) and

o; = / yg:(y)dy < oo. (2.4.2)
0
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6. Let Z;, be the repair times due to type Il failures of unit 7, « = 1,2. The sequence
{Zm,n = 1,2,...} is i.i.d., each Z;, has distribution function K;(z) with density

function k;(z) and

& = / zk;(z)dz < 0. (2.4.3)
0

7. The sequences {X1,}, {Xon}, {Yin}, {Yon},{Z1n} and {Z5,} are all independent.

2.4.2 The series system

Now, we discuss the models for a series system. In this case, the system is in an up state if
and only if both units are operating. Whenever a unit fails it is either repaired due to type

I or type 1l failures, and the system as a whole fails.

2.4.2.1 States and equations of the system

Let X (t) be the state of the system at time ¢. Then, there are five states:

State 0 means the two units are both operating.

State 1 means unit 1 is under repair due to type I failure.

State 2 means unit 2 is under repair due to type I failure.

State 3 means unit 1 is under repair due to type Il failure.

State 4 means unit 2 is under repair due to type II failure.

Transitions among the states are shown in Figure 2.4.

Now, let W = {0} (the up state) and F' = {1,2,3,4} (the down state), then S =W UF
is the state space. Furthermore, it is clear from Assumptions 3 and 4 that {X (¢),¢ > 0} is
not a Markov chain. However, it can be extended to a two-dimensional Markov process by

introducing two supplementary variables ([11], [31], [32], [33], [35], [38] and [44]). Suppose
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that unit ¢ is under repair due to type I or type Il failures, and let the repair time spent since
the beginning of repair due to type I and type II failures be Y;(¢) and Z;(t), respectively.
Then define

X(t); X(t)=0,
(X, Ya(1); X()=1,
Uty=14 (X(t),Ya(t)); X(t)=2, (2.4.4)
(X(t)v Zl(t)); X(t)=3,
(‘X(t)vZQ(t)); X(t):4v
{U(t),t > 0} is a Markov process.
Furthermore, let
P(t) = Pr{X(t) = } (2.4.5)
Pt z)dr = Pr{X(t) =i r<Yi(t)<z+ dw}; i=1,2, (2.4.6)
and
Pi(t, z)dz = Pr{X(t) =i < Zia(t) <o+ das}; i=3,4. (2.4.7)

Pi(t,z),i=1,2,3,4,is defined only for 0 < z < t; weset P;(t,z) =0,forz >¢,i=1,2,3,4.

We need the hazard functions of G;(y) and K;(z):

At = Pr{y <Yit) <y+AYQ) =y}

gi(y) At

. i=1,2, 2.4.8
- Gily) (248)

()AL = Pr{z < Zia() <2+ AUZ o0 = 2}

ki_Q(Z)At .
R i (2.4.9)

Then the infinitesimal matrix of the process is given by
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Q(z) = [g;;()]1i j=0,....}
—(AM4+A2)  piM P22 e G2 A2
ri(z) —ri(z) 0 0 0
= ro(z) 0 —ra(z) 0 0 (2.4.10)
r3(z) 0 0 —ra(z) 0
ra(z) 0 0 0 —ra(z)

Consider the two real intervals (0,¢] and (¢,t 4+ h] where h is very small. The forward

equations for the model can be written as

Po(t+h) = R®){(1-pah)(1 = qdih) (1 = p2reh)(1 = @2A2h) }

+ /OOO [Py(t, 2)r(2) + Pa(t, 2)rafa)
+ Ps(t,z)rs(z) + Palt, w)m(:c)]h dz + o(h), (2.4.11)

Pi(z+h,t+h) = Pz, t)(1—ri(x)h)+ o(h); r>0,1=1,2,3,4, (2.4.12)

As h — 01in equations (2.4.11) and (2.4.12), we arreive at the following differential equations:

dFy(t o0
;t( ) = (Al—}‘AQ PO / P1 t T 7‘1 )+P2(t,$)7‘2($)
0
+P3(t,x)rs(z) + Pa(t, z)ra(z)]da (2.4.13)
oP(t,z) OF(t,xz) ] .

9 92 = —ri(z)P(t, z); x>0,i1=1,2,3,4. (2.4.14)

The boundary conditions are
Pi(t,0) = pAFo(t); 1=1,2, (2.4.15)
B(t, O) = qi_QAZ'_QPO(t); = 3, 4, (2416)

and the initial conditions:

F(0) = 1, (2.4.17)
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P(0,z) = 0; i=1,2,34.

Taking the Laplace transforms of the equations (2.4.13)-(2.4.16), it follows that:

(s+ M+ 2)Pi(s) =1 + / CIPr (s 2y () + B (s, ) ra(e)

T+ P(s,a)ra(e) + P (s, )ra()]de,

OP; (s,2)

0e Tltr@)Pi(sa) =0 2>0i=1234,
T

and

P (s,0) = pAF(s); i=1,2,

P (5,0) = qi2Xi2F5(s); 1= 3,4.
The solutions to equations (2.4.20)-(2.4.22) are given by
Pr(s,z) = pNFPi(s)(1—Gi(z))e ™ z>0,1=1,2,
and
Pr(s,z) = qi2Xi2P5(s)(1 — K;_o(z))e™*%; z>0,0=34.

Furthermore, with equations (2.4.23) and (2.4.24), it follows from (2.4.19) that

1
s+ M[1 = p1g7(s) — @k ()] + A2l — pag5(s) — qak3(s)]

Fy(s) =

2.4.2.2 Avalilability analysis of the system

32

(2.4.18)

(2.4.19)

(2.4.20)

(2.4.21)

(2.4.22)

(2.4.23)

(2.4.24)

(2.4.25)

According to the analysis of the series system given above, we can obtain the transient and

equilibrium availability characteristics of this system as follows.
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(1) Availability of the series system

The availability A(t) of the series system (the probability that the system is operating

at time ¢) is clearly given by
A(t) = Fy(t), (2.4.26)

and from equation (2.4.25) we have

1
A*(s) = ) 2.4.27
S W R R ) W v ey 1) M
and the steady-state availability of the series system is given by
A(0) = tgnoo A(t)
= Jim, o4
1

= (2.4.28)

14+ Ai[p1o1 + qi61] + A2[p2o2 + ¢202]

(2) Failure frequency of the series system

By using definition 1.1.4, we have the rate of occurrence of failures (ROCOF) by

4

mp(t) = > Po(t)go ()
j=1
= (Pl/\1 + P2+ @A+ q2/\2) Fy(t)

= (M + ) R(Y). (2.4.29)
For the Laplace transform we find that
m3(s) = (A + A2) Fy (s), (2.4.30)

and from equation (2.4.25) we have the ROCOF given by

A1+ Ay
s+ M1 = prg7(s) — ki (s)] + Aol — p2g5(s) — q2k3(s)]

m5(s) = (2.4.31)
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Therefore, we can calculate the ROCOF my(t) by inverting its Laplace transform

(2.4.31).

By using a Tauberian theorem, the limit of ROCOF (which is the steady-state RO-

COF) is given by

mys(oo) = lim my(t)

t—o0

= 31—120 sm’(s)
AL+ Ag
_ . 2.4.32
14+ Mp1io1 + ¢161] + A2[p202 + ¢202] ( )

(3) Renewal frequency of the series system

Let m,(t) denote the renewal frequency, i.e., the derivative of the expected number of
renewals of the system having occurred up to time {. A renewal of the series system

means return to the initial state. By using definition 1.1.5, we have
me(t) = /Ooo{Pl(t,x)rl(x) + Py(t, z)ra(z)
+P3(t, 2)r3(z) + Pa(t, z)ra(z) fda. (2.4.33)
Its Laplace transform is
wie) = [T anE) + P o
+P5 (s, 2)rs(z) + P; (s, 2)ra(z) }dz, (2.4.34)

and from equations (2.4.23)-(2.4.25), it follows that
M[p1g7(s) + quki(s)] + Aalpags (s) + g2k (s)]

my(s) = . . » P 2.4.35
R VS R ) R W v S 1) R
The steady-state renewal frequency of the series system is given by
my(oc0) = 7fll_r)noo my(t)
= im0
A+ A
= Lt A (2.4.36)

14 M[p1o1 + qi61] + A2[p2o2 + q202]
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(4) Special case
When the system has only type I failures, i.e., py = p2 = 1, ¢1 = g2 = 0, we see that

o 1
ECL S e W R 5 I W FRE 0 (2.4.37)

1

A (e — 7 2.4.38
(s) s+ M1 = gi(s)]+ A2[l — g5 (s)] ( )

. AL+ A
_ _ 2.4.39
mi(s) = 3 + M[L = g7 (s)] + Aol — g5(s)] ( )

(see also Lam [32]). The renewal frequency is given by
Mgt A2g3

mi(s) = 197 () + Aag3 (s) (2.4.40)

s+ A1 — g5 (s)] 4+ Aa[1 = g5(5)]

2.4.2.3 Example

Now, suppose that the repair times Y;, and Z;, due to type I and type II failures have

exponential distribution functions with parameters y; and «; respectively, ¢ = 1,2. Then

Gils) = Sy =L
K (s) S =12,
s+ o
and we obtain
h
Pi(s) = % (2.4.41)
h
A*(s) = % (2.4.42)
" . (A1 4+ A2)hy
my(s) = o (2.4.43)
mi(s) = hy (2.4.44)
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where

ho= s(hi+ M(s+ p2)(s+ az)[s+ proq + q1p]

FAo(s+ p1) (s + ar)[s + paaa + qap2]),

fy = (54 m)(s+ p2)(s+ a1)(s+ ag),
fiy = Ai(s+ p2)(s+az)[pen + s(qag + pupuy)]
+A2(s 4 p1) (s + a1)[paas + s(qzaz + paju)].

Plots for the above equations are shown in Figures 2.5, 2.6 and 2.7. These results
indicate that the availability A(¢) and the failure frequency my(t) are decreasing functions
quickly approaching their limits. The renewal frequency m,(¢) is unimodal, first quickly
increasing and then decreasing to its limit.

These findings are in agreement with those of Lam and Zhang [34].

As t —» 0o, we obtain the limits

1200 0
Alco) = . (2.4.45
(00) piflaonag + Appaag[pron + qrin] + Agp a[paas + qapis] ( )

my(oo) = pip2arag (A + Az) (2.4.46)
P12 g + Apgagprog + qrun] + Aepran[paas + qaus]’

my(00) = pip2araz (A1 + Az) (2.4.47)
" piflaonag + Appaag[pron + qrin] + Agp a[paas + qapis]

When there are only failures of type I ji.e., py = ps = 1 or g1 = ¢ = 0, we get

A*(s) = (s + ) (s 4 oa) (2.4.48)

s((s 4 p1) (5 + p2) + Ai(s + p2) + Az(s 4 1))’

x _ (54 p1)(s4 p2) (A1 + Ag)
M) = T ) (5t )+ M (st ) F ha(s )’ (24.49)

. _ Ar(s 4 p2)pn + Aa(s + p ) pa
M) = ) (s )+ (s ) F (s E ) (2.4.50)
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2.4.3 The parallel system

Now we discuss the models for a parallel system, in which the system is in an up state if
and only if at least one unit is operating. If a unit fails while the other one is repaired (due

to either type I or type 1l failures) the system fails.

2.4.3.1 States and equations of the system

Again, let X (t) be the state of the system at time ¢. Then there are thirteen states:

State 0 means two units are operating.

State 1 means unit 1 is under repair due to type I failure and unit 2 is operating.

State 2 means unit 2 is under repair due to type I failure and unit 1 is operating.

State 3 means unit 1 is under repair due to type I failure and unit 2 is waiting for repair
due to type II failure.

State 4 means unit 2 is under repair due to type I failure and unit 1 is waiting for repair
due to type II failure.

State 5 means unit 1 is under repair due to type I failure and unit 2 is waiting for repair
due to type I failure.

State 6 means unit 2 is under repair due to type I failure and unit 1 is waiting for repair
due to type I failure.

State 7 means unit 1 is under repair due to type Il failure and unit 2 is operating.

State 8 means unit 2 is under repair due to type II failure and unit 1 is operating.

State 9 means unit 1 is under repair due to type Il failure and unit 2 is waiting for repair
due to type I failure.

State 10 means unit 2 is under repair due to type 1l failure and unit 1 is waiting for
repair due to type I failure.

State 11 means unit 1 is under repair due to type Il failure and unit 2 is waiting for
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repair due to type II failure.

State 12 means unit 2 is under repair due to type II failure and unit 1 is waiting for
repair due to type II failure.

Transitions among the states are shown in Figure 2.8.

Now we have W = {0,1,2,7,8}, F = {3,4,5,6,9,10,11,12} and S = W U F. Clearly
{X(t),t > 0} is not a Markov chain.

As in the case of a series system, we introduce supplementary variables ([11], [31], [32],
[33], [35], [38] and [44]). Using Y;(¢) and Z;(t),s = 1,2 as defined above (see subsection

2.4.2), we define

X(t); X(t)=0,
(X, Y1(1);  X(t)=1,3,5,
Ult)=19 (X(),Ya(t); X(t)=2,4,6, (2.4.51)
(X(1),Z:(t)); X(t)=7,9,11,
(X (1), Z3(t)); X(t)=8,10,12
Then {U(t),t > 0} is a Markov process. Furthermore, let
Po(t) = Pr{X(t) = o}, (2.4.52)
Pi(t, z)dz = Pr{X(t) —ie<Y(l)<z+ das}; i=1,2,3,4,5,6, (2.4.53)
Yi(t); i=1,3,5,
vy ={ N (2.4.54)
Ya(t); i=2,4,6,
and
Pi(t, )de = Pr{X(t) —ir<Z({) <zt dyc}; i=7,8,9,10,11,12,  (2.4.55)

Zi(t); i=7.9,11,
2 = AW =T (2.4.56)
Zo(t); i=8,10,12.
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We set
Pi(t,z) = 0; z>te=1,..12.
Then, the infinitesimal matrix of the process is given by

Qz) = [Qij(x)]{i,j:o,...,m}

where,

a= A+ Ay, a1 =p1A1, @z = P2,
Bi =ri(z) 4+ Xy, az=q A1, as= g,
Dy =ry(z)+ A1, B=ri(z), D=ryx),
by =r3(x) + A2, b=rs(z), d=rqz),

d.l = T’4($) + Al.

—a ay 0 0 0 0 as g 0 0
B -B 0 ay 0 ay 0 0 0 0 0
D 0 -D;y 0 as 0 aq 0 0 0 0
0 0 0 -B 0 0 0 0 B 0 0
0 0 0 0 -D 0 0 D 0 0 0
0 0 B 0 0 -B 0 0 0 0 0
= 0 D 0 0 0 0 -D 0 0 0 0
b 0 0 0 0 0 0 —-by 0 ay O
d 0 0 0 0 0 0 0 —-di 0 a
0 0 b 0 0 0 0 0 0 -b 0
0 d 0 0 0 0 0 0 0 0 —d
0 0 0 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 d 0 0 0

o o o o o o o

o O o o o o o o
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(2.4.57)

(2.4.58)

Similar to the model for a series system above, consider the two real intervals (0,¢] and
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(t,t + h] where h is very small. The forward equations for the model can be written as

Po(t+h) = Fo(t){(1 = piath)(1 — quAth)(1 = p2A2h) (1 — 2 A2h) }

N /OOO [P(t, 2)r1(2) + Pa(t, @) (a)

+  Pr(t,2)rs(z) + Ps(t, z)ra(z)]h dz + o(h),

P(z+h,t+h) =

Py(z+ h,it+h) =

Pz +h,it+h) =

Ps(z+ h,t+h) =

Ps(z+ h,t+h)

Py(z + h,t+h)

Ps(z+h,t+h)

Ps(z+ h,t+ h)

Py(z + h,t+h)

P10(£C+h,t—|—h)

P11($+h,t+h)

P12(£E+h,t+h)

P (z, t){(l —r1(z)h) (1 — g2 A2h) (1 — paAzh)bigr}

+o(h),

PQ(.%, t){(l — T’Q(.I‘)h)(l — qlAlh)(l — plAlh)}

+o(h),

P7(.’E, t){(l — Tg(l‘)h)(l — qQAQh)(l — pQAQh)}

+o(h),

Pg(.f, t){(l — T’4(.I‘)h)(1 — qlAlh)(l — plAlh)}

+o(h),

Ps(z,t)(1 — ri(z)h) + g2 A2h Py (z,t) + o(h),

Py(z,t)(1 = ro(z)h) + M hPe(z,t) 4+ o(h),

Ps(z,t)(1 = ri(z)h) 4+ p2A2h Py (z,t) + o(h),

Ps(z,t)(1 = ra(z)h) + prAthPy(z,t) + o(h),

Py(z,t)(1 — ra(x)h) + p2 Aah Pr(z,t) + o(h),

Plo(.’E, t)(l — T‘4(£C)h) —}-plAthg(CC, t) + O(h),

Pll(x7 t)(l - TS('r)h) + qZAQhP7($7 t) + O(h)7

Plg(lb‘, t)(l — T4($)h) + qlAthS(CC, t) + O(h)

(2.4.59)

(2.4.60)

(2.4.61)

(2.4.62)

(2.4.63)

(2.4.64)

(2.4.65)

(2.4.66)

(2.4.67)

(2.4.68)

(2.4.69)

(2.4.70)

(2.4.71)
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As h — 0 in equations (2.4.59)-(2.4.71), we arrive at the following differential equations:

o0

dPy(t
o) _ —(A\1 4 X)) Polt / [Pi(t,2)ri(z) + Pa(t, z)ra(2)
0

dt

+Pr(t,z)rs(z) + Ps(t, 2)ra(z)]da (2.4.72)

8P1(t,x) + dPl(t,x)

ot oz = —(Atn(@)h( ), (2.4.73)
(?Pg(t,x) 3P2(t,:c)
T as — (A1 +r2(2)) Pl @), (2.4.74)
dP;(t, AP,
7(?(t 2 B(w : — (A2 +r3(2)) Pr (L, @), (2.4.75)
0Fx(t, OPs(t
8(?(t ) Sa(x ) — (M1 + r4(2)) Ps(t, @), (2.4.76)
0P3(t7$) + 0P3(t’$) — q2A2P1(t7$) - rl(af)PS(t’;C)’ (2477)
ot oz
OP4(t, JPy(t,
48(t :E) T 40(.@ $) = (]1A1P2(t, .f) - TQ(x)P4(t7 .f), (2478)
0P;s(t, JdPs(t,
58(t :E) T 56($ x) = pQAQPI (t’ w) -n (%)P5(t, .’E), (2479)
OFs(ta) L OBl 2) o byt s) = ra(2) Polt, o), (2.4.80)
ot oz
OR(Lz)  IRWLE) s\ Pt 2) — ra(2) Po(t, 2), (2.4.81)
ot oz
dPiol(t, dPio(t,
w(t2) | OPwutz) mMBs(t,z) — ra(z) Pro(t, @), (2.4.82)

Jt Ox
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3P11(t, $) —|— 8P11(t, .’E)

(?t ax = QQA2P7(t,l‘) — Tg(.’E)Pll(t,.’E), (2483)
dPa (L, dP(t,
alte)  OPLLe) b ) ra(e) Pl ), (2.4.84)
ot dx
where z > 0, with the boundary conditions
Pl(t,()) = plAIPO(t) —|—/ [P6(t,$)7’2($) —|—P10(t,$)1"4($):|d$, (2485)
0
Pg(t, 0) = pgAng(t) + / [P5 (t, CC)T‘l(.’E) + Pg(t, ZE)T’g(CC)]d.’E, (2486)
0
P7(t,0) = qlAIPO(t) —|—/ [P4(t,$)7’2(£€) +P12(t,£€)7’4($)]d$, (2487)
0
Pg(t,()) = qQAQPO(t) —|—/ [Pg(t,m)rl(:c) +P11(t,$)7‘3($)]d$, (2488)
0
P(t,0) = 0; i=3,4,56,9,10,11,12, (2.4.89)
and the initial conditions
Po(0) = 1, (2.4.90)
P(0,2) = 0; i=1,..,12. (2.4.91)

Taking Laplace transforms in the equations above, it follows that:

(s M+ A)Pis) = 14 / PP (s, 2)r(2) + Py(s, )rale)

+PZ (s, 2)r3(z) + P§ (s, z)ra(z)]dz, (2.4.92)
ML) (st m@)Fi(s0) = 0, (2493
OF; (s, ) +(s+ A +r(2)Pi(s,z) = 0, (2.4.94)

Ox
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0Pz (s, )

2 (s ra(@) PEs,2) = 0, (2.4.95)

(?P%(ijw)—}—(s—}—/\l—l—m(x))Pg(s,x) _ o, (2.4.96)
MD?;(%@HHH@))PS*(S,@ — GMPi(s,a), (2.4.97)
W%TS’@HSHQ(@)P;(S,@ — aMP(s, @), (2.4.98)
%stl(x)wg(s,@ = padaPr(s, ), (2.4.99)
MD%T“’“@JF(SHQ(@)P(;(S,@ = NP (s, ), (2.4.100)
MD%%:C)—}—(S—}—T;),(JC))P;(S,JU) = pPi(s,a), (2.4.101)
%HHM(@)P%(S,@ = P (s, ), (2.4.102)
%stg(@)zﬂﬁ(s,m) — aPi(s o), (2.4.103)
%HHM(@)P;AS,@ — M Pi(s, ), (2.4.104)

Pi(s,0) = piMFi(s)+ /OOO[Pé‘(S, z)ra(z) + Po(s, z)ra(z)]de, (2.4.105)

P;(s5,0) = paAFy(s) + /OOO[Pg(s, z)ri(z) + Py (s, z)rs(z)]de, (2.4.106)
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Pr(s,0) = ql/\lpo*(é’)+/OOO[PI(87$)T‘2($)+P1*2(8795)7’4($)]d$7

Fg(s,0) = 92/\2130*(8)+/OOO[P§(87$)T‘1(CL‘)+P1*1(5795)7‘3($)]d$7

As before, the solutions to equations (2.4.93)- (2.4.96) are given by

P (s, x)
Py (s, x)
Pr (s, x)

B (s, x)

Furthermore, with equations (2.4.109)-(2.4.112), it follows from (2.4.92) that

where

= Pr(s,0)(1 = Gy(a))e (sHh2)z,

= Py(s,0)(1 — Gy(a))e stz

= P;(Sv 0)(1 - I(l(.f))e_(ﬂ‘/\z)m’

= PS* (57 O)(l - 1(2(1‘))6_(5—1_/\1)1'.

148

Fi(s) = ——-——
A Y T W
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(2.4.107)

(2.4.108)

(2.4.109)
(2.4.110)
(2.4.111)

(2.4.112)

(2.4.113)

By = Py (s, 0)g7 (s + M) + P5 (5,0)g3(s + M) + PF (s, 0k (5 + Aa) + B3 (s, 0)k3(s + Au).

Thus from equations (2.4.97)-(2.4.104), we have

P (s, x)
P (s, z)
P (s, x)
P (s, x)
F(s,z)
Ply(s,x)
Pfi(s,x)

PTQ(‘S? CL‘)

0P (5,0)(1 = Gy (z))e™™[1

@155 (s,0)(1 = Ga(x))e™™[1 -
p2 Py (s,0)(1 = G (2))e[1 =
PPy (s,0)(1 = Ga(z))e™™[1 -
P27 (s,0)(1 = Ky(z))e™"[1 -
P15 (s,0)(1 = Ky(z))e™™"[1 -
27 (s,0) (1 — Ky(2))e 1 -

@ F3(s,0)(1 — Ky(z))e ™ [1 —

— €

e—AliL’jI

€

€

€

€

e—Agl‘]

€

e,

i

—Agl‘]

9

—he,

—Agl?]

3

e,

9

—All‘]‘

(2.4.114)
(2.4.115)
(2.4.116)
(2.4.117)
(2.4.118)
(2.4.119)
(2.4.120)

(2.4.121)
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On the basis of equations (2.4.113)-(2.4.121), we obtain from (2.4.105)-(2.4.108)

where

Ay

A

02

03

P1P0*(8)A1 _ P1A

Pi(s,0) =

A A

Pi(s,0) = p2P015)A2 _ ]?QAAQ7

Pi(s,0) = 91P013)A1 _ 91?17

Pi(s,0) = Q2P015)A2 _ QQ[?z7
Fils) =

1= (palgz(s) — g3(s + M)l + q2[k3(s) — k3 (s + A1)])

(plgi(s) = g7 (s + M) + [k (s) — k(s + A2))),

At Aa(palgz(s) — g2 (s + M)l + qalk3(s) — k3 (s + A1),

A2+ Mi(palgr(s) — g1 (s + M) + au[ki(s) — K1 (s + A)]),

(A1 + A {1 = (P17 (s) + @1 ki (5)) (p293 (s) + 2k3(5)) },
A(prgi (s + A2) + ki (s + A2))[p2(1 = 93(5)) + g2 (1 = k3(s))],
A2(p2g3 (s + A1) + 2k5 (s + A1) [pa(1 = g7 (s)) + a1 (1 = k1 (s))],

SA—|-01—02—03.

2.4.3.2  Availability analysis of the system

45

(2.4.122)

(2.4.123)

(2.4.124)

(2.4.125)

(2.4.126)

From the above probability analysis of this parallel system, we can obtain the transient and

equilibrium availability characteristics of the parallel system as follows.
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(1)

Avalilability of the parallel system

The availability of the parallel system, denoted by A,(t), is the probability that the

system is operating at time ¢. Then
Ay(t) = Po(t) + /OOO {Pi(t,z) + Po(t, ) + Pr(t,2) + Ps(t, z) }da. (2.4.127)

For the Laplace transform we have
Al(s) = By (s / {P{(s,z)+ P;(s,z) + Pi(s,a) + P5(s, z) }du, (2.4.128)

and from equations (2.4.109)-(2.4.112) and (2.4.122)-(2.4.126), we have

Axfs) = i—i—ﬁ{]ﬁ1—gl(s—|—/\2))—|—f]1(1—kY(S—I-/\z))}
- ﬁ{m —g3(s+ M)+ (- k(s + M)}, (24.129)

and the steady-state availability of the parallel system, is given by

Ay(c0) = lim Ay(¢)

{— o0

= lim sA7(s). (2.4.130)

5—0

Failure frequency of the parallel system

The rate of occurrence of failures (ROCOF)is

Z/ Fo(t)qo;(z)dx + Z Z/ (L x) g (2)de. (2.4.131)

JEF i€eWN\{0} j€F

We have

ms(t) = (a4 +a) /000 [Pi(t,z) + Pr(t,z)]da

+(as + a1) /000 [Py(t, ) + Ps(t, z)]dz, (2.4.132)
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m(l) = AQ/ [Py(t,2) + Pr(t, 2)]de + /\1/ [Pyt )+ Pa(t,o)]de.  (2.4.133)
0 0
By Laplace transform we obtain,
m5(s) = )\2/ [Py (s,2) + Pi(s,z)|dz + A / [P5(s,z) + P§(s,z)]dz, (2.4.134)
0 0

and from equations (2.4.109)-(2.4.112) and (2.4.122)-(2.4.126), we find that

mj‘(S) = ﬁ{pl(l—gr(sﬁ—/\g))—}—ql(l_k’l‘(8+/\2))}
" ﬁ{m“‘@(s%\l))ﬂz(l—k3(8+A1))}. (2.4.135)

Therefore, we can calculate the ROCOF my(t) by inversion of the Laplace transform

from equation (2.4.135) the steady-state ROCOF is given by

myg(oo) = lim my(t)

{—o0

= 51—120 sm(s). (2.4.136)
Renewal frequency of the parallel system:

Let m,(t) denote the derivative of the expected number of renewals of the system
having occurred up to time ¢. It is called the renewal frequency. A renewal of the

parallel system means that the state of the system returns to the initial state. Then

me(t) = /Ooo{Pl(t,x)rl(x) + Py(t, z)ra(z)

+Pr(t,z)rs(z) + Ps(t, z)ra(z) fda, (2.4.137)

and the Laplace transform is

m*(s) = /M{Pf(s,m)rl(ac)—I—PQ*(S,m)T‘Q(a:)

+PZ (s, 2)rs(z) + P (s, 2)ra(z) }da. (2.4.138)
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From equations (2.4.109)-(2.4.112) and (2.4.122)-(2.4.126) we get
mi(s) = |Ai{pigi(s+A2) + @uki(s + M)}

+A5{p2g3(s+ M) + k3 (s + M) A" (2.4.139)
The steady-state renewal frequency of the parallel system is

my(oc0) = 7ILE}lqoomr(t)

= Sh_r)no smy(s). (2.4.140)
(4) Special case

When the system has only type I failures, i.e., py = p2 = 1, ¢1 = g2 = 0, we see that

Pr(s,0) = Mt AQ([‘(];(SK: gilet Al)], (2.4.141)

Az + Ai([g7(s) — g7 (s + A9)]

P;(s,0) = I : (2.4.142)
Pi(s,0) = Pi(s,0)=0, (2.4.143)
PR e (G /(LR {0 Rt F{ LR ) S

A*

where

A" = s{1—[g5(s) — g3 (s + M)llgi(s) — g7 (s + A2)]}
+(A 4 A) {1 = g7 (5)g2(8)} = Aagi(s + A2) (1 = 92(5))

—A2g3 (s + A)(1 - g1(s)).
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The availability is given by

A(s) = {5+ M) (1 - gi(s+X2)) (A1 + Aalg3(s) — g3 (s + M)])
+(s+ A2) (1= g3 (s + A1) (A2 + Milgi(s) — g7(s + A2)]) }

{(s+ M) (s + A)A 1 (2.4.145)
and the ROCOF by its Laplace transform
mi(s) = {Xa(s+M)(1 = g7 (s+ X)) (A1 + Azlg5(s) — g3(s + M)])

HFA1(s + A2) (1 = g3 (s + A1) (A2 + Aafg7 () — g7 (s + A2)]) }

{(s4 M) (s + A)A"} (2.4.146)

Equation (2.4.146) was obtained by Lam [32]. The Laplace transform of the renewal
frequency is
my(s) = {AFHei(s 4+ A2) (A1 + Aalgz(s) — g3(s + M)

+g3(s+ A1) (A2 + Aafgi (s) — g7 (s + A2)]) }- (2.4.147)

2.4.3.3 Example

As a special case, suppose that the repair times Y;, and Z;, due to type I and type 1l
failures, respectively, have an exponential distribution functions with parameters p; and «;,

respectively, ¢ = 1,2. Then we obtain that A,(c0), my(co) and m,(co) are given by

Ap(00) = % (2.4.148)
my(oco0) = %, (2.4.149)
my(o0) = et (2.4.150)
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where

o = M1M2Oé1042{/\1/\2[2’32042 + qapiz + A][pron 4+ qupn + A9
+A2(00 + A2) (11 + A2)[p2cvz + g2tz + A
A1 (g2 + A1) (a2 + X)) [pran + i + A2
(o2 + A1) (p2 + A1) (o1 + Ag) (1 + A2) |,

®, = /\1/\2H1H2041042{(/\1 + A2)[pacz + g2 + M][pras + g + A2
+(az + A1) (p2 + A1) [pras + g + As]
(a1 + Ag) (1 + A2)[p2aa + qap2 + /\1]}7

Dy = ppaerag{[Ar(pa + M) (@2 + A1) + Mide(paca + gapa + A1)
Joapn + Az(prpn + qroa)] + [aape + A (p2iz + gaaa)]
JA2(p1 + A2) (a1 4+ A2) + Mz (prog + g + /\2)]},

U= (g4 A1) (pa 4 M) (ar 4+ Xo) (1 + Ao) {papacras + (A1 + As)
Jpap2 (00 + qrag) + aqag(ppn + P1,u2)]}
—AtAgpipponaz[pron + g + Asl[paas + qapz + A
—Apnon (g + M) (g2 + A1) [p2az + gape][pron + Aa(qrag + prpn)]

—Agpzag(ar + Az) (1 + Az)[pron + qupn][pzas + Ai(qeaz + papz)].

Plots corresponding to the above equations are displayed in Figures 2.9, 2.10 and 2.11.
They show the dependence of the steady-state availability A,(occ) and of the renewal fre-
quenceies my(00) and m,(c0) on Aj.

These results are in agreement with Lam and Zhang [34].

For the system with only type I failure, we have p; = ps =1, ¢ = ¢o = 0, and

A Ag) (A A
Aj(oc) = papo{pape + (A + 72:2))( 1+ :)-l-,lh—}-/tz)}7 (2.4.151)
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At A2(2A1 + 2
my(oo) = HE2A 2( 1;;3 2t it p) (2.4.152)

(this result was obtained by Lam [32]), and

AL+ A A A
my(c0) = fap2 (A1 + Q)WI;:ZQ—I— 1p1 + 2,u2)7 (2.4.153)

where

fis = Apra (Ao 4 g1 ) (A1 + Az 4 p2) + Aoper (A1 4 pe2) (A1 4+ Ao+ 1) + per pa (papoo + A + Aapez).
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2.5 Repairable system with three units and two repair facil-

2.5.

We

Y

ities
1 Assumptions

assume the following:

. A system consists of three units and two different repair facilities.

. Repair facility 1 can repair either failed unit 1 or unit 2, and repair facility 2 is

responsible to repairing only unit 3 due to type I or type Il failures. .
. A repaired unit is as good as a new one.

. The cost of repair due to type I failure is smaller than the cost of repair due to type

II failure.

. The probability of unit 3 breaking down due to type I and type II failures is given by

p and ¢, respectively, where p + ¢ = 1.

. Let X, be the operating time of unit ¢ after its (n — 1)th repair, : = 1,2,3. Then
the sequence {X;,,n = 1,2,...} is independent and identically distributed common
exponential with density function:

Ajexp{—Xz}; ifx >0,

fi(z) = ,  i=1,2,3. (2.5.1)
0; otherwise,

. Let Yj, be the repair time of unit ¢ after its nth failure, + = 1,2. The sequence
{Yin,n = 1,2,...},7 = 1,2 is i.i.d. with distribution G;(y),7 = 1,2 , and density
function g;(y),¢=1,2. Let u;(y),7 = 1,2 be the hazard rate function of Y;,,7i = 1,2,

so that

Gi(y) =1 —exp{- /Oy wi(t)dt}; 1=1,2. (2.5.2)
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8. Let Z;, be the repair time due to type I failure (for i = 1) or due to type II failure
(for ¢ = 2) of unit 3 after its (n+ 1)th failure. The sequence {Z;,,n=1,2,...},i=1,2
is i.i.d. with distribution K;(z),7 = 1,2, and density function k;(z),7 = 1,2. Let

«;(z),1= 1,2 be the hazard rate function of Z;,,,7 = 1,2, so that
Ki(z) =1~ eXp{—/ a;(t)dt}; i=1,2. (2.5.3)
0

9. The sequences {X1,}, {Xon}, {Yin}, {You}, {Z1.} and {Z3,} are all independent.

2.5.2 The states and equations of the system

The system is in an up state if and only if unit 3 operating and at least one unit of (1 or 2)
is operating.

The system is in a down up state If unit 3 has failed or one unit of (1 or 2) failed while
the other one is being repaired.

Let S(t) be the state of the system at time ¢. Then, there are eleven states:

State 0 means three units are operating.

State 1 means unit 1 is under repair and units 2, 3 are operating.

State 2 means unit 2 is under repair and units 1, 3 are operating.

State 3 means unit 3 is under repair due to type I failure and units 1,2 are operating.

State 4 means unit 3 is under repair due to type Il failure and units 1,2 are operating.

State 5 means unit 1 is under repair, unit 2 is operating and unit 3 is under repair due
to type I failure.

State 6 means unit 1 is under repair, unit 2 is operating and unit 3 is under repair due
to type II failure.

State 7 means unit 1 is under repair, unit 2 is waiting for repair and unit 3 is operating.

State 8 means unit 2 is under repair, unit 1 is operating and unit 3 is under repair due

to type I failure.
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State 9 means unit 2 is under repair, unit 1 is operating and unit 3 is under repair due
to type II failure.

State 10 means unit 2 is under repair, unit 1 is waiting for repair and unit 3 is operating.
Transitions among the states are shown in Figure 2.12.

Now, let W = {0, 1,2} the set of the up states and F be the set of down states, i.e.,
F=1{3,4,5,6,7,8,9,10}; then S = WU F.

Furthermore, it is clear from Assumptions 7 and 8 that {S(t),t > O} is not a Markov
process. The elapsed repair time (Yl (t),Ys (t)) for the units 1, 2 and repair times due to type
I and type II failures (Z;(t), Z2(t)) for unit 3 at time ¢ need to be introduced . Following
a standard probabilistic argument ( for example, see [10] and [11]), we can show that the

process U (t) = {5(1), Y1(t), (1), Z1(t), Z(t) } defined by

S5(t); S(t)=0,

(S(t), Y1(t)); S(t)=1,7,

(S(1), Ya(t)); S(t)=2,10,
(S(t), Z:(1)); S(t)=3,
u(t) = (S(t), Z2(1)); S(t)=4,
(S, Ya(t), Z1(1));  S(t)=5,
(S(),Ya(t), Z2(1));  S(t)=6,
(S(1),Ya(t), Z1(1));  S(t)=8,
(S(),Ya(t), Z2(1));  S(t)=9,

forms a Markov process. Now let

Ro(t) = Pr{s@ =0},

Pi(t,z)dz = Pr{S(t):i,w<Y1(t) §x—|—dm}; 1=1,7,
Pi(t,y)dy = Pr{S(t):i7y<Yg(t) §y—|—dy}; 1= 2,10,

Pi(t,z)dz = Pr{S(t):i,z<Z(t)§z—|—dz}; 1= 3,4,
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Pi(t,z,z)dzdz = Pr{S(t):i,x<Y1(t) <z 4de;z< Z(t) §z—|—dz};
x> z,1=25,6,

Pi(t,y,z)dydz = Pr{S(t):i,y<Yg(t)§y+dy;z<Z(t)§z—}—dz};

y>z,1=8,9,
where
Zq(t); i=3,5,8,
ziy={ 20
Z5(1); i=4,6,9.

We extend these definitions by setting

Pi(t,z) = 0 x>te=1,7,

Pi(t,y) = 0;  y>ti=2,10,

Pi(t,z) = 0; z>t1=3,4,
Pi(t,z,z) = 0; x>t;z>t1=5,6,
Pi(t,y,z) = 0; y>tiz>t,1=8,09.

Then the infinitesimal matrix of the process is given by

Q= [qij]{i,jzo,...,IO} -

—a Al Ag PA3 gA3 0 0 0 0 0 0
pi(z)  —aq 0 0 0 PA3 A3 Ay 0 0 0
2 (y) 0 —by 0 0 0 0 0 PA3 gA3 Al
ai(z) 0 0 —ai(z) O 0 0 0 0 0 0
ax(z) 0 0 0 —ax(z) 0 0 0 0 0 0

0 ai(z) O w1 () 0 —ay; 0 0 0 0 0
0 as(z) 0 0 @ 0 —b, 0 0 0 0
0 0 (e 0 0 0 0 —pm(z) 0 0 0
0 0 ai(z)  pa(y) 0 0 0 0 —az 0 0
0 0 ay(z) 0 p2(y) 0 0 0 0 —bs 0
0 pa(y) O 0 0 0 0 0 0 0 —py)

55
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where

ay = p(2) + A2+ A3, ag = (z) +en(z), a3 =paly) + ai(z),
bi=p2(y) + M+ A3, b= pa(y) + a2(z), bz = pa(y) + az(2),
a= A+ A+ As.

Similar to the models in Section 2.4 above, we can derive the following differential

equations:

APy (t)
dt

= A )R+ [Pl omede + PGt )y
+[Ps(t, 2)aa(2) + Palt, Z)QQ(Z)]dZ}, (2.5.4)

(?Pl(t, ac) + (?Pl(t, .f) .
ot oz

— (A2+A3+M1($))P1(t7$)

.\ /Ox{P5(t7 z, 2)oq(z) + Ps(t, , z)ag(z)}dz, (2.5.5)

8P2(t7 y) T aPZ(t7 y)

5 ay (M4 A5+ p2(y)) Pa(t, y)

N /Oy{PS(L v, 2)an(2) + Bo(t,y, z)ag(z)}dz, (2.5.6)

8P3(t, Z) + (?Pg(t, Z)

5 5, =—ay(2)Ps(t,2) + /ZOO{P5(t,w,z),u1(:c)dx

+ Pu(ty, 2)pa(2)dy (2.5.7)

(?P4(t, Z) + (?P4(t, Z)

5 9, = —ay(2)Palt,2) + /ZOO{PG(t,x,Z),ul(a:)dx

+ Po(ty, 2)pa(y)dy |, (2.5.8)

where y,z > 0, and

P1 (t, 0) = Alpo(t) + /(;OO Plo(t, y)ug(y)dy, (259)

Py(t,0) = /\QPo(t)—I—/OOOP7(t,w),u1($)dx, (2.5.10)
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PS(tv

P4(t7

OPs(t, z, 2)

ot

0Fs(t, z, 2)
ot

aPS(t7 Y, Z)
ot

8P9(t7 Y, Z)
ot

L Pi(t.)

Ox

dPio(t,y)

dy

with the initial conditions

and

P;(0,z)

Fi(0,y)

0) = pAsh(t),
0) = qA3h(t),

OPs(t, z, 2)
oz
0Ps(t, z, 2)
0z

0Fs(t, z, 2)
oz
0Fs(t, z, 2)
0z

0Fs(t,y, z)
dy
0Fs(t,y, z)
0z

0F(t,y, z)
dy
0F(t,y, z)
0z

APyt @) — po () Pr(t, ),

MPa(ty) — p2(y) Polt, y),

Fy(0) =1,
= 0; i=1,T,
= 0, i=2,10,

= —[Iul(.r) + al(z)]P5(t,$7Z)a

= —[Iul(.r) + QQ(Z)]P6(t,$,Z),

= —[pa(y) + er (2)] Ps(t, y, 2),

= —[u2(y) + a2(2)] Bs(t, y, 2),
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(2.5.11)

(2.5.12)

(2.5.13)

(2.5.14)

(2.5.15)

(2.5.16)

(2.5.17)

(2.5.18)

(2.5.19)

(2.5.20)

(2.5.21)
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P(0,z) = 0 1= 3,4, (2.5.22)
Pi(0,z,2) = 0 i=25,6, (2.5.23)
P(0,y,z) = 0 i=28,9, (2.5.24)
and the boundary conditions
P5(t7.’E70) = pAgPl(LQ?), (2525)
P6(t,.’E,O) = qupl(t,$), (2526)
Fy (t7 Y, O) = pAsh, (t7 y)7 (2527)
Py (t7 Y, 0) = AP (t7 y)7 (2528)
Pi(t,0) = 0, v =17,10. (2.5.29)

2.5.3 Solution of the equations

The complements of the distribution functions G(.) and K(.) are denoted by

G() = 1-G(),

K() = 1-K(),

and the inverse Laplace transforms of a function D(u) is denoted by

Taking Laplace transforms in the equations (2.5.4) -(2.5.18) and (2.5.25)-(2.5.28), it follows

that:

(s4d+ et M) B () = 14 [ {Pr(tsmlonds + Py (s, pal)dy

+[P5(s, 2)en (2) + Py (s, 2)s(2)] dz }, (2.5.30)
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3]3:0(7;,@ = —(s—l—/\g—i—/\g—l—ul(as))Pl*(s,x)

+ /OQE{PS*(S, z,z)a1(2) + P (s, z, z)ag(z)}dz,
PRI - s+ A ) P (50

+ [t o) + B o)
oP;(s,z) .
Wil — (ot an()Pi(s.2)

+ /Zoo{pg(s, z, 2)p(z)de + P (s, y, z)uz(Z)dy}v

0P} (s, z)

5, = ~(sta(2)Pi(s,2)

T /ZOO{Pg(s, z, z)pr(z)de + P5 (s, y, Z)H?(y)dy}a

Pi(s,0) = MPi(s)+ / Pro(s, vz (y) dy,

Pis,0) = B+ [ Pl o (a)ds,

P5(s,0) = praFy(s),
Pi(s,0) = ¢hlg(s),

0P (s,z, z) L+ 0P (s,z, z)
Oz 0z

+ s+ pe) +ai(2)] P (s,2,2) =

0F; (s, z,2) 4 0F; (s, z,2)

92 o tlstm@) +ea(?)]F(s e 2) =
0B (s,y,2) | 0F5(s,y,2) A p _
gy T e Tltm)t @By =

0P (s, y,2) n 0F; (s, y,2)

Dy 92 + [5—|—,u2(y)—|—042(2)]P§(5,y,2) =
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(2.5.31)

(2.5.32)

(2.5.33)

(2.5.34)

(2.5.35)

(2.5.36)

(2.5.37)

(2.5.38)

(2.5.39)

(2.5.40)

(2.5.41)

(2.5.42)
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0F; (s, « *

# + (5 + ,ul(:v))P7 (s,z) = APy(s,x), (2.5.43)

OP* S, * *

71%; y) + (5 + H2(y))P10(57 y) = Mb(s ), (2.5.44)
P (s,z,0) = pAsPy(s,z), (2.5.45)
FPi(s,z,0) = g¢AsP/(s,z), (2.5.46)
F(s,y,0) = pAsP5(s,y), (2.5.47)
Pg (57 Y, O) = qASIDQ)k (57 y) (2548)

As before, the solutions to equations (2.5.39)- (2.5.42) are given by

Pi(s,z,2) = Gi(2)Ki(2)Hy(s,z — z)e” ™", (2.5.49)
Pi(s,z,2) = Gi(z)Kz(2)Ha(s,z — 2)e”*", (2.5.50)
Pi(s,y,2) = Ga(y)K1(2)Hs(s,y —2)e"*, (2.5.51)
Pi(s,y,2) = Ga(y)Ka2(2)Ha(s,y— 2)e™ ™, (2.5.52)
where H;(s,u) (¢ = 1,2,3,4) are functions to be determined. Substituting equations

(2.5.49)-(2.5.52) in equations (2.5.31)-(2.5.34) we obtain

Pi(s,z) = e BHRtR)2G ()0 (s, 2), (2.5.53)
Pi(s,y) = e PTG, (y)Cy(s, y), (2.5.54)
Pi(s,z) = e ¥ K(2)Cs(s,z2), (2.5.55)
Pi(s,z) = e ¥ Kq(2)C4(s,2), (2.5.56)

where

Ci(s,z) = /OI 602“3)“{@@) « Hy (s, 1) + ko () + Hy(s, u)}du +Cy(s),

Ca(s,y) = /Oy e(Al""\S)“{kl(u) « Hs(s,u) + ka(u) * Ha(s, u)}du + Cs(s),
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Cs(s,z) = /000 e *“Hy(s,u) {@1(11) — Gi(u+ z)} du

+ /OOO e " Hy(s, u) [EQ(U) ~ Ga(u+ Z)} du + Cs(s),

Cy(s,z) = /000 e *“Hy(s,u) {@1 (u) — Gq(u+ z)} du
+ /000 e *“Hy(s,u) {ag(u) — @g(u + Z)} du + Cy(s),

and the functions C;(s) (¢ = 1,2, 3,4) are still to be determined. Combining (2.5.53) and

(2.5.54) with (2.5.43) and (2.5.44), we see that

T

Pi(s,2) = e Gy(x) | e Cate)uey (s u)du, (2.5.57)

J,
_ y

Py(s,y) = Ale_syGQ(y)/ e_(’\1+’\3)“02(8,u)du. (2.5.58)
0

Using equations (2.5.53)-(2.5.56), and noticing (2.5.30), we find that

1
Py = 1
0(s) (s+A1+A2+A3){

+ / e~ Ut tR)zg, (2)Cy (s, z)de + / e~ (HMEADg, (y)Ca(s, ) dy
0 0

—}—/ e *k1(2)Cs(s, z)dz—l—/ e %% ky(2)Cyl(s, Z)dZ}. (2.5.59)
0 0
Therefore, to obtain the explicit solution for equations (2.5.49)-(2.5.52) to (2.5.59), we

have to determine H;(s,u) and C;(s) (: =1,2,3,4).

Lemma 2.5.1. The functions H;(s,u), (t = 1,2,3,4) can be expressed as products of C;(s)

(7 = 1,2) and functions of u. We have

Hy(s,u) = pAsCi(s)Di(u), (2.5.60)
Hy(s,u) = q¢A3Ci(s)Dq(u), (2.5.61)
Hs(s,u) = pA3Cs(s)Da(u), (2.5.62)

Hy(s,u) = qA3C3(s)Dy(u), (2.5.63)
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where

1
o+ {1 Al () + 4B ()]}

1
A+ {1+ X[pK () + 4K 2 (n)] ]

Proof. Substitute (2.5.49)-(2.5.52) in the equations (2.5.45) - (2.5.48). This yields

Hy (s, 2097 = L)

—}—/I et AUk (u) 5 Hy (s, u) 4 ka(u) % Hy(s, u)}du},

Hj(s, x)e(’\z""AS)I = q/\3{C’1 (s)

+ /JE e(A2+’\3)“{k1(u) « Hy(s,u) + ka(u) * Ha(s, u)}du},

Hy(s, )09 = ()

+ /y e Ty (u)  Hy(s, u) 4 ko(u) * Hy(s, u)}du},

Ha(s,9)em 9 = g3 {0y(s)

+ /y e(’\1+’\3)“{k1(u) « Hs(s,u) + ka(u) * Ha(s, u)}du}

Thus,

Hl(S, 0) = pAgCl(S), HQ(S, O) = qucl(S),

HS(S, 0) = pASCQ(S), H4(S, O) = qASCQ(S),

and taking derivatives we obtain
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Hy(s,z)(Az+ A3) + %Hl(s,m) = pAs{ki(z) * Hy(s,x) + ko (z) * Ha(s,z) },

Hy(s,z)(Az+ A3) + %Hg(s,x) = q/\3{k1(:€) « Hy(s,x) + ka(z) * Hg(s,x)},

H3<s,y><A1+A3>y+%H3<s,y> = phalki(y) * Ha(s,y) + kaly) * Ha(sy) ),

J
Ha(s,y)0a + Aa)y + 5 Ha(s,y) = gAs{ki(y) * Hs(s,y) + ka(y) * Ha(s,y) }-
By taking Laplace transforms in the above equations with resect to z and y, we get
(A2 + As + n)Hi(s,n) — Hi(s,0) = pAs{ki(n) « H{(s,n) + k3(n) « H3 (s, n) },
(A2 + As+n)Hj(s,n) — Ha(s,0) = qrs{ki(n)* Hj(s,m) +k3(n) x H3 (s, )},
(A + As+ ) H3(s,m) — Hs(s,0) = pAs{ki(n) * H3(s,m) + k3(n) » Hi(s,m)},

(At + A3+ n)Hi(s,n) — Ha(s,0) = qXs{kj(n)* H3(s,n) +k3(n) = Hi(s,n)}.

The solutions are

Hi (s, ) Ao+l + f:{?})c;clf((fy)) + k3 ()}
H3(s,m) N+l + g:{ﬁ}((j) + qk5(n)}]
H3 (s, ) M+l + f:{;i?((i) + k3 ()}
Hi(s,n) G

A+ [+ As{pki(n) + gk5(n)})

which is equivalent to equations (2.5.60)-(2.5.63) by taking inverse Laplace transforms.
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Lemma 2.5.2. The functions C;(s) (i = 1,2,3,4) are determined by

Gls) = L31(5) ’
oo -

Cs(s) = pAsC(s),

Cy(s) = qrsC(s),

where

As + /\2/\1/ e g1 (x) (/ | e_(/\2+/\3)“001(u)du) dx
Ly (S) = Ooo Oy ’
AL+ /\2/\1/ e Y ga(y) (/ e_(Al""\S)“COQ(u)du)dy

0

0

Ly(s) = /\i [1 — A Lq(s) /000 e Y ga(y) </y e_(’\1+’\3)“002(u)du> dy}7

Li(s) = [s + A1+ A2+ Az — As(pki(s) + qu(s))]Lg(s)
_{/Oo e~ (Fh2tX)2 gy () Clgy () d

+As /000 e [pki(2) + qu(z)]Cog(z)dz}
—Ll(S){/OOO e g5 (y) Coaly) dy

+ A3 /000 e % [pkl(z) + qu(z)]CM(z)dz},

Cor(u) = 1423 /0“ e~ (Paha)r {pkl(r) * D1 (r) + qka(r) Dl(r)} dr,
Cor(w) = 1+ A3 /0 Y i) k1 () * Da(r) + gha(r) # Da(r) | dr,
Cos(u) = /000 e {@1(7‘) - Gyi(r+ u)} Dy (r)dr,

Coa(u) = /000 e " {Gg(r) - Ga(r+ u)} Dy(r)dr,
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C(s) =

Proof. Substituting equations (2.5.53) - (2.5.56) in (2.5.59) and using Lemma 2.5.1, we have

1 o0
* — —(stA2+A3)z
B6) = e (1+ cl(s){/o ¢ 91(2)Cos (2)da

+pAs /OOO e %k1(2) </0<>0 e "Dy (w)[Gy (u) — Gy (u+ z)]du) dz
+qAs3 /000 e % ky(z) </000 e " Dy (w)[Gy(u) — Gy (u+ z)]du) dz}

+Ci(s)ki(s) + Ca(s)k3(s) + Cas){ /OOO e~ 6o (y) o (y) dy

—I—p/\3/ e k1 (z2) (/ e """ Dy (u)[Ga(u) — Ga(u+ z)]du) dz
0 0
—|—q/\3/ e ky(2) (/ e " Dy (u)[Ga(u) — G2 (u+ z)]du)dz}).
0 0
By equations (2.5.35)-(2.5.38), as well as Lemma 2.5.1, we have

o0 v
Ci(s) = /\1P5‘(s)—|—/\102(8)/ e Yga(y) (/ e_(s""\l"'AS)“Cog(u)du)dy,
0

0

Ca(s) = /\QPJ(S)—I—/\QCl(S)/ e_”gl(x)</ e_(s+/\2+A3)“Cm(u)du)dx,
0 0

Cs(s) = pAsli(s),

Ca(s) = qAsF;(s).

Now, the result is straightforward. O

From the above equations, the Laplace transforms of the explicit solutions of the system

are given by

Pi(s,z,2) = plae” " Gi(z)K(2)Di(z — 2)Ci(s), (2.5.64)
Pi(s,z,2) = ql3e *"Gi(2)K2(2)Di(z — 2)Ci(s), (2.5.65)
Pi(s,y,2) = prse”VGa(y)Ki(2) D2y — 2)Ca(s), (2.5.66)

Pi(s,y,2) = qA3e Y Go(y)Ko(2)Da(y — 2)Cy(s), (2.5.67)
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Pi(s,z) = e TRtR)TG (2)Chy (2)Cy(s), (2.5.68)

Pi(s,y) = e CPMTNG,(y)Coaly)Cals), (2.5.69)

Pi(s,2) = p/\ge—szm(z)(cl(s)cog(z)+c2(s)co4(z)+C(s)), (2.5.70)

Pi(s,2) = qhse " Ky(2) (Cl(s)ng(z)—}—CQ(s)CM(z)—}—C(s)), (2.5.71)
Pi(s,z) = Xe Gi(z)Cy(s) / e~ tA)u i, (u)du, (2.5.72)
0
o Yy
Plo(s,y) = Ae Gy (y)Cals) / e~ MU (u)du, (2.5.73)
0
1 (o ]
* _ —(stA2+A3)z
O o (1 +cl(s){/0 ’ 01(2)Cor (2) da

+pAs /000 e %k1(2)Cos(2)dz + qAs /000 G_SZkQ(Z)COS(Z)dZ}
+23C (s) {ka(S) + qkrﬁ(S)} + Cafs) {/OOO e~ (HNHR)Y g, (y) Coa (y) dy

+pAs /000 e %k1(2)Coa(2)dz + qAs /000 e_szkg(z)CM(z)dz}), (2.5.74)

where D;(u), Co;(u) and C;(s) (¢ =1,2,5 =1,2,3,4) are defined above.
Let P,(t) = Pr{S(t) =~} for vy € S = FUW. The Laplace transforms of the explicit

state probabilities of the system are given by

F(s) = pls /OOO /OI e G (2)K1(2) Dy (2 — 2)dzdzCy(s),
FPi(s) = qXs /000 /0I e **G1(2)Kq(2) D1(z — 2)dadzC4(s),

Pi(s) = phs /0 h /0 ’ e~y (y)K1(2) Daly — 2)dydzCy(s),



Chapter 2. Stochastic models of repairable systems

Fy (s)

Py (s)

By (s)

By (s)

Py (s)

Fr(s)

Pio(s)

F (s)

o [ [ TG Rale)Daly - 2)ddCalo),

/0 h e~ (20T @ () Coy (2)daCy(s),
|G ) Canla)dnCato)

pha [ TR (G5 Cmla) + Cals)Can(2) + 1))
"y /0 " Ry(2) (€1 (5)Clnl2) + Cals)Co(2) + C(s) ) d,
A2 /0 "G (2) ( /0 ’ e~ HN)UC (u)du ) daCh (s),

o0 _ y
/\1/ e VG (y) (/ e_(A1+A3)“COQ(u)du)dyC'g(s),
0 0

(5+/\1—|—1/\2+/\3)< +Cals ){/Oo Rt g, (2)Cou () da

—|—pA3/ 6_52161( )003 dZ—}—qu/ —ssz 003( )dz}
0 0

FAsC(s) | phi () + gk (s)] + Ca(s

/—’H

o0

—|—pA3/ 6_52161( )Co4 dZ—}—qA:; —ssz 004( )dZ})
0

0

/ =N+ g, () o (y)dy
0

67



Chapter 2. Stochastic models of repairable systems 68

2.5.4 Special cases

When unit 3 is only subject to type I failures, we have p = 1 and from equations (2.5.64)-

(2.5.74) we obtain

Py (s, @)

Py (s,y)

By (s, 2)

Py (s, x, 2)

Pr (s, x)

F(s,y,2)

PI*O(Sv y)

Fy(s)

and

where

e~ (sH2+2)2 T (2)Cpy (2)Cy(s),
PG, (1) Coa(y) Cials),

Xoe ™1 (2) (C1(5)Coa(2) + C2()Coa(2) + C(5)),
Ase= Gy (2) Ky (2) Di (2 — 2)Ch(s),

Aae 5T Gy (2)C(s) /0 ’ e~ CetRa)ucy (u)du,

Ase™ VG (y) K1(2) Day — 2)Ca(s),

. y
Are” Y Ga(y)Ca(s) / e_(A1‘|'A*°’)“C'02(u)du7
0

1
(s+ A1+ A2+ A3

—I—C'l(s){/ e_(S+A2+A3)$gl(x)Cm(x)dx—|—Ag/ E_Szkl(Z)Cog(Z)dZ}
0 0

) (1 + Xk (s)C(s)

—1-02(3){/000 e_(5+’\1+’\3)yg2(y)002(y)dy + /\3/000 6_5%1(2)004(2)0{2})7

Pi(s,z)= F;(s,z,2z) = Py(s,y,z) =0,
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Lg(S)

COI (u)

Cog(u)

Cog(u)

004(u)

D1 (u)

D2 (u)

|:S + Al + AQ + Ag — Agk?(s)} LQ(S),
—{/ e~ (sHrte)z g (1)l () da + /\3/ e_SZCog(z)kl(z)dz},
0 0

—Lﬂ@{ém64ﬂﬂ+%wm@ﬂ%ﬂwdy+Aiéweﬂﬁhdékﬂ@M},
1+A3[fe4M+%ngm*anyh,
1+A3[fe4M+%ngm*15@yh,
Ameﬂqn@ﬂégm—za@+uﬂm,

/000 e " Dy(r) [@2(7‘) — @2(7‘ + u)} dr,

e
A+ {1+ AsK ()}

rﬂ LI }.
A+ n{L+ AsK7 ()}

69

These resulst were obtained by Li et.al. [35]. However, their formulas for Cs(s) and

Ps(s, z) were not correct.

2.5.5 Availability

According to the analysis of the system, we can obtain the transient and equilibrium avail-

ability characteristics of the system as follows. First,

mo:%@+/ma@@m+/mg@m@,
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so that its Laplace transform is given by

A =B+ [ Fisodat [P

From equations (2.5.68) and (2.5.69), we have

A*(s) = Pi(s) + Ci(s) /0 e~ (20T (1) Coy (2)

+ Cz(s)/ e~ HMHARNE, (y) Coa(y)dy,
0

and the steady-state availability of the system is

A = lim A(t)

{— 00

= lim sA*(s)

s—0

= P0+C1/ e~ P2 FN)EG (2)Coy (2) d
0

L0, / e~ MTAG, (y) Coz (y) dy,
0

where

Ci = lim sCi(s), 1= 1,2,
s—0

and

Py = Sh_r)no sFi(s).

Second, the failure frequency mg(t), is

Z/ Po(gos(2)dz+ 3 Z/ (1, 2)g:5 (2) da

JEF 1€WN\{0}jEF

70

(2.5.75)
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Hence,

mp(t) = [pds+ 0] Polt) + [phs + ghs + M) / Py(t, z)da
Hodat ot d] [ Pty
0
- /\3{P0(t)+/ Pl(t,:c)da:—l—/ Py(t, y)dy }
0 0

A / Py(t, 2)dz + Ay / Py(t, y)dy
0 0

/\3A(t)+/\2/ Pl(t,x)dw—l-/\1/ Py(t,y)dy,
0 0

and the Laplace transform is given by

mi(s) = XA @)+ de [ Fso)dat i [ Pilsu)dy
0 0

= A3A%(s) + MCi(s) / e~ (2T (1) Coy (2)
0

INCals) [ e PIG () Caaly)dy.
0

We obtain the steady-state failure frequency:

mys(oo) = lHm my(t)

{—00

= lim sm*
Jfim, sm3(s)

= AA+ Ay / e~ (P2 t)eE (2)Cy (2)dae
0

INCa [P ()Coaly)dy.
0

71

(2.5.76)

Third, let m,(t) denote the derivative of the expected number of renewals of the system,

renewal of the system means that the state of the system returns to the initial state. The

renewal frequency is

i) = | By (1 2y () d + / " Pt y)a(y)dy

-I-/OOO Py(t, z)oy (2)dz + /OOO Py(t, 2)a(2)dz,

(2.5.77)
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and its Laplace transform is thus

mis) = [ Pom@ds+ [P

v /OOO Py (s, 2)an(2)d= + /Ooo Pr(s, 2)as(z)dz.

From equation (2.5.30), we get
mi(s) = (s+ A+ A2+ As) Py (s) — 1.
The steady-state renewal frequency of the system is given by

m, = lim m.(t)
t—r00

= i m*
[Jim sm(s)

= (/\1 + A2+ /\S)PO-

72

(2.5.78)

(2.5.79)



Chapter 2. Stochastic models of repairable systems 73

2.6 An exponential limit theorem for a two-unit system

We consider the following two-unit system. Both units work independently until failure, are
repaired, work again until the next failure, and so on. For both units the operating times
are i.i.d. random variables with a common distribution function F and the repair times
are 1.i.d. random variables with a common distribution function G,(y) = G(y/a), where
a > 0 is a parameter and G is a fixed distribution function. We consider the time instants
t(la), tga), ... at which one unit is under repair and the other unit fails. As o — 0, the repair
times become smaller and tend stochastically to zero. We will show that under certain
conditions the first time one unit fails while the other is under repair is asymptotically

exponentially distributed after a normalization.

We introduce the following quantities:

(1) F, G are distribution functions on (0,00) with continuous densities f and g, respec-

tively;

(2) {X}, {Xi}, {Yk(a)}, {?k(a)}, k € N are independent sequences (« > 0) having distri-
bution functions F(z) and G4(y) = G(y/a), where the Xz and X, denote the lengths
of the operating intervals and the Yk(a) and f’k(a) denote the lengths of the repair

intervals;
(3) Ais the expected value of F, the expected value of G is 1;

(4) tga) < tga) < tga) < ... are the times at which one system is already under repair and

the other one breaks down.

The proof applies the Fourier analysis of renewal theory (Alsmeyer [3] and Breiman [8]).

Let F, be the convolution of F and G,. Let

o0

Uy =) FI

n=1
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be the renewal measure of F,,. Let

be the Laplace transforms of F’ and G.
We make the following assumptions:
(a) The characteristic function ¢(¢) = ¢(—:t), t € R, is integrable on R.
(b) There is a distribution function H(z) on (0,00) with a finite expected value such

that
<1-H(z), z,u>0. (2.6.1)
We will show

Theorem 2.6.1. As a \ 0, the distribution of at(la) converges lo the exponential distribu-

tion with parameter 2\72.

Lemma 2.6.2. Let W(®)(t) be the number of points at(la), at(;), ... in[0,t]. Then

sup E(W (1)) < oo for all t > 0 (2.6.2)
0<a<l1
and
limOE(W(a)(t)) =2)"2 for all t > 0. (2.6.3)
a—
Proof. Let
1; Afirst unit under repair at time ¢ ,
1) =
0; otherwise,
~ 1; Afirst unit under repair at time ¢ ,
1)) =
0; otherwise,
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Wi(a)(t) =number of times of total failure when unit 7 was already broken and the other
unit breaks down.

B(®) = {t > 0| unit 2 under repair at time ¢},

B = B@ 10,1,

T(O‘)(B) = number of repair times of unit 1 beginning in B, B C [0, c0),

F(B) = BITE(B)), 1)) = BIT0, 1]

The following basic relations hold:

W@ = W)+ W) (2.6.4)

)] (2.6.5)

= E[I)] dr®)(s). (2.6.6)

Let wga)(t) = E[Wl(a)(t)]. One main step of the proof is to decompose (%) () follows:
r@ ) = 7 (1) + 57 (t) (2.6.7)
where (7—1((1))046(0,1] is tight, i.e.

lim sup Tl(a)([K, o)) =0, (2.6.8)
K—oo a€[0,1]
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and TQ(Q) has a density |p(2a)| < M < oo for some constant M, satisfying

o 1
lim sup sup |p(2 )(t) - —|=0. (2.6.9)

I‘éj}(ao ag(0,1] t>K A

This will be proved later.

We have to show that w§a)(t/a) — A7%, as @ — 0. For any K € (0,t/a),

|0 (t/a) — A2 | = |E[/ ar(®) ()] — A~2|
B}
< E| / a7 (s)] + 7" ([K, 00))
B
AT BB + A EUBED] - A7 |
+E[ / | (s) — A1 | ds], (2.6.10)
BB

where [ is the Lebesgue measure. Clearly, E[I(Bf))] — 0, as @« — 0. By tightness, for

every € > 0, there is a K, > 0 such that Tl(a)([l(, oo]) < e for all @ € (0,1]if K > K.. For
large K, the integrand in the last term is less than e, so that the term itself is bounded by

SE[Z(B(Q))]. Thus, the proof of Lemma 1 will be complete if we can show that

t/o
limOE[/ dr®(s)] =0 forall K >0 (2.6.11)
a—
B
and
; (@)y1 =\t
ilinoE[l(Bt/a)] =A""t forallt>0. (2.6.12)
We have

(2.6.13)

INA
3]
=
N
|
N
w
=
U
£
QL
BN
2
—~—
V)
~—
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for any z € (0,00). Therefore, (2.6.11) follows if we can prove that for ¢,(s) = E[fs(a)] we
have
limo €™ gy (s)dr(™) (s) = 0 for some z € (0, c0). (2.6.14)
a—r
0

The integral in (2.6.14) is equal to

a+i00
1
— 5 Ha)(y
ori ) Go(u) 7'\ (2 — u)du

for any a € (0,z) where ¢, and #(@) are the corresponding Laplace transforms of ¢, and
(o),

By renewal theory, we find that

@) = F)+ (F*U)() (2.6.15)
and
1-E[I™] = 1-F@t)+ ((1-F)+Ua)(1). (2.6.16)
Note that
Ualt) = i(F * Go)™ (1)
If follows that -
Fw) = )/ = p(w)a(w)] (26.17)

o — P () 2618

u[l = p(u)a(u)]

Hence, by Laplace inversion

o0

—2zs o 1 atico (u) [1 - ¢a(u)]
[ =0 T R e

0

ez —u) "
S e Py (2.6.19)
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where we may take z = 2a, ¢ > 0. The integrand on the right-hand side tends to 0, as
a — 0, and is in absolute value bounded by C|p(u)|?/|u|, where the constant C' does not
depend on u and a. From assumption (a), it follows that
a+100
, 2
/ Mdu < 00.

|ul
a—100

Thus (2.6.14) follows by Lebesgue’s convergence theorem.

Next we have

0
so that
[ . 1 — ¢, (az)]
2 (B a = 20 . 2.6.2
[ e = ER T (2:6.20)
0
Note that ¢, (z) = ¢¥1(az), E(Y,) = a.
By Taylor expansion we have
Vo(az) = 1—a?z4 o(a?)
olaz)a(az) = 1-daz+O0(a?),
which yields
im [ e BB ar =
ilino € E[Z(Bt/a)]dt =2
0
by (2.6.20). By the Tauberian theorem, it follows that
lim E[(B@)] = L.
a—0 t/a A
The lemma is proved. O

—

We still have to show the decomposition (2.6.7) with the properties described above.

This follows from the following renewal theoretic result. We can decompose U, as follows:
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U, = él) + UéQ), where the measures (Uo(él))ae(o’l] are tight and the measures (Ug))ae((m]

have densities u, which satisfy

uP(z) < C < oo forall >0 and a € (0,1] (2.6.21)

[}

for some constant C' and

lim sup  |ulP(z) = A7l =0. (2.6.22)
B—0,K—co 0<a<B,z>k

For the proof we have to follow the arguments in (Stone [52] and Breiman [8]) closely and
see if they can be extended in our special case to obtain uniform statements with respect
to «.

We write F' = pF) 4+ qF5, where p > 0,p+ ¢ = 1 and F} has a continuous density f;

that is zero outside of a compact interval. Let

U = (FxGy)* an(FQ * Go )™
n=0

U = pUél) * G x F1 xU,.

Obviously we have

U, =UM 4+ U@,

It is clear that the measures (Uo(él))ae(()’l] are tight. It remains to show the properties of

(UO(AQ))QG(OJ]. Two Fourier analytic lemmas are needed. Recall that ¢(t) = ¢(—it). Let
Vo (t) = VYo (—it).
Lemma 2.6.3. (a) For sufficiently small o and t,

1= @(1)dalt)] > AL/2.

(b)

_ 1 1 B
i | 1 (e aw) 40
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Proof. (a) Let F, = F * G,. Clearly we have
L= §0al) - (et a)it] < [ 167 = 1= italdF (o)

< (£2/2) / a?dF,(z) + 2|t| / |z|dF, (). (2.6.23)
0<z<2/[1 z>2/lt|

Let € > 0 be given. For every ¢ € (0,2] we have

¢ [ =) [ o+ [ ]
0<z<2/t] 0<z<8/lt] §/ltl<z<2/[t|
< (@1t/2) (A + o) + [t (1 = Fa(8/[2]))- (2.6.24)
Choose § < £/(2(A+a)). Then if |¢| is small enough, the first term on the right-hand side of
(0.24) is smaller than |t|e/2. For small |¢| the second term on the right-hand side of (2.6.24)

is also smaller than |t|e/2. It follows that
11— @(t)da(t) — (N + @)it] < |t|e. (2.6.25)

Thus (a) is proved.

(b) Let £ > 0 be given. We have

1 1
= e 1=
_ e@a-1) 2626)
(=) (1= @) da(t)
$(t) is integrable on R by assumption (a). We have lim;_,o, $(¢) = 0 by the Riemann-

Lebesgue lemma. Since |4, (t)] < 1, it follows from (2.6.26) that for some K > 0

/ |RI()|dt < e. (2.6.27)

t>K

For every & > 0 the denominator 1 — ¢(#)14(t) remains bounded away from zero on [4, K]

and converges to 1 — @(t) as a — 0. Thus

IRI(t)|dt < e (2.6.28)

s<|i|<K
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for sufficiently small a.

It remains to consider the region [¢{| < é. By (a) we have

I%( i 1 )Iz I%(l—fé(t} «(1))]
1— @(t)da(t) 11— @) valt)?
4

< R0 - $(0)da (1) (2.6.29)

for small || and a. For the right-hand side we obtain

/ t7HR(1 — @(t) e (1)) |dt < / / t72e"™ — 1 — isin tu|dt dFja(u)

[t] <8 0 |t|<é

o0

< /u / s7%e" — 1 — isins|ds dF,(u). (2.6.30)

0 |s|<éu

It now follows easily that

/ R (m) di < & (2.6.31)

[t|<é

for sufficiently small « and é. O

Lemma 2.6.4. For every ¢ > 0 we have

sup  |Us([z — ¢,z +¢]) = (2¢/AN)| =0 (2.6.32)
0<a<lp,z>K

as 8 — 0 and K — oo.

Proof. 1f h : [0,00) — R is an integrable function with an integrable Fourier transform h,

then
T 271—71(0) —18T . 1
hu)Uqy(z + du) = +2 [ e*h(sR| ———=—— ) ds (2.6.33)
0/ Ata R/ (1—99(5)%(5))

(Breiman [8], p. 221). Now we approximate the interval [—c, ¢] from above and from below.

Fix 6 € (0,c¢). We use the functions hgl) = hs. and th) = hsc—s, where hs . is the continuous
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function which is 1 on [—¢,¢], 0 on (—o0,c — §] and [c+ §,00) and has straight line pieces

on (¢ —4,¢) and (¢,c+ 6). Then we have

[ @+ da) 2 Uale = et ) = [ 1O (@0 (o + du) (2.6:34)

The Fourier transform of As . is

cosct — cos(c+ d)t

ﬁé’c(t) - o2

It is integrable and bounded. From (0.33) we obtain

/hgl)(u)Ua(x Fduy =20 2/cos s by (s)R (;> ds.  (2.6.35)
) At a 2 L — @(8)1als)

(2)

A similar relation holds for Aj ™.

We show that the integral on the right-hand side of (2.6.35) is small when z is large and
a is small. Then (2.6.32) follows from (2.6.34) by letting 6 — 0. Now the integral on the

right-hand side of (2.6.35) is equal to the sum

Zcos s B(@%m(l_i;(s)) ds

s / Y T Y G ) PR

As x — oo, the first integral tends to 0 by the Riemann-Lebesgue lemma. The second

integral tends to 0 uniformly in z as o — 0 by Lemma 2(b). O

Now we can show (2.6.21) and (2.6.22). Let v,(z) be the density of Fy * U,. Then

T

0a(@) = [ wae— ) W)y (2.6.37)

0

and f; is zero outside a finite interval [0, ¢]. Thus it follows from Lemma 3 that

sup  |va(z) = (1/A)] =0 (2.6.38)
0<a<lp,z>K
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as 8 — 0 and K — oo. It follows from the proof of Lemma 3 that

sup  Uy([z — e,z 4 ¢]) < o0.

0<a<1,z>0
Therefore,
sup  va(z) < sup  Uy([z — ¢, z]) sup fi(u) < oo. (2.6.39)
0<a<1,z>0 0<a<1,z>0 u>0

By its definition u((f)(x) is the convolution of v,(z) and the density w,(z) of pUc(yl) * Gy

Therefore and by (2.6.39), u(a2)(:v) is uniformly bounded in « and z, i.e., (2.6.21) holds. It
is clear that w,(z) is a probability density and that the family on(}) xGqy, 0,0 < 1, is tight.

Then for z > K

) () — (1/3)] = | / Wl — y)va(y)dy — (1/3)]

< / ol — 1) [valy) — (1/2)]dy

K

K
+ [ wale = plealy) - (1/)]dy

+ (1//\)/wa(u)du. (2.6.40)

T

Now we take supgc,<p o>k for all terms in (2.6.40). Then as 8 — 0 and K — oo all three
suprema on the right-hand side tend to 0, the first by (2.6.38), the second by the tightness
of pUél) * Gy, 0, < 1, and the boundedness of v,(y), and the third by tightness. (2.6.21)
and (2.6.22) are proved.

To get the representation

we can now use (2.6.15). Let
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and

() = (U % F)(v).

Then the properties of Tl(a)(t) and Téa)(t) follow immediately from those of Uc(yl)(t) and
U@ (t) and (2.6.15).

Proof of the theorem. Let w(®) = at(la) be the smallest point of W(®). Let
@, > 0,0, — 0, such that the distribution of w(®») has a limiting distribution g on [0, o0]
(including the end points 0 and co). We have to show that p is the exponential distribution
with parameter 2/A2.

Clearly,
t

W) = [ EWE 0 |0l = 2) Pl € do)

The left-hand side converges to 2A~%¢. Now we show that
EWEn @) | w® =2) = 14+ 2072 — 2) (2.6.41)

uniformly in z € [0,¢]. Then it follows that

t

207 = /[1 + 2073t — 2)]du(z).

Taking Laplace transforms on both sides yields
2273572 = s a(s) 4+ 227272 (s),
where fi(s) = Te_“td,u(t). Thus
0
A(s) = 2077 /(s +217%)

and the theorem is proved. It remains to show (2.6.41).
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Let sga), t = 1,2, be the smallest point of Wi(a). We have by symmetry

EW@ @) | w® =zl = EW® @) | s = z/a, s > 2/a]
= B @) | s = 2 /a, s\ > a/a]
+ EWS @) | 8 = 2/, s > 2 /0], (2.6.42)

Then (2.6.41) follows from (2.6.42) and the relations

EWD W) | s = 2/a, 58 > 2/a] = 14+ 272t - 2) (2.6.43)

EWS @) | s = /o, s$) > a/a] » A2t — x). (2.6.44)

We prove (2.6.43). (2.6.44) is proved in the same way.

To prove (2.6.43), we write
BV |5t = 2/a,s5 > w/a] =
1+ E[/ Uy(ds — (z/a)) | s(la) = x/a,s(;) > x/a]. (2.6.45)
Bleln[z/a,t/a]

Now we follow the proof in (2.6.10). Therefore it suffices to show that we have, uniformly

in z € [0,],

a—0

lim E[/ Us(ds — (z/a)) | s(la) = m/a,sga) > :L‘/a] =0 (2.6.46)
Blon[z/a,(z/a)+e]
for every £ > 0 and

lim E[[(B®) N [z/a,t/a)) | 8\*) = 2/a, s > z/a] = A1 (t — ) (2.6.47)

a—0

for every t > 0.
(2.6.46) is analogous to (2.6.11). However, by the conditioning, at time z /o the first
unit fails and the second one is under repair and has some residual random repair time

Vgg(a), which has the distribution function Rga)(v). By assumption (b), Vz(a) converges to 0



Chapter 2. Stochastic models of repairable systems 86

in distribution uniformly in z. Let pg(,;a)(u) be the Laplace transform of the distribution R,

We proceed as in (2.6.13) and (2.6.19). In (2.6.19) we have to use the Laplace transforms

e(u) (1 — ¥a(u))
L — o(u)tha(u)

P(u)*(1 = Ya(u)Pa(u)
1 — p(u)ta(u)

= o(u) (1 — ta(u) + (2.6.48)

and

(Oé) u u — u
w11 = pl) () + 22 u(u)f(v()g /fi)g ) (2.6.49)

instead of (2.6.17) and (2.6.18). Integrating the product of (2.6.48) and (2.6.49) as in
(2.6.19) we can again use the Lebesgue convergence theorem and prove (2.6.46).
To show (2.6.47), we remark first that the convergence in (2.6.12) is uniform in ¢ € [0, 7]

for every 7' > 0, because E[I(B(a)

t/a)] is nondecreasing in ¢ for every « and the limit A=1¢ is

a continuous function of ¢. The following inequalities are obvious:

I(B(a)

(t/)+ VL) \B*) ) <IBYNBE) < (B \B )+ V) (2.6.50)

(z]a)+ VLY (t/a)+VE V(2 )a)+ VL
The distribution of Z(B((?/)a)ﬂ’z(a) \B((j/)a)+ng§°‘)) is the same as that of l(B((?_)I)/Q). Thus by

the remark above,

\BE;“/)QH%(Q))] A —a) (2.6.51)

E[I(B™)

(t/a)+VE™

uniformly in z € [0,¢]. By assumption (b) we have

BlV)] = / 1—1(;_((5(4; /‘2)/ Y 1y
§/(1—H(u/a))du:a/(l—H(y))dy—>0 (2.6.52)

as o — 0, uniformly in z. Now (2.6.47) follows from (2.6.50)-(2.6.52).
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Figure 2.1: The relation between the steady-state availability of the system and Ay, where

Az = 1.0 (solid), Ay = 5.0 (dotted), Ay = 10.0 (dashed).
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Figure 2.2: Plot of the probability of the two units operating together for Example 1 (solid)

and Example 2 (dotted).
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Figure 2.3: Plot of the probability of the two units operating together case (2.3.45), Example
1 (solid) and Example 2 (dotted).
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Figure 2.4: Transitions among the states of the series system, where () denote the up state
and O denote down states.
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Figure 2.5: Plot of the availability A(¢) of the series system as a function of time ¢, for
A2 = 0.1 (solid), Ay = 0.5 (dotted) and Ay = 1.0 (dashed).
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Figure 2.6: Plot of the failure frequency my(t) of the series system as a function of time ¢,

for Ay = 0.1 (solid), Ay = 0.5 (dotted) and Ay = 1.0 (dashed).
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Figure 2.7: Plot of the renewal frequency m,(t) of the series system as a function of time ¢,

for Ay = 0.1 (solid), Ay = 0.5 (dotted) and Ay = 1.0 (dashed).
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Figure 2.8: Transitions among the states of parallel system, where () denote up states and
[l denote down states.
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Figure 2.9: The relation between the steady-state availability of the parallel system and A
for Ay = 0.5 (solid), Ay = 1.0 (dotted) and A; = 2.0 (dashed).
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Figure 2.10: The relation between the steady-state failure frequency of the parallel system
and Ay for Ay = 0.5 (solid), Ay = 1.0 (dotted) and A; = 2.0 (dashed).
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Figure 2.11: The relation between the steady-state renewal frequency of the parallel system

and Ap for Ay = 0.5 (solid), Ay = 1.0 (dotted) and A; = 2.0 (dashed).
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Figure 2.12: Transitions among the states of the system, where () denote up states and O
denote down states.



Chapter 3

The cell and the radiation effect

3.1 Introduction

Cell reaction to radiation undoubtedly constitutes an issue of great concern. Cell radiation
action comprises all levels of cell organization. It starts with the absorption in essential
atoms and molecules and ends with the development of cancer and genetic hazards to
future generations and death. To this cause, in Chapter 4, the models for cell survival after
irradiation with ionizing radiation are studied.

In section 3.2, the general structure and functions of the cell are explained; the cell
composed of cell membrane, Cytoplasm, Golgi bodies, Mitochondria, Nucleus, etc... .

In section 3.3, The radiation effect on the cell is described; this section consists of
three subsections. subsection 3.3.1, radiation sources are illustrated, the first source is
ionizing radiation (alpha-, beta-, and gamma- radiation). lonizing radiation exposure can
occur from a radiation source outside of the body (external radiation) or as a result of
taking radioactive material into the body (internal radiation). The second source is optical
radiation, and the third source is non-ionizing radiation. In subsection 3.3.2, the theory of
ionizing radiation effect of the cell are illustrated, two theories which prevail in the field of
radiobiology (target theory and absorption of radiation) have been explained. In subsection

3.3.3, the radiation effects on cell constituents are also explained.
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3.2 The cell

A cell is the basic unit of life, all living things are made up of cells. Although there is no
such thing as a typical cell, all cells have several features in common. The normal human

body has about 50 million million cells.

3.2.1 General structure and functions of the cell

Most cells are composed of protoplasm : a mixture of carbohydrates, proteins, lipids,
nucleic acids, inorganic salts, gases and water (between 70 and 80%).

Living cells are lined by a plasma membranes or cell membranes. The plasma
membrane in a cell is a very important structure. It has lots of holes called pores and
channels and obviously has an important job to do, keeping the cell together and controlling
what substances goin and out. There are also many other membranes which make up several
of the cell organelles described below.

The cell can be subdivided into the two main compartments cytoplasm and nucleus

(see [2], [36], [13] and Figure 3.1).

(i) Cytoplasm
The cytoplasm surrounds the nucleus and is bounded by the plasma membrane. Its
consists of a ground substance, hyaloplasm, and organelles. Hyaloplasm contains
enzymes for glycolysis and structural materials. Cytoplasm contains the machinery
for carrying out the nuclear instruction. Besides the usual consists of a unit membrane

it contains enzymes and energy sources. The organelles of cytoplasm are the following

(1) Golgi bodies
The golgi bodies are specialized portions of the endoplasmic reticulum. It is

composed of many layers of thin flattened vesicles formed from unit membranes.
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The golgi bodies are located on the side of the cell from which substances will

be secreted. Some functions of the golgi bodies are as follows:

a) Proteins and other material made elsewhere in the cell are sometimes trans-
ported to the golgi bodies for condensation in membrane bound packets, this
allows the transportation of material out of the cell or the storage of material

within the cell.

b) Carbohydrates in the golgi bodies and complexes with proteins coming from

the endoplasmic reticulum are sometimes synthesized.

c) The golgi bodies may also be active in lipoprotein synthesis.

(2) Mitochondria

Mitochondria are present in all cells, however the number of mitochondria in a
cell varies from a few hundreds to many thousands, depending on the amount
of energy required by the cell. Mitochondria are composed of inner and outer
unit membranes. They are the major sites of energy production in the cell and

contain many important enzymes.

(3) Endoplasmic Reticulum

Endoplasmic reticulum is a network of tub-like structures distributed throughout
the cytoplasm. Some of these tubes are connected with the nuclear membrane,
and some with the celll-membrane. They appear to be associated with enzyme
formation, protein synthesis, storage and transport of metabolic products. They
may also contribute to the formation of the cellplate in nuclear division, and of

the nuclear membrane around the newly-formed nuclei.

(4) Centrosome

Centrosome is a minute body found in animal cells. It occurs close to the nucleus

and usually has two central bodies called centrioles. During nuclear division they
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pass on to the opposite ends of the cell and organize the nuclear spindle.

Ribosomes

Associated with the membrane of the tubes and also occurring free in the cyto-
plasm are many tiny particles called ribosomes. They are composed of RNA
(ribonucleic acid) and protein. They synthesize some of the enzymes and are the

main seats of protein-synthesis.
Lysosomes
They also occur as tiny particles in the cytoplasm. They are spherical in shape,

with an outer membrane and dense contents. They are rich in several enzymes

and are associated with intra-cellular digestion.

(i) Nucleus

The nucleus is a specialized protoplasmic body much denser than the cytoplasm, and

is commonly spherical or oval in shape. It always lies embedded in the cytoplasm.

(1)

Structure

Each nucleus is surrounded by a thin, transparent membrane known as (1) the
nuclear membrane which separates the nucleus from the surrounding cyto-
plasm, within the membrane, completely filling up the space there is a dense
but clear mass of protoplasm known as (2) the nuclear sap or nucleoplasm.
Suspended in the nucleoplasm there are numerous fine crooked threads, loosely
connected here and there, forming a sort of network, called (3) the nuclear
reticulum or chromatin network. The threads are made of a substance
known as chromatin or nuclein which is strongly stainable. Chromatin or nuclein
is a nucleoprotein. One or more highly refractive, relatively large and usually
spherical bodies can be seen in the nucleoplasm; these are known as (4) the

nucleoli. Two important nucleic acids are DNA and RNA
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(2) Functions
The nucleus and the protoplasm are together responsible for the life of a cell
and the various vital functions performed by it. If they are separated both of
them die. The nucleus, however, is regarded as the controlling centre of the
vital activities of the cell in many ways. The specific functions preformed by the

nucleus are as follows :

a) The nucleus takes a direct part in reproduction. Two reproductive nuclei
called gametes fuse together to give rise to an oospore which grows into an
embryo. Thus nuclei are directly concerned in the process of reproduction.

b) The nucleus takes the initiative in cell division, i.e., it is the nucleus that
divides first and this is followed by the division of the cell.

¢) The nucleus is regarded as the bearer of hereditary characters. It is to be
noted that it is the DNA of the nuclear reticulum that is the sole genetic

(hereditary) material of the two reproductive nuclei.

3.3 Radiation effect of the cell

Mathematical models for cell radiation and for cell survival after irradiation are investigated
by many groups.

Radiation is the transport of energy without the necessary intervention of a transporting
medium. It may be accomplished either by electro-magnetic waves or by particles, e.g.

electrons, neutrons or ions (see for example [28] and [43]).

3.3.1 Radiation sources
(1) Ionizing radiation

lonizing radiation is energy that is carried by several types of particles and rays
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emitted by radioactive material, X-ray machines, and fuel elements in nuclear reactors.
lonizing radiation includes a-particles, g-particles (essentially small fast moving pieces

of atoms), X-rays and 7y-rays ( types of electromagnetic radiation).

These radiation particles and rays carry enough energy to knock out electrons from

molecules, such as water, protein, and DNA, with which they interact.

The main types of ionizing radiation are called a-, -, and vy-radiation:-

(a) f-radiation (particles) are high-energy electrons that some radioactive materials
emit when they decay. They exist two types (positive charge or negative charge),

depending on the radioactive material that produces them.

(b) a-radiation is a particle, consisting of two protons and two neutrons, that travels

very fast and thus has a lot of kinetic energy.

(c) v-radiation is a type of non-visible light, much like radio waves, infrared light,
ultraviolet light, and X-rays. When a radioactive atom transforms by emitting
an o- or f-particle, it may also give off one or more v-rays to release excess

energy.

lonizing radiation exposure can occur from a radiation source outside of the body
(external radiation) or as a result of taking radioactive material into the body (internal

radiation):

i- external radiation comes from natural and man-made sources of ionizing radia-

tion that are outside the body.

ii- internal radiation is ionizing radiation that natural and man-made radioactive
materials give off while they are inside a body. Radioactive substances enter the

body every day since they are in the air, the food and the water.
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(2) Optical radiation

The sun is the largest source for optical radiation and the most important source for

ultraviolet radiation.

(3) Non-ionizing radiation

Non-ionizing radiation does not carry enough energy to cause ionization. It includes

radio-waves, micro-waves, ultrasound and infrared radiation.

3.3.2 Theory of ionizing radiation effect of the cell

A cell is damaged when exposed to ionizing radiation, special when exposed to a burst
of ionizing radiation, and the mechanism of damaged has been explained by two theories

which prevail in the field of radiobiology.

1. Target theory (Atwood and Norman [5] and Kiefer [28])

This theory postulates that there exist a certain number of sensitive regions which
must be hit for damage to result. According to this theory, the amount of damage de-
pends on the probability of an individual ionizing event taking place within a sensitive

region of the cell area.

2. Absorption of radiation (Atwood and Norman [5], Gupta [20] and Bansal

and Gupta [6])

This theory allows for more general absorption of radiation within a cell to result in
the production of chemical changes and cell damage. According to this theory, the
damage caused by ionizing radiation to a living cell is likely to be repaired, given

enough time and the absence of further hits.
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3.3.3 Radiation effects on cell constituents

The following dose rates refer to human cells. Many studies have established that it takes
about 3,000 to 5,000 rads of absorbed dose to rupture the cell membrane. This major
injury to the cell allows extra cellular fluids to enter into the cell. Inversely, it also allows
leakage of ions and nutrients from the cell.

Radiation effects on cytoplasm are negligible compared to observed effects on structures
which are suspended within it. The first involve the mitochondria. It requires a few
thousand rad to disrupt their function.

Another organelle within the cytoplasm that is effected by radiation is the lysosome.
The lysosome will be ruptured at dose levels between 500 and 1000 rads.

The most radiologically sensitive part of the cell is the nucleus. Because there is a wide
band of sensitivity for cell nuclei, quantifying a dose range is difficult. The major effect of

radiation on the cell nucleus is the inhibition of DN A replication.
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Chapter 4

Stochastic models for cell survival
after irradiation with ionizing
radiation

4.1 Introduction

A cell can be damaged when it is exposed to a burst of ionizing radiation. To explain the
damage mechanism, two theories prevail: the target theory and the absorption of radiation
theory, which we have explained in Chapter 3.

Within a year after Roentgen’s discovery of X-raysin 1895, it was learned that exposure
to ionizing radiation could lead to biological damage. Since that time, a tremendous amount
of research has been done attempting to interpret the reactions which take place from the
moment that radiation enters a living cell until some permanent damage is produced.

Cell radiobiology has proven to be a fertile field for the application of mathematical,
especially stochastic models. Probabilistic methods of data analysis have been inseparably
linked with experimental research in this field [25].

The first mathematical model of the effects of radiation on microorganisms was proposed

by Atwood and Norman in 1949 [5], they studied multi-hit survival curves and introduced
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the target theory. The other hypothesis of the biological effect of radiation has been intro-
duced by Kiga [29] in 1952. In 1967 Gupta studied the probability of survival of a cell with
ionizing radiation [19], and in 1969 he studied a two compartment model for cell survival
after ionizing radiation [20].

In 1971 Gupta and Bansal studied a stochastic model for cell survival under irradiation
with exponential repair and general damage time distribution [21], In 1975 Gupta and
Bansal studied a two compartment model for cell survival under irradiation with general
repair time and exponential damage time distribution [22].

Neyman and Puri [39] in 1976 studied a structural model of radiation effects in living
cells, a stochastic model for cell survival after irradiation was studied by Bansal and Gupta
[6] in 1978, and by Agrafiotis [1] in 1982.

In 1982 Jaiswal, Karmeshu and Rangaswamy [26] studied a semi-Markovian model for

cell survival after irradiation.

In this chapter, we consider several stochastic models for cell survival after irradiation.

(a) a stochastic two compartment model for cell survival after irradiation generalizing

from Bansal and Gupta [6].

(b) a n compartment model for cell survival after ionizing irradiation generalizing Agrafi-

otis [1].

(c) asemi-Markovain model for the behavior of a living cell exposed to radiations gener-

alizing Jaiswal, Karmeshu and Rangaswamy [26].
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4.2

A stochastic two compartment model for cell survival

after irradiation

4.2.1 The stochastic model

Let the cell consist of two compartments ( nucleus and cytoplasm), where cytoplasm consists

of a ground substance, hyaloplasm, and organelles (golgi bodies, mitochondria, ... etc, see

Chapter 3).

We make the following assumptions:

(1)

(2)
(3)

(4)

With respect to the effects of an irradiation process, the cell consists of two compart-
ments Cy (nucleus) and Cy (cytoplasm); each compartment is in a different state of
radio-sensitivity which remains constant throughout the considered period of irradia-

tion.
As soon as a compartment is damaged a repair process begins.

If a compartment has been repaired after being damaged, the cell behaves like a

normal one.
Four alternative states are possible for the condition of a cell after irradiation:

(i) the normal state, Sp, in which there is no damage in the cell;

(ii) the reduced efficiency state Sy, in which only the compartment C; is damaged

and will be eventually repaired;

(iii) the reduced efficiency state Sy, in which only the compartment C; is damaged

and eventually repaired;

(iv) the damage state, S3, in which both compartments are damaged, i.e., the cell

is in state S; and compartment C5 is damaged before repair completion, or in



Chapter 4. Stochastic models for cell survival after irradiation with ionizing radiation 105

state S and compartment ' is damaged before repair completion. This state

is absorbing. Transitions among the states are shown in Figure 4.1.

The damages due to irradiation are assumed to arrive according to Poisson processes
with intensities A and u for the two compartments, respectively (see Kiefer [28], chapters
7 and 16). Thus, for a small interval of time (¢,¢ + k), the probability of a damage of
compartment Cy is Ak + o(h). Let ny(z)h be the first-order probability that a cell whose
compartment C7 has been damaged recovers to the normal state Sy during the time interval
(z,z+h), given that the repair has not been completed before time . The relation between

ni(z) and the repair time density function of compartment Cy, say D;(z), is

Dy (z) = m(z) exp{— /j m(u) du}. (4.2.1)

Similarly, for a small time interval (¢,¢ + k), the probability of a damage of compartment
Cy damage is ph + o(h). We define 73(y)h as the first-order probability that a cell with
damaged compartment Cy recovers to the normal state Sy in a time interval (y,y+ h) after
the damage, given that it has not been repaired before. Again the relation between 7;(y)

and the repair time density function of compartment Cy, say D2(y), is given by

Da(y) = m)expl- [ mlu) du). (122)

When a cell is in the reduced efficiency state Sy, the time until the next damage of com-
partment C; follows an exponential distribution with parameter A (as a consequence of the
Poisson assumption), whereas the repair time follows a general distribution determined by
(4.2.1), and when a cell is in the reduced efficiency state S, the time until the next damage
of compartment C5 follows an exponential distribution with parameter p, while the repair
time has the distribution determined by (4.2.2). If compartment Cy is damaged while the
cell is in state Sp, a transition from Sy to S takes place. If a repair is completed while the

cell is in state Sy, there is a transition from S; to Sp. If compartment Cy is damaged while



Chapter 4. Stochastic models for cell survival after irradiation with ionizing radiation 106

the cell is in state Sy, the cell is considered to pass into the irreparably damaged state, i.e.,
the transition will be S; — S3. Similarly, if compartment Cy is damaged while the cell is
in state Sp, we have a transition Sg — So; if repair is completed in state 53, the transition
leads from Sy to Sp, and if compartment C; is damaged while the cell is in state Sy, we

have a transition from S, to the absorbing state Ss.

The probabilistic quantities of interest to us are:

1- Fy(t), the probability that at time ¢ a cell is in the normal state Sp;

2- Pi(z,t) dz, the probability that at time ¢ a cell which is in the reduced efficiency
state Sy is under repair and the elapsed time of repair is in the infinitesimal interval

(z, 2+ dz);

3- Py(y,t) dy, the probability that at time ¢, a cell which is in the reduced efficiency

state Sy is under repair and the elapsed time of repair is in the interval (y,y + dy);

4- Ps(t), the probability that at time ¢ a cell is in the state Ss of irreparable damage.

Our model assumptions lead to a system of differential equations for these probability
functions. Consider the two real intervals (0,¢] and (¢,¢ 4+ h] where h is very small. The

forward equations for the process can be written as

Pz +ht+h) = Pz,0){(1—n(z)h)(1 - ph)} + o(h), (4.2.3)

Poly+hit+h) = Pa(y,0{(1— na(y))(1 = M)} + o(h), (1.2.4)

Po(t+h) = Po(){(1-Ah)(1 - uh)}

+/OOO Py, O)m()h d.r—l—/ooo Poly, O)ma(y)h dy + o(h).  (4.2.5)
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As b — 0 in equations (4.2.3), (4.2.4) and (4.2.5), we obtain the differential equations

OPl(x,t) + (?Pl(ac,t)
dz ot

+ {m(z) +p}Pi(z,t) = 0, (4.2.6)

8P2(y7 t) + aPQ(yv t)

By t +{n(y) + At Pa(y, 1) = 0, (4.2.7)
and
DO~ R0
—I—/O Pl(as,t)m(as)dx—}—/o Py (y, t)n2(y)dy. (4.2.8)

Equations (4.2.6), (4.2.7) and (4.2.8) have to be solved subject to the following boundary

conditions:

(i) P1(0,¢) = AFy(t) and P»(0,t) = pFy(t); these equations specify that as soon as the

cell enters one of the reduced efficiency states the repair process is started.

(i) Fo(0) = 1; this is the assumption that initially the cell is in the normal state.

Taking Laplace transforms in equations (4.2.6), (4.2.7) and (4.2.8), we find that

0Py (z,s)

Iz +{s+m(z) +p}Pi(z,s) = 0, (4.2.9)
P 4 s tmalo) + NP s) = . (4:2.10

CHATBEG) =1 + [ R nds
+ [ P, (1.2.11)
and the boundary conditions (i) transform into
Pr(0,s) = APj(s), (4.2.12)

Pr(0,s) = uP(s). (4.2.13)
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Equations (4.2.9) and (4.2.10) yield

Pr(z,s) = P;(0,s) exp{ —(s+p)z — /OI m(u) du}7 (4.2.14)

Y
Pi(y,s) = P;0,s) exp{ —(s+ Ny —/ 2 (w) du}. (4.2.15)
0
Inserting (4.2.14) and (4.2.15) in (4.2.11), we obtain

(HATIE() = 1+ PI0,) [ p(e)el el g
+ P5(0,5) /OOO na(y) e~ (V= m(wdur gy, (4.2.16)
and we have
{s+ A+ pu}P(s) =14+ P7(0,s)Di(s 4+ u) + Py(0,5) D3 (s + A), (4.2.17)

where D7(s) and Dj(s) are the Laplace transform of the density functions D;(z) and
D;(y) defined by equations (4.2.1) and (4.2.2). Now using (4.2.12) and (4.2.13) in (4.2.17),
we get

1

1) = AT Dit + 4 - DG+ A (21

Finally, formula (4.2.18) for Fj(s) can be substituted in equations (4.2.12) and (4.2.13),
yielding

. B A
BOS) = T Dt ml Wl - D3+ ) (4-2.19)

* _ N
BO9) = I it ml + Al - D3N] (4.2.20)

Hence, for any repair-time probability densities we can determine the Laplace transforms
of the probability functions Fy(t), Pi(z,t) and Py(y,t) in terms of the Laplace transforms

Di(s) and D3(s).
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4.2.2  Availability analysis of the model:

a) Availability of the model for cell survival after irradiation, denoted by AC(t), is the

probability that the cell is a live at time ¢, by using definition 1.1.3. Then
AC(t) = F(t) + /000 Py (z,t)dz + /000 Py(y,t)dy, (4.2.21)
by the Laplace transform, we have
AC*(s) = P (s) + /OOO Pr (2, 5)da + /OOO Py (y, s)dy, (4.2.22)
and from equations (4.2.14) and (4.2.15), we have

ACT (S) = Pg (3) + Pf(o, 8) /0 e —(stu)z fo 1 (uw)du} dz

+ P5(0,s) /OOO —(oANy=fi e (w)du} gy (4.2.23)
let
n@ = 17311((5))7
) =
we have
ACH(s) = P(s) + Pr(0, )1 (s + p) + P50, 5)r5(s + A), (4.2.24)

and from equations (4.2.18)-(4.2.20), we obtain

1+ Arf(s+p) + pri(s+A)

AC*(s) = . 4.2.25
)= G A= Dils + W]+ ull - Dy(s + NI} (4.2.25)

The steady-state availability of the model is given by
AC(00) = lim AC(t) = lim s(AC™(s)). (4.2.26)

t—o00 s—0
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b) Renewal frequency of the model for cell survival after irradiation, let m,(t), denote
the renewal frequancy, i.e., the derivative of the expected number of renewal of the
model having occurred up time £. A renewal of the model means return the cell to

the normal state Sp. By using defintion 1.1.5, we have
m(0)= [P om@ds+ [ PG ms)a, (1.2.27)
by the Laplace transform, we have
wi) = [ Ao sm@dos [P omd, @229
and from equations (4.2.14) and (4.2.15), we have
mis) = PO [ ma)el e nd gy
+ F;(0,9) /OOO 2 (y)el= et =o' ma(Wdu} gy, (4.2.29)
we have
my(s) = Py (0,s)Di(s+ p) + P5(0,s)D3(s+ A), (4.2.30)

and from equations (4.2.18)-(4.2.20), we obtain
AD3(s 4 p) + pD3(s + A)

m(s) = > > . 4.2.31
)= ¥ A= DiGs + Wl + ll - D3+ NI} (4.231)
The steady-state renewal frequency of the model is given by

my(00) = lim m, () = lim sm;(s). (4.2.32)

t—o00 s—0

4.2.3 Special cases

Let n1(z) and 72(y) be constant, say n;(z) = 61 and 72(y)) = 62. In this exponential case

we have
th
Di(s+ = —
1(5 H) S‘I’H‘}‘Ol
0
Di(s+2) = -

s+A+6y
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and
N 1
rils+u) = stpto
. 1
R

Equations (4.2.18)-(4.2.20), (4.2.25) and (4.2.31) become
)

(s+p+6)(s+A+06)

Fi(s) = m : (4.2.33)
Pr(0,s) = A(S+“+01%(S+A+02), (4.2.34)
P;(0,s) = ”(8+”+015})e(8+/\+02), (4.2.35)
ACH(s) = (s+u+01)'(s+A+02)+¥5+A+02)+u(s+u+01)7 (4.2.36)
and
mi(s) = A01(8+A+02);“02(5+“+01), (4.2.37)
where

R=s(s+A+0)(s+p+6)+As+p)(s+A+602)+pu(s+A)(s+pu+6), (4.2.38)

and the steady state availability and renewal frequency of the model are given by

AC (o0) = m,(o0) = 0. (4.2.39)

We have derived formulas for the probabilities of survival of the cell in the different
states after irradiation in terms of Laplace transforms.

In the case of exponential repair time distributions, (4.2.33)-(4.2.37) show how these
survival probabilities depend on the parameters A, p, 6; and 6;. The most important
function is the probability Fy(t) that the cell is in the normal state Sy at time ¢.

As a numerical example, we have estimated the parameters A, g, #; and 63 in equation

(4.2.33) from the experimental data on survival of human lymphocytes following exposure
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to ionizing radiation reported by Madhavanath [37]. The estimates are given in Table 1.
Laplace inversion of (4.2.33) then leads to the graphs of FPy(t) for various doses of radiation
displayed in Figure 4.2. The graphs show an exponential-type decrease of the probability
of survival of a cell in the normal state over time; for higher doses of radiation the decrease
is much faster, as expected. The renewal frequencies in figuers 4.3 and 4.4 are seen to

inccrease atrongly towards a maxsimum and then to decrease to zero exponentially.

Dose A 7 0, 0,

20 rads | 0.21 | 0.2 | 0.01 | 0.009

80 rads | 0.35 | 0.3 | 0.01 | 0.009

200 rads | 0.57 | 0.4 | 0.01 | 0.009

Table 4.1: Parameters used in cell survival probability
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4.3 A n compartments model for cell survival after ionizing

irradiation

4.3.1 The model

Let the cell consist of n compartments ( nucleus, cytoplasm, plasma membrane, golgi ma-

terial, ... )

We consider the following for irradiation effects:

(1) With respect to the effects of an irradiation process, the cell consists of n regions Cf,

C27...7Cn;

(2) Each region is in a different state of radio-sensitivity which remains constant through-

out the period of irradiation;
(3) As soon as a region is damaged a repair process starts immediately;
(4) If a region has been repaired after being damaged, the cell behaves like a normal one;

(5) m + 2 alternative states are possible for the subsequent condition of a cell which has

been irradiated:

(i) the normal state, say Sy, where there is no damage in the cell,

(i) the reduced efficiency states S;, ¢ = 1, ..., n, in which the region C; is damaged

and eventually repaired,
(iii) the damaged state (the cell is not viable), say S,41.
When a cell is in the normal state Sg and subject to continuous irradiation, the time until

region Cy, (¢ = 1;2,...,n) is damaged while the other regions Cy,C5,...,Ci_1, Ciy1,...,Cp

are functioning with normal efficiency follows an arbitrary distribution function F;(t), 7 =
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1;2;...; n, respectively, the cell is transferred to the state S;, ¢ = 1;2;...;n, the transition is
denoted Sy — S;, (i =1;2;...;n).

When a cell is in the state S;, (¢ = 1;...;n), the repair time of the damaged region
Ci, (i = 1;...;n) obeys an arbitrary distribution function G;(¢), (¢ = 1;...;n), if repair is
completed the cell transfer to the state Sy, the transition is denoted S; — Sp, (¢ = 1;...;n).

When a cell is in the reduced efficiency state S;, (¢ = 1;...;n), and at the time which
all another regions have damage, while C;, (¢ = 1;...; n) is still under repair, the entire cell
passes into the damaged state 5,41, the transition is denoted S; — S,41, (1 = 1;...;n).

Let P(t)dt be the probability that the cell goes to the damaged state S,41 at time ¢
under the above conditions, when it is subject to continuous irradiation starting at time 0.

It is given by

az(2) Py i1 (t — z)da

—

P(t) = /al(x)PLnH(t —z)dz +

0
t
+... + /an(ac)Pn’n_H(t— z)dz, (4.3.1)
0
where
a;(z) = fi(z) H Fy; 1=1;..n, (4.3.2)
J=Lji
Fi(z) = fi(u)du; 1=1;..n, (4.3.3)
t
Piqa(t) = /bi(x)P(t — z)dz + w;(t); i1=1;...;n, (4.3.4)
0
bi(z) = gi(z) H Fy; 1=1;..n, (4.3.5)
J=Lj#i

n n

v = S @ I B[ swds izl (430

J=15%#1 r=1r#jr#i
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Taking the Laplace transforms from (4.3.1) and (4.3.4), we have

Pi(s) = ai(s)Plpa(s) + az(8) Py g (8) + o+ an(8) g (s),  (4.3.7)

Plaii(s) = bi(s)P"(s) +w(s); t=1;2;..;n. (4.3.8)
Then from equations (4.3.7) and (4.3.8), we have

> ai(s)wi(s)
P(s) = —=

(4.3.9)

n

L= ai(s)bi(s)

=1

From the above results, the probability that the cell is viable at time ¢ is

R(t) = /too P(z)dz, (4.3.10)

so that

R(s) = =P (4.3.11)

s

1= Y ar(9)[bi(s) + wi(s)]

= =l : (4.3.12)
s[1 =) ai(s)bi(s)]

=1

Then the mean life-time of the cell is given by
T = R*(s)|s=o0 (4.3.13)

L= @i (s)[bi(s) + wi(s)]
= lim —=1 : (4.3.14)
s—0

s[L= Y af ()b (9)]
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4.3.2 Special cases and conclusion

Let fi(t) = Ne™ i =1;2;..5n,and k=" | A;, we have

A;
s+ k’

ai(s) =

bi(s) = gi(s+k—X),

k— X\

i(s) = m(l_gi(5+k_/\i)§ i=1;2;..5n,

in equations (4.3.9),(4.3.12) and (4.3.14), we have

Eifﬂﬁlﬁlu—yﬂs+k—&»

* =1 kts- AZ)
P*(s) = _ , (4.3.15)
ks =3 Xigi(s+k—\)
=1

S+k—zm[l€_/\i+59i(5+k_/\i)]
i=1 ¢

R*(s) = m
slk+s = Xigi(s+k = \)]
=1
Ml =gi(s+k—X)]
1 2
+Z k+s— X\

= , (4.3.16)
k+s—§:&ﬁ@+k—A0

=1
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mean life-time of the cell is given by:

k— ——— [k -\ ; k— X\
s+ Z;k+S_AJ + 597 (s + k= X))

T = lin% -
s—
slh+s =Y Xigf(s+k = \)]
=1
"ML= gi(k = X))

- ?

k= Xigi(k — i)
=1
at n=2, we have

AAaf(s + A1) (1 = g7(s+ A2)) + (s 4+ A) (1 — g3(s + A1))]
(s+ A1) (s+ A)[s+ Ar(1 = g7 (s + A2)) + Az(1 — g5 (s + A1))]

P*(s) =

and the mean life-time of the cell is given by:

A+ A1 =g (M) + AP (1= g2 (\))

L= (= 0100) + el — g20))]
where
9i(Aj) = /61”92 (t)dt,

this result is obtained by Agrafiotis [1].

Let g;(t) = we™ %4 =1;2;...;;n, we have

. Ai
ai(s) = S—}-k’
* Hi
b - K
Z(S) S_}_MZ_AZ_i_k?
k— X
wi(s) = 1=1;2;..;mn,

st pi— Nk

(4.3.17)

(4.3.18)

(4.3.19)

(4.3.20)
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in equations (4.3.15)-(4.3.17) we have

P*(s) = =1 : (4.3.21)

R(s) = : :

= — ) (4.3.22)
k+5_z /\zlh
1 k+s + p; — AZ
the mean life-time of the cell is given by:
sk "Nk 4 s — )
k‘}'s‘l‘ﬂz - A
T = lm L .
= il
S[k—}_s_z—k—l—s—l—,u'—/\']
i=1 ¢ ¢
- ' - (4.3.23)
—Z L
k4w — X

The relation between the probability that the cell is viable and, time the cell exposed
to a burst of ionizing radiation shown in figure 4.5 at n = 6 and figure 4.6 at n = 2.
These results are agreement with Madhavanath [37], Bansal and Gupta [6] and Section

4.2.

(1) Let \; = X and p; = p, 0 = 1;2;...;n, we have k = nA and

* _ n(n — 1)A?

P (5) ) + s[lu + (Qn _ 1)/\] + ,n(,n _ 1)/\27 (4.3.24)
* _ s+ p+ (2n—1)A

R (5) ) + s[u + (2n _ 1)/\] + n(n — 1)/\27 (4.3.25)
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The mean life-time of the cell is given by:

T— g4 (2n —1)A

; 1 4.3.2
at n = 2, we have
272
P* = 4.3.2
(5) 82 + s[4+ 3A] + 2227 (4.3.27)
and
A+ 3
T= . 4.3.2
2 (4.3.28)
(2) Let n =2, Ay # Az and py # py we have
AAg(AL 4+ A 2
Pr(s) = 2(A1 + 22#1-}-#2—}- S)’ (4.3.29)
Cy
R* = = 4.3.30
0 = & (4:3.30)

where
C= A4+ 8) (M +p2+s) Qa4 +5) = A (A + o+ 5) = Aapa (Ao + 1 + 5),
Cr=(A14+A2) (A4 Ao+ pr + p2) + papa — Ada + s(2(A1 + A2) + p1 + p2) + s2,

(A4 A2) (A4 Ao+ pr + p2) + papz — AiAg
(A1 A2) (A + p2) (A2 4 p1) — Adrpa (A + p2) — Agpa (Ao + )

T = . (4.3.31)

at Ay = A = A and gy = pp = p we have the result in equation (4.3.27) and (4.3.28).
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4.4 A semi-Markovian model for cell survival after irradia-
tion with ionizing radiation

4.4.1 The model

In this model for cell survival after irradiation one assumes the existence of be sensitive
targets. We number the states from 0, ...,k where 0 denotes the normal state, k& the state
of a damage in the nucleus and 1,...,k — 1 other damage states. An ionizing event or hit
of a target initiates changes leading to an observable effect like genetic change or death of
the cell. When a target ¢ is hit, the cell is brought into damage state 7. It is likely that the
cell sooner or later recovers from damage state ¢ and returns to the normal state (state 0)
by virtue of a self-repair mechanism. It may also happen that due to further irradiation,
the cell is unable to recover and becomes functionally impaired or undergoes alteration.
In damage states 1,2, ...,k — 1, the probability of recuperation is high since the nucleus is
unaffected.

For example, water can be converted by radiation into highly reactive compounds of
short life span such as hydrogen peroxide and these highly reactive compounds may in turn
act upon the genetic material of the cell inflicting further damage on the cell, bringing it
from state ¢ where ¢ = 1,..., k — 1 to the damaged state k.

In state k& the probability of recovery is obviously smaller than that in either of the
states 1,2, ...,k — 1. The cell in state k therefore either undergoes mutation with a high
probability to become an altered cell or returns to normal state with a low probability. The
cell damage due to irradiation and subsequent recovery the cell may moves stochastically
among the states 0, 1, ..., k£ to become finally an altered cell state k + 1.

The assumptions underlying the model are as follows:

(i) A living cell is a single entity with respect to the effects of an irradiation process.
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(ii) The cell may be in one of k + 2 states: 0 denotes the normal state; ¢ = 1,2, ..., k,
denote the damage states; & + 1 denotes the cell in altered state. Irradiation may
bring the cell from state 0 to one of the damage states ¢, where ¢ = 1,2, ..., k. A repair
process immediately begins and if accomplished, the cell returns to state 0; otherwise
if in state &k the cell goes into the altered state k£ 4+ 1 and if in state ¢ € {1,...,k — 1}

the cell can go to k or k 4+ 1. Transitions among the states are shown in Figure 4.7.
(iii) The cell moves from one state to another with random sojourn time.

(iv) The successive states visited form a Markov chain and the sojourn time has a distri-

bution which depends on the state being visited and the next state to be entered.

Under the above assumptions, the stochastic behavior of the cell can be described by an
”absorbing” semi-Markov process resulting from the Markov renewal process {X,,,T,,n >
0}, where T, represents the n-th transition epoch and X, is {0,1,..., %,k + 1}-valued and

represents the state entered by the system at T),. Let Ty = 0 and
Q) = [Qi (1), (4.4.1)
where
Qij(t) = Pri{X,q1 = j, Tryr — T, <1 X, = i, (4.4.2)

is the semi-Markov kernel of the process. Then

0 Qoi(t) Qo2(t) Qoa(t) ... Qor—1(t) Qox(t) 0
Q1o(t) 0 0 0 e 0 Qux(t) Qir+1(t)
Q20(t) 0 0 0 e 0 Qax(t) Qa1 (L)
Qt) = : : : : . : : :
Qr-10(t) 0 0 0 . 0 Qr-1r(t) Qr-1r41(t)
Qw() 0 0 0 0 0 Qrisr (1)
0 0 0 0 ... 0 0 Qrrirsi(t)

(4.4.3)
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The associated Markov chain has the transition probability matrix

0 por Ppoz Po3s --- Pok-1  Pok 0
po 0 0 0 ... 0 Pk Plk+1
po 0 0 0O ... 0 P2k P2k+1
P = [Qij(c0)] = : T : : (4.4.4)
Pk—10 0 0 0 ... 0 pr1k Pk—1k+1
Po O O 0 ... 0 0 Pkk+1
0 0 0 0o ... 0 0 1

Let B=14{0,1,...,k} be the set of transient states. At any time ¢ the state of the system is

denoted by the variable

i X,eB;, T, <t<T,y1<L,n>0,
Y, = (4.4.5)
k+1; ift > L,

where

L =sup{T,},
n
is the life span of the cell, i.e., the time taken by the cell to be transformed from the
normal state into the ”genetic change or death of the cell” altered state. We have that
Y ={Y;,t > 0} is a semi-Markov process.

We study the following probabilities:

(1) Distribution of L, the life time of the cell,
(2) ¢i;(t) = Pr{Yi=jlYo=1i};  i,j€B,

(3) Expected time spent in each state during the cell life.

4.4.2 The life span of the cell

Let L; represent the life span of the cell starting from state : € B at ¢t = 0 and let

o;(t) = Pr{L; <t}; i=0,1,..,k (4.4.6)
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Then

ag(t) =

ai(t) =

a9 (t) =

«; (t) =

Ozk_l(t) =

Ozk(t) =

ai(t) © Qo1 (t) + az(t) © Qoz(t) + ... + i (t) © Quilt)

Fo Fap(t) © Qok(t);

Qri41(t) + ap(t) © Qo(t) + ax(t) © Q1r(t);

Qar+1(L) + ap(t) © Q20(t) + ar(t) © Qar(t);

Qiky1(t) + ao(t) © Qio(t) + ar(t) © Qi (t); (4.4.7)
Qr—1k41(t) + ao(t) © Qr-10(t) + ax(t) © Qr—1x(t);

Qrk+1(t) + ao(t) © Qro(t).

By using Laplace transforms in the system of equations (4.4.7), we have

a5 (s)

= 1(s)Qui(s) + a3 (5)Qoa(s) + - + i ()Q0i(9)

+o A+ g (5)Qok(5);

= QTr41(5) + a5(5)QTo(s) + x(5)QTk(5);

= Q241(5) + ag(5)Q30(5) + k() Q3 (5);

ey

= Qiks1(s) + ag(s)Qjo(s) + aj(s)Qik(s); (4.4.8)

ey

= Qro1p (8) + ag(5)Qim10(8) + @i (8) Q14 (5);

= Q};k-l—l(s) + a5 (5)Qo(5)-
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From (4.4.8), we have

k
ZQ&'(S)Q%H ‘|‘ZQ02 () Qrit1(5)
ay(s) = =— : (4.4.9)

1-— ZQ(*M-(S) 0 Z:QoZ (8)Q%o(s)

Let & = 2. We have

Q51(8)Q73(8) + Q2(5)Q33(s) + Q51 (8)Q72(5)Q35(5) (4.4.10)
1= Q5,(5)Q70(5) — Q52(5)Q30(5) — Q51 (5)Q74(8)@30(5) o

This result was obtained by Jaiswal et al. [26].

ag(s) =

4.4.3 Probability of the cell being in different states

Let ¢;; = Pr{Y; = j|Yo = i} denote the conditional probability of the cell being in state
J where starting from state ¢. Let R;;(t) denote the mean number of visits to the state j
during [0, ¢] if the system started in state ¢ and
(1)=1-> Qji(t),j € B,t >0, (4.4.11)
1€B
Lemma 4.4.1. Cinlar [9], p.337

For any t,7 € B and t > 0 we have

¢ij(t) = /dRZ'j(u)H]‘(t — u) (4.4.12)

Then by standard arguments, where R(t) = [R;;(t)] is the Markov renewal kernel cor-

responding to Q(t) defined in equation (4.4.3), the LST of R(t) is given by
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oo Tor To2 --- TOok-1
1 o T 712 ... Tik—1
é

"o Tk1 Tk2 --- TEkk—1

where

k k-1
5= 1= Y Q) - 3 Qa(IQi(:)Qh(),

roo = 1,

roi = Qui(s); 1=1,2,...,k—1,

k—1
roe = Qul(s) + D Qui(s)Q(s).
=1

(4.4.13)

We assume the existence of density functions and denote them by lower case letters.

From equations (4.4.12), we have

ngo(s) — RSO(SQCSIJS(S)

1 k
= =Y )

k k—1 -1
{1 = D dss)din(s) - quxs)qu(s)qzo(s)} -

For k = 2 we see that

Pools) = —(1— a5 (s) — q5a(s))

®» | =

(4.4.14)

1= g5, (s)470(5) — 452 (5)a50(s) — QSl(S)qﬁ(S)qﬁo(s)} . (4.4.15)

This result was obtained by Jaiswal et al. [26].
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4.4.4 Expected time spent in each state

Let u;; denote the expected time in state j during [0, ¢], the initial state being i. Then (see

Cinlar [9], p.339),

uii(t) = j dR;; (u) t/_qu(u)du, (4.4.16)

and the expectation of the total time spent in state j is

uij = Rij(o0)m; = ([L — PN ym;, (4.4.17)
where
m; = /Hj(u)du, (4.4.18)
0

is the mean sojourn time in state j and P defined by equation (4.4.4).

Therefore

mo

Uop = 5—7
1

wg; = mgpm; i=1,2, . k-1,
1
m k—1
k

Uy = W(;pomik—l-p%)’

where

k k-1
h=1- Zpomio - Zpomikpko-

Then the expected life span of the cell is

k k-1
1
E(Lo) = g(mo + E Poim; + M E PoiPik)- (4.4.19)

Equation (4.4.19) can be obtained directly from equation (4.4.9) or from Barlow and

Proschan [7]. The variance of Ly can also be obtained from equation (4.4.9).
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For &k = 2 we have

1
E(Lg) = g(mo + m1po1 + mapoz2 + Ma2po1Poz), (4.4.20)

where

0y =1- Po1P1o — Po2P20 — Po1P12P20;

a result obtained by Jaiswal et al. [26].

4.4.5 Special cases

Consider the cell irradiation problem with Poisson damage and arbitrary repair process.
Let A, ¢ # j, be the damage rate from state ¢ to state 7, (¢ = 0,1,..,k,j = 1,2,...,k+ 1)

and d;o(t) be the repair time density from the state 7, 7 = 1,2, ..., k to the normal state 0.

We have
k
qi(t) = Ao exp[ - Z /\ojt]; 1=1;2;..;k, (4.4.21)
=1
qro (t) = dko(t) exp[ — /\kk-l—lt]a (4.4.22)

and where e = 1;...;k — 1,

Gio(t) = dio(t) exp[ — (Nigg1 + Air)t], (4.4.23)

qik (t) = Ak exp[ — (/\ik + /\ik-}—l)t] . (4.4.24)
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For the Laplace transforms we have

Aoi

Gi(s) = ——————  i=12.5k, (4.4.25)
(X521 Aoj +9)
Go(s) = digiepr +Ain+5); =125k 1, (4.4.26)
Go(s) = dio(Arkt1 + 5), (4.4.27)
" Aik .
¢ (s) =125k 1. (4.4.28)

(s+ XNk + Nigg1)

Let
k
A=) Ao
7=1

From equation (4.4.14), we have

Pools) = {(/\ +8) — Aokdro(Akk+1 + )

k-1 -1
Aikdly(Akk+1 + )
- E Xoi l d% (N + s 10 ) 4.4.2
— 0 ( oAk + Aiky1 + ) + (Nike + Aikg1 + ) ) ( 9

For k = 2, it follows that

Aoi .
q0:(s) —— i=1,2, (4.4.30)
(Ele AO] + S)
Go(s) = dig(Mz+ Az +s), (4.4.31)
Gol(s) = dio(Aas+s), (4.4.32)
A
¢ (s) - (4.4.33)

(s 4 A2+ A13) ’
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and

oo(s) = {(Am + Aoz + 8) — Ao2dig(A2s + 5)

= Aot (diko(/\m + A1z +s) + (4.4.34)

-1
A12d5( A3 + 8))
(A24+ Az +s) ’

A similar result for & = 2 was obtained by Jaiswal et al. [26], however his equations
corresponding to (4.4.30)-(4.4.34) were not correct.

Let dyo(t) = Bre 01t and dyol(t) = fse= %t we have

R
Bools) = 5 (4.4.35)

where

B = A+ Ads+0+s)(s+ A3+ 602)(Az+ Az + )
o = (Aor+Aoz+s)( M2+ Aizs+ 61 +5)(s+ Az +02)( A2+ Az + s)
—02(A12+ Az + 01 + s){ Ao2(A12 + Az + s) + Ao Aiz}

—01201( A2z + 02 + s)( A2+ Az + 5).

The relation between the conditional probability of the cell being in state 0 where
starting from state 0 and the time the cell was exposed to a burst of ionizing radiation is
shown in Figure 4.8.

Set

A12 = A02 - A?B = 02 = 07
A01 — A13 = Av

01 = K
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in equation (4.4.35). We find that

* S+A+p
s) = , 4.4.36
Ol P Wy E S Wy g v (4.4.36)
a result obtained by Bansal and Gupta [6]. Putting
A1z = 0,
Aoz = Az = p
Aot = Agg = A,
in equation (4.4.35), we get
6 A+ 6
(s ptby)(s+ A+ 065) . (4.4.37)

%&@I(S+M+00@+A+0g+A@+MM5+A+&)+u@+u+00@+A)

This result was already obtained in Section 4.2 (equation (4.2.33)).
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S, (normal state) S/ (reduced efficiency state)

n 1(X) C,
h
—

A

Cy

U ﬂ2 (y) H

Y Y
; > C1
Cl

S, (reduced efficiency state) S, (damage state)

Figure 4.1: Transitions among the states of the model.
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survival probability

1

Figure 4.2: The survival probability of the cell after ionizing radiation, under 200 rads
(solid), 80 rads (dotted) and 20 rads (dashed).

availability

Figure 4.3: The availability of cell after ionizing radiation, under 200 rads (solid), 80 rads
(dotted) and 20 rads (dashed).
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Figure 4.4: The renewal frequency of cell after ionizing radiation, under 200 rads (solid),

80 rads (dotted) and 20 rads (dashed).

is viable

probability of the cel
1

0.8¢

Figure 4.5: The relation between the probability that the cell is viable and, time at n» = 6,

under 200 rads (solid), 80 rads (dotted) and 20 rads (dashed).
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probability of the cell is viable
1

0.8¢
0.6}
0.4

0.2

Figure 4.6: The relation between the probability that the cell is viable and time ¢ at n = 2,
under 200 rads (solid), 80 rads (dotted) and 20 rads (dashed).
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damage state

normal state /_\ 0

damage state

nucleus damage

damageb’/\fg_@

damage state

altered state

Figure 4.7: Transitions among the states of the model.
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survival probability

Figure 4.8: The survival probability of the cell after ionizing radiation, under 200 rads
(solid), 80 rads (dotted) and 20 rads (dashed).
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