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Chapter 1

Introduction

International trade has steadily increased in recent decades because of the globalization of
consumer markets and production chains. Due to its low costs, the transport of goods by
sea accounts for over 90% of the world trade, and moreover 13% of the transported goods
(in dead-weight tons) are shipped by container ships carrying their goods in standard-size
containers (cf. [54, 108]). The world maritime trade increased from less than 6 billion tons
carried trade in the year 2000 to more than 12 billion tons in 2020 and is expected to increase
further to almost 18 billion tons in 2030 (cf. [55]). The carried goods in containers are
transshipped in huge container terminals for onward transport where container ships, trains
and trucks deliver and collect a huge number of containers. Furthermore, not only the volume
of world trade increased, but also the associated production capacities, so that operators
of production facilities in the steel industry, for example, are faced with storage challenges.
Additionally to the already mentioned container terminals and container ships in maritime
transport, transshipment points play an important role in the transport regardless of the goods
considered like in warehouses or tram depots, cf. the survey in [73]. Increasing the efficiency
may lead to faster access times on stored goods, could reduce the energy consumption of
used machines, and hence the operational costs.

Often a system of multiple stacks is used to store a large quantity of items in a storage area
of limited size. Indeed, stack-based storage systems are easy and inexpensive in operation but
only the topmost item of every stack can be retrieved at a time during the retrieval process
due to the last–in, first–out (LIFO) policy. In this context, an efficient operation of these
storages is essential in competition since a large number of items are handled in these areas,
so that inefficient processing would turn them into a bottleneck. Usually, in storage areas the
following optimization problems are considered: In loading problems, incoming items arrive
at a storage area and have to be assigned to appropriate locations. In premarshalling problems,
items already in a storage area are sorted to increase efficiency. In unloading problems, some
(or even all) items have to be retrieved in a given sequence to be further transported or
processed, respectively. The described loading and premarshalling problems aim to reduce
the retrieval effort during the unloading phase as much as possible so that these two problems
always include additional available information of the subsequent problem. On the one hand,
the retrieval effort includes cost-causing effects as energy consumption, machine wear, etc.
and, on the other hand, the time required for retrieving the desired items which cause cost
for employees and directly influences the waiting time for downstream processes. In turn,
the time required for retrieving all demanded items is mainly influenced by relocations of
items within the storage system during the retrieval process. Items must be relocated as a
consequence of the predefined retrieval sequence and the LIFO policy of a stack-based storage
system. If an item that has to be retrieved later on is placed above an item that has to be
retrieved earlier, then the former item must be relocated to another stack to allow access to
the latter item, i.e., the former item blocks access to the latter item. Farther, the relocated
item may block another items again and so on. A smartly guided retrieval strategy as well as
an advantageous starting configuration of the storage due to premarshalling or convenient
loading offers the possibility of reducing the retrieval effort. Obviously, all three optimization
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Chapter 1 Introduction

problems are important to consider in order to guarantee efficient storage operations. Hence,
all three problems are incorporated in this thesis and a brief overview is given in the following
paragraphs (for a more detailed overview cf. [73]).

Typical for loading problems is that items arrive at a storage area of limited size in a
given sequence and must be stored in the given order without allowing further relocations
(movements of items to other stacks) after items are placed in the storage. In the elementary
loading problem, called parallel stack loading problem (PSLP), the storage is initially empty
and item priorities of the subsequent unloading stage (attributes that determine the retrieval
order of the items) are taken into account additionally. [15, 31] investigated the problem
with different (surrogate) objective functions. Moreover, the problem of loading items is
considered under various conditions. For instance, [11, 27] solved it as an online problem
using heuristics, whereas others focused on offline problem variants and considered different
robust settings (cf., e.g., [16, 69]) or restrictions on items regarding stackability as well as
items that are already placed in the storage (cf., e.g., [18, 74, 83, 120]).

The premarshalling problem (PMP) aims to optimize the performance of a storage area
before the main unloading phase starts. Usually, in the practical optimization process, the
items stay inside the storage and no additional space exists. All relocations between the
stacks are counted equally in the objective function and the final layout is always perfectly
sorted in such a way that no additional relocations are necessary in a later unloading phase.
A common assumption is that the time for the resorting is not limited and the goal is to
perform the rearrangement with as few relocations as possible, i.e., in the shortest possible
time. Overall, the problem occupies an important phase in the optimization process, which
exploits free time windows without loading or unloading operations and thus relieves the
important and highly time-constrained unloading phase. In this context, a wide range of
heuristics covering different methods have been developed, e.g. local search approaches
(cf. [21, 47, 50, 61, 72]), opening procedures (cf. [35, 39, 46, 51, 58, 115]), or even
machine learning approaches (cf. [49]) as well as exact algorithms such as integer programs
(IPs) (cf. [26, 70, 84]), branch-and-bound (cf. [86, 97, 98, 105, 122]) or branch-and-price
approaches (cf. [17]). Moreover, different aspects of the problem have been considered which
include crane scheduling of more than one crane (cf. [24]), uncertainty models (cf. [80, 89,
105]), transport costs instead of counting relocations ([25]), temporary additional space for
placing items during the sorting process (cf. [115]), and limited time for performing the
premarshalling process (cf. [126]).

As already mentioned, during the unloading phase, items located in a storage shall leave
it in a specific order related to a given sequence and one has to decide which items leave
the storage in which order and which relocations are performed. To access and retrieve a
certain item, it may be necessary to relocate some blocking items above, which results in
unproductive relocations. The goal of this optimization problem is to perform the retrieval of
all relevant items with as few relocations as possible, just as in the PMP. The usually used
representative of unloading problems is the blocks relocation problem (BRP), also known as
container relocation problem (CRP), and a large number of publications have already been
published in connection with this problem. A classification scheme for different BRP variants
can be found in [79]. Common assumptions are that all items must be retrieved in a fixed
order and all relocations are counted equally. Again, a large number of heuristics have been
proposed, e.g., various opening procedures (cf. [19, 20, 33, 57, 58, 59, 60, 64, 85, 109, 112]),
branch-and-bound based heuristics (cf. [3, 39, 106, 107]), local search algorithms (cf. [6, 22,
37, 92]), and machine learning approaches (cf. [119]) as well as exact approaches such as
IPs (cf. [19, 26, 43, 78, 79, 85, 100, 112, 117, 118]), branch-and-bound, -cut, -price (cf. [2,
33, 34, 78, 87, 96, 99, 107, 118, 121, 124]). Furthermore, several facets of the problem have
been investigated, including uncertainty or incomplete information (cf. [4, 12, 13, 42, 68,
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125]), travel times instead of uniform relocation costs (cf. [1, 6, 52, 53, 71, 76, 93, 94, 92,
109, 111]), moving multiple items at a time (cf. [76, 123]), due dates and waiting times (cf.
[77]), a restriction to exactly two priority classes (multiple items with the same priority, cf.
[82]) and also various other theoretical investigations.

A generalization of the BRP is the blocks relocation problem with item families (BRPIF), in
the literature also called slab stack shuffling (SSS) problem. In contrast to the BRP, all items
belong to a certain family indicating the main type of the item and not all items must be
retrieved, but rather items with certain item families must be selected in a predefined order.
Usually, there exist multiple items with the same item family, which implies that the selection
process is a very important part of the problem. For this problem variant, opening procedures
(cf. [103, 116]), a population based algorithm (cf. [23]) and local search algorithms (cf. [23,
91, 95, 101, 102]) have been developed as well as exact algorithms based on IPs (cf. [36, 38,
88, 91, 103, 116]) or dynamic programming (cf. [7, 103]). In the literature, other problems
as crane scheduling (cf. [88]), a lot-building problem (cf. [36]), and a PMP ([44, 45]) are
investigated in connection with the BRPIF.

The three problem areas of loading, premarshalling and unloading play an important role
in running warehouses with stack-based storage systems and have therefore been treated
in many different aspects. Regarding the high complexity of the problems, often additional
simplifying assumptions such as unrealistic many free space or very restrictive constraints on
item relocations in the storage are considered while possibly relevant aspects as uncertainty
are omitted. For example, in several cases, items have to be moved at most once or items
must be moved back to their departure stack after retrieving the current target item in the
unloading process. Both limitations affect the model very strongly, since large parts of the
practically achievable solution space are cut off. However, the main target is to reduce the
retrieval effort as much as possible to run the storage efficiently which is directly linked to
the particular relocations performed within the storage. In this context, surrogate objective
functions are used to be able to apply exact algorithms to problem instances of non-trivial
size. For example, often only blocking items or adjacent blocking items are counted instead
of concentrating on the actual relocations that are necessary to retrieve the items in the
current setting. However, the solutions of these algorithms are then used afterwards, not in
relation to the surrogate objective but in the context of the originally intended more complex
objectives. Furthermore, in practice one has to deal with the impact of omitted aspects of
the problem and constraints that are different than expected. One target of this thesis is
to cope directly with the actually desired objectives and not with simplified versions of the
originally intended problem as well as to incorporate decisive components if possible. This in
turn allows using more realistic models and achieving better results w.r.t. the more precisely
defined objective functions. In particular, the problem complexity can be traced back to the
subsequent unloading problem and it will become apparent in the course of this thesis that
it may often be useful to divide the problems into two partial aspects and to solve them in
two stages. On the one hand, this decomposition allows several aspects of a problem to be
evaluated hierarchically and, on the other hand, to deal with the desired objective function
instead of falling back to surrogate objective functions. For example, the most critical aspect
of a problem may be varied in the first stage with a local search approach while in the second
stage a reduced problem with fixed decisions and hence a reduced complexity can be solved
quickly.

Organization of the thesis

This thesis is organized as follows. In Chapter 2, we investigate the elementary loading
problem, the PSLP. We consider the PSLP with the objective to minimize the number of
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Chapter 1 Introduction

reshuffles (reshuffles is a alternatively used term for relocation in the literature) in the
unloading phase. Since in the PSLP the incoming items have to be stored according to a fixed
arrival sequence and further adjusting relocations are not allowed, some relocations cannot
be avoided later on. In this context, we give a strengthened NP-completeness proof and
study the two surrogate objective functions total number of unordered stackings of adjacent
items and total number of badly placed items. These objective functions are established in the
literature to estimate the number of reshuffles and we compare them theoretically as well
as in a computational study with the desired objective function number of reshuffles. For
this purpose, mixed-integer programming (MIP) formulations and a simulated annealing (SA)
algorithm are proposed. Altogether, it turned out that minimizing the number of reshuffles
directly with a two-stage SA approach is superior to the application of exact MIP approaches
to the surrogate objective function mentioned above.

Within Chapter 3, we consider the PMP, where items in a storage area have to be sorted
for convenient retrieval. A new model for uncertainty is introduced, where the priority
values induced by the retrieval sequence of the items are uncertain. We propose a robust
optimization approach for this setting, study complexity issues and provide different MIP
formulations. Moreover, we investigate helpful properties which can speed up the solution
process in several cases. In a two-stage approach we use the results from the theoretical
analysis and MIP formulations to calculate optimal objective values of optimally robust storage
configurations in a first step and compute premarshalling solutions with a minimal number of
reshuffles to reach optimal configurations in a second step. In a computational study using a
wide range of benchmark instances from the literature, we investigate both the efficiency of
the approach as well as the benefit and cost of robust solutions. We find that it is possible to
achieve a considerably improved level of robustness by using just a few additional relocations
in comparison to solutions which do not take uncertainty into account.

In Chapter 4 we consider the process of unloading items from a storage (e.g., a warehouse,
depot, etc.) in the case of the BRPIF. For a given sequence of families, it has to be decided
which item of each demanded family is unloaded from the storage with the objective to
minimize the total number of reshuffles. Besides new complexity results, we propose IP
formulations and a two-stage SA algorithm. Computational results are presented for real-
world data from a company, benchmark instances from the literature, and randomly generated
instances with different characteristics.

In Chapter 5 we conclude the thesis with a comprehensive summary, highlight the main
contributions and give an outlook for further research.
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Chapter 2

The parallel stack loading problem
minimizing the number of reshuffles in the
retrieval stage

In this chapter, we discuss the parallel stack loading problem (PSLP) as an important basic
problem of the loading stage minimizing the number of reshuffles in the unloading stage.
The study in this chapter has already been published in Boge and Knust [8] and is organized
as follows. First, we give an introduction in Section 2.1. In Section 2.2 we describe the
problem setting more precisely, in Section 2.3 we prove that the problem is strongly NP-
hard for all considered objective functions. In Section 2.4 we derive some bounds for the
differences between different objective functions estimating the largest errors which can
occur. Additionally, we propose new lower bounds. Section 2.5 is devoted to mixed-integer
programming (MIP) formulations and a simulated annealing (SA) algorithm. In Section 2.6
we report results of a computational study. Finally, some concluding remarks can be found in
Section 2.7.

2.1 Introduction

Storing items in a storage area of limited size is one of the mentioned three major optimization
problems regarding transshipment points or warehouses of items which are organized in
stacks. Usually, the process is organized in two stages: in the loading stage incoming items
arrive at a storage area and have to be assigned to appropriate locations in stacks. Each
item has some associated data (e.g., its weight, size, destination, need for special equipment,
expected retrieval time) taken into account in different stacking policies (cf. Dekker et al.
[27]). Later on, in the unloading stage some (or even all) items have to be retrieved in a
certain sequence (to be further transported by train, ship or truck). Since usually only the
topmost items in the stacks can immediately be retrieved, this leads to relocations (reshuffles)
of items blocking the requested items. In order to increase the efficiency of the storage area,
such (unproductive) moves should be avoided as much as possible.

A lot of literature has tackled the unloading problem minimizing the number of reshuffles
(cf., e.g., Lehnfeld and Knust [73]). However, often reshuffles cannot be avoided in the
unloading stage since the items have not been stacked well in the previous loading stage. This
is caused by the fact that during the loading process usually the items arrive consecutively
(e.g., by trucks or trains) and have to be stored according to this fixed order. Additionally,
often at this time it is also not known in which sequence the items will be retrieved later
on. For this reason, reshuffles cannot be exactly planned in the loading stage, but should be
anticipated somehow. One possible approach considered in the literature is to minimize the
number of expected reshuffles (Kang et al. [61] and Kim et al. [65]). In both publications it
is assumed that reshuffles are caused by storing items in a wrong order w.r.t. their weights
and some weight distribution function is known.
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Chapter 2 The parallel stack loading problem

Boysen and Emde [15] considered a surrogate objective function in the loading phase,
trying to minimize the total number of so-called “blockages” which occur if an item to be
retrieved later is stacked directly on top of another more urgent item which is to be retrieved
earlier. However, as stated in their conclusion “an investigation of which surrogate objective
shows greatest accuracy in approximating the retrieval effort” would be interesting. In this
chapter, we try to deal with this research question in more detail. We tackle some theoretical
issues and provide results of a computational study comparing different reshuffle-oriented
objective functions for storage loading problems.

2.2 Problem formulation

In this section, we describe the considered problem more formally and introduce the used
notations. We are given a storage area which consists of m stacks Q = {1, . . . ,m}, each stack
contains b levels (i.e., at most b items can be stored in each stack). In the so-called PSLP
considered by Boysen and Emde [15], n items from a set I = {1, . . . ,n} arrive in a sequence
πin and have to be stored in this sequence (which means that an item arriving later cannot
be stacked under an item arriving earlier). Each item i has a priority value pi ∈ {1, . . . ,n}
derived from its (estimated) retrieval time. If pi < pj, item i is expected to be retrieved
earlier than item j. The goal is to determine a feasible storage configuration c in which each
item i ∈ I is assigned to a location in a stack q ∈ Q such that no stack contains more than b
items.

In practice, often some other constraints may have to be respected, for example, stacking
constraints (not every item may be stacked on every other one), items must be stored in groups
(e.g., w.r.t. destinations, sizes or weights), some items need additional special equipment
(e.g., reefer containers).

For a given storage configuration, an item is called “blocked” if one or more items with
later retrieval time (so-called “blocking” items) are stacked above it in the same stack (such a
situation is sometimes also called a “mis-overlay” Voß [110] or an “overstow” Delgado et al.
[28]). Before retrieving a blocked item, each blocking item has to be removed from this stack
and relocated to another stack. Such an unproductive move is also called a “reshuffle”.

To evaluate a storage configuration with respect to blockings and the number of reshuffles,
the following measurements have been suggested:

– total number of unordered stackings of adjacent items (USadj) mentioned in Boysen and
Emde [15] and Lehnfeld and Knust [73]: Every pair of adjacent items in a stack is
counted as unordered if the upper item blocks the one below.

– total number of badly placed items (BI): The term is also called “number of confirmed
relocations” in Kim and Hong [64]. An item is “badly placed” (cf. Forster and Bortfeldt
[39]) if it is blocking an item placed below in the same stack (not only the adjacent
item directly below). We call an item “well placed” if it is not badly placed.

– RS: The actual number of reshuffles needed to unload all items from the stacks according
to their priorities. We do not count the retrieval operations here (since all n items
have to be retrieved in the unloading process, we always have a constant number of n
retrievals).

Example 2.1. To illustrate the difference between the objective functions USadj and BI, consider
a storage area with n = 9 items in m = 3 stacks of height b = 5. For the configuration c shown
in Figure 2.1 we have USadj(c) = 3 (items 5, 7, 8) and BI(c) = 4 (items 4, 5, 7, 8). □
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Figure 2.1: Unordered stackings (underlined) and badly placed items (in bold).

Obviously, the values USadj(c) and BI(c) define lower bounds on the total number of
reshuffles since each blocking item has to be relocated at least once. Furthermore, it is easy
to see that for each storage configuration c the inequality USadj(c) ⩽ BI(c) holds, since all
unordered stackings are also counted in the total number of badly placed items. However,
as shown by Boysen and Emde [15], finding a solution for the PSLP minimizing USadj is
already strongly NP-hard.

Later on, after all items have been stored in some way, in the so-called blocks relocation
problem (BRP), the items have to be retrieved from the storage in an order respecting their
priorities. Usually, for the priorities, two different situations are considered. While in some
situations all priorities are different (i.e., the retrieval sequence is uniquely determined), in
other situations also duplicates occur (i.e., several items may have the same priority value, for
example, if they have to be loaded onto the same ship or train). In this case, all items with
priority 1 have to be retrieved first (in an arbitrary order), then all items with priority 2, etc.

Furthermore, in the literature the BRP appears in two different versions (cf., e.g., Caserta
et al. [19]): in the “restricted” BRP only so-called “forced moves” are allowed which means
that only blocking items on top of the next item to be retrieved may be reshuffled. On the
other hand, in the “unrestricted” BRP also so-called “voluntary moves” are allowed (which
means that arbitrary items may be reshuffled). In the following, we use the notations RSr
and RSu to denote the number of reshuffles in the restricted and the unrestricted version,
respectively.

Example 2.2. To illustrate the difference between the restricted and the unrestricted BRP, consider
a storage area with n = 6 items in m = 3 stacks of height b = 3.
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(a) RSr = 6 reshuffles needed.
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3
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3

(b) RSu = 4 reshuffles needed.

Figure 2.2: Restricted and unrestricted BRP.

For the restricted BRP (cf. Figure 2.2a), at first, items 5 and 6 have to be reshuffled to get
access to item 1. After retrieving this item, items 5 and 6 have to be reshuffled again to free item
2. Finally, after retrieving item 2, two more reshuffles of items 4 and 6 have to be done. Hence, in
total RSr = 6 reshuffles are needed. On the other hand, for the unrestricted BRP (cf. Figure 2.2b),
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Chapter 2 The parallel stack loading problem

only RSu = 4 reshuffles are needed. If we first do a voluntary move of item 2, items 5 and 6 have
to be reshuffled only once. □

While for the unrestricted version less reshuffles may be necessary, computing an optimal
solution is much more time consuming due to the larger solution space (cf. Tanaka and
Mizuno [96]). Therefore, a lot of heuristics only deal with the restricted version. However, it
was shown by Caserta et al. [19] that for both versions minimizing the number of reshuffles
for a given storage configuration is strongly NP-hard. Scholl et al. [90] suggested different
measures to predict the number of reshuffles and compared them in a computational study.

2.3 NP-hardness

Boysen and Emde [15] already proved that the PSLP minimizing the objective function USadj
is strongly NP-hard. In their proof the more general situation with duplicate priorities and
an unrestricted b (as part of the input) is considered. In the following, we strengthen the
result by showing that the PSLP is already strongly NP-hard for unique priorities and any
fixed b ⩾ 6. Moreover, since we prove NP-completeness for the decision value 0, we cover
all three objective functions USadj, BI, RS. We give a reduction from the problem mutual
exclusion scheduling (MES) on permutation graphs (cf. Jansen [56]), similar to the reduction
to the BRP used in Caserta et al. [19].

Theorem 2.1. For the PSLP and each fixed b ⩾ 6 it is strongly NP-complete to decide whether
all items can be stacked without any blockings.

Proof: Obviously, the PSLP belongs to the class NP. We show NP-completeness by a reduction
from MES on permutation graphs. In the decision version of MES we are given a set V of
n jobs with unit processing times, M machines and T time slots. Additionally, there is an
undirected conflict graph G = (V,E) where an edge {i, j} means that jobs i and j cannot be
processed in the same time slot simultaneously. We ask whether there is a partition of V
into at most T independent sets Ut (t = 1, . . . , T) (independent means that there is no edge
{i, j} ∈ E for any pair i, j ∈ Ut) with |Ut| ⩽M for all t. Here, Ut corresponds to the set of jobs
processed in time slot t. Since we have M machines, at most M jobs can be processed in each
time slot. In Jansen [56] it has been shown that MES is strongly NP-complete for permutation
graphs and any fixed M ⩾ 6. Recall that a permutation graph is a graph Gψ = (V,Eψ)
associated with a permutation ψ = (ψ1, . . . ,ψn) where an edge {i, j} ∈ Eψ exists if i < j and
ψi > ψj.

Given an arbitrary instance I of MES with a permutation ψ, T time slots and M machines,
a corresponding instance I ′ of the PSLP is constructed where for each job i ∈ V one item
i with priority pi = i is introduced. Moreover, we have m := T stacks of height b := M,
and the arrival sequence for the n items is πin := (ψn, . . . ,ψ1). Then, for item i < j (which
implies pi < pj) there is an edge {i, j} ∈ Eψ in the conflict graph if and only if πini < πinj , i.e.,
j becomes badly placed if it is put to the same stack as i.

We illustrate this construction by a small example in Figure 2.3. In I there are M = 4
machines, T = 3 time slots, and n = 10 jobs in the permutation ψ = (4, 1, 3, 10, 2, 6, 5, 8, 7, 9).
Figure 2.3 shows the corresponding conflict permutation graph Gψ. The constructed instance
I ′ of the PSLP has n = 10 items i = 1, . . . , 10 with priorities pi = i, m = 3 stacks of height
b = 4, and the arrival sequence is given by πin = (9, 7, 8, 5, 6, 2, 10, 3, 1, 4).

For example, a feasible solution for I consists of the three independent sets U1 = {4, 5, 7, 9},
U2 = {2, 6, 8}, and U3 = {1, 3, 10}. If we put each of these sets into one stack of the storage
area according to πin, we get a feasible solution for I ′ without any blockings (cf. Figure 2.4).
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Figure 2.3: Conflict permutation graph Gψ for the permutation ψ = (4, 1, 3, 10, 2, 6, 5, 8, 7, 9).

1

9

7

5

4

2

8

6

2

3

10

3

1

Figure 2.4: Feasible solution for the PSLP without blocking items.

In the following, we show that a feasible solution for an arbitrary instance I of MES exists
if and only if a feasible solution without blockings exists for the corresponding instance I ′ of
the PSLP.

“⇒”: First assume that a feasible solution for I exists with at most T independent sets Ut,
each containing at most M jobs. Two arbitrarily chosen jobs i < j of an independent set Ut
must satisfy ψi < ψj since otherwise there would be an edge in the conflict graph. Thus, we
may put all items of one independent set into one stack according to the arrival sequence πin

and do not obtain any blocking. Furthermore, due to Ut ⩽M = b for all t, the stack height
is not violated. Hence, we get a feasible solution for I ′ consisting of at most m = T stacks.

“⇐”: Conversely, assume that there is a feasible solution for I ′ without blocking items. Let
Ut be the set of items put into stack t. Each set contains at most M = b elements because of
the stack height. Since the items are stacked according to πin and in the solution no blockings
occur, for two arbitrarily chosen items i < j in one stack we must have ψi < ψj. This implies
that there cannot be an edge {i, j} in the conflict graph. Thus, all items of one stack are an
independent set consisting of at most b elements and all stacks together form a partition into
at most T independent sets. □

Theorem 2.1 implies that minimizing any of the objective functions USadj, BI, RSr, RSu
is strongly NP-hard. Furthermore, since the corresponding decision problems are hard for
the decision value 0, we cannot expect any polynomial time approximation algorithm with
constant performance ratio unless P = NP.

2.4 Bounds

Finding a storage configuration in the loading process for which the number of reshuffles in
the retrieval process is minimized, is a very complex problem and, as far as we know, has
not been tackled in the literature so far. In Boysen and Emde [15], the simpler surrogate
objective function USadj has been used instead, but also the number of badly placed items BI
could be used as approximation. In this section, we derive some bounds for the differences
between the different objective functions estimating the largest errors which can occur. We
are interested in the question how good the lower bounds USadj and BI are, and how many
reshuffles are really needed later on if we have optimized according to these simpler surrogate
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Chapter 2 The parallel stack loading problem

objectives. Additionally, we propose new lower bounds for the objectives USadj and BI.
Let an arrival sequence πin = (π1, . . . ,πn) be given. A subsequence σ of πin is a sequence

σ = (πj1 , . . . ,πjh) with 1 ⩽ jλ < jµ ⩽ n for all 1 ⩽ λ < µ ⩽ h. Such a subsequence is
called “increasing” if the priorities satisfy pπjλ < pπjµ for all 1 ⩽ λ < µ ⩽ h. Analogously,
a subsequence is called “decreasing” if pπjλ > pπjµ for all 1 ⩽ λ < µ ⩽ h. A “longest
increasing subsequence” is an increasing subsequence of maximal length. For example, for
πin = (2, 7, 5, 6, 4, 8, 3, 1, 9) and pi = i the subsequence σ = (2, 7, 8, 9) is increasing, while
the subsequence σ ′ = (7, 5, 4, 3, 1) is decreasing. σ ′′ = (2, 5, 6, 8, 9) is a longest increasing
subsequence.

Lemma 2.1. Let σ be an increasing subsequence of πin with length |σ| > m. Then |σ|−m > 0
is a lower bound on the total number of unordered stackings of adjacent items.

Proof: Let (i1, . . . , iλ) be an arbitrary subsequence of σ. We claim that putting them in the
same stack, leads to at least λ − 1 unordered stackings (only item i1 does not necessarily
cause an unordered stacking because it may be put on the bottom of the stack or above
items with larger priority values). If the items i1, . . . , iλ are put consecutively into one stack,
this is obvious. But it is also possible that other items are put between two items iν−1, iν
of σ. Let us suppose that items j1, . . . , jρ /∈ σ are below item iν and above iν−1 such that
(iν, jρ, . . . , j1, iν−1) (from top to bottom) is part of a stack. Let us assume that these items
can be chosen in such a way that no unordered stacking is caused by them, which implies
piν < pjρ < . . . < pj1 < piν−1 . Since piν < piν−1 contradicts the fact that σ is an increasing
subsequence, our assumption must be wrong and it is not possible to choose any other items
of πin such that iν−1 and iν do not cause an unordered stacking. Thus, if λq ⩾ 1 items of
σ are stacked in stack q, they result in at least λq − 1 unordered stackings. Adding these
numbers in all stacks, gives∑︂

q∈Q

(λq − 1) =
∑︂
q∈Q

λq −m = |σ|−m

and hence |σ|−m is a lower bound on the total number of unordered stackings. □

The best lower bound which can be obtained from Lemma 2.1, is given by a longest
increasing subsequence, which can be found in O(n logn) as shown in Fredman [40]. We
will denote this bound by LBLIS.

In Boysen and Emde [15] another lower bound LBP-∞ on the number of unordered stackings
was proposed. It can be obtained by considering the relaxation PSLP-∞ where the stacking
height b is relaxed and it is assumed that in each stack an infinite number of items can be
stored. This relaxation can be solved by finding a perfect matching with minimum costs in a
bipartite graph. Thus, the time complexity is O(n3). Since the length of a longest increasing
subsequence is independent of the stacking height b, the value LBLIS is also a lower bound
for problem PSLP-∞ and hence it is always dominated by LBP-∞.

In the following, we show that for the objective function BI, the bound LBLIS can be
strengthened by iteratively calculating increasing subsequences.

Lemma 2.2. Let σ be an increasing subsequence of πin with length |σ| > m and π̂in = πin \ σ

be the arrival sequence πin reduced by all items of σ. If σ̂ is an increasing subsequence of π̂in

with length |σ̂| > m, then |σ| + |σ̂| − 2m > 0 is a lower bound on the number of badly placed
items BI.

Proof: According to Lemma 2.1, the values |σ|−m and |σ̂|−m are both lower bounds on the
number of badly placed items (independent of any other items to be stored). Since σ and σ̂
do not have any items in common, also the sum |σ|+ |σ̂|− 2m must be a lower bound on BI.
□
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2.4 Bounds

The proof shows that Lemma 2.1 can be used multiple times to increase the lower bound by
iteratively finding longest increasing subsequences in the reduced arrival sequence. We denote
by LBILIS the lower bound obtained in this way. Because every longest increasing subsequence
must have a length of at least m + 1, we can repeat the search for a longest increasing
subsequence at most b− 1 times. Hence, calculating LBILIS can be done in O(nb logn).

In contrast to the simpler bound LBLIS which is always dominated by LBP-∞, we do not
have any dominance between the bounds LBILIS and LBP-∞, which is shown by the following
example.

Example 2.3. Consider the sequence πin = (3, 5, 2, 1, 8, 7, 10, 4, 6, 9) with pi = i and m = 3.
There are two longest increasing subsequences of length 4, namely (3, 5, 8, 10) and (1, 4, 6, 9).
Thus, LBILIS = (4− 3) + (4− 3) = 2, while LBP-∞ = 1 (cf. Figure 2.5a).
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(a) πin = (3, 5, 2, 1, 8, 7, 10, 4, 6, 9).
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(b) πin = (4, 5, 8, 10, 1, 3, 6, 7, 9, 2).

Figure 2.5: Optimal solutions of PSLP-∞ for Example 2.3.

However, we may also have LBP-∞ > LBILIS, which is shown by the following instance. Consider
the sequence πin = (4, 5, 8, 10, 1, 3, 6, 7, 9, 2) with pi = i and m = 3. The longest increasing
subsequence is σ = (4, 5, 6, 7, 9) and there is no other increasing subsequence with a length
greater than m. Thus, LBILIS = 5− 3 = 2, while LBP-∞ = 3 (cf. Figure 2.5b). □

Now we focus on the question how large the difference between the two surrogate objectives
USadj and BI can be.

Lemma 2.3. For any feasible configuration c of the PSLP we have

BI(c) −USadj(c) ⩽ m(b− 2)

and this bound is tight. Furthermore, there are instances where tightness also holds for configu-
rations optimized according to USadj.

Proof: For an arbitrary configuration c let Q+ ⊆ Q be the subset of stacks with at least one
badly placed item, Bq be the number of badly placed items in stack q and Uq the number
of unordered stackings in stack q. Due to the maximum stack height b, we have Bq ⩽ b− 1
because the item at the bottom of a stack cannot be badly placed. Thus, the total number of
badly placed items is bounded from above by

BI(c) =
∑︂
q∈Q

Bq =
∑︂
q∈Q+

Bq ⩽
∑︂
q∈Q+

(b− 1) = |Q+| · (b− 1). (2.1)

On the one hand, a stack q holding a badly placed item, contains also at least one unordered
stacking Uq ⩾ 1 (among the badly placed items in q consider the one stored in the lowest
level). On the other hand, a stack without any badly placed item also does not contain any

11
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unordered stacking. Thus, the total number of unordered stackings is bounded from below by

USadj(c) =
∑︂
q∈Q

Uq =
∑︂
q∈Q+

Uq ⩾ |Q+|. (2.2)

By combining the inequalities in (2.1) and (2.2), and due to |Q+| ⩽ m, we get

BI(c) −USadj(c) ⩽ |Q+| · (b− 2) ⩽ m · (b− 2).

In the following, we show tightness of this bound. Especially, tightness does not only hold
for an arbitrary configuration c, but also for configurations which have been obtained by
optimizing w.r.t. USadj. For this purpose, consider the following family of instances. We have
n = m · b items with priorities pi = i for i = 1, . . . ,n which arrive according to the sequence

πin = (1, 2, . . . ,m|

n−m+ 1,n−m+ 2, . . . ,n|

n−m,n−m− 1, . . . , 2m+ 1|

m+ 1,m+ 2, . . . , 2m).

This sequence consists of two increasing subsequences σ1 = (1, 2, . . . ,m) and σ2 = (n −
m + 1,n −m + 2, . . . ,n) which contain the items with the m smallest and the m largest
priority values, one decreasing subsequence σ3 = (n−m,n−m− 1, . . . , 2m+ 1) and again
one increasing subsequence σ4 = (m+ 1,m+ 2, . . . , 2m). Since σ1 and σ2 together constitute
a longest increasing subsequence, |σ1|+ |σ2|−m = m is a lower bound on USadj according
to Lemma 2.1.

Now we construct a solution c∗ achieving this lower bound value. At first we put all m
items of σ1 to the lowest level of the stacks, afterwards all m items of σ2 above them in
the second lowest level. Then we place all items of σ3 in an arbitrary order into the stacks
without occupying the topmost level. Finally, the last m items from σ4 are put to the topmost
level in the stacks. This leads to a configuration c∗ with m unordered stackings occurring
between the items in the lowest and the second lowest level. According to the lower bound,
this solution must be optimal w.r.t. USadj.

On the other hand, the number of badly placed items in such a configuration is BI(c∗) =
m(b − 1) because the m items i ∈ σ1 with the m smallest priority values are placed in the
lowest level of the stacks and all m(b− 1) remaining items j stored above satisfy pj > pi. □

Example 2.4. As example for the above construction, consider the case m = 4,b = 5 with
n = 20 items and the arrival sequence

πin = (1, 2, 3, 4|17, 18, 19, 20|16, 15, 14, 13, 12, 11, 10, 9|5, 6, 7, 8).

An optimal configuration c∗ is shown in Figure 2.6a. It has USadj(c∗) = m = 4 unordered
stackings, but BI(c∗) = m(b− 1) = 16 badly placed items.

However, if we optimize w.r.t. BI instead of USadj, an optimal configuration ĉ∗ has BI(ĉ∗) =
USadj(ĉ

∗) = m+ 1 = 5 (cf. Figure 2.6b). The lower bound according to Lemma 2.2 gives only
the value m because the first increasing subsequence σ1 combined with σ2 is a longest increasing
subsequence of length 2m. The last increasing subsequence σ4 cannot be combined with σ1 or
σ2 using Lemma 2.2, and σ4 has length m, which does not increase the lower bound. But in
this special case the item with the smallest priority value (item 1) is part of the first increasing
subsequence. Item 1 must be placed in some stack and conflicts with all items in σ4. This means
that either stacking one item of σ4 in the same stack as item 1 results in one badly placed item
or the stack of item 1 must be avoided by all items of σ4, and all m items of this increasing
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(a) Configuration c∗ , optimized w.r.t. USadj
has USadj(c∗) = 4 and BI(c∗) = 16.
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(b) Configuration ĉ∗, optimized w.r.t. BI has
BI(ĉ∗) = USadj(ĉ

∗) = 5.

Figure 2.6: Solutions for Example 2.4, unordered stackings underlined, badly placed items in
bold.

subsequence must be stacked in m− 1 stacks, which also results in one badly placed item. Thus,
BI(ĉ∗) = m+ 1 is optimal.

This shows that the constructed instances do not necessarily lead to configurations with a large
number of badly placed items (as in the case when optimizing w.r.t. the simpler objective function
USadj), but that the optimization criterion is important. □

Due to Lemma 2.3, optimizing w.r.t. USadj can lead to solutions where the absolute
difference to BI is m(b − 2), i.e., the difference between these two surrogate objective
functions may be arbitrarily large. Since BI is only a lower bound on the actual number
of reshuffles, in the worst case a solution optimized w.r.t. USadj may need a much larger
number of reshuffles than indicated by its objective value. How much larger the number of
reshuffles can be, will be discussed in the following.

Lemma 2.4. For any feasible configuration c let B ⊂ I be the set of badly placed items and
li ∈ {1, . . . ,b} be the level of item i ∈ B in c. Then all items can be retrieved with at most∑︁
i∈B 2(li − 1) restricted relocations.

Proof: First we prove the result for the unrestricted BRP by constructing a sequence of moves
which needs at most

∑︁
i∈B 2 · (li − 1) relocations. In the restricted and unrestricted BRP,

every item j ∈ I must be retrieved from the storage. If item j in stack q and level l is the
next item to be retrieved, let Bj be the set of badly placed items located above j at levels
l + 1, . . . , l + |Bj| in stack q (this set may also be empty). All these items Bj have to be
relocated to another stack before j can be retrieved. In the unrestricted BRP, afterwards, we
are allowed to relocate all of these items back to stack q. As a result, the retrieved item j

is now missing in stack q and all items Bj are located at levels l, . . . , l + |Bj| − 1, i.e., their
levels are decreased by one.

As an example, consider the first two retrievals for the storage shown in Figure 2.7. At
first, item 1 with B1 = {7} has to be retrieved. After relocating item 7 from the first to the
third stack and retrieving item 1, we push item 7 back to the first stack. Then, item 2 with
B2 = {5, 6} has to be retrieved. After relocating items 6, 5 to other stacks and retrieving item
2, we push items 5, 6 back to the second stack.

If we consider the complete retrieval process, for every badly placed item i ∈ B = ∪nj=1Bj
at most 2 · (li − 1) relocations are induced by at most li − 1 retrievals of items below, before
item i reaches the bottom of its initial stack. However, item i may also be retrieved earlier,
which decreases the number of necessary reshuffles even further.

Now we prove the result for the restricted BRP where in each iteration only items above
the next item to be retrieved may be relocated. The previous approach uses the freedom of

13



Chapter 2 The parallel stack loading problem

4
1
7

2
5
6

3 4
1

2
5
6

3
7

4
7

2
5
6

3 4
7
6

2 3
5

4
7

5
6

3

Figure 2.7: Example for pushing back badly placed items in the unrestricted BRP.

the unrestricted BRP to relocate all items back to their initial stack after one item is retrieved,
which is not allowed in the restricted BRP.

Nevertheless, only badly placed items are relocated, while all well placed items are retrieved
from their initial position. If we look at one specific badly placed item i ∈ Bj, then this item
is initially located in some stack and after every second relocation of i, it returns back to
this stack. Let θi,j be the corresponding slot of item i ∈ Bj after the retrieval of item j and
pushing back item i in the unrestricted BRP. Furthermore, we denote by Ti the set of initially
well placed items below item i.

An important observation of the proof for the unrestricted BRP is that every badly placed
item i can be relocated to another stack and pushed back until item i reaches the bottom of
its initial stack where it remains at its final position before it is retrieved. This means that
the number of necessary relocations of item i is independent from all other item priorities
and depends only on li. Thus, all badly placed items can be seen as “equivalent” items with
the property that these items block all other items below, regardless of their locations. To
“simulate” the algorithm for the unrestricted BRP in the restricted setting, we claim that after
the retrieval of an item j it is possible to move a badly placed item i to another slot θh,k of
items h ∈ B,k ∈ I instead of pushing item i back to the slot θi,j.

Before proving this claim, we again look at the example from Figure 2.7, now considered
in the restricted setting (cf. Figure 2.8). At first, again item 7 is relocated from the first to the
third stack (where it stays), and item 1 is retrieved. To retrieve item 2, we move item 6 to the
slot θ7,1 used by item 7 in the first stack in the unrestricted BRP and afterwards relocate item
5 to the third stack. After the retrieval of item 2, items 5, 7 are relocated to the second stack,
where item 5 is relocated to slot θ5,2 and item 7 to slot θ6,2. Compared to the unrestricted
setting, we now have the same situation, only items 6 and 7 changed their positions. We see
that for this example, the modified approach does not require more relocations than pushing
back all items immediately.
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Figure 2.8: Example for exchanging positions of badly placed items in the restricted BRP.

We claim that at least every second relocation of an item i can be performed to a slot θh,k
of an item h ∈ Bk after the retrieval of an item k. This is true because after every retrieval
of an item k, every badly placed item h defines a slot θh,k where it was pushed back in the
algorithm for the unrestricted setting. Thus, there are always as many θ-slots of badly placed
items as badly placed items that must be relocated to such a slot.

Based on this observation, we prove that any two items i ̸= h belonging to different stacks
can change the slots θi,j, θh,k after the retrieval of items j,k without increasing the number of
reshuffles. We count every relocation of an item i by its destination slot θh,k . Let 1(i,θh,k) = 1
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if item i is pushed to θh,k and zero otherwise. Then,
∑︁
k∈Th

1(i,θh,k) is the number of all
relocations of item i to any slot θh,k of item h. Since at least every second relocation of any
badly placed item i may go to a slot θh,k of a badly placed item h, the total number of all
relocations of item i cannot exceed

∑︁
h∈B 2 ·

∑︁
k∈Th

1(i,θh,k). Thus, we are able to bound
the maximum number of relocations by

RSr ⩽
∑︂
i∈B

⎛⎝∑︂
h∈B

2
∑︂
k∈Th

1(i,θh,k)

⎞⎠ =
∑︂
h∈B

2

⎛⎝∑︂
i∈B

∑︂
k∈Th

1(i,θh,k)

⎞⎠ .

The left side of the equation includes the sum over all item i ∈ B and counts the number of
relocations of item i. The right side of the equation sums over all items h ∈ B and counts the
number of all relocations to any slot θh,k of item h. An item located at a slot θh,k is relocated
exactly once and there are at most lh − 1 slots for an item h because of at most lh − 1 items
with a smaller priority value below. We conclude that at most lh − 1 relocations are possible.
Thus,

∑︁
i∈B

∑︁
k∈Th

1(i,θh,k) ⩽ lh − 1, which implies

RSr ⩽
∑︂
h∈B

2(lh − 1). (2.3)

□

If we consider the relationship between the number of restricted reshuffles and the total
number of badly placed items, due to lh ⩽ b for all h ∈ B and |B| = BI(c), condition (2.3)
implies

RSr(c)

BI(c)
⩽ 2(b− 1) for all configurations c. (2.4)

In the following, we present an example showing that this bound can asymptotically be
reached, even for configurations optimized w.r.t. BI.

Example 2.5. Consider the following family of instances with n = m · b, pi = i for i = 1, . . . ,n,
and arrival sequence

πin = (n− 2m+ 2, . . . ,n−m+ 1, (2.5)

n− 3m+ 2, . . . ,n− 2m+ 1, (2.6)

. . . ,

m+ 2, . . . , 2m+ 1, (2.7)

2, . . . ,m+ 1, (2.8)

n−m+ 2, . . . ,n, (2.9)

1). (2.10)

This arrival sequence consists of b − 1 increasing subsequences (2.5)–(2.8) of length m with
priorities 2, . . . ,n−m + 1, one increasing subsequence (2.9) of length m − 1 with the largest
m− 1 priority values and ends with the item with priority value 1. The increasing subsequence
(2.9) together with any increasing subsequence from (2.5)–(2.8) builds a longest increasing
subsequence of length 2m− 1, i.e., according to Lemma 2.1, the value m− 1 is a lower bound on
BI. We construct a solution c achieving this lower bound value.

All items of the increasing subsequences with length m can be stacked in the m available
stacks without resulting in any badly placed item by choosing different stacks for these items
in each subsequence. Furthermore, the items of (2.9) must be stacked as badly placed items
at the topmost level in the stacks, which leads to li = b for all i ∈ {n −m + 2, . . . ,n} and
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BI(c) = m− 1.
For this configuration c, the optimal number of restricted reshuffles is

RSr(c) = (b− 1)(BI(c) + 1)

since each badly placed item n−m+ 2, . . . ,n has to move b− 1 times (for each item in its stack
it moves one level down). Additionally, b− 1 moves must be performed because every time all
badly placed items are located at the same level, one item must be moved from stack 1 to stack m
to free the next item to be retrieved. Since (b− 1)(BI(c) + 1) ∈ Θ(2(b− 1)BI(c)), the bound in
(2.4) can asymptotically be reached.
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Figure 2.9: Configuration c from Example 2.5 with m = 5,b = 4.

In Figure 2.9, we illustrate the case m = 5,b = 4 with n = 20 and the arrival sequence

πin = (12, 13, 14, 15, 16|7, 8, 9, 10, 11|2, 3, 4, 5, 6|17, 18, 19, 20|1).

An optimal configuration c has BI(c) = m − 1 = 4 badly placed items. Item 1 is retrieved
immediately, then item 17 moves to stack 5 and item 2 is retrieved. Afterwards, items 18, 19, 20, 17
have to move one level down, and this procedure repeats until all badly placed items reach the
bottom of a stack. In total, RSr(c) = (b− 1)m = 15 restricted reshuffles are necessary to retrieve
all items. □

In the following, we consider the relationship between the number of restricted reshuffles
and the total number of unordered stackings. From equations (2.1) and (2.2) in the proof of
Lemma 2.3, we obtain

BI(c)

USadj(c)
⩽ b− 1 for all configurations c, (2.11)

i.e., BI(c) ⩽ (b− 1)USadj(c), and from equation (2.4) follows

RSr(c) ⩽ 2(b− 1)BI(c) ⩽ 2(b− 1)2USadj(c). (2.12)

In the following, we present an example showing that this bound can asymptotically be
reached, even for configurations optimized w.r.t. USadj.

Example 2.6. Consider the following family of instances with n = m · b, b an even number,
pi = i for i = 1, . . . ,n, and arrival sequence

πin =
(︁
m

(︃
b

2
− 1

)︃
+ 1+

b

2
, . . . ,m

b

2
+
b

2
, (2.13)

m

(︃
b

2
− 2

)︃
+ 1+

b

2
, . . . ,m

(︃
b

2
− 1

)︃
+
b

2
, (2.14)

. . . ,
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m+ 1+
b

2
, . . . , 2m+

b

2
, (2.15)

1+
b

2
, . . . ,m+

b

2
, (2.16)

b

2
, . . . , 1, (2.17)

mb− (m− 1) + 1, . . . ,mb (2.18)

mb− 2(m− 1) + 1, . . . ,mb− (m− 1) (2.19)

. . . ,

mb−

(︃
b

2
− 1

)︃
(m− 1) + 1, . . . ,mb−

(︃
b

2
− 2

)︃
(m− 1) (2.20)

mb−
b

2
(m− 1) + 1, . . . ,mb−

(︃
b

2
− 1

)︃
(m− 1)

)︁
. (2.21)

The sequence πin consists of three parts. The first part (2.13)–(2.16) consists of b2 increasing
subsequences σ1, . . . ,σb

2
of length m containing the priority values b2 + 1, . . . , (m + 1)b2 . The

pi-values of all items in a subsequence σν are always smaller than those of all items in the
subsequences σ1, . . . ,σν−1. The second part (2.17) contains the items 1, . . . , b2 which can
be retrieved without any relocations. The last part (2.18)–(2.21) consists of b2 increasing
subsequences σ̂1, . . . , σ̂b

2
of length m− 1 containing the priority values (m+ 1)b2 + 1, . . . ,mb.

Similar to the first part, all items in a subsequence σ̂ν have smaller pi-values than all items in
the subsequences σ̂1, . . . , σ̂ν−1.

Any subsequence of the first part together with any subsequence of the third part builds a
longest increasing subsequence, i.e., according to Lemma 2.1, the valuem+(m−1)−m = m−1
is a lower bound on USadj.

If we optimize w.r.t. USadj, we get an optimal configuration c where every item of the first
increasing subsequence of the last part σ̂1 results in an unordered stacking. All other items of
the increasing subsequences σ̂2, . . . , σ̂b

2
are badly placed but do not lead to any more unordered

stackings. Obviously, every badly placed item of the increasing subsequences σ̂1, . . . , σ̂b
2

has to

move b2 times since b2 well placed items must be retrieved from each stack. Thus, for such a
configuration c, the optimal number of restricted reshuffles RSr(c) is at least b

2

4 USadj(c). Since
b2

4 USadj(c) ∈ Θ(2(b− 1)2USadj(c)), the bound in (2.12) can asymptotically be reached.
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Figure 2.10: Configuration c from Example 2.6 with m = 5,b = 4.

In Figure 2.10, we illustrate the case m = 5,b = 4 with n = 20 and the arrival sequence

πin = (8, 9, 10, 11, 12|3, 4, 5, 6, 7|2, 1|17, 18, 19, 20|13, 14, 15, 16).

An optimal configuration c has USadj(c) = m− 1 = 4. Items 1, 2 can immediately be retrieved,
then items 13, 17 move to stack 5, and item 3 is retrieved. Afterwards, items 14, 18, 15, 19, 16, 20,
and 17, 13 move one level down, and this procedure repeats until all badly placed items reach the
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Chapter 2 The parallel stack loading problem

bottom level of a stack. In total, RSr(c) = 20 restricted reshuffles are necessary to retrieve all
items. □

Analyzing the relationship between badly placed items/unordered stackings and unre-
stricted reshuffles in a similar way as for restricted reshuffles, seems to be much more difficult
since allowing also voluntary moves increases the complexity of the problem drastically. We
leave this for further research.

2.5 Solution approaches for the PSLP

This section is devoted to solution approaches for the PSLP with different objective functions.
At first, we describe a MIP formulation from Boysen and Emde [15] to solve the PSLP with the
surrogate objective function USadj. Afterwards, we present a new MIP formulation for the
objective function BI and a SA algorithm trying to minimize the actual number of reshuffles
RS.

2.5.1 Objective USadj

For the objective function USadj, we use the formulation PSLP-IP2 of Boysen and Emde [15].
W.l.o.g. assume that the jobs are numbered according to their arrivals, i.e., πin = (1, 2, . . . ,n).
Besides the items in I = {1, . . . ,n}, we need two dummy elements 0,n+ 1, representing the
bottom and top of the stacks. For all i, j ∈ {0, . . . ,n+ 1} with i > j we have binary variables

xij =

{︃
1, if item i is stacked directly on top of item j

0, otherwise.

Furthermore, for each i ∈ {0, . . . ,n} there is a variable li ⩾ 0 indicating the level where item
i is stored. Let AU := {(i, j) ∈ I × I, i > j,pi > pj} be the set of all item pairs (i, j) where i
can be stacked directly on top of j, but which leads to an unordered stacking. Then, the MIP
reads as follows.

(IPUS) min
∑︂

(i,j)∈AU

xij (2.22)

s.t.
i−1∑︂
j=0

xij = 1 ∀i ∈ I (2.23)

n+1∑︂
i=j+1

xij = 1 ∀j ∈ I (2.24)

n∑︂
i=1

xi0 ⩽ m (2.25)

lj + 1− b(1− xij) ⩽ li ∀i ∈ I, j ∈ {0, . . . , i− 1} (2.26)

1 ⩽ li ⩽ b ∀i ∈ I (2.27)

l0 = 0 (2.28)

xij ∈ {0, 1} ∀i ∈ {1, . . . ,n+ 1}, j ∈ {0, . . . , i− 1} (2.29)

In the objective (2.22), the total number of unordered stackings of adjacent items is minimized.
Due to (2.23) each item i is stacked on top of another item j < i or on the dummy element 0,
indicating the bottom level. Similarly, constraints (2.24) ensure that on each item j another
item i > j (or the dummy element n + 1, indicating the top level) is stacked. Constraint
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2.5 Solution approaches for the PSLP

(2.25) guarantees that at most m stacks are used. In constraints (2.26), the variables xij
and the levels li are linked, by requiring li ⩾ lj + 1 if i is stacked on top of j. Note that li
may be chosen larger than necessary, i.e., this value is only an upper bound for the actual
level of i. However, as long as (2.27) (guaranteeing that each stack contains at most b items)
is satisfied, this does not lead to any problems. Furthermore, no integrality constraints are
required for the variables li, i.e., they may be introduced as continuous variables in (2.27).
Finally, (2.28) sets the level of the bottom item 0 to 0. The arrival sequence πin is implicitly
taken into account since the variables xij are only defined for i > j.

2.5.2 Objective BI

Now we consider the objective function BI and again w.l.o.g. assume πin = (1, 2, . . . ,n). In
contrast to the previous MIP formulation for USadj, we do not need variables indicating the
levels of the items. If an assignment of items to a stack is determined, due to the arrival
sequence πin all items in the stack can only be ordered in one feasible way. For each item
i ∈ I let Bi := {j ∈ I | j < i,pj < pi} be the set of all items j < i (meaning that i can be
stacked on top of j) with a smaller priority value. Thus, if an item j ∈ Bi is placed below i in
the same stack, item i becomes badly placed.

For all i ∈ I,q ∈ Q we introduce binary variables

βiq =

{︃
1, if item i is put into stack q as a badly placed item
0, otherwise

αiq =

{︃
1, if item i is put into stack q as a well placed item
0, otherwise.

Then, our new integer program (IP) reads as follows.

(IPBI) min
∑︂
i∈I

∑︂
q∈Q

βiq (2.30)

s.t.
∑︂
q∈Q

(βiq + αiq) = 1 ∀i ∈ I (2.31)

∑︂
i∈I

(βiq + αiq) ⩽ b ∀q ∈ Q (2.32)

βjq + αjq + αiq ⩽ 1 ∀i ∈ I,q ∈ Q, j ∈ Bi (2.33)

βiq,αiq ∈ {0, 1} ∀i ∈ I,q ∈ Q (2.34)

In the objective (2.30), the number of badly placed items is minimized. Due to (2.31) each
item is assigned to exactly one stack and due to (2.32) at most b items are assigned to each
stack. Constraints (2.33) force αiq = 0 if an item j ∈ Bi exists for which βjq + αjq = 1. This
means that item i cannot be well placed if an item j ∈ Bi is assigned to the same stack (which
must be put below i and has pj < pi due to the definition of Bi).

2.5.3 Objectives RSr and RSu

As already mentioned above, finding a configuration in the loading process for which the
number of reshuffles in the unloading process is minimized, is a very complex problem. Hence,
solving the combined loading and unloading problem with objective RS exactly, seems to be
intractable for larger instances. For a fixed storage configuration, in the unloading process,
the BRP arises as subproblem which is known to be difficult to solve even for small instances
(cf. Caserta et al. [19]).
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Chapter 2 The parallel stack loading problem

Therefore, we decided to use a heuristic approach for the combined loading/unloading
problem and implemented a SA algorithm that tries to find a storage configuration for which
the total number of reshuffles in the unloading stage is small. Our heuristic proceeds in
two stages. While in the outer stage the current storage configuration is changed, in the
inner stage, the new configuration is evaluated by solving the corresponding BRP instance
with some (fast) BRP solver. Then, the new configuration is accepted based on a standard
simulated annealing acceptance criterion.

We start with a randomly generated starting configuration or a solution obtained by an
algorithm for the PSLP. To represent solutions, as in the IP from Section 2.5.2, we take
advantage of the fact that each subset of items assigned to the same stack has an unique
ordering due to the fixed arrival sequence πin. Thus, we can represent a configuration simply
by disjoint subsets (I1, . . . , Im) where Iq ⊂ I is the subset of items assigned to stack q. For
each item i we denote by q(i) the current stack it is assigned to. To derive feasible levels of
the items in the stacks, each set Iq has only to be sorted w.r.t. the arrival sequence.

To generate neighbors of a configuration in the outer stage, we used a combined “shift” and
“swap” neighborhood. In this context, a “shift” means that an item i and a new target stack
q ̸= q(i) with at least one empty slot are chosen. Then, i is removed from q(i) and assigned
to q. A “swap” means that two items i, j currently assigned to different stacks q(i) ̸= q(j) are
chosen. Then i is shifted from q(i) to q(j), and j is shifted from q(j) to q(i). Together, both
operators define a neighborhood that is connected, i.e., every solution (I ′1, . . . , I

′
m) can be

reached from any other solution (I1, . . . , Im) by a finite number of moves in the neighborhood.
To achieve this, at first items are shifted until |Iq| = |I ′q| holds for each stack q ∈ Q. Afterwards,
items are swapped until all items are in the desired stack, i.e., Iq = I ′q for all q ∈ Q.

To evaluate the generated configurations, in the inner stage of the heuristic, we used
(re-implemented) heuristics known from the literature for the restricted/unrestricted BRP.
While the unrestricted variant is solved with the bottom level heuristic of Jin et al. [57], the
restricted variant is solved with the look-ahead heuristic of Petering and Hussein [85] using a
look-ahead value of one, which restricts the solver to the restricted BRP. These heuristics were
chosen because of their high solution quality combined with a very fast runtime, which is
advantageous to evaluate a large number of configurations in the outer stage. We also tested
the (exact) state-of-the-art iterative deepening A∗ (IDA) algorithm of Tanaka and Mizuno
[96] to evaluate configurations in the inner stage, but the results were worse (since within
the same time limit less configurations could be generated). However, the final solution was
always exactly evaluated with the IDA-algorithm.

2.6 Computational study

In this section, we report results of our computational study. We used an Intel(R) Core(TM)
i7-2600 CPU with 3.4 GHz and 10 GB RAM. Both MIPs were solved with CPLEX 12.6.1, the
SA algorithm was implemented in Java.

For our experiments, we used test data of Boysen and Emde [15] for the PSLP with n ∈
{30, 120, 500}. Additionally, we generated further instances with n ∈ {40, 60} from the instances
with 120 items by using only the first 40 and 60 items, respectively. Furthermore, we created
instances with n = 40 and duplicate priorities. For this purpose, we introduced a parameter d,
denoting the number of items with the same priority value. Then, from the original priorities
pi new priorities p ′

i were derived by setting p ′
i := ⌊pi/d⌋. The used test instances and all our

results can be found at http://www2.informatik.uos.de/kombopt/data/pslp/.
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2.6.1 MIP formulations

In a first experiment, we solved each instance with the MIP formulations (IPUS) and (IPBI)
for the objective functions USadj and BI imposing a time limit of 30 minutes. Table 2.1
summarizes the obtained results for the smaller instances with n ∈ {30, 40, 60} and the larger
ones with n = 120. The large instances with n = 500 could not be solved by the MIPs within
30 minutes, for them, the MIPs do not even provide a feasible solution. In each row, we report
average values over 20 instances with the same storage parameters: the number of items n,
the number of stacks m, and the maximum stack height b, set to b = ⌈n/m⌉ as in Boysen
and Emde [15]. We call all instances with the same parameters an “instance group”. If the
value n is marked with a ∗, the storage area is not completely filled, i.e., n < mb.

The columns US∗adj and BI∗ show the average objective values for unordered stackings and
badly placed items obtained by the MIPs. Furthermore, we indicate for how many instances a
feasible solution could be found, how many instances could be verified to be optimally solved
within the time limit, and report the average computation times (in seconds). While the new
IP formulation IPBI was able to find a feasible solution for every instance, the formulation
IPUS could not find a feasible solution within the time limit for 11 instances with n = 120 and
m ∈ {12, 15, 20}. For a fair comparison, these instances were not considered in the average
values (for USadj and BI) and also eliminated for further investigations.

Table 2.1: Solutions optimized w.r.t. USadj and BI.
n m b US∗adj feas ver time BI∗ feas ver time

30 5 6 4.00 20 20 1.4 5.65 20 20 0.1
30 6 5 2.90 20 20 0.1 3.60 20 20 0.2

∗30 8 4 1.05 20 20 0.1 1.05 20 20 0.1
30 10 3 0.40 20 20 9.9 0.40 20 20 0.2

40 5 8 4.90 20 20 0.2 9.50 20 20 0.5
∗40 7 6 2.70 20 20 0.4 3.85 20 20 1.2
40 8 5 1.80 20 20 2.5 2.40 20 20 0.9
40 10 4 0.75 20 20 254.0 0.90 20 20 0.8

60 6 10 6.80 20 20 0.9 14.20 20 20 3.4
60 10 6 2.40 20 18 183.8 3.35 20 20 19.3
60 12 5 1.05 20 13 664.3 1.40 20 20 22.5
60 15 4 0.50 20 11 811.5 0.60 20 20 2.9
60 20 3 0.15 20 17 270.9 0.20 20 20 1.3

2.26 260 239 169.2 3.62 260 260 4.1

120 5 24 18.40 20 20 6.1 57.90 20 20 47.0
120 8 15 11.70 20 20 31.8 33.00 20 20 205.9
120 10 12 9.05 20 20 306.1 21.80 20 19 602.8
120 12 10 7.05 19 19 600.1 14.42 20 9 1531.5
120 15 8 4.77 13 10 1255.9 6.69 20 1 1800.0
120 20 6 1.29 17 3 1617.8 1.76 20 13 1045.5
120 24 5 0.65 20 9 1120.4 0.80 20 17 439.4
120 30 4 0.40 20 13 679.3 0.40 20 20 146.4
120 40 3 0.05 20 19 109.3 0.10 20 20 17.8

5.93 169 133 636.3 15.21 180 139 648.5

As it can be seen from the table, the new formulation IPBI performs much better than
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IPUS. On the one hand, more solutions are verified to be optimally solved (399 versus 372
from 440). On the other hand, also the computational times are smaller. The instances with
n ∈ {30, 40, 60} could be solved in 4.1 seconds on average (at most 300 seconds), while IPUS
needs 169.2 seconds on average and reached the time limit of 1800 seconds several times.
For the larger instances with n = 120, the average computation times for both formulations
are similar. While IPUS is faster for b ⩾ 8, IPBI is better for b ⩽ 6. The runtimes of the
MIP formulations increase with the number of items n. Furthermore, a very large or small
stack height b leads to faster runtimes, while combinations of a medium stack height with a
medium number of stacks need longer.

As expected, the results show that for larger stack heights b (which imply a smaller number
of stacks m if n is fixed), the values of US∗adj and BI∗ are also larger. This is due to the fact
that the items can be distributed in a more flexible way if more stacks are available. If we
have a look at the absolute differences between the values US∗adj and BI∗, we see that for
the instances with n ∈ {30, 40, 60}, on average BI∗ − US∗adj = 1.36; for the instances with
n = 120, the average deviation is already 9.28 (maximum 47 for an instance with n = 120
and b = 24). Hence, perhaps a little bit surprising, the new IP formulation IPBI provides
much better lower bounds for the actual number of reshuffles in a shorter amount of time.

In a second experiment, to evaluate the MIP solutions w.r.t. the actual number of reshuffles,
we used them as initial storage configurations for the BRP. Then we solved the corresponding
unloading problems minimizing RSr and RSu with the state-of-the-art IDA-algorithm of
Tanaka and Mizuno [96] for the restricted and unrestricted version of the BRP imposing a
time limit of two hours. In order to avoid infeasible situations (it may happen that there is not
enough free space to perform the necessary relocations inside the storage area), we always
added one additional empty stack to the storage before solving the BRP.

In Table 2.2, the results are reported. The column “inst” indicates how many instances
were considered in the corresponding instance group (as mentioned above, we used only
the 429 instances for which both MIP formulations found a feasible solution). The values
∆RSu(US

∗
adj) and ∆RSr(US∗adj) are the absolute differences between the numbers of reshuf-

fles and US∗adj (unrestricted and restricted version, respectively). Analogously, the values
∆RSu(BI

∗) and ∆RSr(BI∗) are the differences between the number of reshuffles and BI∗.
Furthermore, in brackets, we denote for how many instances optimal solutions could be
verified by the IDA-algorithm within two hours. It can be seen that most solutions could be
verified. As expected, the unrestricted BRP is more difficult to solve than the restricted BRP.
Furthermore, the solutions optimized w.r.t. BI are easier to solve than those optimized w.r.t.
USadj.

We can see that the average differences ∆RSu/r(US∗adj/BI
∗) increase when the values

US∗adj and BI∗ increase. This can be explained by the fact that the computed storage
configurations (which define the corresponding BRP) have a greater complexity in terms of
reshuffles if these values are large. Thus, this higher complexity makes it hard to solve the
BRP with the IDA-algorithm and the number of optimally solved instances reduces as well.
On the other hand, instances with BI∗ = 0 can usually be solved very fast.

For instances with b ⩽ 6 (reflecting the common situation of real-world container terminals),
the average value of ∆RSu(BI∗) is at most 0.65, while the maximum over all instances is
3. The average value of ∆RSu(US∗adj) is at most 10.25, the maximum is 20. The values
for the restricted BRP are overall larger, but the situation is similar. The average value of
∆RSr(BI

∗) is at most 1.65 (maximum 5), while ∆RSr(US∗adj) is at most 13.10 (maximum 25).
This indicates that in the case b ⩽ 6 the number of badly placed items is a good lower bound
and estimates the actual number of reshuffles much better than the number of unordered
stackings.

However, for the most difficult instance groups with n = 120 and b ∈ {12, 15, 24} the
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Table 2.2: Actual reshuffles for solutions optimized w.r.t. USadj and BI.
n m b inst ∆RSu(US

∗
adj) ∆RSr(US

∗
adj) ∆RSu(BI

∗) ∆RSr(BI
∗)

30 5 6 20 10.25 (20) 13.10 (20) 0.65 (20) 1.65 (20)
30 6 5 20 6.55 (20) 7.85 (20) 0.50 (20) 1.10 (20)

∗30 8 4 20 1.25 (20) 1.25 (20) 0 (20) 0.05 (20)
30 10 3 20 0.20 (20) 0.20 (20) 0 (20) 0 (20)

40 5 8 20 24.00 (9) 28.40 (20) 1.50 (20) 3.35 (20)
∗40 7 6 20 8.20 (20) 8.90 (20) 0 (20) 0.20 (20)
40 8 5 20 4.25 (20) 4.90 (20) 0.05 (20) 0.05 (20)
40 10 4 20 0.95 (20) 0.95 (20) 0 (20) 0 (20)

60 6 10 20 42.50 (0) 50.25 (16) 3.65 (20) 8.30 (20)
60 10 6 20 8.70 (19) 9.50 (20) 0.25 (20) 0.45 (20)
60 12 5 20 2.80 (20) 2.90 (20) 0.15 (20) 0.20 (20)
60 15 4 20 0.75 (20) 0.75 (20) 0.05 (20) 0.05 (20)
60 20 3 20 0.10 (20) 0.10 (20) 0 (20) 0 (20)

120 5 24 20 263.75 (0) 286.15 (0) 66.20 (0) 94.15 (0)
120 8 15 20 151.35 (0) 175.65 (0) 10.50 (8) 24.50 (14)
120 10 12 20 94.65 (0) 111.80 (2) 4.55 (19) 12.20 (19)
120 12 10 19 55.21 (0) 65.32 (6) 1.84 (19) 5.84 (19)
120 15 8 13 27.46 (2) 31.46 (11) 0.62 (13) 1.62 (13)
120 20 6 17 4.71 (17) 5.24 (17) 0.35 (17) 0.41 (17)
120 24 5 20 1.95 (20) 2.00 (20) 0.10 (20) 0.15 (20)
120 30 4 20 0.80 (20) 0.85 (20) 0 (20) 0 (20)
120 40 3 20 0.10 (20) 0.10 (20) 0.05 (20) 0.05 (20)

429 (307) (352) (396) (402)

differences between the lower bounds and the actual numbers of reshuffles are much higher:
the average values for ∆RS(BI∗) are between 4.55 and 66.20 (maximum 94) in the unrestricted,
and between 12.20 and 94.15 (maximum 145) in the restricted case. Furthermore, the average
values of ∆RS(US∗adj) range from 94.65 to 263.75 (maximum 305) in the unrestricted and
even from 111.8 to 286.15 (maximum 350) in the restricted case. Thus, for such instances the
lower bounds US∗adj and BI∗ are not suitable to estimate the actual number of reshuffles.

In Table 2.3, results for instances with duplicate priorities are shown. Here, we report only
results for the restricted BRP since the IDA-algorithm of Tanaka and Mizuno [96] can only
solve this version of the BRP. All instances could be solved to optimality by every algorithm.
We see that a larger value of d (denoting the number of items with the same priority value)
leads to easier instances. On the one hand, the values of US∗adj and BI∗ decrease with larger
d; on the other hand, also the ∆-values decrease since items with the same priority value can
be stacked without conflicts more easily.

In a third experiment, we wanted to study the influence of the optimal configuration
obtained by CPLEX using it as initial configuration for the BRP. Usually, IPBI has many
optimal solutions and the question is whether we have always chosen a “good” or “bad” one
(in terms of the total number of reshuffles) and how large the deviations may be. For this
purpose, we tried to generate all optimal solutions w.r.t. BI and calculated the optimal values
of RSr and RSu for each of them.

Basically, it does not matter which item is assigned to which stack because all stacks are
interchangeable. It is only important which items are grouped together and we do not have
to know the indices q of the assigned stacks. Hence, we may reduce the number of solutions
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Table 2.3: Instances with duplicate priorities: number of reshuffles for solutions optimized
w.r.t. USadj and BI.

n m b d US∗adj BI∗ ∆RSr(US
∗
adj) ∆RSr(BI

∗)

40 4 10 1 6.35 13.95 36.65 7.95
40 5 8 1 4.90 9.50 28.40 3.35

∗40 7 6 1 2.70 3.85 8.90 0.20
40 8 5 1 1.80 2.40 4.90 0.05
40 10 4 1 0.75 0.90 0.95 0

40 4 10 2 5.80 12.35 31.00 6.40
40 5 8 2 4.30 7.90 20.60 2.40

∗40 7 6 2 2.25 2.80 6.80 0.15
40 8 5 2 1.40 1.70 2.95 0.20
40 10 4 2 0.50 0.60 0.60 0.05

40 4 10 4 4.30 8.60 20.70 2.70
40 5 8 4 2.65 4.55 10.40 0.40

∗40 7 6 4 0.65 0.70 1.30 0
40 8 5 4 0.35 0.35 0.20 0
40 10 4 4 0 0 0 0

by a factor of m!, not considering the order of the stacks. This can be done by adding the
constraints∑︂

i∈I
i · (βi,q−1 + αi,q−1) −

∑︂
i∈I

i · (βi,q + αi,q) ⩽ 0 ∀q ∈ Q \ {1} (2.35)

to the formulation IPBI, ensuring that the bottom elements in the stacks are ordered according
to increasing indices.

With this extended formulation, we generated all optimal solutions for each instance from
the instance group with n = 30,m = 5,b = 6. In Table 2.4 the results are shown. The column
“No.” contains the instance number, “# solutions” is the number of optimal solutions, and
BI∗ the optimal objective value. It can be seen that these instances are quite heterogeneous
in terms of the number of optimal solutions, ranging from 4 to nearly 6 million different
optimal solutions. For the evaluation of each solution w.r.t. the actual number of reshuffles,
we limited our considerations to the first 200,000 generated solutions for each instance. Each
solution was used as initial configuration of the BRP and solved with the IDA-algorithm for
the restricted and the unrestricted version. The three columns “min”, “avg”, “max” show
the minimum, the average, and the maximum of the values ∆RSr(BI∗) and ∆RSu(BI∗). We
call all reshuffles that must be performed beyond the lower bound value BI, “additional
reshuffles”.

It can be seen that in the unrestricted version for every instance a solution exists which
does not need any additional reshuffle. For the restricted version, two instances need one
additional reshuffle in the best case. On the other hand, for 16 of the 20 instances there exist
storage configurations that result in much worse solutions w.r.t. RSr and RSu. On average,
0.6 unrestricted and 1.9 restricted additional reshuffles must be performed if any optimal
solution of the formulation IPBI is used. In the worst case, a solution with an optimal number
of badly placed items needs 13 restricted and 7 unrestricted additional reshuffles. If we take
into account that the investigated instances are small and even the average values show that
there exist a lot of solutions with additional (unnecessary) reshuffles, we may conclude that
only solving the IP and taking an optimal solution for BI, is perhaps not the best approach.
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Table 2.4: All optimal solutions generated with CPLEX for small instances with n = 30,m =
5,b = 6.

No. # solutions BI∗ ∆RSr(BI
∗) ∆RSu(BI

∗)
min avg max min avg max

1 48 4 0 0 0 0 0 0
2 6669 4 0 0.3 2 0 0.3 2
3 186020 3 0 0.2 2 0 0.1 2
4 34068 8 0 2.6 6 0 0.9 3
5 4 4 0 0 0 0 0 0
6 66282 6 1 3.6 6 0 1 3
7 852 7 0 3.1 7 0 0.6 2
8 68913 8 0 2 6 0 0.7 3
9 1342511 4 0 1.9 6 0 0.7 3

10 953 5 0 1.9 4 0 0.5 1
11 1467541 8 0 3.7 9 0 2 7
12 18 2 0 0 0 0 0 0
13 6701 6 0 1.6 6 0 0.2 2
14 9598 6 0 2.7 7 0 0.5 2
15 129172 6 0 1.3 4 0 0.3 1
16 1666 3 0 0 0 0 0 0
17 4984921 7 0 2.6 11 0 0.9 5
18 5864179 9 0 4.8 13 0 1.1 6
19 39452 7 1 3.6 8 0 1.8 4
20 944 6 0 2.3 6 0 1 3

2.6.2 Lower bounds

In the following, we compare the different lower bounds introduced in Section 2.4 as well as
the optimal solutions of IPBI.

In Table 2.5 we report average values for the new longest increasing subsequence lower
bound LBLIS on the number of unordered stackings and the iterative longest increasing
subsequence lower bound LBILIS on the number of badly placed items. We also compare
them with the lower bound LBP-∞ of Boysen and Emde [15] and an optimal solution of IPBI
(calculated with a larger time limit of two days), respectively. Within this time limit, only
two among the 429 instances with n ⩽ 120 could not be verified by IPBI, for these instances
we use the best lower bound calculated by CPLEX. For n = 500, the LP relaxation does not
provide any lower bound greater than zero for the instances with n = 500. Note that our
values of LBP-∞ differ slightly from the values reported in Table 2 in Boysen and Emde [15]
since there some other (but very similar) instances were used, which according to the authors
no longer exist.

Computing the O(n logn)-bound LBLIS took no longer than 1 millisecond, while calculating
the O(n3)-bound LBP-∞ needed up to 761 milliseconds for the instances with n = 500. As
shown in Section 2.4, we always have LBP-∞ ⩾ LBLIS. However, for the 529 tested instances,
LBLIS is equal to LBP-∞ for 483 ones. For the remaining 46 instances, the difference is between
1 and 8.

In contrast to the second instance in Example 2.3, for all our test instances the lower bound
LBP-∞ is dominated by LBILIS. For the 260 instances with n ⩽ 60, the lower bound LBILIS
gives a better bound than LBP-∞ for 79 instances, with differences between 0 and 9. For the
169 instances with n = 120, the new lower bound performs 84 times better, with differences
up to 39. Finally, for the 100 instances with n = 500, the lower bound LBILIS is better for 40
instances, with differences up to 65.
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Table 2.5: Comparison of lower bounds.
n m b inst LBLIS LBP-∞ LBILIS IPBI

30 5 6 20 3.90 3.95 5.05 5.65
30 6 5 20 2.90 2.90 3.25 3.60
30 8 4 20 1.00 1.00 1.00 1.05
30 10 3 20 0.15 0.15 0.15 0.40

40 5 8 20 4.70 4.85 8.05 9.50
40 7 6 20 2.70 2.70 3.50 3.85
40 8 5 20 1.75 1.75 2.05 2.40
40 10 4 20 0.20 0.20 0.20 0.90

60 6 10 20 6.25 6.80 11.80 14.15
60 10 6 20 2.25 2.25 2.60 3.35
60 12 5 20 0.60 0.60 0.60 1.40
60 15 4 20 0 0 0 0.60
60 20 3 20 0 0 0 0.20

120 5 24 20 13.95 18.40 50.20 57.90
120 8 15 20 10.95 11.70 28.20 33.00
120 10 12 20 8.95 9.05 18.35 21.80
120 12 10 19 7.05 7.05 11.47 13.68
120 15 8 13 4.15 4.15 4.92 6.08
120 20 6 17 0.24 0.24 0.24 1.65
120 24 5 20 0 0 0 0.80
120 30 4 20 0 0 0 0.40
120 40 3 20 0 0 0 0.10

500 20 25 20 19.55 19.80 72.15 -
500 25 20 20 14.55 14.55 37.45 -
500 50 10 20 0 0 0 -
500 100 5 20 0 0 0 -
500 125 4 20 0 0 0 -

On the other hand, the bound LBILIS is dominated by the bound IPBI for all instances with
n ⩽ 120. Among these 429 instances, IPBI is better for 231 instances, with differences up to
10. Also for n = 500, LBILIS can still be calculated in at most 1 millisecond for every instance.
This shows that the new lower bound LBILIS yields very good results taking into account the
fast runtime compared with IPBI. Especially, for instances with many items the new lower
bound is very useful.

2.6.3 Simulated annealing

We applied our SA algorithm to the 429 instances from Table 2.1 and 100 instances with
n = 500. We imposed the same time limit of 30 minutes as for the MIP formulations. To
generate a good starting solution, each instance was first solved with the formulation IPBI
setting a time limit of 10 minutes, then the SA algorithm got a time limit of 20 minutes
to optimize this solution w.r.t. RSr or RSu. Since the instances with n = 500 are too large
to tackle them with the IP formulation, for these instances random starting solutions were
generated.

In Table 2.6 average values for all instance groups are shown. The column LB contains the
best lower bound on the number of badly placed items. For n ⩽ 120, LB is determined by IPBI,
for the instances with n = 500 we used LBILIS. Columns ∆RSSAu ,∆RSSAr show the average
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Table 2.6: Simulated annealing results.
n m b inst LB ∆RSSAu ∆RSIPu ∆RSSAr ∆RSIPr

30 5 6 20 5.65 0 0.65 0.05 1.65
30 6 5 20 3.60 0 0.50 0 1.10
30 8 4 20 1.05 0 0 0 0.05
30 10 3 20 0.40 0 0 0 0

40 5 8 20 9.50 0 1.50 0.10 3.35
40 7 6 20 3.85 0 0 0 0.20
40 8 5 20 2.40 0 0.05 0 0.05
40 10 4 20 0.90 0 0 0 0

60 6 10 20 14.15 0.15 3.65 0.50 8.30
60 10 6 20 3.35 0.10 0.25 0.10 0.45
60 12 5 20 1.40 0 0.15 0 0.20
60 15 4 20 0.60 0 0.05 0 0.05
60 20 3 20 0.20 0 0 0 0

120 5 24 20 57.90 6.35 66.20 17.15 94.15
120 8 15 20 33.00 0.75 10.50 1.35 24.50
120 10 12 20 21.80 0.50 4.55 0.30 12.20
120 12 10 19 13.68 0.63 2.58 0.53 6.58
120 15 8 13 6.08 0.77 1.23 0.54 2.23
120 20 6 17 1.65 0.12 0.47 0.12 0.53
120 24 5 20 0.80 0 0.10 0 0.15
120 30 4 20 0.40 0 0 0 0
120 40 3 20 0.10 0 0.05 0 0.05

500 20 25 20 72.15 247.90 - 298.15 -
500 25 20 20 37.45 120.45 - 115.60 -
500 50 10 20 0 15.55 - 6.35 -
500 100 5 20 0 0.70 - 0.20 -
500 125 4 20 0 0.20 - 0.05 -

differences RSu/r − LB for the SA solutions w.r.t. the numbers of unrestricted/restricted
reshuffles, respectively. Similar to Boysen and Emde [15], we report absolute differences
instead of relative ones since often the lower bounds are small (or even equal to zero).
Furthermore, the columns ∆RSIPu ,∆RSIPr contain the average differences RSu/r − LB for the
solutions obtained by the formulation IPBI (also used as a heuristic to minimize RS) in terms
of the actual number of reshuffles (cf. Table 2.2).

It turns out that the SA solutions are quite good; for the small instances with n ⩽ 60 the
average value of ∆RSSAu is 0.02 (the maximum over all instances is 1), ∆RSSAr is on average
0.06 (maximum 2). For the instances with n = 120 and b ⩽ 15 the average value of ∆RSSAu
is 0.35 (maximum 2) ∆RSSAr is on average 0.46 (maximum 6). The average deviations for the
instances with n = 120 and b = 24 are slightly worse (6.35/17.15), for the instances with
n = 500 and b ⩾ 20 the deviations are much larger.

Finally, we compare the SA solutions with the solutions obtained by the formulation IPBI.
For the SA solutions, the average difference ∆RSSAu between the number of unrestricted
reshuffles and the best lower bound is at most 0.15 for the smaller instances with n ∈
{30, 40, 60}, while IPBI seen as a heuristic needed up to 3.65 reshuffles in addition to the
lower bound. For the restricted BRP, the average values of ∆RSSAr are at most 0.5, while
∆RSIPr is at most 8.3. The results for the instances with n = 120 items are even more
advantageous since the average differences for the instances with b ⩽ 15 are at most 1.69

27



Chapter 2 The parallel stack loading problem

for the restricted and unrestricted BRP, while the differences are at most 10.5 unrestricted
respectively 24.5 restricted reshuffles for the solutions of IPBI. Recall that for the instances
with n = 500 the IP could not find any feasible solution.

Thus, we may conclude that solving the PSLP with the actual objective functions RSr or
RSu heuristically gives much better results than optimizing w.r.t. the surrogate objective
functions USadj or BI.

2.7 Conclusions

In this chapter, we considered the parallel stack loading problem for the surrogate objectives
counting “unordered stackings” and “badly placed items” as well as for the important and
more realistic objective “total number of reshuffles”. We stated a new and strengthened
NP-completeness proof for all three objectives, analyzed the problem theoretically regarding
quantitative relations between the different objectives, and developed new lower bounds for
the surrogate objective “total number of badly placed items”. Furthermore, we dealt with the
research question of Boysen and Emde [15] “which surrogate objective shows the greatest
accuracy in approximating the true retrieval effort”. For this purpose, we compared the results
with the actual numbers of (restricted and unrestricted) reshuffles. Our experiments showed
a great benefit of the more accurate surrogate objective function BI counting badly placed
items instead of only counting unordered stackings USadj (especially, for instances with
larger stack heights). Furthermore, for b ⩽ 6 (which is the common situation in real-world
container terminals), the number of badly placed items BI is a good approximation of the
actual number of reshuffles.

Additionally, we proposed a SA heuristic for the combined loading/unloading problem
that tries to find a storage configuration for which the total number of reshuffles in the
unloading stage is small. We obtained quite good solutions if we proceed in two stages and
evaluate configurations with a fast BRP solver. It turned out that it is much better to solve
the problem with the (more complex) reshuffle objective heuristically instead of calculating
optimal solutions for the surrogate objective BI with an exact algorithm. On the other hand,
for larger instances with n = 500, the deviations between our heuristic solutions and the
lower bounds become quite large. Hence, for further research it would be interesting to
decrease these deviations by trying to calculate more accurate bounds and perhaps also
improve the behavior of the SA algorithm.
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Chapter 3

Robust optimization for premarshalling with
uncertain priority classes

In this chapter, we consider a robust optimization approach for premarshalling with uncertain
priority classes. The research contained in this chapter has already been published in Boge et
al. [9] and is organized as follows. First, we give an introduction in Section 3.1. In Section 3.2
we describe the problem setting more precisely. Theoretical results on the existence of robust
solutions can be found in Section 3.3. In Section 3.4 we present mixed-integer programming
(MIP) models for the robust problem under consideration, and in Section 3.5 we report results
of a computational study. Finally, some conclusions can be found in Section 3.6.

3.1 Introduction

In premarshalling problems, items are sorted inside the storage area so that all items can be
retrieved without any further relocations afterwards. Recall that just as in the blocks relocation
problem (BRP) in the premarshalling problem (PMP), the items have priority values, but do
not leave the storage area immediately. The items are moved to positions so that they can be
retrieved without relocations later in the unloading stage. Often, such a sorting process is
done during the night, before the unloading process is started on the next day.

In this chapter, we consider the premarshalling problem where the priority values of the
items are not exactly known when the sorting is done. Our setting is motivated by the
real-world situation in container terminals where containers are stored and later retrieved
by ships or trucks. For each item its estimated retrieval time is derived from the expected
arrival time of the corresponding ship or truck. Since in practice the arrival times of ships or
trucks are affected by different uncertainties, they are usually not deterministically known in
advance. In this situation, a computed solution of the deterministic PMP may cause additional
relocations since items with earlier departure times may be stored below items which are now
retrieved later due to delays. Thus, a terminal could benefit from solutions which are more
robust with respect to changes in the retrieval sequence.

Different approaches to handle uncertain data in optimization problems have been proposed.
Most prominently, these include stochastic and robust optimization. While the stochastic
approach usually requires deeper problem knowledge in form of a probability distribution
on the uncertain data, we only require a description of all relevant scenarios for the robust
approach that we follow in this chapter. For general surveys on robust optimization, we refer
to Gabrel et al. [41] as well as Goerigk and Schöbel [48].

Robust premarshalling problems have already been studied by Rendl and Prandtstetter [89]
as well as Tierney and Voß [105]. In the robust PMP introduced in Rendl and Prandtstetter
[89], it is assumed that each item has an associated interval of possible priority values
modeling uncertainties in the retrieval times. Two items in the same stack are “conflicting”
if their associated intervals overlap and a configuration is called robust if all items can be
stacked without any conflicts. A constraint programming (CP) formulation is proposed which
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is able to solve only small instances in the case that a robust configuration exists. In Tierney
and Voß [105] a more general concept of uncertainties is considered. There, a “blocking
matrix” is introduced which indicates for each pair of items which items may be stacked on
each other and which items are in conflict. Then, an adapted iterative deepening A∗ (IDA)
algorithm from Tierney et al. [104] is applied to instances with interval uncertainties to find
strictly robust solutions. If a strictly robust solution exists, the algorithm in principle finds one
(if the time limit is large enough). On the other hand, if no strictly robust solution exists, the
algorithm does not terminate. Hence, if the algorithm reaches the time limit, it is not clear
whether no robust solution exists or the computing time was too short. In the experiments by
Tierney and Voß [105] it is shown that this approach clearly dominates the CP formulation of
Rendl and Prandtstetter [89].

In this chapter, we introduce a new model for uncertainty, motivated by the occurrence
of delays. We assume that a limited number of elements in the retrieval sequence may be
swapped and study the impact of this number. In contrast to previous approaches, we do not
only focus on strictly robust solutions, but also compute robust solutions if no strictly robust
solution exists. We analyze the complexity of the resulting robust problem, and give analytical
criteria when a stacking configuration exists that remains feasible in every considered scenario.
We further present MIP and integer program (IP) formulations for the robust problem. In
a computational study, we consider the computational effort to calculate robust solutions,
evaluate the strength of the analytical existence criteria, and highlight the advantages (in
terms of additional robustness) and disadvantages (in terms of additional relocations) of
using our robust solutions.

3.2 Problem formulation

In this section, we introduce our notation and describe the problem under consideration more
formally. We are given a storage area which consists of m stacks Q = {1, . . . ,m}, each stack
contains b levels L = {1, . . . ,b}, i.e., at most b items can be stored in each stack. There are n
items from a set I = {1, . . . ,n} stored in the area, each item belonging to exactly one priority
class γ(i) ∈ P = {1, . . . ,N}. If γ(i) < γ(j), item i has to be retrieved earlier than item j. This
means that in the retrieval process, all items of priority class 1 have to be retrieved first (in
an arbitrary order), then all items of priority class 2, etc. We denote by Ck ⊆ I the set of all
items belonging to priority class k ∈ P. In a more special situation, we have N = n and all
items belong to different priority classes, i.e., γ(i) ̸= γ(j) for all i ̸= j. This means that there
is a unique sequence for the items in which they have to be retrieved; for example, such a
situation occurs in practice if each item is retrieved by a single truck and the trucks arrive one
after the other.

Our setting also includes the case that some priority classes are empty, i.e., no item is
scheduled to be retrieved for such time periods. Using empty priority classes, it is possible
to model that some item retrievals have more time between them and are thus less likely to
exchange their positions.

Recall that for a given storage configuration, an item is called “blocked” if one or more
items with later retrieval time (so-called “blocking” items) are stacked above it in the same
stack. Such a situation is sometimes also called a “mis-overlay” or an “overstow”. Before
retrieving a blocked item, each blocking item has to be removed from this stack and relocated
to another stack. Such an unproductive move is also called a “reshuffle”.

The goal of the premarshalling problem is to transform a given storage configuration into
a feasible configuration without any blockings. This transformation can be described by a
sequence of moves (q,q ′) with the meaning that the topmost item in stack q ∈ Q is moved
to the top of stack q ′ ∈ Q. Such a move is feasible if the destination stack q ′ is not full. As
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objective function, usually, the total number of reshuffles during the premarshalling process
is minimized. We denote this objective function by RSPM.

Any configuration may be described by specifying for each item i ∈ I its location (q, l) ∈
Q× L as a pair of stack and level. In our setting, we often only need configurations of the
priority classes, i.e., which priority class is stored at location (q, l).

In the literature, two different versions of storage areas are considered. While it is often
assumed that all moves have to be performed inside the storage area, sometimes also an
additional temporary storage area exists, cf. Wang [113], Dayama et al. [25], Wang et al.
[114], and de Melo da Silva et al. [26]. In the first case, it is more difficult to find feasible
movements and items may have to be reshuffled several times. However, it is mostly assumed
that sufficient space exists to transform any configuration into a feasible configuration without
blockings. In the second situation, in principle, all items can be removed from the area and
reinserted in an arbitrary order. However, since such movements are time-consuming, they
should be avoided as much as possible. In this chapter we study both versions, depending on
the context.

If we assume that each priority class belongs to one specific vehicle or ship, in case of
delays, the positions of the items in the retrieval sequence do not change independently,
but all items of the same priority class change their priority value simultaneously. To model
such a situation, we assume that we are given an initial nominal sequence π̂ = (1, . . . ,N) of
the priority classes and the actual sequence π is uncertain. In principle, π can be any other
sequence, but in practice it is more likely that π is somehow similar to π̂ (i.e., not all priority
values are changed simultaneously). To model this, we construct a so-called uncertainty set
UΓ containing all scenarios that are assumed to be possible. The set UΓ contains all sequences
π that can be obtained from π̂ by swapping at most Γ ∈ {0, 1, . . . , N(N−1)

2 } adjacent elements.
The “swap distance” Γ between permutations π and π̂ is also known as the Kendall-Tau
distance (cf. Kendall [63]) and can be calculated by counting all pairs i < j with πi > πj.
Furthermore, Γ = 0 corresponds to the nominal scenario and for Γ =

N(N−1)
2 the set UΓ

contains all possible permutations.
For example, let us consider the case N = 4 and π̂ = (1, 2, 3, 4). Then, we have

U0 = {(1, 2, 3, 4)},

U1 = U0 ∪ {(2, 1, 3, 4), (1, 3, 2, 4), (1, 2, 4, 3)},

U2 = U1 ∪ {(1, 3, 4, 2), (1, 4, 2, 3), (2, 1, 4, 3), (2, 3, 1, 4), (3, 1, 2, 4)},

. . .

U6 = U5 ∪ {(4, 3, 2, 1)}.

In Knuth [67], an exact formula is presented for the number of permutations with length N
having swap distance exactly Γ ⩽ N. Using this result, we see that the number of elements in
UΓ is at least in the order of magnitude of NΓ .

In case of uncertainties, final configurations computed for the premarshalling problem may
contain blockings if the order of the priority classes is changed, i.e., they are no longer feasible
solutions for the PMP. This means that later in the unloading stage additional reshuffles are
necessary to retrieve all items in a correct order.

Example 3.1. Consider an example with N = 4 priority classes and n = 10 items stored in
m = 3 stacks of height b = 4. In Figure 3.1 and 3.2, two different configurations c and c ′ are
shown (for each item i its priority class γ(i) is depicted). Both are feasible (i.e., have no blocking
items) for the nominal scenario π̂ = (1, 2, 3, 4) (cf. Figure 3.1a and 3.2a). In Figure 3.1b to 3.2d
the settings for the actual priority classes according to the permutations π1,π2,π3 ∈ U1 are
shown. While the configuration c ′ also has no blockings for all permutations π1,π2,π3 (cf.
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Figure 3.1: Configuration c.
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Figure 3.2: Configuration c ′.

Figure 3.2b, 3.2c, 3.2d), the configuration c has one (cf. Figure 3.1b), two (cf. Figure 3.1c) and
two (cf. Figure 3.1d) blocking items (underlined), i.e., it is not a feasible final premarshalling
configuration for these scenarios. Hence, the configuration c ′ is more robust against uncertainties.
□

We call a configuration Γ -robust if in every scenario from UΓ , there are no blocking items.
A configuration is Γ -robust if and only if for all items i, j where i is stacked on top of j the
condition

γ(i) = γ(j) or γ(j) − γ(i) > Γ (3.1)

holds. For example, configuration c from Figure 3.1 is not 1-robust since there are items i, j
in the same stack with γ(j) − γ(i) = 1. On the other hand, configuration c ′ from Figure 3.2 is
2-robust, but not 3-robust since for π = (4, 3, 2, 1) ∈ U3 a blocking in the first stack occurs
(there are items i, j with γ(j) − γ(i) = 4− 1 = 3).

Obviously, not every instance admits a Γ -robust configuration. However, in this situation,
we may want to find a configuration for which as few reshuffles as possible are needed in the
unloading stage. Minimizing the total number of reshuffles for a fixed storage configuration
corresponds to the BRP, which is known to be strongly NP-hard and difficult to solve even
for small instances (cf. Caserta et al. [19]). Thus, finding a configuration which needs a
minimum number of reshuffles may be even more complex.

To evaluate a storage configuration with respect to blockings and to estimate the number
of reshuffles in the unloading stage, the objective function BI (total number of badly placed
items, also called “number of confirmed relocations” in Kim and Hong [64]) has been
introduced. An item is “badly placed” (cf. Forster and Bortfeldt [39]) if it is blocking an item
placed somewhere below in the same stack that has to be retrieved earlier. On the other
hand, we denote by RSU the actual number of reshuffles needed to unload all items from the
stacks according to their priorities. We do not count the retrieval operations here (since all n
items have to be retrieved in the unloading process, we always have a constant number of n
retrievals). Obviously, for each configuration c the value BI(c) defines a lower bound on the
total number of reshuffles RSU(c) in the unloading stage since each blocking item has to be
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relocated at least once to retrieve all items.
In the following, we adapt the objective function BI to the robust setting. For any config-

uration c and a permutation π ∈ UΓ we denote by cπ the realized configuration of priority
classes for scenario π. Then let

BIΓrob(c) := max
π∈UΓ

{BI(cπ)} (3.2)

be the maximum number of badly placed items occurring in any scenario from the uncertainty
set UΓ . In a corresponding optimization problem we look for a configuration c such that
BIΓrob(c) is as small as possible. Later on, we also consider the so-called “adversary problem”:
For a given configuration c we want to find a worst-case scenario, i.e., a permutation π ∈ UΓ

that maximizes BI(cπ).
For any configuration c and each item i ∈ I let Bi(c) be the set of all items j ∈ I where j is

stacked somewhere below i in the same stack and γ(i) ̸= γ(j). Instead of calculating BIΓrob(c)
exactly, we also use the upper bound

BI
Γ
rob(c) = |{i ∈ I : ∃j ∈ Bi(c) with |γ(j) − γ(i)| ⩽ Γ }| (3.3)

by counting all items i which may become badly placed due to an item j below that violates
(3.1). Since a configuration c is Γ -robust if and only if (3.1) for all i ∈ I and all j ∈ Bi(c)
holds, we have

BIΓrob(c) = 0 if and only if BI
Γ
rob(c) = 0. (3.4)

Furthermore,
BI
Γ
rob(c) = 1 implies BIΓrob(c) = 1, (3.5)

since if only a single pair (i, j) with j ∈ Bi(c) violates (3.1), for each scenario π ∈ UΓ at most
one badly placed item exists (and there must also be at least one scenario with one badly
placed item).

3

2

2

1

(a) π̂ = (1, 2, 3).

3

1

1

2

(b) π1 = (2, 1, 3).

2

3

3

1

(c) π2 = (1, 3, 2).

Figure 3.3: Configuration c with BIΓrob(c) = 1, but BI
Γ
rob(c) = 2.

However, BIΓrob(c) = 1 does not imply BI
Γ
rob(c) = 1 as the example in Figure 3.3 shows.

There we have a configuration c with N = 3 priority classes, n = 4 items stored in m = 2
stacks, and Γ = 1. For the nominal scenario π̂ = (1, 2, 3) we have BI(cπ̂) = 0, and for the
two permutations π1 = (2, 1, 3),π2 = (1, 3, 2) ∈ U1 we have BI(cπ

1
) = BI(cπ

2
) = 1, i.e.,

BIΓrob(c) = max{0, 1, 1} = 1. On the other hand, BI
Γ
rob(c) = 2 since for π̂ in both stacks (3.1)

is violated. However, not both swaps 2 ↔ 3 and 1 ↔ 2 can occur simultaneously in the case
Γ = 1, i.e., BI

Γ
rob(c) overestimates the actual value.

Recall that a feasible final configuration for the classical deterministic premarshalling
problem (Γ = 0) does not contain any blockings (i.e., BI0rob = BI = 0) and that such a
configuration can be reached in most realistic situations (cf. Section 3.3). Thus, most of the
algorithms known for the deterministic setting concentrate on minimizing the total number
of reshuffles, while a feasible final configuration without any blockings is mandatory. Since in
many situations, a configuration without any blockings is not achievable for Γ > 0, we relax
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this traditional condition and also allow final configurations with blockings. We consider
robustness as primary and the number of reshuffles as secondary goal. Our objective is to find
a storage configuration minimizing lexicographically BIΓrob and the total number of reshuffles
RSPM to achieve a corresponding solution.

3.3 Theoretical analysis

In this section, we deal with some theoretical issues in connection with the robust premar-
shalling problem. In Section 3.3.1, we study whether in the deterministic setting a given
configuration can be transformed into a feasible configuration without blockings. In Sec-
tion 3.3.2, we consider the question whether a Γ -robust solution exists in the robust setting.
Finally, in Section 3.3.3, we show that already the adversary problem is NP-hard.

3.3.1 Feasibility

First we deal with the feasibility problem in the deterministic setting, i.e., the question
whether a given configuration can be transformed into a configuration without blockings by
only using feasible moves in the storage area of limited size. This has recently been stated
as an open problem in Parreño-Torres et al. [84]: “On the other hand, there is the unsolved
question of deciding whether a premarshalling instance has a feasible solution or not. It is a
difficult question, because it depends not only on the dimensions of the bay and the number
of containers, but also on the positions of the containers.” Independently to our work, the
feasibility problem was already studied in the dissertation of Wang [113]. Although in this
thesis an involved proof is presented, some details are only sketched. In the following, we
present a simpler and more thorough proof, based on another idea which may also be useful
in other settings.

The case with m = 2 stacks only allows to move all blocking items from one to the other
stack (and vice versa) so that feasibility can easily be checked. In the following, we assume
that we have at least m ⩾ 3 stacks and denote by f = mb− n the number of free slots in the
storage. Obviously, in the case f = 0 an instance is only feasible if the storage is completely
sorted, i.e., there are no blocking items. In the case f = 1, only the items in the topmost level
can be changed.
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(a) Infeasible.
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1

4
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2

2

2

1

(b) Feasible.

Figure 3.4: PMP instances with f = 1.

Example 3.2. Consider the configuration in Figure 3.4a where again the γ-values are depicted.
This instance is infeasible, since there is only a single feasible location (in the first stack) for
the two items with priorities 3 and 4 in the topmost level. On the other hand, the instance in
Figure 3.4b is feasible since it can be transformed into the feasible configuration shown in the
right part by using the moves (1, 3), (2, 1), (3, 2). □

For the general situation f ⩾ 1, we denote by Itop(f) the set of all items in the top f levels.
It is easy to see that only these items can change their positions and that the items in the
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levels 1, . . . ,b− f are fixed. In the following we show that there is no restriction on the order
of the items Itop(f) and that they can be ordered in an arbitrary way. Additionally, we show
that each of these items can be moved to any other position without changing the positions of
all other items.

Lemma 3.1. In an instance of the PMP with m ⩾ 3 stacks and f ⩾ 1 free slots, all items Itop(f)

stored in the top f levels can be transformed into an arbitrary configuration.

Proof: We prove the statement in a constructive way in three steps.

(i) Each item i ∈ Itop(f) can be moved to the topmost level in its stack without changing
the order of the other items in this stack and without changing the positions of all items
in the remaining stacks.

u

i

◦

•

×

Ai

v w u v

×

•

◦

Ai

w

i

u

◦

•

×

i

Ai

v w

Figure 3.5: Transformation (i).

For each item i let Ai be the set of items above item i and ai := |Ai|. For each stack
q let fq be the number of free slots in q. Consider an item i ∈ Itop(f) and let u be its
stack. Since i belongs to the top f levels, we have ai + fu ⩽ f− 1. Hence, the number
of free slots not contained in stack u is at least f− fu ⩾ ai + 1. Let v,w ̸= u be stacks
with fv ⩾ ai and fw ⩾ 1 (if such stacks do not exist, they can easily be obtained by
some additional moves).

In order to move i to the topmost level in u, we proceed as follows (cf. Figure 3.5):
Move all items Ai onto stack v and item i to stack w. Then move all items Ai from
stack v back to u and put item i on top of them. If additional moves were necessary to
get stacks v,w, reverse them also.

(ii) The topmost items i, j ∈ Itop(f) in two different stacks can be swapped without changing
the positions of all other items.

u

i

v

j

w u v

j

w

i

u

j

v w

i

u

j

v

i

w

Figure 3.6: Transformation (ii), with non-full stack w.

Assume that i, j are the topmost items of stacks u ̸= v. If there is a non-full stack w
with w ̸= u and w ̸= v, then move i to stack w, afterwards j to stack u, and finally i to
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stack v (cf. Figure 3.6). If there is no such stack w, for the number of free slots in stacks
u, v we have fu + fv = f and fu, fv < f, which implies fu ⩾ 1 and fv ⩾ 1. Thus, we
may swap i and j using the topmost item h of another stack w as shown in Figure 3.7.
Each indicated swap may be realized by a sequence of moves as in Figure 3.6.
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w
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j

v
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w

h

Figure 3.7: Transformation (ii), with full stack w.

(iii) The topmost item of each stack can be moved to any level above level b− f in the same
stack without changing the order of the other items in this stack and without changing
the positions of all items in the remaining stacks.

The proof of this statement is similar to the proof of (i).

Having proved (i)-(iii), the claim of the lemma follows immediately. To achieve some
arbitrary target configuration of the items in Itop(f), we first move each item to its destination
stack by moving it to the topmost level of its stack as in (i) and then swapping it with a
“wrong” item of its destination stack as in (ii). Afterwards, each item can be moved to the
destination level in its stack as in (iii). □

For any stack q ∈ Q in a storage configuration we denote by γQ(q) the priority class of the
item in level b − f of stack q, i.e., of the topmost item in stack q which cannot be moved.
W.l.o.g. we assume that the stacks q1, . . . ,qm are sorted such that γQ(q1) ⩾ . . . ⩾ γQ(qm)
and that the movable items from the set Itop(f) = {i1, . . . , if(m−1)} are sorted according to
γ(i1) ⩾ . . . ⩾ γ(if(m−1)).

Example 3.3. Consider the left configuration in Figure 3.8a with f = 3 where again the γ-values
are shown. It can be transformed into the feasible configuration shown in the right by filling the
stacks q1, . . . ,qm−1 = q3 with the items i1, . . . , if(m−1) = i9 (in this order).

On the other hand, if we apply the same procedure to the left configuration in Figure 3.8b, we
achieve the infeasible configuration shown in the right. The reason for the infeasibility is that for
k = 3 we have γQ(q3) = 4 < γ(i7) = 5. □

Theorem 3.1. A given start configuration of the PMP with m ⩾ 3 stacks and f ⩾ 1 free slots can
be transformed into a feasible configuration without blockings if and only if

(a) there are no blocking items in the bottom levels 1, . . . ,b− f, and

(b) γQ(qk) ⩾ γ(i(k−1)f+1) for k = 1, . . . ,m− 1.

Proof: “⇒:” Assume that the conditions (a) and (b) are satisfied. Then we proceed as in
Example 3.3. According to Lemma 3.1, the topmost levels b− f+ 1, . . . ,b of all stacks can
be filled arbitrarily with items of Itop(f). Stack q1 is filled with items i1, . . . , if in levels
b − f + 1, . . . ,b, then stack q2 is filled with if+1, . . . , i2f, and so on. Finally, stack qm−1 is
filled with i(m−2)f+1, . . . , i(m−1)f. We claim that this configuration has no blocking items,
i.e., it is a feasible premarshalling configuration.
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(a) Feasible instance.
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(b) Infeasible instance.

Figure 3.8: Feasible and infeasible PMP instances with f = 3.

Due to (a), there are no blockings in levels 1, . . . ,b− f. Due to (b), item i(k−1)f+1 put on
stack qk in level b− f+ 1 does not lead to a blocking since the item below does not have a
smaller γ-value. Finally, in levels b − f + 2, . . . ,b there are no blockings since the items in
Itop(f) are sorted according to non-increasing γ-values.

“⇐:” Conversely assume that the conditions are not satisfied. If (a) is violated, no
configuration without blockings is possible since the corresponding items in the bottom levels
cannot be moved. If (b) is violated, let k be the first index with γQ(qk) < γ(i(k−1)f+1). Then
there are only (k − 1)f feasible slots for the (k − 1)f + 1 items i1, . . . , (k − 1)f + 1, which is
not sufficient to place all of them. □

Checking feasibility with Theorem 3.1 can be done in O(n logn) time. Condition (a) can be
checked in O(n), while the m− 1 conditions in (b) require that all items in Itop(f) are sorted
according to their priority values (which needs O(n logn)). In the following, we show that
the effort can be reduced to O(n).

For this purpose, we call the value γQ(q) the “stack value” of stack q. Letm ′ be the number
of different stack values and Q ′ := {1, . . . ,m ′} the set of corresponding indices. Furthermore,
for all ν ∈ Q ′ let γQν be the νth stack value and

yν := |{q ∈ Q : γQ(q) = γQν }| (3.6)

be the number of stacks with stack value γQν . Additionally, assume that these values are
sorted such that γQν−1 < γ

Q
ν for all ν = 2, . . . ,m ′ and let

x1 := |{i ∈ Itop(f) : γ(i) ⩽ γQ1 }|, (3.7)

xν := |{i ∈ Itop(f) : γQν−1 < γ(i) ⩽ γ
Q
ν }| for ν = 2, . . . ,m ′. (3.8)

The value xν counts all items which may be put without blockings on the topmost item of any
stack with stack value γQν . Obviously, in a configuration without blockings, xν items must be
put on stacks with stack values γQν , . . . ,γ

Q
m ′ . Thus, an instance of the PMP can be transformed

into a feasible configuration without blockings if and only if for each ν the accumulated stack
capacities f

∑︁m ′

ζ=ν yζ provide enough free slots to store all items i with γ(i) ⩽ γQν , i.e., if we
have

m ′∑︂
ζ=ν

xζ ⩽ f
m ′∑︂
ζ=ν

yζ for all ν ∈ Q ′. (3.9)

Calculating the xν- and yν-values as well as checking condition (a) from Theorem 3.1
and conditions (3.9) can be done in O(max{n,m}) as follows. At first we build an array A
of length N to store references to tuples (xν,yν). Initially, all entries of the array are empty.

37



Chapter 3 Robust optimization for premarshalling

When checking condition (a) of Theorem 3.1, we know for each stack q the value γQ(q) = γQν
for some index ν ∈ Q ′. Then we look up whether A[γQ(q)] is empty. If this is the case, we
set A[γQ(q)] := ν as a reference to the tuple (xν,yν) and set yν := 1. Otherwise, we follow
the reference and increment yν by one. Furthermore, we set xν := 0 in both cases. Here, we
traverse the stacks 1, . . . ,m in an arbitrary order, which can be done in O(m).

After all stacks have been processed, we find the largest index γfirst with a non-empty
reference in A. For γfirst − 1, . . . , 1 in descending order we iteratively find the next empty
entry A[γ] and set it to A[γ + 1]. Subsequently, all entries γfirst, . . . , 1 are filled, while all
values N, . . . ,γfirst + 1 remain empty (which means that no stack exists that is able to store
items of the corresponding larger priority values). This second step can be done in O(N).

Using the array A, we now traverse all items i ∈ Itop(f) in an arbitrary order in O(n). For
every item i we look up the entry of A[γ(i)]. If it is empty, the problem is infeasible since there
is no stack on which item i may be placed without blockings. Otherwise, the corresponding
entry xν is incremented by one. After all items have been processed, all xν- and yν-values
have been calculated and conditions (3.9) can be checked in O(m).

3.3.2 Existence of Γ -robust configurations

In this section, we consider the question whether a Γ -robust configuration exists or not.
Especially, we give some sufficient conditions for their existence. If we have a temporary
storage area or at least f ⩾ b free slots, then all items are movable and each configuration can
be reached. On the other hand, if only relocations inside the storage area are allowed and
f < b holds, a Γ -robust configuration may exist, but may be not reachable. In the following,
we ignore the latter problem and assume that sufficient space for relocations exists. This
means that we do not need to consider a given start configuration.

At first, we consider storage areas with stacking height b = 2.

Theorem 3.2. For b = 2 and any Γ ⩾ 0 the existence of a Γ -robust configuration can be decided
in O(n2.5) by solving a maximum cardinality matching problem.

Proof: We introduce a directed graph GΓ = (V,AΓ ) with n nodes modeling the items I. Since
the items in each priority class are interchangeable, we may fix one order for them and link
all items of the same class by a single chain. Furthermore, we introduce arcs (i, j) ∈ AΓ if
γ(j)−γ(i) > Γ with the meaning that i may be stacked on top of j in a Γ -robust configuration.

We calculate a maximum cardinality matching in the corresponding undirected graph (here
an edge {i, j} means that items i, j may be stacked together). Let m1 be the number of edges
in the matching and m2 be the number of nodes not covered by the matching. It is easy to
see that a Γ -robust solution exists if and only if m1 +m2 ⩽ m. A corresponding configuration
can be obtained by putting the matched nodes in pairs into m1 stacks, and the remaining m2

nodes into separate stacks. Since the number of nodes is n, a maximum cardinality matching
can be computed in O(n2.5) (cf. Even and Kariv [32]). □

In the following, we study the influence of the number of free slots on the existence of
Γ -robust configurations.

Theorem 3.3. If for any Γ ⩾ 1 there are at least (b−1)Γ free slots, then a Γ -robust configuration
always exists.

Proof: We construct Γ + 1 chains of items, where chain σk contains all items i with γ(i) mod
(Γ + 1) ≡ k for k = 1, . . . , Γ + 1. All items in a chain can be robustly stacked together in a
single stack, according to non-increasing priorities from bottom to top since then in each
stack only items i, j with γ(i) = γ(j) or γ(j)−γ(i) > Γ are stacked on each other. We cut each
chain into pieces of length b and a possible rest of length smaller than b and store each of
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these pieces in a separate stack. Let mnf ⩽ Γ + 1 be the number of non-full stacks containing
these rests. We claim that this configuration uses at most m stacks.

Since the storage contains n items and f = mb − n ⩾ (b − 1)Γ ⩾ (b − 1)(mnf − 1) free
slots, we must have

m =
n+ f

b
=

⌈︃
n+ f

b

⌉︃
⩾

⌈︃
n+ (b− 1)(mnf − 1)

b

⌉︃
=

⌈︃
n− (mnf − 1)

b

⌉︃
+(mnf−1). (3.10)

Let nnf be the number of items contained in the non-full stacks and mf be the number of full
stacks. Then, mnf ⩽ nnf ⩽ mnf(b − 1) and hence n − nnf = mfb items are contained in
the mf full stacks of height b. It follows⌈︃

n− (mnf − 1)

b

⌉︃
+ (mnf − 1) =

⌈︃
(mfb+ nnf) − (mnf − 1)

b

⌉︃
+ (mnf − 1) (3.11)

= mf +

⌈︃
nnf − (mnf − 1)

b

⌉︃
+ (mnf − 1) (3.12)

⩾ mf +mnf (3.13)

since nnf ⩾ mnf and therefore
⌈︂
nnf−(mnf−1)

b

⌉︂
⩾ 1. Thus, the number of used stacks is at

most⌈︃
n− nnf
b

⌉︃
+mnf =

⌈︃
(mfb+ nnf) − nnf

b

⌉︃
+mnf = mf +mnf

(3.10)−−(3.13)
⩽ m. (3.14)

□

The following example shows that if there are less free slots, there are instances for which
no Γ -robust configuration exists.

Example 3.4. Consider a storage area with m = Γ stacks and n = Γ + 1 items with (unique)
priorities γ(i) = i for i = 1, . . . ,n. If the stacks have height b ⩾ 2, then we have f = mb− n =
(b− 1)Γ − 1 free slots. Since γ(j) − γ(i) ⩽ Γ for all items i ̸= j, in a Γ -robust solution all items
must be stored in separate stacks, i.e., we need n = Γ + 1 > m stacks. □

Note that if for Γ ⩾ 2 the condition of Theorem 3.3 is satisfied (i.e., there are at least
(b−1)Γ free slots), then also f ⩾ b holds since (b−1)Γ ⩾ b ⇔ (Γ−1)b ⩾ Γ which is satisfied
for b ⩾ 2 and Γ ⩾ 2. Thus, in this situation a Γ -robust solution is also always reachable. For
Γ = 1 there are instances for which this is not possible.

Now we deal with the special situation of unique priorities (i.e., all priority classes contain
exactly one single item), which occurs in many test instances from the literature. W.l.o.g. we
assume γ(i) = i for all i ∈ I.

Theorem 3.4. For unique priorities and any Γ ⩾ 0 the existence of a Γ -robust configuration can
be decided in O(1).

Proof: We distinguish three cases depending on the number of items.

– Case 1: n ⩽ Γ + 1
Since then γ(j) − γ(i) ⩽ Γ for all items i ̸= j holds, in a Γ -robust configuration all n
items must be stored in separate stacks. Thus, a Γ -robust configuration exists if and
only if n ⩽ m.

– Case 2: Γ + 1 < n ⩽ (Γ + 1)b
For the first Γ + 1 items i ̸= j we have γ(j) − γ(i) ⩽ Γ , i.e., in a Γ -robust configuration
these items must be stored in Γ + 1 different stacks. Now we arrange all items in
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the chains σk for k = 1, . . . , Γ + 1. Recall that chain σk contains all items i with
γ(i) mod (Γ + 1) ≡ k and hence in a Γ -robust configuration all items in a chain can be
stacked together in a single stack (according to non-increasing priorities from bottom to
top). Since we consider the case of unique item priorities and n ⩽ (Γ + 1)b, all chains
contain at most b items. Thus, exactly Γ + 1 stacks are required to store all items in a
Γ -robust configuration and such a configuration exists if and only if Γ + 1 ⩽ m.

– Case 3: n > (Γ + 1)b
In the following, we prove that for this case always a Γ -robust configuration exists by
showing that ⌈nb ⌉ stacks are sufficient (and m ⩾ ⌈nb ⌉ must necessarily hold to store all
items in the storage).

Again, we consider the chains σk for k = 1, . . . , Γ + 1 and denote by λk the length of
chain k. Due to n > (Γ + 1)b, we must have λk ⩾ b for all chains. We claim that for
any 1 ⩽ d ⩽ λk − 1 the first d items of chain σk and all items except the first d items of
chain σk+1 can be stacked together. The priority value of the dth item of chain σk is
k+ (Γ + 1)(d− 1) and the value of the (d+ 1)th item of chain σk+1 is k+ 1+ (Γ + 1)d.
Their difference satisfies

k+ 1+ (Γ + 1)d− k− (Γ + 1)(d− 1) = Γ + 2 > Γ ,

i.e., in a Γ -robust configuration the corresponding items can be stacked onto each other.
Moreover, if the (d+ 1)th item of chain σk+1 can be stacked onto the dth item of chain
σk, then all previous respectively following items can also be stacked together.

Now consider the following algorithm. We start with the first chain σ1 and cut it into
pieces of length b, starting from the end. If there is a rest of length r1 < b left, then
we combine the corresponding first r1 items of chain σ1 with the last b − r1 items of
chain σ2. Due to λ2 ⩾ b and since the first r1 items of chain σ1 can be combined with
the last λ2 − r1 items of chain σ2 as shown above, the length of the combination is
λ2 − r1 + r1 = λ2 ⩾ b. Similarly, since λk ⩾ b for every chain σk, the first items of chain
σk can always be combined to a full stack with items of chain σk+1 and this process can
be iterated over all Γ + 1 chains. It results in ⌈nb ⌉− 1 full stacks and one (possibly not
completely filled) stack with rΓ+1 items of the last chain. Hence, this algorithm always
finds a Γ -robust configuration.

We illustrate the algorithm at the following example with n = 14,b = 3 and Γ = 2.
Then,

σ1 : 1 → 4 → 7 → 10 → 13

σ2 : 2 → 5 → 8 → 11 → 14

σ3 : 3 → 6 → 9 → 12

The algorithm constructs the pieces (7, 10, 13), (1, 4, 14), (5, 8, 11), (2, 9, 12), (3, 6), using
⌈nb ⌉ = 5 stacks.

Obviously, the conditions of the three cases can be checked in O(1), since only the numbers
n,m,b, Γ are involved. □

Although Theorem 3.4 only applies to the case of unique priority classes, it can still be used
if empty priority classes exist. If we ignore such empty priority classes, we can find a suitable
configuration to the problem heuristically. Using the case distinction from Theorem 3.4, we
can decide if this configuration already is a Γ -robust solution. Thus, we have a sufficient
condition to check for the existence of Γ -robust solutions.
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3.3.3 The adversary problem

In the following, we consider the complexity of the adversary problem. In the decision version
(Adv) of this problem, we are given a stacking configuration c, an uncertainty set UΓ , and an
integer B. The question is whether a scenario π ∈ UΓ exists such that the number of badly
placed items BI(cπ) is at least B.

Theorem 3.5. Problem Adv is NP-complete, even if b = 2.

Proof: First note that Adv is in NP, since the number of badly placed items can be counted
in polynomial time for any specific scenario π. A storage configuration with b = 2 can be
fully encoded by a single matrix Y ∈ NN×N, where yk,k ′ corresponds to the number of items
belonging to priority class k that are stored below some other item belonging to priority class
k ′. Note that there is a one-to-one relationship between instances of Adv with b = 2 and
matrices Y ∈ NN×N (ignoring the diagonal).
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Figure 3.9: Example configuration.

For example, the stacking configuration in Figure 3.9 is encoded by the matrix

Y =

⎛⎝0 2 3
4 0 1
1 3 0

⎞⎠ .

The number of badly placed items in such a configuration is given by the sum of upper
diagonal entries of Y, i.e.,

∑︁N−1
k=1

∑︁N
k ′=k+1 yk,k ′ .

In the following, we construct an instance of Adv with Γ being sufficiently large such that UΓ

is the set of all possible permutations. For our reduction, we use the linear ordering problem
(LOP), cf., e.g., Martí and Reinelt [81]. As input, it takes a 0-1 square matrix A ∈ {0, 1}ℓ×ℓ

and an integer V . The question is whether a permutation σ exists such that the sum of upper
diagonal entries of the matrix A(σ) = (aσ(i)σ(j)) is at least V.

Given a problem instance of (LOP), we build an instance of Adv by setting Y = A and B = V .
Since the input of (LOP) is a 0-1 matrix, the number of stacks in this stacking configuration
is in O(ℓ2), i.e., polynomial in the input size. Furthermore, for a permutation π of priority
classes, Y(π) = (yπ(k),π(k ′)) is the encoding of the resulting configuration. Hence, a linear
ordering σ of value at least V exists if and only if there is a scenario π that results in at least
B = V badly placed items. □

3.4 Optimization models

In this section, we introduce an IP model for a simplified robust premarshalling problem
with the upper bound objective BI

Γ
rob(c) as well as an exact, iterative approach to solve the

actual robust premarshalling problem with objective BIΓrob(c) (cf. Section 3.2). It is based
on a master problem, where the uncertainty set is restricted, and the adversary subproblem,
which aims at finding a worst-case scenario for the current solution. We again assume that
sufficient space for relocations exists, i.e., all configurations are reachable from the given start
configuration.
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Chapter 3 Robust optimization for premarshalling

3.4.1 Minimizing the upper bound BI
Γ

rob

Recall that to calculate BI
Γ
rob(c) for a configuration c, we count all items i with at least one

j ∈ Bi(c) where |γ(j) − γ(i)| ⩽ Γ holds, i.e., there exists a scenario in UΓ in which i is badly
placed. We use an IP formulation similar to one in Boge and Knust [8] where it is sufficient to
assign items to stacks but not to specific levels. We claim that if an assignment of items to
stacks is given, an optimal solution minimizing BI

Γ
rob may be obtained by sorting the items

with respect to γ-values with smallest γ-value on top and largest γ-value on the bottom (i.e.,
this solution has no blockings in the nominal scenario). This property can easily be proved by
an interchange argument as follows. Assume to the contrary that in a solution c minimizing
BI
Γ
rob the items in a stack are not sorted. Then, in c there exists a pair of items (j, i) where j

is stacked directly on top of i and γ(j) > γ(i) holds, i.e., (3.1) is violated and j is badly placed
in the nominal scenario. By interchanging i and j we get a new solution c ′ with j ∈ Bi(c). If i
satisfies γ(j)−γ(i) ⩽ Γ , in c ′ we again have one violation of (3.1); if i satisfies γ(j)−γ(i) > Γ ,
we may have one violation less (if there is no other item which causes j to be badly placed).
Hence, BI

Γ
rob(c

′) ⩽ BI
Γ
rob(c).

For each item i ∈ I let Ji := {j ∈ I : γ(i) < γ(j) and γ(j) − γ(i) ⩽ Γ } . Due to the above
property we know that in an optimal solution minimizing BI

Γ
rob each item j ∈ Ji may be

placed below item i and hence i may become badly placed if j is stored in the same stack as i.
For all i ∈ I and q ∈ Q, we use two kinds of binary variables:

βiq =

{︃
1, if item i is placed in stack q as a badly placed item
0, otherwise.

αiq =

{︃
1, if item i is placed in stack q, but is not badly placed
0, otherwise.

Note that αiq + βiq = 0 is possible for an item i and stack q if item i is not placed in q at all.

To model the robust premarshalling problem minimizing BI
Γ
rob, the following IP is used.

(IPUP) min
∑︂
i∈I

∑︂
q∈Q

βiq (3.15)

s.t.
∑︂
i∈I

(αiq + βiq) ⩽ b ∀q ∈ Q (3.16)∑︂
q∈Q

(αiq + βiq) = 1 ∀i ∈ I (3.17)

αiq + αjq + βjq ⩽ 1 ∀i ∈ I, j ∈ Ji,q ∈ Q (3.18)

αiq ∈ {0, 1} ∀i ∈ I,q ∈ Q (3.19)

βiq ∈ {0, 1} ∀i ∈ I,q ∈ Q (3.20)

The objective function (3.15) minimizes the number of badly placed items, represented by
the sum over all β-variables. Constraints (3.16) ensure that at most b items are assigned to
each stack, while constraints (3.17) model that every item has to be assigned to exactly one
stack. Finally, constraints (3.18) mean that if both items i and j ∈ Ji are assigned to the same
stack q, we must have αiq = 0.
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3.4 Optimization models

3.4.2 First master problem

Instead of the full, implicitly given uncertainty set UΓ , we consider a smaller, explicitly given
subset U ′ = {π1, . . . ,πT } ⊆ UΓ of scenarios. We write T = {1, . . . , T }. For each scenario t ∈ T

let us denote by
Bt = {(k,k ′) ∈ P× P : πtk > π

t
k ′}

all combinations of priority classes (k,k ′), such that an item of priority class k ∈ P is badly
placed in scenario t if it is above an item of priority class k ′ ∈ P in the same stack.

The following MIP generates a stacking configuration c which minimizes the number of
badly placed items with respect to U ′. For all k ∈ P,q ∈ Q, l ∈ L, we introduce variables

ckql =

{︃
1, if an item belonging to priority class k is stored in stack q at level l
0, otherwise

and a variable z ∈ N counting the maximum number of badly placed items over all scenarios.
Then, we use the following MIP:

(MIPM1) min z (3.21)

s.t.
∑︂
q∈Q

∑︂
l∈L

ytql ⩽ z ∀t ∈ T (3.22)

ckql ′ + ck ′ql − 1 ⩽ ytql ∀(k,k ′) ∈ Bt,q ∈ Q, l ∈ L, l ′ < l (3.23)∑︂
k∈P

ckql ⩽ 1 ∀q ∈ Q, l ∈ L (3.24)∑︂
q∈Q

∑︂
l∈L

ckql = |Ck| ∀k ∈ P (3.25)

∑︂
k∈P

ckq,l+1 ⩽
∑︂
k∈P

ckql ∀q ∈ Q, l ∈ L \ {b} (3.26)

ckql ∈ {0, 1} ∀k ∈ P,q ∈ Q, l ∈ L (3.27)

ytql ∈ {0, 1} ∀q ∈ Q, l ∈ L, t ∈ T (3.28)

z ⩾ 0 (3.29)

In (3.21) we minimize the maximum number of badly placed items over all scenarios, where
the value of z is set through constraints (3.22). Variable ytql (indicating a badly placed item
in position (q, l) in scenario t) is set to one by constraints (3.23), using the precomputed sets
Bt. Constraints (3.24)–(3.26) model the stacking constraints on c. Recall that Ck denotes
the set of items which are in the (nominal) priority class k.

3.4.3 Second master problem

We now introduce an alternative formulation for the same problem as in Section 3.4.2. We
use the same constraints (3.24)–(3.26) to model the stacking configuration c. To count
the number of badly placed items, we separate each position in each scenario using binary
variables αtkql and βtkql with similar meanings as in Section 3.4.1. If the item in position (q, l)

belongs to priority class k and is badly placed, then βtkql = 1. If the item in position (q, l)

belongs to priority class k and is not badly placed, then αtkql = 1. The resulting optimization
model is as follows.
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(MIPM2) min z (3.30)

s.t.
∑︂
k∈P

∑︂
q∈Q

∑︂
l∈L

βtkql ⩽ z ∀t ∈ T (3.31)

∑︂
k∈P

ckql ⩽ 1 ∀q ∈ Q, l ∈ L (3.32)∑︂
q∈Q

∑︂
l∈L

ckql = |Ck| ∀k ∈ P (3.33)

∑︂
k∈P

ckq,l+1 ⩽
∑︂
k∈P

ckql ∀q ∈ Q, l ∈ L \ {b} (3.34)

αtkql + β
t
kql = ckql ∀k ∈ P,q ∈ Q, l ∈ L, t ∈ T (3.35)

βtk ′ql ′ + α
t
k ′ql ′ +

∑︂
l>l ′

αtkql ⩽ 1 ∀(k,k ′) ∈ Bt,q ∈ Q, l ′ ∈ L \ {b}, t ∈ T (3.36)

ckql ∈ {0, 1} ∀k ∈ P,q ∈ Q, l ∈ L (3.37)

αtkql ∈ {0, 1} ∀k ∈ P,q ∈ Q, l ∈ L, t ∈ T (3.38)

βtkql ∈ {0, 1} ∀k ∈ P,q ∈ Q, l ∈ L, t ∈ T (3.39)

z ⩾ 0 (3.40)

3.4.4 The adversary subproblem

We now consider the adversary subproblem, which finds a worst-case scenario π ∈ UΓ for
a given candidate configuration c. By solving this problem, we can evaluate the objective
function BIΓrob(c).

Note that we can measure the swap (Kendall-Tau) distance between any two permutations
π and π ′ using

∆(π,π ′) =
∑︂
k∈P

∑︂
r>k

δkr

where δkr = 1 if πk < πr and π ′
k > π

′
r, or if πk > πr and π ′

k < π
′
r, i.e., priority classes k and

r change their relative order. Thus, the set UΓ = {π : ∆(π, π̂) ⩽ Γ } can also be described as{︂
ψ ∈ {0, 1}N×N :

∑︂
k∈P

ψkr = 1 ∀r ∈ P∑︂
r∈P

ψkr = 1 ∀k ∈ P

|{(k, r) ∈ P× P : k < r,∃k ′ > r ′ ∈ P : ψkk ′ = 1,ψrr ′ = 1}|

⩽ Γ
}︂

where ψkr = 1 if and only if πk = r, i.e., priority class k is permuted to position r.
Using the solution of the master problem, we generate sets Li for every item i ∈ I that

contain all other items below i in the same stack. To model the subproblem as an IP, we
introduce the following binary variables. Specifically, for all i ∈ I we introduce

yi =

{︃
1, if item i is badly placed
0, otherwise,
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for all i ∈ I, j ∈ Li we introduce

hij =

{︃
1, if item i is badly placed above item j

0, otherwise,

for all k, r ∈ P we introduce

ψkr =

{︃
1, if priority class k is permuted to position r
0, otherwise,

and finally for all k < r ∈ P we introduce

ψkr =

{︃
1, if priority classes k and r change their relative order
0, otherwise.

Note that the resulting scenario π can be derived from the ψ-values. Recall that γ(i) ∈ P is
the nominal priority class of item i ∈ I. The adversary subproblem can then be modeled in
the following way:

(IPSUB) max
∑︂
i∈I

yi (3.41)

s.t. yi ⩽
∑︂
j∈Li

hij ∀i ∈ I (3.42)

(N+ 1)hij −N ⩽
∑︂
k∈P

k(ψγ(i)k −ψγ(j)k) ∀i ∈ I, j ∈ Li (3.43)∑︂
k∈P

ψkr = 1 ∀r ∈ P (3.44)∑︂
r∈P

ψkr = 1 ∀k ∈ P (3.45)∑︂
k ′∈P

k ′(ψkk ′ −ψrk ′) ⩽ Nδkr ∀k, r ∈ P,k < r (3.46)∑︂
k∈P

∑︂
r>k

δkr ⩽ Γ (3.47)

yi ∈ {0, 1} ∀i ∈ I (3.48)

hij ∈ {0, 1} ∀i ∈ I, j ∈ Li (3.49)

ψkr ∈ {0, 1} ∀k, r ∈ P (3.50)

δkr ∈ {0, 1} ∀k, r ∈ P,k < r (3.51)

The aim of the subproblem is to maximize the number of badly placed items, cf. objec-
tive (3.41). Constraints (3.42) ensure that yi is only one if at least one of the hij variables
is one. Constraints (3.43) model that hij can only be set to one if j is placed below i (using
the precomputed sets Li) and item j must leave the stack before i. Constraints (3.44–3.47)
model the uncertainty set UΓ , based on the above formulation of the Kendall-Tau distance.

3.4.5 Iterative method

Using the master and adversary problem formulations, we can solve the robust premarshalling
problem with objective BIΓrob(c) as follows. We begin with an arbitrary scenario set U ′, e.g.,
by only including the nominal scenario. Solving the master problem then gives a candidate
solution c, along with an underestimation of its objective value (as the master problem is a
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Chapter 3 Robust optimization for premarshalling

relaxation of the robust premarshalling problem). We evaluate c by solving the corresponding
adversary subproblem. If both objective values are equal, we have found an optimal solution.
Otherwise, we add the scenario generated by the subproblem to U ′ and repeat the process.
Note that this method stops after a finite number of iterations, as UΓ contains a finite number
of scenarios, and each iteration produces a new scenario.

3.5 Computational experiments

We conducted four sets of experiments to evaluate the models proposed in this chapter. In the
first experiment, we focus on the computational effort to calculate robust solutions. Then, in
the second experiment, we check the effectiveness of Theorems 3.3 and 3.4 when calculating
the optimal objective value of BIΓrob. The purpose of the third experiment is to analyze the
impact of buffer times in the retrieval sequence. In the last experiment, we consider the gain
and price of robustness.

3.5.1 Instances

We use four test instance sets from the premarshalling literature, denoted as “Caserta”,
“Forster”, “Hottung”, and “Tanaka”, respectively. The instances of Caserta et al. [22] are
commonly used in the premarshalling literature, but have only unique item priorities (i.e.,
each priority class contains exactly one single item). On the other hand, the instances from
Bortfeldt and Forster [14], Hottung et al. [49] as well as Tanaka and Tierney [97] have priority
classes containing several items. Table 3.1 shows some characteristics of these instances,
namely the total number of instances in each set and intervals representing minimum and
maximum values for the respective parameters.

Table 3.1: Characteristics of test instances.
Set # Inst. m b n N

Caserta 880 [3, 10] [5, 12] [9, 100] [9, 100]
Forster 681 [10, 20] [5, 8] [35, 128] [10, 52]

Hottung 4500 [5, 10] [7, 7] [25, 50] [8, 50]
Tanaka 960 [3, 9] [4, 6] [6, 37] [2, 6]

For some instances of the Tanaka set, there were empty priority classes. To control the
effect of such empty priority classes, we adjusted these instances by reducing the number of
priority classes N such that there is at least one item per priority class. In Experiment 3, we
insert empty priority classes for all instance sets in the same way.

Note that in all benchmark instances from the literature there are f ⩾ b free slots, i.e.,
every configuration can be reached from any other one.

3.5.2 Experiment 1: Computation times

Setup

The aim of this experiment is to compare the performance of models (MIPM1) and (MIPM2)
for the master problem (cf. Sections 3.4.2 and 3.4.3) on the one hand, and to compare
the performance of the IP (IPSUB) for the subproblem with a brute-force full enumeration
approach to solve the adversary problem on the other hand (in our experiments, we used a
recursive implementation of the plain changes algorithm described in Knuth [66]).
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3.5 Computational experiments

To calculate a robust premarshalling configuration, the original storage positions of items
in the problem instances are ignored. Thus, if we do not consider the number of reshuffles,
instances can be treated as equivalent if they coincide in the parameters n, m, b, N, and |Ck|

for all k ∈ P. For this experiment, we only use one representative instance per equivalence
class. This reduces the test set to 21 instances for Caserta, 681 instances for Forster, 9
instances for Hottung, and 674 instances for Tanaka. We solved each instance five times,
using Γ ∈ {1, . . . , 5}.

We ran our iterative algorithm for each instance using both models for the master problem
and both models for the subproblem. While we record the solution times of both methods, we
make use of only one of the master problem solutions, and one of the subproblem solutions.
This way we avoid differences in computation times that may arise when different solutions
are found in the master or in the subproblem (note that optimal solutions are not necessarily
unique). To start the iterative process, the first master solution is generated using a greedy
procedure. Note that in case this solution is already optimal, no other runs for the master
problem are required.

Experiments were performed on a virtual Ubuntu server with ten Xeon CPU E7-2850
processors at 2.00 GHz speed and 23.5 GB RAM. MIPs were solved with CPLEX 12.8 using
one thread. We used a time limit of 2 hours for the master problem.

Results

We first discuss the results regarding the master problem as presented in Figure 3.10. Recall
that we solve 1385 instances for five values of Γ . Each solution process may require multiple
iterations. However, the first master problem is solved using a greedy procedure. Overall, our
experiment resulted in 1448 data points where (MIPM1) and (MIPM2) can be compared.

Each computation time measurement (in seconds) is shown in the scatter plot in Fig-
ure 3.10a. Points on the diagonal indicate that both MIPs required the same time to solve;
points below the diagonal indicate that solving (MIPM2) was faster; points above mean that
solving (MIPM1) was faster. Note the logarithmic axes. Only for instances that can be solved
fast anyway, the first model is more efficient, while we can observe a clear trajectory for
slower instances that runs beneath the diagonal.
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Figure 3.10: Results for the master problem.

To understand these differences in more detail, we calculated the median computation times
depending on the number T of scenarios included in the master problem (cf. Section 3.4.2).
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This gives an indication to the problem size. Larger values of T mean that more iterations are
required to solve the robust optimization problem. The results are presented in Figure 3.10b.
The curve labeled ”Frequency” indicates how often master problems with T scenarios were
solved. As can be seen, the number of computation times over which we take the median
becomes very small for large values of T , and hence numbers become less reliable. We can
see that only for T ⩽ 4 the first master problem MIP has a slight advantage over the second.

In Figure 3.11, we present results on the comparison between using the IP (IPSUB) to
solve the adversary subproblem versus using a full enumeration. In total, the subproblem
was solved 8289 times by each method (1385 instances with five values of Γ , where some
instances required multiple iterations). Figure 3.11a shows a scatter plot of all 8289 data
points. In the vast majority of cases, it is faster to enumerate all permutations instead of
calculating a worst-case scenario using the IP. This is to be expected for small values of N,
where the time overhead of generating the IP cannot compete with enumeration times in the
order of 10−5 seconds.
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Figure 3.11: Results for the subproblem.

However, we can also observe a trajectory of points that moves above the diagonal. Of the
140 points above the diagonal, only one corresponds to a Tanaka instance. At the same time,
4687 out of all 8289 points correspond to Tanaka instances. This means that the points above
the diagonal correspond unproportionally to the problem sets with a large number of priority
classes N. To understand this effect in more detail, we created an additional artificial set of
instances with b = 5, m = ⌈n/5 + 2⌉, and n = N for N = 20 to 150 (note that an instance
is fully defined by these parameters). In Figure 3.11b, we show the resulting computation
times for the subproblem with Γ = 5 and different values of N. For values N ⩾ 40, using the
IP approach begins to outperform the full enumeration of scenarios. This difference becomes
even more distinct when fixing N and increasing Γ . For Γ = 5 and N = 40, the IP approach
takes 0.2 seconds and the enumeration takes 0.3 seconds. Increasing Γ to 9 results in 0.8
seconds and 445.4 seconds, respectively (recall that the number of elements in UΓ grows
exponentially in Γ).

To summarize these findings, both master problem formulations are competitive, with
an asymptotic advantage for (MIPM2). For most subproblems that we considered here,
enumerating all permutations was faster than determining a worst-case scenario by solving
problem (IPSUB). However, as N and Γ increase, enumeration becomes an infeasible option.
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3.5 Computational experiments

3.5.3 Experiment 2: Checking the existence of Γ -robust configurations and
calculating the optimal value of BIΓrob

Setup

While the first experiment focused on computation times, we now evaluate the usefulness
of the existence criteria for Γ -robust configurations. To this end, we use the following setup
for Γ ∈ {1, . . . , 5}: For each of the representative instances from Experiment 1, we check if
Theorem 3.3 or 3.4 proves the existence of a Γ -robust configuration. If this is the case, we
know that BIΓrob = BI

Γ
rob = 0 for the optimal values. If none of the theorems can prove the

existence of a Γ -robust configuration, we calculate the upper bound BI
Γ
rob using the model

(IPUP). If we find BI
Γ
rob ∈ {0, 1}, then also BIΓrob = BI

Γ
rob for the optimal values due to

(3.4) and (3.5). Finally, only if BI
Γ
rob ⩾ 2, we solve the robust problem using the iterative

algorithm to find the optimal value of BIΓrob.

Results

Table 3.2 shows for each value of Γ ∈ {1, . . . , 5}, in how many cases the theorems could
prove the existence of a Γ -robust configuration, the upper bound model was sufficient to
compute the optimal value of BIΓrob, or the iterative method had to be used (all values in
percent). Values per row can add up to more than 100% if both Theorems 3.3 and 3.4 prove
the existence.

Table 3.2: Calculating BIΓrob, cases in %.
Γ Th. 3.3 Th. 3.4 (IPUP) Iter.

1 100.00 2.09 0.00 0.00
2 88.12 2.09 11.16 0.14
3 78.69 1.87 18.29 1.80
4 54.93 1.58 39.52 4.18
5 35.57 1.22 57.60 5.69

It can be seen that especially for small values of Γ , the application of optimization models
can be avoided by using our theorems. Furthermore, even if they are not successful, in
the majority of cases the upper bound model (IPUP) is already sufficient to calculate the
optimal value of BIΓrob. Even for the highest value Γ = 5, in only 5.69% of cases we actually
require the iterative solution method to find an optimal robust configuration, highlighting the
strength of our theoretical analysis.

We show average objective values BIΓrob for different values of Γ in Table 3.3. For each
instance set we take the average over all instances (column ”All”) and only over those
instances where the iterative solution method was required (column ”Iter.”). Note that, while
BIΓrob is non-decreasing in Γ for a single problem instance, average values in column ”Iter.”
can decrease, as the set over which the average is taken changes. It can be seen that objective
values are small overall, and most instances allow configurations with only few possible
conflicts. The tradeoff in reaching these robust solutions with potentially more reshuffles is
considered in the next experiment.
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Table 3.3: Average and maximum values of BIΓrob.

Caserta Forster Hottung Tanaka
Γ All Iter. Max All Iter. Max All Iter. Max All Iter. Max

1 0.00 - 0 0.00 - 0 0.00 - 0 0.00 - 0
2 0.00 - 0 0.00 - 0 0.00 - 0 0.02 2.00 2
3 0.05 1.00 1 0.00 1.00 1 0.00 - 0 0.12 1.52 2
4 0.19 1.00 1 0.00 1.00 1 0.00 - 0 0.22 1.94 4
5 0.38 1.14 2 0.01 1.33 2 0.67 2.00 3 0.30 2.08 4

3.5.4 Experiment 3: Impact of empty priority classes

Setup

In the previous experiments, no empty priority classes exist, i.e., |Ck| ⩾ 1 for all priority
classes k ∈ P. This means that swapping any two neighboring priority classes creates the
same costs for the adversary. The existence of empty priority classes indicates buffer times
between retrievals, making a swap of non-empty priority classes more expensive for the
adversary (cf. Section 3.2). In this experiment we include such buffers randomly in the data
and measure the impact on the robust objective value BIΓrob. We restrict our analysis to Γ = 5,
which has the largest number of potential conflicts in the previous experiment.

We conduct two sets of experiments. In the first setup, we use the same instances as in the
previous experiments (except for two instances from the Hottung set due to high computation
times). Let E be the number of priority classes without items. For E ∈ {0, 1, . . . , 10}, we add E
many priority classes at random uniformly into each instance. Empty priority classes cannot
be the first or last priority class of an instance (as this would not change the problem). It
is possible that multiple empty priority classes appear in sequence. For each instance and
each value E, we repeat this 100 times and measure the minimum, average, and maximum
objective value BIΓrob.

In the second setup, we only consider those instances from the Tanaka set with N = 6.
There are 201 such instances. Instead of adding the empty priority classes at random, we
insert them at a specific position and analyze the effect of changing this position.

While the first setup is designed to give us insight into the effect the number of empty
priority classes E has on the robust objective value, the second setup sheds more light on the
effect of the position of such empty priority classes.

Results

In Table 3.4 we present a summary of results for the first setup. Recall that the minimum
and maximum values are taken over the 100 repetitions per instance, respectively, while the
reported values are averaged over all instances. We do not show results for the Forster set of
instances, as all objective values for E ⩾ 1 have been equal to zero.

In the first row, E = 0 and no empty priority classes are inserted. This row corresponds
to the row Γ = 5 of Table 3.3 (values for Hottung differ due to the two instances ignored
in this experiment). It can be seen that having empty priority classes (i.e., buffer times in
the retrieval sequence) reduces the number of potential conflicts in the unloading phase.
The strength of this effect depends on the instance set. For Hottung instances, an effect is
only recognizable for E ⩾ 6, while the Tanaka instances profit already from the first empty
priority class. The difference can be explained with the different instance sizes. While Tanaka
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Table 3.4: Average of minimum, average, and maximum values of BIΓrob for different numbers
of empty priority classes E.

Caserta Hottung Tanaka
E Min Avg. Max Min Avg. Max Min Avg. Max

0 0.381 0.381 0.381 0.143 0.143 0.143 0.295 0.295 0.295
1 0.381 0.381 0.381 0.143 0.143 0.143 0.197 0.218 0.228
2 0.333 0.366 0.381 0.143 0.143 0.143 0.123 0.141 0.178
3 0.286 0.349 0.381 0.143 0.143 0.143 0.021 0.087 0.131
4 0.238 0.337 0.381 0.143 0.143 0.143 0.000 0.054 0.108
5 0.238 0.323 0.381 0.143 0.143 0.143 0.000 0.040 0.107
6 0.143 0.307 0.381 0.000 0.141 0.143 0.000 0.030 0.104
7 0.143 0.292 0.381 0.000 0.139 0.143 0.000 0.023 0.104
8 0.143 0.275 0.381 0.000 0.131 0.143 0.000 0.017 0.101
9 0.048 0.256 0.381 0.000 0.134 0.143 0.000 0.013 0.098

10 0.048 0.245 0.381 0.000 0.126 0.143 0.000 0.010 0.098

instances have comparatively small values of n and N, they are larger for the Caserta and
Hottung data set.

This experiment shows that empty priority classes occurring in the data are important
information for the solving process that should be taken into account in order to select the
best possible robust configuration. It is also apparent that not only the number of empty
priority classes, but also their placement has an effect on the robust objective value. For
example, with E = 4 all Tanaka instances can have zero BIΓrob in the best-case placement,
while a worst-case placement results in a value of 0.108 on average.
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Figure 3.12: Average value BI
Γ
rob for different values of E and gap placement.

This effect is considered in more detail in the second setup. In Figure 3.12, we summarize
these results. On the horizontal axis, we denote the position of the empty priority classes
(after the kth original priority class for k from 1 to 5). Multiple empty priority classes are put
into the same position. For E = 0, no empty priority classes are inserted and the resulting
line is horizontal. For E ⩾ 1, there is a clear advantage if the empty priority classes are put
into the middle. For E = 3, we can even reach an objective value of zero for all of the 201
instances considered here. We also considered E = 4, 5, but this did not further improve
objective values. We can also see that the largest drop in objective values is between E = 0
and E = 1. The incremental effect of increasing E seems to reduce, the larger E already is.
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Overall, this experiment demonstrates that buffer times should be included in the planning,
if available, as even small buffers can significantly reduce the number of potential conflicts
during the unloading phase. Our models can include empty priority classes without requiring
any modifications. It is an interesting question for further research where to put such buffer
times, if it is possible for the planner to influence the retrieval times of items.

3.5.5 Experiment 4: Gain and price of robustness

Setup

In our final experiment, we explore the quality of the robust solutions we compute. Note that
there are two relevant criteria for solution quality: the level of robustness of the computed
final configuration as well as the number of reshuffles required to transform the start into
the final configuration. Since in the benchmark data due to f ⩾ b every configuration can be
transformed into any other one, the optimal values of BIΓrob presented in Section 3.5.3 can
always be achieved.

To calculate the required number of reshuffles, we use the branch-and-bound algorithm
of Tanaka and Tierney [97] for the nominal case, and also adapted this method to search
for a solution with minimum value BI

Γ
rob computed in Experiment 2. To distinguish the

different algorithms, we refer to the original branch-and-bound algorithm as BB and our
adapted algorithm as BB-Γal. The parameter Γal ∈ {1, . . . , 5} is given to the algorithm prior
to the solving process and restricts the algorithm to regard only configurations having
violations of (3.1) with value at most Γal. Beside the algorithm parameter Γal, the evaluation
parameter Γev ∈ {1, . . . , 5} is used to evaluate a final configuration c computed by an algorithm
(using BI

Γev
rob(c) respectively BIΓevrob(c)). As an example, the algorithm BB-3 may find a

configuration c with BI
3
rob(c) = 0 which would be the best achievable value, but nevertheless

BI
3
rob(c) < BI

4
rob(c) < BI

5
rob(c) could be valid evaluations for the same configuration.

For final configurations cBB computed by BB and cBB-Γal computed by BB-Γal, we define the
following performance metrics:

∆BI
Γev,Γal
rob := BI

Γev
rob(cBB) − BI

Γev
rob(cBB-Γal) (3.52)

∆BI
Γev,Γal
rob := BIΓevrob(cBB) − BI

Γev
rob(cBB-Γal) (3.53)

∆RSPM,Γal := RSPM(cBB-Γal) − RS
PM(cBB) (3.54)

Here RSPM(c) denotes the number of reshuffles needed to reach configuration c. If the values
in (3.52) or (3.53) are greater than zero, the configurations computed by BB-Γal are more
robust than the nominal configurations computed by BB. On the other hand, if the value
(3.54) is positive, a solution computed by BB-Γal needs more reshuffles RSPM in comparison
to the nominal solution computed by BB.

These experiments were carried out on a Linux server (Ubuntu 16.04.6 LTS) with four Intel
i5-3470 processors at 3.20 GHz speed and 19.5 GB RAM. We used a time limit of 2 hours per
run of one algorithm.

Results for Tanaka data set

We first focus on the Tanaka data set since this is the most diverse data set in terms of different
parameter settings. The instances were originally grouped by N,b,m, and the filling degree
(fd := n

mb) in 48 different categories of 20 instances each. Since the number of priority classes
N differs from instance to instance in these categories and the number of stacks m has not a
visible effect, in the results we merge these instances and distinguish only the parameters b
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Figure 3.13: Number of instances satisfying BI
Γ
rob > 0 for Γ ∈ {1, . . . , 5} (in %) in the Tanaka

data set.

and fd. We call such a category with the same parameters an “instance group”. We decided to
use line charts to present the results since the overall trend of the data points is the important
outcome of these experiments. In the following, we refer to the lines connecting data points
as “trend lines”.
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Figure 3.14: Results of BB-Γal for different instance groups of the Tanaka data set.

Figure 3.13 shows the number of instances (in %) where the IP formulation described
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in Section 3.4.1 provides an optimal configuration with BI
Γ
rob > 0 for Γ ∈ {1, . . . , 5}, i.e., a

configuration which is not Γ -robust. Each line corresponds to one choice of Γ . The number of
instances with a value greater than zero increases with b and fd.

Note that in BB-Γal the lower bound to estimate the number of reshuffles RSPM provides a
valid lower bound value only in the case BI

Γ
rob = 0. Otherwise, these values may overestimate

the given configuration such that some subtrees may be be cut off too early. Hence, the com-
puted number of reshuffles can only be guaranteed to be optimal for a Γ -robust configuration.
The results of Section 3.5.3 revealed that for 350 among the the 4800 = 960 · 5 combinations
of instances and values for the parameter Γal ∈ {1, . . . , 5} there is no Γ -robust configuration.

It turned out that instances differ visibly in the results if

there is some Γ ∈ {1, . . . , 5} with BI
Γ
rob > 0. (3.55)

Except for 3 among the 4450 combinations of instances and values for the parameter
Γal ∈ {1, . . . , 5} with BI

Γ
rob = 0, every combination could be verified to be optimally solved

by BB-Γal within less than 20 minutes. For Γal = 5, two times the time limit was exceeded;
however, these instances could be solved by extending the time limit to 4.5 hours. For Γal = 3,
once the time limit was exceeded and had to be extended to 19.5 hours.

Figure 3.14 displays results for the algorithm BB-Γal with Γal ∈ {1, . . . , 5} compared to the
original algorithm BB. The charts show average values of 240 instances grouped by b and fd
on the horizontal axis, while the vertical axis indicates ∆BI

Γal,Γal
rob , ∆BIΓal,Γalrob , and ∆RSPM,Γal

(absolute and percentage). Note that here each configuration is evaluated using the same
value of Γ as used for the optimization.

Although Figure 3.14a reveals a greater reduction of ∆BI
Γal,Γal
rob for increasing values of

Γal, the gap between two consecutive trend lines (Γal, Γal + 1) decreases. Moreover the
chart displays a higher potential for improvements for a greater stack height b and filling
degree fd. As expected, Figure 3.14b shows similar results with overall smaller values since
BI
Γ
rob is an upper bound on BIΓrob. Thus, we find that minimizing the upper bound objective

leads to appropriate results also for the objective BIΓrob. While robustness can be increased,
Figure 3.14c shows that the absolute number of additional reshuffles increases moderately
in a similar way like ∆BI

Γal,Γal
rob and ∆BIΓal,Γalrob . While the absolute number of reshuffles

increases with b and fd, the relative number of additional reshuffles decreases, as depicted in
Figure 3.14d. Note that the trend lines of ∆RSPM,Γal lie below the trend lines of ∆BIΓal,Γalrob

which means that the additional reshuffles required for robust premarshalling can be saved in
a worst-case scenario of the unloading process. Hence, the added costs in the premarshalling
phase when using a robust solution pay off later.

While the presented results for Γev = Γal highlight the advantages of the robust approach
for the desired Γ -value, we also want to investigate how sensitive BB-Γal behaves on the
subsequent adjustment of the evaluation parameter Γev. For that reason, we evaluate the
final configurations of all algorithms BB and BB-Γal for Γal ∈ {1, . . . , 5} with BI

Γev
rob and BIΓevrob

for Γev ∈ {1, . . . , 5}. Again the differences between the results of BB and BB-Γal as defined
in equations (3.52)–(3.54) are calculated, which results in a 5 × 5-matrix of data points
that is presented in Figures 3.15a–3.15d. Figures 3.15a–3.15b state average values of all
960 instances grouped by Γev on the horizontal axis whereas the vertical axis indicates
∆BI

Γev,Γal
rob and ∆BIΓev,Γalrob , respectively. Similarly, Figures 3.15c–3.15d state average values of

142 instances where (3.55) holds. Clearly, the charts show that BB-Γal behaves better for the
intended parameter Γev = Γal than for other Γev-values, i.e., the highest value for a fixed Γev
and among all BB-Γal can be found for the BB with Γal = Γev. Furthermore, the trend line
of BB-Γal decreases for increasing Γev > Γal, whereas any other BB-Γ ′al with Γal < Γ ′al reports
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better results. This was expected since the algorithm just does not regard violations according
to higher values of Γev. However, Figures 3.15a–3.15b also display slightly better results for
BB-Γal compared to BB-Γ ′al with Γal < Γ ′al for Γev ⩽ Γal. This effect is even more visible in

Figures 3.15c–3.15d since for one instance different optimal values BI
Γ
rob < BI

Γ+1
rob may exist

(computed by the MIP presented in Section 3.4.1) for different values of Γ , i.e., while all
robust configurations display a gain in robustness in comparison to the nominal approach,
this gain is sensitive to the choice of Γal, and the parameter should be chosen carefully to
reflect Γev as closely as possible.
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Figure 3.15: Comparing results of BB-Γal for Γev ∈ {1, . . . , 5} on instances from the Tanaka
data set.

Results for Forster data set

Secondarily, we present results of the Forster data set which include much larger instances. For
the Forster data set, we solved all instances with up to n = 64 items. Since the data set contains
very different instance groups, we include a break in the trend lines of Figure 3.16 and 3.17a–
3.17c dividing the results in instance groups with a smaller number of priority classes
(N ∈ {10, 12, 13}) on the left side of the charts and instance groups with a larger number of
priority classes (N ∈ {20, 24, 26}) on the right.

Figure 3.18a and 3.18b present results for a smaller, while Figure 3.18c and 3.18d present
results for a larger number of priority classes. Since not all instances could be solved in
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Figure 3.16: Number of instances verified to be optimally solved (%) for the Forster data set.
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Figure 3.17: Results of BB-Γal for different n,b, fd on instances from the Forster data set.

the given time limit, Figure 3.16 state the percentage number of instances verified to be
optimally solved. Figure 3.17a–3.17d are similarly organized as Figure 3.14a–3.14d related
to the Tanaka data set. Contrary to the Tanaka data set, all instances have the optimal value
BIΓrob = 0 for all Γ ∈ {1, . . . , 5}. However, the results appear qualitatively similar compared to
the results of the Tanaka data set when taking into account that not all instances could be
optimally solved in the given time limit.
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Figure 3.18: Results of BB-Γal for Γev ∈ {1, . . . , 5} on instances from the Forster data set.

Results for Caserta data set
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Figure 3.19: Number of instances verified to be optimally solved (%) for the Caserta data set.

Finally, we state the results for the Caserta data set where all stacks are filled up to level
b− 2 and have only unique priority classes. Moreover, the instances of the Hottung data set
have the same structure as the Caserta instances. Since the smallest instances have a stack
height of b = 7 and we decided to include only instances with b ⩽ 6, we did not use these
instances for the third experiment.

For the Caserta data set, we solved all smaller instances with stack heights b ∈ {5, 6}. We
present the results together by separating b = 5 and b = 6 with a break in the trend lines
similarly to the Forster results. Figures 3.19 and 3.20a–3.20d state the results for b = 5 and
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Figure 3.20: Results of BB-Γal for different m and instances from the Caserta data set.

Γal ∈ {1, . . . , 5} on the left side and for b = 6 and Γal ∈ {1, . . . , 3} on the right side of the
charts. These figures are similarly presented as the results of the Tanaka data set, but instead
of grouping by b and fd, the number of stacks m is varied. However, the results are quite
comparable when taking into account that not all instances could be solved to optimality
and all instances for Γal = 4 and m ⩽ 4 respectively Γal = 5 and m ⩽ 5 fulfill BI

Γ
rob > 0

which reduces the potential for improvements. As with the results for the Tanaka data set, all
mentioned instances that fulfill BI

Γ
rob > 0 may not be solved to optimality in terms of RSPM.

Figure 3.19 displays the number of instances verified to be optimally solved in terms of
BIrob. Moreover, it must be noted that all instances of the Caserta data set have unique
priority classes which restricts the improvement to ∆BIΓal,Γalrob ⩽ Γal. The results of the
sensitivity analysis in Figures 3.21a–3.21d for b = 5 and in Figures 3.22a–3.22d for b = 6 are
similarly presented as the results of the Tanaka data set. Altogether, the described results of
this section are qualitatively very similar (with slightly larger gaps between the trend lines)
to the results of the Tanaka data set when considering that some instances fulfill BI

Γ
rob > 0

and not all instances could be optimally solved.
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Figure 3.21: Comparing results of BB-Γal for Γev ∈ {1, . . . , 5} on instances with stack height
b = 5 from the Caserta data set.

0

2

4

6

8

10

1 2 3 4 5
Γev

∆
B
IΓ
e
v
,Γ
a
l

r
o
b

(a) Comparison on ∆BI
Γev,Γal

rob including
all instances.

-2

-1

0

1

2

3

1 2 3 4 5
Γev

∆
B
IΓ
e
v
,Γ
a
l

r
o
b

(b) Comparison on ∆BIΓev,Γal

rob including
all instances.

0

2

4

6

8

10

1 2 3 4 5
Γev

∆
B
IΓ
e
v
,Γ
a
l

r
o
b

(c) Comparison on ∆BI
Γev,Γal

rob including
instances which satisfy (3.55).

-2

-1

0

1

2

3

1 2 3 4 5
Γev

∆
B
IΓ
e
v
,Γ
a
l

r
o
b

(d) Comparison on ∆BIΓev,Γal

rob including
instances which satisfy (3.55).

Γal

5

4

3

2

1

Figure 3.22: Comparing results of BB-Γal for Γev ∈ {1, . . . , 5} on instances with stack height
b = 6 from the Caserta data set.
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3.6 Conclusions

In this chapter, we considered a premarshalling problem under uncertainty, where we assume
that the order of retrievals can be different than expected. By choosing a parameter Γ , the
decision maker can determine the degree of robustness, which corresponds to the number of
adjacent swaps that are expected in the retrieval sequence.

We provided a theoretical analysis with regards to existence of robust configurations and
problem complexity, and provided (mixed) integer programming models to find and evaluate
robust configurations. We performed three computational experiments using four benchmark
sets from the literature. In the first experiment, we compared solution methods for the
master and subproblems. The second experiment highlighted the value of the theoretical
analysis, which makes it possible to find optimal robustness objective values without using the
relatively time-consuming iterative solution procedure. In our third experiment we discussed
the impact of the number and position of empty priority classes. Finally, the fourth experiment
considered the tradeoff between additional reshuffles during premarshalling for reaching a
robust configuration and the reduced number of reshuffles that result during unloading. We
found that few reshuffles during premarshalling (which is usually done overnight, where time
is not critical) can save a larger number of reshuffles during unloading (where time is most
important).

In further research, one could reduce the sensitivity of robust configurations to the param-
eter Γ by considering globalized robust counterparts (cf., e.g., Ben-Tal et al. [5]) or mixed
uncertainty approaches (cf., e.g., Dokka et al. [29]), where different uncertainty sets are
taken into account simultaneously.
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Chapter 4

The blocks relocation problem with item
families minimizing the number of reshuffles

In this chapter, we take the blocks relocation problem with item families (BRPIF) into consid-
eration and investigate it theoretically as well as examine suitable solving strategies. This
chapter is based on Boge and Knust [10] and is organized as follows. At first, we describe the
problem setting more precisely in Section 4.2, while we prove some new complexity results
in Section 4.3. Section 4.4 is devoted to solution approaches, including integer program-
ming formulations, a simple heuristic, and a two-stage simulated annealing algorithm. In
Section 4.5 we report results of a computational study. Finally, some concluding remarks can
be found in Section 4.6.

4.1 Introduction

Often items must be stored in a storage area of limited capacity, e.g., in container terminals,
container ships, storage yards, warehouses, steel plants or tram depots (cf. the survey in
Lehnfeld and Knust [73]). Such storage systems are organized in stacks of limited height
which are filled from bottom to top and unloaded in reverse order. The items arrive in
a loading stage and have to be stored at appropriate locations in the stacks until they are
demanded for further transport or processing. In container terminals, usually every item is
unique since contents of containers correspond to individual shipments, which implies that
containers cannot be exchanged. On the other hand, in warehouses where commodities like
wood or steel plates are stored, the items are exchangeable to a certain degree. Another
example for storage areas are tram depots where trams stay during the night. Each rail siding
may be interpreted as a (horizontal) stack with only one exit. In all these settings, certain
data are associated with each item (e.g., its weight, size, destination, expected retrieval time).
On the one hand, this data plays a role for different stacking policies (cf. Dekker et al. [27])
and on the other hand, it determines the family, i.e., the main type that is used to distinguish
different items.

After the loading process is completed, all items stay in the storage until items belonging to
specific families are demanded in the unloading stage. In this stage, a sequence of demanded
families is given and at first appropriate items must be selected, i.e., for each demanded
family an individual item must be chosen in the storage. Second, the selected items have to be
retrieved according to the given sequence for further processing or transportation. Since only
the topmost item in each stack can be directly accessed, often reshuffles (relocations) of other
so-called blocking items are necessary before the next demanded item can be retrieved. Such
unproductive movements should be avoided as much as possible to ensure efficient operation
of the storage. Hence, an important indicator for a selection of items in the storage is the
total number of blocking items (which is a lower bound on the total number of reshuffles).
However, usually blocking items cannot be completely avoided since often the exact retrieval
sequence is not known during the loading stage.
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Chapter 4 The blocks relocation problem with item families

We encountered the described setting in a German company that maintains a warehouse
of wooden boards stored in stacks. These boards have specific attributes (e.g., color, length,
height, etc.) and families are defined based on these attributes (e.g., a family consists of
boards with the same color and the same size). All boards are stacked in a storage area of
limited size. An automatic crane picks up the boards and relocates them between the stacks or
transports them to the exit of the storage where a stationary saw cuts the boards into smaller
pieces for further processing. Based on the demands for pieces with certain attributes and a
saw schedule, a retrieval sequence demanding certain families is specified a day or a week in
advance. Since the automatic crane of the company is linked with an automatically updated
storage database, all movements and item positions can always be tracked and no restrictions
on the movements are imposed (in contrast, in the literature often so-called “push-backs” are
considered, see the discussion below). The objective is to select appropriate items for the
demanded families and to retrieve them from the storage minimizing the total number of
reshuffles.

In the literature, related settings were considered as slab stack shuffling (SSS) (cf. Fernandes
et al. [38], Li et al. [75], Ren and Tang [88], Singh et al. [95], Tang and Ren [103], and Tang
et al. [101, 102]) in the context of steel production and as scheduling trams in the morning
(STIM) or minimum shunting problem at departure (MSDP) in the context of tram scheduling
(cf. Blasum et al. [7] and Winter and Zimmermann [116]). All these publications have in
common that the items are assigned to specific families, all items are already in the storage,
(i.e., the loading stage is completed before) and the objective aims at optimizing the retrieval
effort. On the other hand, they differ in restrictions on the movements and the considered
objective function (e.g., counting only the number of blocking items or more accurately the
number of actual reshuffles). The families are often restricted to be disjoint sets (cf. Ren and
Tang [88], Singh et al. [95], Tang et al. [102], Blasum et al. [7], and Winter and Zimmermann
[116]), but are sometimes also introduced without any restrictions (cf. Fernandes et al. [38],
Tang and Ren [103], and Tang et al. [101]).

In the context of the steel industry, Tang et al. [101] tackled the SSS problem where steel
plates of different types must be selected in a certain retrieval sequence. Here it is assumed
that every blocking item which is relocated to another stack must immediately be pushed
back to its initial stack after the retrieval of the current target item. The authors developed
a greedy heuristic in combination with a neighborhood search and showed improvements
in comparison to a greedy heuristic used by a company on real-world and randomly gen-
erated test data. Tang et al. [102] worked on the same problem and proposed an integer
programming formulation (but without solving it) as well as a genetic algorithm (GA). They
compared their heuristic to the greedy heuristic on randomly generated test data. Singh
et al. [95] presented the same integer program (IP) and another GA for the SSS problem and
claimed an improvement over the previous GA results. Fernandes et al. [38] made further
progress on the SSS problem by developing a quadratic integer programming formulation
that was linearized and solved with an IP solver. They compared it with a heuristic used in
practice on randomly generated instances. Moreover, Tang and Ren [103] considered the SSS
problem without the assumption that items must be pushed back. Instead they included the
assumption that items can be moved to “nearby” target stacks where these items stay until
they are finally taken out of the storage. Furthermore, other constraints regarding deadlines
for the items in the storage and a simplified model for the crane working time are considered.
An adapted variant of the IP of Tang et al. [102] and a dynamic programming approach are
stated and randomly generated instances of large size are solved using a partitioning strategy.
Ren and Tang [88] treat the SSS problem as a subproblem of a superior crane scheduling
problem. They developed an IP formulation for the SSS subproblem and a heuristic for the
crane scheduling using the heuristic in an iterative process to add cuts to the IP until a feasible
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solution is found. Their algorithm was tested on ten randomly generated instances.
A similar setting can also be found in train depots with dead-end sidings which may be

interpreted as stacks. Blasum et al. [7] considered a problem tackling the shunting of trams
in such train depots. Each tram belongs to a specific type and all trams leave the depot in
a certain sequence of types to serve the daily schedule. Although it is not explicitly stated,
the shunting moves seem to be push-back moves as explained above. Only shunting-free
schedules (schedules with no shunting moves) are considered and NP-completeness of the
STIM problem was shown. Furthermore a dynamic program was developed to solve several
real-world and randomly generated instances. Winter and Zimmermann [116] continued
working on the mentioned problem, also considering an optimization variant minimizing the
number of shuntings instead of searching for a shunting-free schedule. They developed a
quadratic IP formulation, a branch-and-bound algorithm, and heuristics.

In this chapter, we consider the basic problem for the unloading stage with item families
where a family retrieval sequence is given. We assume that the space in the storage area
is limited and all movements of items have to be carried out within this limited area (i.e.,
no temporary storage exists). Moreover, we do not consider simplifying assumptions (like
push-backs) and concentrate on the more realistic, but also more difficult objective “total
number of reshuffles” which according to Fernandes et al. [38] “increases considerably the
problem complexity and should be carefully addressed”.

Recall the well-known blocks relocation problem (BRP) (cf., e.g., Caserta et al. [19] and
Forster and Bortfeldt [39]) which we generalize to the BRPIF. The BRP is an important and
well-studied problem in the literature for which various heuristics and exact algorithms have
been developed. It can be seen as a special case of the BRPIF where all items belong to
different families (i.e., each family contains only a single item) and the retrieval sequence
includes all items that are in the storage.

We propose a two-stage simulated annealing (SA) algorithm for the BRPIF which selects
appropriate items for the demanded families in the first (selection) stage and evaluates
the chosen selection by applying a fast and effective BRP heuristic in the second (retrieval)
stage. We present IP formulations for the objectives (i) total number of reshuffles, and
(ii) total number of blocking items where the second is used to compute lower bounds.
Furthermore, we analyze the complexity of the problem in different versions. In some
computational experiments based on real-world data from a company, benchmark instances
from the literature, and randomly generated instances with different characteristics reflecting
real-world settings, we evaluate both the IP formulations and the SA approach with respect
to solution quality and computation times.

Additionally, we address a new variant of the problem where the family retrieval sequence
may be relaxed. In a complete relaxation this means that a multiset of families is given
and again appropriate items have to be selected for the demanded families. However, their
retrieval order is not fixed and may also be optimized. On the one hand, this relaxation may
be useful for lower bound calculations. On the other hand, the company mentioned above
imposed the question how much they can gain w.r.t. the total retrieval time if their subsequent
sawing stage can be organized in a more flexible way. In another version of the problem,
not the whole retrieval sequence may be relaxed, but some subsequences are flexible. We
model this by a sequence of multisets where the order of the multisets has to be respected,
but inside each multiset the retrieval order is flexible.

4.2 Problem formulation

In this section, we give a formal description of the considered problem and introduce the
used notations. We are given a storage area which consists of m stacks Q = {1, . . . ,m}, each
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stack contains b levels B = {1, . . . ,b}, and at every level exactly one item can be stored (i.e.,
at most b items can be placed in each stack). In a generalized version of the problem, the
stacks q ∈ Q may have different stack heights bq. In the stacks, n items I = {1, . . . ,n} are
stored. Each item i ∈ I belongs to a certain family fi ∈ F = {1, . . . , F}. We denote by If the
set of all items belonging to family f and assume that all families are disjoint, i.e., If ∩ If ′ = ∅
for f ̸= f ′.

Furthermore, a “family retrieval sequence” Φ = (ϕ1, . . . ,ϕL) containing L ⩽ n families
ϕk ∈ F is given. This sequence determines which families are demanded for retrieval
meaning that at position k of the sequence an item from family ϕk must be selected. Note
that L < n is possible, i.e., in contrast to the classical BRP not all items have to be unloaded.
We assume that in the storage for each demanded family enough items belonging to these
families are available and denote by L := {1, . . . ,L} the set of all indices in Φ. Furthermore,
let Li := {k ∈ L | ϕk = fi} be the set of all indices k of the family retrieval sequence where
the demanded family ϕk equals the family of item i (i.e., i can be assigned to index k).

A selection of appropriate items may be represented by a mapping from each family retrieval
sequence index k to exactly one item i with family fi = ϕk. This leads to a sequence of
selected items S = (i1, . . . , iL) where item ik at index k corresponds to family ϕk of the family
retrieval sequence Φ. We call such a sequence S an item retrieval sequence and denote the set
of selected items by Isel. After selecting appropriate items, these items have to be retrieved
according to the order of S in the unloading stage. Most times it is necessary to relocate items
between different stacks since other items are blocking the selected items. Thus, beneath
an item retrieval sequence S, a solution also involves a sequence of relocations that describes
which items are relocated in which order. A single relocation is described by a (non-empty)
departure stack and a (non-full) destination stack. Since relocations are time consuming, they
should be avoided as much as possible.

In the remainder of this chapter we propose a two-stage approach where in the first stage
appropriate items are selected (selection stage) which are unloaded in the second stage
(retrieval stage). In this context, the retrieval problem can be considered as BRP as follows. In
the BRP a storage of fixed dimensions (m stacks of height b) filled with n items is given and
all items must be retrieved from the storage. The items have specific priorities that determine
the retrieval order. For two items i, j with priorities pi < pj, item i must leave the storage
before item j. In our problem setting, the order of the items in the item retrieval sequence
induces priority values for all items i ∈ Isel. If item i is assigned to index k ∈ L, then we
set the priority value of item i to pi := k. Furthermore, all remaining non-selected items
i ∈ I \ Isel get the artificial priority value pi := L + 1 indicating that these items remain in
the storage after the selected items have been retrieved. Each solution of such a BRP instance
can be transformed into a feasible solution of our retrieval problem by ignoring the retrieval
of all items with priority L+ 1.

Example 4.1. Figure 4.1a shows an example withm = 3 stacks of height b = 3 and n = 9 items
belonging to families A,B,C,D. We have to select appropriate items for the family retrieval
sequence Φ = (A,B,C,A) of length L = 4. In Figure 4.1b, four items are selected and assigned
to the priority values 1, 2, 3, 4. All remaining items get the artificial priority value L+ 1 = 5. In
the corresponding BRP instance two blocking items (with priorities 3, 4, underlined) exist which
must be relocated in any case during the unloading process. Figure 4.1c shows another selection
with no blocking items. Since here no relocations are necessary, this selection is optimal.

Considering the problem of the retrieval stage as BRP allows to reuse measures and solution
algorithms developed for the BRP. As described above, the objective is to retrieve all items
from the storage using a minimum total number of reshuffles, which is NP-hard (cf. Caserta
et al. [19]). To simplify the problem, we may also evaluate a fixed selection of items by lower
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Figure 4.1: Family retrieval sequence Φ = (A,B,C,A).

bounds. For this purpose, we count the total number of badly placed items (BI). An item i is
called badly placed (cf. Forster and Bortfeldt [39]) if it is blocking an item placed somewhere
(not necessarily directly) below in the same stack which has to be retrieved earlier (i.e., there
is an item j placed below with priority pj < pi). We call an item well placed if it is not badly
placed. Obviously, the value BI defines a lower bound on the total number of reshuffles since
each badly placed item has to be reshuffled at least once. However, as shown in Blasum
et al. [7], finding a solution for the BRPIF with decision value BI = 0 is already strongly
NP-complete.

In the literature, the objective BI is considered if relocations do not play any role (cf. Li
et al. [75], Ren and Tang [88], and Tang and Ren [103]). This situation occurs in practice
if a temporary storage area exists where blocking items can be stored. This implies that
each blocking item must only be reshuffled once before its retrieval, i.e., the total number of
reshuffles equals the number of badly placed items. Sometimes, also another constraint is
considered (cf. Blasum et al. [7], Tang et al. [101, 102], Singh et al. [95], and Winter and
Zimmermann [116]). There it is assumed that each relocation must be reverted immediately
after retrieving the next item (push-back). This situation occurs for example in practice if in
the database no dynamically changing storage positions of items can be handled (i.e., each
item is fixed to one specific stack).

Example 4.2. We highlight the difference between the objective functions BI and RS in Figure 4.2
by considering a storage area with n = 9 items in m = 3 stacks of height b = 5 where the items
have to be retrieved in the order 1, . . . , 9. For this storage we have BI = 4 (items underlined). On
the other hand, RS = 5 since one of the badly placed items must be relocated twice. To achieve
a solution with 5 reshuffles, we retrieve item 1, move item 7 to stack 2, retrieve items 2 and 3,
move item 8 to stack 1, retrieve item 4, move item 7 to stack 1 (second relocation of item 7),
move item 6 to stack 1, move item 9 to stack 3, and then retrieve items 5,6,7,8,9 without further
reshuffles.
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Figure 4.2: Example with BI = 4, but RS = 5.

Note that in the two-stage approach as described above, all selected items get different
priority values 1, . . . ,L. However, in the literature sometimes also a more general BRP variant
is studied where different items may have the same priority (cf., for example Forster and
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Bortfeldt [39] and Jin et al. [57]), also called BRP with “duplicate priorities”. In this situation,
all items with priority value p have to be retrieved (in an arbitrary order) before all items of
priority value p + 1, and so on. We will also use this variant in our two-stage approach to
reduce the search space in the first stage (see Section 4.4.3). Furthermore, note that the BRP
with duplicate priorities is also a special case of the BRPIF where L = n (i.e., all items have to
be retrieved) and in the family retrieval sequence at first all items with priority 1 have to be
retrieved, then all items with priority 2, and so on.

In the literature, the BRP appears in two different variants (cf., e.g., Caserta et al. [19]): in
the restricted BRP, only blocking items above the next item to be retrieved may be relocated
(so-called “forced moves”), in the unrestricted BRP, also so-called “voluntary moves” are
allowed which means that any item may be relocated at any time. Often, only the restricted
variant of the BRP is used since then the solution space is much smaller. However, since in
the unrestricted variant in general solutions with fewer moves are possible and our solution
method is able to deal with it, we solve the unrestricted BRP in the second stage.

4.3 Complexity results

In this section, we study the complexity of the BRPIF in different variants. As described above,
in the literature often either push-backs are considered or it is assumed that sufficient storage
locations for relocated items exist (i.e., blocking items have to be moved only once and can
stay at temporary positions until their retrieval). On the other hand, if the storage area is
limited and all relocations must be carried out inside this limited area, the reshuffling process
is much more complicated. Then, it may even happen that the problem is infeasible since not
enough empty storage locations exist. At first we deal with this feasibility issue.

Lemma 4.1. For the BRPIF, it can be decided in O(n) whether for a given family retrieval
sequence a selection of items exists in such a way that these items can be retrieved using only
relocations within the limited storage area.

Proof. We generalize the feasibility test of Zhu et al. [124] for the BRP to the BRPIF. In Zhu
et al. [124] the BRP is considered where all items i ∈ I have pairwise different priorities.
Assuming that the items have to be retrieved in the sequence 1, . . . ,n and li denotes the level
at which item i is stored, we must have

b− li ⩽ mb− n+ (i− 1) (4.1)

to ensure that all reshuffles can be carried out inside the limited storage area. In inequal-
ity (4.1), the term mb− n equals the initial number of free slots in the storage. When item i

is to be retrieved, (i−1) additional slots are free, since i−1 items have already been retrieved
before. Thus, item i must have at least the level b minus the current number of free slots.

If we adapt this to the context of the BRPIF, for index k of the family retrieval sequence Φ
we must select an appropriate item ik with fik = ϕk that has not been selected before and
that is located at a level lik satisfying

b− lik ⩽ mb− n+ (k− 1). (4.2)

To check this condition for the relevant indices k (we can stop as soon as b− 1 free slots in
the storage exist, since then all remaining items in the storage are accessible), we iterate over
all n items in the storage and create a list for each demanded family in which the levels of
all its items are stored in descending order. Afterwards, we check inequality (4.2) for each
relevant index k using the list of family ϕk.
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Figure 4.3: Feasibility check.

Example 4.3. Figure 4.3 shows a storage with b = 4, m = 3, n = 11, and families A,B,C,D,E.
If we want to check feasibility for the family retrieval sequence Φ = (A,A,B,C,D), we create
four lists for the demanded families:

A : (3, 1), B : (1), C : (3, 2), D : (4, 4, 2, 2)

Checking inequality (4.2) for index k = 1 leads to 4 − li1 ⩽ 3 · 4 − 11 + (1 − 1), i.e., an item
i1 belonging to the corresponding family A must be stored at level li1 ⩾ 3. Since the first entry
in the list of family A satisfies this, we proceed with k = 2 resulting in the condition li2 ⩾ 2.
However, since the second entry in the list of family A is equal to 1, we state infeasibility.

On the other hand, if we consider the retrieval sequence Φ ′ = (A,D,A,B,C), we have a
feasible solution since the first entry in the list of family D satisfies li2 ⩾ 2 and afterwards all
items are accessible.

In the following, we consider the objective functions BI and RS. Blasum et al. [7] showed
that for the BRPIF with b = 3 it is strongly NP-complete to decide whether a solution with
BI = 0 (and hence also with RS = 0) exists. We strengthen their result by showing that the
problem is already hard for b = 2.

Theorem 4.1. For the BRPIF with b = 2 it is strongly NP-complete to decide whether a solution
without any badly placed items exists.

Proof. Similar to the proof of Blasum et al. [7] for the case b = 3, we give a reduction from
3-dimensional matching (3DM).

3DM: Given are three sets X,Y,Z such that |X| = |Y| = |Z| = a and a subset M ⊂ X× Y × Z
with |M| ⩾ a. We want to decide if a subset U ⊂M with |U| = a exists such that for any two
triples (x,y, z), (x ′,y ′, z ′) ∈ U the conditions x ̸= x ′, y ̸= y ′, and z ̸= z ′ hold.

Given a 3DM instance, we construct an instance of the BRPIF by identifying each element
x ∈ X,y ∈ Y, z ∈ Z with one family fx, fy, fz, resulting in 3a different families. Let FX,FY ,FZ
be the corresponding sets of families. Furthermore, we identify each triple τ = (x,y, z) ∈M
with a “triple family” fτ ∈ FM. For each triple τ ∈ M in 3DM, we create three stacks
qτ, q̃τ, q̄τ containing items iτ, jτ, ĩτ, j̃τ, īτ, j̄τ resulting in m = 3|M| stacks with b = 2. We
call these three related stacks a “stack set” and denote it by Qτ. Items iτ, ĩτ, īτ are placed at
the bottom level, items jτ, j̃τ, j̄τ at the top level (cf. Figure 4.4a). For τ = (x,y, z) ∈M, the
families are set to fjτ = f

x, fj̃τ
= fy, fj̄τ = f

z, and fiτ = fĩτ = fīτ = f
τ (cf. Figure 4.4b).

For each element x ∈ X and z ∈ Z let nx,nz be the numbers of triples in M that include x
and z, respectively. The family retrieval sequence Φ is set to (ΦZ1 ,ΦX,ΦM,ΦY ,ΦZ2 ,Φ

′
M)

where ΦZ1 = (fz1 , . . . , fza) and ΦY = (fy1 , . . . , fya) include all a families from FZ and FY
once. The subsequences ΦM = Φ ′

M = (fτ1 , . . . , fτ|M|) contain all |M| families associated
with the triples τ ∈ M. The subsequences ΦX = (fx1 , . . . , fx1 | . . . |fxa , . . . , fxa) and ΦZ2 =
(fz1 , . . . , fz1 | . . . |fza , . . . , fza) contain the families fxλ ∈ FX and fzλ ∈ FZ exactly nxλ − 1 and
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Figure 4.4: Stack set Qτ related to triple τ.

nzλ − 1 times for λ = 1, . . . ,a and hence have length
∑︁a
λ=1(nxλ − 1) =

∑︁a
λ=1(nzλ − 1) =

|M|− a.
To illustrate the construction, we consider a small example with a = 2, sets X = {x1, x2},Y =

{y1,y2},Z = {z1, z2} and five tuples

M = {(x1,y1, z1), (x2,y1, z2), (x2,y1, z1), (x2,y2, z2), (x2,y2, z1)}.

Then we have m = 3|M| = 15 stacks and 2m = 30 items belonging to 3a = 6 families. These
items are stored as shown in Fig. 4.5a. The family retrieval sequence is

Φ = (fz1 , fz2 |fx2 , fx2 , fx2 |fτ1 , fτ2 , fτ3 , fτ4 , fτ5 |fy1 , fy2 |fz1 , fz1 , fz2 |fτ1 , fτ2 , fτ3 , fτ4 , fτ5)

with related sequence indices

L = (1, 2|3, 4, 5|6, 7, 8, 9, 10|11, 12|13, 14, 15|16, 17, 18, 19, 20).

Φ has the length 4|M| and contains two parts of length 2|M|: The first part includes all a
families from FZ in ΦZ1 , then |M|− a families from FX in ΦX, and all |M| triple families in
ΦM. The second part includes all a families from FY in ΦY , then |M|− a families from FZ in
ΦZ2 , and again all |M| triple families in Φ ′

M.
For each stack set, two items from the top level must be selected: one belonging to family

FX or FZ for the first part of Φ, one from FY or FZ for the second part. Furthermore, in each
part, |M| items from the bottom level have to be assigned to the |M| triple families in FM.
Overall, for family FX exactly |M|− a items must be selected, for FY we need exactly a items,
and for FZ all |M| items must be selected.

We claim that a solution for 3DM exists if and only if a solution for the corresponding
instance of the BRPIF with BI = 0 exists. In the example above, we may choose (x1,y1, z1)
and (x2,y2, z2) as a feasible 3DM solution and assign the sequence indices as in Fig. 4.5b
without any badly placed items. On the other hand, if we consider M ′ =M \ {(x2,y2, z2)},
then no feasible 3DM solution exists and also no assignment without badly placed items.

“⇒”: A solution for 3DM means that a subset U ⊂ M exists which contains a triples
covering all elements from X,Y,Z. To get a solution for the BRPIF, we choose the a stack sets
corresponding to the triples τ ∈ U for ΦY ,ΦZ1 as in Figure 4.4c, and the remaining |M|− a
stack sets for ΦX,ΦZ2 as in Figure 4.4d (also cf. Figure 4.5). With this selection we are able
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Figure 4.5: Example.

to assign the families of ΦM,Φ ′
M without causing any badly placed items and hence have a

solution with BI = 0.
“⇐”: We show that for a solution of the BRPIF with BI = 0, all demanded item families of

Φ must be selected from a stack sets according to the pattern shown in Figure 4.4c and from
|M|− a stack sets according to the pattern in Figure 4.4d.

To guarantee BI = 0, the 2|M| families of the second part in Φ have to be combined in
exactly |M| stacks. A combination of top items for the second part with bottom items for the
first part leads to BI > 0 since the families from ΦM have to be retrieved earlier than ΦY and
ΦZ2 . In every stack set, one family of ΦM and one family of Φ ′

M must be assigned to one of
the three bottom items iτ, ĩτ, īτ, which implies that also one family from ΦX ∪ΦZ1 and one
family from ΦY ∪ΦZ2 must be assigned to each stack set.

Together with ΦZ1 or ΦZ2 , we need to assign either one family of ΦY or ΦX. Since families
of ΦY ,ΦZ2 may only be combined with families of Φ ′

M in one stack, we assign either families
of ΦY together with ΦZ1 in a stack set Qτ as in Fig. 4.4c or families of ΦX together with ΦZ2

as in Fig. 4.4d.
Since |ΦY | = |ΦZ1 | = a and |ΦX| = |ΦZ2 | = |M| − a, we must choose a stack sets as in

Fig. 4.4c, and |M| − a stack sets as in Fig. 4.4d. Let U be set of all triples τ for which the
corresponding stack set Qτ is chosen as in Fig. 4.4c. Then U builds a solution for 3DM.

Note that the construction in the proof also works if there is no limit on the stack height.
Thus, the problem is also hard in the case b = ∞.

Now, we consider the variant BRPIFset where the family retrieval sequence is relaxed to a
set. Instead of a family retrieval sequence Φ, we are given a multiset Φset = {ϕ1, . . . ,ϕL} of
families. Again, for each index k an item i with fi = ϕk must be selected, but the order is not
fixed. For example, the relaxation of the retrieval sequence Φ = (A,A,B,D,A,E, F, F,A,C) is
Φset = {A,A,A,A,B,C,D,E, F, F} which means that we need four items belonging to family
A, one item for families B,C,D,E each, and two items for family F. However, their retrieval
order is completely flexible.

Theorem 4.2. For the BRPIFset with b ⩾ 3 it is strongly NP-complete to decide whether a
solution without any badly placed items exists.
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Chapter 4 The blocks relocation problem with item families

Proof. We again give a reduction from 3DM. For a given 3DM instance, we construct an
instance of the BRPIFset by identifying each element x ∈ X,y ∈ Y, z ∈ Z with one item
family fx, fy, fz resulting in 3a different families. Let FX,FY ,FZ be the corresponding sets
of families. For each triple (xq,yq, zq) ∈ M in 3DM, we create a stack q containing items
iq, jq,hq with families fiq = fxq , fjq = fyq , fhq = fzq resulting in m = |M| stacks with b = 3.
In stack q, item iq is placed at the top level, item jq in the middle, and item hq at the bottom
level. The set of demanded families is Φset = FX ∪ FY ∪ FZ.

We claim that a solution for 3DM exists if and only if a solution for the corresponding
instance of the BRPIFset with BI = 0 exists.

“⇒”: A solution for 3DM means that a triples exist covering all elements from X,Y,Z. To
get a solution for the BRPIFset, we choose the a stacks related to these triples, assign the
items in these stacks to the 3a demanded families of Φset, and have a solution with BI = 0.

“⇐”: We show that for a solution of the BRPIFset with BI = 0, all demanded families of
Φset must be chosen from exactly a stacks, i.e., all items of these a stacks are selected and
consequently all |M|− a other stacks contain only items which are not selected.

The demanded families fx, fy, fz can only be assigned to items placed at the top level,
the middle, and the bottom level, respectively. In a solution for the BRPIFset we must have
selected a = |FZ| items on the bottom level from a stacks for the demanded families in FZ.
Similarly, for the a families in FY and FX we must have selected a items from the middle
and the top level, respectively. Furthermore, for all fy ∈ FY and all fx ∈ FX we must have
chosen a stack where an item on the bottom level has been selected for family fz ∈ Fz,
since otherwise at least one badly placed item exists. Thus, the selected a stacks for the 3a
demanded families of Φset correspond to a triples from M and hence build a solution for
3DM.

On the other hand, this problem variant becomes easy for stack height b = 2.

Theorem 4.3. The BRPIFset with b = 2 and objective RS can be solved as maximum flow
problem in polynomial time.

Proof. To solve this problem, we proceed in two phases. In the first phase we decide how
many items are selected from the top level l = 2 and the bottom level l = 1, respectively.
Afterwards, we assign specific items from these levels to the demanded families. Let nf be
the number of occurrences of family f in the multiset Φset and ηlf be the number of items
which belong to family f and are stored at level l ∈ {1, 2}. Items located at the bottom level of
a stack containing only one item count as top items since these items are never badly placed.

We partition nf into two numbers αlf ⩽ ηlf for l = 1, 2 such that nf = α1
f + α

2
f where αlf

denotes how many items are selected from level l. We choose α2
f ⩽ η

2
f as large as possible,

i.e., we select as many items from the top level as possible (which ensures that these items
are not badly placed).

After all family entries from Φset have been assigned to either the top or the bottom level,
the families must be assigned to specific items in the stacks. For all families f with η2f ⩽ nf
we choose all the η2f items in the top level. If afterwards an item i on the bottom level exists
for which the item above has been selected, α2

fi
= η2fi (i.e., there are no more items of family

fi at the top level which may be used to get access to other items at the bottom level), and
α1
fi
> 0, we choose i also.

In the following we assume that the numbers αlf are adjusted so that they correspond to
the remaining demands. To fulfill them, we solve a maximum flow problem. The node set V
consists of a source node s, a sink node t, a set of “bottom nodes” Vb, a set of “top nodes” Vt

and a set of “stack nodes” Vs:
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– For all families f for which an item has to be selected from the bottom level (i.e., α1
f > 0)

we introduce α1
f bottom nodes u1f, . . . ,u

α1
f

f .

– For all families f for which an item has to be selected from the top level (i.e., α2
f > 0)

we introduce α2
f top nodes v1f, . . . , v

α2
f

f .

– For all stacks q where both items may be selected (i.e., for both corresponding families
fql in levels l = 1, 2 we have αlfql > 0), we introduce two stack nodes q,q ′.

The source node s is connected to every bottom node uf ∈ Vb, every top node vf ∈ Vt is
connected to the sink t, and every stack node q is linked to its partner node q ′ ensuring that
every stack can be used at most once. Furthermore, we have an arc from a bottom node
uf ∈ Vb to a stack node q if an item belonging to family f is stored at the bottom level of q.
Analogously, we have an arc from stack node q ′ to a top node vf ∈ Vt if an item belonging to
family f is stored at the top level of stack q. All arcs get the upper capacity one.

We then calculate a maximum flow from the source s to the sink t. It decomposes into
s-t-paths carrying one unit of flow where exactly one node from Vb and one node from Vt

are matched to a stack q which means that the corresponding items are selected for the
demanded families. All nodes in Vb that cannot be matched lead to a badly placed item.
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Figure 4.6: Example for Φset = {A,A,B,B,B,B,C,E, F}.

71



Chapter 4 The blocks relocation problem with item families

Example 4.4. In Figure 4.6 we illustrate the procedure using an example with m = 9 stacks,
and 6 families A,B,C,D,E, F. We assume that the families Φset = {A,A,B,B,B,B,C,E, F}
have to be retrieved from the storage depicted in Figure 4.6a.

We have

nA = 2,nB = 4,nC = 1,nD = 0,nE = 1,nF = 1,

η2A = 4,η2B = 1,η2C = 0,η2D = 2,η2E = 1,η2F = 2,

η1A = 1,η1B = 4,η1C = 3,η1D = 1,η1E = 1,η1F = 0,

which leads to

α2
A = 2,α2

B = 1,α2
C = 0,α2

D = 0,α2
E = 1,α2

F = 1,

α1
A = 0,α1

B = 3,α1
C = 1,α1

D = 0,α1
E = 0,α1

F = 0.

For families B and E, the two top items in stacks 4 and 7 are immediately chosen due to
η2B = 1 < 4 = nB and η2E = 1 = nE. Then for family B also the bottom item in stack 4 is
selected, since α2

B = η2B and α1
B > 0.

For the remaining items to be selected we consider the maximum flow problem shown in
Figure 4.6b. For this problem, a maximum flow exists in which all bottom nodes are covered if
we send one unit of flow through the three paths u1B → q1 → q ′

1 → v1A, u2B → q8 → q ′
8 → v1F,

and u1C → q2 → q ′
2 → v2A. Thus, for the solution depicted in Figure 4.6c no badly placed items

exist and hence no reshuffles are necessary.
On the other hand, if we have Φ ′

set = {A,B,B,B,B,C,E, F}, then only one A-node in
Vt exists and the maximum flow value is 2 < |Vb|. We can send flow through the paths
u1B → q1 → q ′

1 → v1A and u2B → q8 → q ′
8 → v1F (or u1C → q5 → q ′

5 → v1F), which implies that
one item (belonging to family B or C) has to be selected that leads to a badly placed item above
it.

Up to now, we only considered the total number of badly placed items and not the total
number of reshuffles. We claim that if we have to retrieve a multiset Φset from a storage
with b = 2, always RS = BI holds, i.e., each badly placed item must only be reshuffled once.
If BI = 0, then also RS = 0 since no item must be reshuffled. On the other hand, if BI > 0,
then at least one non-selected item at the top level blocks a selected item below. All selected
items which are not blocked can immediately be retrieved. If then an empty slot above a
non-selected item or a completely free stack exists, we simply relocate the blocking item to
this location, retrieve the blocking item and have a completely empty stack afterwards. The
only problematic case is that no empty slot exists and all top level items are badly placed. But
then no feasible solution exists.

Finally, we consider a variant “between” the BRPIF and the BRPIFset where not the whole
retrieval sequence may be relaxed, but only some subsequences are flexible. We assume that
the retrieval sequence Φ = (M1, . . . ,Mz) consists of a sequence of multisets Mλ ⊂ F where
the order of the multisets has to be respected, but inside each multiset the retrieval order is
flexible.

For example, we may have Φ = ({A,A,B}, {D,A}, {E, F, F}, {A,C}) with M1 = {A,A,B},
M2 = {D,A}, M3 = {E, F, F}, M4 = {A,C}. According to Φ, at first items for the set M1 have
to be retrieved (i.e., two items from family A and one item from family B). These three items
may be retrieved in the order (A,A,B), (A,B,A) or (B,A,A). Afterwards, the items from
M2 = {D,A} may be retrieved in the sequence (A,D) or (D,A), and so on.

Having a closer look into the proof of Theorem 4.1, we see that for b = 2 this problem is
already hard for two multisets:

72



4.4 Solution approaches for the BRPIF

Corollary 4.1. For the BRPIF with b = 2 where the family retrieval sequence Φ = (M1,M2)
consists of two multisets, it is strongly NP-complete to decide whether a solution without any
badly placed items exists.

Proof. Recall the proof of Theorem 4.1 where the sequenceΦwas defined by the subsequences
ΦZ1 ,ΦY ,ΦM,ΦX,ΦZ2 ,Φ

′
M. It is easy to check that the proof is also valid if each subsequence

is relaxed to a set from which the families can be retrieved in an arbitrary order. Furthermore,
if we set M1 = ΦZ1 ∪ΦY ∪ΦM and M2 = ΦX ∪ΦZ2 ∪Φ ′

M, the proof remains valid without
any changes.

4.4 Solution approaches for the BRPIF

This section is devoted to solution approaches for the BRPIF with two different objective
functions. At first, we concentrate on minimizing the RS. We present an IP formulation
in Section 4.4.1, a simple heuristic in Section 4.4.2, and a two-stage simulated annealing
algorithm in Section 4.4.3. Finally, IP formulations and some dominance properties for the
objective BI are introduced in Section 4.4.4, which give lower bounds for the main objective
RS.

4.4.1 An IP formulation minimizing RS

In this subsection, we adapt the IP formulation for the unrestricted BRP of Caserta et al. [19]
which uses discrete time steps to model the movements in the storage. In each time step,
either a relocation move from one stack to another or a retrieval move may be performed
and the objective is to minimize the number of time steps to retrieve all selected items from
the storage. Since the variables of this IP formulation are defined for all time steps, we need
an upper bound T on their number, which may be estimated by a heuristic algorithm. In
our experiments, we used the heuristic described in Section 4.4.2 to compute this value. We
denote by T := {1, . . . , T } the set of all time steps and describe the initial configuration for all
i ∈ I, q ∈ Q, and L ∈ B by

Initiql =

{︃
1, if initially item i is stored in stack q at level l
0, otherwise.

For all items i ∈ I, stacks q,u ∈ Q, levels l, r ∈ B, and time steps t ∈ T we have binary
variables

xiqlurt =

⎧⎨⎩
1, if item i is moved from stack q at level l to stack u at level r

in time step t
0, otherwise.

Furthermore, for all i ∈ I, q ∈ Q, l ∈ B, and t ∈ T we have binary variables

yiqlt =

{︃
1, if item i is retrieved from stack q at level l in time step t
0, otherwise

ziqlt =

{︃
1, if item i is stored in stack q at level l at the beginning of time step t
0, otherwise.

For all i ∈ I, k ∈ Li, and t ∈ T we introduce binary variables

ξikt =

{︃
1, if item i is assigned to index k of Φ and retrieved in time step t
0, otherwise.
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Chapter 4 The blocks relocation problem with item families

Then, the binary IP reads as follows. In comparison to the IP formulation of Caserta
et al. [19], we added the variables ξikt, the constraints (4.9), (4.10), (4.11), and adapted
constraints (4.4), (4.12) as well as the objective (4.3).

(IPRS) min
∑︂
i∈I

∑︂
t∈T

t · ξiLt (4.3)

s.t.
∑︂
q∈Q

∑︂
l∈B

ziqlt +
∑︂
k∈Li

t−1∑︂
t′=1

ξikt′ = 1 (i ∈ I; t ∈ T \ {1}) (4.4)

∑︂
i∈I

ziqlt ⩽ 1 (q ∈ Q; l ∈ B; t ∈ T) (4.5)

∑︂
i∈I

ziqlt −
∑︂
i∈I

ziq,l+1,t ⩾ 0 (q ∈ Q; l ∈ B \ {b}; t ∈ T) (4.6)

∑︂
i∈I

∑︂
q∈Q

∑︂
l∈B

∑︂
u∈Q

∑︂
r∈B

xiqlurt +
∑︂
i∈I

∑︂
q∈Q

∑︂
l∈B

yiqlt ⩽ 1 (t ∈ T) (4.7)

ziqlt − ziql,t−1

−
∑︂
q∈Q

∑︂
r∈B

xiqlur,t−1 +
∑︂
q∈Q

∑︂
r∈B

xiurql,t−1 + yiql,t−1 = 0 (i ∈ I;u ∈ Q; l ∈ B; t ∈ T \ {1}) (4.8)

∑︂
q∈Q

∑︂
l∈B

yiqlt −
∑︂
k∈Li

ξikt = 0 (i ∈ I; t ∈ T) (4.9)

∑︂
i∈Iϕk

∑︂
t∈T

ξikt = 1 (k ∈ L) (4.10)

∑︂
k∈Li

∑︂
t∈T

ξikt ⩽ 1 (i ∈ I) (4.11)

∑︂
i∈I

∑︂
t∈T

t · ξikt −
∑︂
i∈I

∑︂
t∈T

t · ξik′t ⩾ 1 (k,k ′ ∈ L,k > k ′) (4.12)

ziql1 = Initiql (i ∈ I;q ∈ Q; l ∈ B) (4.13)

xiqlurt ∈ {0, 1} (i ∈ I;q,u ∈ Q; l, r ∈ B; t ∈ T) (4.14)

yiqlt, ziqlt ∈ {0, 1} (i ∈ I;q ∈ Q; l ∈ B; t ∈ T) (4.15)

ξikt ∈ {0, 1} (i ∈ I;k ∈ Li; t ∈ T) (4.16)

The objective in (4.3) minimizes the time step in which the item chosen for the last index L
of the family retrieval sequence Φ is retrieved. The first constraints (4.4) ensure that an item
is either in the storage or has been retrieved. Constraints (4.5)–(4.8), (4.13) are taken from
the original formulation and guarantee correct movements in the storage. The connection
between the variables y and ξ is established by constraints (4.9), while constraints (4.10)
assure that to every index of the family retrieval sequence an item with the demanded family
is assigned. Furthermore, constraints (4.11) guarantee that every item i is assigned to at most
one index k from the family retrieval sequence with fi = ϕk. Finally, constraints (4.12) ensure
the correct priority order implied by the family retrieval sequence, while constraints (4.13)
establish the initial positions Initiql of all items in the storage.

The stated IP formulation is very complex and tests showed that only very small instances
with at most 12 items could be solved to optimality in less than one hour.

4.4.2 A simple heuristic

In this subsection, we present a simple constructive heuristic which is used by the German
company mentioned above. A similar procedure has also been described in Tang et al. [102].

The algorithm for retrieving appropriate items considers the family retrieval sequence
Φ = (ϕ1, . . . ,ϕL) by processing one entry ϕk after the other without any look-ahead to
further elements of the sequence. At iteration k among all items in the storage that are not
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selected before, an item i with family fi = ϕk is selected which has a minimal number of
blocking items above. If more than one item meets this criterion, then the item in the stack
with the smallest index is chosen. After selecting a specific item i, the blocking items above
i are relocated. Iteratively, we move each blocking item to a stack containing currently the
smallest number of items. In case of ties, the stack with smallest index is preferred.
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Figure 4.7: Selecting an item belonging to family A.

Example 4.5. An example of the heuristic procedure is depicted in Figure 4.7. The initial storage
is shown in Figure 4.7a, all items are represented by their families A,B,C,D, and the stacks
are indexed from 1 to 3. We assume that an item belonging to family A has to be chosen next.
Among the three candidate items the one in stack 2 is selected since it has the smallest number of
blocking items (two items) above and the smallest stack index 2. Then, the topmost blocking item
is relocated to the third stack since this stack currently contains the smallest number of items (cf.
Figure 4.7b). Finally, in Figure 4.7c the second blocking item is relocated from stack 2 to stack 1,
since now among the two candidate stacks 1,3 (containing the same number of items), the first
stack has the smallest index.

4.4.3 A simulated annealing algorithm

As stated in Section 4.4.1, the IP formulation can only be used for very small instances. On the
other hand, the simple heuristic from Section 4.4.2 usually does not provide good solutions.

In the following, we propose a heuristic approach based on SA that aims at finding good
solutions with a small number of reshuffles. The SA algorithm was implemented in a standard
way (cf. Eglese [30]) using a standard acceptance criterion and geometric cooling. During
the cooling process, the number of probably realizable iterations is periodically estimated and,
based on this information, the (usually fixed) cooling factor is adjusted so that a predefined
final temperature is reached in the end. Moreover, the algorithm operates in two altering
phases. While in the first phase (selection stage) the current selection of items is changed, in
the second phase (retrieval stage) the corresponding unrestricted BRP instance is evaluated
w.r.t. the total number of reshuffles needed to retrieve the selected items. For the evaluation,
we use the (re-implemented) bottom level heuristic of Jin et al. [57] as BRP solver. This
heuristic combines a fast runtime with a relatively good solution quality which is beneficial to
evaluate a large number of selections in the first phase.

One may start with a randomly generated solution by traversing the family retrieval
sequence and randomly selecting any appropriate item that has not been selected before.
Alternatively, each item selection obtained by a heuristic for the BRPIF (e.g., by the heuristic
from Section 4.4.2 or the selection computed by the IP from Section 4.4.4) may be a feasible
starting point.
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Chapter 4 The blocks relocation problem with item families

As described in Section 4.2, a solution of the selection stage is represented by an item
retrieval sequence S = (i1, . . . , iL). For generating neighbors in the first phase, we use a
swap neighborhood. Two items i, j with fi = fj are chosen where at least one of the items is
assigned to an index k ∈ L of the family retrieval sequence. Then, the assigned entries (or
the status of being not assigned) of i, j are exchanged. Note that this swap neighborhood
is connected, i.e., a finite number of swaps allows to reach every solution S ′ = (i ′1, . . . , i

′
L)

starting from any other solution S = (i1, . . . , iL). This can be seen as follows. At first, all items
i ∈ S \ S ′ are swapped with items j ∈ S ′ \ S such that the families of the items are respected.
This results in a solution S̄ which contains the same items as S ′ but possibly in a different
order. Second, the items in the solution S̄ are swapped family-wise until the target order from
S ′ is reached.

In order to accelerate the search process, we tried to reduce the search space and to avoid
the evaluation of some neighbors by the BRP solver. Recall that the family retrieval sequence
Φ induces priority values for the retrieval of the selected items as described in Section 4.2.
More specifically, if item i is assigned to index k ∈ L, then we set the priority value of item i

to pi := k. This mapping leads to pairwise different priority values 1, . . . ,L for all selected
items. However, this restriction can be relaxed in the following situation:

Proposition 4.1. Assume that in the family retrieval sequence Φ for two consecutive indices
k,k + 1 the same family is demanded (i.e., ϕk = ϕk+1). Then instead of setting the priority
values of the selected items i, j to pi = k,pj = k+ 1, we may also set pi = pj = k.

Proof. If two items of the same family are demanded at positions k and k+ 1 in the retrieval
sequence and two different items i, j with fi = fj are selected, then it is feasible to retrieve
item i or item j first.

The advantage of this property is that less neighbors may be generated in the first stage
since two items get the same priority value. Otherwise, solutions with pi = k,pj = k + 1
(i.e., ik = i, ik+1 = j) and with pj = k,pi = k+ 1 (i.e., ik = j, ik+1 = i) would be considered
as two different solutions. Furthermore, it may be advantageous to postpone the decision
which item is retrieved first to the evaluation stage where the BRP solver may have more
information to make a good decision.

4.4.4 Lower bounds

Finally, this subsection is devoted to lower bound calculations to evaluate the quality of
heuristic solutions. For this purpose, we consider the objective function BI, which is a lower
bound on the total number of reshuffles. Especially, if BI = 0, we know that no reshuffles are
necessary. We propose two IP formulations.
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(a) Initial storage.
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(b) Items 3, 2 relocated.

2
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(c) Items 2, 3 pushed back.

Figure 4.8: Example for push-backs.

Winter and Zimmermann [116] considered a variant of the BRPIF where all relocated items
are directly pushed back after each retrieval, i.e., blocking items above the current target item
may be relocated to other stacks, but must be relocated back to their initial stack (resulting in
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the same order as before) after the target item is removed from the storage. In Figure 4.8 an
example is given. Item 1 is the current target item and shall be removed from the storage (cf.
Figure 4.8a). Items 3, 2 are blocking item 1 and must be relocated (cf. Figure 4.8b). After item
1 is removed from the storage, items 2, 3 are pushed back to their initial stack so that they
appear in the initial order afterwards (cf. Figure 4.8c). In the objective function “reshuffles
with push-back” RSPB the relocation and the push-back are counted as one reshuffle.

In the following, we state the linearized quadratic mixed-integer programming (MIP) for-
mulation from Winter and Zimmermann [116] after applying the linearization technique
of Kaufman and Broeckx [62] as suggested in Winter and Zimmermann [116]. Afterwards
we adapt this MIP with small changes to the objective BI. Let L+ := L ∪ {L + 1} and
L+
i := Li ∪ {L+ 1}. Furthermore, let Ik := {i ∈ I | fi = ϕk} be the set of all items which may

be assigned to sequence index k. For i, j ∈ I and k ∈ L+
i , λ ∈ L+

j we define the parameter

uijkλ =

⎧⎨⎩
1, if item i blocks item j in the case that i is assigned to index k

and j is assigned to the earlier index λ < k
0, otherwise

i.e., uijkλ = 1 if item i is stored somewhere above j in the same stack, but has to be retrieved
later. Moreover, for i ∈ I and k ∈ L+

i let

vik =
∑︂
j∈I

∑︂
λ∈L+

j

uijkλ

be an upper bound on the number of items blocked by item i if i is assigned to index k.
For all i ∈ I, k ∈ L+

i we have variables

yik =

{︃
1, if item i is assigned to sequence index k
0, otherwise.

Furthermore, for all i ∈ I variables zi indicate the number of items blocked by item i. Then,
the problem to minimize RSPB can be formulated as follows.

(IPBI1 ) min
∑︂
i∈I

zi (4.17)

s.t.
∑︂
k∈L+

i

yik = 1 ∀i ∈ I (4.18)

∑︂
i∈Ik

yik = 1 ∀k ∈ L (4.19)

∑︂
j∈I

∑︂
λ∈Lj

uijkλ · yjλ − zi ⩽ vik · (1− yik) ∀i ∈ I,k ∈ L+
i (4.20)

yik ∈ {0, 1} ∀i ∈ I,k ∈ L+
i (4.21)

zi ⩾ 0 ∀i ∈ I (4.22)

In the objective (4.17), the number of reshuffles with push-back RSPB is minimized. Due to
(4.18), each item is assigned exactly once to an index of the family retrieval sequence or to
index L + 1. Similarly, constraints (4.19) ensure that to every index of the family retrieval
sequence exactly one appropriate item is assigned. Finally, constraints (4.20) connect the
variables y and z such that zi counts the number of items blocked by item i.

To adjust this MIP to the objective BI, at first we simply make variable zi binary such that
it indicates whether item i is blocking any item or not. Together with this adjustment, we
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change constraints (4.20) slightly by multiplying parameter vik to variable zi which results in∑︂
j∈I

∑︂
λ∈Lj

uijkλ · yjλ − vik · zi ⩽ vik · (1− yik) ∀i ∈ I,k ∈ L+
i (4.23)

The resulting integer program is called IPBI1 . Since in some preliminary tests IPBI1 showed a
relatively poor performance, we decided to develop a further IP formulation IPBI2 based on
ideas from Boge and Knust [8] for a loading problem.

While up to now we identified each item by a unique number i ∈ I, in the following, we
use the stack index q and the level index l to refer to an item. The item which is stored in a
specific stack q at a certain level l is denoted by iql, its corresponding family by fql. The set
Lql := {k ∈ L | ϕk = fql}∪ {L+ 1} contains all indices k in the family retrieval sequence Φ to
which item iql can be assigned as well as the artificial value L+ 1 indicating that item iql is
not selected. Furthermore, let Bq be the set of all occupied levels in stack q.

For all q ∈ Q, l ∈ Bq and k ∈ Lql we introduce binary variables

βqlk =

{︃
1, if item iql is assigned to index k and is badly placed
0, otherwise

γqlk =

{︃
1, if item iql is assigned to index k and is well placed
0, otherwise.

Furthermore, let Blq := {r ∈ Bq | r > l} be the set of all occupied levels above level l in stack
q, let Lkqr := {λ ∈ Lqr | λ > k} be the set of all indices in Lqr after index k, and let

aqlk =

{︃
1, if item iql satisfies fql = ϕk
0, otherwise.

Then, the binary IP reads as follows.

(IPBI2 ) min
∑︂
q∈Q

∑︂
l∈Bq

∑︂
k∈Lql

βqlk (4.24)

s.t.
∑︂
k∈Lql

(βqlk + γqlk) = 1 ∀q ∈ Q, l ∈ Bq (4.25)

∑︂
q∈Q

∑︂
l∈Bq

aqlk · (βqlk + γqlk) = 1 ∀k ∈ L (4.26)

βqlk + γqlk +
∑︂
λ∈Lkqr

γqrλ ⩽ 1 ∀q ∈ Q, l ∈ Bq, r ∈ Blq,k ∈ Lql (4.27)

βqlk,γqlk ∈ {0, 1} ∀q ∈ Q, l ∈ Bq,k ∈ Lql (4.28)

In the objective (4.24), the total number of badly placed items is minimized. Due to constraints
(4.25) every item iql is assigned to exactly one index of the family retrieval sequence or to
the “not selected” value. Similarly, constraints (4.26) ensure that to every index of the family
retrieval sequence exactly one item belonging to the demanded family is assigned. Finally,
constraints (4.27) guarantee that if item iql is assigned to sequence index k (either as badly
or well placed item, i.e., βqlk + γqlk = 1), then any item at a higher level r > l in stack q
assigned to a later index λ > k cannot be well placed (i.e., we must have

∑︁
λ∈Lkqr

γqrλ = 0).
Note that in contrast to the IP stated in Boge and Knust [8], we use a stronger version with
aggregated constraints (4.27). We call this formulation IPBI2 . Similarly to Boge and Knust [8],
we also use this formulation to compute heuristic solutions. For this purpose, we first calculate

78



4.4 Solution approaches for the BRPIF

a solution for IPBI2 w.r.t. the objective function BI and evaluate the resulting configuration
with a BRP solver to minimize the total number of reshuffles afterwards. We call this approach
IPBI→RS2 . Moreover, we use the solution calculated by IPBI2 as a start solution for our SA
algorithm and call this combination IPBI2 + SA. These more complex heuristics are compared
to the simple heuristic of the company in Section 4.5.3.

In the following, we propose some techniques to reduce the number of variables and
constraints. Tang and Ren [103] presented two properties where one solution S is dominating
another solution S ′ with respect to the crane workload, which means that it is not necessary
to consider S ′ if S is considered. Since in Tang and Ren [103] it is assumed that the storage
area is sufficiently large and each blocking item can be shuffled to a stack where it can stay
until it is retrieved, these properties are also valid for the objective BI. The first property
considers two items i, j with fi = fj where item i is stored on top of item j in the same
stack. It is shown that the solution S = (i1, . . . , ik = i, ik+1 = j, . . . , iL) is not worse than
S ′ = (i1, . . . , i

′
k = j, i ′k+1 = i, . . . , iL). The second property considers two items i, j with

fi = fj where items i, j are stored in two different stacks. It is shown that the solutions
S = (i1, . . . , ik = i, ik+1 = j, . . . , iL) and S ′ = (i1, . . . , i

′
k = j, i ′k+1 = i, . . . , iL) have the same

objective value.
Note that the first property from Tang and Ren [103] considers the case that items i, j are

assigned to adjacent indices k,k+ 1 in the sequences S,S ′ and item i is stored somewhere
above item j in the same stack. If we have the situation that i is stored directly on top of item
j, we also have dominance in the case of non-adjacent indices k < λ when swapping items i, j
in the selection sequence:

Proposition 4.2. Consider two items i, j with fi = fj where item i is stored directly on top of
item j in the same stack. Then the solution S = (i1, . . . , ik = i, . . . , iλ = j, . . . , iL) is not worse
than S ′ = (i1, . . . , i

′
k = j, . . . , i ′λ = i, . . . , iL).

Proof. As described in Tang and Ren [103], if item i is stored above item j, then in solution
S ′ item i blocks item j while this is not true for solution S. However, this also holds for two
items i, j that are assigned to non-adjacent indices in the retrieval sequence if item i and j
are stored directly on top of each other, since then the status of blocking other items is not
affected by the swap.

Example 4.6. Consider the example in Figure 4.9 with families A,B,C,D and the family
retrieval sequence Φ = (A,C,B,B,C).
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(b) Selection 1.
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4
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(c) Selection 2.

Figure 4.9: Φ = (A,C,B,B,C).

In Figure 4.9b and 4.9c two possible selections are shown where items with priorities 1, 2, 3, 4, 5
are selected, while items with priority 6 are not. Both selections have three badly placed items
(those with priorities 2, 3, 5, underlined). Let us now consider the family retrieval sequence
Φ ′ = (C,B,B,C). In this case, the bottom element in the first stack is not selected (i.e., gets the
priority value 6). Then, in Fig. 4.9c the number of badly placed items decreases from 2 to 1,
which shows that also a strict improvement may be possible.
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In a preprocessing step, by applying Properties 4.1 and 4.2 to IPBI2 , several constraints
and some variables in (4.27) can be eliminated. Every constraint of this type refers to the
relationship of two items iql, iqr in the same stack q where iqr is stored on a higher level
r > l, item iql is assigned to index k and item iqr is assigned to a later index λ > k. We must
have fiql = fiqr to apply the two properties.

At first we consider the case r = l+ 1 where Property 4.2 can be applied. We claim that we
can omit the constraint

βqlk + γqlk +
∑︂

λ∈Lkq,l+1

γqrλ ⩽ 1

without changing the set of optimal solutions. If we omit the constraint and set βqlk = 1
or γqlk = 1, we may also set γq,l+1,λ ′ = 1 for an index λ ′ ∈ Lkq,l+1 (and βq,l+1,λ ′ = 0)
unless item iq,l+1 is classified as badly placed due to another blocked item. Then, in the
corresponding solution the meaning of γq,l+1,λ ′ = 1 is incorrect since item iq,l+1 is not
recognized as a badly placed item and hence not correctly counted in the objective function.
However, we may “repair” this solution due to Property 4.2. Instead of assigning item iql to
index k and item iq,l+1 to index λ ′ > k, we assign item iql to index λ ′ and item iq,l+1 to
index k. Since this resolves the neglected blockage, we get an equivalent feasible solution with
the same (correct) objective value where the changed variables have the correct meaning.

Now we consider the case λ = k+ 1 where Property 4.1 can be applied. Let k ′ ⩾ k+ 1 be
the largest index with ϕk = ϕk+1 = . . . = ϕk ′ and define the set Lk,k

′
qr = {λ ∈ Lkqr|λ ⩽ k ′}.

Then we may eliminate any variable γqrλ with λ ∈ L
k,k ′
qr in inequality (4.27) or eliminate

even the whole constraint if Lkqr \ L
k,k ′
qr = ∅. If we omit variable γqrλ ′ with λ ′ ∈ L

k,k ′
qr , we

may assign item iql to index k and item iqr to index λ ′, without recognizing the blocking.
However, by swapping the assigned indices for these two items, a correct solution with the
same objective value is obtained. Note that Property 4.1 also covers both properties of Tang
and Ren [103].

In the following, we present a result which can be used to exclude some items from being
selected for the item retrieval sequence. For this purpose, let nf = |{k ∈ L | ϕk = f}|

be the number of all indices in Φ requiring family f. For all families f with nf > 0 let
I
q
f = {iql ∈ I | fiql = f} be the set of all items in stack q belonging to family f. Furthermore,

let iql1 , iql2 , . . . , iql|Iq
f
|
be the sequence of all items in the set Iqf ordered by descending levels,

i.e., l1 > l2 > . . . > l|Iqf |
. We define a “critical level” lqf for stack q and family f as follows. If

a family f is not required in Φ (i.e., nf = 0), we set lqf = b+ 1. Otherwise, if nf > 0, we set

l
q
f =

{︃
l|Iqf |

, if |Iqf | ⩽ nf
lnf , otherwise.

If stack q contains at most as many items of family f as are required in Φ (i.e., |Iqf | ⩽ nf),
then lqf corresponds to the lowest level of an item in I

q
f (meaning that all items in I

q
f may be

selected). Otherwise, only the highest nf items in I
q
f are relevant and lqf corresponds to the

lowest level of these items. Let lq be the lowest critical level in stack q among all families,
i.e.,

lq := min
f∈F

{l
q
f }

and Aq = {iql | l < l
q} be the set of all items that are located below level lq in stack q (if

lq = 1, the set Aq is empty, if lq = b+ 1, then Aq contains all items in stack q).

Example 4.7. Consider the stack q in Figure 4.10 with families A,B,C and the family retrieval
sequence Φ = (A,C,C). We have nA = 1,nB = 0,nC = 2, lqA = 5, lqB = 7, lqC = 3 and hence
lq = 3.
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Figure 4.10: Stack with six levels.

Proposition 4.3. For all stacks q ∈ Q, all items i ∈ Aq can be excluded from being selected
without changing the minimal BI-value.

Proof. Consider an optimal solution not satisfying Property 4.3, i.e., in some stack q at least
one item from Aq is selected. Among these items let i be the item with lowest level. In
this case we must have another non-selected item j ̸∈ Aq in stack q above i with fj = fi.
Since item j blocks all selected items below, j must be badly placed. If we select j instead of
i, the number of badly placed items does not increase. Repeating this procedure for every
item i ∈ Aq for all stacks q leads to a solution satisfying Property 4.3 without increasing the
number of badly placed items.

The result of Property 4.3 allows us to exclude items from the selection stage completely.
This may also be used in a preprocessing step for IPBI2 by eliminating variables related to
these items. More specifically, for each stack q the variables βqlk,γqlk for all l < lq and all
k ∈ Lql can be removed from the IP. Moreover, also all constraints (4.25) for all l < lq and
all k ∈ Lql can be eliminated. Constraints (4.26) as well as the objective function (4.24) do
not include the removed variables any more. Furthermore, all constraints (4.27) involving at
least one of the removed variables can be omitted.

Finally, we would like to note that Property 4.2 (even for adjacent indices k,k + 1 as
considered in Tang and Ren [103]) and Property 4.3 do not hold for the objective RS.
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Figure 4.11: Φ = (A,B,B).

Example 4.8. Consider the example in Figure 4.11 with families A,B,C and the family retrieval
sequence Φ = (A,B,B). In Figure 4.11b and 4.11c two possible selections are shown where
items with priorities 1, 2, 3 are selected, while items with priority 4 are not. Both selections have
two badly placed items (those with priorities 2,3, underlined). However, if we consider the total
number of reshuffles, the selection in Figure 4.11b needs only two reshuffles to retrieve all items,
while the selection in Figure 4.11c needs three. Thus, by Property 4.2, the better selection would
be excluded.
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Figure 4.12: Φ = (A,B).

Example 4.9. Consider the example in Figure 4.12 with families A,B,C and the family retrieval
sequence Φ = (A,B). In Figure 4.12b and 4.12c two possible selections are shown where items
with priorities 1, 2 are selected. Both selections have two badly placed items in the first stack
above item 1. By Property 4.3 the bottom item in the first stack would be excluded due to l1 = 2
and hence the first selection would not be considered. However, if we consider RS, the selection in
Figure 4.12b needs only two reshuffles, while the selection in Figure 4.12c needs three. Thus, by
Property 4.3, the better selection would be excluded.

4.5 Computational study

In this section, we report results of our computational study. We used an Intel(R) Core(TM)
i5-3470 CPU with 3.2 GHz and 32 GB RAM. The IP formulations were solved with CPLEX
12.9, all heuristics were implemented in Java 11. In all computational results, the BRPIF
without push-backs is considered, and the unloading stage is solved as unrestricted BRP.
After describing the used test data in Section 4.5.1, we compare the two IP formulations
in Section 4.5.2. In Section 4.5.3, we present results of the heuristics, in Section 4.5.4 we
consider the impact of relaxing the family retrieval sequence. Finally, in Section 4.5.5, we
study which parameters are most important for the difficulty of an instance.

4.5.1 Test data

Table 4.1: Varied parameters in instances from the literature.

publications

[7] [116] [101] [102] [95] [88] [103] [38]

# instances 1300 300 810 810 512 10 300 5
L × × × × × × × ×
F
n × × × × × × ×
b × × × × × × ×
m × × ×
Ψ × × × ×

In the literature, some variants of the BRPIF have already been considered in several
publications and in most of them new test data was randomly generated (only Winter and
Zimmermann [116] used the same instances as Blasum et al. [7]). All publications with
relevant instances and their varied parameters are listed in Table 4.1, where the columns are
ordered by the year of the publication. In the literature it is claimed that all these parameters
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influence the problem complexity visibly. The parameters L, F,b,m,n have already been
introduced in Section 4.2. Furthermore, Ψ is a parameter called “slab distribution factor” in
Fernandes et al. [38], “complexity factor” in Singh et al. [95], and “stack number factor” in
Tang et al. [102]. In Tang et al. [102] it was verbally described as “the ratio of the number of
stacks that host the candidate slabs to the minimum number of stacks that these candidate
slabs might be stored in”. We interpret this description of Ψ as

Ψ =
m⌈︂

|Ican|
b

⌉︂
where Ican = {i ∈ I|∃k ∈ L,ϕk = fi} is the set of possible candidate items that may be
assigned to a sequence index. The value of Ψ is at least equal to one and in the literature it is
stated that smaller values of Ψ indicate a larger problem complexity. The number |Ican| of
items that may be selected for retrieval is an important parameter since the corresponding
items have to be considered, while all other items merely lead to blockages. If |Ican| equals the
maximum value n, then Ψ is approximately m·b

n . This value is the reciprocal of the parameter
“occupancy” occ = n

m·b , a relevant parameter for the BRP (cf., e.g. Expósito-Izquierdo et al.
[35]).

When inspecting real-world data we received from the German company mentioned above,
we identified an additional important feature that we call item distribution and which describes
the “mixture” of items belonging to certain families. We identified mainly four important item
distributions: constant, linear, quadratic, and exponential. A constant item distribution means
that every family contains nearly the same number of items. A linear distribution means
that after sorting the families by their cardinalities it is possible to find a linear function that
describes the numbers of items belonging to the families. For example, if family f1 contains
nf1 = 2 items, family f2 contains nf2 = 4 items, family f3 contains nf3 = 6 items, and so on,
then the function nfi = 2i for i = 1, 2, 3, . . . is an appropriate linear function. Quadratic and
exponential distributions are defined analogously.

Among all publications included in Table 4.1, we were only able to obtain the STIM data
from Blasum et al. [7]. These instances have F ∈ {2, 3, 4, 5, 6}, n ∈ {25, 50, 75, 100, 125, 150},
L = n, m = n

5 , Ψ = 1, and constant item distributions. The stack height is always limited
by b ⩽ 7. However, these instances are a bit more general since they include different
stack-dependent heights bq ∈ {1, . . . , 7}. These instances were randomly generated and per
parameter configuration 10 instances exist, resulting in 300 instances in total.

Table 4.2: Parameters of data set C.

week 1 week 2

segmentation complete day complete day
# instances 24 91 23 86
m [1, 14] [1, 14] [1, 22] [1, 22]
n [4, 408] [2, 408] [11, 470] [8, 470]
occ [0.06, 0.6] [0.03, 0.6] [0.18, 0.51] [0.06, 0.51]

L [1, 33] [1, 9] [2, 128] [1, 30]
L
n [0.01, 0.75] [0.0, 0.5] [0.0, 0.88] [0.0, 0.65]
F [1, 65] [1, 65] [1, 49] [1, 49]
F
n [0.07, 0.25] [0.07, 0.5] [0.03, 0.51] [0.03, 0.87]
Ψ [1, 7] [1, 14] [1, 9] [1, 22]

Furthermore, we used a real-world data set from the company mentioned above, which
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we call Company (C). We analyzed the parameters of these instances and summarize their
characteristics in Table 4.2. This data set contains instances belonging to two different weeks
(week 1, week 2). Each week is considered in two different scenarios related to the knowledge
of the family retrieval sequence Φ: either the complete sequence of the week is known or the
sequence is split into five smaller subsequences, each representing a day. All instances have
the same stack height b = 60, but are really heterogeneous according to other parameters.
There exist small and large instances (according to the parameters n and L) with constant,
linear, quadratic and exponential item distributions. However, mostly a linear distribution
can be found in the data.

Table 4.3: Parameters of data set AC.

no parameter range #

1 m {3, 6, 9, . . . , 36, 39} 13 · 40
2 b {10, 20, 30, . . . , 80, 90} 9 · 40
3 L

n {0.1, 0.2, . . . , 0.9, 1.0} 10 · 40
4 occ {0.1, 0.2, . . . , 0.9, 1.0} 10 · 40
5 F

n {0.05, 0.1, . . . , 0.45, 0.5} 10 · 40
6 distribution {const., lin., quad., exp.} 4 · 40
7 Ψ {1, 1.5, 2, 2.5, 3, 4, 5} 7 · 40

Additionally, we generated further instances to take a wider range of scenarios into account.
The generation process was based on the knowledge gathered from the real-world data and
inspired by the parameters investigated in the literature. Starting from a typical setting with
the parameters

m = 20,b = 45,occ = 0.4,
L

n
= 0.2,

F

n
= 0.2,Ψ ≈ 3, and a linear item distribution (4.29)

we varied each parameter in seven different data series. In this context, a data series is a set
of instances where only one parameter is changed according to a certain increment, while all
other parameters are fixed. With these data series we want to evaluate which parameters are
most important for the difficulty of an instance. We investigate this question in an experiment
later on in Section 4.5.5.

We call this data set Artificial Company (AC). For each data series, the number of instances
and parameter ranges are summarized in Table 4.3. For example, the parameter b is varied
in the data series with the number 2. Nine different stack heights b ∈ {10, 20, . . . , 80, 90} are
used to generate 40 instances per parameter assignment. For the instance generation, we
first created an empty storage of appropriate dimensions (m,b). Then items are generated
fulfilling the parameters F,occ and the desired item distribution by fixing the number of
families F and randomly drawing for each item a family with a roulette-wheel selection based
on the item distribution until occ is reached. Then, to place the items into the storage, we
used the loading algorithm of the company. This simple algorithm stores each newly arriving
item in a stack containing currently the smallest number of items, preferring the stack with
smallest index in case of ties. With this procedure, all stacks are almost equally filled (±1) in
the end. Finally, the family retrieval sequence is created by shuffling the whole item list and
using the first L items of that list. The generated test instances of data set AC can be found at
http://www2.informatik.uos.de/kombopt/data/brpif/.
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4.5.2 IP results

In this section, we present some results concerning the two integer linear programming
formulations IPBI1 and IPBI2 with the objective BI proposed in Section 4.4.4. Furthermore, we
study the impact of Properties 4.1–4.3.

Comparison of IPBI1 and IPBI2

At first we compare the performance of IPBI1 and IPBI2 . Since some preliminary tests revealed
that IPBI1 was not able to solve most of the instances in the data set AC within one hour, we
only used the 300 instances of the data set STIM as well as the 224 instances of the data set
C. We solved each instance with IPBI1 and IPBI2 (without applying Properties 4.1–4.3) with a
time limit of one hour five times using five different seeds.

In Figure 4.13, two scatter plots are depicted, including 1500 and 1120 data points for
the two different data sets. Each point indicates the computational runtimes (in seconds) for
IPBI1 on the horizontal axis and for IPBI2 on the vertical axis (both with a logarithmic scale)
for one specific instance with a specific seed. The diagonal line indicates that both IPs need
the same computational runtime, points above or below this line indicate that IPBI1 or IPBI2 is
faster in solving the corresponding problem instance.

For the data set STIM, all instances could be solved to optimality by IPBI2 , 22 instances could
not be verified to be optimally solved by IPBI1 within the time limit. The plot in Figure 4.13a
shows that most instances could be solved faster by IPBI2 , only 9 among the 1500 points are
above the diagonal. Moreover, the points above the diagonal are relatively close to it, which
means that the differences in the computational time are rather small.

For the data set C, all instances could be solved very fast by CPLEX, which means that the
initialization process and other CPLEX-related routines have a larger impact on the runtime
(as the relative amount of runtime for the initialization is larger in this case). The plot in Fig.
4.13b has 623 points below and 484 points above the diagonal for a computational time of
less than one second. The 13 points with a runtime > 1s could be clearly solved faster with
IPBI2 , confirming the results of the STIM instances.

Overall, IPBI2 clearly outperforms IPBI1 in the direct comparison of the runtime as well as
in the number of verified optimal solutions. Hence, we use IPBI2 for all further experiments.
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Figure 4.13: Comparison of IPBI1 and IPBI2 .
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Impact of Properties 4.1–4.3 on IPBI2

To evaluate the impact of the dominance properties, we solved IPBI2 using no properties (PN),
Property 4.1 (P1), Property 4.2 (P2), Property 4.3 (P3) and all three properties (PA) with a
time limit of one hour. Each instance of the three data sets was solved five times using five
distinct seeds.

For the data set C, the model without applying any property contains 221 variables and
595 constraints on average. The application of P1 reduces the number of variables in
constraints (4.27) by 2.7% on average, the application of P2 causes a reduction of 14.4% in
the number of constraints in the whole model. Moreover, on average the application of P3
reduces the number of variables by 63.8% and the number of constraints by 62.8%. Obviously,
all single properties reduce the size of the model, but P3 has the highest impact among the
non-combined rules. This effect is probably caused by the large values of Ψ in this data set.
However, the combination of all properties gives the largest reduction. All instances of the
data set C could be solved to optimality within one second by all IP-variants.

Since for all instances of the data set STIM, we have L = n (i.e., all items must be retrieved),
Property 4.3 cannot be applied. The model without applying any property contains 2 899
variables and 6 285 constraints on average. P1 reduces both the number of constraints in
the model as well as the number of variables in constraints (4.27) on average by 0.7%. P2
reduces the number of constraints on average by approx. 14.5%. The combination of both
properties is slightly stronger with a reduction of 14.9% in the number of constraints and
0.7% in the number of eliminated variables in constraints (4.27) (exactly the same as for P1).

Table 4.4: Average/maximum runtimes of IPBI2 using different properties on data set STIM.

n

Prop. ⩽ 75 100 125 150

PN < 1.0 / 5.1 3.2 / 13.7 10.0 / 45.5 28.3 / 179.6
P1 < 1.0 / 6.1 2.4 / 8.9 7.3 / 27.4 18.7 / 79.6
P2 < 1.0 / 1.5 1.2 / 3.7 2.6 / 9.6 7.2 / 32.0
PA < 1.0 / 1.2 1.2 / 3.7 2.4 / 9.3 6.7 / 30.2

The average/maximum runtimes (in seconds) applying the different properties to IPBI2
are shown in Table 4.4. As it can be seen, both properties lead to reductions in runtimes,
especially for larger instances. All instances of the data set STIM could be solved to optimality
in at most 3 minutes by all IP-variants.

Table 4.5: Comparison of IPBI2 using different properties on data set AC.

(a) All instances except those with exponen-
tial item distribution.

runtime (s)

Prop. avg max

PN 48 3600
P1 48 3600
P2 52 3600
P3 49 3600
PA 50 3600

(b) All instances with exponential item distri-
bution.

runtime (s)

Prop. avg max

PN 2445 3600
P1 49 174
P2 81 369
P3 2358 3600
PA 18 46
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Finally, the results for the data set AC are presented in Table 4.5. Here, we distinguish
the instances with exponential item distribution from the remaining instances. Overall, 200
combinations of individual instances and seeds with exponential item distribution as well as
12 200 combinations of the other instances are considered. In the tables average and maximum
computational runtimes (in seconds) are presented. For the instances without exponential
item distribution, the model without applying any property contains 1192 variables and
8910 constraints on average. The application of P1 reduces the number of variables in
constraints (4.27) by 0.5% and P2 reduces the number of constraints by 0.4%. The effect of
P3 is slightly stronger with a reduction of 1.7% of all variables, which causes a reduction in
the number of constraints by 1.6%. Nonetheless, the impact of the properties is relatively
small and it is hence not surprising that the application of the properties has no visible effect,
neither on the average nor the maximum computational runtime. Although, every IP-variant
hit the time limit of one hour for some seed, every single instance could be verified to be
optimally solved with every variant for at least one seed.

For the instances with exponential item distribution, the model without applying any
property contains many more constraints and variables, namely 18 950 variables and 158 673
constraints on average. Again, the application of Property 4.3 has no visible effect, but Prop-
erty 4.1, Property 4.2 and the combination of all properties (PA) improve the computational
runtime drastically. Not only the average runtime could be reduced by 96.7% (P2), 98.0%
(P1), 99.3% (PA), in addition all instances could also be verified to be optimally solved in
less than one minute by the IP in combination with all properties. Presumably, this effect is
related to the reduction in the number of constraints and the number of variables in (4.27)
compared to PN. In this context, on average the number of constraints could be reduced by
0.0%, 39.1%, 39.1% for P1, P2, and PA, respectively. Although P1 is not able to reduce the
number of constraints, the number of variables could be reduced by 12.8% on average.

In summary, the properties perform differently on the data sets, but on average they are
able to reduce the size of the model and hence also the computational runtimes. Property 4.3
shows the smallest effects for the considered instances, but reduces the number of constraints
on the heterogeneous data set C the most. Hence, we decided to apply all properties in IPBI2
in further experiments.

4.5.3 Heuristic results

This section is devoted to the comparison of the different heuristics minimizing the total
number of reshuffles introduced in Section 4.4.2–4.4.4. These approaches include the simple
heuristic used by the company, IPBI2 used as a heuristic by evaluating the corresponding
solution according to RS, and the simulated annealing algorithm. All algorithms were started
with a time limit of 300 seconds which seems an acceptable runtime limit in practice and each
instance was solved five times with five different seeds. We used all instances of data sets C
and STIM as well as all instances of data set AC with occ ⩽ 0.9 since the 40 instances of data
series 4 and all instances of data series 7 with occ = 1.0 are infeasible w.r.t. RS due to Lemma
4.1 (i.e., there is not enough space in the storage area to apply the necessary movements).
The stated values of the best known solutions (BKS) in the first row of each table are collected
during all tests presented in this work (taking into account all single solutions computed with
different seeds).

In Section 4.5.2 we compared the impact of the different dominance properties in the
context of IPBI2 . We repeated a similar experiment with the SA algorithm. Mostly, the
properties show small advantages in the computational runtime and the quality of the
solutions. Nonetheless, the differences are small and we decided to include only Property 4.2
for further experiments (which is also the only one that is valid for RS in general, cf. the
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Table 4.7: Comparison of different heuristics on all data sets.

(a) Data set C, 224 instances.

RS− LB

solver min avg # ver time

BKS 148 215 –
Comp. 1195 140 < 0.1
IPBI→RS2 412 438 212 < 0.1
Comp.+SA 151 165 213 30
IPBI2 +SA 148 155 215 15

(b) Data set STIM, 300 instances.

RS− LB

solver min avg # ver time

BKS 19 283 –
Comp. 2781 9 < 0.1
IPBI→RS2 58 91 264 2
Comp.+SA 21 26 282 235
IPBI2 +SA 20 20 283 42

(c) Data set AC without exponential item distribution,
2120 instances.

RS− LB

solver min avg # ver time

BKS 93275 1577 –
Comp. 1752195 15 < 0.1
IPBI→RS2 202560 244020 1428 19
Comp.+SA 122089 160776 906 300
IPBI2 +SA 113155 142217 1500 110

(d) Data set AC with exponential item distri-
bution, 40 instances.

RS− LB

solver min avg # ver time

BKS 0 40 –
Comp. 184 17 < 0.1
IPBI→RS2 0 0 40 17
Comp.+SA 18 46 28 171
IPBI2 +SA 0 0 40 16

discussion at the end of Section 4.4.4).
The results for the different data sets are summarized in Tables 4.8a–4.8d. In the first

column, Comp. denotes the simple company heuristic. The strategy IPBI→RS2 uses CPLEX
on IPBI2 in a first step to compute a single item retrieval sequence with minimum BI-value.
Afterwards, in a second step this retrieval sequence is fixed and the resulting BRP with
objective RS is solved with the BRP heuristic of Jin et al. [57]. Finally, Comp.+SA and IPBI2 +SA
utilize the SA algorithm of Section 4.4.3 with the solution of Comp. respectively IPBI2 (with a
time limit of 60 seconds) as starting point. Let Ω be a specific set of instances, ω one certain
instance of this set, and recall that every instance ω is solved five times using five different
seeds s. Furthermore let RSsω be the computed objective function value related to instance
ω with seed s and LBω the lower bound value derived from an optimal solution calculated
by IPBI2 . Regarding this, in the major column “RS − LB” the sum

∑︁
ω∈Ω(RSω − LBω) is

shown. Particularly, in column “min”, the best value RSω = min5s=1{RS
s
ω} is used. In column

“avg” the value RSω =
∑︁5
s=1 RS

s
ω/5 is used to show the spread of the objective between the

different runs. Note that this column is empty for the heuristic Comp. since this heuristic is
deterministic and does not include any random components based on a seed. The column “#
ver” states the number of instances verified to be optimally solved by the lower bound from
IPBI2 . In the last column, the average runtime (in seconds) is reported.

The results are quite similar for the data sets C, STIM, and AC without exponential item
distribution. All algorithms are able to improve the solutions of the company heuristic
drastically. Moreover, the solver IPBI→RS2 that uses IPBI2 and aims at minimizing the number
of badly placed items BI only, performs worse than the SA algorithms that tackle the desired
objective function number of reshuffles RS directly. By comparing the SA algorithms in more
detail, it is obviously worth to compute a starting solution for the SA algorithm with IPBI2 .
Although, much more time is invested in computing a good starting solution by IPBI2 instead
of Comp., the overall runtime decreases on average. With the solver IPBI2 +SA for the data
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sets STIM and C in total 95% of the instances could be solved to optimality.
For the data set AC with exponential item distribution, the situation is different. In this

case, the approaches IPBI→RS2 and IPBI2 +SA perform best and are able to find a solution with
BI = RS = 0 for every instance. Obviously, the starting solution of IPBI2 is responsible for
this good performance, which highlights the strength of the IP finding solutions with zero
reshuffles if possible.

4.5.4 Evaluating the impact of relaxing the family retrieval sequence

As already mentioned in the introduction, companies may be interested in the question how
much they can gain w.r.t. the total retrieval time if the family retrieval sequence may be
changed somehow. In practice, it may be feasible to swap adjacent entries in the retrieval
sequence, for example, if they belong to the same customer order. If all entries according to
one shift are requested without requiring a certain order, even the whole sequence may be
flexible. Recall that according to Theorem 4.2 and Corollary 4.1 relaxed versions of the BRPIF
with multisets are still NP-complete problems. Nonetheless, for the objective BI, we are able
to compute optimal solutions for several instances with IPBI2 . In our experiment, we consider
retrieval sequences which are relaxed to different degrees.

To solve the relaxed problems, we used IPBI2 without a time limit. We explain our experi-
ment using the family retrieval sequence Φ = (A,A,B,D,A,E, F, F,A,C) as example. At first,
every instance is solved without any relaxation. In the example, the sequence Φ is converted
into Φ1

rel = ({A,A}, {B}, {D}, {A}, {E}, {F, F}, {A}, {C}), where consecutive entries belonging to
the same family are assigned to one multiset according to Property 4.1. Afterwards, we relax
the family retrieval sequence by joining every two adjacent smaller multisets of Φ1

rel resulting
in Φ2

rel. Then we continue with Φ2
rel by joining again every two adjacent multisets, and so

on. In the last iteration, the whole sequence is relaxed to a single multiset. In the example,
we obtain

Φ1
rel = ({A,A}, {B}, {D}, {A}, {E}, {F, F}, {A}, {C}) (4.30)

Φ2
rel = ({A,A,B}, {D,A}, {E, F, F}, {A,C}) (4.31)

Φ3
rel = ({A,A,B,D,A}, {E, F, F,A,C}) (4.32)

Φ4
rel = ({A,A,B,D,A,E, F, F,A,C}) (4.33)

In this way, the original family retrieval sequence Φ is relaxed to sequences Φurel where with
increasing value of the “relaxation degree” u more flexibilities arise.

The results of this experiment are summarized in Figure 4.14a–4.14c. We used all instances
of the data sets C and STIM. For the data set AC we included only data series 3 (parameter L),
5 (F), 6 (item distribution), since these parameters seem to be the most important parameters
influencing the structure of the retrieval sequence w.r.t. to relaxations. For all three plots the
number of badly placed items BI is shown on the vertical axis for different relaxation degrees
on the horizontal axis. For data sets C (Figure 4.14a) and STIM (Figure 4.14c), we plotted
the sum of BI-values over all instances with the same parameter setting since the average
values are very small. For data set AC (Figure 4.14b), we plotted average values since these
values are very large. This means, the graphs show the overall reduction by the relaxation for
data sets C and STIM, and the average reduction per instance for the data set AC.

For data set C, the savings on BI for small relaxation degrees (u ∈ {1, . . . , 4}) are only equal
to 10, but from a value of u = 5 the effect on BI is much stronger resulting in savings of
BI = 222 in total if the whole sequence is relaxed. The results for the data series 3, 5, and 6
of the data set AC are quite similar: at first small relaxation degrees cause only small savings,
but relaxing the whole sequence leads to large improvements. Also for the data set STIM the
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Figure 4.14: Relaxing the retrieval sequence with different relaxation degrees for different
data sets.

basic behavior is similar. However, since for these instances the sequence length equals the
number of items (L = n), all instances can be solved with BI = 0 in the last iteration because
all items shall be retrieved.

Summarizing the results, it is possible to save reshuffles by relaxing the sequence, but the
strength of the relaxation in relation to the estimated profit and effort must be calculated
individually as the outcome highly depends on the parameters and structure of each individual
instance.

Finally, we conducted a further experiment regarding the importance of future knowledge
of the retrieval sequence for the company. For this purpose, we considered the real-world data
set C (consisting of data for 10 days in 2 weeks) in two different scenarios: in the first scenario
we solve the problem for the whole week (i.e., we have two independent problems, each with
a retrieval sequence for 5 days), in the second we solve the problem for each individual day
(i.e., 10 independent problems with shorter retrieval sequences corresponding to one day).
We use the heuristic IPBI2 +SA and sum up the numbers of reshuffles for all days in the two
weeks. If we compare the resulting total numbers of reshuffles, it turns out that in the first
scenario (where the retrieval sequence of the whole week is known), 25% reshuffles can be
saved compared to the case where only the retrieval sequence of the next day is available.
This shows the importance of prospective knowledge about the family retrieval sequence.

4.5.5 Parameter analysis regarding the difficulty of instances

In our last experiment we studied how the parameters mentioned in Section 4.5.1 influence
the difficulty of a problem instance to distinguish between parameters with a large impact
and those with less importance. To determine the difficulty, we used IPBI2 , tried to compute
optimal solutions w.r.t. BI, and measured the runtime. We solved each instance of the seven
different data series of data set AC with IPBI2 and a time limit of one hour five times using five
different seeds. The results for the IP are plotted in Figure 4.15a–4.15f. Each point represents
the average over 40 instances with the same parameters, which are each solved using 5
distinct seeds, i.e., 200 different values are accumulated. The vertical axis shows the average
runtime in seconds, always in the range [0,500] for a better comparison between the different
parameters that are varied on the horizontal axis. The values in the typical “basis setting” for
the data set AC described in equation (4.29) are marked with × in Figure 4.15a–4.15f. The
average runtime of this setting is 1.7 seconds.

Figure 4.15a–4.15f state that increasing values of occ, Ln , b, m and decreasing values of Fn ,
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Figure 4.15: Varying different instance parameters.

Ψ increase the runtime of the IP. The parametersm and F
n show only a minor effect compared

to the basis setting (×), the effects caused by parameter b are only slightly stronger. The
strongest effect among these six different parameters can be seen for the parameters occ, Ln ,
and Ψ. Particularly, an increase of parameter occ also decreases the value of parameter Ψ,
since Ψ is related to the occupancy of a storage as mentioned in Section 4.5.1. Similarly, an
increase in the parameter Ln increases the value of Ψ as well, since |Ican|

n naturally increases
with L, which in turn leads to larger values of Ψ. Thus, instead of using parameter Ψ for
measuring the difficulty of an instance, one could also use occ and |Ican|

n , which give deeper
insight in the actual reasons for the difficulty. The parameter b affects the computational
runtime visibly, but not as strong as Ψ, occ, and L

n .
Finally, we varied also the item distribution. While the runtimes of IPBI2 for constant,

linear (basis setting), and quadratic distributions exhibit a small average runtime of 1.0 to
1.7 seconds, the instances with exponential item distribution need much more time (2445
seconds on average). This effect may be explained by the huge number of variables and
constraints.

Summarizing the results, not all parameters considered in the literature influence the
difficulty of an instance noticeable. Especially, the parameters Fn and m have only a minor
effect and parameter Ψ seems to indicate the effect of parameters occ and |Ican|

n . Hence,
actually important parameters for analyzing the difficulty seem to be b, occ, |Ican|

n , and the
item distribution.
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4.6 Conclusions

In this chapter, we studied the blocks relocation problem with item families as a generalization
of the BRP and the SSS. We derived new complexity results and especially showed that the
BRPIF with b = 2 is already strongly NP-complete, strengthening the result for b = 3 from
the literature.

In contrast to existing literature we assumed that the space in the storage area is limited and
all movements have to be carried out within this area. We treated the practically important
objective “number of reshuffles” which is more complicated than only counting the “number
of badly placed items” commonly done in the literature. We proposed a new IP formulation
addressing the number of badly placed items to calculate lower bounds for the objective
“number of reshuffles”. Together with three new dominance properties to speed up the IP,
all instances used in this work could be solved to optimality w.r.t. BI. Furthermore, we
developed a two-stage simulated annealing algorithm where in the first stage appropriate
items are selected and in the second stage the unloading process is optimized by a fast BRP
heuristic. The results of this approach are much better than results obtained by a simple
company heuristic. Using the lower bounds calculated by the new IP formulation, we were
able to verify optimality of solutions for many instances (95% of the real-world data and the
benchmark instances from the literature).

Additionally, we introduced a new variant of the problem where the family retrieval
sequence may be relaxed. In practical experiments it was shown that relaxing the retrieval
sequence as well as incorporating further prospective knowledge about the retrieval sequence
may reduce the number of reshuffles considerably.

Although we made promising progress on the basic problem and some variants, additional
practical features could be considered in future research (for example, concerning uncertainty
and robustness). For instance, instead of exploiting that the retrieval sequence may be relaxed
to a certain degree, it could also be seen from the perspective that uncertain changes in the
retrieval sequence have to be incorporated in the planning of the retrieval process.
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Conclusions

In this chapter, we summarize the considered problems and obtained results of this thesis as
well as complete the discussion with future research questions in connection with problems
arising in stack-based storage systems.

In Chapter 2, we investigated the so-called parallel stack loading problem (PSLP) considering
the surrogate objectives total number of unordered stackings of adjacent items (USadj) and
total number of badly placed items (BI) as well as the more realistic objective total number of
reshuffles (RS). Our computational experiments showed that the objective BI is preferable to
USadj, and it may be used to sufficiently approximate the commonly used objective function
RS up to a stack height of six. Nonetheless, USadj as well as BI can only approximate the
objective RS. Hence, we used our developed integer program (IP) formulation for BI to
compute optimal solutions which can be used as lower bounds to evaluate our heuristic
results. Moreover, we were able to show that our simulated annealing algorithm tackling
the objective RS heuristically has great advantages in the solution quality w.r.t. to the more
complex objective function. In this context, we used a two-stage approach, modifying the
storage assignment in the first stage with a simple neighborhood while evaluating this storage
assignment in the second stage with a fast blocks relocation problem (BRP) heuristic.

In Chapter 3, we considered the well-known premarshalling problem (PMP) but incorporated
uncertainty to better represent the problem in reality with this model. As the target of the
PMP is to sort the items in a storage system before these items are retrieved in a specific
order, we assumed that this order is uncertain and change in a certain range. We developed
IP formulations and used them in connection with our theoretical analysis of the problem to
find robust storage configurations in a first step. Subsequently, we used a branch-and-bound
algorithm in a second step to achieve the best possible configuration (in terms of robustness)
with the least possible effort (regarding reshuffles). It turned out that investing a few more
movements in the premarshalling phase could cause great benefits in the unloading phase by
reducing the risk of unexpected incidents.

In Chapter 4, we considered the blocks relocation problem with item families (BRPIF) as
generalized problem of the BRP where a sequence of items specified by certain properties
is demanded and items with these properties exist in a storage. We rejected an assumption
commonly used in the literature which implies that every item has to be moved at most
once and that it is therefore sufficient to count blocking items only. In contrast, we did
not impose any requirements on the storage and focused on the more realistic objective
RS instead of approximating it by just counting badly placed items. Again, we developed
a simulated annealing algorithm that varies the selection of certain items regarding the
demanded sequence in a first step and used a fast BRP solver from the literature to solve the
problem with the already selected (and therefore fixed) items in a second step. Furthermore,
we proposed a new IP formulation to further enhance the solution quality and evaluate our
solutions with lower bounds obtained by this formulation.

In conclusion, it can be useful to question common assumptions frequently used in practice
or in the literature in order to redefine the existing limits of a problem. The resulting freedom
usually leads to an increase in the complexity of the problem, which must be compensated
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for. In our case, using more accurate objective functions for the PSLP and the BRPIF as
well as incorporating uncertainty in the PMP made the problem models practically more
relevant but did not allow to use existing solution approaches from the literature. Related
to the increased complexity, exact solution methods alone are often not suited to compute
applicable solutions in a reasonable amount of time on its own. However exact solutions
methods may be applied to solve smaller parts of the problem and increase the solution quality
noticeable. For instance in the context of the BRPIF, it was possible to apply IP formulations
generating a well-structured start solution for our local search approach. Nonetheless, in
many cases the increased complexity can be handled by breaking the problem down into
related subproblems, which means that significantly better results can be achieved despite or
more precisely because of the larger solution space. For the stated problems in the context of
stack-based storage systems we were able to identify suitable subproblems by separating the
evaluation of the unloading process in a separate stage. In the case of the PSLP, the decisions
regarding the placement of every item in the storage could be fixed beforehand which reduced
the complexity of evaluating the unloading problem considerably so that a fast BRP heuristic
could be applied for that reason. In the setting regarding the BRPIF, the approach was similar,
but decisions about which items to retrieve were made in a separate phase. Finally, for the
robust PMP a parameter indicating a best possible robust storage configuration was computed
beforehand to be able to identify such a configuration during the solving process of the PMP.
In summary, it was possible for us to identify suitable subproblems in each case and to develop
convenient solution algorithms in order to generate high-quality solutions overall.

Future research

In further research, other assumptions from the literature can be scrutinized in order to
better relate them on real application scenarios, e.g., unlimited time for sorting all items in
a storage or the exclusion of temporary additional space in the PMP which have only been
investigated in [126] and [115], respectively. Both assumptions simplify the problem a lot but
prevent appreciable resources from being used or important constraints from being taken into
account. In addition to the options described, other assumptions exist such as moving more
than one item at a time, including more than one crane and others that we mentioned in
Chapter 1. Moreover, the next comprehensible step would be to replace the relatively accurate
objective RS by considering the real travel time of items in a storage instead of just counting
the movements performed. Indeed, attempts related to this topic can be found in [1, 6, 52,
53, 71, 76, 93, 94, 92, 109, 111] for the BRP. But already for the PMP only one (cf. [25]) and
for the PSLP as well as for the BRPIF, we are not aware of a single publication which includes
approaches for incorporating the mentioned objective. In this situation, the approaches for
the BRP could be used to act as a promising starting point and recent publications highlight
the importance of this topic. Another overall important aspect, not often considered in the
literature concerns the modeling of uncertainty. For the BRP (cf. [4, 12, 13, 42, 68, 125])
and the PMP (cf. [80, 89, 105])), only a small number of publications take uncertainty into
consideration. The topic becomes more and more important since uncertainties may lead
to unexpected massive consequences in the daily business of companies. Therefore, it must
be taken into account in several fields and could also be an important factor in stack-based
storages. Particularly, the retrieval order as a central point in each of the problem stages can
be subject to uncertainty.
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