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Chapter 1

Introduction

Abstract: In this manuscript we perform a rigorous mathematical investigation
of the behavior opportunistic network models exhibit when two major real-world
problems are taken into account. The first problem considered is obstruction. Here
we model the network using an obstructed Gilbert graph which is a classical
Gilbert graph but where there exist zones where no nodes are allowed to be placed.
We take a look at percolation properties of this model, that is we investigate ran-
dom graph configurations for which a component of infinite size has strictly positive
probability to be created. The second problem considered in this thesis is mobility.
Of course mobility in and of itself is not a problem but a feature in any network
that follows the store-carry-forward paradigm. However it can be problematic to
properly handle in a mathematical model. In the past this has been done by mod-
elling movement by a series of static network configurations. However, with this
technique it can be difficult to get a grasp on some of the time sensitive properties
of the network. In this work we introduce the time bounded cylinder model
which enables an analysis over a complete timeframe. We provide normal approx-
imations for important properties of the model, like its covered volume and the
number of isolated nodes.

As we are using rigorous mathematics to tackle problems which computer sci-
entists working in the field of distributed systems are faced with, we bring the two
fields closer together.

The Boolean model and random networks

In this thesis we are interested in opportunistic networks. These are defined by a
network topology where the status of a communications channel is unpredictable.

7



Chapter 1: Introduction 8

Think of some software that is installed on a mobile device and is communicating
via Bluetooth with other devices that have the same software installed. It is easy
to see that the network topology in this setting is constantly changing, as Blue-
tooth provides a limited communication range and the mobile nodes are frequently
entering and leaving each others communication radius. Consult [MFM+14] for an
extensive introduction into opportunistic networks. We care about this setting as
it portrays the network topology oftentimes used in emerging technologies, like the
Internet of Things [LJ19] or device-to-device communication.
Mathematically, opportunistic networks are modelled by placing a deterministic or
random number of points randomly in Euclidean space and declare a communica-
tions channel between these points open if they fulfill some proximity threshold.
The classical approach for theoretical studies of these telecommunication networks
is to consider the Boolean model (see [JK20] or [LP18] for reference) where par-
ticipants are represented by the nodes and their communication zone is given by
a ball around these nodes. Representing connections between nodes by an edge
the considered graph model is the Gilbert graph, also known as random geometric
graph.
Probably the most common and fruitful way to introduce randomness in this model
is creating the nodes by using a Poisson point process. That is a random point
set with convenient indepence properties, which make it accessible to an extensive
mathematical toolset. Most notably it is highly modifiable via the use of markings,
as we will see in detail in Chapter 2.

Obstruction

A shortcoming of using the (homogeneous) Poisson model for placing the partici-
pants of the networks is that geographical restrictions are not considered. Works
as [JBRAS05] and more recently [SA19] clearly show by simulation that the in-
troduction of restrictions like this have a great influence on the connectivity of a
network. One approach to tackle this is the Poisson Hole Process [Hae12] where
we model obstructions by a secondary, independent Poisson point process. We use
this setting to define the obstructed Gilbert graph: Imagine two Poisson point pro-
cesses ηN and ηO as well as proximity thresholds rN > 0 and rO > 0. The vertices
of our graph are the points of ηN with a distance of at least rO to any point in
ηO. Two vertices are connected if their distance is below or equal to rN . In this
work we are firstly interested in percolation thresholds of this model. That means
we look for configurations by which the graph has strictly positive probability to
create a component of infinitely many nodes. These thresholds are of particular
interest as how readily a network percolates is a good indicator for its robustness
(see [New10, Chapter 16] for example). In Theorem 3.4 we give a bound on the
subcritical regime that is configurations by which the probability of percolation is
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zero. Under strict assumptions we then look at the supercritical regime in Theorem
3.6 that is configurations by which the probability of percolation is above zero. We
give a bound by which the graph is certain to be in this regime, thus proving the
existence of a phase transition from subcritical to the supercritical regime.
After that we let ZN and ZO denote the random sets given by the Boolean models
associated to ηN and ηO respectively. We are interested in the covered volume
ZN\ZO restricted to some window of observation. Let Ws = [− s

2
, s
2
]d denote said

window and N (0, 1) the standard normal distribution. We present the following
theorem:

Theorem 1.1. Assume 0 < γN , γO, rN , rO < ∞. As s → ∞, the distribution of
the standardized covered volume of the random set (ZN\ZO) ∩Ws satisfies

λd

(︁
(ZN\ZO) ∩Ws

)︁
− E[λd

(︁
(ZN\ZO) ∩Ws

)︁
]√︂

V[λd

(︁
(ZN\ZO) ∩Ws

)︁
]

d−→N (0, 1).

We additionally prove that the rate of convergence in this case is 1/
√︁

λd(Ws).

Mobility

In the domain of telecommunication network performance evaluation, one of the
oldest models used for the dynamics of moving nodes is the random direction mo-
bility model (for reference see [RMSM01] or [CBD02]). Nowadays, it is available
within standard evaluation frameworks surveyed in [DFHO+18]. The random di-
rection model belongs to the group of standard, basic models used in nearly every
performance evaluation to understand the elementary properties in well-known
standard scenarios before considering more sophisticated and more realistic ones.
Within a performance analysis, it is common to analyze series of states of the
model indexed by time. However, for networks that are delay tolerant, such as
opportunistic networks, longer periods of time are more interesting. Opportunis-
tic networks follow the store-carry-forward paradigm, where the movement of the
devices is used to carry the messages to their destinations. In this domain, it is
particularly interesting to answer certain questions for a longer period of time such
as:

(1) Will a message reach a node (at all)?

(2) Does a node stay isolated?

Since it is clear that mobility changes the properties of a network, there are
first results to consider the dynamics of mobile communication networks, see
e.g., [DMPG09] starting with discrete snapshots of the random walk model on
the torus. In [DFK16], the nodes of the telecommunication network move accord-
ing to the random waypoint model and the connection time of two random nodes is
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studied. The very recent work [HJC21] also deals with a dynamic Boolean model,
where Hirsch, Jahnel and Cali consider two different kinds of movement, small
movements with a small velocity and a few large movements with a high velocity.
They derive asymptotic formulas for the percolation time and the k-hop connection
time.
In this thesis we propose the time bounded cylinder (TBC) model which enables
an analysis over a complete timeframe by modeling the movement in Rd and the
resulting communication capabilities via cylinders in Rd × [0, T ]. Our first step
will be to establish the theory for a rigid movement model where nodes pick a
direction and velocity at random and keep these for the complete timeframe. In a
second step we will propose a method to introduce changes in direction and velocity.

The following is a slightly simplified construction, which will be made more precise
in Chapter 4. We take a set of points in Rd × {0} sampled from a homogeneous
Poisson point process with intensity 0 < γ < ∞. For each of these points p0
we randomly choose a vector v from the upper half of the d + 1-dimensional unit
sphere. Then we fix some T ≥ 0 and look at p0 + v ∈ Rd+1. This vector defines a
line from p0 to some point pT ∈ Rd ×{T}. We fix some radius r > 0 and for every
point x on this line consider the ball Bd(x, r). The union of these balls defines the
time bounded cylinder on p in direction v. Let Z denote the union of all cylinders
created this way for some Poisson process and let Ws = [− s

2
, s
2
]d × [0, T ]. Our first

main finding in Chapter 4 is this:
Theorem 1.2. As s → ∞, the standardized covered volume of the TBC model as
defined in Chapter 4 satisfies

λd+1(Z ∩Ws)− E[λd+1(Z ∩Ws)]√︁
V[λd+1(Z ∩Ws)]

d−→N (0, 1).

Moreover, in Theorem 4.12 we see that the rate of convergence in the Wasserstein-
distance is of order 1/

√︁
λd+1(Ws). Theorem 4.21 gives an analogous result in the

setting allowing for changes in direction. The covered volume is a very interesting
quantity in network simulation as it gives some insight into the connectedness of
the model. Less volume means more overlap of the communication zones which,
in turn, implies greater connectivity. Since the TBC model considers the complete
timeframe, its covered volume actually gives insight into the achievable throughput
of the network.
The next property considered is the number of isolated nodes, which means cylin-
ders that do not intersect with the rest of the model within the timeframe.
Theorem 1.3. Assume d = 2 and let IsoZ(s) denote the number of cylinders with
basepoint in [− s

2
, s
2
]2 that do not intersect with any cylinder in the TBC model as

defined in Chapter 4. Then
IsoZ(s)− E[IsoZ(s)]√︁

V[IsoZ(s)]

d−→N (0, 1)
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as s → ∞.

As before we additionally offer a rate of convergence (see Theorem 4.13) and a
version for changeable directions (see Theorem 4.22). These nodes are of particular
interest in opportunistic networks as one can not communicate with them. Let us
assume a sensor node (e.g. deployed for wildlife monitoring [ABV+12]) that can
store the sensor data for some time, but has to transmit the data before it runs out
of memory. If this node stays isolated for too long, it results in loss of data (e.g.
inaccuracies in the wildlife tracking trace). Lastly we come to a quantity of more
theoretical significance and present a limit theorem for the Euler characteristic of
the model, a precise definition of which is given in Chapter 4.

Theorem 1.4. Assume d = 2 and let s → ∞, then the Euler characteristic χ of
the TBC model Z restricted to a window Ws = [− s

2
, s
2
]2 satisfies a central limit

theorem, namely
χ(Z ∩Ws)− E[χ(Z ∩Ws)]√︁

V[χ(Z ∩Ws)]

d−→N (0, 1).

Since the Euler characteristic can be defined as the alternating sum of Betti
numbers, we see this result as an incentive for further mathematical studies of
the Betti numbers of the TBC model. These would give great insight into the
topological structure of the model, such as the number of connected components
or the number of holes. From a computer science perspective, both of these would
be of special interest.

Structure of the Thesis

Chapter 2: Preliminaries
Here we prepare the toolset needed to understand the main chapters of this thesis.
We will start with some general notation. After that, we provide what we need to
know about Poisson point processes. In Section 2.2 we give a rigorous definiton
and present theorems which will prove useful later on. We do the same for the
basic principles of percolation theory in Section 2.3. Section 2.4 then gives some
background on the Malliavin-Stein method, which provides us with our main tool
for proving central limit theorems.

Chapter 3: The Obstructed Gilbert Graph
In this chapter we first give a concise definition of the graph considered in this set-
ting and then introduce the Galton-Watson tree which is a special graph structure
that will prove useful when proving the main results of the chapter. Our main
findings regarding the obstructed Gilbert graph will be presented and proven in
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Section 3.3.

Chapter 4: Time Bounded Cylinders
This is the major chapter of this thesis where we introduce our novel approach to
modelling mobility in random networks. Again, we first give concise instructions
on how our model is created. After that, in Section 4.3, we prove the lemma we
use to derive our central limit theorems. It is an application of results from the
Malliavin-Stein method tailored to fit our setting. Section 4.4 then presents these
results and gives the necessary proofs. In Section 4.5 we then propose a modifica-
tion of our model that allows for changes in direction. We proceed to present and
prove modifications of our main results from the section before.

Addendum: Simulation Techniques
In the spirit of bringing mathematics and computer science closer together we in-
troduce algorithms for simulating the concepts presented throughout this thesis.
First we introduce our used algorithm for creating Poisson point processes which,
in particular, allows for the creation of inhomogeneous processes. After that we
present algorithms to evaluate the structure of a graph and introduce another
modified Boolean model named the Carcassonne grid.



Chapter 2

Preliminaries

In this chapter we present and explain the most important tools and concepts used
throughout this thesis. We also establish most of the symbolism and notation used
in later chapters. However, it is assumed that the reader has some basic knowledge
on probability theory and the theory of point processes.

2.1. General Notations

We start with the set of natural numbers excluding zero which we denote by N.
Furthermore, we set N0 := N ∪ {0}. Let Z denote the set of integers, R the set of
real numbers and R+ = [0,∞). As we will primarily be working in the Euclidean
space Rd, we set ∥ · ∥ as the Euclidean norm, that is

∥v∥ := ∥v∥2 =
√︂
v21 + v22 + · · ·+ v2d

for any vector v = (v1, . . . , vd) ∈ Rd. We define the closed d-dimensional ball of
radius r ∈ R+ centered at x ∈ Rd by

Bd(x, r) := {y ∈ Rd | ∥x− y∥ ≤ r}.

For a ball centered at the origin we abbreviate this notation to Bd(r). Let λd

denote the Lebesgue-measure on Rd. The volume of the d-dimensional unit ball is
given by

κd := λd(Bd(1)) =
π

d
2

Γ(d
2
+ 1)

where Γ denotes the gamma function. The (d− 1)-dimensional unit sphere is the
boundary of the unit ball,

Sd−1 := ∂Bd(1) = {x ∈ Rd | ||x|| = 1}.

13
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Given any set A we denote by P(A) its power set and by B(A) the Borel-σ-algebra
over A. For B ⊂ A we write 1B for the indicator function of B, that is

1B : A → {0, 1} with 1B(x) =

{︃
1, x ∈ B
0, x ̸∈ B

.

Finally, for some measurable space (X,X ) and (x,B) ∈ X×X , we define by
δx(B) := 1B(x) the Dirac measure concentrated on x ∈ X.

2.2. Poisson point processes

The central concept in this thesis is the Poisson point process. We will now give
the necessary definitions and present some useful results that will prove useful
later on. For this, we follow [LP18] and fix some probability space (Ω,P,A) and a
measurable space (X,X ).

Definition 2.1. Consider a σ-finite intensity measure Λ on X. A point process η
on X is called a Poisson point process with intensity measure Λ if

• we have that P[η(A) = k] = Λ(A)k

k!
e−Λ(A) for all A ∈ X and k ∈ N0,

• for m ∈ N and a vector of pairwise disjoint sets (A1, . . . , Am) ∈ Xm, we have
that (η(A1), . . . , η(Am)) ∈ Nm is a vector of independent random variables.

Figure 2.1: Two realizations of Poisson point processes observed in the cube [0, 1]2.
To the left we see the stationary case with intensity 200. To the right we see
the case where the intensity measure is given by Λ(A) = 200 ·

∫︁
A
(x + y)3 d(x, y),

A ⊂ [0, 1]2.
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We take special interest in the case X = Rd and Λ(A) = γ · λd(A) where γ
denotes a real constant, i.e. γ ∈ (0,∞). In this case we refer to the Poisson point
process as stationary. Since the Lebesgue measure is invariant under translations,
the point process shows the same behavior no matter where in Rd we choose to
evaluate it. This is why in the stationary case they are sometimes also referred to
as homogeneous.
Poisson point processes admit the following characterization, known as the Mecke
equation. Here we denote by N(X) the space of all measures that can be constructed
by a countable sum of finite counting measures on X.

Theorem 2.2 (Mecke Equation). Consider a σ-finite intensity measure Λ on X
and a point process η on X. The following items are equivalent:

• η is a Poisson point process with intensity measure Λ.

• E
[︁∫︁

X f(x, η) η(dx)
]︁
=
∫︁
XE [f(x, η + δx)] Λ(dx) for all measurable functions

f on X× N(X) with values in [0,∞].

We will not give a proof here but refer to [LP18, p.27]. A core concept through-
out this thesis will be the marking of Poisson processes, as we use it to establish
the models that will be analysed in later chapters. To understand markings we
have to prepare with the following item.

Definition 2.3. Consider measurable spaces (X,X ) and (Y,Y). A function

f : X× Y → [0, 1]

such that f(x, Y ) becomes a probability measure for each choice of x ∈ X and a
measurable function for each Y ∈ Y is called a Markov kernel from X to Y.

Note that in the cited literature, that is [LP18], Markov kernels are referred to
as probability kernels. Let us give an elementary example to better understand the
nature of this construction.

Example 2.4. Consider a random walk on Z and let p denote the probability of
an increment. Then we can write the transition probability from n ∈ Z to m ∈ Z
by

f(n, {m}) = p · 1{m}(n+ 1) + (1− p) · 1{m}(n− 1).

By
f(n,B) :=

∑︂
m∈B

f(n, {m})

for B ∈ P(Z) the transition probabilities define a Markov kernel from Z to Z.

With knowledge of Markov kernels at hand, we are now ready to give the
definition of a marking. As stated before, this is a key concept in this thesis.
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Definition 2.5. Consider a point process µ on X with intensity measure Θ and a
Markov kernel f from X to Y. For each x ∈ µ we independently choose a random
element in Y, with distribution given x defined by the probability measure f(x, ·).
The resulting point process on X× Y is called a f-marking of µ.

Lemma 2.6 ( [LP18, Proposition 5.5]). Consider a marked point process as con-
structed in Definition 2.5. Its intensity measure is given by

Θ⊗ f(A) :=

∫︂ ∫︂
1A(x, y) f(x, dy)Θ(dx)

where A ∈ X × Y.

In case the marks are not dependent on the points of X, which means there
exists a probability measure Q with f(x, ·) = Q for all x ∈ X, we speak of an
independent Q-marking. In this case the intensity measure simplifies to the
product measure. This is the case we are particularly interested in. In this thesis
we exclusively consider markings of Poisson point processes. This is convenient
because of the following remarkable result.

Theorem 2.7 ( [LP18, Theorem 5.6]). An f -marking on a Poisson point process
is again Poisson.

This theorem is tremendously valuable, as it tells us that the convenient prop-
erties of Poisson processes as well as the rich theory established for them can be
used on the marked process. Let us highlight the versatility of markings with a
few examples.

Figure 2.2: Excerpt of a Boolean model in R2.
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Example 2.8. Consider a Poisson point process η on Rd and an independent
probability measure Q on R+. Let ξ denote an independent Q-marking of η. Each
element y ∈ ξ is of the form y = (x, r), with x ∈ Rd and r ∈ R+. We can use this
information to create the random set

Z(ξ) =
⋃︂

(x,r)∈ξ

Bd(x, r),

which is the classical Boolean model with radius distribution Q.

Sometimes it is desirable to dismiss points or select only a subset of points of a
process in a random fashion. For these tasks, thinnings are a convenient tool and
an important piece in the theory of point processes. They can be defined using
markings, as the following example shows.

Example 2.9. Let p ∈ [0, 1] and consider the Markov kernel from X to {0, 1}
given by

f(x, ·) := (1− p)δ0 + pδ1.

With this kernel we construct an f -marking of a point process µ as above and
denote the resulting marked process by ξ. Thus every point created by µ gets
marked with either a zero or a one, with probability 1− p and p respectively. The
point process µp = ξ(· × {1}) counts only the points of µ which received a one as
marking and is called a p-thinning of µ. Analogously we call µ1−p = ξ(· × {0}) a
(1− p)-thinning.

By thinning our process µ this way we thus create two new point processes.
Note that if we thin out a Poisson process this way the resulting processes retain
their Poisson properties. In this case this is not due to Theorem 2.7, but rather
to the so called Restriction Theorem which we will not reiterate here. Instead we
again refer to [LP18] and state the following.

Theorem 2.10 ( [LP18, Theorem 5.8]). If the process µ in Example 2.9 is a Pois-
son point process, then we have that the thinnings µp and µ1−p are also independet
Poisson point processes.

Note that in the cited work [LP18] the thinning probability is allowed to depend
on the position of the point, which in turn allows for a richer and more versatile
theory. For the purposes of this work however, we are contempt with the simplified
concept as introduced above. The last item in our toolset regarding Poisson point
processes is the so called Superposition Theorem.

Theorem 2.11 ( [LP18, Theorem 3.3]). We consider a series of independent Pois-
son point processes (ηi)i∈N, each defined on X with intensity measure Λi. Their
superposition is the sum

η :=
∞∑︂
i=1

ηi.
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η is a Poisson point process with intensity measure Λ =
∑︁∞

i=1 Λi.
This tells us that the union of countably many Poisson point processes form

another Poisson process with an intensity that can be easily computed. Between
the superposition, thinning and more generally marking of Poisson point processes
note the remarkable resilience of their defining properties.

2.3. Basics of Graph and Percolation Theory

In this section we collect some of the basic definitions we need from graph theory
and use them to reiterate the necessary background on percolation theory needed
in this thesis. We start by recalling some of the most important vocabulary when
discussing graphs.
Definition 2.12. This collection is phrased in accordance with [Die18, p. 2 et
seq.].

• A (undirected) graph is defined as a pair G = (V,E) where V denotes some
set and E ⊂ {{x, y} | x ∈ V, y ∈ V }. V is called the set of vertices or
sometimes set of nodes. E is called the set of edges.

• The order of a graph is the cardinality of its set of vertices. We call a graph
finite if |V | < ∞ and infinite otherwise.

• A graph G∗ = (V ∗, E∗) is called a subgraph of G = (V,E) if V ∗ ⊂ V and
E∗ ⊂ E.

• x ∈ V and y ∈ V are called neighbours or adjacent if {x, y} ∈ E.

• A graph is called complete if all of its vertices are pairwise adjacent.

• The degree of a vertex x ∈ V in G is the number of edges containing x,
denoted by degG(x) = |{e ∈ E | x ∈ e}|.

• A non-empty subgraph P = (V P , EP ) of G that is of the form
V P = {x0, . . . , xk} EP = {{x0, x1}, {x1, x2}, . . . , {xk−1, xk}}

is called a path of length k in G.

• The distance of two vertices x and y of G is the minimal number of edges
among all paths from x to y. It is denoted by dG(x, y).

• The diameter of a graph G = (V,E) is given by
diam(G) = max{dG(x, y) | x ∈ V, y ∈ V }.

This list is not exhaustive with respect to this Thesis as we will introduce
additional items as we need them. But for now we can start our short survey of
percolation theory and start with the discrete case.
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Figure 2.3: Visualization of the bond percolation model on the 2-dimensional lat-
tice. The black bonds are open, the grey ones closed. On the left we have p = 0.2,
to the right p = 0.5.

2.3.1. Discrete Percolation
For this introduction we slightly modify [MR96, p.3]. Consider some infinite graph
G = (V,E). In the language of percolation theory we refer to its vertices as sites
and its edges as bonds. Each bond can be either open or closed. Subsequently,
an open path from x ∈ V to y ∈ V is a path in V consisting only of open bonds.
A closed path is defined analogously. We say that two vertices are connected if
there exists an open path between them.
Now consider some probability space (Ω,P,A) and assume each bond indepen-
dently open with some probability and closed otherwise. Realizing this probability
for each bond gives us an open subgraph of G. Percolation theory is interested
in the question under what conditions the probability of creating a subgraph of
infinite diameter is greater than zero. This is best explained with an example.

Example 2.13. Consider V = Zd and E = {{x, y} | (x, y) ∈ Zd×Zd, ∥x−y∥ = 1}.
Each bond is open with probability p ∈ [0, 1] and closed otherwise. This setting
is known as integer lattice percolation and one of the oldest studied percolation
models. Let G(0) denote the subgraph of open bonds containing the origin. We
define the critical probability of percolation by

pc(d) = inf{p | P(diam(G(0) = ∞) > 0}.

In [MR96, Theorem 1.1] it is proven that 0 < pc(d) < 1 for all d ≥ 2. Also it is
noted that pc(1) = 1 which is a common property among percolation models and
usually referred to as one-dimensional triviality. In [Kes80] Harry Kesten showed
that pc(2) = 1

2
, a statement that might seem natural but is actually the result of a

long and complicated proof.
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The setting where we refer to bonds as being open or closed is called the bond
percolation model. Another approach is the site percolation model where we
also attribute the vertices with these properties. There, each site is independently
open with some probability. An edge is open if both of its corresponding vertices
have this property.

Example 2.14. Consider a triangular lattice of points in R2 where the triangles
have some side length r > 0. We know from [Kes82, p.52] that the site percolation
model on this lattice has critical probability p = 1

2
, that is if a bond is open with

probability p > 1
2

we have a strict positive probability for a subgraph of infinite
diameter to exist.

Figure 2.4: Illustration of site percolation on a triangular lattice. The black vertices
are open, grey ones are closed. Same for the edges.

2.3.2. Continuum Percolation
Next we take a look at percolation on a random model driven by a Poisson point
process. Remember the Boolean model as presented in Example 2.8. Let us addi-
tionally present its definition as introduced in [MR96, p. 17].

Definition 2.15. Consider a stationary Poisson point process η in Rd with inten-
sity γ > 0 and some independent random variable R taking values in the interval
[0,∞). The triple (η,R, γ) is called the Boolean model with density γ and radius
random variable R.

The random set Z(ξ) as introduced in Example 2.8 is an associated quantity
when setting Q as the law of R. Without risk of confusion we will use the name
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Boolean model for both (η,R, γ) and the implicated random set Z(ξ). Note that
Z(ξ) can be broken down into a collection of connected components, that is subsets
that cannot be divided into disjoint non-empty closed sets. Analogous to the
discrete case, continuum percolation now investigates under what conditions there
exists a connected component C ⊂ Z(ξ) of infinite diameter, that is

diam(C) = sup
x,y∈C

∥x− y∥.

Consider the connected component containing the origin and label it C(0). We
define the critical intensity of the Boolean model by

γc(d) := inf{γ | P(diam(C(0) = ∞) > 0}.

It is known that in the case d = 1 the probability for an unbounded component
to emerge is zero, see [MR96, Theorem 3.1]. For d = 2 and a deterministic radius
R ≡ 1, we have that

0.174 < γc < 0.843,

see [MR96, Theorem 3.10]. An intriguing feature of the Boolean model is the
uniqueness of the unbounded component.

Theorem 2.16 ( [MR96, Theorem 3.6]). In the Boolean model (η,R, γ) as de-
scribed above, there is at most one unbounded component P-a.s..

Figure 2.5: Two Boolean models with identical radius. The left one has too low
intensity to form an unbounded component. The right, denser one has formed one,
which is marked in black.
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2.4. Normal Approximation via Malliavin-Stein

Now that we know about Poisson point processes, we would like a tool to derive
central limit theorems for functionals based on those. Fortunately, tools like that
exist and are the result of a rather fruitful combination of two concepts called
Stein’s method and Malliavin calculus. In this section we will give brief in-
troductions to both of these and then explain how they can be combined to give
rise to aforementioned limit theorems. Note however, that this a rather extensive
field which we will not explore in depth here. For a more detailed introduction
into Stein’s method we refer the reader to the excellent survey paper [Ros11]. For
more information on Malliavin calculus and how it connects to Stein’s method we
advise to consult [PR16].

To talk about the approximation of distributions, we first need a notion of dis-
tance between them. For this we use the Wasserstein distance, cf. [BP16].

Definition 2.17. Let ν1 and ν2 denote probability measures on Rd and H a set of
functions h : Rd → R satisfying the following property: For any pair of random
elements X,Y in Rd satisfying E[|h(X)|] < ∞ and E[|h(Y )|] < ∞ we have that

E[h(X)] = E[h(Y )] ⇒ X
d∼ Y.

We can then define the probabilistic distance of the probability measures by

dH(ν1, ν2) := sup
h∈H

⃓⃓⃓⃓∫︂
h(t) ν1(dt)−

∫︂
h(t) ν2(dt)

⃓⃓⃓⃓
.

Example 2.18. In the case of H = {1(−∞,x](·) : x ∈ R} and R-valued random
variables X and Y we define the Kolmogorov distance of their respective laws by

dK(X,Y ) = sup
x∈R

|P(X ≤ x)− P(Y ≤ x)|.

Example 2.19. In the case of H = {h : R → R : |h(x)− h(y)| ≤ |x− y|} and R-
valued random variables X and Y with E[|X|] < ∞ and E[|Y |] < ∞ we define the
Wasserstein distance of their respective laws by

dW(X,Y ) = sup
h∈H

|E[h(X)]− E[h(Y )]|.

While dK may be the more intuitive metric, dW is more advantageous to work
with. The following Lemma however implies that a bound in the Wasserstein
distance implies a bound in dK.

Lemma 2.20. Consider random variables X and Y where Y possesses a Lebesgue-
density bounded by c ∈ R. Then we have that

dK(X,Y ) ≤
√︁
2c · dW(X,Y ).
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A proof can be found in [Ros11]. In case of normal approximation we get the
following bound.

Lemma 2.21. Consider random variables X and Y , where the law of Y shall be
a standard normal distribution. Then we have that

dK(X,Y ) ≤
(︃
2

π

)︃ 1
4

·
√︁

dW(X,Y ).

Proof. Let f denote the density function of standard normal distributed random
variable and x ∈ R. We have that

f(x) =
1√
2π

e−
x2

2 ≤ 1√
2π

.

The asserted statement thus follows from Lemma 2.20 with c = 1√
2π

.

2.4.1. Stein’s Method
Let us take a first look into Stein’s original idea. It begins with the observation
that for any bounded function f with bounded first derivative and for a standard
normal random variable N we have that

E[f ′(N)−Nf(N)] = 0.

This can be easily verified by a short integration of parts:

E[f ′(N)−Nf(N)] = E[f ′(N)]− E[Nf(N)]

=
1√
2π

∫︂ ∞

−∞
f ′(x)e−

x2

2 dx− 1√
2π

∫︂ ∞

−∞
xf(x)e−

x2

2 dx

=

[︃
1√
2π

f(x)e−
x2

2

]︃∞
−∞

= 0.

This simple calculation gave rise to a method which was introduced 1972 by
Charles Stein in [Ste72]. At its heart we have the following result:

Lemma 2.22 ( [Ros11, Lemma 2.2]). Let Φ denote the distribution function of a
standard normal distributed random variable. For the differential equation

f ′
x(w)− wfx(w) = 1[w ≤ x]− Φ(x),

where w, x ∈ R, exists a unique, bounded solution.

In the cited source [Ros11] the asserted solution is explicitly given. Its existence
however is enough to formulate the following corollary.
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Corollary 2.23. Let fx denote the solution mentioned in Lemma 2.22 and W
some random variable. Then we have

|P(W ≤ x)− Φ(x)| = |E[f ′
x(W )−Wfx(W )]|.

Given a series of random variables (Wn)n∈N we can thus prove asymptotic
normality by using

|P(Wn ≤ x)− Φ(x)| = |E[f ′
x(Wn)−Wnfx(Wn)]|

and by estimating the right hand side of this equation. This is Stein’s method.

The challenge in this technique is obviously to control the function fx. It turns out
that using the Wasserstein distance, see Definition 2.17, offers some advantages in
that regard. Let H denote some set of functions.
Lemma 2.24 ( [Ros11, Lemma 2.5]). Let N denote a standard normally distributed
random variable. For the differential equation

f ′
h(w)− wfh(w) = h(w)− E[h(N)]

where h ∈ H and w ∈ R exists a bounded solution. It has the following properties:

• In case h is bounded it follows that

∥fh∥ ≤
√︃

π

2
∥h(·)− E[h(N)]∥ and ∥f ′

h∥ ≤ 2∥h(·)− E[h(N)]∥.

• In case h is absolutely continuous we have

∥fh∥ ≤ 2∥h′∥, ∥fh∥ ≤
√︃

π

2
∥h′∥ and ∥f ′′

h∥ ≤ 2∥h′∥.

This lemma now allows us to connect Stein’s method to Definition 2.17.
Lemma 2.25. Let W and N denote random variables and assume N to be standard
normally distributed. Let fh be the solution as presented in Lemma 2.24. Then

dH(W,N) = sup
h∈H

|E[f ′
h(W )−Wfh(W )]|.

Proof. Let ν1 and ν2 denote the laws of W and N respectively. By Definition 2.17
we have

dH(W,N) = sup
h∈H

⃓⃓⃓⃓∫︂
h(x)ν1(dx)−

∫︂
h(x)ν2(dx)

⃓⃓⃓⃓
= sup

h∈H
|E[h(W )]− E[h(N)]|

Lemma 2.24 = sup
h∈H

|E[f ′
h(W )−Wfh(W )]| .
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These results show the value of using the Wasserstein distance. Using this
metric, all considered functions h ∈ H are Lipschitz continuous with constant 1.
This implies ∥h′∥ ≤ 1 and the estimates in Lemma 2.24 take the form ∥fh∥ ≤ 2,
∥f ′

h∥ ≤
√︂

2
π

and ∥f ′′
h∥ ≤ 2. This leads to the final theorem of this section.

Theorem 2.26 ( [Ros11, Theorem 3.1]). Let W and N denote random variables
and assume N to be standard normally distributed. Let F denote the set of func-
tions f with ∥f∥ ≤ 2, ∥f ′∥ ≤

√︂
2
π

and ∥f ′′∥ ≤ 2. Then we have

dW (W,N) ≤ sup
f∈F

E[f ′(W )−Wf(W )].

This bound forms the basis for further refinement using Malliavin calculus.

2.4.2. Malliavin Calculus and Poisson Functionals
Malliavin calculus is a set of techniques named after the French mathematician
Paul Malliavin introduced in [Mal78]. Among other things it gives a framework
enabling integration by parts of random variables. Particularly, it gives a notion of
the derivative of a random variable which we will call the Malliavin derivative.
The idea in this section is to show that, if the random variable in question is a
function of a Poisson point process, there are certain conditions under which the
Malliavin derivative admits a convenient representation. This representation can
then be used to handle the bound in Theorem 2.26.
First we need to know what Poisson functionals are and how to work with them.
We follow the general definition in [LP18, Chapter 18] and consider a measurable
space (X,X ) and denote by N the space of all locally finite counting measures on
X. Let η denote a Poisson process on X with σ-finite intensity measure Λ.
Definition 2.27. A random variable F such that F = f(η) P-a.s. for some
measurable function f : N → R is called a Poisson functional. In this notion
f is called a representative of F .

Our aim is to refine the bound in Theorem 2.26 in case the considered random
variable is a Poisson functional. To that end, we now define an operator which can
be seen as a discrete analogue to classical derivatives.
Definition 2.28. For x ∈ X we define a map Dxf : N → R by

Dxf := f(µ+ δx)− f(µ), µ ∈ N.

This map is called the difference (or add-one-cost) operator of f(µ). We
can extend this definition inductively for n ≥ 2 and (x1, . . . , xn) ∈ Xn by setting
D1 := D and defining Dn

x1,...,xn
f : N → R by

Dn
x1,...,xn

f := D1
x1
Dn−1

x2,...,xn
f.

We then call Dn
x1,...,xn

f the n-th order difference operator.
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The idea now is to show that under certain conditions this operator coincides
with the Malliavin derivative of the Poisson functional. To do so we follow [Las16]
and, for some measure µ, denote by L2(µ) the space of square-integrable functions
with respect to that measure. Furthermore, we define by < ·, · >µ the scalar
product in this space and by ∥ · ∥µ the associated norm. Given n ∈ N, we identify
L2
s(µ

n) as the subset containing the symmetric functions in L2(µn).
Lemma 2.29. The difference operator as presented in Definition 2.28 has the
following properties:

• For n ∈ N and (x1, . . . , xn) ∈ Xn the n-th order difference operator is sym-
metric.

• The map (x1, . . . , xn, µ) ↦→ Dn
x1,...,xn

f(µ) is measurable for all µ ∈ N and
(x1, . . . , xn) ∈ Xn.

Proof. Both items follow from the representation

Dn
x1,...,xn

f(µ) =
∑︂

J⊂{1,...,n}

(−1)n−|J |f

(︄
µ+

∑︂
j∈J

δxj

)︄
,

see [Las16, p.5].

We can now define measurable and symmetric functions

Tnf : Xn → L2
s(Λ

n)

(x1, . . . , xn) ↦→ E[Dn
x1,...,xn

f(η)].

By definition we set T0f := E[f(η)]. We need one more item before we can get
to the heart of the technique presented in this section.
Definition 2.30. Consider some n ≥ 1, η the Poisson point process as above and
f ∈ L1(Λn). The n-th order Wiener-Itô integral is given by

In(f) =
∑︂
J⊂[n]

(−1)n−|J |
∫︂ ∫︂

f(x1, . . . , xn) η
|J |(dxJ)Λ

n−|J |(dxJC )

where xJ := (xj)j∈J .

Now we are ready for the following Theorem, which is known as the Wiener-Itô
Chaos Expansion. It gives a representation of Poisson functionals which will lead
us to the connection of difference operators and Malliavin calculus.
Theorem 2.31 ( [Las16, Theorem 2]). Consider some f ∈ L2

η. We have that

f(η) =
∞∑︂
n=0

1

n!
In(Tnf).

This series converges in L2(P).
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Defining gn := 1
n!
E[Dnf(η)] this gives the representation

f(η) = E[f(η)] +
∞∑︂
n=1

In(gn). (2.1)

Now consider some Poisson functional F with representative f . By Theorem
2.31 F admits some representation as given in (2.1). Assume that this representa-
tion satisfies

∞∑︂
n=1

nn!∥gn∥2Λn < ∞

and that E[|F |2] < ∞. These are the conditions under which we can identify the
difference operator as given by Definition 2.28 with the Malliavin derivative of F .
This statement is proven in [Las16, Theorem 3]. Furthermore, it is proven that

∞∑︂
n=1

nn!∥gn∥2Λn < ∞ ⇔ E
[︁ ∫︂

(DxF )2Λ(dx)
]︁
< ∞.

So for any Poisson functional F with E[|F |2] < ∞ and E
[︁ ∫︁

(DxF )2Λ(dx)
]︁
< ∞

the Malliavin derivative coincides with its difference operator. This opens the door
for the toolset of Malliavin calculus to be applied to simplify the right-hand side
of Theorem 2.26, making it more convenient to deal with in the setting of Poisson
functionals.

2.4.3. The Malliavin-Stein Method
Since the last section was somehow technical let us reiterate how we got here. Our
goal is normal approximation of a Poisson functional.

• Stein’s method gives us a bound in the Wasserstein distance,
see Theorem 2.26.

• Malliavin calculus would allow us to further refine this bound,
if we had a feasible way to express the Malliavin derivative.

• We show that the Malliavin derivative is under certain
conditions given by the difference operator, see Definition 2.28.

• We apply Malliavin calculus and derive a bound involving
these operators.

This strategy of applying Malliavin calculus on a bound derived by Stein’s
method was first succesfully applied by [PSTU10]. However, application of their
theorem requires the computation of the chaos expansion and thus of the n-th
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order Wiener-Itô integral. This makes it rather inconvenient to use. The theorem
we present next eliminates this problem and gives a bound which solely relies on
the first and second-order difference operators. Although it was first presented
in [LPS16], the form we give here can be found in [LP18].

Theorem 2.32 ( [LP18, Theorem 21.3]). Let η denote a Poisson process with
intensity measure Λ. Consider a Poisson functional F on η with E[|F |2] < ∞,
E[F ] = 0 and V[F ] = 1. N shall denote a standard normal random variable. If
E
[︁ ∫︁

(DxF )2Λ(dx)
]︁
< ∞ then there are constants

α1(F ) =

∫︂ √︂
E[(DxF )2(DyF )2] ·

√︂
E[(D2

x,zF )2(D2
y,zF )2] Λ3(d(x, y, z)),

α2(F ) =

∫︂
E[(D2

x,zF )2(D2
y,zF )2] Λ3(d(x, y, z)),

α3(F ) =

∫︂
E[|DxF |3] Λ(dx),

such that
dW(F,N) ≤ 2

√︁
α1(F ) +

√︁
α2(F ) + α3(F ).
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The Obstructed Gilbert Graph

In this chapter we introduce a variation of the well known Gilbert graph first in-
troduced in [Hae12]. There it was named the Poisson hole process. Essentially
it is a Cox process, that is a Poisson point process in a random environment. In
the model they have two independent, stationary Poisson point processes in Rd on
the same probability space: One of them is labeled the primary and the other one
the secondary process. We reject all points of the secondary process if they are
placed too close to a point of the primary process with respect to the Euclidean
distance.
In this chapter we study percolation properties on a very similar model, which
we name the obstructed Gilbert graph to emphasize the close relatedness to
Gilberts original setting from 1961. The first section will give a short survey over
existing research on related models and work done on the Poisson hole process
in particular. After this we give a concise definition of the model studied in this
chapter and introduce the Galton-Watson tree, which will prove an useful tool
for analysing percolation properties of the model. In the next section we then
present and prove theorems which give thresholds on the subcritical and super-
critical regimes. In the final section we study the asymptotic distribution of the
covered volume of the communication zones of the obstructed nodes and present a
central limit theorem.

3.1. Related Works

After its introduction in [Gil61], the Gilbert graph has enjoyed a great deal of
attention. This graph uses a Poisson point process in Euclidean space as vertex
set and creates an edge whenever two vertices satisfy some proximity threshold.
Since the graph structure depends on the Euclidean coordinates of the vertices

29
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it is also called the random geometric graph. A fundamental work summarizing
much of the research done up until 2003 is [Pen03]. In opportunistic networks the
communication between two close participants might not always be possible due
to geographic obstruction, which we would like to take into account by introducing
obstacles into the model. As mentioned, the setting studied in this chapter was
introduced in [Hae12], by name of Poisson Hole process. The most notable
contribution related to this thesis is [YSBRL19], where the authors consider a
slightly modified five parameter model. They consider a Poisson point process ηp
in R2 with intensity λp, called the primary process. Primary nodes are connected if
their Euclidean distance is below a threshold dp. Similarly, the secondary Poisson
process ηs in R2 with intensity λs is introduced. Secondary nodes are connected
if their Euclidean distance is below a threshold ds and if there is no primary
node within distance dg from either of them. The vector (dp, ds, dg, λp, λs) defines
the model. The authors proceed to study necessary conditions for simultaneous
percolation in both the primary and secondary network. This is similar to our
result in Theorem 3.4, but our technique involving a branching tree construction
is not restricted to dimension d = 2. The last result in [YSBRL19] is a sufficient
condition for simultaneous percolation. They compare their continuous model to
a dependent site percolation model, that is the probability for a site to be declared
open may be dependent on the states of neighbouring sites. In our Theorem
3.6 we similarly introduce a sufficient condition for percolation in R2, which is
also derived by comparison with site percolation. However our approach uses
independent site percolation, resulting in a more streamlined bound. Our strategy
also results in much more strict conditions, however. It nonetheless affirms the
result of [YSBRL19] that percolation in such a restricted environment is indeed
achievable.
Another noteworthy setting is the one presented in [HJC19]. As mentioned the
Poisson hole process can be seen as Poisson point process in a random environment,
that is a Cox process. Indeed, Example 2.1 in their work includes exactly this
setting. They show the existence of phase transitions for Cox processes which
are required to fulfill a stabilizing property and certain requirements regarding
connectedness of their support. This connectedness property however is not fulfilled
in our model, which bars us from using their technique.

3.2. Construction of the Graph

Let us start with the following idea of a random graph as introduced by [Gil61].
Definition 3.1. Consider a stationary Poisson point process η in Rd with intensity
γ > 0 and some real number r > 0. Given a realisation of η we take its support as
the set of vertices V and denote the set of edges by E. We have

(x, y) ∈ E ⇔ ∥x− y∥ ≤ r.
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The resulting graph G = (V,E) is known as the Gilbert graph or also random
geometric graph (see [Pen03] for instance).

It is clear that the Gilbert graph and the Boolean model (η, r
2
, γ) (see Defintion

2.15 and Example 2.8) are closely related. If for all pairs x, y ∈ η we draw an
edge if B(x, r

2
)∩B(y, r

2
) ̸= ∅ we get the corresponding Gilbert graph with distance

parameter r. In the following we will frequently exploit this duality and switch
between the random set given by the Boolean model and the implied graph struc-
ture. We will now define the graph structure studied in this chapter. All point
processes presented operate on the same shared probability space.

Definition 3.2. Consider two stationary Poisson point processes ηN and ηO in Rd

with intensity γN > 0 and γO ≥ 0 respectively. Also consider two real numbers
rN > 0 and rO > 0. Given realizations of the point processes we define

V := {x ∈ ηN | ∥x− y∥ > rO ∀ y ∈ ηO}

as the set of vertices of a graph with G = (V,E), where

(x, y) ∈ E ⇔ ∥x− y∥ ≤ rN .

In this case we call G the obstructed Gilbert graph.

3.2.1. The Galton-Watson Tree
The process introduced in this section was originally conceived in 1874 by Francis
Galton and Henry W. Watson to study the extinction of family names in British
aristocracy but has since then become a valuable tool in the study of random
graphs. We will follow [Bla17, p.11] and introduce the process as a random tree,
that is a graph of special structure constructed as follows.
We fix some node and label it the root of our tree. Then we take a N0 valued
random variable X whose law we refer to as offspring distribution. We create a
random number, distributed according to X, of vertices and connect them to the
root. For each newly created node we place a random number, independently
and with respect to the offspring distribution, of nodes adjacent to it. Iteration of
this procedure yields the tree. We collect all nodes at distance n to the root in a
set labeled Gn+1 and called n+ 1-th generation of the tree. Thus the root itself
is the only element of G1, the first generation.
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Figure 3.1: An example of a tree and its generations.

We set the total number of nodes in our tree as

S :=
∞∑︂
k=1

|Gk|

and define the extinction probability by P(S < ∞).
Theorem 3.3 ( [Bla17, Corollary 2.1.2]). Let X be a random variable driven by
the offspring distribution and S the total number of nodes in the associated Galton-
Watson tree. Then the following implications hold true:

• E[X] < 1 ⇒ P(S < ∞) = 1,

• E[X] > 1 ⇒ P(S < ∞) < 1,

• E[X] = 1 and P(X = 0) = 0 ⇒ P(S < ∞) = 0,

• E[X] = 1 and P(X = 0) > 0 ⇒ P(S < ∞) = 1.

3.3. Critical Intensities

Our first main finding of this chapter provides some insight into how the two
intensities of the obstructed Gilbert graph interact. It gives us a threshold by
which we are sure to be in the subcritical regime, which means that we have a
configuration in which unbounded components will not emerge P-a.s..
Theorem 3.4. Consider the obstructed Gilbert graph as presented in Definition
3.2. If

γN · rdN <
eγO·κdr

d
O

2dκd

the probability for an unbounded component to emerge is 0.

This Theorem allows for an interesting observation. Increasing the intensity of
the obstacles increases this threshold exponentially. This means if we place just
a few more obstacles we have to add a large number of nodes just to retain some
hope of reaching criticality. To proof this we need the following result.
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Lemma 3.5 ( [LP18, p.168]). Let (η, r, γ) be a Boolean model as presented in
Definition 2.15 and Z denote the associated random set. We have that

P(x ∈ Z) = 1− e−γλd(Bd(r)).

This interesting property of the Boolean model is due to its capacity func-
tional, a concept we introduce more in-depth later when talking about the time
bounded cylinder model.

Proof of Theorem 3.4. We construct a random tree representing a component in
the obstructed Gilbert graph as follows. Consider a node v0 in the origin, which
we will take as the root of our tree. The second generation is the set

G2 = {v ∈ ηN | 0 < ∥v − v0∥ ≤ 2rN , ∥v − o∥ > rO ∀ o ∈ ηO}.

Next consider a k ∈ N and G2 = {v1, . . . , vk}. The members of the third generation
adjacent to vi are the points in v ∈ ηN that are not covered by a ball o + B(rO),
o ∈ ηO, are in communication range, that is ∥v − vi∥ ≤ 2rN and are not included
in the tree yet. That is the set

Gi
3 := {v ∈ ηN | ∥v−vi∥ ≤ 2rN , ∥v−o∥ > rO ∀ o ∈ ηO, v /∈ Gj

3 ∀ j < i, v /∈ Gk ∀ k < 3}.

Consequently we have

G3 =
k⋃︂

i=1

Gi
3.

Iterating this procedure yields the tree. Note that this is not a Galton-Watson tree
as the independence property of the offspring distribution is not fulfilled. However
we can use a technique deployed in the proof of [MR96, Theorem 3.2] and compare
the tree representing a component in the obstructed Gilbert graph with a Galton-
Watson tree constructed as follows. We get the second generation G2 = G2 in the
same way as before. Now for each vi ∈ G2 we introduce independent copies ηiN of
ηN and ηiO of ηO. The members of the third generation adjacent to vi are then

G
i

3 := {v ∈ ηiN | ∥v − vi∥ ≤ 2rN , ∥v − o∥ > rO ∀ o ∈ ηiO}

Again, iterating this procedure yields the tree. Note that by this construction we
have that

E[|Gi
k|] ≤ E[|G2|].

for all k ∈ N. Let X denote a random variable driven by the offspring distribution
in the constructed Galton-Watson tree. We have

P(X = k) = P

(︄
ηN

(︂
B(2rN)\

⋃︂
o∈ηO

(︁
o+ B(rO)

)︁)︂
= k

)︄
.
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Furthermore we get by the law of total expectation that

E[X] = E[|G2|] = E

[︄
ηN

(︂
B(2rN)\

⋃︂
o∈ηO

(︁
o+ B(rO)

)︁)︂]︄
ZO :=

⋃︁
o∈ηO o+ B(rO) = E[E[ηN(B(2rN)\ZO) | ZO]]

= γN · E[λd(B(2rN)\ZO)].

For the expectation on the right hand side we can use Fubini’s theorem and
receive

E[λd(B(2rN)\ZO)] = E

[︄∫︂
B(2rN )

1(x /∈ ZO)dx

]︄
Fubini =

∫︂
B(2rN )

P(x /∈ ZO)dx

Capacity functional =

∫︂
B(2rN )

e−γOλd(B(rO))dx

= λd(B(2rN))e−γOλd(B(rO)).

This gives us
E[X] = E[|G2|] = γN · λd(B(2rN))e−γOλd(B(rO))

and by Theorem 3.3 we see that if this expectation is below 1, the extinction
probability in the Galton-Watson tree is 1. This in turn implies the extinction of
the tree representing a component in the obstructed Gilbert graph.

Now that we know under what conditions the obstructed graph does not per-
colate, the next result deals with the existence of a supercritical regime. That is
conditions under which an unbounded component emerges with probability greater
than zero. To do this we restrict ourselves to the case d = 2 and small obstacles,
that is rO < rN

2
. Note that in the case d = 1 the obstructed graph does not per-

colate P-a.s.. This follows immediately from the one-dimensional triviality for the
Boolean model, see [MR96, Theorem 3.1].

Theorem 3.6. Consider the obstructed Gilbert graph as presented in Definition
3.2. Assume d = 2 and rO < rN

2
. If

γN >

− ln

(︃
1− e0.822661·γOr2N

2

)︃
0.822662 · (rN − 2rO)2

and γO < ln(2)

0.822662r2N
, then the graph is in the supercritical regime.
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Figure 3.2: Illustration of the construction used in the proof of Theorem 3.6. In the
center we have the point x and the blue shaded area is the mentioned intersection
Ax of open balls.

Proof of Theorem 3.6. We employ a strategy to used by [MR96, p.87] and consider
a triangular lattice of points in R2 where the triangles have side length rN . Our
aim is to compare the obstructed Gilbert graph to a site percolation model on
this lattice. Take some site x and imagine six circles of radius rN centered on the
midpoints of the edges adjacent to x. The area inside of all six circles shall be
called Ax. See Figure 3.2 for an illustration.

Thus, for adjacent sites x and y, if we take points x′ ∈ Ax and y′ ∈ Ay, we
have that B(x′, rN) ∩ B(y′, rN) ̸= ∅. So if we would declare some site x open if
ηN(Ax) > 0 we could deduce from site percolation on the lattice that the Boolean
model (ηN , rN , γN) would percolate as well. We still have to take the obstacles into
account however.
To match our model, we declare a site x open if there is no obstacle present in
Ax and at least one node present in the set A′

x which is constructed analogously
to Ax but where the circles are centered on the adjacent edges to x with distance
rN
2
−rO. Then, since ηN and ηO are independent Poisson processes, the probability

for a site x to be declared open is

P(ηN(A
′
x) > 0) · P(ηO(Ax) = 0) =

(︁
1− e−γN ·λ2(A′

x)
)︁
· e−γO·λ2(Ax). (3.1)

To compute the volume necessary to further evaluate this probability, we consider
the triangular lattice where the triangles have some side length r. Let us assume
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a site in the origin and compute the volume of A0(r) which is the construction as
seen above but for the site in the origin and given side length r. In a first step, we
compute the distance from the origin to an intersection of two of the circles, which
amounts to

d0 =

√
15−

√
3

4
r.

Then we calculate the area of a regular hexagon with side length d0 which is

AH =

√
3(
√
45− 3)2

32
r2.

After this it remains to compute the area of the circular segments which are cut
off by the hexagon, each given by

AC =
r2

2

(︃
cos−1

(︃
1− (

√
15−

√
3)2

32

)︃
− sin

(︃
cos−1(1− (

√
15−

√
3)2

32

)︃)︃
.

This gives us
λ2(A0(r)) = AH + 6 · AC ≈ 0.8226612 · r2.

With this we can compute the volumes

Ax = A0(rN) and A′
x = A0(rN − 2rO). (3.2)

As we have seen in Example 2.14, the site percolation model on this lattice has
critical probability p = 1

2
. Thus if the probability given in (3.1) exceeds this

threshold we can safely say that the obstructed Gilbert graph percolates. For
γO < ln(2)

0.822662r2N
this gives us the condition

P(ηN(A
′
x) > 0) · P(ηO(Ax) = 0) >

1

2

⇔ 1− e−γN ·λ2(A′
x) >

eγO·λ2(Ax)

2

⇔ e−γN ·λ2(A′
x) < 1− eγO·λ2(Ax)

2

⇔ γN · λ2(A
′
x) > − ln

(︃
1− eγO·λ2(Ax)

2

)︃

⇔ γN >

− ln

(︃
1− eγO ·λ2(Ax)

2

)︃
λ2(A′

x)
.

Taking up (3.2) we receive the asserted statement.
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3.4. A Central Limit Theorem for the Covered Volume

Next we consider the d-dimensional random sets ZN created by the Boolean model
(ηN , rN , γN) and ZO created by (ηO, rO, γO). We are interested in the asymptotic
distribution of the volume of the random set ZN\ZO restricted to a window of ob-
servation Ws := [− s

2
, s
2
]d and prove Theorem 1.1 by proving the following stronger

result.

Theorem 3.7. Let N denote a standard normally distributed random variable.
Assume 0 < γN , γO, rN , rO < ∞. Then there exists a constant c ∈ R+ such that

dW

(︂λd

(︁
(ZN\ZO) ∩Ws

)︁
− E[λd

(︁
(ZN\ZO) ∩Ws

)︁
]√︂

V[λd

(︁
(ZN\ZO) ∩Ws

)︁
]

, N
)︂
≤ c√︁

λd(Ws)
.

In the proof of this theorem and further along in Chapter 4 we will use the
following well-known estimate.

Lemma 3.8. Consider a, b ∈ R and q ≥ 1. Then we have that

|a+ b|q ≤ 2q−1(|a|q + |b|q).

Proof. Note that for q ≥ 1 the function xq is clearly convex for x ≥ 0. First using
the triangle inequality and then the definition of convexity now get us

|a+ b|q =
⃓⃓⃓⃓
2a

2
+

2b

2

⃓⃓⃓⃓q
≤
⃓⃓⃓⃓
|2a|
2

+
|2b|
2

⃓⃓⃓⃓q
≤ |2a|q

2
+

|2b|q

2
= 2q−1(|a|q + |b|q).

Proof of Theorem 3.7. Let ηS denote the superposition of ηN and ηO and consider
the random variable RS with P[RS = rN ] =

γN
γN+γO

= 1−P[RS = rO]. This defines
the Boolean model (ηS, RS, γN + γO). We aim to use Theorem 2.32 on the Poisson
functional F with representative

f(ηS) :=
λd

(︁
(ZN\ZO) ∩Ws

)︁
− E

[︁
λd

(︁
(ZN\ZO) ∩Ws

)︁]︁√︂
V
[︁
λd

(︁
(ZN\ZO) ∩Ws

)︁]︁ .

We first derive a non-trivial lower bound on the variance V
[︁
λd

(︁
(ZN\ZO) ∩Ws

)︁]︁
.

This will confirm that the prerequisites of Theorem 2.32 are met. By Fubini’s
Theorem we have that

V
[︁
λd

(︁
(ZN\ZO) ∩Ws

)︁]︁
= E

[︂ ∫︂
W 2

s

1(x ∈ ZN\ZO, y ∈ ZN\ZO) λ
2
d(d(x, y))

]︂
− E

[︂ ∫︂
Ws

1(x ∈ ZN\ZO) λd(dx)
]︂2
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=

∫︂
W 2

s

P(x ∈ ZN\ZO, y ∈ ZN\ZO)− P(x ∈ ZN\ZO)P(y ∈ ZN\ZO) λ
2
d(d(x, y)).

To evaluate this integral, we first see that

P(x ∈ ZN\ZO) = P(ηN(Bd(x, rN)) > 0, ηO(Bd(x, rO)) = 0)

Indepence of ηN and ηO = P(ηN(Bd(x, rN)) > 0)P(ηO(Bd(x, rO)) = 0)

Lemma 3.5 = (1− e−γNλd(Bd(rN )))e−γOλd(Bd(rO)).

Furthermore,

P(x ∈ ZN\ZO, y ∈ ZN\ZO)

= P(ηN(Bd(x, rN)) > 0, ηN(Bd(y, rN)) > 0, ηO(Bd(x, rO)) = 0, ηO(Bd(y, rO)) = 0)

= P(ηN(Bd(x, rN)) > 0, ηN(Bd(y, rN)) > 0)P(ηO(Bd(x, rO)) = 0, ηO(Bd(y, rO)) = 0).

We now apply DeMorgan’s laws and get

P(ηN(Bd(x, rN)) > 0, ηN(Bd(y, rN)) > 0)

= 1− P({ηN(Bd(x, rN)) = 0} ∪ {ηN(Bd(y, rN)) = 0}).

By the additivity of probability measures this gives us

P(ηN(Bd(x, rN)) > 0, ηN(Bd(y, rN)) > 0)

= 1− 2 · P(ηN(Bd(rN)) = 0) + P(ηN(Bd(x, rN)) = 0, ηN(Bd(y, rN)) = 0)

= 1− 2 · P(ηN(Bd(rN)) = 0) + P(ηN(Bd(x, rN) ∪ Bd(y, rN)) = 0).

These results lead us to

P(x ∈ ZN\ZO, y ∈ ZN\ZO)

=
(︁
1− 2 · e−γNλd(Bd(rN )) + e−γNλd(Bd(x,rN )∪Bd(y,rN ))

)︁
e−γOλd(Bd(x,rO)∪Bd(y,rO)).

Now let us denote by Hd
w(z) the cap of a d-dimensional hypersphere with radius

z and height w. See Figure 3.3 for an illustration. For a method to explicitly
compute its volume we refer to [Li11].
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Figure 3.3: Variance estimation for d = 2. The shaded area marks H2
r
2
(r).

For x, y ∈ Rd satisfying ∥x− y∥ ≤ r we have

λd(Bd(r)) ≤ λd(Bd(x, r) ∪ Bd(y, r)) ≤ 2λd(Bd(r))− 2λd(H
d
r
2
).

Now let r− = min(rN , rO).

V
[︁
λd

(︁
(ZN\ZO) ∩Ws

)︁]︁
=

∫︂
Ws

∫︂
Ws

P(x ∈ ZN\ZO, y ∈ ZN\ZO)− P(x ∈ ZN\ZO)P(y ∈ ZN\ZO) dy dx

≥
∫︂
Ws

∫︂
B(x,r−)

(︁
1− 2 · e−γNλd(Bd(rN )) + e−γNλd(Bd(x,rN )∪Bd(y,rN ))

)︁
e−γOλd(Bd(x,rO)∪Bd(y,rO))

− (1− e−γNλd(Bd(rN )))2e−2γOλd(Bd(rO)) dy dx

=

∫︂
Ws

∫︂
B(x,r−)

(︁
1− 2 · e−γNλd(Bd(rN )) + e−γNλd(Bd(x,rN )∪Bd(y,rN ))

)︁
e−γOλd(Bd(x,rO)∪Bd(y,rO))

− (1− 2 · e−γNλd(Bd(rN )) + e−2γNλd(Bd(rN )))e−2γOλd(Bd(rO)) dy dx

≥
∫︂
Ws

∫︂
B(x,r−)

(︁
1− 2 · e−γNλd(Bd(rN )) + e−2γN ·λd(Bd(rN ))e

2λd(H
d
r−
2

)))︁
e−2γO·λd(Bd(rO))e

2λd(H
d
r−
2

))

− (1− 2 · e−γNλd(Bd(rN )) + e−2γNλd(Bd(rN )))e−2γOλd(Bd(rO)) dy dx

Since ex > 1 for x > 0 it is clear that the integrand in that lower bound is a
positive constant. It follows that there is a c1 > 0 such that

V
[︁
λd

(︁
(ZN\ZO) ∩Ws

)︁]︁
≥ c1 · λd(Ws). (3.3)

This, along with λd

(︁
(ZN\ZO) ∩ Ws

)︁
< ∞ for all s ∈ R, gives E[|F |2] < ∞ and

thus the first prerequisite of Theorem 2.32.
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Next we take a look at the difference operator Dxλd

(︁
(ZN\ZO) ∩ Ws

)︁
. Since the

presence of an additional node does not change the volume if it is too far away
from the area of observation, the operator gives zero in that case. That is

|x| > s+ rN ⇒ Dxλd

(︁
(ZN\ZO) ∩Ws

)︁
= 0 P-a.s.. (3.4)

Additionally seeing that for all x ∈ Rd we have

|DxF | =
|Dxλd

(︁
(ZN\ZO) ∩Ws

)︁
|√︂

V[λd

(︁
(ZN\ZO) ∩Ws

)︁
]

(3.5)

≤
|Dxλd

(︁
(ZN\ZO) ∩Ws

)︁
|√︁

c1λd(Ws)
P-a.s.

we conclude that E
[︁ ∫︁

(DxF )2 γNλd(dx)
]︁
< ∞ and thus that Theorem 2.32 is

applicable. We have to give bounds on α1(F ), α2(F ) and α3(F ). We first use

|Dxλd

(︁
(ZN\ZO) ∩Ws

)︁
| ≤ λd(Bd(rN)) P-a.s. (3.6)

to extend the previous estimate to

|DxF | ≤ λd(Bd(rN))√︁
c1λd(Ws)

P-a.s.. (3.7)

By the stationarity of ηS we have for x, y ∈ Rd

E[(DxF )2(DyF )2] ≤ λd(Bd(rN))
4

c21λd(Ws)2
,

which gives us a bound on the first term in α1(F ). For the second one we have to
deal with the second order operator. We aim to use the Cauchy-Schwarz inequality
and will then have to derive fourth moment bounds on D2

x,yF . We first see that

D2
x,yλd

(︁
(ZN\ZO) ∩Ws

)︁
= DxDy λd

(︁
(ZN\ZO) ∩Ws

)︁
= Dx

(︁
λd

(︁
((ZN ∪ Bd(y, rN))\ZO) ∩Ws

)︁
− λd

(︁
(ZN\ZO) ∩Ws

)︁)︁
Linearity of Diff. Op. = Dxλd

(︁
((ZN ∪ Bd(y, rN))\ZO) ∩Ws

)︁
−Dxλd

(︁
(ZN\ZO) ∩Ws

)︁
P-a.s.. This implies that when ∥x−y∥ > 2rN we have that Bd(x, rN)∩Bd(y, rN) = ∅
and thus

E[(D2
x,yF )4] = 0. (3.8)

In case ∥x− y∥ ≤ 2rN we can use Lemma 3.8 and (3.3) to get

E[(D2
x,yF )4] =

E
[︁(︁
D2

x,yλd

(︁
(ZN\ZO) ∩Ws

)︁)︁4]︁
V
[︁
λd

(︁
(ZN\ZO) ∩Ws

)︁]︁2
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≤
23 ·

(︁
E
[︁(︁
Dxλd

(︁
((ZN ∪ Bd(y, rN))\ZO) ∩Ws

)︁)︁4]︁
+ E

[︁(︁
Dxλd

(︁
(ZN\ZO) ∩Ws

)︁)︁4]︁)︁
c21 · λd(Ws)2

By using the bound (3.6) this reduces to

E[(D2
x,yF )4] ≤ 24 · λd(Bd(rN))

4

c21 · λd(Ws)2
. (3.9)

Next let Ws,rN = [− s
2
, s
2
]d+Bd(rN). It follows from (3.4), (3.7) and the Cauchy-

Schwarz inequality that

α1(F ) = γ3
N ·
∫︂
(Rd)3

√︂
E[(DxF )2(DyF )2]

√︂
E[(D2

x,zF )2(D2
y,zF )2] λ3

d

(︁
d(x, y, z)

)︁
(3.4) = γ3

N ·
∫︂
W 3

s,rN

√︂
E[(DxF )2(DyF )2]

√︂
E[(D2

x,zF )2(D2
y,zF )2] λ3

d

(︁
d(x, y, z)

)︁
(3.7) ≤ γ3

N ·
∫︂
W 3

s,rN

λd(Bd(rN))
2

c1 · λd(Ws)
·
√︂
E[(D2

x,zF )2(D2
y,zF )2] λ3

d

(︁
d(x, y, z)

)︁
C.-S. ≤ γ3

Nλd(Bd(rN))
2

c1 · λd(Ws)
·
∫︂
W 3

s,rN

4

√︂
E[
(︁
D2

x,zF
)︁4
]

4

√︂
E[
(︁
D2

y,zF
)︁4
] λ3

d

(︁
d(x, y, z)

)︁
.

Taking (3.8) into account yields∫︂
W 3

s,rN

4

√︂
E[
(︁
D2

x,zF
)︁4
]

4

√︂
E[
(︁
D2

y,zF
)︁4
] λ3

d

(︁
d(x, y, z)

)︁
=

∫︂
Ws,rN

∫︂
Bd(z,2rN )

∫︂
Bd(z,2rN )

4

√︂
E[
(︁
D2

x,zF
)︁4
]

4

√︂
E[
(︁
D2

y,zF
)︁4
] λd

(︁
dx
)︁
λd

(︁
dy
)︁
λd

(︁
dz
)︁
.

Note that for the volume of Ws,rN we have by Lemma 3.8 that

λd(Ws,rN ) ≤ (2rN + s)d ≤ 2d−1(2drdN + sd) ≤ 2d−1(2drdN + 1)sd (3.10)

= 22d−1

(︃
rdN +

1

2d

)︃
λd(Ws) =: cd,rN · λd(Ws)

and thus, using (3.9),∫︂
W 3

s,rN

4

√︂
E[
(︁
D2

x,zF
)︁4
]

4

√︂
E[
(︁
D2

y,zF
)︁4
] λ3

d

(︁
d(x, y, z)

)︁
≤ λd(Ws,rN )

22 · λd(Bd(2rN))
2 · λd(Bd(rN))

2

c1 · λd(Ws)

≤ 22(d+1)cd,rNλd(Bd(rN))
4

c1
.
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This gives us

α1(F ) ≤ γ3
N · 22(d+1)cd,rNλd(Bd(rN))

6

c21 · λd(Ws)
.

Next we deal with α2(F ). Applying the Cauchy-Schwarz inequality yields

α2(F ) = γ3
N

∫︂
(Rd)3

E[(D2
x,zF )2(D2

y,zF )2] λ3
d

(︁
d(x, y, z)

)︁
C.-S. ≤ γ3

N

∫︂
W 3

s,rN

√︂
E[
(︁
D2

x,zG
)︁4
]

√︂
E[
(︁
D2

y,zG
)︁4
] λ3

d

(︁
d(x, y, z)

)︁
.

With the same arguments used before this now gives us

α2(F ) ≤ γ3
Nλd(Ws,rN ) · λd(Bd(2rN))

22
4 · λd(Bd(rN))

4

c21λd(Ws)2

≤ γ3
N2

2d+4cd,rNλd(Bd(rN))
6

c21λd(Ws)
.

Only α3(F ) remains. Note that (3.6) implies

E[|Dxλd

(︁
(ZN\ZO) ∩Ws

)︁
|3] ≤ 1 + λd(Bd(rN))

3.

This gives us

α3(F ) ≤ γN

∫︂
Ws,rN

E[|DxF |3] λd

(︁
dx
)︁

(3.5) = γN

∫︂
Ws,rN

E

⎡⎢⎣ |Dxλd

(︁
(ZN\ZO) ∩Ws

)︁
|3√︂

V[λd

(︁
(ZN\ZO) ∩Ws

)︁
]
3

⎤⎥⎦ λd

(︁
dx
)︁

(3.3) & (3.6) ≤ γN

∫︂
Ws,rN

1 + λd(Bd(rN))
3

c
3
2
1 λd(Ws)

3
2

λd

(︁
dx
)︁

≤ γN(1 + λd(Bd(rN))
3)cd,rN

c
3
2
1

√︁
λd(Ws)

.

Using these estimates in Theorem 2.32 now gives the statement.

As we have seen the proof is enabled by the lower bound on the variance,
which has heavy influence on the constant c in Theorem 3.7. The variance in turn
depends on the interplay between the point processes ηN and ηO. The higher the
intensity or radius of obstacles, the bigger our observation window has to be in
order to come close to normality of the volume distribution.



Chapter 4

Time Bounded Cylinders

The purpose of this chapter is to rigorously introduce our cylinder model and to
prove asymptotic distributions of certain functionals operating on it. The first
section will give a short survey of existing work in the field of cylinder processes.
We then begin our exploration into the time bounded cylinder model by giving de-
tailed instructions on how to construct it. In section 4.3 we will prove the central
tool for deriving the main results, which is an adaptation of Theorem 2.32 to our
novel setting. Then we come to the main, original achievements of this chapter
presented in section 4.4. It contains central limit theorems derived for functions on
the time bounded cylinder model. The final section will introduce a modification to
the setting where the cylinders are allowed to change directions at predetermined
times. We then proceed to present results derived for the modified model.

The contents of this chapter were first published in the preprint [ABD21] and
draw heavily from it.

4.1. Related Works

By the definition of Weil, see [Wei87], a cylinder in Rd is constructed by choosing
a q-dimensional, 0 ≤ q ≤ d − 1, linear subspace of Rd and taking the Minkowski
sum of this subspace and a set taken from its orthogonal complement. A Poisson
cylinder process is then simply a Poisson process on the space of these cylinders.
The union Z of the cylinders created by such a process in the stationary case
has been subject to recent study. In [HS09] Heinrich and Spiess derive a central
limit theorem for the d-dimensional volume of Z restricted to a growing window of
observation by taking into account the long-range dependencies and applying the
method of cumulants.
In [HS13] the authors modified that limit theorem using weakened assumptions on

43
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the cylinder bases and proved a new central limit theorem for the surface content of
the model. In [BBGT20] Baci et al. were able to derive concentration inequalities
for the volume and the intrinsic volumes of the model, again restricted to a com-
pact window of observation. Assumptions of convexity on the cylinder bases and
isotropy of Z were made. The special case of q = 1 and spherical cylinder bases is
studied in [BT16] where Broman and Tykesson focus on connectivity properties.
The main difference in the time bounded cylinder point of view is the restriction
to the timeframe as well as the absence of horizontally running cylinders. In their
recent preprint [FH21], Flimmel and Heinrich also followed the idea of cylinders
constructed by marked point processes, but they restrict the underlying point pro-
cess to lie on the real line. They determine the asymptotic limit for the variance of
the covered area for stripes of random thickness and prove a law of large numbers.
In conclusion, cylinder models have enjoyed a great deal of attention recently. We
see the model proposed in the next chapter as a fruitful addition to existing re-
search and an important step towards application for dynamic telecommunication
networks.

4.2. Construction of the Cylinders

We start with a stationary Poisson process η in Rd with intensity γ ∈ (0,∞), see
Definition 2.1. We will refer to its points as the basepoints of the cylinders we
are about to construct. In terms of random networks think of these points as the
positions of our nodes at time 0. To model a movement, the basepoints need a
direction and a velocity. We get both of these quantities by choosing a point on the
upper half of the d + 1-dimensional unit sphere at random: Let h ∈ (0, 1) denote
a real constant, we define

Md
h := {v ∈ Sd : vd+1 > h}

and let Q denote a probability measure on Md
h. We shall refer to points chosen

according to this measure as the directions of our cylinders.

Figure 4.1: The blue shaded area is the set of possible directions when d = 2.

To construct a cylinder fix some T ∈ [0,∞). We call this parameter the time
horizon of the model. For (x1, . . . , xd) ∈ Rd and u ∈ R we set x̂u = (x1, . . . , xd, u) ∈
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Rd+1. Given a basepoint p ∈ Rd and a direction v ∈ Md
h, we define a time bounded

cylinder as a union of Minkowski sums. Remember that Cd denotes the system of
compact subsets of Rd.

Definition 4.1. Given a radius r ≥ 0 and a time horizon T , the value of the
function

Cylr,T : Rd ×Md
h → Cd+1

(p, v) ↦→
⋃︂

t∈[0,1]

(︃(︂ tT

vd+1

· v + p̂0

)︂
+ Bd(r)

)︃

is called a time bounded cylinder.

The first d entries of a vector v ∈ Md
h thus encode the direction a node is moving

in. The entry with index d+1 encodes the velocity at which that node is traveling.
We can now see that vd+1 = 1 means a node remains in place, while smaller values
for vd+1 imply faster movement. vd+1 = 0 would imply infinite velocity which,
in turn, would imply cylinders of infinite length. Thus we need the restriction
vd+1 > h to limit the movement speed of nodes.
Since r and T are constant in our model, we define Cyl(p, v) := Cylr,T (p, v) for ease
of notation. It will prove fruitful to think of the cylinders themselves as elements
of a Poisson point process. To that end, we take the points of η and attach the
directions as markings.

Definition 4.2. Let η and Q be defined as above. Mark every point in the support
of η with a direction from Md

h, randomly chosen i.i.d. according to Q. The result-
ing marked point process ξ, defined on Rd × Md

h, is called the process of time
bounded cylinders.

Lemma 4.3. ξ is a Poisson point process with intensity measure Λ = γλd ⊗Q.

Proof. By Definition 2.5, ξ is an independent Q-marking. The asserted statement
now follows directly from Theorem 2.7.

We are now in a position to define our model:

Definition 4.4. With the point process ξ given as above, the time bounded
cylinder (TBC) model is the random set

Z(ξ) :=
⋃︂

(p,v)∈ξ

Cyl(p, v).

In this notation we identify the random measure ξ with its support.
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Figure 4.2: In the left picture we see a cylinder with basepoint p̂0 and direction v.
The arrow marks the displaced vector p+ v. To the right we have an excerpt of a
TBC model Z constructed on R2.

A helpful tool in the study of random closed sets in general and in particular
when proving the main results presented in this chapter are capacity functionals.
These can be seen as analogues to the distribution functions of real-valued random
variables for random closed sets, see [SW08] for reference.

Definition 4.5. The capacity functional of a random closed set Z ⊂ Rd is a
mapping defined by the probability

P(Z ∩ C ̸= ∅)

with argument C ∈ Cd.

To derive the capacity functional of our model we will need the following defi-
nition.

Definition 4.6. Given a set C ∈ Rd × [0, T ] and a direction v ∈ Md
h we denote by

Cv the v-shadow of C onto Rd, that is the set

Cv :=
{︂
x− xd+1

vd+1

v | x ∈ C
}︂
⊂ Rd × {0}.

Intuitively speaking, the v-shadow of a point x ∈ Rd+1 is the point of inter-
section of the line {x + s · v | s ∈ R} and Rd × {0}. That is the projection of x
on Rd × {0} along v. With this we can formulate our next lemma which gives a
concise form of the capacity functional for the TBC model.

Lemma 4.7. For Z(ξ) as in Definition 4.4 and a compact C ⊂ Rd× [0, T ] we have

P(Z(ξ) ∩ C ̸= ∅) = 1− exp
(︂
− γ ·

∫︂
Md

h

λd

(︁
Cv + Bd(r)

)︁
Q(dv)

)︂
.
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Proof. Define the set

AC := {(p, v) ∈ Rd ×Md
h | Cyl(p, v) ∩ C ̸= ∅}.

By Lemma 4.3 ξ is a Poisson point process. Thus we have that

P(Z(ξ) ∩ C ̸= ∅) = 1− P(ξ(AC) = 0) = 1− exp(−Λ(AC)).

Note that for any fixed v ∈ Md
h and x ∈ Rd× [0, T ] there exists a ball of radius r in

Rd such that a cylinder with direction v will include x if and only if its basepoint
is included in that ball. The union of these balls for all points x ∈ C coincides
with the set Cv + Bd(r). We get

Λ(AC)

= γ

∫︂
Md

h

∫︂
Rd

1(Cyl(p, v) ∩ C ̸= ∅) λd(dp)Q(dv)

= γ

∫︂
Md

h

∫︂
Cv+Bd(r)

1 λd(dp)Q(dv) = γ

∫︂
Md

h

λd

(︁
Cv + Bd(r)

)︁
Q(dv).

If one wants to express the probability that a particular point x ∈ Rd × [0, T ] gets
hit by the set of cylinders, then Lemma 4.7 with C := {x} yields

P(x ∈ Z(ξ)) = 1− exp(−γ · rdκd) (4.1)

where κd denotes the volume of the d-dimensional unit ball. To give bounds on
the capacity functional we sometimes need the following definition.

Definition 4.8. Given a pair (p, v) ∈ Rd×Md
h, we call the distance from basepoint

(p1, . . . , pd, 0) to endpoint T
vd+1

(v1, . . . , vd+1) + (p1, . . . , pd, 0),

Rv :=

⃦⃦⃦⃦
T

vd+1

(v1, . . . , vd+1)

⃦⃦⃦⃦
=

T

vd+1

,

the scope of the corresponding cylinder Cyl(p, v). We denote the maximum scope
of cylinders in our model by Rh := T

h
.

Think of the scope of a cylinder as the radius of its d-dimensional area of
influence. For (p, v), (q, w) ∈ Rd × Md

h the cylinders Cyl(p, v) and Cyl(q, w) can
intersect if and only if ∥p−q∥ ≤ Rv+Rw+2r ≤ 2(Rh+r). Now we want to estimate
P(Cyl(p, v) ∩ Z(ξ) ̸= ∅). Notice that λd

(︁
Cyl(p, v)w + Bd(r)

)︁
takes its minimum

in the case w = v. Then we have that Cyl(p, v)w = Bd(p, r). The maximum is
reached when v and w have opposite directions while wd+1 = h. Then it follows
that

λd

(︁
Cyl(0, v)w + Bd(r)

)︁
≤ 2(Rh + r) · λd

(︁
Bd(2r)

)︁
< ∞
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for all v ∈ Md
h. We get

0 < (2r)dκd ≤ λd

(︁
Cyl(p, v)w + Bd(r)

)︁
≤ (Rh + r)2d+1rdκd

and thus by Lemma 4.7

1− exp(−γ(2r)dκd) ≤ P(Cyl(p, v) ∩ Z(ξ) ̸= ∅) ≤ 1− exp(−γ(Rh + r)2d+1rdκd).
(4.2)

4.3. Applying the Malliavin-Stein Bound

Our aim is to derive asymptotic distributions of functionals on Z(ξ). Our main tool
to do this will be the following Lemma which is a generalization of the arguments
we gave in the proof of Theorem 3.7 applied to this new setting. While in the
proof before we used that the second-order difference operator vanishes far enough
outside the observation window, we managed to soften this assumption and now
only require a fast enough decay.

Lemma 4.9. Let f : Cd+1 → R, s ≥ 1 and Ws = [− s
2
, s
2
]d × [0, T ]. Assume that

|f(A)| < ∞ for all A ∈ Cd+1 and that there exist constants c1, c2, c3 and R ∈ R
such that the following conditions are met for all x = (p, v), y = (q, w) ∈ Rd ×Md

h:

(A) Dxf(Z(ξ) ∩Ws) = 0 P-a.s. for ∥p∥ > R + s,

(B) V
[︁
f(Z(ξ) ∩Ws)

]︁
≥ c1 · λd+1(Ws),

(C) max{E
[︁
Dxf(Z(ξ) ∩Ws)

4
]︁
, E
[︁
Dxf(Z(ξ + δy) ∩Ws)

4
]︁
} ≤ c2,

(D) ∥p− q∥ > R ⇒ E[
(︁
D2

x,yf(Z(ξ) ∩Ws)
)︁4
] ≤ c3

λd+1(Ws)4
.

Then, there is a constant c ∈ R such that

dW

(︂f(Z(ξ) ∩Ws)− E
[︁
f(Z(ξ) ∩Ws)

]︁√︂
V
[︁
f(Z(ξ) ∩Ws)

]︁ , N
)︂
≤ c√︁

λd+1(Ws)
.

The proof of this lemma gives insight into the composition of c, which is quite
complex. When proving our main results however, we will always set c3 = 0. In
that case the constant is reduced to the following:

Remark 4.10. Let c3 = 0. In that case the constant c in Lemma 4.9 is given by

c =
γ
√
cd,R,T

c
3
2
1

(︁
8
√
γc1c2λd(Bd(R)) + (1 + c2)

√
cd,R,T

)︁
where cd,R,T =

22d−1(Rd+ 1

2d
)

T
. Note however, that R will depend on T .
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An interesting fact is that under these assumptions the lemma implies an upper
bound on the variance, which is of the same order as the lower bound.

Remark 4.11. Since (C) implies E[Dxf(Z(ξ) ∩ Ws)
2] ≤ 1 + c2, the Poincaré

inequality gives us the upper bound

V
[︁
f(Z(ξ) ∩Ws)

]︁
≤
∫︂
Ws×Md

h

E
[︁
Dxf(Z(ξ) ∩Ws)

2
]︁
Λ(dx) ≤ (1 + c2) · λd+1(Ws).

Proof of Lemma 4.9. We start by defining

g(ξ) :=
f
(︁
Z(ξ) ∩Ws

)︁
− E[f

(︁
Z(ξ) ∩Ws

)︁
]√︂

V[f
(︁
Z(ξ) ∩Ws

)︁
]

and aim to use Theorem 2.32 on the Poisson functional G with representative
g. First let us check if the prerequisites are met. From the finiteness of f and
condition (B) it follows that E[|G|2] < ∞. As we have seen before, as a function
of f the difference operator is linear. This leads to

|DxG| = |Dxf(Z(ξ) ∩Ws)|√︁
V[f(Z(ξ) ∩Ws)]

P-a.s.. (4.3)

It follows now from conditions (A) and (B) that E
[︁ ∫︁

(DxG)2Λ(dx)
]︁
< ∞. Thus we

can apply the theorem and must now derive bounds for α1(G), α2(G) and α3(G).
So let x, y ∈ Rd ×Md

h. By the Cauchy-Schwarz inequality, (4.3) and stationarity
of the Poisson process we have

E[(DxG)2(DyG)2] ≤
√︁
E[(DxG)4]

√︂
E[(DyG)4]

(4.3) and stationarity =
E[
(︁
Dxf(Z(ξ) ∩Ws)

)︁4
]√︁

V[f(Z(ξ) ∩Ws)]
4

(B) and (C) ≤ c2
c21 · λd+1(Ws)2

. (4.4)

To get a bound on the second order operators, we use the linearity of the difference
operator and then Lemma 3.8.

E[|D2
x,yG|4] =

E[|D2
x,yf

(︁
Z(ξ) ∩Ws)|4]

V[f(Z(ξ) ∩Ws)]2

Lemma 3.8 and (B) ≤
23 ·

(︁
E[|Dxf

(︁
Z(ξ + δy) ∩Ws)

)︁
|4] + E[|Dxf(Z(ξ) ∩Ws)|4]

)︁
c21 · λd+1(Ws)2

(C) ≤ 24 · c2
c21 · λd+1(Ws)2

. (4.5)
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Condition (D) sharpens this estimate to

E[|D2
x,yG|4] =

E[|D2
x,yf

(︁
Z(ξ) ∩Ws)|4]

V[f(Z(ξ) ∩Ws)]2
≤ c3

c21 · λd+1(Ws)6
. (4.6)

Now let WR,s = [− s
2
, s
2
]d+Bd(R). It follows from condition (A), (4.4) and Cauchy-

Schwarz that

α1(G) =

∫︂
(Rd×Md

h)
3

√︂
E[(DxG)2(DyG)2]

√︂
E[(D2

x,zG)2(D2
y,zG)2] Λ3

(︁
d(x, y, z)

)︁
(A) =

∫︂
(WR,s×Md

h)
3

√︂
E[(DxG)2(DyG)2]

√︂
E[(D2

x,zG)2(D2
y,zG)2] Λ3

(︁
d(x, y, z)

)︁
(4.4) ≤

∫︂
(WR,s×Md

h)
3

√
c2

c1 · λd+1(Ws)
·
√︂
E[(D2

x,zG)2(D2
y,zG)2] Λ3

(︁
d(x, y, z)

)︁
C.-S. ≤

∫︂
(WR,s×Md

h)
3

√
c2

c1 · λd+1(Ws)
· 4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ3

(︁
d(x, y, z)

)︁
.

We will now disassemble the domain of integration in order to properly apply our
conditions. To that end, set Ax = Bd(x1, R)×Md

h and AC
x = WR,s\Bd(x1, R)×Md

h.
This gives us the decomposition∫︂

(WR,s×Md
h)

3

4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ3

(︁
d(x, y, z)

)︁
(4.7)

=

∫︂
WR,s×Md

h

∫︂
Az

∫︂
Az

4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ
(︁
dx
)︁
Λ
(︁
dy
)︁
Λ
(︁
dz
)︁

+

∫︂
WR,s×Md

h

∫︂
Az

∫︂
AC

z

4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ
(︁
dx
)︁
Λ
(︁
dy
)︁
Λ
(︁
dz
)︁

+

∫︂
WR,s×Md

h

∫︂
AC

z

∫︂
Az

4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ
(︁
dx
)︁
Λ
(︁
dy
)︁
Λ
(︁
dz
)︁

+

∫︂
WR,s×Md

h

∫︂
AC

z

∫︂
AC

z

4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ
(︁
dx
)︁
Λ
(︁
dy
)︁
Λ
(︁
dz
)︁
.

The first summand on the right hand side of (4.7) can now be bounded using (4.5).
This yields∫︂

WR,s×Md
h

∫︂
Az

∫︂
Az

4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ
(︁
dx
)︁
Λ
(︁
dy
)︁
Λ
(︁
dz
)︁

(4.5) ≤ λd(WR,s)λd

(︁
Bd(R)

)︁2 4γ3√c2
c1 · λd+1(Ws)

.

By Fubini’s Theorem, the second and third summand are the same. Note that
the implication in condition (D) applies to all pairs (x,w) with w ∈ AC

x , since the



Chapter 4: Time Bounded Cylinders 51

required distance is met. Thus we can bound these summands by using (4.5) and
(4.6) which gets us

2 ·
∫︂
WR,s×Md

h

∫︂
Az

∫︂
AC

z

4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ
(︁
dx
)︁
Λ
(︁
dy
)︁
Λ
(︁
dz
)︁

(4.5) and (4.6) ≤ 2γ3 · λd

(︁
Bd(R)

)︁
λd(WR,s)

2 2 4
√
c2

√
c1 ·
√︁
λd+1(Ws)

4
√
c3

√
c1 · λd+1(Ws)

3
2

.

Another application of (4.6) gives us a bound on the last summand.∫︂
WR,s×Md

h

∫︂
AC

z

∫︂
AC

z

4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ
(︁
dx
)︁
Λ
(︁
dy
)︁
Λ
(︁
dz
)︁

(4.6) ≤ λd(WR,s)
3 γ3√c3
c1 · λd+1(Ws)3

.

Next we note that for the volume of WR,s we have

λd(WR,s) ≤ (2R + s)d ≤ 2d−1(2dRd + sd) ≤ 2d−1(2dRd + 1)sd (4.8)

=
22d−1(Rd + 1

2d
)

T
λd+1(Ws) =: cd,R,T · λd+1(Ws).

Using these results, we can now further estimate α1(G) by

α1(G) ≤
√
c2

c1 · λd+1(Ws)
·
∫︂
(WR,s×Md

h)
3

4

√︂
E[
(︁
D2

x,zG
)︁4
]

4

√︂
E[
(︁
D2

y,zG
)︁4
] Λ3

(︁
d(x, y, z)

)︁
decomp. ≤λd(WR,s)λd

(︁
Bd(R)

)︁2 4γ3c2
c21 · λd+1(Ws)2

+ 2 · λd

(︁
Bd(R)

)︁
λd(WR,s)

2 2γ3c
3
4
2

4
√
c3

c21 · λd+1(Ws)3

+ λd(WR,s)
3 γ3√c2

√
c3

c21 · λd+1(Ws)4

(4.8) =
γ3cd,R,T

√
c2

c21 · λd+1(Ws)

(︁
4
√
c2λd

(︁
Bd(R)

)︁2
+ 4 4

√
c2c3cd,R,Tλd

(︁
Bd(R)

)︁
+
√
c3c

2
d,R,T

)︁
.

Next we take care of α2(G). We use the Cauchy-Schwarz inequality to get

α2(G) =

∫︂
(Rd×Md

h)
3

E[(D2
x,zG)2(D2

y,zG)2] Λ3
(︁
d(x, y, z)

)︁
C.-S. ≤

∫︂
(WR,s×Md

h)
3

√︂
E[
(︁
D2

x,zG
)︁4
]

√︂
E[
(︁
D2

y,zG
)︁4
] Λ3

(︁
d(x, y, z)

)︁
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and apply the same decomposition argument as in the treatment of α1(G).

α2(G) ≤λd(WR,s)λd

(︁
Bd(R)

)︁2 24γ3 · c2
c21 · λd+1(Ws)2

+ 2 · λd

(︁
Bd(R)

)︁
λd(WR,s)

2 4γ3√c2
c1 · λd+1(Ws)

√
c3

c1 · λd+1(Ws)3

+ λd(WR,s)
3 γ3c3
c21 · λd+1(Ws)6

≤ γ3cd,R,T

c21 · λd+1(Ws)

(︁
16c2λd

(︁
Bd(R)

)︁2
+ 8

√
c2c3cd,R,Tλd

(︁
Bd(R)

)︁
+ c3c

2
d,R,T

)︁
.

Finally, we note that (C) implies E[|Dxf(Z(ξ ∩Ws))|3] ≤ 1 + c2 and thus

α3(G) ≤
∫︂
WR,s×Md

h

E[|DxG|3] Λ
(︁
dx
)︁

(4.3) =

∫︂
WR,s×Md

h

E

[︄
|Dxf(Z(ξ ∩Ws))|3√︁
V[f(Z(ξ ∩Ws))]

3

]︄
Λ
(︁
dx
)︁

(B) ≤
∫︂
WR,s×Md

h

1

c
3
2
1 λd+1(Ws)

3
2

· E[|Dxf(Z(ξ ∩Ws))|3] Λ
(︁
dx
)︁

(C) ≤ γ(1 + c2) · cd,R,T

c
3
2
1

√︁
λd+1(Ws)

.

Using these bounds, Theorem 2.32 now gives us the asserted statement.

4.4. Central Limit Theorems

We will now present the main results of this chapter, namely limit theorems on
the asymptotic behaviour of Z(ξ). We start with the volume of the union of time
bounded cylinders restricted to a compact window of observation. To be more
precise, we are interested in the asymptotic distribution of the random variable

λd+1(Z(ξ) ∩Ws)

where, as before, Ws := [− s
2
, s
2
]d × [0, T ]. Additionally to Theorem 1.2 we will

provide a rate of convergence and in fact prove the following:

Theorem 4.12. Let N denote a standard normal random variable and Z(ξ) as in
Definition 4.4. Assume r < s. Then there exists a constant c ∈ R+ such that

dW

(︂λd+1(Z(ξ) ∩Ws)− E[λd+1(Z(ξ) ∩Ws)]√︁
V[λd+1(Z(ξ) ∩Ws)]

, N
)︂
≤ c√︁

λd+1(Ws)
.
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We will remark that the capacity functional of the model admits a beautiful
formula for the expected volume. An application of Fubini’s theorem and (4.1)
immediately yield

E[λd+1(Z(ξ) ∩Ws)] = E
[︂ ∫︂

Ws

1(x ∈ Z(ξ)) λd+1(dx)
]︂

=
(︁
1− exp(−γ · rdκd)

)︁
· λd+1(Ws).

Our second main result in this chapter concerns itself with isolated cylinders in
the case d = 2. These represent nodes that have no contact to other nodes for the
time frame at all. As before, we prove Theorem 1.3 by proving a stronger result
offering rates of convergence. We start by considering the point process of isolated
cylinders ξIso where

ξIso(A) =

∫︂
Rd×Md

h

1
(︁
p ∈ A

)︁
· 1
(︁
Cyl(p, v) ∩ Z(ξ − δ(p,v)) = ∅

)︁
ξ
(︁
d(p, v)

)︁
counts the isolated cylinders with basepoint in A ⊂ Rd. Let us make a few remarks
about its expectation. By the Mecke equation, cf. Theorem 2.2, and Lemma 4.7
we have

E[ξIso(A)] =

∫︂
A×Md

h

P[Cyl(x) ∩ Z(ξ) = ∅] Λ
(︁
dx
)︁

=

∫︂
A×Md

h

1− exp
(︂
− γ ·

∫︂
Md

h

λd

(︁
Cyl(x)w + Bd(r)

)︂
Q(dw)

)︁
Λ
(︁
dx
)︁

= γ ·
∫︂
Md

h

1− exp
(︂
− γ ·

∫︂
Md

h

λd

(︁
Cyl(0, v)w + Bd(r)

)︁
Q(dw)

)︂
Q(dv) · λd(A)

and for the intensity of the point process ξIso. Taking (4.2) into account yields

γλd(A) · exp(−γ(Rh + r)2d+1rdκd) ≤ E[ξIso(A)] ≤ γλd(A) · exp(−γ(2r)dκd).

As before, let s > 0 and Ws = [− s
2
, s
2
]d × [0, T ]. By

IsoZ(ξ)(Ws) := ξIso(Ws)

we define the random variable counting the number of isolated cylinders with
basepoint in Ws. We present the following limit theorem.

Theorem 4.13. Assume d = 2, s ≥ 6(Rh+r) and let N denote a standard normal
random variable. There exists a constant c ∈ R+ such that

dW

(︂IsoZ(ξ)(Ws)− E[IsoZ(ξ)(Ws)]√︁
V[IsoZ(ξ)(Ws)]

, N
)︂
≤ c√︁

λ3(Ws)
.
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The last main result takes a first step in analyzing the topological structure of
the TBC model and gives insight into its Euler characteristic. By Rd let us denote
the convex ring over Rd that is the system containing all unions of finitely many
compact, convex subsets of Rd (cf. [SW08, p.601]).

Definition 4.14. In the context of convex geometry the Euler characteristic is
a function

χ : Rd → Z

with the properties

• χ(K) = 1 if K ⊂ Rd convex,

• χ(∅) = 0 and

• χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B) for all A,B ⊂ Rd.

For reference, see [SW08, p. 625]. Since our cylinders clearly are convex sets in
Rd+1 and η is a Poisson process with finite intensity, χ(Z(ξ) ∩Ws) is well defined
for Ws as given above. Theorem 1.4 follows from:

Theorem 4.15. Assume d = 2, s ≥ 6(Rh+r) and let N denote a standard normal
random variable. There exists a constant c ∈ R+ such that

dW

(︂χ(Z(ξ) ∩Ws)− E[χ(Z(ξ) ∩Ws)]√︁
V[χ(Z(ξ) ∩Ws)]

, N
)︂
≤ c√︁

λ3(Ws)
.

4.4.1. Proof for the Covered Volume
We start with the proof of the limit theorem concerning the covered volume of
Z(ξ) in Ws.

Proof of Theorem 4.12. We aim to use Lemma 4.9 with

f = λd+1.

Clearly λd+1(A) < ∞ for all A ∈ Cd+1. Next, note that for x = (p, v) ∈ Rd×Md
h we

have Dxλd+1(Z(ξ)∩Ws) = 0 for |p| > Rh+s P-a.s. since in this case Cyl(x)∩Ws = ∅.
If we set further y = (q, w) ∈ Rd × Md

h we have D2
x,yλd+1(Z(ξ) ∩ Ws) = 0 for

|p− q| > 2(Rh + r) P-a.s. since Cyl(x) ∩ Cyl(y) = ∅:

D2
x,yλd+1(Z(ξ) ∩Ws) = DxDy λd+1(Z(ξ) ∩Ws)

= Dx (λd+1(Z(ξ + δy) ∩Ws)− λd+1(Z(ξ) ∩Ws))

Linearity of Diff. Op. = Dxλd+1(Z(ξ + δy) ∩Ws)−Dxλd+1(Z(ξ) ∩Ws) = 0
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P-a.s.. Thus conditions (A) and (D) are fulfilled and we have c3 = 0. Condition
(C) is next. The maximum volume of any cylinder is that of one with maximal
scope, see Definition 4.8. Since the scope of a cylinder Cyl(p, v) with v ∈ Md

h is
only dependent on the last entry of v, without loss of generality we can choose
vh = (

√
1− h2, 0, ..., 0, h) as a cylinder with maximum scope and receive

λd+1

(︁
Cyl(p, v)

)︁
≤ λd+1

(︁
Cyl(0, vh)

)︁
≤ T · rdκd

h
(4.9)

for all (p, v) ∈ Rd×Md
h. When we add a cylinder to the model, in the extreme case

it becomes a subset of Ws and intersects with none of the preexisting cylinders. In
that case it adds the entirety of its volume to λd+1(Z(ξ) ∩Ws). We can conclude

D(p,v)λd+1(Z(ξ) ∩Ws) ≤ λd+1

(︁
Cyl(p, v)

)︁
P-a.s.

and thus from (4.9) that

E
[︁
|D(p,v)λd+1(Z(ξ) ∩Ws)|4

]︁
≤
(︂T · rdκd

h

)︂4
=: c2

and thus get condition (C). It remains to prove the lower bound on the variance.
An application of Fubini’s theorem yields

V[λd+1(Z(ξ) ∩Ws)]

= E
[︂ ∫︂

W 2
s

1(x ∈ Z(ξ), y ∈ Z(ξ)) λ2
d+1(d(x, y))

]︂
− E

[︂ ∫︂
Ws

1(x ∈ Z(ξ)) λd+1(dx)
]︂2

=

∫︂
W 2

s

P(x ∈ Z(ξ), y ∈ Z(ξ))− P(x ∈ Z(ξ))P(y ∈ Z(ξ)) λ2
d+1(d(x, y))

=

∫︂
W 2

s

P(x /∈ Z(ξ), y /∈ Z(ξ))− P(x /∈ Z(ξ))P(y /∈ Z(ξ)) λ2
d+1(d(x, y)),

where the last equality follows from an application of DeMorgan’s laws. To see
this consider events A and B. We have

P(A ∩B)− P(A)P(B) = 1− P((A ∩B)C)− P(A)P(B)

DeMorgan = 1− P(AC ∪BC)− P(A)P(B)

= 1− P(AC)− P(BC) + P(AC ∩BC)− P(A)P(B)

= P(A)− P(BC) + P(AC ∩BC)− P(A)P(B)

= P(AC ∩BC) + P(A)(1− P(B))− P(BC)

= P(AC ∩BC)− P(BC)(1− P(A))
= P(AC ∩BC)− P(AC)P(BC).
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Lemma 4.7 now yields
P(x /∈ Z(ξ), y /∈ Z(ξ)) = P

(︁
{x, y} ∩ Z(ξ) = ∅

)︁
= exp

(︁
− γ ·

∫︂
Md

h

λd

(︁
{x, y}v + Bd(r)

)︁
Q(dv)

)︁
.

To estimate this probability, consider some x, y ∈ Ws and assume ∥x − y∥ ≤ r.
Then, the distance of their respective v-shadows satisfies the same, i.e. ∥xv−yv∥ ≤
r for xv := {x}v and yv := {y}v. Also denote by Hd

w(z) the cap of a d-dimensional
hypersphere with radius z and height w. Then

λd(Bd(r)) ≤ λd

(︂(︁
{x}v + Bd(r)

)︁
∪
(︁
{y}v + Bd(r)

)︁)︂
≤ 2λd(Bd(r))− 2λd

(︁
Hd

r
2
(r)
)︁
,

see Figure 3.3 for an illustration in d = 2. In the proof of Theorem 3.7 we used
the same argument. Since ex > 1 for all x > 0 we get

P(x /∈ Z(ξ), y /∈ Z(ξ))− P(x /∈ Z(ξ))P(y /∈ Z(ξ))

≥ exp
(︁
− 2γλd(Bd(r)) + 2γ · λd(H

d
r
2
(r))

)︁
− exp

(︁
− 2γλd(Bd(r))

)︁
=: τ > 0

for all x ∈ Bd+1(y, r) and y ∈ Ws. Then
V[λd+1(Z(ξ) ∩Ws)]

≥
∫︂
Ws

∫︂
Bd+1(y,r)∩Ws

P(x /∈ Z(ξ), y /∈ Z(ξ))− P(x /∈ Z(ξ))P(y /∈ Z(ξ)) λd+1(dx)λd+1(dy)

≥
∫︂
Ws

∫︂
Bd+1(y,r)∩Ws

τ λd+1(dx) λd+1(dy)

= τ

∫︂
Ws

λd+1

(︂
Bd+1 (y, r) ∩Ws

)︂
λd+1(dy).

For y ∈ Ws we also have that

λd+1

(︂
Bd+1 (y, r) ∩Ws

)︂
≥ 1

2d+1
· λd+1(Bd+1

(︁
0,min{r, T}

)︁
)

=
κd+1 ·min{r, T}d+1

2d+1
,

where we have equality if y sits just in a corner of the observation window Ws.
For instance in the case d = 1, r < T and y =

(︁
− s

2
, T
)︁

one quarter of B2 (y, r)
intersects with Ws. Now we can derive the bound

V[λd+1(Z(ξ) ∩Ws)] ≥ τ

∫︂
Ws

κd+1 ·min{r, T}d+1

2d+1
λd+1(dy)

=
τ · κd+1 ·min{r, T}d+1

2d+1
· λd+1(Ws) =: c1 · λd+1(Ws).

This shows condition (B) of Lemma 4.9 and concludes the proof.

Taking up Remark 4.11, we note that both lower and upper bound on the
variance are of the same order.
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4.4.2. Proof for the Isolated Nodes
Next we deal with the limit theorem for the isolated cylinders.

Proof of Theorem 4.13. As we did for the covered volume, we aim to apply Lemma
4.9 to the function

IsoZ(ξ) : ξ ↦→ n ∈ N
counting the number of isolated cylinders created by ξ. Since the Poisson process
η has finite intensity, it holds that IsoZ(ξ)(A) < ∞ P-a.s. for all A ∈ C3. Next we
verify condition (A) and (D). Set R = 2(Rh + r) and c3 = 0. Since two cylinders
can only intersect if their distance is smaller than R, both conditions are satisfied.
This argument follows analogously to our reasoning in the proof of Theorem 4.12.
For the same reason, we can bound the first order difference operator by

|DxIsoZ(ξ)(Ws)| ≤ η
(︁
B2(0, R)

)︁
P-a.s..

Set a := E
[︁
η
(︁
B2(0, R)

)︁]︁
= γ · λ2

(︁
B2(0, R)

)︁
and x ∈ R2 × M2

h. The number of
isolated cylinders that can be connected by adding Cyl(x) to the model is limited
by the total number of cylinders within maximum range. By using the fourth
moment of the Poisson distributed random variable η

(︁
B2(0, R)

)︁
, we get

E[DxIsoZ(ξ)(Ws)
4] ≤ a4 + 6a3 + 7a2 + a.

Thus condition (C) is satisfied with c2 := a4 + 6a3 + 7a2 + a + 1. To verify (B),
we use a strategy applied in [Rei05] and disassemble

[︁
− s

2
, s
2

]︁2 into squares of side
length 6(Rh + r). Without loss of generality we can assume s = n · 6(Rh + r) for
some n ∈ N, as the area outside these squares is of no consequence to what follows.
We index these sets by indices collected in the set I. For each i ∈ I consider Ci, a
square of side length 2(Rh + r) in the center of the corresponding greater square
Si of side length 6(Rh + r). We define the event

Ai = {η(Ci) = 2, η(Si\Ci) = 0},

which is illustrated in Figure 4.3. Let the σ-algebra F contain information on
basepoints and directions of all cylinders of Z(ξ), except those with basepoint in
a square Si with 1(Ai) = 1. Now we decompose the variance

V[IsoZ(ξ)(Ws)] = E[V[IsoZ(ξ)(Ws) | F ]] +V[E[IsoZ(ξ)(Ws) | F ]]

≥ E[V[IsoZ(ξ)(Ws) | F ]]

= E

⎡⎣ ∑︂
1(Ai)=1

VXi,1,Xi,2
[IsoZ(ξ)(Ws)]

⎤⎦ (4.10)

where the right hand side variance is taken with respect only to the two ran-
dom elements Xi,1, Xi,2 ∈ R2 × M2

h, created by the event Ai. Since these two
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Figure 4.3: The event Ai. The two nodes in the center can only interact with one
another, as the shaded area is conditioned to be empty and cannot be bridged by
cylinders even with maximum scope.

cylinders can not intersect with any other cylinders of the model, the number of
isolated nodes outside Ai is independent of that contributed by Xi,1 and Xi,2. Let
∆Xi,1,Xi,2

IsoZ(ξ)(Ws) denote that contribution. Note that

∆Xi,1,Xi,2
IsoZ(ξ)(Ws) = 2 · 1(Cyl(Xi,1) ∩ Cyl(Xi,2) = ∅). (4.11)

This yields

VXi,1,Xi,2
[IsoZ(ξ)(Ws)] = VXi,1,Xi,2

[IsoZ(ξ−δXi,1
−δXi,2

)(Ws) + ∆Xi,1,Xi,2
IsoZ(ξ)(Ws)]

= VXi,1,Xi,2
[∆Xi,1,Xi,2

IsoZ(ξ)(Ws)]

(4.11) = 4 · P[Cyl(Xi,1) ∩ Cyl(Xi,2) = ∅] · P[Cyl(Xi,1) ∩ Cyl(Xi,2) ̸= ∅]

=: c4,

since both probabilities clearly are strictly positive. Using this in (4.10) together
with the stationarity and independence properties of η as well as |I| =

(︂
s

6(Rh+r)

)︂2
we have

V[IsoZ(ξ)(Ws)] ≥ c4 ·
∑︂
i∈I

P[Ai]

≥ c4 ·
∑︂
i∈I

2γ2(Rh + r)2 exp
(︁
−4γ(Rh + r)2

)︁
· exp(−32γ(Rh + r)2)
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≥ c4 ·
∑︂
i∈I

c5 = c6 ·
(︃

s

6(Rh + r)

)︃2

λ3(Ws) = s2 · T =
c6

36T (Rh + r)2
λ3(Ws)

and thus condition (B).

Again, the lower bound matches the order of the upper bound as given in
Remark 4.11. Let us remark that the proof above was conceived with telecommu-
nication networks in mind and thus formulated in the case d = 2. We however
believe that the arguments can be easily transferred to arbitrary dimensions.

4.4.3. Proof for the Euler Characteristic
It remains to prove the limit theorem for the Euler characteristic.

Proof of Theorem 4.15. We aim to use Lemma 4.9 on f(·) for fξ : C3 → Z with

fξ(A) =

{︃
χ(Z(ξ) ∩ A), if A ∈ R3

0, else.

Since η has finite intensity, the properties of χ imply that f(A) < ∞ for all
A ∈ C3 P-a.s.. Once more we start by checking conditions (A) and (D). Again, set
R = 2(Rh + r) and c3 = 0. As Cyl(p, v) ∩Ws = ∅ for any (p, v) ∈ R2 ×M2

h with
|p| ≥ R + s, condition (A) is satisfied.
Also, for (q, w) ∈ R2 ×M2

h, ∥p− q∥ ≥ R implies Cyl(p, v)∩Cyl(q, w) = ∅ and thus
D(p,v)(χ(Z(ξ + δ(q,w)) ∩Ws)) − D(p,v)(χ(Z(ξ) ∩Ws)) = 0 P-a.s.. To verify (C) we
note that for x ∈ R2 ×Md

h the definition of χ gives us

Dxχ(Z(ξ) ∩Ws) = χ
(︁
Z(ξ + δx) ∩Ws

)︁
− χ(Z(ξ) ∩Ws)

= χ
(︁
(Z(ξ) ∪ Cyl(x)) ∩Ws

)︁
− χ(Z(ξ) ∩Ws)

= χ
(︁
(Z(ξ) ∩Ws) ∪ (Cyl(x) ∩Ws)

)︁
− χ(Z(ξ) ∩Ws)

Definition 4.14 = χ
(︁
Cyl(x) ∩Ws

)︁
− χ

(︁
Z(ξ) ∩ Cyl(x) ∩Ws

)︁
P-a.s..

Furthermore, it holds true that χ
(︁
Cyl(x) ∩Ws

)︁
= 1(Cyl(x) ∩Ws ̸= ∅) and since

χ
(︁
Z(ξ) ∩ Cyl(x) ∩Ws

)︁
counts the number of disjoint intersections of Cyl(x) ∩Ws

with cylinders of Z(ξ) we also have

χ
(︁
Z(ξ) ∩ Cyl(x) ∩Ws

)︁
≤
∑︂
y∈ξ

1
(︁
Cyl(y) ∩ Cyl(x) ̸= ∅

)︁
≤ η
(︁
B2(0, R)

)︁
P-a.s..

To this, we have to add the number of cylinders added by the difference operators
emerging in condition (C). Thus the condition is fulfilled with

c2 := E[(2 + η
(︁
B2(0, R)

)︁
)4].
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Figure 4.4: An excerpt of the TBC model in the expanded setting.

To verify (B) we use the same strategy as in the proof of Theorem 4.13 and now
have to consider VXi,1,Xi,2

[χ(Z(ξ)∩Ws)]. Again, since the cylinders created by Xi,1

and Xi,2 can not intersect, we can use the additivity of the Euler characteristic to
get

VXi,1,Xi,2
[χ(Z(ξ) ∩Ws)]

= VXi,1,Xi,2
[χ(Z(ξ − δXi,1

− δXi,2
) ∩Ws) + ∆Xi,1,Xi,2

χ(Z(ξ) ∩Ws)]

= VXi,1,Xi,2
[∆Xi,1,Xi,2

χ(Z(ξ) ∩Ws)].

Since ∆Xi,1,Xi,2
χ(Z(ξ) ∩Ws) ∈ {1, 2} we get

VXi,1,Xi,2
[χ(Z(ξ) ∩Ws)]

= 5 · P[Cyl(Xi,1) ∩ Cyl(Xi,2) = ∅] · P[Cyl(Xi,1) ∩ Cyl(Xi,2) ̸= ∅].

Thus condition (B) follows as it did for Theorem 4.13.

Note that, again, the order of the lower bound on the variance coincides with
that of the upper bound found in Remark 4.11.

4.5. Stacked Time Bounded Cylinders

Up to this point our model supports movements in one direction only. To allow for
the nodes to change direction we iterate the marking process, giving a node a new
direction vector at fixed points in time. These times can be given deterministically
or randomly, but independent of all other random variables. In view of application,



Chapter 4: Time Bounded Cylinders 61

one could think of a deterministic setting like a daily routine or an exponentially
distributed random variable for the time distances.

4.5.1. Construction of the Cylinderstacks
Set t0 := 0, tK+1 := T and let TK = (t0, t1, t2, . . . , tK+1), for some K ∈ N, be a
strictly monotone sequence of times in [0, T ]. Now recall the definition of a cylinder
as given in Definition 4.1. We will now modify it to reflect the expanded setting.
To a point p ∈ η let V = (v0, . . . , vK) be the vector of directions taken, that is
vi ∈ Md

h for i ∈ {0, . . . , K}. Consider the projection π : Md
h → [0, 1] onto the

velocity, that is π(v) = vd+1 for v ∈ Md
h, and define p̂0 ∈ Rd+1 as the vector p but

with an additional coordinate with value zero. Then

p̂k := p̂0 +
k−1∑︂
j=0

|tj+1 − tj|
π(vj)

vj.

In the context of random networks, think of this point as the location at time tk
of a node starting its journey in p. We are now in a position to modify Definition
4.1 for this expanded setting.

Definition 4.16. Given a radius r ≥ 0 and TK as above, the values of the function

Cylr,TK
: Rd+1 × (Md

h)
K → Cd+1

(p, V ) ↦→
K⋃︂
k=0

⋃︂
u∈[0,1]

(︃(︂
p̂k +

u|tk+1 − tk|
π(vk)

· vk
)︂
+ Bd(r)

)︃
are the time bounded cylinderstacks.

Our idea is that at every time t ∈ TK a cylinder has the opportunity to change
direction and will do so with probability q ∈ [0, 1]. A new direction is always
drawn with respect to the probability measure Q introduced in section 4.2. Thus
the aforementioned vector V = (v0, . . . , vK) ∈ (Md

h)
K is drawn with respect to the

probability measure

QK := Q⊗ (1− q)δv0 + qQ⊗ · · · ⊗ (1− q)δvK−1
+ qQ.

We can now give analogues to Definition 4.2 and Lemma 4.3.

Definition 4.17. Let η be defined as in Section 4.2 and QK as above. Mark every
point in the support of η with a direction from Md

h, randomly with respect to QK.
The resulting marked point process ξK defined on Rd×(Md

h)
K is called the process

of time bounded cylinderstacks.

Lemma 4.18. ξK is a Poisson point process with intensity measure ΛK = γλd ⊗
QK.
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Proof. Since QK is independent of the Poisson process η we have an independent
marking again and thus the statement follows as it did for Lemma 4.3.

That the process of time bounded cylinderstacks preserves the Poisson proper-
ties of the original point process seems remarkable, but can be intuitively explained
by using thinnings, see Example 2.9. Since for t1 ≥ T the model remains unchanged
let us consider t1 < T . We start with the point process ξ as introduced in Defini-
tion 4.2. From Lemma 4.3 we know that ξ is a Poisson point process. Now we take
a q-thinning of ξ, namely a Bernoulli experiment with parameter q which decides
for each point of the Poisson process if it belongs to ξ(q) or ξ− ξ(q). Theorem 2.10
implies that both ξ(q) and ξ − ξ(q) are Poisson processes.
For the points in ξ(q) we now choose a new direction and by adding this into
another component of the marking, we get a new marked point process which we
call ξ(q)M . Analogously to the single direction case Theorem 2.7 implies that this
process is Poisson. For points in ξ − ξ(q) the direction stays the same, neverthe-
less, as for ξ(q) we add the previous direction as a new marking and again obtain
a marked point process ξ(1 − q)M . As a superposition of two Poisson processes
ξ1 := ξ(q)M⊕ξ(1−q)M is also Poisson. We proceed in thinning, marking and gluing
together for each time step ti < T and obtain the Poisson process of cylinderstacks.
We can now conveniently define the expanded model as follows.

Definition 4.19. With the point process ξK given as above, the stacked time
bounded cylinder (sTBC) model is the random set

Z(ξK) :=
⋃︂

(p,V )∈ξK

Cyl(p, V ).

In this notation we identify the random measure ξK with its support.

With these definitions we can now rephrase Lemma 4.9 to work with our mod-
ifications.

Lemma 4.20. Let f : Cd+1 → R, s ≥ 1 and Ws = [− s
2
, s
2
]d × [0, T ]. Assume that

|f(A)| < ∞ for all A ∈ Cd+1 and that there exist constants c1, c2, c3 and R ∈ R such
that the following conditions are met for all x = (p, V ), y = (q,W ) ∈ Rd × (Md

h)
K:

(A) Dxf(Z(ξK) ∩Ws) = 0 P-a.s. for ∥p∥ > R + s,

(B) V
[︁
f(Z(ξK) ∩Ws)

]︁
≥ c1 · λd+1(Ws),

(C) max{E
[︁
Dxf(Z(ξK) ∩Ws)

4
]︁
, E
[︁
Dxf(Z(ξK + δy) ∩Ws)

4
]︁
} ≤ c2,

(D) ∥p− q∥ > R ⇒ E[
(︁
D2

x,yf(Z(ξK) ∩Ws)
)︁4
] ≤ c3

λd+1(Ws)4
.
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Then, there is a constant c ∈ R such that

dW

(︂f(Z(ξK) ∩Ws)− E
[︁
f(Z(ξK) ∩Ws)

]︁√︂
V
[︁
f(Z(ξK) ∩Ws)

]︁ , N
)︂
≤ c√︁

λd+1(Ws)
.

As the proof in section 4.3 relies only on the assumed bounds and not on how
the model is constructed, we can use the same techniques and estimates we used
there and prove this lemma analogously.

4.5.2. Covered Volume
As usual, let Ws := [− s

2
, s
2
]d × [0, T ]. We will now study the covered volume of the

sTBC model that is the random variable

λd+1(Z(ξK) ∩Ws).

As this is an additive function our strategy for working with this quantity will
be to split the sTBC model into TBC models and evaluate the volume for each of
them. To that end let Zt(ξ) denote the TBC model with time horizon t ≥ 0. We
will first apply our strategy when computing the expectation of the volume. Using
(4.1) and Fubini we have

E[λd+1(Z(ξK) ∩Ws)] = E
[︂ ∫︂

Ws

1(x ∈ Z(ξK)) dx
]︂

= E
[︂ K∑︂

k=0

∫︂
[− s

2
, s
2
]d×[tk,tk+1]

1(x ∈ Z|tk+1−tk|(ξ)) dx
]︂

Fubini and (4.1) = (1− exp(−γ · rdκd)) ·
K∑︂
k=0

λd+1

(︂
[−s

2
,
s

2
]d × [tk, tk+1]

)︂
= (1− exp(−γ · rdκd)) · λd+1(Ws).

We see that the expected volume remains unchanged, which is unsurprising given
the homogeneous nature of our model.

Theorem 4.21. Let N denote a standard normal random variable and assume
r < s. There exists a constant c ∈ R+ such that

dW

(︂λd+1(Z(ξK) ∩Ws)− E[λd+1(Z(ξK) ∩Ws)]√︁
V[λd+1(Z(ξK) ∩Ws)]

, N
)︂
≤ c√︁

λd+1(Ws)
.
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Proof. We use Lemma 4.20 on the function f = λd+1. We can verify conditions (A)
and (D) by the same observation we made in the proof of Theorem 4.12, again using
R = 2(Rh + r) and c3 = 0. The same is true for condition (C) which once more
is satisfied with c2 :=

(︂
T ·rdκd

h

)︂4
. To verify (B) we have to make some adjustments

but start as before with

V[λd+1(Z(ξK) ∪Ws)]

=

∫︂
W 2

s

P(x /∈ Z(ξK), y /∈ Z(ξK))− P(x /∈ Z(ξK))P(y /∈ Z(ξK)) λ
2
d+1(d(x, y)).

Given a point y ∈ Ws, let ty−, ty+ ∈ TK such that ty− ≤ yd+1 ≤ ty+, ty− ̸= ty+ and there
is no element of TK in the interval (ty−, ty+). We have

V[λd+1(Z(ξK) ∩Ws)]

=

∫︂
W 2

s

P(x /∈ Z(ξK), y /∈ Z(ξK))− P(x /∈ Z(ξK))P(y /∈ Z(ξK)) λ
2
d+1(d(x, y))

≥
∫︂
Ws

∫︂
[− s

2
, s
2
]d×[ty−,ty+]

P(x /∈ Z|ty+−ty−|(ξ), y /∈ Z|ty+−ty−|(ξ))

− P(x /∈ Z|ty+−ty−|(ξ))P(y /∈ Z|ty+−ty−|(ξ)) λd+1(dx) λd+1(dy).

Note that the bound of the inner integral now ensures that x and y share a time
slot in the stacked cylinder model. Because of this we can argue as in the single
direction case and derive the constant τ > 0 such that pxy − pxpy ≥ τ for all
x ∈ Bd+1(y,

r
2
) ∩
(︁
[− s

2
, s
2
]d × [ty−, t

y
+]
)︁

and y ∈ Ws. As before we then have

λd+1

(︁
Bd

(︁
y,

r

2

)︁
∩
(︁ [︂

−s

2
,
s

2

]︂d
× [ty−, t

y
+]
)︁)︁

≥ 1

2d+1
· λd+1(Bd+1

(︁
0,min{r

2
, ty+ − ty−}

)︁
)

=
κd+1 ·min{ r

2
, ty+ − ty−}d+1

2d+1

and thus

V[λd+1(Z(ξK) ∩Ws)]

≥ τ ·
∫︂
Ws

E
[︁
λd+1(Bd(y, r) ∩

(︁ [︂
−s

2
,
s

2

]︂d
× [ty−, t

y
+]
)︁
)
]︁
λd+1(d(y))

≥ τ · κd+1 · E[min{r, Y }d+1]

2d+1
· λd+1(Ws) =: c1 · λd+1(Ws)

with the random variable Y := min
k

{|tk+1 − tk|}.



Chapter 4: Time Bounded Cylinders 65

4.5.3. Isolated Cylinders
We are now interested in the isolated stacks in the sTBC model. The point process
of isolated cylinder stacks with basepoint in A ⊂ Rd is given by

µ(A) =

∫︂
A×
(︁
Md

h

)︁K 1
(︁
Cyl(x) ∩ Z(ξK − δx) = ∅

)︁
ξK
(︁
dx
)︁
.

The next theorem shows asymptotic normality of IsoZ(ξK)(Ws) = µ(Ws).

Theorem 4.22. Assume d = 2, s ≥ 6(Rh+r) and let N denote a standard normal
random variable. There exists a constant c ∈ R+ such that

dW

(︂IsoZ(ξK)(Ws)− E[IsoZ(ξK)(Ws)]√︁
V[IsoZ(ξK)(Ws)]

, N
)︂
≤ c√︁

λd+1(Ws)
.

Proof. Note that the maximum scope of a cylinder remains unchanged in the multi-
directional setting. Thus, conditions (A), (C) and (D) are derived in the same way
as in the proof of Theorem 4.13, using the same choices for R, c2 and c3. To verify
(B) we use the same strategy as before and get to

VXi,1,Xi,2
[IsoZ(ξK)(Ws)]

= 4 · P[Cyl(Xi,1) ∩ Cyl(Xi,2) = ∅] · P[Cyl(Xi,1) ∩ Cyl(Xi,2) ̸= ∅].

Even in this modified setting it is clear that these probabilities are not zero, as they
can be estimated using r and R. It follows that (B) holds true, which concludes
the proof.



Chapter 5

Closing Remarks

It was the aim of this work to consider problems arising from the practical study
of telecommunication networks and revise them using rigorous mathematics. We
have identified obstruction and mobility as intimidating challenges to the mod-
elling of these networks. Obstruction makes it harder for nodes to connect putting
the robustness of the network at risk. Mobility is a difficult aspect to handle math-
ematically as traditional models show shortcomings when trying to analyse their
behavior over the complete timeframe.

We treated obstruction by taking a second look at an existing model and re-
visited its percolation properties. We presented new thresholds for the sub- and
supercritical regimes. In the subcritical case we extended known bounds to arbi-
trary dimensions. After that we began our analysis of asymptotic distributions in
modified Boolean models and proved a limit theorem for the covered volume of the
random set associated to the obstructed Gilbert graph. We applied results derived
from the Malliavin-Stein method to achieve this.

Then we presented a new approach to mobility modelling and introduced the
time bounded cylinder model. Our setting allows for a connectivity analysis over
a prolongued period of time. We proceeded to generalize our technique used to
derive the limit theorem in the chapter before and applied it to the TBC model.
We used it to prove asymptotics for important properties of the model, like the
covered volume and isolated nodes.

There are a number of ways to build on the work done in this thesis. For the
obstructed Gilbert graph the supercritical regimes for higher dimensions remains an
open problem. However, our approach was to compare the connectivity graph with
a fitting, 2-dimensional site percolation model. This approach can not be easily
applied to higher dimensions as site percolation thresholds become increasingly
hard to derive. The number of isolated nodes would be a natural candidate for
another limit theorem.

When it comes to the time bounded cylinders the most natural way to build
on our work would be to adapt the model for other, more sophisticated mobility
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schemes. We see our introduction of the stacked cylinder model as a good starting
point to do so. Another way to further extend this work would be to take a closer
look at its topological properties. With our central limit theorem for its Euler
characteristic we took a first step in this direction.



Chapter 6

Addendum - Simulation Techniques

In preparation of this thesis the author has employed a number of simulation
techniques to obtain a better understanding of the topics covered in this work. In
this chapter we will present some of these techniques and give short examples of
their implementation. All implementations can be found on the authors Github
page at https://github.com/stbussmann/CarcaSim.

6.1. Poisson Point Processes

To simulate a (inhomogeneous) Poisson point process on a bounded window of
observation W ⊂ R2, we can exploit the independence property and disassemble
the window into a large number of disjoint cells. Then the distribution of the
number of Poisson points in each of these cells is independent from the other ones.
Assume C = [x1, x2) × [y1, y2) to be one of these cells and f : R2 → R the given
intensity function. We use Fubini’s Theorem to calculate

γC =

∫︂
C

f(x, y)d(x, y) =

∫︂ x2

x1

∫︂ y2

y1

f(x, y) d(y)d(x).

Then we assign the cell a random number pC with respect to a Poisson probability
measure with parameter γC . After that, pC points (x, y) are created by sampling
x from a uniform distribution on [x1, x2) and y from a uniform distribution on
[y1, y2). The union over all these points created for every cell is the Poisson point
process. It is clear that the trustworthiness of this simulation is heavily dependent
on how many cells we choose to evaluate. This is illustrated in Figure 6.1 below.
By the additivity of integration the number of generated points will be accurate
no matter how many cells we use. However, their position might be flawed in the
inhomogeneous case. The error in the x and y coordinates of a point is bounded
by the width respectively the height of a cell.
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Figure 6.1: Poisson processes generated by the presented algorithm using intensity
function 200 · (x + y)3. The upper picture shows grid size 1 × 1, the middle one
2× 2 and the lower one 1024× 1024.
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Algorithm 1: Poisson point process
Input: Height and width of observation window, intensity function f ,

number of cells ny in x- and ny in y-direction.
Output: A list S of the random points created by the Poisson point

process.
begin

• Get cell width cx (height cy) by dividing width (height) of the
observation window by nx (ny).
• Initialize an empty list S.
for i from 0 to nx − 1 do

for j from 0 to ny − 1 do
• Calculate p =

∫︁ (i+1)·cx
i·cx

∫︁ (j+1)·cy
j·cy f(x, y) dy dx.

• Sample s from a Poisson distribution with parameter p.
for k from 0 to s do

• Append a point with x-coordinate sampled from a uniform
distribution on [i · cx, (i+ 1) · cx] and y-coordinate sampled
from a uniform distribution on [j · cy, (j + 1) · cy] to S.

The biggest computional challenge is the integration of the intensity function.
Luckily this can be done with relative ease using numerical methods. The Python
package SciPy for example offers the function dblquad to do this.

6.2. Connected components

Next we show how to handle components in a connectivity graph. Algorithm 2
below is an adaptation of a strategy presented in [New10, p.620] and allows us to
discern the component structure of the graph. We can use this algorithm to get
some insight into percolation properties of the model if we take the following result
into consideration.

Theorem 6.1 ( [DCRT20, Theorem 1.4]). Consider a Boolean model (η, r, γ) in
R2 as given in Definition 2.15 and assume the model to be in the subcritical regime.
Let 0 ↔ ∂B2(r) denote the event that there is a component in the Boolean model
that connects the origin to the boundary of the ball with radius r ≥ 1. Then there
exists a c > 0 such that

P(0 ↔ ∂B2(r)) ≤ e−cr.

This tells us that the probability to get a component with diameter 2r decays
exponentially in r whenever we are in the subcritical regime. Because of this if we
choose a window of observation large enough and if the simulated model creates a
crossing component from the left boundary to the right, we have a good probability
to be in the supercritical regime.

https://docs.scipy.org/doc/scipy/index.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.dblquad.html
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Algorithm 2: Determining the Graph Structure
Input: Set of nodes V . Connectivity radius r.
Output: A list C of the components, which are given by lists of

individual points.
begin

• Initialize the index k = 0.
• Initialize an empty list C
for v ∈ V do

• Append an empty list to C.
• Attach the tuple (v, k) to C[k].
for all vertices w that have been added before v do

if ∥v − w∥ ≤ 2 · r then
• Check component sizes of v and w.
• Append all points in the smaller component to the bigger
one and update their index to match their new component.
• Remove all points from the smaller component.

• Increase k by one.

In this context we would like to mention the Python package Shapely which
allows for the handling of two-dimensional geometric objects. In particular it allows
for set operations. We can create an object for each individual ball and take the
union over these balls to get a representation of the Boolean model created by the
simulation. Shapely stores the model in one of two classes, both introduced by
Shapely itself. If the whole model is connected we get a Polygon object, which
provides convenient methods for analytics, like a method to calculate the covered
area for example. If the model decomposes into connected components we get a
Multipolygon object. These are iterable and contain a Polygon object representing
each component. Shapely thus allows us to simulate a Boolean model in great
detail and offers powerful tools for its analysis. However, this naturally comes at
the cost of slower computation when compared to more specialized algorithms.

6.3. The Carcassonne Grid

In Chapter 3 we discussed our approach to model obstruction in telecommunication
networks. The obstructed Gilbert graph is not the only model we have considered
however, in this section we introduce our approach to handle obstruction via a
Boolean model using star-shaped communication areas.
We start with some grid on R2 where the cells have some fixed side length s > 0
and declare a random variable X(i, j) for each cell, indexed by the point in that
cell with maximal absolute coordinates. This random variable takes values in C2

the system of compact subsets of R2.

https://github.com/Toblerity/Shapely
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Figure 6.2: Excerpt of the grid used and its assigned random variables.

Now given a node x = (x1, x2) ∈ R2, its area of communication is the random
set

Sx = x+X(⌈x1⌉, ⌈x2⌉).

The idea behind this approach was that nodes located in close proximity to one
another should be assigned the same or a similar communication zone. Naturally
this introduces a great deal of dependency into the model. The grid was thought
of as a way to introduce such dependency in a simple and controlled fashion.
The sets we assign to nodes are created in the following way. We fix real numbers
0 < r− ≤ r+ < ∞ and refer to r− as the inradius of a communication zone and r+
as its outradius. Now we fix an even k ∈ N and randomly choose k points given
by their polar coordinates. The distance from the origin for each point is chosen
with respect to a uniform distribution on [r−, r+]. The angle of the i-th point is
chosen according to a uniform distribution on

[︁
(i− 1) · 2π

k
, i · 2π

k

)︁
. Illustration 6.3

clarifies this procedure.

Figure 6.3: Illustration of the generating technique used for the communication
zones. The blue polygon marks the boundary of the zone.
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Note that how irregular these shapes are is highly dependent on k and the
difference |r+ − r−|. For nodes created by a Poisson point process, large k and
r+ ≈ r− this procedure approximates the classical Boolean model.
In our work we used this setting to gain some insight into the influence of obstruc-
tion on telecommunication networks. Studied quantities were the covered volume
and the number of isolated nodes. Our setup for this was as follows: we have a
simulation area of 1km2 and cells of sidelength 5m. We fix an outradius r+ of 30m
and set r− = ∆ · r+ for ∆ ∈ {0.2, 0.4, 0.6, 0.8, 1}. For each value of ∆ we did
300 iterations of the following procedure:

1. We placed a grid over the simulation area and realized the corresponding
random variables as instructed above.

2. A deterministic number of nodes was placed in the area at random and
homogeneously.

3. Communication zones were assigned accordingly.

4. The number of isolated nodes and the covered volume were calculated.

After that we averaged volume and isolated nodes over the 300 samples created
for each ∆. The resulting numbers give us an idea of the impact obstruction has
on the connectivity of the simulated network. The following tables summarize our
results for 250 and 1000 nodes respectively.

∆ Avg. Covered Volume Avg. Number of Isolated Nodes
0.2 223504.69 125.14
0.4 293257.59 116.62
0.6 360932.42 107.88
0.8 432018.29 98.68
1.0 509706.59 88.27

Table 6.1: Results for 250 nodes.

∆ Avg. Covered Volume Avg. Number of Isolated Nodes
0.2 641991.60 159.24
0.4 758830.91 142.57
0.6 853257.23 126.70
0.8 925718.70 111.59
1.0 979453.36 96.24

Table 6.2: Results for 1000 nodes.
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The data clearly shows that the introduction of obstructed communication
zones has a substantial influence on connectivity in the network. Furthermore, the
data seems to suggest asymptotic normality of both the distribution of the volume
and of the isolated nodes as a kernel density estimation shows:

Figure 6.4: In this picture we see the density function of standard normal distri-
bution in red and kernel density estimators of the standardized volume (blue) and
isolated nodes (green). This is in the case ∆ = 0.2 and 1000 nodes.

In line with these observations [LRP17, Theorem 6.1] shows asymptotic nor-
mality of both the distribution of the volume and of the isolated nodes for Boolean
models with general grains (i.i.d. compact sets) in the binomial setting. These
results motivated us to further investigate obstruction in telecommunication net-
works, leading to the theorems presented in Chapter 3. We also used the Car-
cassonne simulation technique on mobility traces generated by BonnMotion, thus
studying the impact of mobility. This inspired the TBC model and the results
derived in Chapter 4.

http://sys.cs.uos.de/bonnmotion/
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